WO2013039251A1 - スパッタリングターゲットおよびその製造方法 - Google Patents

スパッタリングターゲットおよびその製造方法 Download PDF

Info

Publication number
WO2013039251A1
WO2013039251A1 PCT/JP2012/073961 JP2012073961W WO2013039251A1 WO 2013039251 A1 WO2013039251 A1 WO 2013039251A1 JP 2012073961 W JP2012073961 W JP 2012073961W WO 2013039251 A1 WO2013039251 A1 WO 2013039251A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering target
phase
tungsten oxide
sintered body
powder
Prior art date
Application number
PCT/JP2012/073961
Other languages
English (en)
French (fr)
Inventor
啓太 梅本
張 守斌
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Publication of WO2013039251A1 publication Critical patent/WO2013039251A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Definitions

  • the present invention relates to a tungsten oxide (WO x ) sputtering target capable of DC sputtering and a method for manufacturing the same.
  • a WO x film is used for an electrochromic display element or a light shielding member, and a sputtering target is used to form the WO x film.
  • a technique for producing a target having a uniform composition is described.
  • a WO x film is formed by sputtering by RF magnetron sputtering.
  • the conventional WO x sputtering target since the conventional WO x sputtering target has high resistance and is not conductive, it is formed by RF sputtering, and there is a problem that DC sputtering with high productivity cannot be performed.
  • the WO 2 sputtering target is conductive and can be DC sputtered, whereas the WO 3 sputtering target is not conductive and DC sputtering is difficult.
  • reactive sputtering with an increased oxygen content in the atmosphere is performed. It was necessary and the film formation rate was low and unstable, so high productivity could not be obtained.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a sputtering target having high conductivity and capable of forming a WO x film by DC sputtering and a method for manufacturing the sputtering target.
  • tungsten oxide powder WO x powder
  • WO 3 containing WO 2 and W 18 O 49 which is a compound of the magnetic phase
  • the sputtering target of the first invention is a tungsten oxide sintered body having a structure composed of two or more phases of WO 2 phase and W 18 O 49 phase, and the proportion of the WO 2 phase in the structure is 5% or more.
  • This sputtering target is a tungsten oxide sintered body having a structure composed of two or more phases of WO 2 phase and W 18 O 49 phase, and the proportion of the WO 2 phase in the structure is 5% or more.
  • the WO 2 phase which is a semiconductor, and the W 18 O 49 phase exhibiting metal conductivity can be mixed to obtain high conductivity.
  • a sputtering target according to a second invention is the sputtering target according to the first invention, wherein the density of the sintered body is 5.0 g / cm 3 or more, and the specific resistance of the sintered body is 1 ⁇ 10 ⁇ 3 ⁇ at 300K.
  • -It is characterized by being cm or less. That is, in this sputtering target, the density of the sintered body is 5.0 g / cm 3 or more, and the specific resistance of the sintered body is 1 ⁇ 10 ⁇ 3 ⁇ ⁇ cm or less at 300K.
  • High strength, improved machinability and high electrical conductivity make it possible to perform good DC sputtering.
  • the sputtering target of the third invention is characterized in that, in the first or second invention, the proportion of the WO 2 phase in the structure is 60% or less. That is, in this sputtering target, since the ratio in the structure of the WO 2 phase is 60% or less, an increase in specific resistance can be suppressed.
  • the sputtering target of the third invention is characterized in that, in any of the first to third inventions, the maximum particle size in the structure of the WO 2 phase and the W 18 O 49 phase is less than 50 ⁇ m. To do. That is, in this sputtering target, since the maximum particle size in the structure of the WO 2 phase and the W 18 O 49 phase is less than 50 ⁇ m, an increase in specific resistance can be suppressed.
  • a method for producing a sputtering target comprising sintering a tungsten oxide powder containing WO 2 and at least one of W 18 O 49 and WO 3 in a vacuum by hot pressing to sinter tungsten oxide. And the content of the WO 2 in the tungsten oxide powder is 5 to 95 mol%. That is, in this sputtering target manufacturing method, tungsten oxide powder containing WO 2 and at least one of W 18 O 49 and WO 3 is sintered in a hot press in a vacuum, and a tungsten oxide sintered body is obtained.
  • the WO 2 phase that is a semiconductor and the W 18 O 49 phase exhibiting metal conductivity can be mixed and high conductivity can be obtained.
  • the reason why the content of WO 2 is set to 5 to 95 mol% is that when the content is less than 5 mol% or exceeds 95 mol%, the specific resistance increases beyond 1 ⁇ 10 ⁇ 3 ⁇ ⁇ cm. It is.
  • the sputtering target manufacturing method of the fourth invention is characterized in that, in the third invention, the holding temperature during the hot pressing is 850 to 1400 ° C. That is, in this sputtering target manufacturing method, a high strength target having a low specific resistance can be obtained by setting the holding temperature during hot pressing to 850 to 1400 ° C.
  • the reason why the holding temperature at the time of hot pressing is set in the above range is that if it is less than 850 ° C., sufficient density cannot be obtained and high strength cannot be obtained. If it exceeds 1400 ° C., the melting point is 1473. This is because there is a possibility that WO 2 at a temperature may melt.
  • the present invention has the following effects. That is, according to the method for producing a sputtering target according to the present invention, tungsten oxide powder containing WO 2 and at least one of W 18 O 49 and WO 3 is sintered in a hot press in a vacuum, and tungsten oxide is obtained. Therefore, a high conductivity can be obtained by mixing the WO 2 phase, which is a semiconductor, and the W 18 O 49 phase exhibiting metal conductivity.
  • the sputtering target of the present invention obtained in this process is a sintered body of tungsten oxide having a composed of two or more phases structure of WO 2 phase and W 18 O 49 phase, WO 2 phase tissues Therefore, by using this target, DC sputtering with high productivity can be performed due to high conductivity, and a WO x film can be formed satisfactorily.
  • Example 3 of the sputtering target which concerns on this invention, and its manufacturing method the figure which added typical explanatory drawing to the composition image (COMP image) which measured the cross-sectional structure
  • Example 9 of the sputtering target which concerns on this invention, and its manufacturing method it is the figure which added typical explanatory drawing to the composition image (COMP image) which measured the cross-sectional structure
  • Examples 1 to 3 according to the present invention it is a graph showing the density of the sintered body with respect to the holding temperature of the hot press.
  • Example 1 to 3 it is a graph showing a specific resistance of a sintered body with respect to a holding temperature of a hot press.
  • Examples 1-3 and 9 which concern on this invention, it is a photograph which shows the composition image (CP) by EPMA, the elemental mapping image of tungsten (W), and the elemental mapping image of oxygen (O).
  • Example 3 which concerns on this invention, it is a graph which shows the X-ray-diffraction (XRD) result of the produced sputtering target.
  • XRD X-ray-diffraction
  • Example 9 which concerns on this invention, it is a graph which shows the XRD result of the produced sputtering target.
  • the manufacturing method of the sputtering target of this embodiment includes a step of producing tungsten oxide powder containing WO 2 and at least one of W 18 O 49 and WO 3 , and hot-pressing the tungsten oxide powder in a vacuum. And a step of sintering to form a sintered body of tungsten oxide. Further, in the step of producing the tungsten oxide powder, the content of WO 2 in the tungsten oxide powder is set to 5 to 95 mol%.
  • WO 3 powder is heated at a predetermined temperature for a predetermined time in a hydrogen atmosphere to perform hydrogenation reduction. In this hydrogenation reduction, the reduction proceeds in the order of WO 3 to WO 2.9 , WO 2.72 (W 18 O 49 ), WO 2 , W, and WO 2 and W 18 O 49 are also obtained in the process.
  • the method of quantifying x in this WO x powder first samples the WO x powder and measures the weight, then calcines it in the atmosphere at 800 ° C. for 1 hour, and then performs the weight measurement again. And it is confirmed by X-ray diffraction method (XRD) that it is all WO 3 powder, and the amount of W (tungsten) is calculated by the following formula. Then, the ratio of oxygen (O) is calculated as x from the obtained amount of W.
  • XRD X-ray diffraction method
  • W weight weight after the above baking ⁇
  • Mw W / Mw WO3 W (wt%) (weight of W / weight of WO x before firing) ⁇ 100 (Mw W : atomic weight of W (183.85), Mw WO3 : atomic weight of WO 3 (231.85))
  • the diffraction peak attributed to the WO 2 phase and the diffraction peak attributed to the W 18 O 49 phase were confirmed, and the inclusion of WO 2 and W 18 O 49 was confirmed. To do. It is preferable that the diffraction peak assigned to WO 3 is not observed.
  • the obtained WO x powder and zirconia balls are put in a plastic container (polyethylene pot) and mixed, for example, in a dry ball mill apparatus. Thereafter, the obtained powder is classified through a sieve with a predetermined opening, and hot-pressed in vacuum at a pressure of 100 to 350 kgf / cm 2 at 850 ° C. to 1400 ° C. for 2 hours to obtain a sputtering target. .
  • the sputtering target of WO x produced by this manufacturing method has a sintered body density of 5.0 g / cm 3 or more, and a specific resistance of the sintered body of 1 ⁇ 10 ⁇ 3 ⁇ ⁇ cm or less at 300K. Become.
  • tungsten oxide powder containing WO 2 and at least one of W 18 O 49 and WO 3 is sintered by hot pressing in vacuum, and tungsten oxide is obtained. Therefore, a high conductivity can be obtained by mixing the WO 2 phase, which is a semiconductor, and the W 18 O 49 phase exhibiting metal conductivity.
  • a target with low specific resistance and high strength can be obtained.
  • the sputtering target of the present embodiment manufactured in this way is a tungsten oxide sintered body having a structure composed of two or more phases of WO 2 phase and W 18 O 49 phase, and WO 2 Since the proportion of the phase in the structure is 5% or more, DC sputtering with high productivity can be performed due to high conductivity, and a WO x film can be formed satisfactorily.
  • the density of the sintered body is 5.0 g / cm 3 or more and the specific resistance of the sintered body is 1 ⁇ 10 ⁇ 3 ⁇ ⁇ cm or less at 300 K, it has high density and high strength, Since the machinability is improved and it has high conductivity, good DC sputtering is possible.
  • the ratio in the tissue of the WO 2 phase by 60% or less it is possible to suppress an increase in resistivity. Furthermore, the increase in specific resistance can also be suppressed by setting the maximum particle size in the structure of the WO 2 phase and the W 18 O 49 phase to less than 50 ⁇ m.
  • WO x powder composed of WO 2 powder and W 18 O 49 powder was produced by the above-described reduction treatment of WO 3 powder.
  • WO x powder by dry mixing with WO 2 powder and WO 3 powder.
  • WO x powder average particle diameter 3.2 ⁇ m
  • x 2.50 was obtained.
  • this WO x powder was hot-pressed in vacuum for 2 hours under the condition of changing the holding temperature at the time of hot-pressing to obtain the sputtering targets of Examples 1 to 9 of the present invention.
  • hot pressing was performed in a vacuum for 2 hours under the conditions shown in Table 1.
  • the sputtering targets of Comparative Examples 3 to 5 of the present invention were obtained.
  • Table 1 shows the results of measuring the density and specific resistance of the sputtering target (sintered body) for these examples and comparative examples.
  • the relationship between the holding temperature of the hot press and the density of the obtained target is shown in FIG. 3, and the relationship between the holding temperature of the hot press and the specific resistance of the obtained target. Is shown in FIG.
  • the specific resistance was calculated
  • the ratio of the WO 2 phase in the structure and the maximum particle size were measured as follows. First, using an EPMA (Field Emission Electron Beam Probe Microanalyzer) for structure observation, an element distribution image showing an element composition distribution was observed. In addition, in the observation with EPMA, five photographs (500 times magnification) of the observation field of 0.005 mm 2 were taken, the area of the WO 2 phase that can be observed was measured, and the area ratio to the entire observation area was calculated. did.
  • EPMA Field Emission Electron Beam Probe Microanalyzer
  • the area ratio of the WO 2 phase can be measured, for example, by the following procedures (a) to (d).
  • (A) Take ten 500 ⁇ COMPO images (60 ⁇ m ⁇ 80 ⁇ m) with EPMA.
  • (B) Using a commercially available image analysis software, the captured image is converted into a monochrome image and binarized using a single threshold value. In binarization, a certain “threshold value” is set for the luminance (brightness) of each pixel of an image. Is to differentiate.
  • image analysis software for example, WinRoof Ver. 5.6.2 (manufactured by Mitani Corporation) can be used.
  • a certain “threshold value” is set for the luminance (brightness) of each pixel of an image. Is to differentiate.
  • the maximum threshold value that does not select all the images is set to 100%, and a WO 2 phase region is selected using a threshold value of 30 to 60%. By this operation, the area ratio with respect to the entire observation region was calculated from the area of the WO 2 phase.
  • Maximum particle size of (d) WO 2 phase select the larger WO 2 phases largest area out of five photographs taken, and measured the maximum width of the WO 2 phase as a maximum particle size.
  • Comparative Examples 3 and 4 produced using only WO 3 powder had no conductivity and could not be measured for specific resistance.
  • Comparative Example 5 which is formed using only the WO 2 powder, the specific resistance was as high as 3.10 ⁇ 10 -3 ⁇ ⁇ cm at 300K.
  • the density is 5.0 g / cm 3 or more and the specific resistance is 300 ⁇ K and 1 ⁇ 10 ⁇ 3 ⁇ ⁇ cm or less.
  • the higher the hot press holding temperature the higher the density and the lower the specific resistance.
  • Example 11 the maximum particle size of the WO 2 phase in the tissue is 50 ⁇ m or more, as in Example 12 the ratio in the tissue of the WO 2 phase exceeds 60%, both Comparative Examples 1 and 2 , 5 is lower than the specific resistance, but exceeds 1 ⁇ 10 ⁇ 3 ⁇ ⁇ cm. Moreover, in Comparative Examples 1 and 2 in which the proportion of the WO 2 phase in the structure is less than 5%, the specific resistance exceeds 3 ⁇ 10 ⁇ 3 ⁇ ⁇ cm.
  • a composition image (CP), an element mapping image of tungsten (W), and an element mapping image of oxygen (O) by an electron beam microanalyzer (EPMA) are shown in FIG.
  • the element mapping image by EPMA is originally a color image, but is described by converting it into a black and white image. Therefore, a light and dark portion (relatively white portion) is a portion where the concentration of the predetermined element is high. Yes.
  • Example 3 where the holding temperature of the hot press is 1200 ° C., the W 18 O 49 phase is a matrix so as to cover the periphery of the granular WO 2 phase.
  • Example 3 and Example 9 the enlarged composition image is shown in FIG.1 and FIG.2.
  • Example 3 of the present invention a granular (island-like) WO 2 phase exhibiting semiconductor characteristics in a W 18 O 49 phase base material of a magnetic phase exhibiting metal conductivity.
  • the specific resistance of WO 3 is 2.0 ⁇ 10 ⁇ 3 ⁇ ⁇ cm at 300K (Volume of Chemical Dictionary 3), and the specific resistance of WO 2 is 2.9 ⁇ 10 ⁇ 3 ⁇ ⁇ cm at 300K.
  • the specific resistance of cm (physical and chemical encyclopedia 5th edition) and W 18 O 49 is 2.75 ⁇ 10 ⁇ 3 ⁇ ⁇ cm (physical and chemical encyclopedia 5th edition) at 300K, whereas each embodiment of the present invention.
  • the specific resistance is as low as 1 ⁇ 10 ⁇ 3 ⁇ ⁇ cm or less at 300K because of the effect of the metal-semiconductor junction. That is, WO 2 shows semiconductor characteristics and W 18 O 49 shows metal conductivity.
  • the structure of the sintered body is formed by bonding between the WO 2 phase and the W 18 O 49 phase. It is like a semiconductor junction.
  • the free electrons in the metal increase and the specific resistance decreases dramatically. it is conceivable that.
  • XRD X-ray diffraction
  • a diffraction peak attributed to the W 18 O 49 phase having a main peak as a peak, and WO 2 and W 18 O 49 were confirmed.
  • the sputtering target of any Example has a structure composed of two or more phases of WO 2 phase and W 18 O 49 phase.

Abstract

高い導電性を有し、WO膜をDCスパッタにより成膜可能なスパッタリングターゲットおよびその製造方法を提供する。スパッタリングターゲットが、WO相とW1849相との2相以上からなる組織を有した酸化タングステンの焼結体であり、WO相の組織中の割合が、5%以上である。このスパッタリングターゲットの製造方法は、WOと、W1849及びWOの少なくとも一方とを含有した酸化タングステン粉を作製する工程と、該酸化タングステン粉を真空中でホットプレスにて焼結し、酸化タングステンの焼結体とする工程とを有し、前記酸化タングステン粉中の前記WOの含有量を、5~95mol%とする。

Description

スパッタリングターゲットおよびその製造方法
 本発明は、DCスパッタが可能な酸化タングステン(WO)のスパッタリングターゲットおよびその製造方法に関するものである。
 従来、エレクトロクロミック表示素子用や遮光部材用としてWO膜が用いられており、このWO膜を成膜するためにスパッタリングターゲットが使用されている。例えば、特許文献1には、エレクトロクロミック表示素子用のWO膜を成膜するスパッタリングターゲットとして、WO粉末を大気中でホットプレスにより焼結体とし、WO(X=2.0~3.0)の均一組成からなるターゲットを作製する技術が記載されている。このスパッタリングターゲットを用いて、RFマグネトロンスパッタによりスパッタすることでWO膜を成膜している。
特許第2693599号公報
 上記従来の技術には、以下の課題が残されている。
 すなわち、従来のWOスパッタリングターゲットは、高抵抗で導電性が無いためRFスパッタにより成膜しており、生産性の高いDCスパッタができないという問題があった。なお、WOのスパッタリングターゲットは、導電性があるためDCスパッタが可能であるのに対し、WOのスパッタリングターゲットは、導電性がなくDCスパッタが困難である。また、WOのスパッタリングターゲットを用いて、透明性の高いWO膜(2.0<x≦3.0)を成膜するには、雰囲気中の含有酸素量を多くした反応性スパッタを行う必要があり、成膜レートが低く不安定なため、高い生産性が得られなかった。
 本発明は、前述の課題に鑑みてなされたもので、高い導電性を有し、WO膜をDCスパッタにより成膜可能なスパッタリングターゲットおよびその製造方法を提供することを目的とする。
 本発明者らは、WOのスパッタリングターゲットについて研究を進めたところ、WOとマグネリ相の化合物であるW1849とを含有する酸化タングステン粉(WO粉)あるいはWOを真空中でホットプレスすることにより、高い導電性を有したスパッタリングターゲットが得られ、このスパッタリングターゲットを用いてDCスパッタすることにより、WO膜が得られることを見出した。
 したがって、本発明は、上記知見から得られたものであり、前記課題を解決するために以下の構成を採用した。すなわち、第1の発明のスパッタリングターゲットは、WO相とW1849相との2相以上からなる組織を有した酸化タングステンの焼結体であり、前記WO相の組織中の割合が、5%以上であることを特徴とする。
 このスパッタリングターゲットでは、WO相とW1849相との2相以上からなる組織を有した酸化タングステンの焼結体であり、WO相の組織中の割合が、5%以上であるので、半導体であるWO相と金属伝導性を示すW1849相とが混在して高い導電性を得ることができる。
 第2の発明のスパッタリングターゲットは、第1の発明において、前記焼結体の密度が、5.0g/cm以上であり、前記焼結体の比抵抗が、300Kで1×10−3Ω・cm以下であることを特徴とする。
 すなわち、このスパッタリングターゲットでは、焼結体の密度が、5.0g/cm以上であり、焼結体の比抵抗が、300Kで1×10−3Ω・cm以下であるので、高密度および高強度であり、機械加工性が向上すると共に高い導電性も有するため良好なDCスパッタが可能になる。
 第3の発明のスパッタリングターゲットは、第1又は第2の発明において、前記WO相の組織中の割合が、60%以下であることを特徴とする。
 すなわち、このスパッタリングターゲットでは、WO相の組織中の割合が60%以下であるので、比抵抗の増大を抑制することができる。
 第3の発明のスパッタリングターゲットは、第1から第3の発明のいずれかにおいて、前記WO相と前記W1849相との組織中の最大粒径が、50μm未満であることを特徴とする。
 すなわち、このスパッタリングターゲットでは、WO相とW1849相との組織中の最大粒径が50μm未満であるので、比抵抗の増大を抑制することができる。
 第3の発明のスパッタリングターゲットの製造方法は、WOと、W1849及びWOの少なくとも一方とを含有した酸化タングステン粉を真空中でホットプレスにて焼結し、酸化タングステンの焼結体とする工程を有し、前記酸化タングステン粉中の前記WOの含有量を、5~95mol%とすることを特徴とする。
 すなわち、このスパッタリングターゲットの製造方法では、WOと、W1849及びWOの少なくとも一方とを含有した酸化タングステン粉を真空中でホットプレスにて焼結し、酸化タングステンの焼結体とする工程を有しているので、半導体であるWO相と金属伝導性を示すW1849相とが混在して高い導電性を得ることができる。
 なお、WOの含有量を、5~95mol%とした理由は、5mol%未満である場合又は95mol%を超える場合、比抵抗が1×10−3Ω・cmを超えて大きくなってしまうためである。
 第4の発明のスパッタリングターゲットの製造方法は、第3の発明において、前記ホットプレス時の保持温度を、850~1400℃とすることを特徴とする。
 すなわち、このスパッタリングターゲットの製造方法では、ホットプレス時の保持温度を、850~1400℃とすることで、比抵抗が低く高強度のターゲットを得ることができる。なお、ホットプレス時の保持温度を上記範囲に設定した理由は、850℃未満であると、十分な密度が得られず高強度が得られないためであり、1400℃を超えると、融点が1473℃であるWOが溶け出すおそれがあるためである。
 本発明によれば、以下の効果を奏する。
 すなわち、本発明に係るスパッタリングターゲットの製造方法によれば、WOと、W1849及びWOの少なくとも一方とを含有した酸化タングステン粉を真空中でホットプレスにて焼結し、酸化タングステンの焼結体とする工程を有しているので、半導体であるWO相と金属伝導性を示すW1849相とが混在して高い導電性を得ることができる。したがって、この製法で得られた本発明のスパッタリングターゲットは、WO相とW1849相との2相以上からなる組織を有した酸化タングステンの焼結体であり、WO相の組織中の割合が、5%以上であるので、このターゲットを用いることで、高い導電性により生産性の高いDCスパッタができ、良好にWO膜を成膜することができる。
本発明に係るスパッタリングターゲットおよびその製造方法の実施例3において、作製したスパッタリングターゲットの断面組織を電子線マイクロアナライザ(EPMA)により測定した組成像(COMP像)に模式的な説明図を追加した図である。 本発明に係るスパッタリングターゲットおよびその製造方法の実施例9において、作製したスパッタリングターゲットの断面組織をEPMAにより測定した組成像(COMP像)に模式的な説明図を追加した図である。 本発明に係る実施例1~3において、ホットプレスの保持温度に対する焼結体の密度を示すグラフである。 本発明に係る実施例1~3において、ホットプレスの保持温度に対する焼結体の比抵抗を示すグラフである。 本発明に係る実施例1~3及び9において、EPMAによる組成像(CP)、タングステン(W)の元素マッピング像および酸素(O)の元素マッピング像を示す写真である。 本発明に係る実施例3において、作製したスパッタリングターゲットのX線回折(XRD)結果を示すグラフである。 本発明に係る実施例9において、作製したスパッタリングターゲットのXRD結果を示すグラフである。
 以下、本発明のスパッタリングターゲットおよびその製造方法の一実施形態を、図1を参照して説明する。
 本実施形態のスパッタリングターゲットの製造方法は、WOと、W1849及びWOの少なくとも一方とを含有した酸化タングステン粉を作製する工程と、該酸化タングステン粉を真空中でホットプレスにて焼結し、酸化タングステンの焼結体とする工程とを有している。
 また、酸化タングステン粉を作製する工程において、酸化タングステン粉中のWOの含有量を、5~95mol%としている。
 すなわち、まずWO粉を、還元処理して半導体のWO粉と金属伝導性のW1849粉との混合粉とし、全体としてWOの含有量が5~95mol%となるWO粉(酸化タングステン粉:X=2~3)とする。
 上記還元処理としては、例えばWO粉を水素雰囲気中で所定時間、所定温度で加熱して水素化還元を行う。この水素化還元では、WOからWO2.9、WO2.72(W1849)、WO、Wの順に還元が進行し、その過程でWO及びW1849も得られる。
 なお、このWO粉のxの定量方法は、まずWO粉のサンプリングを行い、重量測定をした後、大気中において800℃で1時間焼成し、再び重量測定を行う。そして、全てWO粉となっていることをX線回折法(XRD)で確認し、W(タングステン)量を以下の式により計算する。そして、求めたW量から酸素(O)の割合をxとして算出する。
 Wの重量=上記焼成後の重量×Mw/MwWO3
 W(wt%)=(Wの重量/焼成前のWOの重量)×100
(Mw:Wの原子量(183.85)、MwWO3:WOの原子量(231.85))
 また、WO粉をXRDにて観察することで、WO相に帰属する回折ピークとW1849相に帰属する回折ピークとを確認し、WOとW1849との含有を確認する。なお、WOに帰属する回折ピークが観察されないことが好ましい。
 次に、得られたWO粉とジルコニアボールとをポリ容器(ポリエチレン製ポット)に入れ、例えば乾式ボールミル装置にて混合する。この後、得られた粉末を、所定の目開きの篩にかけて分級し、850℃~1400℃にて2時間、100~350kgf/cmの圧力にて真空中でホットプレスし、スパッタリングターゲットとする。
 この製造方法により作製されたWOのスパッタリングターゲットは、焼結体の密度が、5.0g/cm以上となり、焼結体の比抵抗が、300Kで1×10−3Ω・cm以下となる。
 このように、本実施形態のスパッタリングターゲットの製造方法では、WOと、W1849及びWOの少なくとも一方とを含有した酸化タングステン粉を真空中でホットプレスにて焼結し、酸化タングステンの焼結体とする工程を有しているので、半導体であるWO相と金属伝導性を示すW1849相とが混在して高い導電性を得ることができる。
 また、ホットプレス時の保持温度を、850~1400℃とすることで、比抵抗が低く高強度のターゲットを得ることができる。
 このように作製された本実施形態のスパッタリングターゲットでは、上述したように、WO相とW1849相との2相以上からなる組織を有した酸化タングステンの焼結体であり、WO相の組織中の割合が、5%以上であるので、高い導電性により生産性の高いDCスパッタができ、良好にWO膜を成膜することができる。
 特に、焼結体の密度が、5.0g/cm以上であり、焼結体の比抵抗が、300Kで1×10−3Ω・cm以下であるので、高密度および高強度であり、機械加工性が向上すると共に高い導電性も有するため良好なDCスパッタが可能になる。
 また、WO相の組織中の割合を60%以下とすることで、比抵抗の増大を抑制することができる。
 さらに、WO相とW1849相との組織中の最大粒径を50μm未満とすることでも、比抵抗の増大を抑制することができる。
 上記本実施形態に基づいて実際に作製したスパッタリングターゲットおよびその製造方法の実施例について、評価を行った結果を説明する。
 まず、上述したWO粉の還元処理によりWO粉とW1849粉とからなるWO粉を作製した。本実施例では、還元の度合いを調整することにより、表1に示すように、x=2.62のWO粉(平均粒径2.4μm)と、x=2.57のWO粉(平均粒径19.0μm)とした。また、WO粉とWO粉との乾式混合によりWO粉も作製した。混合の度合いを調整することによりx=2.50のWO粉(平均粒径3.2μm)を得た。これら3種類を、それぞれホットプレス時の保持温度:850,900,1200℃で作製した。
 このWO粉を、表1に示すように、ホットプレス時の保持温度を変えた条件において真空中でホットプレスを2時間行い、本発明の実施例1~9のスパッタリングターゲットを得た。
 なお、比較例として、WO粉のみ(x=3.00)又はWO粉のみ(x=2.00)の原料粉を用いて、表1に示す条件において真空中でホットプレスを2時間行い、本発明の比較例3~5のスパッタリングターゲットを得た。
<評価>
 これらの実施例および比較例について、スパッタリングターゲット(焼結体)の密度および比抵抗について測定した結果を表1に示す。また、本発明の実施例1~3において、ホットプレスの保持温度と得られたターゲットの密度との関係を図3に示すと共に、ホットプレスの保持温度と得られたターゲットの比抵抗との関係を図4に示す。
 なお、比抵抗は、温度300Kにおいて三菱ガス化学製四探針抵抗測定計ロレスターで測定することによって求めた。
 また、組織中のWO相の割合及び最大粒径については、以下のように測定した。
 まず、組織観察をEPMA(フィールドエミッション型電子線プローブマイクロアナライザー)を用い、元素の組成分布を示す元素分布像を観察した。また、EPMAでの観察において、0.005mmの観察視野の写真(500倍)を5枚撮影し、その中で観察可能なWO相の面積を測定し、観察領域全体に対する面積比を計算した。
 なお、WO相の面積比は、例えば、以下(a)~(d)の手順により測定することができる。
(a)EPMAにより500倍のCOMPO像(60μm×80μm)10枚を撮影する。
(b)市販の画像解析ソフトにより、撮影した画像をモノクロ画像に変換すると共に、単一しきい値を使用して二値化する。二値化とは、画像の各画素の輝度(明るさ)に対してある“しきい値”を設け、しきい値以下ならば“0”、しきい値より大きければ“1”として、領域を区別化することである。なお、画像解析ソフトとしては、例えば、WinRoof
Ver5.6.2(三谷商事社製)などが利用できる。二値化とは、画像の各画素の輝度(明るさ)に対してある“しきい値”を設け、しきい値以下ならば“0”、しきい値より大きければ“1”として、領域を区別化することである。
(c)この画像すべてを選択しない最大のしきい値を100%とし、30~60%のしきい値を使用しWO相の領域を選択する。この操作によりWO相の面積から観察領域全体に対する面積比を算出した。
(d)WO相の最大粒径は、撮影した5枚の写真のうち最も面積の大きいWO相を選び、そのWO相の最大幅を最大粒径として計測した。
Figure JPOXMLDOC01-appb-T000001
 これらの結果からわかるように、WO粉のみで作製された比較例3,4では、導電性が無く比抵抗の測定ができなかった。また、WO粉のみで作製された比較例5では、比抵抗が300Kで3.10×10−3Ω・cmと高かった。これらに対し、本発明の実施例1~9では、いずれも密度が5.0g/cm以上であると共に比抵抗が300Kで1×10−3Ω・cm以下となっている。また、ホットプレスの保持温度が高いほど、密度が高くなると共に、比抵抗が低下している。
 なお、組織中のWO相の最大粒径が50μm以上である実施例11と、WO相の組織中の割合が60%を超えている実施例12とは、どちらも比較例1,2,5よりも比抵抗が低いが、1×10−3Ω・cmを超えてしまっている。また、組織中のWO相の割合が5%未満である比較例1,2では、いずれも比抵抗が3×10−3Ω・cmを超えている。
 次に、実施例1~3及び9について、電子線マイクロアナライザ(EPMA)による組成像(CP)、タングステン(W)の元素マッピング像および酸素(O)の元素マッピング像を図5示す。ここで、EPMAによる元素マッピング像は、本来カラー像であるが、白黒像に変換して記載しているため、濃淡の淡い部分(比較的白い部分)が所定元素の濃度が高い部分となっている。
 図5からわかるように、本発明の実施例1~3及び9では、ホットプレスの保持温度が高いほど空洞が少なくなっており、これにより密度が向上すると共に、比抵抗も低下していると思われる。特に、ホットプレスの保持温度が1200℃の実施例3では、W1849相が粒状のWO相の周囲を覆うようにマトリックスとなっている。
 なお、実施例3と実施例9とについては、拡大した組成像を、図1および図2に示す。
 これら図1および図2からわかるように、本発明の実施例3では、金属伝導性を示すマグネリ相のW1849相の素地中に、半導体特性を示す粒状(島状)のWO相が分散分布している組織となっている。また、本発明の実施例9では、WO相とW1849相との間に半導体のWO相(X=2~2.72)が介在した組織となっている。すなわち、実施例3及び実施例9では、共にWO相間に介在するW1849相によって良好な導電性が得られており、特に実施例9では、WO相間により多く介在するW1849相によって十分な電気伝導パスが確保されることで、さらに高い導電性が得られ、比抵抗が大幅に低減されていると考えられる。
 なお、文献によれば、WOの比抵抗は300Kで2.0×10−3Ω・cm(化学大辞典3巻)、WOの比抵抗は300Kで2.9×10−3Ω・cm(理化学事典第5版)、W1849の比抵抗は300Kで2.75×10−3Ω・cm(理化学事典第5版)とされているのに対し、本発明の各実施例では比抵抗が300Kで1×10−3Ω・cm以下と低くなるのは、金属−半導体接合による効果が生じていると考えられる。すなわち、WOは半導体特性を示し、W1849は金属伝導性を示すが、図1に示すように、焼結体の組織がWO相とW1849相との接合により金属−半導体接合のようになっており、半導体側のエネルギー準位に変化が生じて金属側への電子移動が起こった結果、金属での自由電子が増加して比抵抗が劇的に低下していると考えられる。
 次に、実施例3および実施例9について、作製したスパッタリングターゲットのX線回折(XRD)結果を図6および図7に示す。
 なお、このX線回折の測定条件は、以下のとおりである。
 試料の準備:試料はSiC−Paper(grit 180)にて湿式研磨、乾燥の後、乳鉢で粉砕後250μm以下の粉を測定試料とした。
 装置:理学電気社製(RINT−Ultima/PC)
 管球:Cu
 管電圧:40kV
 管電流:50mA
 走査範囲(2θ):5°~80°
 スリットサイズ:発散(DS)2/3度、散乱(SS)2/3度、受光(RS)0.8mm
 測定ステップ幅:2θで0.02度
 スキャンスピード:毎分2度
 試料台回転スピード:30rpm
 これらX線回折の結果からわかるように、いずれも2θ=25.9°の(110)面のピークをメインピークとするWO相に帰属する回折ピークと、2θ=23.5°の(010)面のピークをメインピークとするW1849相に帰属する回折ピークとがあり、WOとW1849とが確認された。
 なお、いずれの実施例のスパッタリングターゲットにおいても、WO相とW1849相との2相以上からなる組織を有していることが確認された。
 なお、本発明の技術範囲は上記実施形態および上記実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。

Claims (6)

  1.  WO相とW1849相との2相以上からなる組織を有した酸化タングステンの焼結体であり、
     前記WO相の組織中の割合が、5%以上であることを特徴とするスパッタリングターゲット。
  2.  請求項1に記載のスパッタリングターゲットにおいて、
     前記焼結体の密度が、5.0g/cm以上であり、
     前記焼結体の比抵抗が、300Kで1×10−3Ω・cm以下であることを特徴とするスパッタリングターゲット。
  3.  請求項1に記載のスパッタリングターゲットにおいて、
     前記WO相の組織中の割合が、60%以下であることを特徴とするスパッタリングターゲット。
  4.  請求項1に記載のスパッタリングターゲットにおいて、
     前記WO相と前記W1849相との組織中の最大粒径が、50μm未満であることを特徴とするスパッタリングターゲット。
  5.  WOと、W1849及びWOの少なくとも一方とを含有した酸化タングステン粉を作製する工程と、
     該酸化タングステン粉を真空中でホットプレスにて焼結し、酸化タングステンの焼結体とする工程とを有し、
     前記酸化タングステン粉中の前記WOの含有量を、5~95mol%とすることを特徴とするスパッタリングターゲットの製造方法。
  6.  請求項5に記載のスパッタリングターゲットの製造方法において、
     前記ホットプレス時の保持温度を、850~1400℃とすることを特徴とするスパッタリングターゲットの製造方法。
PCT/JP2012/073961 2011-09-15 2012-09-11 スパッタリングターゲットおよびその製造方法 WO2013039251A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-201329 2011-09-15
JP2011201329 2011-09-15
JP2012195715A JP2013076163A (ja) 2011-09-15 2012-09-06 スパッタリングターゲットおよびその製造方法
JP2012-195715 2012-09-06

Publications (1)

Publication Number Publication Date
WO2013039251A1 true WO2013039251A1 (ja) 2013-03-21

Family

ID=47883465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073961 WO2013039251A1 (ja) 2011-09-15 2012-09-11 スパッタリングターゲットおよびその製造方法

Country Status (3)

Country Link
JP (1) JP2013076163A (ja)
TW (1) TWI554622B (ja)
WO (1) WO2013039251A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113423859A (zh) * 2019-03-15 2021-09-21 三菱综合材料株式会社 氧化钨溅射靶
CN113508188A (zh) * 2019-03-15 2021-10-15 三菱综合材料株式会社 氧化钨溅射靶
WO2022184879A1 (en) * 2021-03-04 2022-09-09 Soleras Advanced Coatings Bv Tungsten suboxide ceramic target
EP3940109A4 (en) * 2019-03-15 2022-11-16 Mitsubishi Materials Corporation TUNGSTEN OXIDE SPRAY TARGET
EP3940108A4 (en) * 2019-03-15 2022-11-16 Mitsubishi Materials Corporation TUNGSTEN OXIDE SPUTTER TARGET

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106977202A (zh) * 2017-04-05 2017-07-25 北京冶科纳米科技有限公司 一种高纯低密度氧化钨靶材的制备工艺及氧化钨靶材
CN107857484B (zh) * 2017-10-13 2019-08-27 浙江大学 具有高光谱调节范围的钨基氧化物电致变色薄膜及其制备方法
JP7162647B2 (ja) 2020-09-15 2022-10-28 Jx金属株式会社 Cu-W-Oスパッタリングターゲット及び酸化物薄膜
JP7436409B2 (ja) 2021-02-26 2024-02-21 Jx金属株式会社 酸化物スパッタリングターゲット及びその製造方法並びに酸化物薄膜

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150357A (ja) * 1989-11-06 1991-06-26 Nippon Tungsten Co Ltd ターゲットとその製造方法
JPH1167459A (ja) * 1997-08-12 1999-03-09 Tdk Corp 有機el素子およびその製造方法
JP2005256175A (ja) * 2005-04-27 2005-09-22 Asahi Glass Ceramics Co Ltd ターゲットおよび該ターゲットによる高屈折率膜の製造方法
JP2008103684A (ja) * 2006-09-21 2008-05-01 Nissan Motor Co Ltd キャパシタ用電極及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103392A (en) * 1994-12-22 2000-08-15 Osram Sylvania Inc. Tungsten-copper composite powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150357A (ja) * 1989-11-06 1991-06-26 Nippon Tungsten Co Ltd ターゲットとその製造方法
JPH1167459A (ja) * 1997-08-12 1999-03-09 Tdk Corp 有機el素子およびその製造方法
JP2005256175A (ja) * 2005-04-27 2005-09-22 Asahi Glass Ceramics Co Ltd ターゲットおよび該ターゲットによる高屈折率膜の製造方法
JP2008103684A (ja) * 2006-09-21 2008-05-01 Nissan Motor Co Ltd キャパシタ用電極及びその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113423859A (zh) * 2019-03-15 2021-09-21 三菱综合材料株式会社 氧化钨溅射靶
CN113508188A (zh) * 2019-03-15 2021-10-15 三菱综合材料株式会社 氧化钨溅射靶
EP3940109A4 (en) * 2019-03-15 2022-11-16 Mitsubishi Materials Corporation TUNGSTEN OXIDE SPRAY TARGET
EP3940108A4 (en) * 2019-03-15 2022-11-16 Mitsubishi Materials Corporation TUNGSTEN OXIDE SPUTTER TARGET
WO2022184879A1 (en) * 2021-03-04 2022-09-09 Soleras Advanced Coatings Bv Tungsten suboxide ceramic target
BE1029172B1 (nl) * 2021-03-04 2022-10-03 Soleras Advanced Coatings Bv Keramisch suboxidisch wolfraam sputterdoel

Also Published As

Publication number Publication date
TW201326428A (zh) 2013-07-01
JP2013076163A (ja) 2013-04-25
TWI554622B (zh) 2016-10-21

Similar Documents

Publication Publication Date Title
WO2013039251A1 (ja) スパッタリングターゲットおよびその製造方法
JP4831258B2 (ja) スパッタリングターゲット及びその製造方法
KR101099416B1 (ko) 스퍼터링 타겟 및 그 제조 방법
JP6766276B2 (ja) 酸化物スパッタリングターゲット及びその製造方法、並びに当該酸化物スパッタリングターゲットを用いて成膜した酸化物薄膜
US10017850B2 (en) Cu—Ga alloy sputtering target, and method for producing same
JP2010037161A (ja) 酸化物焼結体およびその製造方法、スパッタリングターゲット、半導体薄膜
JP2008063214A (ja) 酸化亜鉛焼結体およびその製造方法、スパッタリングターゲット
WO2015170534A1 (ja) スパッタリングターゲット材
WO2014025017A1 (ja) 透明酸化物膜形成用スパッタリングターゲット及びその製造方法
Cui et al. Improving electrical properties of ZnO–Bi2O3–Sb2O3–MnO2 varistors by doping with pre-synthesized Bi–Si–O phase
WO2020027077A1 (ja) 窒化珪素焼結体、窒化珪素基板、及び窒化珪素回路基板
JP5583771B2 (ja) ZnO−MgO系スパッタリングターゲット用焼結体
CN105008306A (zh) 氧化锌系烧结体及其制造方法和溅射靶以及透明导电膜
JP5348394B2 (ja) 太陽電池用の(Zn,Al)O系透明電極層およびその形成に用いられるZnO−Al2O3系スパッタリングターゲット
US20220025510A1 (en) Tungsten oxide sputtering target
JP5720726B2 (ja) 酸化亜鉛焼結体およびその製造方法
JP2019148007A (ja) スパッタリングターゲット、及び、スパッタリングターゲットの製造方法
JP2008115453A (ja) 酸化亜鉛系スパッタリングターゲット
JP5800209B2 (ja) 酸化物スパッタリングターゲットおよびその製造方法
CN104718308B (zh) Cu‑Ga二元系溅射靶及其制造方法
WO2019168013A1 (ja) スパッタリングターゲット、及び、スパッタリングターゲットの製造方法
JP6396837B2 (ja) ZnO−MgO系スパッタリングターゲット用焼結体及びその製造方法
JP2010238894A (ja) (Zn,In,Al)O系透明電極層を構成層とする太陽電池および前記(Zn,In,Al)O系透明電極層の形成に用いられるZnO−In2O3−Al系スパッタリングターゲット
JP5799870B2 (ja) 透明導電膜及びその製造方法
JP5545448B2 (ja) スパッタリングターゲット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12832619

Country of ref document: EP

Kind code of ref document: A1