WO2013039151A1 - 生体用電極被覆パッド - Google Patents

生体用電極被覆パッド Download PDF

Info

Publication number
WO2013039151A1
WO2013039151A1 PCT/JP2012/073477 JP2012073477W WO2013039151A1 WO 2013039151 A1 WO2013039151 A1 WO 2013039151A1 JP 2012073477 W JP2012073477 W JP 2012073477W WO 2013039151 A1 WO2013039151 A1 WO 2013039151A1
Authority
WO
WIPO (PCT)
Prior art keywords
gel
hydrophilic gel
pad
biomedical electrode
hydrophilic
Prior art date
Application number
PCT/JP2012/073477
Other languages
English (en)
French (fr)
Inventor
藤田 貴彦
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Publication of WO2013039151A1 publication Critical patent/WO2013039151A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • A61B5/257Means for maintaining electrode contact with the body using adhesive means, e.g. adhesive pads or tapes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • A61B5/266Bioelectric electrodes therefor characterised by the electrode materials containing electrolytes, conductive gels or pastes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/296Bioelectric electrodes therefor specially adapted for particular uses for electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0209Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053
    • A61B2562/0215Silver or silver chloride containing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0209Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053
    • A61B2562/0217Electrolyte containing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/14Coupling media or elements to improve sensor contact with skin or tissue

Definitions

  • the present invention relates to a biological electrode used in a biological phenomenon measurement device that detects an electrical signal generated in association with a bioelectric phenomenon such as electrocardiogram, myoelectricity, and electroencephalogram, or an electrical signal such as iontophoresis or a low-frequency treatment device.
  • the present invention relates to a biomedical electrode-coated pad that is connected to a biomedical electrode or the like used in a device such as electrotherapy or drug administration that flows into the body to reduce contact resistance with the human body.
  • Biological phenomenon measurement devices that read, record, and analyze electrical signals generated by living bodies such as electrocardiogram signals, myoelectric signals, and brain waves are already used in the medical field as general medical devices.
  • an electrotherapeutic device that sends an electric signal into the body
  • an iontophoresis device that efficiently administers a drug using an electric repulsion, and the like are also used on a daily basis. Since all devices exchange electric signals inside / outside the body, in principle, the device with higher electrical resistance in the circuit has higher performance.
  • the resistance of the surface of the human body that shows the highest resistance (impedance) in the circuit of general equipment-human body-equipment is several hundred times that of the biomedical electrode that plays a role in connecting the living body and the equipment. It is often thousands of times greater. Therefore, in order to improve the performance of the device, it is most effective to reduce the resistance of the surface of the human body (contact impedance with the skin) as much as possible.
  • the physical method is a method realized by the action of scratching or peeling the skin
  • the chemical method is a method of infiltrating the skin with water or an electrolyte component by applying a conductive paste to the skin.
  • a physical method is not preferred because it may damage the skin or cause inflammation or infection.
  • the chemical method is preferable in that it does not have the disadvantages of such a physical method.
  • Patent Document 1 describes a technique in which an aqueous electrolyte solution containing NaCl, KCl, or the like is applied between a living body electrode and skin in a cream form.
  • Patent Document 2 describes a technique for applying a water-containing gelatin gel containing salts between a biological electrode and the skin.
  • the cream-like composition as described in the above-mentioned publication is easy to soften the stratum corneum on the skin surface and reduce the contact impedance with the skin, but because of its poor shape retention, external stress In this case, the cream easily moves, and the evaporation of water also tends to dry out and tends to dry, so that electrical conduction tends to become unstable. Such a difficulty appears remarkably especially when used continuously for a long time. And it is also necessary to wipe off the cream remaining on the skin after use.
  • an object of the present invention is to provide a biomedical electrode covering pad that does not have such drawbacks and can stably connect the skin and the biomedical electrode of the device with low impedance.
  • a biomedical electrode covering pad provided on the surface of a biomedical electrode, comprising: a hydrophilic gel capable of reducing electrical resistance to a living body; and a pad main body for fixing the hydrophilic gel, wherein the pad main body is a biomedical electrode. It has a gel support part that forms a plurality of shape retaining frames that are positioned opposite to each other and fix the hydrophilic gel, and the hydrophilic gel spreads on both the front and back sides of the shape retaining frame through the through holes in the shape retaining frame.
  • a biomedical electrode coating pad held on a gel support.
  • the hydrophilic gel capable of reducing the electrical resistance to the living body and the pad main body for fixing the hydrophilic gel are provided, the contact impedance with the skin can be reduced by the hydrophilic gel.
  • a hydrophilic gel unlike cream, it has the shape-retaining property as a gel, and there is an advantage that it does not spread except a predetermined part, and does not remain on the skin when it is peeled off from the skin. Furthermore, since moisture is appropriately held or released, it is difficult to dry and stable conduction is obtained. Since the hydrophilic gel is fixed by the pad main body, it is possible to handle the hydrophilic gel that is difficult to handle together with the pad main body. Moreover, since it can be handled without touching the hydrophilic gel itself that affects conduction, the measurement is highly reliable and hygienic.
  • the pad main body has a gel support portion that constitutes a plurality of shape retaining frames that are positioned facing the biomedical electrode and fix the hydrophilic gel
  • the shape retaining frame faces the biomedical electrode.
  • the hydrophilic gel supported by the frame can also be formed in parallel with the biological electrode. Therefore, a state similar to the contact state between the biomedical electrode and the skin can be maintained. Since the hydrophilic gel spreads on both the front and back sides of the shape retaining frame via the through-holes in the shape retaining frame and is held by the gel support part, the hydrophilic gel should be in direct contact with both the skin and the biomedical electrode.
  • the hydrophilic gel can be exposed on the surface, the hydrophilic gel is supported by the shape retaining frame so that the cross-section of the contact portion between the shape retaining frame and the hydrophilic gel is H-shaped.
  • the function can be sufficiently exerted, and the hydrophilic gel is not easily detached from the pad main body, and the adhesion to the pad main body can be improved.
  • the hydrophilic polymer constituting the hydrophilic gel has a weight average molecular weight in the range of 100,000 to 5,000,000 before cross-linking, and is reacted with a cross-linking agent to cure acrylic acid, methacrylic acid, or t-butylacrylamide sulfonic acid
  • the hydrophilic gel has a thickness of 1 mm
  • the blending amount is 2.5% to 35% with respect to the total amount of the hydrophilic gel.
  • the surface has a moisture leaching amount of 1.5 mg / cm 2 to 20 mg / cm 2 and can maintain the gel state against a compressive strength of at least 3 kPa against the hydrophilic gel. It is a biomedical electrode coating pad.
  • the hydrophilic polymer constituting the hydrophilic gel has a weight average molecular weight in the range of 100,000 to 5,000,000 before cross-linking, and is reacted with a cross-linking agent to cure acrylic acid, methacrylic acid, or t-butylacrylamide sulfonic acid Or a copolymer of acrylic acid, methacrylic acid, or t-butylacrylamide sulfonic acid or a salt thereof, and the blending amount is 2.5 with respect to the total amount of the hydrophilic gel. % To 35%, it is not liquefied by heating or body temperature and can be used stably with excellent shape retention.
  • the biomedical electrode coating pad with which the hydrophilic gel not only has the capability to hold
  • the hydrophilic gel has a thickness of 1 mm, after 72 hours from the formation of the gel, the surface has a water leaching amount of 1.5 mg / cm 2 to 20 mg / cm 2 , and at least with respect to the hydrophilic gel. Since the gel state can be maintained with respect to a compressive strength of 3 kPa, it is possible to provide a biomedical electrode-coated pad that is excellent in water separation (bleeding) from a hydrophilic gel and also excellent in shape retention.
  • a hydrophilic gel can be formed so that the shape retaining frame is covered with the hydrophilic gel. Since the shape-retaining frame is covered with the hydrophilic gel, both directions of the shape-retaining frame are covered with the hydrophilic gel, so that the hydrophilic gel does not fall off the pad body unless the hydrophilic gel is broken. It is possible to improve the fixing property.
  • the opening area of the through hole of the shape retaining frame may be a 0.1cm 2 ⁇ 6.0cm 2. Since the opening area of the through hole of the shape retaining frame was 0.1cm 2 ⁇ 6.0cm 2, it is possible to achieve both both to increase the conductivity and preventing the falling off of the hydrophilic gel.
  • the thickness of the shape retaining frame can be 0.1 mm to 30 mm. Since the shape retaining frame has a thickness of 0.1 mm to 30 mm, the skin surface can be sufficiently wetted and contact with the biomedical electrode can be sufficiently performed.
  • hydrophilic gel it is also possible to hold the hydrophilic gel in contact with the portion of the pad body that extends in the crossing direction with respect to the shape retaining frame.
  • the hydrophilic gel By configuring the hydrophilic gel so as to be in contact with the portion of the pad main body that extends in the direction intersecting the shape retaining frame, the hydrophilic gel can be retained even in the portion of the pad main body that extends in the direction intersecting the shape retaining frame. become. Therefore, the sticking property of the hydrophilic gel can be enhanced.
  • the pad main body has an adhering portion that adheres to a device including the biomedical electrode, and can be a resin molded body integrated with the gel support portion. Since the pad main body has an adhering portion that adheres to a device including the biological electrode, the hydrophilic gel and the biological electrode can be contacted and fixed through the pad main body. Therefore, there is no need to apply or paste a hydrophilic gel, and the operation is easy and hygienic. Moreover, since it attaches to an apparatus through a pad main body, the stability of attachment increases. Moreover, since the pad main body is a resin molded body in which the fixing part and the gel support part are integrated, the process of integrating the fixing part and the gel support part can be omitted, and the production process becomes easy. Further, if the hydrophilic gel is removed, a single resin molded body is obtained, which is excellent in recyclability.
  • a biomedical electrode-coated pad that has a fixed part made of a resin molded body that is fixed to a device equipped with a biomedical electrode, and that is formed by combining the gel support part in which the pad main body is formed in a net shape and the fixed part. can do. Since the gel support portion and the fixing portion are formed by being combined, the gel support portion and the fixing portion can be prepared separately. Therefore, a plurality of types of biomedical electrode coating pads can be obtained by changing the material of the gel support portion and the fixing portion or combining a plurality of types of gel support portions and the fixing portion.
  • the biomedical electrode covering pad of the present invention has a structure that is fixed to a device having a biomedical electrode, continuously supplies moisture to the skin, and is stable with low impedance between the skin and the biomedical electrode of the device. Can be connected to. Further, since the hydrophilic gel does not fall off and it is not necessary to handle the hydrophilic gel directly, the workability is high. Furthermore, it can be disposable and is hygienic.
  • FIG. 2 is a side view of the SA-SA line in FIG. 1. It is explanatory drawing explaining attachment to the apparatus of the biomedical electrode coating pad of FIG. It is explanatory drawing which shows the state which attached the electrode cover pad for biological bodies of FIG. 1 to the apparatus. It is a top view of the biomedical electrode coating pad of 2nd Embodiment.
  • FIG. 6 is a cross-sectional view taken along the line SB-SB of FIG.
  • FIG. 6 is a sectional view taken along the line SC-SC in FIG. 5. It is explanatory drawing which shows the state which attached the biomedical electrode coating pad of FIG. 5 to another apparatus.
  • FIG. 12 is a cross-sectional view taken along the SD-SD line in FIG. 11. It is explanatory drawing which shows the manufacturing method of the electrode cover pad for biological bodies of FIG.
  • FIGS. 1 to 4) show a living body electrode covering pad 11 that covers a living body electrode such as an impedance measuring device (not shown).
  • the biomedical electrode coating pad 11 includes a hydrophilic gel 12 that can reduce electrical resistance to a living body and a pad body 13 that fixes the hydrophilic gel 12.
  • the pad main body 13 includes a fixing portion 15 that is fixed to the impedance measuring device, and a gel support portion 14 that is disposed at a position opposite to the biological electrode provided in the impedance measuring device and holds the hydrophilic gel 12.
  • 15 and the gel support part 14 are integrally formed of a resin molded body.
  • the gel support portion 14 has a net shape, a sieve shape, or a shape that can be said to be a flat plate shape having a plurality of through holes. In other words, it is a shape in which a plurality of beams 14b positioned facing the biomedical electrode are combined to form a net network.
  • network) 14b is the through-hole 14a, and if it sees from the through-hole 14a, the hole edge of the through-hole 14a forms the beam 14b.
  • through holes 14a are formed between ring-shaped or linear beams 14b.
  • the part of the beam 14b used as the hole edge of the one through-hole 14a comprises the shape retention frame 14c which supports and fixes the hydrophilic gel 12 mentioned later. Referring to FIG.
  • the hatched portion surrounding it is the shape retaining frame 14c, and to the other through-holes 15a other than the quadrant at the lower left of the drawing.
  • the shape retaining frame 14c is formed.
  • the fixing part 15 is a part for fixing the living body electrode covering pad 11 to the impedance measuring device so that the gel supporting part 14 is located at a position opposite to the living body electrode.
  • a peripheral wall portion 15a that rises in a cylindrical shape from the outer peripheral portion of the portion 14 is provided, and two locking claws 15b that are fixed to the impedance measuring device are provided at the tip of the peripheral wall portion 15a.
  • the pad main body 13 having the gel support portion 14 and the fixing portion 15 is fixed to the device so that the hydrophilic gel 12 is fixed and the hydrophilic gel 12 can reliably contact both the living body electrode and the skin. .
  • the hydrophilic gel 12 has a three-dimensional hydrophilic polymer network structure, and the network structure is not destroyed by body temperature or heating. As shown in FIGS. 1 and 2, the hydrophilic gel 12 fills the through hole 14a. In addition, both the front and back surfaces of the shape-retaining frame 14c are covered, and the front and back surfaces of the gel support portion 14 are connected to each other. Such a hydrophilic gel 12 is fixed and held on the shape-retaining frame 14c by its own shape-retaining force.
  • FIG. 3 shows a state in which the biomedical electrode covering pad 11 is attached to the biomedical electrode 2 provided in the impedance measuring instrument 1, but the latching claw 15 b provided in the pad main body 13 is provided in the impedance measuring instrument 1.
  • the biomedical electrode covering pad 11 is fixed to the impedance measuring instrument 1 by being fitted into the groove 1a.
  • the living body electrode 2 of the impedance measuring device 1 and the hydrophilic gel 12 are fixed so as to be in close contact with each other.
  • the total opening area of the plurality of through holes 14 a is 30% to 80% of the area where the hydrophilic gel 12 covers the gel support portion 14. If it is less than 30%, the portion of the hydrophilic gel 12 that connects the skin and the biomedical electrode becomes too small, which may adversely affect the conduction between the skin and the biomedical electrode. On the other hand, if it exceeds 80%, the gel support portion 14 cannot support the hydrophilic gel 12 and the hydrophilic gel 12 may be detached.
  • the opening area per one through-hole 14a is 0.1cm 2 ⁇ 6.0cm 2. This is because if it is smaller than 0.1 cm 2, there is a possibility of adversely affecting the current conduction between the skin and the biomedical electrode, and if it is larger than 6.0 cm 2 , the hydrophilic gel 12 may fall off.
  • the thickness of the hydrophilic gel 12 is 0.1 mm to 30 mm as the height from the gel support portion 14 to the surface of the hydrophilic gel 12 located on the skin side. If the thickness is smaller than 0.1 mm, it may be difficult to make the skin surface sufficiently wet, and if the thickness is larger than 30 mm, the impedance of the skin surface is not lowered more than a predetermined value and is wasted. Further, the thickness of the hydrophilic gel 12 can be the same as the thickness on the opposite side of the biological electrode centering on the gel support portion 14, but the skin side can also be made thicker or thinner. . Since the surface of the living body electrode is flat, the skin surface is slightly curved corresponding to the structure of the human body. Therefore, in order to achieve sufficient contact with the skin, it is preferable to increase the thickness on the skin side.
  • the shape of the through hole 14a and the beam 14b provided in the gel support portion 14 shown in FIG. 1 is an example, and the shape is not limited to such a shape, but the through hole 14a has various shapes such as a triangular shape and a rectangular shape. In addition, the shape of the beam 14b can be variously changed.
  • the hydrophilic gel 12 provided in the gel support part 14 is not satisfy
  • the hydrophilic gel 12 reaches the peripheral wall portion 15a, the peripheral wall portion 15 can be held in contact with the hydrophilic gel 12, and the holding power of the hydrophilic gel 12 can be increased.
  • Examples of the material of the resin molded body forming the pad body 13 include polyethylene resin, ethylene vinyl acetate copolymer resin, polystyrene resin, ABS resin, vinyl acetate resin, cellulose resin, polycarbonate resin, polyethylene terephthalate resin, and polymethyl methacrylate resin.
  • Polypropylene resin Polyacrylic copolymer resin, Polyolefin resin, Polyester resin, Epoxy resin, Polyurethane resin, Polyimide resin, Polyamide resin, Silicone resin, Amino resin such as melamine resin, Phenol resin, Fluorine resin
  • various synthetic resins such as polyarylate resin, polyallylsulfone resin, polyethersulfone resin, polyphenylene ether resin, polyphenylene sulfide resin, and polysulfone resin. .
  • the hydrophilic gel 12 is composed of a hydrophilic polymer having a three-dimensional network structure containing at least water, is interposed between the biological electrode 2 and the skin, reduces the surface resistance of the skin, and passes through the biological electrode. It facilitates the flow of electricity to and from the human body. For this reason, the hydrophilic gel 12 needs to be able to bleed to some extent and be able to significantly reduce the contact impedance of the skin. More specifically, when the thickness is 1 mm, after 72 hours from the formation of the gel, a gel having a water leaching amount of 1.5 mg / cm 2 to 20 mg / cm 2 is formed on the surface. It is necessary.
  • the water may be a solvent other than water, a mixture of water and a solvent other than water, and may further contain a surfactant, an oil component, a solution leaching accelerator, and the like. good.
  • the thickness of 1 mm of the hydrophilic gel is a thickness used for clarifying the degree of moisture leaching and clarifying the properties of the hydrophilic gel, and should be an appropriate thickness according to the application. Can do.
  • the compressive strength with respect to the hydrophilic gel 12 is at least 3 kPa, and the hydrophilic gel 12 is not broken, that is, does not break without returning to its original shape when the compression is released.
  • the hydrophilic gel 12 may be compressed to some extent in order to ensure that the living body electrode covering pad adheres to the skin even if there are individual differences depending on the body shape, etc. This is because it can be measured with ease.
  • hydrophilic polymer a polymer material having a three-dimensional network structure and forming a gel having at least moisture and having the above-described properties can be used.
  • hydrophilic polymer materials that are allowed to be used for transdermal applications in the cosmetics field, and hydrogels containing such hydrophilic polymers can be used, and among them, synthetic polymers having anionic functional groups Is preferred.
  • hydrophilic polymers examples include polymers of polymerizable unsaturated monomers such as acrylic acid and methacrylic acid having a carboxyl group as a functional group, and salts thereof (for example, sodium salt, potassium salt, Triethanolamine salts, etc.), polymers of polymerizable unsaturated monomers such as t-butylacrylamide sulfonic acid having a sulfonic acid group as a functional group, and salts thereof (for example, sodium salts, potassium salts, triethanolamine) Salts), copolymers of polymerizable unsaturated monomers such as acrylic acid, methacrylic acid, or t-butylacrylamide sulfonic acid, and salts thereof. In these, the polymer of acrylic acid and those salts are preferable.
  • the network structure of the hydrophilic polymer can be obtained by crosslinking the hydrophilic polymer before crosslinking. That is, a network structure can be obtained by adding a crosslinking agent to the hydrophilic polymer before crosslinking and heating as necessary.
  • the hydrophilic polymer before cross-linking may be partially cross-linked as long as the production of the gel is not hindered. In view of handling at the time of production, it is preferable to use a hydrophilic polymer before crosslinking having a weight average molecular weight in the range of 100,000 to 5,000,000.
  • crosslinking agent examples include aluminum hydroxide, potassium alum, aluminum sulfate, aluminum glycinate, aluminum acetate, aluminum oxide, aluminum metasilicate, magnesium chloride, calcium hydroxide, calcium carbonate, magnesium aluminate metasilicate, polyethyleneimine, Examples include polyethylene glycol diglycidyl ether, glycerin triglycidyl ether, and triglycidyl isocyanurate.
  • the ⁇ -hydroxy acid aqueous solution has an effect of dissolving the skin surface (chemical peeling) and is more preferable for reducing skin contact impedance, and specifically includes tartaric acid, lactic acid, glycolic acid and the like.
  • water to be included in the hydrophilic polymer distilled water or deionized water is preferable as it does not contain impurities and does not affect other components, but natural water such as tap water or ground water can also be used.
  • the solvent other than water include monoalcohols such as ethyl alcohol, glycols such as 1,3-butylene glycol, polyhydric alcohols such as glycerin, and the like. These may be used alone or in combination of two or more. Can be used. In particular, when mixing with water, those which do not cause phase separation with water are used.
  • the exudation promoter is an additive used for effectively exuding the water in the hydrogel containing a hydrophilic polymer to the hydrogel surface.
  • a nonionic water-soluble polymer that can effectively discharge water in the hydrogel or a network structure of the hydrogel is tightened by blending a substance that is hydrophilic but has a certain degree of hydrophobicity.
  • the electrolyte etc. which can be made to exude the solution in hydrogel on the hydrogel surface by exhibiting an effect are mentioned.
  • nonionic water-soluble polymers examples include glycols such as polyethylene glycol, polypropylene glycol, and polyglycerin, and polymers such as polyhydric alcohols. These can be used alone or in admixture of two or more.
  • glycerin when the moisture absorption of glycerin is 100, it is preferable to use a nonionic water-soluble polymer having a specific moisture absorption in the range of 2 to 55. If the specific moisture absorption is less than 2, the water retention capacity is not sufficient, so that the amount of solution exudation on the surface of the hydrogel becomes too large, causing stickiness, and the compatibility with the synthetic polymer constituting the hydrogel is poor. There is a risk that it may be difficult to form a hydrous gel.
  • a more preferable specific moisture absorption range is 20 to 45.
  • the electrolyte is easily water-soluble and can be used as long as it has a track record in cosmetics.
  • neutral salts of strong acids and strong alkalis are used because of their low solubility and pH fluctuation.
  • Examples of such an electrolyte include sodium chloride, potassium chloride, sodium sulfate, potassium sulfate and the like. Either the nonionic water-soluble polymer or the electrolyte may be blended alone, or both may be blended together.
  • various additives other than the above-mentioned various components can be appropriately blended within a range that does not impair the object of the present invention.
  • a fragrance, a colorant, a stabilizer, an antioxidant, an ultraviolet absorber, a tackifier, a pH adjuster, a chelating agent, an antiseptic, an antibacterial agent, and the like can be given.
  • wetting agents include, for example, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, diglycerin, isopropylene glycol, sorbitol, malbitol, trehalose, raffinose, xylitol, mannitol, Examples include hyaluronic acid and its salts, various derivatives such as trehalose and raffinose, trimethylglycine, cyclodextrin, glycols such as hyaluronic acid and its salts, polyhydric alcohols and polysaccharides. These are preferably used alone or in admixture of two or more.
  • medicinal ingredients those conventionally used in pharmaceuticals, quasi-drugs, cosmetics, hygiene materials, sundries, etc. can be blended.
  • Ashitaba extract avocado extract, Achacha extract, Altea extract , Arnica extract, apricot extract, apricot kernel extract, fennel extract, turmeric extract, oolong tea extract, Echinashi leaf extract, Ogon extract, Oat extract, barley extract, Dutch mustard extract, orange extract, seawater dried product, hydrolyzed elastin, hydrolysis Wheat powder, hydrolyzed silk, chamomile extract, carrot extract, cotton wormwood extract, licorice extract, calcade extract, kiwi extract, kina extract, cucumber extract, guanosine, kumazasa extract, walnut extract, grapefruit extract, clematisue Yeast extract Root extract, birch extract, horsetail extract, honeysuckle extract, Atlantic lizard extract, Hawthorn extract, Atlantic elder extract, Achillea millefolium
  • biopolymers such as deoxyribonucleic acid, sodium chondroitin sulfate, collagen, elastin, chitin, chitosan, hydrolyzed eggshell membrane; moisturizing ingredients such as amino acids, urea, sodium pyrrolidonecarboxylate, betaine, whey, trimethylglycine; sphingolipids, Oil components such as ceramide, cholesterol, cholesterol derivatives, phospholipids; anti-inflammatory agents such as ⁇ -aminocaproic acid, glycyrrhizic acid, ⁇ -glycyrrhetinic acid, lysozyme chloride, guaiazulene, hydrocortisone; vitamins A, B2, B6, D, E, Vitamins such as calcium pantothenate, biotin, nicotinamide; active ingredients such as allantoin, diisopropylamine dichloroacetate, 4-aminomethylcyclohexanecarboxylic acid,
  • the amount of these components to be blended cannot be unconditionally defined because the amount of the active ingredient varies depending on the material, but generally it is preferably 0.001% by mass to 50% by mass with respect to the mass of the hydrophilic gel 12. More preferably, the content is 0.05% by mass to 30% by mass.
  • the blending amount of the hydrophilic polymer constituting the hydrophilic gel 12 is 2.5% to 35%, preferably 3% to 25% with respect to the total amount of the hydrophilic gel 12.
  • the waist strength of the hydrophilic gel is weak and the shape retention of the hydrophilic gel becomes unstable, and thus the biomedical electrode-coated pad 11 thus obtained has a hydrophilic gel 12 in use. It may tear off and the operability may deteriorate.
  • the blending amount is more than 35%, the gel strength becomes strong, but the polymer structure of the hydrophilic gel 12 becomes too dense, and the amount of additives such as moisture and medicinal components that can be retained in the hydrophilic gel 12 is increased. There is a high possibility that it will become too small. Moreover, if it is more than 25% and 35% or less, the amount of additives such as moisture and medicinal components that can be retained in the hydrophilic gel 12 may be too small.
  • the pad main body 13 is molded, and the pad main body 13 is placed in a resin container for forming the hydrophilic gel 12. At this time, it arrange
  • the polymer component is uncured and separately formulated with a liquid hydrophilic gel composition, which is placed in a resin container on which the pad main body 13 is placed, and then the polymer component is left by a predetermined method such as standing or heating. Is formed into a network structure to gel the hydrophilic gel composition.
  • the biomedical electrode coating pad 11 provided with the hydrophilic gel 12 that spreads and adheres to the front and back of the gel support portion 15 is obtained.
  • the hydrophilic gel can be easily fixed to the resin molded body, and therefore, it can be easily manufactured. Since it can be easily attached to an impedance measuring device, the impedance measurement work is easy.
  • FIG. 5 to 7 show a living body electrode covering pad 21 which is another embodiment for covering the living body electrode 2 of the impedance measuring instrument 1.
  • 5 is a plan view of the biomedical electrode coating pad 21
  • FIG. 6 is a sectional view taken along the line SB-SB of FIG. 5
  • FIG. 7 is a sectional view taken along the line SC-SC of FIG.
  • the biomedical electrode covering pad 21 also includes a hydrophilic gel 12 capable of reducing electrical resistance to a living body and a pad main body 23 that fixes the hydrophilic gel 12. 11 is different from the shape of the pad body 13.
  • the fixing portion 25 of the pad main body 23 is provided with four locking claws 25b protruding from the end of the gel support portion 24, and one of the pliers-like gripping tool 3 shown in FIG.
  • the four retaining claws 25b are fixed to the biological electrode coating pad 21 with respect to the holding portion 3a.
  • the grasping tool 3 is a part of the impedance measuring device 1 provided so that the living body electrode 2 can be easily adhered to the skin of the body, and the living body electrode is covered with the living body electrode covering pad 21 at the holding portion 3a.
  • An electrode 2 is provided.
  • the gel support portion 24 of the biomedical electrode covering pad 21 has a lattice-like beam 24b, and a window frame-like portion forming each through hole 24a constitutes a shape retaining frame 24c.
  • the shape-retaining frame 24c is indicated by the hatched portion in FIG.
  • the gel support portion 24 also has a holding groove 24 d that fills the hydrophilic gel 12.
  • the hydrophilic gel 12 is not supported only by the shape-retaining frame 24c, but the hydrophilic gel 12 is supported in contact with the side surface of the holding groove 24d. . Therefore, the retention strength of the hydrophilic gel 12 is increased.
  • the hydrophilic gel 12 is filled in the hatched portion.
  • the biomedical electrode coating pad 21 is also formed of a resin molded body in which the fixing portion 25 and the gel support portion 24 are integrated.
  • FIG. 9 shows a biomedical electrode coating pad 21 a which is a modification of the biomedical electrode coating pad 21.
  • FIG. 9 is a plan view thereof
  • FIG. 10 shows the grasping tool 4 for attaching the biomedical electrode covering pad 21a.
  • the fixing portion provided in the pad main body 23 is provided as six concave grooves 25 d at the end of the gel support portion 24. Attachment to the gripping tool 4 is performed by inserting the concave groove 25d into a protrusion 4b provided on one holding part 4a of the gripping tool 4.
  • the fixing portion 25 that engages with the mounting portion of the impedance measuring device 1 to which it is attached is provided, and can be quickly and easily attached to the impedance measuring device 1 and measured. be able to.
  • FIGS. 11 to 13 show a biomedical electrode coating pad 31 which is still another form for coating the biomedical electrode 2 of the impedance measuring device 1.
  • 11 is a plan view of the biomedical electrode coating pad 31
  • FIG. 12 is a cross-sectional view taken along the SD-SD line in FIG.
  • the gel support portion 34 is made of a gauze-like soft material formed of synthetic resin fibers.
  • the gel support part 34 which supports the hydrophilic gel 12 is integrated in the surrounding wall part 35a which has the latching claw 35b and is a substantially cylindrical resin molding, and also is a resin molding.
  • the gel support portion 34 is pressed and fixed by an annular retaining frame 35c.
  • the gel support portion 34 is formed of a synthetic resin fiber and forms a gauze shape.
  • the beam 34b formed in the gauze shape has a through hole 34a, and the beam 34b forming the through hole 34a constitutes the shape retaining frame 34c. This is the same as in the other embodiments, and the size and the like can also be in the range described above.
  • the gel support portion is formed in a gauze shape, the adhesiveness of the hydrophilic gel 12 can be further improved.
  • the fixing part and the gel support part are separately formed and assembled, the number of parts is increased and the manufacturing process is increased.
  • the impedance measuring device 1 is cited as the target for using the biomedical electrode covering pad 11, various other medical devices and experimental devices having a biomedical electrode can also be cited.
  • an electrocardiogram electrode Ag / AgCl dish electrode
  • ultrasonic inspection equipment and the like.
  • each example of hydrophilic gel (12) was prepared according to the following procedure.
  • [Sample 1] 4% sodium polyacrylate with a molecular weight of 2 million as a hydrophilic polymer, 1% magnesium aluminate metasilicate as a crosslinking agent, 10% dipropylene glycol as a wetting agent, and polyethylene as a leaching accelerator Glycol 1000 3%, methylparaben as preservative 0.1%, tartaric acid 2% as pH adjuster, royal jelly extract 0.1% as a medicinal ingredient, and 79.8% of the remaining water quickly mixed and stirred A prepared liquid was prepared.
  • a rectangular parallelepiped container with an inner dimension of 34 mm x 38 mm and a thickness of 2 mm is PET, width 34 mm x length 38 mm (cross-sectional area 12.92 cm 2 ), thickness 0.7 mm, and the shape of the opening is 10 mm per side
  • a plate-shaped pad body (13) composed of 3 ⁇ 4 equilateral triangles (opening area: 0.43 cm 2 , total opening area: 5.19 cm 2 , opening ratio: 40%) was molded with polypropylene resin. Then, the pad main body (13) was pushed into the vicinity of the center of the depth of the rectangular parallelepiped container, and the above-mentioned mixed solution was charged to the full depth. Then, wrap the opening of this rectangular parallelepiped container, leave it at room temperature as it is for 24 hours, solidify the mixed solution, and the hydrophilic electrode (12) biomedical electrode-coated pad (11) fixed to the pad body (13) Sample 1 was obtained.
  • Sample 2 which is a biomedical electrode coating pad was obtained in the same manner as Sample 1, except that the amount of polyacrylic acid Na added was 2%.
  • the present invention is a biomedical electrode-coated pad comprising a hydrophilic gel capable of reducing electrical resistance to a living body and a pad body for fixing the hydrophilic gel.
  • the hydrophilic gel capable of reducing electrical resistance to a living body is conductive. If attention is paid to its conductivity, the combination of the hydrophilic gel and the pad main body constituting the present invention can be used for applications other than the biomedical electrode-coated pad. That is, the combination of the hydrophilic gel and the pad main body constituting the present invention can be used as, for example, industrial use, as a coupler that is attached to a probe used in nondestructive inspection and improves the contact property with an object to be inspected. it can.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

 保形性に優れ、水分の放出が適度であって電気的に安定な導通が得られ、取扱いが容易な生体用電極被覆パッドを提供する。 生体に対する電気抵抗を低減可能な親水性ゲル(12)と、この親水性ゲル(12)を固定するパッド本体(13)とを備え、パッド本体(13)が生体用電極に対向して位置し親水性ゲル(12)を固定する複数の保形枠(14c)を構成するゲル支持部(14)を有し、親水性ゲル(12)が保形枠(14c)内の貫通孔(14a)を介して保形枠(14c)の表裏両面に広がってゲル支持部(14)に保持されることとした。

Description

生体用電極被覆パッド
 本発明は、心電、筋電、脳波などの生体電気現象に伴い発生する電気信号を検出する生体現象測定機器に用いる生体用電極等、もしくはイオントフォレシスや低周波治療器などの電気信号を体内に流し込む電気治療や薬剤投与などの機器に用いる生体用電極等に接続して人体との接触抵抗を低減させる生体用電極被覆パッドに関する。
 心電信号、筋電信号、脳波等、生体の発する電気信号を読み取り、記録し、解析する生体現象測定機器は既に一般的な医療機器として医療現場で使用されている。また、逆に電気信号を体内に流し込む電気治療器や電気的な反発などを利用して効率よく薬剤を投与するイオントフォレシス機器なども日常的に使用されるようになっている。いずれの機器も、体内/体外の電気信号のやり取りを行うものであるため、原則として回路中の電気的な抵抗が少ない方が機器の性能が高い。しかしながら、一般的な機器-人体-機器という回路の中で、最も高い抵抗(インピーダンス)を示すのが人体の表面の抵抗であり、生体と機器を接続する役割を担う生体用電極の数百倍から数千倍となることもしばしばである。そのため、機器の性能を向上させるには、人体の表面の抵抗(皮膚との接触インピーダンス)を出来るだけ低くすることが最も効果的である。
 人体の表面の抵抗を下げるための方法には物理的な方法と化学的な方法がある。物理的な方法とは皮膚を引掻く、剥がすなどの作用によって実現する方法であり、化学的な方法とは、導電ペーストを皮膚に塗るなどして皮膚に水や電解質成分を浸透させる方法である。物理的な方法は皮膚を傷つけたり、炎症や感染症などの恐れがあるため好ましい方法ではない。一方、化学的な方法はこうした物理的な方法の持つ欠点を有しない点で好ましい。
 化学的な方法としては、例えば、生体用電極と皮膚との間にNaClやKCl等を含む電解質水溶液をクリーム状にして塗布する技術が特公昭52-8630号公報(特許文献1)に記載されている。また、塩類を含む含水ゼラチンゲルを生体用電極と皮膚との間に塗布する技術が特公昭48-28747号公報(特許文献2)に記載されている。
特公昭52-8630号公報 特公昭48-28747号公報
 しかしながら、前述の公報に記載されたようなクリーム状組成物は、皮膚表面の角質層を軟化させ、皮膚との接触インピーダンスを低下させることが容易であるが、保形性に乏しいため、外部応力で容易にクリームが移動してしまい、また、水分の蒸発も早まって乾燥傾向になるため、電気的な導通が不安定になりやすい。このような難点は、特に長時間連続使用時において著しく発現する。そしてまた使用後に皮膚に残留したクリームを拭き取る作業が必要である。
 すなわち本発明は、こうした欠点がなく、皮膚と機器の生体用電極間を低インピーダンスで安定的に接続させることができる生体用電極被覆パッドを提供することを目的とする。
 すなわち、生体用電極の表面に設ける生体用電極被覆パッドであって、生体に対する電気抵抗を低減可能な親水性ゲルと、この親水性ゲルを固定するパッド本体とを備え、パッド本体が生体用電極に対向して位置し親水性ゲルを固定する複数の保形枠を構成するゲル支持部を有し、親水性ゲルが保形枠内の貫通孔を介して保形枠の表裏両面に広がってゲル支持部に保持される生体用電極被覆パッドを提供する。
 生体に対する電気抵抗を低減可能な親水性ゲルと、この親水性ゲルを固定するパッド本体とを備えたため、親水性ゲルによって皮膚との接触インピーダンスを低下させることができる。そして、親水性ゲルを利用するため、クリームと異なりゲルとしての保形性を有し所定の部分以外に広がらず、また、皮膚から剥がすときに皮膚に残らないという利点がある。さらに、適度に水分を保持しまたは放出するため乾燥しにくく、安定的な導通が得られる。
 そして、パッド本体によって親水性ゲルを固定するため、取扱いがし難い親水性ゲルをパッド本体と共に取り扱うことができる。また、導通に影響する親水性ゲル自体に触れずに取り扱えるため、測定の信頼性が高く、また衛生的である。
 また、パッド本体が生体用電極に対向して位置し親水性ゲルを固定する複数の保形枠を構成するゲル支持部を有するため、保形枠は生体用電極に対向することから、保形枠に支持される親水性ゲルも生体用電極と平行に形成することができる。そのため、生体用電極と皮膚との接触状態と同様な状態を保つことができる。
 親水性ゲルが保形枠内の貫通孔を介して保形枠の表裏両面に広がってゲル支持部に保持されるため、親水性ゲルを皮膚と生体用電極双方に直接的に接触させるように表面に親水性ゲルをむき出しにできる一方で、保形枠と親水性ゲルとの接触部分の断面がH字状となるように親水性ゲルが保形枠に支持されるため、親水性ゲルの機能を十分に発揮させることできるとともに、親水性ゲルがパッド本体から脱落し難く、パッド本体への固着性を高めることができる。
 親水性ゲルを構成する親水性高分子が、架橋前に10万~500万の範囲の重量平均分子量を有し、架橋剤と反応し硬化したアクリル酸、メタクリル酸、またはt-ブチルアクリルアミドスルホン酸のそれぞれの重合物、それらの共重合物またはそれらの塩であって、親水性ゲルの総量に対する配合量が2.5%~35%であり、親水性ゲルがその厚みを1mmとした際にゲルの形成時から72時間後に、その表面において、1.5mg/cm~20mg/cmの水分の滲出量を有し、親水性ゲルに対する少なくとも3kPaの圧縮強度に対してゲル状態を維持可能である生体用電極被覆パッドである。
 親水性ゲルを構成する親水性高分子が、架橋前に10万~500万の範囲の重量平均分子量を有し、架橋剤と反応し硬化したアクリル酸、メタクリル酸、またはt-ブチルアクリルアミドスルホン酸のそれぞれの重合物またはそれらの塩であるか、アクリル酸、メタクリル酸、またはt-ブチルアクリルアミドスルホン酸の共重合物またはそれらの塩であって、親水性ゲルの総量に対する配合量が2.5%~35%であるため、加熱もしくは体温で液状化するようなことがなく、保形性に優れ安定して使うことができる。また、親水性ゲルが水分を保持する性能が高いだけでなく、その一方で皮膚へ水分を移行させて接触インピーダンスを下げる能力も十分である生体用電極被覆パッドとすることができる。
 親水性ゲルがその厚みを1mmとした際にゲルの形成時から72時間後に、その表面において、1.5mg/cm~20mg/cmの水分の滲出量を有し、親水性ゲルに対する少なくとも3kPaの圧縮強度に対してゲル状態を維持可能であるため、親水性ゲルからの離水(ブリード)性に優れるとともに、保形性にも優れた生体用電極被覆パッドとすることができる。
 さらに、保形枠が親水性ゲルで被覆されるように親水性ゲルを形成することができる。保形枠を親水性ゲルで被覆したため、保形枠のどちらの方向も親水性ゲルで覆われるため、親水性ゲルが破断されない限り親水性ゲルがパッド本体から脱落することがなく、親水性ゲルの固着性を高めることができる。
 保形枠内の貫通孔の開口面積は0.1cm~ 6.0cmとすることができる。保形枠内の貫通孔の開口面積を0.1cm~ 6.0cmとしたため、親水性ゲルの脱落を防止することと導通性を高めることの両者を両立させることができる。
 保形枠の厚みは0.1mm~30mmとすることができる。保形枠の厚みを0.1mm~30mmとしたため、皮膚表面を十分に濡らすことができるとともに生体用電極との接触も十分に行わしめることができる。
 親水性ゲルを保形枠に対する交差方向に伸長するパッド本体の部分に接して保持されるようにすることもできる。親水性ゲルを保形枠に対する交差方向に伸長するパッド本体の部分に接するように構成することで、保形枠に対する交差方向に伸長するパッド本体の部分でも親水性ゲルを保持することができるようになる。そのため、親水性ゲルの固着性を高めることができる。
 パッド本体が生体用電極を備える機器に固着する固着部を有し、ゲル支持部と一体となった樹脂成形体とすることができる。
 パッド本体が生体用電極を備える機器に固着する固着部を有するため、親水性ゲルと生体用電極との接触、固定をパッド本体を通じて行うことができる。そのため、親水性ゲルを塗ったり、貼ったりすることを行う必要がなく、作業が容易で衛生的である。また、パッド本体を通じて機器に取り付けるため、取付けの安定性が高まる。
 また、パッド本体を固着部とゲル支持部が一体となった樹脂成形体としたため、固着部とゲル支持部とを一体化する工程を省くことができ、生産工程が容易になる。また、親水性ゲルを取り除けば一の樹脂成形体となるため、リサイクル性に優れている。
 あるいは、生体用電極を備える機器に固着する樹脂成形体でなる固着部を有し、パッド本体が網状に形成されたゲル支持部とこの固着部とを結合して形成した生体用電極被覆パッドとすることができる。
 ゲル支持部と固着部とを結合して形成するため、ゲル支持部と固着部とを別体として準備しておくことができる。そのため、ゲル支持部と固着部との材質を変えたり、複数種類のゲル支持部と固着部とを組み合わせることで複数種類の生体用電極被覆パッドを得ることができる。
 本発明の生体用電極被覆パッドによれば、生体用電極を有する機器に固定する構造を有し、継続的に水分を皮膚に供給して皮膚と機器の生体用電極間を低インピーダンスで安定的に接続することができる。また、親水性ゲルの脱落が無く親水性ゲルを直接取り扱わずに済むため作業性が高い。さらに、使い捨てることができ衛生的である。
第1実施形態の生体用電極被覆パッドの平面図である。 図1のSA-SA線側面図である。 図1の生体用電極被覆パッドの機器への取付けを説明する説明図である。 図1の生体用電極被覆パッドを機器へ取り付けた状態を示す説明図である。 第2実施形態の生体用電極被覆パッドの平面図である。 図5のSB-SB線断面図である。 図5のSC-SC線断面図である。 図5の生体用電極被覆パッドを別の機器へ取り付けた状態を示す説明図である。 図5の生体用電極被覆パッドの変形例を示す平面図である。 図9の生体用電極被覆パッドを取付ける機器の説明図である。 第3実施形態の生体用電極被覆パッドの平面図である。 図11のSD-SD線断面図である。 図11の生体用電極被覆パッドの製造方法を示す説明図である。
 本発明の実施形態について、図面を参照しつつ説明する。なお、以下の説明において種々の実施形態で共通する構成、材質、製造方法、作用効果等については重複説明を省略する。
 第1実施形態(図1~図4)
 図1及び図2には、インピーダンス測定機器(図示せず)等の生体用電極に被覆する生体用電極被覆パッド11を示す。
 この生体用電極被覆パッド11は、生体に対する電気抵抗を低減可能な親水性ゲル12とこの親水性ゲル12を固定するパッド本体13とを備えている。
 パッド本体13は、インピーダンス測定機器に固着する固着部15と、インピーダンス測定機器に備える生体用電極の対向位置に配置され親水性ゲル12を保持するゲル支持部14とを有しており、固着部15とゲル支持部14とが一体となった樹脂成形体で形成されている。
 ゲル支持部14は、網状あるいは篩状、または複数の貫通孔を有する平板状とも言える形状をしている。換言すれば生体用電極に対向して位置する梁14bが複数個組合わされてネット網を構成する形状である。そして、梁(または網やネットの網糸というべき部位)14bの網目となる部分は貫通孔14aとなっており、貫通孔14aから見れば貫通孔14aの孔縁が梁14bを形成している。図1では、リング状あるいは線状の梁14bの間に貫通孔14aが形成されている。
 そして、一の貫通孔14aの孔縁となる梁14bの部分が後述する親水性ゲル12を支持して固定する保形枠14cを構成する。図1で説明すると、例えば図面左下の四分円状の貫通孔14aに対し、これを取り囲む斜線部分が保形枠14cであり、図面左下の四分円状以外の他の貫通孔15aに対してもそれぞれ保形枠14cが形成されている。
 固着部15は、生体用電極の対向位置にゲル支持部14が位置するように生体用電極被覆パッド11をインピーダンス測定機器に固着する部位であり、図1及び図2では、円状のゲル支持部14の外周部分から筒状に立ち上がる周壁部15aを有し、この周壁部15aの先にインピーダンス測定機器に固着する係止爪15bを2つ有している。
 こうしたゲル支持部14と固着部15を有するパッド本体13は、親水性ゲル12を固定して親水性ゲル12が生体用電極と皮膚との両方に確実に接触できるように機器に固定している。
 親水性ゲル12は、三次元的な親水性高分子の網目構造を有し、体温や加熱により網目構造が崩れないものであり、図1や図2で示すように、貫通孔14aを充填するとともに保形枠14cの表裏両面を覆っており、ゲル支持部14の表裏両面で繋がって形成されている。こうした親水性ゲル12は、自身の保形力によって、保形枠14cに固着され、保持されている。
 図3には、インピーダンス測定機器1に設けた生体用電極2に生体用電極被覆パッド11を取り付ける状態を示すが、パッド本体13に設けた係止爪15bをインピーダンス測定機器1に設けた係止溝1aにはめ込むことで生体用電極被覆パッド11はインピーダンス測定機器1に固定される。このとき、図4で示すように、インピーダンス測定機器1の生体用電極2と親水性ゲル12が密着するように固定される。
 こうした生体用電極被覆パッド11のゲル支持部14では、複数ある貫通孔14aの開口面積の合計が、親水性ゲル12がゲル支持部14を被覆する面積の30%~80%である。30%より少ないと、皮膚と生体用電極とを繋ぐ親水性ゲル12の部分が少なくなりすぎて皮膚と生体用電極間の通電に悪影響を及ぼすおそれがある。一方、80%を超えるとゲル支持部14が親水性ゲル12を支えられなくなり、親水性ゲル12が脱離するおそれがある。
 また、貫通孔14aの1つ当たりの開口面積は0.1cm~6.0cmである。0.1cmより小さいと皮膚と生体用電極間の通電に悪影響を及ぼすおそれがあり、6.0cmより大きいと親水性ゲル12が脱落するおそれがあるからである。
 親水性ゲル12の厚みは、ゲル支持部14から皮膚側に位置する親水性ゲル12の表面までの高さとして0.1mm~30mmである。0.1mmより薄いと、皮膚表面を十分に濡らすほどに密着させることが困難になることがあり、30mmより厚くても、皮膚表面のインピーダンスが所定以上に下がらず無駄になるからである。
 また、親水性ゲル12の厚みはゲル支持部14を中心として反対側の生体用電極側の厚みも、皮膚側の厚みと同等とすることができるが、皮膚側を厚くまたは薄くすることもできる。生体用電極表面が平坦であるのに対し皮膚表面は人体の構造に対応してやや湾曲しているので、皮膚との十分な接触をためには皮膚側の厚みを厚くする方が好ましい。
 ゲル支持部14に設けた貫通孔14aや梁14bの図1に示した形状は一例であり、こうした形状に限定されるものではないが、貫通孔14aは三角形状や長方形状等種々の形状とすることができ、また、梁14bの形状も同様に種々の形状とすることができる。
 また、図1で示す態様では、ゲル支持部14に設けた親水性ゲル12は、周壁部15aに接するまでには満たされていないが、周壁部15aに至るまで親水性ゲル12を満たすことができる。親水性ゲル12が周壁部15aにまで至ると、周壁部15が親水性ゲル12と接して保持することができ、親水性ゲル12の保持力を高めることができる。
 パッド本体13を形成する樹脂成形体の材質としては、例えば、ポリエチレン樹脂、エチレン酢酸ビニル共重合樹脂、ポリスチレン樹脂、ABS樹脂、酢酸ビニル樹脂、セルロース樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリメチルメタクリレート樹脂、ポリプロピレン樹脂、ポリアクリル系共重合樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、エポキシ系樹脂、ポリウレタン系樹脂、ポリイミド樹脂、ポリアミド樹脂、シリコーン系樹脂、メラミン樹脂などのアミノ樹脂、フェノール系樹脂、フッ素樹脂、ポリアリレート樹脂、ポリアリルスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂などの各種合成樹脂を挙げることができる。
 こうした樹脂の中でも、使い捨ての観点から、安価でリサイクル可能な熱可塑性樹脂を用いることが好ましい。
 親水性ゲル12は、3次元網目構造を有する親水性高分子に少なくとも水分を含んで構成され、生体用電極2と皮膚との間に介在し、皮膚の表面抵抗を低減して生体用電極を通じて人体に出入りする電気を流れ易くするものである。
 そのため、親水性ゲル12は、ある程度離水(ブリード)可能で皮膚の接触インピーダンス著しく低下させられることが必要である。より具体的には、1mm厚とした際にゲルの形成時から72時間後に、その表面において、1.5mg/cm~20mg/cmの水分の滲出量を有しているゲルを形成することが必要である。
 水分は、水である場合の他、水以外の溶媒や、水と水以外の溶媒の混合物であっても良く、さらに界面活性剤や油性成分、溶液滲出促進剤等を含むものであっても良い。
 水分滲出量が1.5mg/cmより少ない場合、親水性ゲル表面の水分量が不足するため、肌等の被着体への密着性にかけたりする恐れがある。また、水分滲出量が20mg/cmより多い場合、水分量過多のため被着体へ密着させたとき液ダレが生じ、不快感を呈する恐れや、安定的な測定等が妨げられる可能性がある。なお、親水性ゲルの厚さ1mmは、水分滲出量の程度を明らかにして親水性ゲルの性質を明らかにするために用いた厚さであって、用途等に応じて適切な厚さとすることができる。
 また、親水性ゲル12に対する圧縮強度が少なくとも3kPaで、親水性ゲル12が破壊されない、即ち、圧縮を解いたときに原形に戻らずに壊れてしまうことが生じない、ことが好ましい。体型等による個人差があっても皮膚に対する生体用電極被覆パッドの密着を図るためには親水性ゲル12がある程度圧縮される場合もあり、少なくとも3kPaの圧縮強度に耐えられれば生体現象測定機器等に取り付けて無理なく計測できるからである。
 親水性高分子としては、3次元網目構造を有し、少なくとも水分を含んで上述の性質を有するゲルを形成する高分子材料を用いることができる。
 例えば化粧品の分野で経皮用途として使用が許容された親水性高分子材料があり、こうした親水性高分子を含水させたハイドロゲルを用いることができるが、中でもアニオン性官能基を有する合成高分子が好ましい。そのような親水性高分子の例としては、カルボキシル基を官能基として有するアクリル酸、メタクリル酸等の重合性不飽和単量体の重合物及び、それらの塩(例えば、ナトリウム塩、カリウム塩、トリエタノールアミン塩等)、スルホン酸基を官能基として有するt-ブチルアクリルアミドスルホン酸等の重合性不飽和単量体の重合物及び、それらの塩(例えば、ナトリウム塩、カリウム塩、トリエタノールアミン塩等)、アクリル酸、メタクリル酸、またはt-ブチルアクリルアミドスルホン酸等の重合性不飽和単量体の共重合物及び、それらの塩が挙げられる。こうした中では、アクリル酸の重合物及び、それらの塩が好ましい。
 親水性高分子の網目構造は、架橋前の親水性高分子の架橋により得ることができる。すなわち、架橋前の親水性高分子に架橋剤を添加し、必要に応じて加熱することで、網目構造を得ることができる。
 なお、架橋前の親水性高分子は、ゲルの製造を妨げない限りは、部分的に架橋していてもよい。また、製造時の取扱性を考慮すると、重量平均分子量が10万~500万の範囲の架橋前の親水性高分子を使用することが好ましい。
 架橋剤としては、例えば、水酸化アルミニウム、カリミョウバン、硫酸アルミニウム、アルミニウムグリシネート、酢酸アルミニウム、酸化アルミニウム、メタケイ酸アルミニウム、塩化マグネシウム、水酸化カルシウム、炭酸カルシウム、メタケイ酸アルミン酸マグネシウム、ポリエチレンイミン、ポリエチレングリコールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリグリシジルイソシアヌレート等が挙げられる。
 また、架橋剤を作用させるための最適なpHに調整し、架橋をより確実にする目的で、酒石酸、乳酸、クエン酸、グリコール酸、塩酸等の各種有機酸や無機酸をpH調整剤として含有してもよい。この中でも、αヒドロキシ酸水溶液は皮膚表面を溶解する(ケミカルピーリング)効果があり、皮膚接触インピーダンスを低減するためより好ましく、具体的には酒石酸、乳酸、グリコール酸などが挙げられる。
 親水性高分子に含ませる水としては、不純物が含まれず、他の成分に影響を与えないものとして蒸留水や脱イオン水が好ましいが、水道水や地下水などの天然水を用いることもできる。
 水以外の溶媒としては、例えば、エチルアルコール等のモノアルコール類、1,3-ブチレングリコール等のグリコール類、グリセリン等の多価アルコール類等が挙げられ、これらは単独又は2種以上を混合して用いることができる。特に水と混合する場合には、こうした水と相分離を起こさないものを用いる。
 滲出促進剤は、親水性高分子を含水させたハイドロゲル内の水分を効果的にハイドロゲル表面に滲み出させるために用いる添加剤である。例えば、親水性でありながらもある程度の疎水性を有する物質を配合することによりハイドロゲル内の水を効果的に吐出させることができる非イオン性水溶性高分子、又はハイドロゲルの網目構造を引き締める効果を発揮させることにより、ハイドロゲル内の溶液をハイドロゲル表面に滲出させることができる電解質等が挙げられる。
 非イオン性水溶性高分子としては、ポリエチレングリコール、ポリプロピレングリコール、ポリグリセリン等のグリコール、多価アルコール等の重合体が挙げられる。これらは単独又は2種以上を混合して用いることができる。
 特に、グリセリンの吸湿度を100とした場合、2~55の範囲の比吸湿度の非イオン性水溶性高分子を使用することが好ましい。比吸湿度が2より小さい場合、保水力が十分でないために含水ゲル表面への溶液滲出量が多くなりすぎてベタツキの原因になったり、含水ゲルを構成する合成高分子とのなじみが悪くなり、含水ゲルを形成することが困難になったりする恐れがある。比吸湿度が55より大きい場合、非イオン性水溶性高分子がもつ保水力が大きすぎるために含水ゲル内の溶液が含水ゲル表面に滲出しにくくなり、潤い感、保湿効果が不足する恐れがある。更に好ましい比吸湿度の範囲は20~45である。
 電解質としては、易水溶性であり、化粧品等での使用実績のあるものであれば使用可能であるが、溶解性やpH変動が少ない等の点から、強酸と強アルカリとの中性塩が好適に用いられる。このような電解質としては、塩化ナトリウム、塩化カリウム、硫酸ナトリウム、硫酸カリウム等が挙げられる。非イオン性水溶性高分子と電解質はどちらか一方を単独で配合してもよいし、両者を併用して配合してもよい。
 親水性ゲル12には、上記の各種成分以外にも各種の添加剤を本発明の目的を阻害しない範囲で適宜配合することができる。例えば湿潤剤、各種薬効成分のほか、香料、着色料、安定剤、酸化防止剤、紫外線吸収剤、粘着付与剤、pH調整剤、キレート剤、防腐剤、抗菌剤等が挙げられる。
 上記各種添加剤のうち、湿潤剤しては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ジグリセリン、イソプロピレングリコール、ソルビトール、マルビトール、トレハロース、ラフィノース、キシリトール、マンニトール、ヒアルロン酸及びその塩、トレハロースやラフィノース等の各種誘導体、トリメチルグリシン、サイクロデキストリン、ヒアルロン酸及びその塩等のグリコール類、多価アルコール類及び多糖類等が挙げられる。これらは単独又は2種以上を混合して用いることが好ましい。
 また、薬効成分としては、従来、医薬品、医薬部外品、化粧品、衛生材料、雑貨等で使用されているものを配合することが可能で、例えば、アシタバエキス、アボガドエキス、アマチャエキス、アルテアエキス、アルニカエキス、アンズエキス、アンズ核エキス、ウイキョウエキス、ウコンエキス、ウーロン茶エキス、エチナシ葉エキス、オウゴンエキス、オウバクエキス、オオムギエキス、オランダカラシエキス、オレンジエキス、海水乾燥物、加水分解エラスチン、加水分解コムギ末、加水分解シルク、カモミラエキス、カロットエキス、カワラヨモギエキス、甘草エキス、カルカデエキス、キウイエキス、キナエキス、キューカンバーエキス、グアノシン、クマザサエキス、クルミエキス、グレープフルーツエキス、クレマティスエキス、酵母エキス、ゴボウエキス、コンフリーエキス、コラーゲン、コケモモエキス、サイコエキス、サイタイ抽出液、サルビアエキス、サボンソウエキス、ササエキス、サンザシエキス、シイタケエキス、ジオウエキス、シコンエキス、シナノキエキス、シモツケソウエキス、ショウブ根エキス、シラカバエキス、スギナエキス、スイカズラエキス、セイヨウキズタエキス、セイヨウサンザシエキス、セイヨウニワトコエキス、セイヨウノコギリソウエキス、セイヨウハッカエキス、ゼニアオイエキス、センブリエキス、タイソウエキス、タイムエキス、チョウジエキス、チガヤエキス、チンピエキス、トウヒエキス、ドクダミエキス、トマトエキス、納豆エキス、ニンジンエキス、ノバラエキス、ハイビスカスエキス、バクモンドウエキス、パセリエキス、蜂蜜、パリエタリアエキス、ヒキオコシエキス、ビサボロール、フキタンポポエキス、フキノトウエキス、ブクリョウエキス、ブッチャーブルームエキス、ブドウエキス、プロポリス、ヘチマエキス、ペパーミントエキス、ボダイジュエキス、ホップエキス、マツエキス、マロニエエキス、ミズバショウエキス、ムクロジエキス、モモエキス、ヤグルマギクエキス、ユーカリエキス、ユズエキス、ヨモギエキス、ラベンダーエキス、リンゴエキス、レタスエキス、レモンエキス、レンゲソウエキス、ローズエキス、ローズマリーエキス、ローマカミツレエキス、ローヤルゼリーエキス等を挙げることができる。
 また、デオキシリボ核酸、コンドロイチン硫酸ナトリウム、コラーゲン、エラスチン、キチン、キトサン、加水分解卵殻膜等の生体高分子;アミノ酸、尿素、ピロリドンカルボン酸ナトリウム、ベタイン、ホエイ、トリメチルグリシン等の保湿成分;スフィンゴ脂質、セラミド、コレステロール、コレステロール誘導体、リン脂質等の油性成分;ε-アミノカプロン酸、グリチルリチン酸、β-グリチルレチン酸、塩化リゾチーム、グアイアズレン、ヒドロコルチゾン等の抗炎症剤;ビタミンA,B2,B6,D,E,パントテン酸カルシウム、ビオチン、ニコチン酸アミド等のビタミン類;アラントイン、ジイソプロピルアミンジクロロアセテート、4-アミノメチルシクロヘキサンカルボン酸等の活性成分;トコフェロール、カロチノイド、フラボノイド、タンニン、リグナン、サポニン等の抗酸化剤;γ-オリザノール、ビタミンE誘導体等の血行促進剤;レチノール、レチノール誘導体等の創傷治癒剤;セファランチン、トウガラシチンキ、ヒノキチオール、ヨウ化ニンニクエキス、塩酸ピリドキシン、dl-α-トコフェロール、酢酸dl-α-トコフェロール、ニコチン酸、ニコチン酸誘導体、パントテン酸カルシウム、D-パントテニルアルコール、アセチルパントテニルエチルエーテル、ビオチン、アラントイン、イソプロピルメチルフェノール、エストラジオール、エチニルエステラジオール、塩化カプロニウム、塩化ベンザルコニウム、塩酸ジフェンヒドラミン、タカナール、カンフル、サリチル酸、ノニル酸バニリルアミド、ノナン酸バニリルアミド、ピロクトンオラミン、ペンタデカン酸グリセリル、モノニトログアヤコール、レゾルシン、γ-アミノ酪酸、塩化ベンゼトニウム、塩酸メキシレチン、オーキシン、女性ホルモン、カンタリスチンキ、シクロスポリン、ヒドロコルチゾン、モノステアリン酸ポリオキシエチレンソルビタン、鎮痛剤、精神安定剤、抗高血圧剤、抗生物質、抗ヒスタミン剤、抗菌性物質等も挙げられる。
 これらの成分の配合量は、その素材により有効成分量が異なるため一概には規定できないが、一般に親水性ゲル12の質量に対して0.001質量%~50質量%であるのが好ましく、0.05質量%~30質量%であるのがより好ましい。
 親水性ゲル12を構成する親水性高分子の配合量は、当該親水性ゲル12の総量に対して2.5%~35%であり、好ましくは3%~25%である。配合量が3%より少ない場合、親水性ゲルの腰強度が弱く、親水性ゲルの保形性が不安定となり、こうして得られた生体用電極被覆パッド11は、使用の際に親水性ゲル12がちぎれて操作性が悪くなる恐れがある。また、配合量が35%より多い場合、ゲル強度は強くなるものの、親水性ゲル12の高分子構造が密になりすぎて、親水性ゲル12に保持できる水分や薬効成分等の添加剤量が少なくなりすぎる可能性が高い。また、25%より多く35%以下では、親水性ゲル12に保持できる水分や薬効成分等の添加剤量が少なくなりすぎる恐れがある。
 生体用電極被覆パッド11を製造するには、パッド本体13を成形しておき、このパッド本体13を親水性ゲル12成形用の樹脂容器に置く。このときゲル支持部14が樹脂容器の底面から少し浮くように配置する。一方、高分子成分が未硬化であり液状の親水性ゲル用組成物を別途配合し、これをパッド本体13を置いた樹脂容器に入れた後、放置、加熱等の所定の方法により高分子成分を網目構造化して親水性ゲル用組成物をゲル化する。こうしてゲル支持部15の表裏に広がって固着する親水性ゲル12を備えた生体用電極被覆パッド11を得る。
 生体用電極被覆パッド11によれば、樹脂成形体に簡単に親水性ゲルを固定することができるので、簡単に製造することができる。インピーダンス測定機器に簡単に取付けることができるため、インピーダンス測定作業が容易である。
 第2実施形態(図5~図10)
 図5~図7には、インピーダンス測定機器1の生体用電極2を被覆する別の形態である生体用電極被覆パッド21を示す。図5は生体用電極被覆パッド21の平面図、図6は図5のSB-SB線断面図、図7は図5のSC-SC断面図をそれぞれ表す。
 この生体用電極被覆パッド21も、生体に対する電気抵抗を低減可能な親水性ゲル12とこの親水性ゲル12を固定するパッド本体23とを備えているが、パッド本体の形状が生体用電極被覆パッド11のパッド本体13の形状と異なる。
 パッド本体23の固着部25は、図5で示すように、ゲル支持部24の端から突出した4つの係止爪25bが設けられており、図8で示すプライヤ状の把持具3の一方のくわえ部3aに対してこの4つの係止爪25bで生体用電極被覆パッド21に固定して用いる。なお、把持具3は、生体用電極2を身体の皮膚に密着させやすいように設けたインピーダンス測定機器1の一部位であり、くわえ部3aの生体用電極被覆パッド21との接合面に生体用電極2を設けてある。
 生体用電極被覆パッド21のゲル支持部24は、格子状の梁24bを有し、一つ一つの貫通孔24aを形成する窓枠状部分が保形枠24cを構成する。保形枠24cは、図5では領域Rを拡大して示した図の斜線部分で示される。
 ゲル支持部24にはまた、親水性ゲル12を満たす保持溝24dを有している。保持溝24d内に親水性ゲル12を満たすことで保形枠24cだけで親水性ゲル12を支持するのではなく、保持溝24dの側面に親水性ゲル12が接触して支持されることになる。そのため、親水性ゲル12の保持力が高まる。図5では斜線で示した部分に親水性ゲル12が満たされている。
 生体用電極被覆パッド21も固着部25とゲル支持部24とが一体となった樹脂成形体で形成されている。
 図9には、生体用電極被覆パッド21の変形例である生体用電極被覆パッド21aを示す。図9はその平面図であり、図10には、生体用電極被覆パッド21aを取付ける把持具4を示す。
 生体用電極被覆パッド21aは、パッド本体23に設けた固着部がゲル支持部24の端に6つの凹溝25dとして設けられている。把持具4への取付けは、把持具4の一方のくわえ部4aに設けた突起4bにこの凹溝25dを差し込むようにして行う。
 生体用電極被覆パッド21,21aによれば、それを取付けるインピーダンス測定機器1の取付部位との間で係合する固定部25を設けており、迅速、簡単にインピーダンス測定機器1に取付け、測定することができる。
 第3実施形態(図11~図13)
 図11~図13には、インピーダンス測定機器1の生体用電極2を被覆するさらに別の形態である生体用電極被覆パッド31を示す。図11は生体用電極被覆パッド31の平面図、図12は図11のSD-SD線断面図である。
 生体用電極被覆パッド31では、ゲル支持部34が合成樹脂繊維で形成したガーゼ状の柔らかい材質からなる。そして、図13で示すように、親水性ゲル12を支持するゲル支持部34は、係止爪35bを有し略円筒状の樹脂成形体でなる周壁部35aに組み込まれ、さらに樹脂成形体でなる環状の留め枠35cでゲル支持部34を押さえて固定した構成となっている。
 ゲル支持部34は合成樹脂繊維でガーゼ状を形成するものの、ガーゼ状に形成された梁34bには貫通孔34aが形成され、この貫通孔34aを形成する梁34bが保形枠34cを構成している点は他の実施形態と同様であり、その大きさ等も前述した範囲とすることができる。
 生体用電極被覆パッド31によれば、ガーゼ状にゲル支持部を形成したため、親水性ゲル12の固着性をより高めることができる。但し、固着部とゲル支持部を別体に形成して組み付けるため、部品点数が多くなり、製造工程が多くなるという他の実施形態に比べた場合の不利益も有している。
 生体用電極被覆パッド11を用いる対象としては、インピーダンス測定機器1を挙げたがそれ以外にも生体用電極を有する種々の医療機器、実験用機器等を挙げることができ、例えば、心電図電極(Ag/AgCl皿電極)や超音波検査機器等を例示することができる。
 なお、これらの実施形態は例示であり、こうした形態に限定されるものではなく、本発明の趣旨に反しない任意の変更形態を含むものである。即ち、上記実施形態で示した一部の構成を含まなかったり、別の公知の構成を含んだり、代替したりした場合でも本発明の範囲に含まれる。
 次の表に示す材料を用いて、以下の手順に従って各例の親水性ゲル(12)を作成した。
[試料1]
 親水性高分子としての分子量200万のポリアクリル酸ナトリウムを4%と、架橋剤としてのメタケイ酸アルミン酸マグネシウムを1%と、湿潤剤としてのジプロピレングリコール10%と、滲出促進剤としてのポリエチレングリコール1000を3%と、防腐剤としてのメチルパラベンを0.1%と、pH調整剤としての酒石酸を2%と、薬効成分としてのローヤルゼリーエキスを0.1%と、残分の水79.8%とを手早く混合撹拌した配合液を作成した。
 一方、内寸が34mm×38mm、厚みが2mmの蓋の無い直方体状容器をPETで、幅34mm×長さ38mm(断面積12.92cm2)、厚み0.7mm、開口部の形状が1辺10mmの正三角形が3×4列(開口分面積0.43cm2、合計開口部面積5.19 cm2、開口率40%)で構成される板状のパッド本体(13)をポリプロピレン樹脂で、それぞれ成形した。
 そして、パッド本体(13)を直方体状容器の深さ中央付近まで押しこみ、深さ一杯まで上記配合液を投入した。それからこの直方体状容器の開口にラップをかけ、そのまま24時間常温で静置し、配合液を固化して親水性ゲル(12)がパッド本体(13)に固着した生体用電極被覆パッド(11)である試料1を得た。
[試料2]
 ポリアクリル酸Naの添加量を2%とした以外は試料1と同様にして生体用電極被覆パッドである試料2を得た。
[皮膚接触インピーダンスの評価]:
 腕部内側に試料1,試料2よりも大きな面積のSUS板を圧縮強度が3kPaとなるように取付け、指とこのSUS板をカスタム社製LC131(LCRメーター)に通じるワニ口クリップに接続して1kHz時のインピーダンスを測定した。この時のインピーダンスは105kΩであった。
 次いで、腕部内側に試料1を密着し、その上にSUS板を付けて同様に測定したところ、インピーダンスは48Ωであった。測定後に親水性ゲル(12)の状態を確認したが、全く壊れていなかった。
 さらに、試料1に代えて試料2を用いて同様に測定しようとしたところ、親水性ゲルが潰れてしまい安定的な測定ができなかった。
 本発明は、生体に対する電気抵抗を低減可能な親水性ゲルとこの親水性ゲルを固定するパッド本体とを備える生体用電極被覆パッドであるが、生体に対する電気抵抗を低減可能な親水性ゲルは導電性を有するものであり、その導電性に着目すれば、本発明を構成する親水性ゲルとパッド本体との組合せは生体用電極被覆パッド以外の用途として用いることができる。すなわち、本発明を構成する親水性ゲルとパッド本体との組合せは、例えば工業用として、非破壊検査で用いられるプローブに取付け被検査体との接触性を向上させる結合具としても利用することができる。
 1   インピーダンス測定機器
  1a  係止溝
 2   生体用電極
 3,4  把持具
  3a,4a  くわえ部
  4b  突起
11,21,21a,31  生体用電極被覆パッド
12   親水性ゲル
13,23,33  パッド本体
14,24,34  ゲル支持部
 14a,24a,34a  貫通孔(網目)
 14b,24b,34b  梁(網糸)
 14c,24c,34c  保形枠
 24d  保持溝
15,25,35  固着部
 15a,35a  周壁部
 15b,25b,35b  係止爪
 25d  凹溝
 35c  留め枠

Claims (8)

  1.  生体用電極の表面に設ける生体用電極被覆パッドであって、
     生体に対する電気抵抗を低減可能な親水性ゲルと、この親水性ゲルを固定するパッド本体とを備え、
     パッド本体が生体用電極に対向して位置し親水性ゲルを固定する複数の保形枠を構成するゲル支持部を有し、親水性ゲルが保形枠内の貫通孔を介して保形枠の表裏両面に広がってゲル支持部に保持される生体用電極被覆パッド。
  2.  親水性ゲルを構成する親水性高分子が、架橋前に10万~500万の範囲の重量平均分子量を有し、架橋剤と反応し硬化したアクリル酸、メタクリル酸、またはt-ブチルアクリルアミドスルホン酸のそれぞれの重合物、それらの共重合物またはそれらの塩であって、親水性ゲルの総量に対する配合量が2.5%~35%であり、親水性ゲルがその厚みを1mmとした際にゲルの形成時から72時間後に、その表面において、1.5mg/cm~20mg/cmの水分の滲出量を有し、親水性ゲルに対する少なくとも3kPaの圧縮強度に対してゲル状態を維持可能である請求項1記載の生体用電極被覆パッド。
  3.  保形枠が親水性ゲルで被覆される請求項1または請求項2記載の生体用電極被覆パッド。
  4.  前記保形枠内の貫通孔の開口面積が0.1cm~ 6.0cmである請求項1~請求項3何れか1項記載の生体用電極被覆パッド。
  5.  前記保形枠の厚みが0.1mm~30mmである請求項1~請求項4何れか1項記載の生体用電極被覆パッド。
  6.  親水性ゲルが保形枠に対する交差方向に伸長するパッド本体の部分に接して保持される請求項1~請求項5何れか1項記載の生体用電極被覆パッド。
  7.  パッド本体が生体用電極を備える機器に固着する固着部を有し、ゲル支持部と一体となった樹脂成形体でなる請求項1~請求項6何れか1項記載の生体用電極被覆パッド。
  8.  生体用電極を備える機器に固着する樹脂成形体でなる固着部を有し、パッド本体が網状に形成されたゲル支持部とこの固着部とを結合して形成したものである請求項1~請求項6何れか1項記載の生体用電極被覆パッド。
PCT/JP2012/073477 2011-09-15 2012-09-13 生体用電極被覆パッド WO2013039151A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-202473 2011-09-15
JP2011202473 2011-09-15

Publications (1)

Publication Number Publication Date
WO2013039151A1 true WO2013039151A1 (ja) 2013-03-21

Family

ID=47883368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073477 WO2013039151A1 (ja) 2011-09-15 2012-09-13 生体用電極被覆パッド

Country Status (2)

Country Link
JP (1) JPWO2013039151A1 (ja)
WO (1) WO2013039151A1 (ja)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015146840A1 (ja) * 2014-03-28 2017-04-13 積水化成品工業株式会社 高含水粘着性ゲル、高含水粘着性ゲル製造用組成物および電極パッド
KR20170126406A (ko) 2016-05-09 2017-11-17 신에쓰 가가꾸 고교 가부시끼가이샤 생체 전극 및 그 제조 방법
KR20180029904A (ko) 2016-09-13 2018-03-21 신에쓰 가가꾸 고교 가부시끼가이샤 점착제 조성물, 생체 전극, 및 생체 전극의 제조 방법
KR20180035691A (ko) 2016-09-29 2018-04-06 신에쓰 가가꾸 고교 가부시끼가이샤 점착제 조성물, 생체 전극, 생체 전극의 제조 방법 및 염
KR20180035675A (ko) 2016-09-29 2018-04-06 신에쓰 가가꾸 고교 가부시끼가이샤 점착제 조성물, 생체 전극, 및 생체 전극의 제조 방법
EP3358572A1 (en) 2017-02-06 2018-08-08 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing the bio-electrode, and polymer compound
EP3360473A1 (en) 2017-02-14 2018-08-15 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing the bio-electrode
EP3360472A1 (en) 2017-02-14 2018-08-15 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing the bio-electrode, and polymer
KR20190000336A (ko) 2016-03-03 2019-01-02 신에쓰 가가꾸 고교 가부시끼가이샤 생체 전극 및 그 제조 방법
KR20190044021A (ko) 2017-10-19 2019-04-29 신에쓰 가가꾸 고교 가부시끼가이샤 생체 전극 조성물, 생체 전극, 및 생체 전극의 제조 방법
KR20190046701A (ko) 2017-10-26 2019-05-07 신에쓰 가가꾸 고교 가부시끼가이샤 생체 전극 조성물, 생체 전극, 및 생체 전극의 제조 방법
KR20190058315A (ko) 2017-11-21 2019-05-29 신에쓰 가가꾸 고교 가부시끼가이샤 생체 전극 조성물, 생체 전극 및 생체 전극의 제조 방법
KR20190084901A (ko) 2018-01-09 2019-07-17 신에쓰 가가꾸 고교 가부시끼가이샤 생체 전극 조성물, 생체 전극, 및 생체 전극의 제조 방법
KR20190101302A (ko) 2018-02-22 2019-08-30 신에쓰 가가꾸 고교 가부시끼가이샤 생체 전극 조성물, 생체 전극 및 생체 전극의 제조 방법
KR20190115421A (ko) 2018-04-02 2019-10-11 신에쓰 가가꾸 고교 가부시끼가이샤 생체 전극 조성물, 생체 전극, 및 생체 전극의 제조 방법
EP3587473A1 (en) 2018-06-25 2020-01-01 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
EP3587474A1 (en) 2018-06-26 2020-01-01 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
EP3594262A1 (en) 2018-07-12 2020-01-15 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US10726967B2 (en) 2017-01-06 2020-07-28 Shin-Etsu Chemical Co., Ltd. Polymerizable monomer, polymer compound, biological electrode composition, biological electrode, and method for producing biological electrode
EP3718471A1 (en) 2019-04-03 2020-10-07 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
JP2021013812A (ja) * 2016-03-16 2021-02-12 フクダ電子株式会社 生体装着可能な医療器具、および医療用センサ補助具
JP2021035572A (ja) * 2016-03-16 2021-03-04 フクダ電子株式会社 医療用センサ補助具
US11071485B2 (en) 2016-12-21 2021-07-27 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
EP3854303A1 (en) 2020-01-22 2021-07-28 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
EP3881766A1 (en) 2020-03-19 2021-09-22 Shin-Etsu Chemical Co., Ltd. Bio-electrode, method for manufacturing bio-electrode, and method for measuring biological signal
US11160480B2 (en) 2018-06-25 2021-11-02 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US11234606B2 (en) 2018-07-05 2022-02-01 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
EP3968343A2 (en) 2020-09-15 2022-03-16 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing bio-electrode, and silicon material particle
EP3984456A1 (en) 2020-10-13 2022-04-20 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing bio-electrode, polymer compound, and composite
EP3995548A1 (en) 2020-11-05 2022-05-11 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing bioelectrode, and reaction composite
EP3995544A1 (en) 2020-11-05 2022-05-11 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
EP4006921A2 (en) 2020-11-26 2022-06-01 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing bio-electrode, and reaction composite
US11357970B2 (en) 2017-01-06 2022-06-14 Shin-Etsu Chemical Co., Ltd. Biomedical electrode composition, biomedical electrode and method for manufacturing the biomedical electrode
US11369299B2 (en) 2019-04-03 2022-06-28 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
EP4026860A1 (en) 2021-01-06 2022-07-13 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
WO2022190575A1 (ja) 2021-03-12 2022-09-15 信越化学工業株式会社 生体電極、生体電極の製造方法、及び生体信号の測定方法
EP4074754A1 (en) 2021-04-16 2022-10-19 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
US11547354B2 (en) 2018-08-23 2023-01-10 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
WO2023015969A1 (zh) * 2021-08-09 2023-02-16 浙江大学 一种同步监测生理生化参数的导电水凝胶纸基设备
US11839476B2 (en) 2018-08-27 2023-12-12 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
EP4309582A1 (en) 2022-07-21 2024-01-24 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing the same
WO2024070988A1 (ja) * 2022-09-29 2024-04-04 積水化成品工業株式会社 電極パッド
US11965095B2 (en) 2020-04-01 2024-04-23 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
EP4372765A1 (en) 2022-11-17 2024-05-22 Shin-Etsu Chemical Co., Ltd. Bio-electrode, bio-electrode composition, and method for manufacturing bio-electrode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215668A (ja) * 1996-02-13 1997-08-19 Nippon Koden Corp 電極用粘着パッド
JP2003346554A (ja) * 2002-03-19 2003-12-05 Sekisui Plastics Co Ltd 高分子ハイドロゲル電極

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828747B1 (ja) * 1968-11-22 1973-09-04
JPS528630B2 (ja) * 1972-04-28 1977-03-10

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215668A (ja) * 1996-02-13 1997-08-19 Nippon Koden Corp 電極用粘着パッド
JP2003346554A (ja) * 2002-03-19 2003-12-05 Sekisui Plastics Co Ltd 高分子ハイドロゲル電極

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11162006B2 (en) 2014-03-28 2021-11-02 Sekisui Plastics Co., Ltd. Water-rich adherent gel, composition for manufacturing water-rich adherent gel, and electrode pad
JPWO2015146840A1 (ja) * 2014-03-28 2017-04-13 積水化成品工業株式会社 高含水粘着性ゲル、高含水粘着性ゲル製造用組成物および電極パッド
US11911161B2 (en) 2016-03-03 2024-02-27 Shin-Etsu Chemical Co., Ltd. Biological electrode and manufacturing method thereof
KR20190000336A (ko) 2016-03-03 2019-01-02 신에쓰 가가꾸 고교 가부시끼가이샤 생체 전극 및 그 제조 방법
JP2021035572A (ja) * 2016-03-16 2021-03-04 フクダ電子株式会社 医療用センサ補助具
JP2021013812A (ja) * 2016-03-16 2021-02-12 フクダ電子株式会社 生体装着可能な医療器具、および医療用センサ補助具
KR20170126406A (ko) 2016-05-09 2017-11-17 신에쓰 가가꾸 고교 가부시끼가이샤 생체 전극 및 그 제조 방법
US10950364B2 (en) 2016-05-09 2021-03-16 Shin-Etsu Chemical Co., Ltd. Bio-electrode and method for manufacturing the same
KR20180029904A (ko) 2016-09-13 2018-03-21 신에쓰 가가꾸 고교 가부시끼가이샤 점착제 조성물, 생체 전극, 및 생체 전극의 제조 방법
US10844257B2 (en) 2016-09-13 2020-11-24 Shin-Etsu Chemical Co., Ltd. Adhesive composition, bio-electrode, and method for manufacturing a bio-electrode
TWI649400B (zh) * 2016-09-29 2019-02-01 日商信越化學工業股份有限公司 黏著劑組成物、生物體電極及生物體電極之製造方法
US10610116B2 (en) 2016-09-29 2020-04-07 Shin-Etsu Chemical Co., Ltd. Adhesive composition, bio-electrode, and method for manufacturing a bio-electrode
KR20180035675A (ko) 2016-09-29 2018-04-06 신에쓰 가가꾸 고교 가부시끼가이샤 점착제 조성물, 생체 전극, 및 생체 전극의 제조 방법
KR20180035691A (ko) 2016-09-29 2018-04-06 신에쓰 가가꾸 고교 가부시끼가이샤 점착제 조성물, 생체 전극, 생체 전극의 제조 방법 및 염
US10808148B2 (en) 2016-09-29 2020-10-20 Shin-Etsu Chemical Co., Ltd. Adhesive composition, bio-electrode, method for manufacturing a bio-electrode, and salt
US11071485B2 (en) 2016-12-21 2021-07-27 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
US11357970B2 (en) 2017-01-06 2022-06-14 Shin-Etsu Chemical Co., Ltd. Biomedical electrode composition, biomedical electrode and method for manufacturing the biomedical electrode
US10726967B2 (en) 2017-01-06 2020-07-28 Shin-Etsu Chemical Co., Ltd. Polymerizable monomer, polymer compound, biological electrode composition, biological electrode, and method for producing biological electrode
US10734132B2 (en) 2017-02-06 2020-08-04 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing the bio-electrode, and polymer compound
KR20180091749A (ko) 2017-02-06 2018-08-16 신에쓰 가가꾸 고교 가부시끼가이샤 생체 전극 조성물, 생체 전극, 생체 전극의 제조 방법 및 고분자 화합물
EP3358572A1 (en) 2017-02-06 2018-08-08 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing the bio-electrode, and polymer compound
KR20180093824A (ko) 2017-02-14 2018-08-22 신에쓰 가가꾸 고교 가부시끼가이샤 생체 전극 조성물, 생체 전극, 및 생체 전극의 제조 방법
EP3360473A1 (en) 2017-02-14 2018-08-15 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing the bio-electrode
EP3360472A1 (en) 2017-02-14 2018-08-15 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing the bio-electrode, and polymer
US11135422B2 (en) 2017-02-14 2021-10-05 Shin-Etsu Chemical Co., Ltd. Bio-electrode and methods for manufacturing the bio-electrode
US10695554B2 (en) 2017-02-14 2020-06-30 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing the bio-electrode, and polymer
KR20180093817A (ko) 2017-02-14 2018-08-22 신에쓰 가가꾸 고교 가부시끼가이샤 생체 전극 조성물, 생체 전극, 생체 전극의 제조 방법 및 고분자 화합물
US10792489B2 (en) 2017-02-14 2020-10-06 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing the bio-electrode
KR20190044021A (ko) 2017-10-19 2019-04-29 신에쓰 가가꾸 고교 가부시끼가이샤 생체 전극 조성물, 생체 전극, 및 생체 전극의 제조 방법
US10743788B2 (en) 2017-10-19 2020-08-18 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US10759938B2 (en) 2017-10-26 2020-09-01 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
KR20190046701A (ko) 2017-10-26 2019-05-07 신에쓰 가가꾸 고교 가부시끼가이샤 생체 전극 조성물, 생체 전극, 및 생체 전극의 제조 방법
KR20190058315A (ko) 2017-11-21 2019-05-29 신에쓰 가가꾸 고교 가부시끼가이샤 생체 전극 조성물, 생체 전극 및 생체 전극의 제조 방법
US10864366B2 (en) 2017-11-21 2020-12-15 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
KR20190084901A (ko) 2018-01-09 2019-07-17 신에쓰 가가꾸 고교 가부시끼가이샤 생체 전극 조성물, 생체 전극, 및 생체 전극의 제조 방법
US11839700B2 (en) 2018-01-09 2023-12-12 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US11786160B2 (en) 2018-02-22 2023-10-17 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
KR20190101302A (ko) 2018-02-22 2019-08-30 신에쓰 가가꾸 고교 가부시끼가이샤 생체 전극 조성물, 생체 전극 및 생체 전극의 제조 방법
US11801333B2 (en) 2018-04-02 2023-10-31 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
KR20190115421A (ko) 2018-04-02 2019-10-11 신에쓰 가가꾸 고교 가부시끼가이샤 생체 전극 조성물, 생체 전극, 및 생체 전극의 제조 방법
KR20200001519A (ko) 2018-06-25 2020-01-06 신에쓰 가가꾸 고교 가부시끼가이샤 생체 전극 조성물, 생체 전극, 및 생체 전극의 제조 방법
US11612347B2 (en) 2018-06-25 2023-03-28 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US11896377B2 (en) 2018-06-25 2024-02-13 Shin-Etsu Chemical Co., Ltd. Bio-electrode
US11160480B2 (en) 2018-06-25 2021-11-02 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
EP3587473A1 (en) 2018-06-25 2020-01-01 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
KR20200001533A (ko) 2018-06-26 2020-01-06 신에쓰 가가꾸 고교 가부시끼가이샤 생체 전극 조성물, 생체 전극, 및 생체 전극의 제조 방법
EP3587474A1 (en) 2018-06-26 2020-01-01 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US11607162B2 (en) 2018-06-26 2023-03-21 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US11234606B2 (en) 2018-07-05 2022-02-01 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
KR20200008103A (ko) 2018-07-12 2020-01-23 신에쓰 가가꾸 고교 가부시끼가이샤 생체 전극 조성물, 생체 전극, 및 생체 전극의 제조 방법
US11517236B2 (en) 2018-07-12 2022-12-06 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
EP3594262A1 (en) 2018-07-12 2020-01-15 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US11547354B2 (en) 2018-08-23 2023-01-10 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US11839476B2 (en) 2018-08-27 2023-12-12 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing a bio-electrode
US11643492B2 (en) 2019-04-03 2023-05-09 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
EP3718471A1 (en) 2019-04-03 2020-10-07 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
KR20200117878A (ko) 2019-04-03 2020-10-14 신에쓰 가가꾸 고교 가부시끼가이샤 생체 전극 조성물, 생체 전극, 및 생체 전극의 제조 방법
US11369299B2 (en) 2019-04-03 2022-06-28 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
KR20210095044A (ko) 2020-01-22 2021-07-30 신에쓰 가가꾸 고교 가부시끼가이샤 생체 전극 조성물, 생체 전극 및 생체 전극의 제조 방법
EP3854303A1 (en) 2020-01-22 2021-07-28 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
JP7410065B2 (ja) 2020-03-19 2024-01-09 信越化学工業株式会社 生体電極、生体電極の製造方法及び生体信号の測定方法
KR20210117952A (ko) 2020-03-19 2021-09-29 신에쓰 가가꾸 고교 가부시끼가이샤 생체 전극, 생체 전극의 제조 방법 및 생체 신호의 측정 방법
TWI773197B (zh) * 2020-03-19 2022-08-01 日商信越化學工業股份有限公司 生物體電極、生物體電極之製造方法、以及生物體信號之測定方法
EP3881766A1 (en) 2020-03-19 2021-09-22 Shin-Etsu Chemical Co., Ltd. Bio-electrode, method for manufacturing bio-electrode, and method for measuring biological signal
KR102563656B1 (ko) * 2020-03-19 2023-08-03 신에쓰 가가꾸 고교 가부시끼가이샤 생체 전극, 생체 전극의 제조 방법 및 생체 신호의 측정 방법
US11965095B2 (en) 2020-04-01 2024-04-23 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
EP3968343A2 (en) 2020-09-15 2022-03-16 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing bio-electrode, and silicon material particle
KR20220036871A (ko) 2020-09-15 2022-03-23 신에쓰 가가꾸 고교 가부시끼가이샤 생체 전극 조성물, 생체 전극, 생체 전극의 제조 방법, 및 규소 재료 입자
EP3984456A1 (en) 2020-10-13 2022-04-20 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing bio-electrode, polymer compound, and composite
KR20220048947A (ko) 2020-10-13 2022-04-20 신에쓰 가가꾸 고교 가부시끼가이샤 생체 전극 조성물, 생체 전극, 생체 전극의 제조 방법, 고분자 화합물 및 복합체
KR20220061020A (ko) 2020-11-05 2022-05-12 신에쓰 가가꾸 고교 가부시끼가이샤 생체 전극 조성물, 생체 전극, 및 생체 전극의 제조 방법
EP3995544A1 (en) 2020-11-05 2022-05-11 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
EP3995548A1 (en) 2020-11-05 2022-05-11 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing bioelectrode, and reaction composite
KR20220061012A (ko) 2020-11-05 2022-05-12 신에쓰 가가꾸 고교 가부시끼가이샤 생체 전극 조성물, 생체 전극, 생체 전극의 제조 방법 및 반응 복합체
KR20220073663A (ko) 2020-11-26 2022-06-03 신에쓰 가가꾸 고교 가부시끼가이샤 생체 전극 조성물, 생체 전극, 생체 전극의 제조 방법 및 반응 복합체
EP4006921A2 (en) 2020-11-26 2022-06-01 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, method for manufacturing bio-electrode, and reaction composite
KR20220099904A (ko) 2021-01-06 2022-07-14 신에쓰 가가꾸 고교 가부시끼가이샤 생체 전극 조성물, 생체 전극 및 생체 전극의 제조 방법
EP4026860A1 (en) 2021-01-06 2022-07-13 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
WO2022190575A1 (ja) 2021-03-12 2022-09-15 信越化学工業株式会社 生体電極、生体電極の製造方法、及び生体信号の測定方法
TWI830679B (zh) * 2021-03-12 2024-01-21 日商信越化學工業股份有限公司 導電膜組成物、及導電膜
KR20220143581A (ko) 2021-04-16 2022-10-25 신에쓰 가가꾸 고교 가부시끼가이샤 생체 전극 조성물, 생체 전극 및 생체 전극의 제조 방법
US11926766B2 (en) 2021-04-16 2024-03-12 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
EP4074754A1 (en) 2021-04-16 2022-10-19 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
WO2023015969A1 (zh) * 2021-08-09 2023-02-16 浙江大学 一种同步监测生理生化参数的导电水凝胶纸基设备
EP4309582A1 (en) 2022-07-21 2024-01-24 Shin-Etsu Chemical Co., Ltd. Bio-electrode composition, bio-electrode, and method for manufacturing the same
WO2024070988A1 (ja) * 2022-09-29 2024-04-04 積水化成品工業株式会社 電極パッド
EP4372765A1 (en) 2022-11-17 2024-05-22 Shin-Etsu Chemical Co., Ltd. Bio-electrode, bio-electrode composition, and method for manufacturing bio-electrode

Also Published As

Publication number Publication date
JPWO2013039151A1 (ja) 2015-03-26

Similar Documents

Publication Publication Date Title
WO2013039151A1 (ja) 生体用電極被覆パッド
RU2701257C2 (ru) Устройство для доставки композиции для ухода за кожей
JP2015521085A (ja) 長期着用される多機能の生体用電極
KR20140091648A (ko) 지질 펩티드형 겔화제와 고분자 화합물을 함유하는 겔시트
JP2000503009A (ja) 極性脂肪親和性感圧性粘着組成物およびそれを用いた医療デバイス
WO2002022182A1 (fr) Preparation pour pansements
EP3240486A1 (en) Adhesive applicator
WO2013108918A1 (ja) パック化粧料収容物及びパック化粧料並びにパック化粧料の製造方法
CN107157659B (zh) 一种立体悬浮芯体防侧漏卫生巾
KR20160003267A (ko) 피부 마스킹재
JP5398062B2 (ja) ハイドロゲル外用剤
CN214965708U (zh) 一种改良式电极片
JP6267034B2 (ja) 化粧料用皮膚パック粘土シート
KR20180081972A (ko) 건강패드 점착제로서 하이드로콜로이드 조성물
WO2002055113A2 (en) A hydrogel/hydrocolloid composite
WO2021132663A1 (ja) 局所止血材の製造方法、及び局所止血材
JP2001213725A (ja) 透明シート状パック化粧料
JP2002029913A (ja) シート状化粧料
JP2005075727A (ja) 生体粘着ポリエチレンゲルシートおよび成形体
WO2023234332A1 (ja) 生体センサ
TWI429462B (zh) 水凝膠被覆傷口材料
JP6247132B2 (ja) 化粧料用皮膚パック粘土シート
CN205252212U (zh) 一种具备消毒功能的输液贴
UA135012U (uk) Спосіб біофорезу ранових поверхонь вітаміном в1 аерогелевими пов'язками з срібними півкулями
UA135836U (uk) Спосіб біофорезу ранових поверхонь вітаміном d аерогелевими пов'язками з срібними півкулями

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832226

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013533709

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12832226

Country of ref document: EP

Kind code of ref document: A1