WO2013039092A9 - 水素分離装置及びその運転方法 - Google Patents

水素分離装置及びその運転方法 Download PDF

Info

Publication number
WO2013039092A9
WO2013039092A9 PCT/JP2012/073290 JP2012073290W WO2013039092A9 WO 2013039092 A9 WO2013039092 A9 WO 2013039092A9 JP 2012073290 W JP2012073290 W JP 2012073290W WO 2013039092 A9 WO2013039092 A9 WO 2013039092A9
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
hydrogen separation
alloy membrane
membrane
separation alloy
Prior art date
Application number
PCT/JP2012/073290
Other languages
English (en)
French (fr)
Other versions
WO2013039092A1 (ja
Inventor
石川 敬郎
和広 山村
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to US14/344,611 priority Critical patent/US9260304B2/en
Priority to JP2013533683A priority patent/JP6011538B2/ja
Priority to EP12831236.0A priority patent/EP2746219A4/en
Publication of WO2013039092A1 publication Critical patent/WO2013039092A1/ja
Publication of WO2013039092A9 publication Critical patent/WO2013039092A9/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/508Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by selective and reversible uptake by an appropriate medium, i.e. the uptake being based on physical or chemical sorption phenomena or on reversible chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0221Group 4 or 5 metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0687Reactant purification by the use of membranes or filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/108Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/10Temperature control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a technology for separating and purifying hydrogen gas from a hydrogen mixed gas using a hydrogen separation alloy membrane, and in particular, a hydrogen separation device using a hydrogen separation alloy membrane other than a palladium-based alloy membrane and the device in operation thereof. It is about how to stop.
  • Hydrogen gas (hereinafter simply referred to as hydrogen) has attracted attention in recent years as a clean energy source that does not emit greenhouse gases such as carbon dioxide even when burned. Since hydrogen hardly exists in the atmosphere (1 ppm or less), it is usually produced by steam reforming of hydrocarbons.
  • Typical hydrogen separation / purification methods include pressure fluctuation adsorption (PSA) and membrane separation.
  • PSA pressure fluctuation adsorption
  • the membrane separation method has the merit that the system can be downsized and simplified, but conventionally, a palladium-based alloy membrane (for example, Pd—Ag alloy membrane) is used as the separation membrane, and the material cost is high. was there.
  • vanadium (V), niobium (Nb), and tantalum (Ta) have high hydrogen permeation performance as a single metal, and those metals and other metals (for example, titanium (Ti), nickel (Ni), It has been reported that a hydrogen separation alloy membrane obtained by forming a multiphase alloy of cobalt (Co), zirconium (Zr), hafnium (Hf), etc. has high hydrogen permeation performance.
  • Nb—Ni—Ti alloy films are attracting attention because of their high overall potential for hydrogen permeation performance and hydrogen embrittlement resistance (see, for example, Non-Patent Document 1).
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-118594 discloses a fuel cell system that generates electricity by reacting hydrogen and oxygen, and when the fuel cell system is stopped, reformed gas is generated from fuel and air. The supply of fuel to the reformer to be generated is stopped, and air is introduced to the reformer side of the hydrogen separation alloy membrane that is connected downstream of the reformer and separates only hydrogen from the reformed gas, A fuel cell system is disclosed that removes hydrogen on the reformer side and permeate side of the hydrogen separation alloy membrane by closing the on-off valve of the hydrogen supply line connected to the permeate side of the hydrogen separation alloy membrane.
  • Patent Document 1 when the fuel cell system is stopped, hydrogen in the hydrogen separation alloy membrane that causes deterioration of the hydrogen separation alloy membrane can be reliably and easily removed, and an inert gas (for example, nitrogen gas) ), It is said that the occurrence of a pressure difference between the two electrodes of the fuel cell that causes deterioration of the cell components of the fuel cell can be suppressed.
  • an inert gas for example, nitrogen gas
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-112905 includes a water evaporator that generates steam and a reformer that generates a hydrogen-rich reformed gas through a reforming reaction between fuel and water.
  • the fuel reformer is a membrane reactor comprising a reforming layer and a pure hydrogen layer adjacent to each other through at least a hydrogen separation alloy membrane, and the hydrogen is added to the reforming layer and the pure hydrogen layer when the system is stopped. Only the water vapor generated by the water evaporator is supplied so as to maintain a predetermined temperature at which hydrogen embrittlement of the separation alloy film can be avoided, and it is necessary to purge the residual gas in the reformed layer and the pure hydrogen layer.
  • a fuel reforming system is disclosed in which air is supplied to the reformer after the amount of water vapor is supplied.
  • Patent Document 2 when purging with water vapor and then purging with air when the system is stopped, there is no need to perform purging with an inert gas, so there is no need to provide storage means such as a cylinder. It is said that the space efficiency of the fuel reforming system can be improved. Further, when residual gas such as hydrogen is present in the fuel reforming system, the hydrogen separation alloy membrane is maintained at a temperature that does not cause hydrogen embrittlement, and thus hydrogen embrittlement of the hydrogen separation alloy membrane can be prevented. Yes.
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-334417
  • the hydrogen permeable membrane leads to a hydrogen supply side space and a hydrogen permeable side space.
  • Each pipe has one or more temperature-sensitive valves that use heat as the power source.
  • the temperature rise of the equipment is detected when the equipment is started up.
  • These valves are automatically operated to bring them to a steady operation state, and when the apparatus is stopped, the temperature drop of the apparatus is detected and these valves are automatically operated to connect to the hydrogen permeable membrane.
  • a method for protecting a hydrogen permeable membrane utilizing device that removes hydrogen is disclosed.
  • Patent Document 3 it is possible to prevent the membrane from collapsing because the hydrogen permeable membrane does not need to be exposed to hydrogen at a temperature lower than the use limit temperature. Furthermore, by using a temperature-sensitive valve that operates with heat, it is possible to provide a system that does not consume special electrical energy or the like for the valve operation necessary to start and stop the hydrogen permeable membrane and that does not require electronic control. It is said that.
  • Patent Documents 1 to 3 since the hydrogen separation alloy membrane deteriorates when the temperature is lowered in a state where hydrogen exists in and / or around the hydrogen separation alloy membrane (hydrogen permeable membrane), the hydrogen separation alloy membrane is kept at a certain temperature or higher.
  • the technical idea that it is preferable to provide a process for removing hydrogen in the hydrogen separation alloy membrane in a state is disclosed, the hydrogen remaining in the hydrogen separation alloy membrane can be efficiently shortened by these conventional techniques. It is difficult to remove with time and to suppress embrittlement cracking of the hydrogen separation alloy membrane.
  • Patent Document 1 does not describe the specific temperature and time when performing hydrogen removal, and as a result, there is a step of removing hydrogen from the hydrogen separation alloy membrane during actual operation. There is a problem that the process becomes inefficient and the process takes more time than necessary, or the hydrogen separation alloy membrane deteriorates due to insufficient hydrogen removal.
  • Patent Document 2 it is described that purging with water is performed after purging with water vapor, but hydrogen present in the hydrogen separation alloy film cannot be removed even if purging with water vapor is performed. There was a problem that embrittlement of the film could not be suppressed.
  • Patent Document 3 describes a method of removing hydrogen in the space connected to the hydrogen separation alloy film using a temperature-sensitive valve.
  • removal of hydrogen present in the hydrogen separation alloy film is described. Therefore, there is a problem that embrittlement of the hydrogen separation alloy membrane cannot be suppressed.
  • an object of the present invention is to provide a method for operating a hydrogen separator capable of efficiently suppressing hydrogen embrittlement of a hydrogen separation alloy membrane and a hydrogen separator that is resistant to repeated start / stop.
  • the present inventors have repeatedly considered and tried the behavior of hydrogen released from the surface of the hydrogen separation alloy membrane when operating the hydrogen separator.
  • hydrogen bonding on the surface of the hydrogen separation alloy membrane is promoted by making the atmosphere of the hydrogen separation alloy membrane an oxidizing gas, and accordingly, the desorption rate of hydrogen from the hydrogen separation alloy membrane is increased, resulting in an extremely short time. It has been found that the amount of hydrogen in the film can be reduced efficiently.
  • the present inventors have further clarified preferable temperature conditions for efficiently releasing hydrogen, and completed the present invention.
  • One aspect of the present invention is a method of operating a hydrogen separator that separates hydrogen from a hydrogen mixed gas by a membrane separation method, wherein the hydrogen separator uses a hydrogen separation alloy membrane, and the hydrogen separation alloy membrane In the range of 300 to 600 ° C., the step of stopping the supply of the hydrogen mixed gas to the hydrogen separation alloy membrane is performed, and after the step of stopping the supply of the hydrogen mixed gas, the hydrogen separation alloy membrane Performing a step of supplying an oxidizing gas to at least the upstream side of the hydrogen separation alloy membrane for a predetermined time within a temperature range of 300 to 600 ° C., and then reducing the temperature of the hydrogen separation alloy membrane to less than 200 ° C.
  • a method of operating a hydrogen separator that performs the above is provided.
  • the predetermined time is 8 to 55 minutes per 0.1 mm thickness of the hydrogen separation alloy membrane.
  • the amount of hydrogen remaining in the hydrogen separation alloy film is reduced to 300 ppm or less by the step of supplying the oxidizing gas.
  • the hydrogen separation alloy is an alloy containing Nb.
  • the alloy containing Nb is an alloy containing Ni by mass x and Ti by y mass% (10 ⁇ x ⁇ 40, 10 ⁇ y ⁇ 30), with the balance being Nb and inevitable impurities.
  • the thickness of the hydrogen separation alloy membrane is 0.01 to 1 mm.
  • Another aspect of the present invention is a hydrogen separation apparatus that separates hydrogen from a hydrogen mixed gas by a membrane separation method, and contains a hydrogen separation alloy membrane and purifies the mixed gas chamber by the hydrogen separation alloy membrane.
  • a hydrogen separator partitioned into a hydrogen chamber, a heater for adjusting the temperature of the hydrogen separator, a gas supply pipe connected to the mixed gas chamber, and a mixed gas chamber exhaust connected to the mixed gas chamber Piping, purified hydrogen chamber purge piping connected to the purified hydrogen chamber, purified hydrogen chamber exhaust piping connected to the purified hydrogen chamber, hydrogen mixed gas supply piping connected to the gas supply piping, and the gas
  • An oxidizing gas supply pipe connected to the supply pipe, and a plurality of valves arranged in each of the pipes, When the temperature of the hydrogen separation alloy membrane is in the range of 300 to 600 ° C., the supply of the hydrogen mixed gas to the mixed gas chamber is stopped, and the oxidizing gas is supplied to the mixed gas chamber and the purified hydrogen chamber.
  • the hydrogen separation alloy membrane is supplied for 8 to 55 minutes per thickness of 0.1 mm, and the water vapor produced by the reaction and generation of hydrogen and the oxidizing gas in the hydrogen separation alloy membrane is supplied to the mixed gas chamber exhaust pipe and the purified hydrogen chamber.
  • a hydrogen separation apparatus further comprising a heater / valve controller for controlling the heater and the plurality of valves in order to lower the temperature of the hydrogen separation alloy film to less than 200 ° C. after exhausting from an exhaust pipe.
  • the present invention can add the following improvements and changes to the hydrogen separator (II) according to the present invention.
  • the hydrogen separation alloy membrane is made of an alloy containing Nb.
  • the alloy containing Nb is an alloy containing Ni in x mass%, Ti in y mass% (10 ⁇ x ⁇ 40, 10 ⁇ y ⁇ 30), and the balance being Nb and inevitable impurities,
  • the thickness of the hydrogen separation alloy membrane is 0.01 to 1 mm.
  • the present invention it is possible to provide a method for operating a hydrogen separator that can efficiently suppress hydrogen embrittlement of a hydrogen separation alloy membrane. As a result, it is possible to provide a hydrogen separator that is resistant to repeated starting / stopping and has a low material cost.
  • FIG. 6 is a chart showing an example of a hydrogen release curve in an Nb-25 mass% Ni-21 mass% Ti alloy film.
  • 3 is an example of a graph showing the relationship between the dehydrogenation retention time and the amount of residual hydrogen in an alloy film in an Nb-25 mass% Ni-21 mass% Ti alloy film.
  • It is a schematic diagram which shows the structural example of the principal part of the hydrogen separator which concerns on this invention. It is the chart which showed an example of the result of the pressure fluctuation / temperature fluctuation hydrogen permeation test at the time of carrying out the operation method of the hydrogen separation device concerning the present invention.
  • the obtained ingot was subjected to a hot forging step, a hot rolling step, and a cold rolling step to produce a thin plate having a thickness of 0.1 mm. Annealing was performed during the cold rolling process and after the final rolling.
  • a hydrogen separation alloy is obtained by forming a Pd thin film (thickness: 100 to 200 nm) on both sides of the thin plate by sputtering as a catalyst for dissociating and recombining hydrogen molecules into atoms.
  • a membrane was prepared.
  • FIG. 1 is a chart showing an example of a hydrogen release curve in an Nb-25Ni-21Ti alloy film.
  • the release of hydrogen occluded in the hydrogen separation alloy membrane is "diffusion of hydrogen atoms in the membrane” ⁇ "recombination of hydrogen molecules on the membrane surface” ⁇ " It can be said that the basic process of “detachment of hydrogen molecule” should be considered.
  • the temperature is considered to be a factor contributing mainly to “diffusion of hydrogen atoms in the film” and “recombination of hydrogen molecules on the film surface”.
  • the above-mentioned TDS is a measurement in a high vacuum, and it is thought that the high vacuum mainly contributed to “detachment of hydrogen molecules from the film surface”.
  • the device structure for forming and maintaining a high vacuum environment will increase the cost of the hydrogen separator.
  • the present inventors considered "reduction of the density of hydrogen atoms or hydrogen molecules near the film surface” as a guideline for promoting "detachment of hydrogen molecules from the film surface” without using a high vacuum environment. . That is, if hydrogen atoms themselves or hydrogen molecules themselves in the vicinity of the film surface can be reduced, it was considered that “detachment of hydrogen molecules from the film surface” is promoted by equilibrium transfer.
  • the present inventors have supplied an oxidizing gas (a gas containing oxygen, such as oxygen gas or air) to the film surface.
  • an oxidizing gas a gas containing oxygen, such as oxygen gas or air
  • a method of directly combining hydrogen atoms and the oxygen component in the oxidizing gas on the film surface to generate water vapor (H 2 O) was found suitable. Accordingly, hydrogen can be efficiently removed from the hydrogen separation alloy membrane as in a high vacuum environment without forming and maintaining a high vacuum environment.
  • the process of supplying the oxidizing gas to the hydrogen separation alloy membrane under the aforementioned temperature condition is hereinafter referred to as “dehydrogenation process”.
  • dehydrogenation process the process of supplying the oxidizing gas to the hydrogen separation alloy membrane under the aforementioned temperature condition.
  • the elementary process of desorption of hydrogen molecules from the film surface is limited by the hydrogen partial pressure on the film surface.
  • the hydrogen partial pressure on the film surface decreases compared to the case where dehydrogenation is not performed. Decreasing the hydrogen partial pressure on the film surface means that the concentration gradient of hydrogen molecules near the film surface increases, and as a result, the detachment of hydrogen molecules from the film surface is promoted.
  • the concentration of hydrogen atoms on the surface decreases, and the difference in hydrogen atom concentration between the film surface and the inside of the film increases (that is, the concentration gradient of hydrogen atoms). Becomes larger).
  • the concentration gradient of hydrogen atoms increases, the diffusion of hydrogen atoms from the inside of the film to the surface is promoted. As a comprehensive effect of these, it is considered that the efficiency of removing hydrogen from the hydrogen separation alloy membrane is improved.
  • FIG. 2 is an example of a graph showing the relationship between the dehydrogenation retention time and the amount of residual hydrogen in the alloy film in the Nb-25Ni-21Ti alloy film.
  • the amount of residual hydrogen in the film decreases in a shorter time as the dehydrogenation temperature is increased.
  • hydrogen embrittlement cracking it became clear that hydrogen embrittlement cracking can be suppressed when the amount of residual hydrogen in the film is 300 ppm or less.
  • the residual hydrogen amount in the membrane is more preferably 200 ppm or less, and even more preferably 100 ppm or less.
  • the temperature of the hydrogen separation alloy membrane is preferably 300 ° C. or more and 600 ° C. or less, and is preferably maintained for a predetermined time, and more preferably 300 ° C. or more and 500 ° C. or less. .
  • the temperature is in the range of 300 ° C. or more and 450 ° C. or less, the diffusion of the formed Pd can be sufficiently suppressed, and thus it is more desirable, and holding at 300 to 400 ° C. for the predetermined time is most preferable.
  • the hydrogen permeation flux in the hydrogen separation alloy membrane is inversely proportional to the thickness of the separation alloy membrane, it is desirable that the retention time of the dehydrogenation treatment is proportional to the thickness.
  • the alloy used for the hydrogen separator is preferably a hydrogen separation alloy containing Nb. More specifically, the hydrogen separation alloy containing Nb contains Ni in x mass%, Ti in y mass% (10 ⁇ x ⁇ 40, 10 ⁇ y ⁇ 30), and the balance is Nb and inevitable impurities. It is preferable that
  • the hydrogen embrittlement resistance decreases, and when the Ni content exceeds 40% by mass, the hydrogen permeability is lowered and a brittle intermetallic compound phase is easily generated in the alloy.
  • Ti when Ti is less than 10% by mass, hydrogen embrittlement resistance is lowered, and when it exceeds 30% by mass, hydrogen permeability is lowered and a brittle intermetallic compound phase is easily generated in the alloy.
  • elements such as V, Ta, Co, Fe, Zr, Hf, and B can be dissolved in a hydrogen separation alloy film made of Nb, Ni, and Ti. May be included.
  • the composition of the hydrogen separation alloy was changed and the relationship with the amount of residual hydrogen was investigated.
  • the raw material metal was blended so that Ni was 31.5% by mass, Ti was 25.7% by mass, and the balance was Nb and impurities, and an Nb—Ni—Ti alloy was cast by high frequency melting (hereinafter referred to as this produced alloy). Is expressed as Nb-32Ni-26Ti). Also, the raw material metal was blended so that Ni was 38.4% by mass, Ti was 31.3% by mass, and the balance was Nb and impurities, and an Nb—Ni—Ti alloy was cast by high frequency melting (hereinafter referred to as “this”). The produced alloy is expressed as Nb-38Ni-31Ti).
  • the obtained ingot was subjected to a hot forging step, a hot rolling step, and a cold rolling step to produce a thin plate having a thickness of 0.1 mm. Annealing was performed during the cold rolling process and after the final rolling.
  • a hydrogen separation alloy is obtained by forming a Pd thin film (thickness: 100 to 200 nm) on both sides of the thin plate by sputtering as a catalyst for dissociating and recombining hydrogen molecules into atoms.
  • a membrane was prepared.
  • the hydrogen separation alloy membranes of Nb-32Ni-26Ti and Nb-38Ni-31Ti were held in hydrogen at 350 ° C. for 1 hour to occlude hydrogen.
  • the amount of hydrogen remaining in the hydrogen separation membrane was measured by TDS.
  • Table 1 shows a comparison of the amount of residual hydrogen after dehydrogenation treatment (held in air at 350 ° C. for 40 minutes) in Nb-25Ni-21Ti, Nb-32Ni-26Ti, and Nb-38Ni-31Ti.
  • Nb—Ni—Ti alloys it is known that Nb is an element contributing to the solid solution and diffusion of hydrogen.
  • the movement (diffusion) of hydrogen is performed using the connection between Nb atoms existing in the alloy as a main route.
  • the connection between Nb atoms decreases, and the hydrogen transfer path is likely to be broken, so that it is presumed that diffusion is less likely to occur.
  • the movement of hydrogen dissolved in the alloy is hindered during the dehydrogenation process, and it is difficult to release to the outside.
  • the film thickness of the alloy film used in the hydrogen separator is preferably 0.01 mm or more and 1 mm or less, more preferably 0.03 mm or more and 0.5 mm or less, and even more preferably 0.05 mm or more and 0.2 mm or less.
  • the hydrogen permeation flux in the hydrogen separation alloy membrane is inversely proportional to the thickness of the separation alloy membrane, more hydrogen can be extracted with a smaller thickness.
  • the film thickness is less than 0.01 mm, the film strength is insufficient, and the film is easily broken when pressure is applied.
  • the film thickness is greater than 1 mm, the hydrogen permeation flux becomes too small, which is inefficient.
  • FIG. 3 is a schematic diagram showing a configuration example of a main part of the hydrogen separator according to the present invention.
  • the hydrogen separator according to the present invention is basically an apparatus for separating hydrogen from a hydrogen mixed gas by a hydrogen separator 10 having a hydrogen separation alloy membrane 11 built therein.
  • the interior of the hydrogen separator 10 is partitioned into a mixed gas chamber 12 and a purified hydrogen chamber 13 by a hydrogen separation alloy film 11, and the temperature is adjusted by a heater 14.
  • a gas supply pipe 20 and a mixed gas chamber exhaust pipe 24 are connected to the mixed gas chamber 12.
  • a hydrogen mixed gas supply pipe 21, a purge gas supply pipe 22, and an oxidizing gas supply pipe 23 are connected to the gas supply pipe 20.
  • a purified hydrogen chamber purge pipe 25, a purified hydrogen recovery pipe 26, and a purified hydrogen chamber exhaust pipe 27 are connected to the purified hydrogen chamber 13.
  • a mixed gas chamber exhaust pipe 24, a purified hydrogen chamber exhaust pipe 27 and a vacuum exhaust pipe 29 are connected to the exhaust pipe 28.
  • a vacuum pump 40 is connected to the vacuum exhaust pipe 29.
  • valves 31 to 39 are disposed in the pipes 21 to 29, respectively.
  • the hydrogen separator according to the present invention includes a heater / valve controller 50 that controls the temperature of the heater 14 and the opening and closing of the valves 31 to 39.
  • the wiring connecting the heater / valve controller 50 and the valves 31 to 39 is omitted for the sake of simplicity.
  • valve 34 mixed gas chamber exhaust piping valve
  • valve 37 purified hydrogen chamber exhaust piping valve
  • valve 39 vacuum exhaust piping valve
  • the hydrogen separator 10 is heated to 300 to 600 ° C. (operating temperature) by the heater 14 (temperature raising step).
  • valve 31 hydrogen mixed gas supply piping valve
  • valve 34 mixed gas chamber exhaust piping valve
  • valve 36 purified hydrogen recovery piping valve
  • valve 38 exhaust piping valve
  • the other component gas that has not permeated the hydrogen separation alloy membrane 11 is discharged out of the system through the mixed gas chamber exhaust pipe 24 and the exhaust pipe 28.
  • the above is the hydrogen purification step.
  • the hydrogen separator 10 is adjusted to a predetermined temperature (300 to 600 ° C.) by the heater 14.
  • valve 32 purge gas supply piping valve
  • valve 34 mixed gas chamber exhaust piping valve
  • valve 35 purified hydrogen chamber purge piping valve
  • valve 37 purified hydrogen chamber exhaust piping valve
  • valve 38 exhaust piping
  • valve 34 mixed gas chamber exhaust piping valve
  • valve 35 purified hydrogen chamber purge piping valve
  • valve 37 purified hydrogen chamber exhaust piping valve
  • valve 39 vacuum exhaust piping valve
  • the vacuum pump 40 may be operated with all other valves closed to evacuate the hydrogen in the hydrogen separator 10 and each pipe (vacuum evacuation step).
  • the above-described replacement exhaust process may not be performed. Further, when the replacement exhaust process is not performed, the purge gas supply pipe 22 and the valve 32 may not be provided in the hydrogen separator.
  • valve 33 oxidizing gas supply piping valve
  • valve 34 mixed gas chamber exhaust piping valve
  • valve 35 purified hydrogen chamber purge piping valve
  • valve 37 purified hydrogen chamber exhaust piping valve
  • valve 38 The exhaust pipe valve
  • an oxidizing gas a gas containing oxygen, such as oxygen gas or air
  • an oxidizing gas is supplied from the oxidizing gas supply pipe 23 to the mixed gas chamber 12 of the hydrogen separator 10.
  • purified hydrogen chamber 13 purified hydrogen chamber 13.
  • This step is performed for a predetermined time (8 to 55 minutes) so that the amount of residual hydrogen in the hydrogen separation alloy film 11 is 300 ppm or less.
  • the supply amount of the oxidizing gas may be an amount that does not become insufficient for all the hydrogen remaining in the hydrogen separation alloy film 11 to become water vapor. The above is the dehydrogenation process. Thereafter, the temperature of the hydrogen separator 10 is lowered, all the valves are closed, and the hydrogen separator is stopped (stop process).
  • the pressure fluctuation / temperature fluctuation hydrogen permeation test was performed in accordance with the above operation method.
  • a temperature raising step for raising the temperature to 350 ° C. in 30 minutes, a hydrogen purification step at 350 ° C. for 1 hour, a replacement evacuation step with nitrogen gas, a dehydrogenation treatment step at 350 ° C. for 40 minutes, The stop step of lowering the temperature to 80 ° C. in 30 minutes was defined as one cycle.
  • the test results are shown in FIG.
  • FIG. 4 is a chart showing an example of the results of the pressure fluctuation / temperature fluctuation hydrogen permeation test when the operation method of the hydrogen separator according to the present invention is carried out.
  • the vertical axis of the chart indicates the hydrogen pressure difference between the upstream side and the downstream side of the hydrogen separation alloy membrane, and the horizontal axis of the chart indicates the number of cycles of pressure / temperature fluctuation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

 本発明は、該水素分離合金膜の水素脆化を効率良く抑制できる水素分離装置の運転方法及び起動/停止の繰り返しに強い水素分離装置を提供することを目的とする。本発明に係る水素分離装置の運転方法は、膜分離方式により水素混合ガスから水素を分離する水素分離装置の運転方法であって、前記水素分離装置は水素分離合金膜を用い、前記水素分離合金膜の温度が300~600℃の範囲において前記水素分離合金膜への前記水素混合ガスの供給を停止するステップを行い、前記水素混合ガスの供給を停止するステップの後、前記水素分離合金膜の温度が300~600℃の範囲内で前記水素分離合金膜の少なくとも上流側に酸化性ガスを所定時間供給するステップを行い、その後、前記水素分離合金膜の温度を200℃未満に低下させるステップを行う。

Description

水素分離装置及びその運転方法
 本発明は、水素分離合金膜を用いて水素混合ガスから水素ガスを分離精製する技術に関し、特に、パラジウム系合金膜以外の水素分離合金膜を用いた水素分離装置及びその運転中の当該装置を停止する方法に関するものである。
 水素ガス(以下、単に水素と称す)は、燃焼しても二酸化炭素などの温室効果ガスを出さないクリーンなエネルギー源として近年注目されている。水素は、大気中にほとんど存在していないことから(1ppm以下)、通常、炭化水素の水蒸気改質により製造されている。
 この水素製造プロセスでは、水素(H)と共に一酸化炭素(CO)や二酸化炭素(CO)が生成され、未反応の原料ガスである炭化水素(例えば、メタン:CH)や水蒸気(HO)が残存する。その後、これらの混合ガスから水素が分離・精製される。
 代表的な水素の分離・精製方法としては、圧力変動吸着(PSA)方式と膜分離方式がある。PSA方式は、複数の吸着塔を用いることで高純度水素を精製することができるが、システム全体が大型化・複雑化しやすいというデメリットがある。一方、膜分離方式は、システムを小型化・簡素化できるメリットがあるものの、従来は分離膜としてパラジウム系合金膜(例えば、Pd-Ag合金膜)が使用されており、材料コストが高いという問題があった。
 そこで、パラジウム系合金膜に替わる安価な金属膜材料やそれを用いた水素分離装置が種々検討されてきた。その結果、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)が金属単体で高い水素透過性能を有することや、それらの金属と他の金属(例えば、チタン(Ti)、ニッケル(Ni)、コバルト(Co)、ジルコニウム(Zr)、ハフニウム(Hf)等)とを複相合金化した水素分離合金膜が高い水素透過性能を有することが報告されている。
 中でもNb-Ni-Ti系合金膜は、水素透過性能と耐水素脆化性との総合的なポテンシャルの高さから注目を集めている(例えば、非特許文献1参照)。
 しかしながら、水素分離装置にパラジウム系合金膜以外の水素分離膜を用いた場合、水素分離合金膜の周りに水素が存在する状態で装置を停止すると(装置温度を低下させると)、水素分離合金膜が劣化(いわゆる水素脆化)してしまうという問題があった。そして、そのような問題を解決するために様々な水素分離装置や制御方法が検討され提案されている。
 例えば、特許文献1(特開2001-118594号公報)には、水素と酸素とを反応させて発電する燃料電池システムであって、燃料電池システムの停止時に、燃料と空気とから改質ガスを生成する改質器への燃料の供給を停止すると共に、該改質器の下流に接続され該改質ガスから水素のみを分離する水素分離合金膜の改質器側に空気を導入し、該水素分離合金膜の透過側に接続される水素供給ラインの開閉弁を閉弁することにより、水素分離合金膜の改質器側及び透過側の水素を除去する燃料電池システムが開示されている。
 特許文献1によると、燃料電池システムの停止時に、水素分離合金膜の劣化の原因となる水素分離合金膜内の水素を確実且つ簡便に除去することができると共に、不活性ガス(例えば、窒素ガス)を用いることなく、燃料電池の電池構成要素の劣化を引き起こす燃料電池の両極間の圧力差の発生を抑制することができるとされている。
 特許文献2(特開2003-112905号公報)には、水蒸気を生成する水蒸発器と、燃料と水の改質反応により水素リッチな改質ガスを生成する改質器とを備え、前記改質器が少なくとも水素分離合金膜を介して隣接する改質層と純水素層からなる膜反応器である燃料改質システムであって、システム停止時に、前記改質層及び純水素層に前記水素分離合金膜の水素脆化を回避し得る所定温度を維持するように前記水蒸発器で生成した水蒸気のみを供給し、前記改質層及び前記純水素層の残留ガスをパージするのに必要な水蒸気量を供給した後に、前記改質器に空気を供給するようにした燃料改質システムが開示されている。
 特許文献2によると、システム停止時に、水蒸気によるパージを行ってから空気によるパージを行うことにより、不活性ガスを使用してパージを行う必要がなくなるので、ボンベ等の貯蔵手段を備える必要が無く、燃料改質システムのスペース効率を向上できるとされている。さらに、燃料改質システム内に水素等の残留ガスが存在するときは、水素分離合金膜を水素脆化しない温度に維持するので、水素分離合金膜の水素脆化を防ぐことができるとされている。
 特許文献3(特開2003-334417号公報)には、水素透過能を発現する金属または合金からなる水素透過膜を有する装置において、前記水素透過膜の水素供給側空間及び水素透過側空間につながる配管に、熱を動力源とする感温式バルブをそれぞれ1つ以上有しており、これらのバルブの動作を装置自身が持つ熱により行うことにより、装置の起動時には、装置の温度上昇を検知して自動的にこれらのバルブを動作して定常運転状態にいたらしめ、装置の停止時には、装置の温度低下を検知して自動的にこれらのバルブを動作して水素透過膜につながる前記空間内の水素を除去する水素透過膜利用装置の保護方法が開示されている。
 特許文献3によると、使用限界温度以下の温度で水素透過膜を水素にさらさずにすむため、膜の崩壊を防ぐことができるとされている。さらに、熱で動作する感温式バルブを用いることにより、水素透過膜の起動停止に必要なバルブ操作のために特別な電気エネルギー等を消費せず、かつ電子制御も必要としないシステムを提供できるとされている。
特開2001-118594号公報 特開2003-112905号公報 特開2003-334417号公報
山村和広、飛世正博:"Nb-Ni-Ti系合金水素分離膜の耐水素脆性の改善",日立金属技報Vol.27(2011)pp.14-19.
 特許文献1~3には、水素分離合金膜(水素透過膜)中及び/または周りに水素が存在する状態で温度を下げると該水素分離合金膜が劣化することから、ある温度以上に保った状態で該水素分離合金膜内の水素を除去する工程を設けることが好ましい旨の技術的思想が開示されているが、これらの従来技術によっても水素分離合金膜中に残存する水素を効率よく短時間で除去し、かつ水素分離合金膜の脆化割れを抑制することは困難である。
 具体的には、特許文献1には水素除去を行う際の具体的な温度や時間の記載が示されておらず、その結果、実運転する際に水素分離合金膜から水素を除去する工程が非効率になり、該工程に必要以上の時間を掛けてしまったり、水素除去が不十分で水素分離合金膜が劣化してしまったりする問題があった。
 特許文献2では水蒸気によるパージを行ってから空気によるパージを行うと記載されているが、水蒸気によるパージを行っても水素分離合金膜中に存在した水素を除去することはできず、水素分離合金膜の脆化を抑制することはできないという問題があった。
 さらに特許文献3では感温式のバルブを用いて水素分離合金膜につながる空間中の水素を除去する方法が記載されているが、特許文献2同様に水素分離合金膜中に存在する水素の除去ができないため、水素分離合金膜の脆化を抑制することはできないという問題があった。
 したがって、本発明の目的は、水素分離合金膜の水素脆化を効率良く抑制できる水素分離装置の運転方法及び起動/停止の繰り返しに強い水素分離装置を提供することにある。
 本発明者らは、上記の課題を解決するために、水素分離装置を運転する際に水素分離合金膜の表面から放出される水素の挙動についての考察と試行を繰り返した。その結果、水素分離合金膜表面の雰囲気を酸化性ガスにすることで当該表面における水素の結合が促進され、これに伴って水素分離合金膜からの水素の脱離速度が速くなり、極めて短時間で効率よく膜中の水素の量を低減することができることを知見した。本発明者らはさらに、水素を効率よく放出させるための好ましい温度条件等を明らかにし、本発明を完成させた。
 (I)本発明の1つの態様は、膜分離方式により水素混合ガスから水素を分離する水素分離装置の運転方法であって、前記水素分離装置は水素分離合金膜を用い、前記水素分離合金膜の温度が300~600℃の範囲において、前記水素分離合金膜への前記水素混合ガスの供給を停止するステップを行い、前記水素混合ガスの供給を停止するステップの後、前記水素分離合金膜の温度が300~600℃の範囲内で、前記水素分離合金膜の少なくとも上流側に酸化性ガスを所定時間供給するステップを行い、その後、前記水素分離合金膜の温度を200℃未満に低下させるステップを行う水素分離装置の運転方法を提供する。
 本発明は、上記の本発明に係る水素分離装置の運転方法(I)に対して、以下のような改良や変更を加えることができる。
(i)前記所定時間は、前記水素分離合金膜の厚さ0.1mmあたり8~55分間である。
(ii)酸化性ガスを供給する前記ステップにより、前記水素分離合金膜中に残存する水素量を300ppm以下にする。
(iii)前記水素分離合金はNbを含有する合金である。
(iv)前記Nbを含有する合金は、Niをx質量%、Tiをy質量%(10≦x<40、10≦y<30)含み、残部がNbと不可避的不純物からなる合金である。
(v)前記水素分離合金膜の厚さが0.01~1mmである。
 (II)本発明の他の1つの態様は、膜分離方式により水素混合ガスから水素を分離する水素分離装置であって、水素分離合金膜を内蔵し前記水素分離合金膜によって混合ガス室と精製水素室とに仕切られている水素分離器と、前記水素分離器の温度を調整するヒータと、前記混合ガス室に接続されるガス供給配管と、前記混合ガス室に接続される混合ガス室排気配管と、前記精製水素室に接続される精製水素室パージ配管と、前記精製水素室に接続される精製水素室排気配管と、前記ガス供給配管に接続される水素混合ガス供給配管と、前記ガス供給配管に接続される酸化性ガス供給配管と、前記の各配管に配設される複数のバルブとを具備し、
 前記水素分離合金膜の温度が300~600℃の範囲において、前記混合ガス室への前記水素混合ガスの供給を停止し、前記混合ガス室及び前記精製水素室に対して前記酸化性ガスを前記水素分離合金膜の厚さ0.1mmあたり8~55分間供給し、前記水素分離合金膜中の水素と前記酸化性ガスとが反応・生成した水蒸気を前記混合ガス室排気配管及び前記精製水素室排気配管から排気した後に、前記水素分離合金膜の温度を200℃未満に低下させるために前記ヒータ及び前記複数のバルブを制御するヒータ/バルブコントローラを更に具備する水素分離装置を提供する。
 本発明は、上記の本発明に係る水素分離装置(II)に対して、以下のような改良や変更を加えることができる。
(vi)前記水素分離合金膜はNbを含有する合金からなる。
(vii)前記Nbを含有する合金は、Niをx質量%、Tiをy質量%(10≦x<40、10≦y<30)含み、残部がNbと不可避的不純物からなる合金であり、前記水素分離合金膜の厚さが0.01~1mmである。
 本発明によれば、水素分離合金膜の水素脆化を効率良く抑制できる水素分離装置の運転方法を提供することができる。その結果、起動/停止の繰り返しに強くかつ材料コストの低い水素分離装置を提供することができる。
Nb-25質量%Ni-21質量%Ti合金膜における水素放出曲線の一例を示したチャートである。 Nb-25質量%Ni-21質量%Ti合金膜における脱水素処理の保持時間と合金膜中の残留水素量との関係を示すグラフの一例である。 本発明に係る水素分離装置の主要部分の構成例を示す模式図である。 本発明に係る水素分離装置の運転方法を実施した場合における圧力変動・温度変動水素透過試験の結果の一例を示したチャートである。
 以下、本発明に係る実施形態について、図面を参照しながら説明する。ただし、本発明はここで取り上げた実施形態に限定されることはなく、要旨を変更しない範囲で適宜組み合わせや改良が可能である。
 (水素分離合金膜の作製)
 Niを25質量%、Tiを21質量%、残部がNbおよび不純物となるように原料金属を配合しNb-Ni-Ti系合金を高周波溶解にて鋳造した(以下、本作製合金をNb-25Ni-21Tiと表記する)。
 得られたインゴットに対して熱間鍛造工程、熱間圧延工程、冷間圧延工程を行い、厚さ0.1mmの薄板を作製した。冷間圧延工程の途中及び最終圧延後には焼鈍を実施した。
 得られた薄板を目的形状に切断した後、水素分子を原子に解離・再結合させるための触媒としてPd薄膜(厚さ:100~200nm)をスパッタリングによって薄板の両面に成膜して水素分離合金膜を作製した。
 (水素透過試験)
 非特許文献1と同様の試験装置及び手順によって、一定温度環境下(350℃)における圧力変動水素透過試験(水素透過膜の上流側/下流側の水素圧力差:0~0.2MPa)を行ったところ、100サイクルの圧力変動に対しても水素分離合金膜の破壊は起こらなかった。この結果から、上記の水素分離合金膜は、水素分離装置の運転温度において十分な耐水素脆化性を有していることが確認された。
 次に、圧力変動に温度変動を加えた水素透過試験を行った(圧力変動1サイクル毎に温度を350℃から100℃に低下させた)。その結果、数サイクル(一例としては3サイクル)で水素分離合金膜の破壊が起こり、水素雰囲気中で水素分離合金膜の温度を低下させると水素脆化が促進されることが確認された。
 (水素透過膜の水素放出速度)
 前述したように、Nb-Ni-Ti系合金膜において吸蔵された水素の放出挙動は現段階で報告されておらず未解明である。そこで、本発明者等は、水素の放出挙動を解明するために水素を吸蔵させた水素分離合金膜に対して、昇温脱離分析法(TDS)により合金からの水素放出速度を測定した。合金中への水素の吸蔵は、水素気流中350℃で1時間保持の条件で行った。
 図1は、Nb-25Ni-21Ti合金膜における水素放出曲線の一例を示したチャートである。
 図1に示したように、約120℃から水素の放出が始まり、200℃近傍と400℃近傍とで水素放出速度のピークを迎え、約600℃で放出が完了することが明らかになった。この結果から、Nb-Ni-Ti系合金膜に吸蔵された水素を排出するためには、少なくとも120℃以上が必要であり、600℃以下で十分なことが判った。
 (水素透過膜からの水素除去に関する考察)
 水素分離合金膜における水素透過の素過程は、「膜表面上への水素分子の付着」→「膜表面上での水素分子の解離」→「膜中への水素原子の固溶」→「膜中での水素原子の拡散」→「反対側の膜表面上での水素分子の再結合」→「当該反対側の膜表面からの水素分子の離脱」となっていると考えられる。
 一方、水素分離合金膜に吸蔵された水素(固溶した水素)の放出は、「膜中での水素原子の拡散」→「膜表面上での水素分子の再結合」→「膜表面からの水素分子の離脱」の素過程を考えればよいと言える。温度は主に「膜中での水素原子の拡散」と「膜表面上での水素分子の再結合」に寄与する因子と考えられる。
 ここで、上述のTDSは高真空中での測定であり、その高真空は主に「膜表面からの水素分子の離脱」に寄与したと考えられる。しかしながら、水素分離装置を想定した場合、高真空環境を形成・保持するための装置構造は、水素分離装置を高コスト化してしまうことが懸念される。
 そこで、本発明者等は、高真空環境を用いずに「膜表面からの水素分子の離脱」を促進させる指針として、「膜表面近傍での水素原子または水素分子の密度の低減」を考えた。すなわち、膜表面近傍での水素原子自体または水素分子自体を低減することができれば、平衡移動により「膜表面からの水素分子の離脱」が促進されると考えた。
 さらに、本発明者等は、膜表面上での水素原子または水素分子の離脱を促進する方法を種々検討した結果、酸化性ガス(酸素を含むガス、例えば酸素ガスや空気)を膜表面に供給することにより、膜表面上で水素原子と酸化性ガス中の酸素成分とを直接化合させて水蒸気(HO)を生成させる方法が好適であることを見出した。これにより、高真空環境を形成・保持しなくても、高真空環境下と同等に水素分離合金膜から効率良く水素を除去することができる。
 本発明において、水素分離合金膜に対して前述の温度条件下で酸化性ガスを供給する処理を、以下「脱水素処理」と称する。脱水素処理が水素の除去に有効である理由は、次のように考えられる。
 膜表面からの水素分子の離脱の素過程は、膜表面における水素分圧により律速される。離脱した水素分子が膜表面で直ちに酸素と化合して水蒸気を生成すると、脱水素処理を行わない場合に比べて膜表面における水素分圧が低下する。膜表面における水素分圧が低下することは、膜表面近傍での水素分子の濃度勾配が大きくなることを意味し、その結果として膜表面からの水素分子の離脱が促進される。
 さらに、膜表面からの水素分子の離脱が促進されると、該表面における水素原子の濃度が低下し、膜表面と膜内部とで水素原子の濃度差が大きくなる(すなわち、水素原子の濃度勾配が大きくなる)。水素原子の濃度勾配が大きくなると、膜の内部から表面への水素原子の拡散が促進される。これらの総合的な効果として水素分離合金膜からの水素除去の効率が向上すると考えられる。
 (脱水素処理条件と残留水素量との関係)
 次に、水素を吸蔵させた水素分離合金膜に対して種々の条件(温度、時間)で脱水素処理を行い、水素分離合金膜中の残留水素量及び水素脆化割れの有無を調査した。合金中への水素の吸蔵は、先と同様に、水素気流中350℃で1時間保持の条件で行った。結果を図2に示す。
 図2は、Nb-25Ni-21Ti合金膜における脱水素処理の保持時間と合金膜中の残留水素量との関係を示すグラフの一例である。
 図2に示したように、脱水素処理温度を高めるにつれて膜中の残留水素量がより短時間で減少していくことが判る。また、水素脆化割れに関しては、膜中の残留水素量が300ppm以下となると水素脆化割れを抑制できることが明らかになった。分離合金膜の長期信頼性を考慮すると、膜中の残留水素量は200ppm以下がより好ましく、100ppm以下が更に好ましい。
 上記の試験・調査から、厚さ0.1mmの水素分離合金膜中の残留水素量を300ppm以下にする具体的な脱水素処理条件としては、300℃で約55分間以上保持、350℃で約25分間以上保持、400℃で約18分間以上保持、500℃で約10分間以上保持、または水素の放出が完了する600℃で約8分間以上保持という結果が得られた。一方、200℃では120分間保持という長時間の脱水素処理を行っても残留水素量を300ppm以下とすることはできなかった。
 また、水素分離合金膜を用いた水素分離装置の運転効率の観点から、脱水素処理は1時間以内で完了することが望まれており、信頼性の観点から、分離合金膜の酸化を抑制することが望まれている。加えて、水素分離合金膜には水素分離を十分に行えるようにPdが成膜される場合があることから、成膜されたPdと水素分離合金膜の拡散をできるだけ抑制することも望まれている。
 これらの要求を総合的に勘案すると、脱水素処理条件としては、水素分離合金膜の温度が300℃以上600℃以下で所定時間保持が好ましく、300℃以上500℃以下で所定時間保持がより好ましい。300℃以上450℃以下の範囲であると、成膜したPdの拡散は十分に抑制できるため、更に望ましく、300℃以上400℃以下で所定時間保持が最も好ましい。なお、水素分離合金膜における水素の透過流束は分離合金膜の膜厚に反比例することから、脱水素処理の保持時間は膜厚に比例させることが望ましい。
 なお、200℃未満で金属中に水素が存在する場合、金属水素化物が生成する場合がある。金属水素化物は機械的に非常に脆く、高圧環境下において破壊の起点となる。このため水素分離合金膜においては、金属水素化物が生成しないような運転を行う必要がある。そこで本発明では、水素分離合金膜の破壊を防ぐため、水素分離合金膜の温度が200℃未満となる前に脱水素処理を行うこととした。
 (水素分離合金)
 ここで、水素分離装置に用いる合金としては、Nbを含有する水素分離合金であることが好ましい。より具体的には、Nbを含有する水素分離合金はNiをx質量%、Tiをy質量%(10≦x<40、10≦y<30)含み、残部がNbと不可避的不純物からなる合金であることが好ましい。
 Niが10質量%未満になると耐水素脆性が低下し、40質量%を超えると水素透過能の低下を招くと共に脆い金属間化合物相が合金中に生成しやすくなる。また、Tiが10質量%未満になると耐水素脆性が低下し、30質量%を超えると水素透過能の低下を招くと共に脆い金属間化合物相が合金中に生成しやすくなる。なお、NbとNiとTiとからなる水素分離合金膜には、V、Ta、Co、Fe、Zr、Hf、Bなどの元素を固溶させることができることが一般に知られており、これらの元素を含んでもよい。
 水素分離合金の組成を変化させ、残留水素量との関係を調査した。
 Niを31.5質量%、Tiを25.7質量%、残部がNbおよび不純物となるように原料金属を配合しNb-Ni-Ti系合金を高周波溶解にて鋳造した(以下、本作製合金をNb-32Ni-26Tiと表記する)。また、Niを38.4質量%、Tiを31.3質量%、残部がNbおよび不純物となるように原料金属を配合しNb-Ni-Ti系合金を高周波溶解にて鋳造した(以下、本作製合金をNb-38Ni-31Tiと表記する)。
 得られたインゴットに対して熱間鍛造工程、熱間圧延工程、冷間圧延工程を行い、厚さ0.1mmの薄板を作製した。冷間圧延工程の途中及び最終圧延後には焼鈍を実施した。得られた薄板を目的形状に切断した後、水素分子を原子に解離・再結合させるための触媒としてPd薄膜(厚さ:100~200nm)をスパッタリングによって薄板の両面に成膜して水素分離合金膜を作製した。
 Nb-32Ni-26TiおよびNb-38Ni-31Tiの水素分離合金膜について、350℃の水素中で1時間保持を行い、水素を吸蔵させた。次に、脱水素処理(空気中350℃で40分間保持)を行った後、水素分離膜中に残留した水素量をTDSにて測定した。
 表1は、Nb-25Ni-21Tiと、Nb-32Ni-26Tiと、Nb-38Ni-31Tiにおける脱水素処理(空気中350℃で40分間保持)を行った後の残留水素量の比較である。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、NiとTiの含有量が増えるほど(すなわち、Nbの含有量が減るほど)、同じ脱水素処理条件での残留水素量が増加する傾向が見られた。この原因は明確ではないが、以下のように考察することができる。
 Nb-Ni-Ti系合金において、Nbが水素の固溶と拡散に寄与する元素であることが知られている。ここで、水素の移動(拡散)は合金中に存在するNb原子同士のつながりを主経路として行われると考える。その場合、Nbの含有量が少なくなるとNb原子同士のつながりが減少し、水素の移動経路が分断され易くなるため、拡散が生じにくくなると推測される。このようなメカニズムにより、Nbが少ない合金組成では、脱水素処理過程において、合金中に溶け込んだ水素の移動が阻害され、外部に放出されにくくなったものと考えられる。
 水素分離装置に用いる合金膜の膜厚は、0.01mm以上1mm以下が好ましく、0.03mm以上0.5mm以下がより好ましく、0.05mm以上0.2mm以下が更に好ましい。
 水素分離合金膜における水素の透過流束は分離合金膜の膜厚に反比例することから、膜厚が薄い方がより多くの水素を取り出すことができるようになる。膜厚が0.01mm未満になると膜の強度が不足し、圧力をかけたときに破壊しやすくなる。一方、膜厚が1mmより厚くなると水素透過流束が小さくなりすぎるため、非効率である。
 (水素分離装置及び運転方法)
 図3は、本発明に係る水素分離装置の主要部分の構成例を示す模式図である。
 図3に示したように、本発明に係る水素分離装置は、基本的に、水素分離合金膜11を内蔵した水素分離器10によって、水素混合ガスから水素を分離する装置である。水素分離器10は、水素分離合金膜11によって内部が混合ガス室12と精製水素室13とに仕切られており、ヒータ14によって温度が調整される。混合ガス室12には、ガス供給配管20と混合ガス室排気配管24とが接続されている。ガス供給配管20には、水素混合ガス供給配管21とパージガス供給配管22と酸化性ガス供給配管23とが接続されている。精製水素室13には、精製水素室パージ配管25と精製水素回収配管26と精製水素室排気配管27とが接続されている。混合ガス室排気配管24と精製水素室排気配管27と真空排気配管29とが、排気配管28に接続されている。真空排気配管29には、真空ポンプ40が接続されている。
 また、上記の各配管21~29には、バルブ31~39がそれぞれ配設されている。さらに、本発明に係る水素分離装置は、ヒータ14の温度及び各バルブ31~39の開閉を制御するヒータ/バルブコントローラ50を具備している。なお、図3においては、図面の簡素化のため、ヒータ/バルブコントローラ50と各バルブ31~39とをつなぐ配線の図示を省略した。
 次に、図3を参照しながら本発明に係る水素分離装置の運転方法を説明する。
 (水素分離装置の起動と水素精製)
 まず、バルブ34(混合ガス室排気配管バルブ)、バルブ37(精製水素室排気配管バルブ)、バルブ39(真空排気配管バルブ)を開き、それ以外のバルブを全て閉じた状態で真空ポンプ40を運転させて、水素分離器10内及び各配管内の残留ガスを真空排気する(真空排気工程)。
 次に、ヒータ14により水素分離器10を300~600℃(運転温度)まで加熱する(昇温工程)。
 次に、バルブ31(水素混合ガス供給配管バルブ)、バルブ34(混合ガス室排気配管バルブ)、バルブ36(精製水素回収配管バルブ)、バルブ38(排気配管バルブ)を開き、それ以外の全てのバルブを閉じた状態とし、水素混合ガス供給配管21から水素混合ガスを水素分離器10の混合ガス室12に供給する。それにより、水素混合ガス中の水素のみが水素分離合金膜11を透過して分離・精製され、精製水素回収配管26から高純度な水素を得ることができる。
 一方、水素分離合金膜11を透過しなかった他成分ガスは、混合ガス室排気配管24と排気配管28とを通じて系外に排出される。以上が水素精製工程となる。
 (水素分離合金膜の脱水素処理と装置の停止)
 水素精製工程が終了した後、まず、ヒータ14により水素分離器10を所定の温度(300~600℃)に調整する。次に、バルブ32(パージガス供給配管バルブ)、バルブ34(混合ガス室排気配管バルブ)、バルブ35(精製水素室パージ配管バルブ)、バルブ37(精製水素室排気配管バルブ)、バルブ38(排気配管バルブ)を開き、それ以外のバルブを全て閉じた状態とし、パージガス供給配管22からパージガス(水素と化合しないガス、例えば、窒素、アルゴン、水蒸気など)を導入し、系内の気相の水素を置換排気する(置換排気工程)。
 なお、置換排気工程の代わりに、バルブ34(混合ガス室排気配管バルブ)、バルブ35(精製水素室パージ配管バルブ)、バルブ37(精製水素室排気配管バルブ)、バルブ39(真空排気配管バルブ)を開き、それ以外のバルブを全て閉じた状態で真空ポンプ40を運転させて、水素分離器10内及び各配管内の気相の水素を真空排気してもよい(真空排気工程)。
 真空排気工程を行う場合、前述の置換排気工程を行わなくてもよい。また、置換排気工程を行わない場合、パージガス供給配管22及びバルブ32は水素分離装置に具備されなくてもよい。
 次に、バルブ33(酸化性ガス供給配管バルブ)、バルブ34(混合ガス室排気配管バルブ)、バルブ35(精製水素室パージ配管バルブ)、バルブ37(精製水素室排気配管バルブ)、バルブ38(排気配管バルブ)を開き、それ以外のバルブを全て閉じた状態とし、酸化性ガス供給配管23から酸化性ガス(酸素を含むガス、例えば酸素ガスや空気)を水素分離器10の混合ガス室12と精製水素室13とに供給する。この操作により、水素分離合金膜11中に残留した水素が酸化性ガス中の酸素と化合して水蒸気となり、混合ガス室排気配管24と精製水素室排気配管27と排気配管28とを通じて系外に排出される。
 この工程を所定時間(8~55分間)行って、水素分離合金膜11中の残留水素量を300ppm以下にする。なお、酸化性ガスの供給量は、水素分離合金膜11中に残留した水素が全て水蒸気となるのに不足しない量であればよい。以上が脱水素処理工程となる。その後、水素分離器10の温度を低下させ、全てのバルブを閉じて水素分離装置を停止する(停止工程)。
 以上のサイクルを経ることで、水素分離合金膜の水素脆化を効率良く抑制することができ、水素分離合金膜を用いた水素分離装置において、起動/停止の繰り返しに強い運転方法を提供することができる。
 前述と同様にNb-25Ni-21Tiからなる水素分離合金膜を作製し、図3に示した構成を有する水素分離装置を組み上げた。
 前述の運転方法に沿って圧力変動・温度変動水素透過試験を行った。試験条件としては、350℃まで30分間で昇温する昇温工程と、350℃で1時間の水素精製工程と、窒素ガスによる置換排気工程と、350℃で40分間の脱水素処理工程と、80℃まで30分間で降温する停止工程とを1サイクルとした。試験結果を図4に示す。
 図4は、本発明に係る水素分離装置の運転方法を実施した場合における圧力変動・温度変動水素透過試験の結果の一例を示したチャートである。チャートの縦軸は水素分離合金膜の上流側/下流側の水素圧力差を示し、チャートの横軸は圧力・温度変動のサイクル数を示している。
 図4に示したように、本発明に係る水素分離装置の運転方法によると、20サイクルを経ても水素圧力差に目立った低下は観察されなかったことから、水素分離合金膜の破壊が起こらなかったことが示唆される。また試験後に水素分離合金膜を取り出し、表面の観察を行ったが実際にクラックは確認されなかった。これらの事実により、水素分離合金膜を用いた水素分離装置であって起動/停止の繰り返しに強い水素分離装置を提供できることが実証された。
 10…水素分離器、11…水素分離合金膜、12…混合ガス室、13…精製水素室、14…ヒータ、20…ガス供給配管、21…水素混合ガス供給配管、22…パージガス供給配管、23…酸化性ガス供給配管、24…混合ガス室排気配管、25…精製水素室パージ配管、26…精製水素回収配管、27…精製水素室排気配管、28…排気配管、29…真空排気配管、31~39…バルブ、40…真空ポンプ、50…ヒータ/バルブコントローラ。

Claims (9)

  1.  水素分離合金膜を用いた膜分離方式により水素混合ガスから水素を分離する水素分離装置の運転方法であって、
     前記水素分離合金膜の温度が300~600℃の範囲において前記水素分離合金膜への前記水素混合ガスの供給を停止するステップを行い、
     前記水素混合ガスの供給を停止するステップの後、前記水素分離合金膜の温度が300~600℃の範囲内で前記水素分離合金膜の少なくとも上流側に酸化性ガスを所定時間供給するステップを行い、
     その後、前記水素分離合金膜の温度を200℃未満に低下させるステップを行う、
    ことを特徴とする水素分離装置の運転方法。
  2.  請求項1に記載の水素分離装置の運転方法において、
     前記所定時間は、前記水素分離合金膜の厚さ0.1mmあたり8~55分間であることを特徴とする水素分離装置の運転方法。
  3.  請求項1または請求項2に記載の水素分離装置の運転方法において、
     前記酸化性ガスを供給するステップにより、前記水素分離合金膜中に残存する水素量を300ppm以下にすることを特徴とする水素分離装置の運転方法。
  4.  請求項1乃至請求項3の何れかに記載の水素分離装置の運転方法において、
     前記水素分離合金膜は、Nbを含有する水素分離合金膜であることを特徴とする水素分離装置の運転方法。
  5.  請求項4に記載のNbを含有する水素分離合金膜は、Niをx質量%、Tiをy質量%(10≦x<40、10≦y<30)含み、残部がNbと不可避的不純物からなる合金であることを特徴とする水素分離装置の運転方法。
  6.  請求項1乃至請求項5の何れかに記載の水素分離装置の運転方法において、
     前記水素分離合金膜の厚さが0.01~1mmであることを特徴とする水素分離装置の運転方法。
  7.  水素分離合金膜を用いた膜分離方式により水素混合ガスから水素を分離する水素分離装置であって、
     前記水素分離合金膜によって混合ガス室と精製水素室とに仕切られている水素分離器と、
     前記水素分離器の温度を調整するヒータと、
     前記混合ガス室に接続されるガス供給配管と、
     前記混合ガス室に接続される混合ガス室排気配管と、
     前記精製水素室に接続される精製水素室パージ配管と、
     前記精製水素室に接続される精製水素室排気配管と、
     前記ガス供給配管に接続される水素混合ガス供給配管と、
     前記ガス供給配管に接続される酸化性ガス供給配管と、
     前記の各配管に配設される複数のバルブと、
    を具備し、
     前記水素分離合金膜の温度が300~600℃の範囲において、前記混合ガス室への前記水素混合ガスの供給を停止し、前記混合ガス室及び前記精製水素室に対して前記酸化性ガスを前記水素分離合金膜の厚さ0.1mmあたり8~55分間供給し、前記水素分離合金膜中の水素と前記酸化性ガスとが反応・生成した水蒸気を前記混合ガス室排気配管及び前記精製水素室排気配管から排気した後に、前記水素分離合金膜の温度を200℃未満に低下させるために前記ヒータ及び前記複数のバルブを制御するヒータ/バルブコントローラを更に具備することを特徴とする水素分離装置。
  8.  請求項7に記載の水素分離装置において、
     前記水素分離合金膜は、Nbを含有する水素分離合金膜であることを特徴とする水素分離装置。
  9.  請求項8に記載の水素分離装置において、
     前記Nbを含有する水素分離合金膜はNiをx質量%、Tiをy質量%(10≦x<40、10≦y<30)含み、残部がNbと不可避的不純物からなる合金であり、前記水素分離合金膜の厚さが0.01~1mmであることを特徴とする水素分離装置。
PCT/JP2012/073290 2011-09-13 2012-09-12 水素分離装置及びその運転方法 WO2013039092A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/344,611 US9260304B2 (en) 2011-09-13 2012-09-12 Hydrogen separation device and method for operating same
JP2013533683A JP6011538B2 (ja) 2011-09-13 2012-09-12 水素分離装置及びその運転方法
EP12831236.0A EP2746219A4 (en) 2011-09-13 2012-09-12 DEVICE FOR SEPARATING HYDROGEN AND METHOD FOR OPERATING SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011199731 2011-09-13
JP2011-199731 2011-09-13

Publications (2)

Publication Number Publication Date
WO2013039092A1 WO2013039092A1 (ja) 2013-03-21
WO2013039092A9 true WO2013039092A9 (ja) 2014-05-15

Family

ID=47883318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073290 WO2013039092A1 (ja) 2011-09-13 2012-09-12 水素分離装置及びその運転方法

Country Status (4)

Country Link
US (1) US9260304B2 (ja)
EP (1) EP2746219A4 (ja)
JP (1) JP6011538B2 (ja)
WO (1) WO2013039092A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6653144B2 (ja) * 2015-08-31 2020-02-26 株式会社日本エイピーアイ 水素精製方法
US10814288B2 (en) * 2016-08-04 2020-10-27 Exxonmobil Research And Engineering Company Separation of gases using reactive adsorbents and membranes
US10336956B2 (en) * 2017-03-31 2019-07-02 Mitsubishi Heavy Industries, Ltd. Natural-gas purification apparatus
CN115650160A (zh) * 2022-11-05 2023-01-31 北京东方红升新能源应用技术研究院有限公司 一种氨分解制氢与板式膜反应器集成用于制备高纯氢的装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4472176A (en) * 1983-08-01 1984-09-18 Resource Systems, Inc. Apparatus and method for the production of pure hydrogen from a hydrogen-containing crude gas
JP2001011859A (ja) 1999-06-29 2001-01-16 Ybm Co Ltd 噴射ノズルを備えた杭打機
JP4519225B2 (ja) 1999-10-19 2010-08-04 日本碍子株式会社 燃料電池システム及びその制御方法
JP2002128505A (ja) * 2000-10-17 2002-05-09 Toyota Motor Corp 水素抽出装置
JP3870739B2 (ja) 2001-10-03 2007-01-24 日産自動車株式会社 燃料改質システム
JP2003334417A (ja) 2002-05-20 2003-11-25 National Institute Of Advanced Industrial & Technology 水素透過膜利用装置およびその保護方法
US6866698B2 (en) * 2003-03-19 2005-03-15 Johnson Matthey Public Limited Company Hydrogen purification apparatus
JP4363633B2 (ja) * 2004-02-17 2009-11-11 株式会社アルバック 水素分離・精製用複相合金及びその作製方法、並びに水素分離・精製用金属膜及びその作製方法
JP4953337B2 (ja) * 2005-03-28 2012-06-13 日立金属株式会社 水素分離・精製用複相合金
JP4684069B2 (ja) * 2005-09-30 2011-05-18 Jx日鉱日石エネルギー株式会社 高純度水素の製造方法
JP5310541B2 (ja) * 2007-03-09 2013-10-09 日立金属株式会社 水素透過合金及びその製造方法
JP2011116603A (ja) * 2009-12-04 2011-06-16 Tokyo Gas Co Ltd 円筒形水素分離型改質器における水素分離膜用保護膜及びその形成方法
KR101391500B1 (ko) * 2010-05-31 2014-05-07 히타치 긴조쿠 가부시키가이샤 수소 분리 합금 및 그 제조 방법

Also Published As

Publication number Publication date
US9260304B2 (en) 2016-02-16
US20140271450A1 (en) 2014-09-18
EP2746219A4 (en) 2015-05-06
EP2746219A1 (en) 2014-06-25
JPWO2013039092A1 (ja) 2015-03-26
JP6011538B2 (ja) 2016-10-19
WO2013039092A1 (ja) 2013-03-21

Similar Documents

Publication Publication Date Title
JP5998022B2 (ja) 分離膜、これを備える水素分離膜、および該水素分離膜を備える水素分離装置
US5895519A (en) Method and apparatus for purifying hydrogen gas
JP6011538B2 (ja) 水素分離装置及びその運転方法
US8900345B2 (en) Separation membrane, hydrogen separation membrane including the separation membrane, and device including the hydrogen separation membrane
JP3749952B1 (ja) 結晶質複相水素透過合金および結晶質複相水素透過合金膜
JP5185035B2 (ja) 水素透過性能に優れたPd−Cu系合金
KR101493473B1 (ko) 분리막용 바나듐계 수소투과합금, 그 제조 방법 및 이를 이용한 분리막의 사용 방법
JP2007083198A (ja) 水素透過合金およびその製造方法
US7708809B2 (en) Hydrogen permeable membrane
JP2006265638A (ja) 複相水素透過合金および水素透過合金膜
JP2006274297A (ja) 水素分離・精製用複相合金
KR102012010B1 (ko) 분리막, 이를 포함하는 수소 분리막 및 상기 수소 분리막을 포함하는 수소 분리 장치
JP2009291742A (ja) 水素透過部材及びこれを用いた水素生成反応器
JP5039968B2 (ja) 結晶質複相水素透過合金および水素透過合金膜
JP2008063628A (ja) 複相型水素透過合金およびその製造方法
JP3882089B1 (ja) 結晶質複相水素透過合金および水素透過合金膜
KR20130106307A (ko) 분리막, 이를 포함하는 수소 분리막 및 상기 수소 분리막을 포함하는 수소 분리 장치
JP5584477B2 (ja) 2段式水素分離型改質器
KR101904212B1 (ko) 분리막, 이를 포함하는 수소 분리막 및 상기 수소 분리막을 포함하는 수소 분리 장치
JP2015116545A (ja) 水素ガス処理装置
KR20150007364A (ko) 분리막, 이를 포함하는 수소 분리막 및 상기 수소 분리막을 포함하는 수소 분리 장치
JP2008272605A (ja) 水素透過膜およびその製造方法
JP5745662B2 (ja) 2段式水素分離型改質器
JP2008194629A (ja) 水素透過合金膜
JP2002166122A (ja) 水素の精製、貯蔵方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831236

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013533683

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14344611

Country of ref document: US