WO2013038837A1 - ローラレベラおよびそれを用いた板材の矯正方法 - Google Patents

ローラレベラおよびそれを用いた板材の矯正方法 Download PDF

Info

Publication number
WO2013038837A1
WO2013038837A1 PCT/JP2012/069906 JP2012069906W WO2013038837A1 WO 2013038837 A1 WO2013038837 A1 WO 2013038837A1 JP 2012069906 W JP2012069906 W JP 2012069906W WO 2013038837 A1 WO2013038837 A1 WO 2013038837A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
plate material
roll
leveling
width direction
Prior art date
Application number
PCT/JP2012/069906
Other languages
English (en)
French (fr)
Inventor
亨 青山
Original Assignee
スチールプランテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スチールプランテック株式会社 filed Critical スチールプランテック株式会社
Priority to JP2013533571A priority Critical patent/JP5883455B2/ja
Priority to KR1020147004749A priority patent/KR101461043B1/ko
Publication of WO2013038837A1 publication Critical patent/WO2013038837A1/ja
Priority to IN754/KOLNP/2014A priority patent/IN2014KN00754A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D1/00Straightening, restoring form or removing local distortions of sheet metal or specific articles made therefrom; Stretching sheet metal combined with rolling
    • B21D1/02Straightening, restoring form or removing local distortions of sheet metal or specific articles made therefrom; Stretching sheet metal combined with rolling by rollers

Definitions

  • the present invention relates to a roller leveler for correcting a plate material such as a metal plate such as a steel plate, and a method for correcting a plate material using the roller leveler.
  • a plate material such as a steel plate
  • rolling and cooling are performed.
  • the plate material is warped and deformed in a wave shape.
  • a roller leveler in which a plurality of leveling rolls are arranged in a staggered pattern in the vertical direction is used for the purpose of flattening the plate material by correcting such warpage and wave shape deformation.
  • the roller leveler passes the plate to be corrected in a state where a plurality of upper leveling rolls are pushed into a plurality of lower leveling rolls or a state where a plurality of lower leveling rolls are pushed into a plurality of upper leveling rolls. Is repeatedly bent to flatten the warpage and wave shape of the plate material.
  • the leveling roll When correcting the plate material, the leveling roll is driven by the drive motor, and when the leveling roll comes into contact with the plate material to be corrected, the driving force is transmitted to the plate material, and the plate material is caught between the upper and lower leveling rolls.
  • the pressing amount of the upper leveling roll by the reduction cylinder is set so that necessary flatness can be obtained according to various conditions such as the thickness of the plate material, the material, the shape, the diameter of the leveling roll, and the roll pitch. .
  • the components of the apparatus such as the upper frame and the lower frame are subjected to a correction reaction force in the width direction (this means the frame width direction, but the frame width direction is parallel to the plate width direction). Therefore, both of them are the same in a broad sense) and may be bent (lateral bending).
  • a correction reaction force in the width direction this means the frame width direction, but the frame width direction is parallel to the plate width direction. Therefore, both of them are the same in a broad sense
  • lateral bending When such horizontal bending occurs, the amount of reduction in the width direction of the plate material is affected by the bending. Fluctuates and high-precision leveling cannot be performed.
  • a plurality of hydraulic crowning cylinders are continuously arranged along the width direction of the frame so as to be individually tightened and controllable, and the front end of the plate material to be corrected is between the upper and lower correction rolls.
  • the amount of deflection at the center of the frame width is calculated by the pressure detector, and the required amount of tightening of the hydraulic crowning cylinder at the center of the frame width necessary to eliminate the amount of deflection is calculated.
  • the required tightening amount of the hydraulic crowning cylinder is calculated by multiplying the required tightening amount in the center in the frame width direction by the plate width function, and tightening control of each hydraulic crowning cylinder is performed individually.
  • Patent Document 1 A technique for correcting lateral deflection has been proposed (Patent Document 1).
  • Patent Documents 1 and 2 are based on a line center standard for correcting the leveling of a plate by positioning the center of the plate to be corrected at the center of the line.
  • a roller leveler is arranged in a line for conveying a plate material on the basis of the plate edge, it is necessary to center the plate material by a centering device before passing through the roller leveler, which is complicated.
  • a line center reference device it is difficult to perform leveling correction with high accuracy when the plate meanders or the plate is displaced due to conveyance.
  • the present invention has been made in view of such a situation, and a roller leveler capable of correcting a plate material with high accuracy even when the center in the width direction of a metal plate such as a steel plate is displaced from the center of the line, and a roller leveler therefor It is an object of the present invention to provide a method for correcting a plate material using a sheet.
  • a first aspect of the present invention is a roller leveler that arranges the plate material at an arbitrary position in the width direction of the plate-passing line of the plate material and corrects the leveling of the plate material, the housing, A plurality of leveling rolls arranged in a staggered manner above and below the plate passing line and rotating so as to pass the plate member while correcting the plate member, and a plurality of backup rolls for backing up the plurality of leveling rollers up and down A pair of roll frames that support the leveling roll and the backup roll above and below, and that are supported by the housing, a pair of frames that support the pair of roll frames above and below, and an entrance end of the plate member Operating frames which are provided at both ends in the width direction at the end and the exit end and are one of the pair of frames.
  • a pressure cylinder that presses the plate material between the leveling rolls via a corresponding one of the roll frames, a drive device that rotates the leveling rolls, the operating frame, and the Between the corresponding one of the roll frames, a plurality of hydraulic crowning cylinders mounted along a width direction orthogonal to the plate passing direction of the plate material, and provided at positions corresponding to the hydraulic crowning cylinders, A plurality of deflection detection sensors for detecting the deflection of the operating frame, an offset amount detection means for detecting an offset amount from the center of the plate line center of the plate width of the plate material, and a load for measuring a load applied to the pressing cylinder Measuring means and a control device for controlling leveling correction of the plate material, the control device comprising The correction ratio of each end in the width direction is calculated from the offset amount from the center of the plate line of the plate width detected by the set amount detection means and the load applied to the pressing cylinders at both ends in the width direction.
  • the amount of tightening in the pressing cylinders at both ends in the width direction is individually controlled on the entry side and the exit side to perform vertical deflection correction in the vertical direction of the housing.
  • the amount of tightening of the plurality of hydraulic crowning cylinders is individually controlled to correct lateral deflection in the width direction of the pair of frames, and from the offset amount detected by the offset amount detection means, the center of the plate width And calculate the amount of compressive deformation at the center of the plate thickness based on the load at the center of the plate width and the mill constant of the compressive deformation, and each hydraulic crowning cylinder In this position, the amount of compression deformation at the center of the plate thickness is multiplied by a function of a plate width and an offset amount to individually control the tightening amounts of the plurality of hydraulic crowning cylinders, and the pressing cylinder, the hydraulic type
  • the compression deformation correction of the crowning cylinder, the pair of roll frames, the backup roll, and the leveling roll is performed
  • a second aspect of the present invention is a roller leveler that arranges the plate material at an arbitrary position in the width direction of the plate-passing line of the plate material and corrects the leveling of the plate material, and includes a housing and a zigzag above and below the plate-passing line.
  • a plurality of leveling rolls that are arranged in a shape and rotate so as to pass the plate material while correcting the plate material, a plurality of backup rolls that back up the plurality of leveling rolls up and down, the leveling roll, and the A backup roll is supported at the upper and lower sides, a pair of roll frames supported by the housing, a pair of frames that support the pair of roll frames at the upper and lower sides, and an entrance end and an exit end of the plate member It is provided at both ends in the width direction, and the operation frame which is one of the pair of frames is directed to the threading plate line.
  • a pressing cylinder that presses and presses the plate material between the leveling rolls via a corresponding one of the roll frames, a driving device that rotates the leveling roll, and the corresponding one of the operating frame and the roll frame;
  • a plurality of hydraulic crowning cylinders mounted along a width direction perpendicular to the plate passing direction of the plate material, and a plurality of hydraulic crowning cylinders that are provided at positions corresponding to the hydraulic crowning cylinders and detect the deflection of the operating frame.
  • Deflection detection sensor offset amount detection means for detecting an offset amount from the center of the plate line at the center of the plate width of the plate material, load measurement means for measuring a load applied to the pressing cylinder, and leveling of the plate material
  • a control device for controlling correction, and the control device is controlled by the offset amount detection means.
  • the correction ratios of the respective ends in the width direction are calculated from the offset amount from the center of the sheet passing line center of the plate width and the load applied to the pressing cylinders at both ends in the width direction.
  • the amount of tightening in the pressing cylinders at both ends in the width direction is individually controlled to correct vertical deflection in the vertical direction of the housing, and the plurality of hydraulic pressures based on detection values of the plurality of deflection detection sensors.
  • the amount of tightening of the crowning cylinder is individually controlled to correct lateral deflection in the width direction of the pair of frames, and while performing these correction controls, the pressing cylinder is used with a pressing amount necessary for correcting the plate material.
  • a roller leveler which is controlled so as to press the plate material through the leveling roll.
  • a third aspect of the present invention is a method of correcting the leveling of the plate material by arranging the plate material at an arbitrary position in the width direction of the plate passing line of the plate material using a roller leveler, the roller leveler comprising a housing, A plurality of leveling rolls that are arranged in a zigzag pattern above and below the threading line and rotate so as to pass the plate material while correcting the plate material, and a plurality of backups that back up the plurality of leveling rolls up and down A roll, a pair of roll frames that support the leveling roll and the backup roll above and below, supported by the housing, a pair of frames that support the pair of roll frames above and below, and an entrance side of the plate member An end portion and an exit end portion are provided at both end portions in the width direction, respectively, and are one of the pair of frames.
  • a pressing cylinder that presses the frame toward the plate line and presses the plate material between the leveling rolls via a corresponding one of the roll frames, a drive device that rotates the leveling roll, and the operating frame; Between the corresponding one of the roll frames, a plurality of hydraulic crowning cylinders attached along the width direction perpendicular to the plate passing direction of the plate material, and provided at a position corresponding to the hydraulic crowning cylinder, A plurality of deflection detection sensors for detecting the deflection of the operating frame, an offset amount detection means for detecting an offset amount from the center of the plate line at the center of the plate width of the plate material, and a load applied to the pressing cylinder are measured.
  • Load measuring means includes the step of detecting the plate material detected by the offset amount detecting means.
  • the correction ratios of the respective ends in the width direction are calculated from the offset amount from the center of the passage plate line at the center of the width and the load applied to the pressing cylinders at both ends in the width direction.
  • the amount of tightening in the pressing cylinder is individually controlled to correct vertical deflection in the vertical direction of the housing, and tightening of the plurality of hydraulic crowning cylinders is performed based on detection values of the plurality of deflection detection sensors.
  • the amount is individually controlled to correct lateral deflection in the width direction of the pair of frames, and the center of the plate width is obtained from the offset amount detected by the offset amount detection means, and the load and compression at the center of the plate width are determined.
  • the amount of compressive deformation at the center of the plate thickness is calculated based on the mill constant of deformation, and the amount of compressive deformation at the center of the plate thickness is calculated at each hydraulic crowning cylinder position.
  • a fourth aspect of the present invention is a method of correcting the leveling of the plate by arranging the plate at an arbitrary position in the width direction of the plate passing line of the plate using a roller leveler, and the roller leveler includes a housing, A plurality of leveling rolls that are arranged in a zigzag pattern above and below the threading line and rotate so as to pass the plate material while correcting the plate material, and a plurality of backups that back up the plurality of leveling rolls up and down A roll, a pair of roll frames that support the leveling roll and the backup roll above and below, supported by the housing, a pair of frames that support the pair of roll frames above and below, and an entrance side of the plate member An end portion and an exit end portion are provided at both end portions in the width direction, respectively, and are one of the pair of frames.
  • a pressing cylinder that presses the frame toward the plate line and presses the plate material between the leveling rolls via a corresponding one of the roll frames, a drive device that rotates the leveling roll, and the operating frame; Between the corresponding one of the roll frames, a plurality of hydraulic crowning cylinders attached along the width direction perpendicular to the plate passing direction of the plate material, and provided at a position corresponding to the hydraulic crowning cylinder, A plurality of deflection detection sensors for detecting the deflection of the operating frame, an offset amount detection means for detecting an offset amount from the center of the plate line at the center of the plate width of the plate material, and a load applied to the pressing cylinder are measured.
  • Load measuring means includes the step of detecting the plate material detected by the offset amount detecting means.
  • the correction ratios of the respective ends in the width direction are calculated from the offset amount from the center of the passage plate line at the center of the width and the load applied to the pressing cylinders at both ends in the width direction.
  • the amount of tightening in the pressing cylinder is individually controlled to correct vertical deflection in the vertical direction of the housing, and tightening of the plurality of hydraulic crowning cylinders is performed based on detection values of the plurality of deflection detection sensors.
  • the amount is individually controlled to correct lateral deflection in the width direction of the pair of frames, and while performing these correction controls, the pressing cylinder uses the pressing amount necessary for correcting the plate material through the leveling roll.
  • a plate material correction method is provided, wherein the plate material is pressed to level the plate material.
  • the amount of offset in the plate width direction when the leveling correction is performed by changing the offset amount in the width direction of the steel plate and controlling in mode 1 (conventional), mode 2A (invention), and mode 2B (invention). It is a figure which shows the relationship between the roll gap deviation of a board width direction.
  • FIG. 1 is a side view showing a roller leveler according to an embodiment of the present invention
  • FIG. 2 is a front view thereof.
  • the roller leveler 100 according to the present embodiment includes a housing 1, an upper frame 2 provided inside the housing 1, and a lower frame 3 provided so as to support the housing 1.
  • An upper roll frame 5 is suspended below the upper frame 2 by an upper roll grip cylinder (not shown).
  • a lower roll frame 10 is installed on the lower frame 3.
  • the upper frame 2 moves up and down by being pressed by a pressing cylinder (also referred to as a reduction cylinder), and therefore can be called an operation frame.
  • the operation frame is not limited to the upper frame 2, and the lower frame 3 may be configured as an operation frame and moved up and down by being pushed by a pressing cylinder provided below the operation frame.
  • a leveling roll unit 20 having a roll 6 and a plurality of lower leveling rolls 8 is provided.
  • the upper leveling roll 6 is supported by the upper roll frame 5 below the upper roll frame 5
  • the lower leveling roll 8 is supported by the lower roll frame 10 on the lower roll frame 10.
  • Guide rolls 14 for guiding the plate material P are provided on the upstream side and the downstream side in the conveying direction of the plate material P of the leveling roll unit 20.
  • the upper leveling roll 6 and the lower leveling roll 8 are rotated by a driving device 15 and can correct the plate material P by moving it in the direction of the arrow in FIG. The moving direction may be opposite to the arrow.
  • a plurality of short upper backup rolls 7 for backing up the upper leveling roll 6 are arranged on the upper leveling roll 6 so as to be supported by the upper roll frame 5 along the axial direction of the upper leveling roll 6.
  • a plurality of short lower backup rolls 9 for backing up the lower leveling rolls 8 are arranged below the lower leveling rolls 8 so as to be supported by the lower roll frame 10 along the axial direction of the lower leveling rolls 8. .
  • a reduction cylinder (also referred to as a pressing cylinder) that applies a pressing force (also referred to as pressing force) for correcting the plate material P to both ends of the leveling roll unit 20 between the housing 1 and the upper frame 2 in the conveying direction of the plate material P. 4a and 4b are arranged.
  • Two rolling-down cylinders 4a and 4b are provided on both ends (drive side and workpiece side) in the width direction of the plate material P (see FIG. 2, but only the rolling-down cylinder 4a is shown in FIG. 2).
  • the term “reducing” is intended to encompass not only the case where pressure is applied downward as shown in FIG. 1, but also the case where pressure is applied upward as described later as a modified example. To do.
  • the term “pressing” can be replaced with the term “pressing”.
  • the reduction cylinders 4a and 4b press down the plate material P via the upper roll frame 5, the upper backup roll 7 and the upper leveling roll 6 with respect to the lower leveling roll 8 fixedly provided on the lower roll frame 10. It has become.
  • Each of the upper leveling roll 6 and the lower leveling roll 8 is provided with a driving device 15 having a rotary motor individually or in plural (only one is shown in FIG. 1 for convenience), and the upper leveling roll 6 and the lower leveling roll 8 is rotated by a driving device 15. Then, the plate material P is passed between the upper leveling roll 6 and the lower leveling roll 8 by the driving device 15, and the plate material P is leveled down by the reduction cylinders 4 a and 4 b via the upper leveling roll 6. It comes to correct.
  • the reduction cylinder 4a When transporting the plate material P in the direction of the arrow in FIG. 1, the reduction cylinder 4a functions as an entry-side reduction cylinder, and the reduction cylinder 4b functions as an exit-side reduction cylinder.
  • the reduction cylinder 4b When the plate material P is conveyed in the direction opposite to the arrow, the reduction cylinder 4b functions as an inlet-side reduction cylinder, and the reduction cylinder 4a functions as an outlet-side reduction cylinder.
  • the upper leveling roll 6 may be fixedly provided, and the lower leveling roll 8 may be reduced by a reduction cylinder.
  • a plurality (seven in this embodiment) of hydraulic crowning cylinders 12 are connected between the upper frame 2 and the upper roll frame 5 in the plate width direction. As shown in FIG. 2, each crowning cylinder 12 is installed at an equal pitch so as to correspond to the leveling rolls 6 and 8 along the width direction orthogonal to the plate passing direction of the plate material P.
  • the hydraulic crowning cylinders 12 are installed in two rows as shown in FIG. The number of rows of crowning cylinders may be three or more.
  • the hydraulic crowning cylinder 12 has a cylinder body 31 and a piston 32, and the upper end of the piston 32 is connected to the upper frame 2 via a spherical joint member 33, and the bottom of the cylinder body 31 is The upper roll frame 5 is connected via a slide joint 34.
  • This hydraulic crowning cylinder 12 has a built-in position detection sensor 35.
  • the hydraulic crowning cylinder 12 expands and contracts due to hydraulic pressure, and an oil supply line 36 that supplies oil to an extension-side oil chamber (not shown) for extension operation, and a release line 37 that releases hydraulic pressure, Is connected.
  • the oil feed line 36 is connected to a pressure detector 38 for detecting the oil pressure in the extension side oil chamber and a control valve 39 for controlling the oil feed amount.
  • a control valve 39 a servo valve or a proportional control valve is used.
  • a deflection detection sensor 21 that detects lateral deflection of the upper frame 2 is provided at a position corresponding to each hydraulic crowning cylinder 12.
  • a total of 14 deflection detection sensors 21 are provided corresponding to each hydraulic crowning cylinder 12.
  • the deflection detection sensor 21 always detects the distance to the lower end of the upper frame 2 and calculates the deflection amount of the upper frame 2 based on this distance.
  • a deflection detection sensor 22 that detects lateral deflection of the lower frame 3 is provided at a position corresponding to each hydraulic crowning cylinder 12.
  • a total of 14 deflection detection sensors 22 corresponding to the hydraulic crowning cylinder 12 are also provided.
  • the deflection detection sensor 22 always detects the distance to the upper end of the lower frame 3 and calculates the deflection amount of the lower frame 3 based on this distance.
  • the number of deflection detection sensors 21 is not limited to 14 and varies depending on the number of hydraulic crowning cylinders 12. For example, when the number of crowning cylinders is 6 and 2 rows, there are 12 pieces, when 5 and 2 rows are 10 pieces, and when four and 2 rows are 4 pieces, there are 8 pieces.
  • a deflection detection sensor may be provided in only one of the upper frame 2 and the lower frame 3, and the deflection amount of the other frame may be obtained by proportional calculation.
  • a load cell (or a hydraulic pressure converter) 23 is attached between the reduction cylinders 4a and 4b and the housing 1 as a load measuring means for measuring the load applied to the reduction cylinders 4a and 4b.
  • the compression deformation of the hydraulic crowning cylinder 12, the upper roll frame 5, the upper backup roll 7, the upper leveling roll 6, the lower leveling roll 8, the lower backup roll 9, and the lower roll frame 10 can be detected.
  • a scanning laser sensor 25 is provided on the entrance side of the plate material P (in this example, the reduction cylinder 4a side) as a means for measuring the edge position of the plate material P above the plate material P. It has been. As shown in FIG. 2, the scanning laser sensor 25 detects the edge position in the width direction of the plate material P by scanning the laser to be irradiated. In the present embodiment, the plate material P is not centered, and the plate material P is transported so that the center of the plate material P is offset from the center of the transport line, for example, as a plate edge reference. Is used to detect the edge position in the width direction of the plate P. Note that the means for measuring the edge position of the plate material P is not limited to the scanning laser sensor 25.
  • each component is controlled by the control device 50.
  • the control device 50 includes a process controller including a CPU, a user interface including a keyboard and a display, and a recipe storing a control program (software) and processing condition data. Part.
  • a recipe is called from the storage unit and executed in the process controller.
  • a desired process (operation sequence) described later is performed by the roller leveler 100.
  • Recipes such as control programs and processing condition data are stored in computer-readable storage media such as magnetic disks (flexible disks, hard disks, etc.), optical disks (CDs, DVDs, etc.), magneto optical disks (MOs, etc.), semiconductor memories, etc.
  • the recipe can be transmitted online from another device at any time, for example, via a dedicated line.
  • the control device 50 controls the amount of reduction of the leveling rolls 6 and 8 by the reduction cylinders 4a and 4b for correcting (leveling) the plate material P, as will be described later, according to a control program stored in a computer-readable storage medium.
  • the drive device 15 is controlled. Further, information from the deflection detection sensors 21 and 22 and information from the load cell 23 are input to the control device 50, and the vertical deflection correction of the frame and hydraulic crowning by controlling the reduction cylinders 4a and 4b based on these information. The lateral deflection correction and the compression correction of the frame by the narrowing control of the cylinder 12 are performed.
  • FIG. 4 shows a control block diagram of crowning control by the hydraulic crowning cylinder 12.
  • Each of the control devices 50 includes a host controller 52 and a crowning controller 54 each formed of a microprocessor.
  • the host controller 52 controls the entire roller leveler 100, and the crowning controller 54 controls the operation of the hydraulic crowning cylinder 12 based on a command from the host controller 52.
  • the detection values of the deflection detection sensors 21 and 22, the load cell 23, the position detection sensor 35, and the pressure detector 38 described above are input to the crowning controller 54.
  • the crowning controller 54 constantly grasps the lateral deflection amount of the upper frame 2 and the lower frame 3 from the detection values of the deflection detection sensors 21 and 22 respectively, and each hydraulic crowning cylinder 12 necessary for correcting the lateral deflection of the frame.
  • the extension amount that is, the tightening amount is calculated.
  • the crowning controller 54 also compresses the compression deformation of the reduction cylinder 4, the hydraulic crowning cylinder 12, the upper roll frame 5, the upper backup roll 7, the upper leveling roll 6, the lower leveling roll 8, the lower backup roll 9, and the lower roll frame 10.
  • each hydraulic crowning cylinder 12 The amount of extension of each hydraulic crowning cylinder 12, that is, the amount of tightening required for correcting the compressive deformation of the load cell 23 between the cylinders 4 a and 4 b and the housing 1 is calculated at all times. Then, the crowning controller 54 sums up these tightening amounts, calculates an output signal so as to send the pressure oil corresponding to the sum to the respective hydraulic crowning cylinders 12, and outputs the output signal to the control valve 39.
  • the hydraulic crowning cylinders 12 are controlled by feedback so that the lateral deflection and compression deformation are minimized.
  • the plate material P is conveyed toward the leveling roll unit 20 while being guided by the guide roll 14 from the upstream side of the leveling roll unit 20 of the roller leveler 100, and is inserted between the upper leveling roll 6 and the lower leveling roll 8. .
  • the conveyance direction of the plate material P is an arrow direction in the drawing
  • the plate material P is conveyed to the leveling unit 20 from the right side of FIG. 1, and the reduction cylinder 4a is the entry side reduction cylinder.
  • the pressing amount (the pressing amount) of the reduction cylinders 4a and 4b necessary for leveling (correcting) the plate material P is set in the control device 50, and the set pressing amount The plate material P is corrected with (the amount of reduction).
  • the center of the plate material to be corrected is positioned at the center of the line, and the leveling correction of the plate material is performed based on the line center reference, and the correction amount such as bending is symmetric in the width direction.
  • the plate material conveyance line often conveys the plate material on the basis of the plate edge, and when the roller leveler is arranged in the line for conveying the plate material on the basis of the plate edge, the plate material is moved by the centering device before passing through the roller leveler. Need to be centered. Further, with such a line center reference device, it is difficult to perform leveling correction with high accuracy when the plate meanders or the plate is displaced due to conveyance.
  • correction control of the bending and compression deformation of the frame or the like is performed in consideration of the offset from the line center of the plate material P. Specifically, at the time of leveling correction, (1) longitudinal deflection correction control, (2) lateral deflection correction control, and (3) compression deformation correction control are performed in consideration of the offset amount.
  • Each of Fd uses the sum load on the workpiece side (WS) and drive side (DS), and these inlet side correction reaction force Fe and outlet side correction reaction force Fd, and the mill constant of the housing: K1 and the inlet side pressure reduction cylinder Mill constants and mill constants of the output side reduction cylinder: K2 and constants based on the mechanical dimensions are used to calculate the longitudinal deflection on the input side and the output side, and the tightening amounts of the input side reduction cylinder 4a and the output side reduction cylinder 4b (Position) was controlled. Therefore, the same longitudinal deflection value was used on the work side (WS) and the drive side (DS) in the plate width direction on both the entry side and the exit side.
  • the plate material P is offset in the width direction from the line center.
  • the end of the plate material P is detected by the scanning laser sensor 25 to perform the offset. to calculate the amount alpha, and a load F D of the load F W and the drive side of the offset alpha and working side (WS) (DS), to calculate the correction ratio of the working side (WS) and drive side (DS) .
  • the workpiece-side vertical deflection amount is ⁇ W and the drive-side vertical deflection amount is ⁇ D , it can be expressed as follows.
  • ⁇ W (F W + F D ) f ( ⁇ ) / K
  • ⁇ D (F W + F D ) (1 ⁇ f ( ⁇ )) / K
  • f ( ⁇ ) is a function of the offset amount ⁇
  • K is a mill constant of the reduction cylinder
  • the tightening amounts (positions) of the side (WS) reduction cylinders 4a W and 4b W and the drive side (DS) reduction cylinders 4a D and 4b D are controlled asymmetrically.
  • the deflection detection sensor 21 and the deflection detection sensor 22 are provided above and below the positions corresponding to the hydraulic crowning cylinders 12 provided in the width direction on the entry side and the exit side (seven in this example).
  • the detected values of the deflection detection sensors 21 and 22 are used as the correction values at the respective positions, and the tightening amount of each hydraulic crowning cylinder 12 is calculated based on the detected values to perform lateral deflection correction control.
  • the position of the hydraulic crowning 12 is (1) to (7) from the left side, and the amount of lateral deflection of the upper frame 2 by the deflection detection sensor 21 at the corresponding position is ⁇ u (1), ⁇ u (2), ⁇ u (3), ⁇ u (4), ⁇ u (5), ⁇ u (6), ⁇ u (7), and the amount of lateral deflection of the lower frame 3 by the deflection detection sensor 22, Assuming that ⁇ l (1), ⁇ l (2), ⁇ l (3), ⁇ l (4), ⁇ l (5), ⁇ l (6), and ⁇ l (7), the total deflection amount ⁇ ( 1) to ⁇ (7) are the sum of these values.
  • the total deflection amount of the upper and lower frames at each position on the entry side is ⁇ e 1 (1) to ⁇ e 1 (7)
  • the total deflection amount of the upper and lower frames at each position on the exit side is ⁇ d 1 (1) to Assuming ⁇ d 1 (7), these can be calculated as follows.
  • lateral deflection correction control can be performed by individually controlling the tightening amount of each hydraulic crowning cylinder 12 so that these values become zero.
  • the compressive deformation is not symmetric with respect to the line center. Therefore, in the present embodiment, first, the edge of the plate material P is detected by the scanning laser sensor 25 to obtain the offset amount, thereby obtaining the center of the plate width as shown in FIG. seeking load thickness center from the load F D and the offset amount of the load F W and the drive side of the working side (WS) (DS), also the mill modulus of compressive deformation is a function of the offset amount and the plate width and the load Obtain the amount of compressive deformation at the center of the plate thickness.
  • each hydraulic crowning cylinder 12 the position of each hydraulic crowning cylinder 12 is obtained by multiplying the calculated amount of compressive deformation at the center of the plate thickness by a function of the plate width and the offset amount.
  • the amount of compressive deformation in (1) to (7) can be obtained.
  • the load at the center of the plate width on the entry side is Fce
  • the mill constant of compression deformation on the entry side is Ke
  • the function of the plate width and the offset amount at the position of each hydraulic crowning cylinder 12 on the entry side is a1.
  • the compression deformation ⁇ e 2 c at the center of the plate width on the entry side and the compression deformations ⁇ e 2 (1) to ⁇ e 2 (7) at the positions of the respective hydraulic crowning cylinders 12 on the entry side are as follows. Can be calculated.
  • the load at the center of the plate width on the outlet side is Fcd
  • the mill constant of the compression deformation on the outlet side is Kd
  • the functions of the plate width and the offset amount at the position of each hydraulic crowning cylinder 12 on the outlet side are b1 to b7.
  • the compression deformation ⁇ d 2 c at the center of the outlet side plate width and the compression deformations ⁇ d 2 (1) to ⁇ d 2 (7) at the positions of the respective hydraulic crowning cylinders 12 on the outlet side are calculated as follows. Can do.
  • compression deformation correction control can be performed by individually controlling the tightening amount of each hydraulic crowning cylinder 12 so that these values become zero.
  • the vertical deflection correction control, the lateral deflection correction control, and the compression deformation correction control are controlled in consideration of the offset of the plate material.
  • the offset of the plate material is considered only for the vertical deflection correction control and the lateral deflection correction control. Control may be performed.
  • the offset amount in the width direction of the steel sheet is set to 0 mm, 188 mm, and 375 mm, and the vertical deflection, the lateral deflection, and the compression deformation are corrected and controlled by the same symmetrical control as in the conventional case (level 1).
  • the roll gap at each position in the plate width direction on the exit side was determined.
  • the result is shown in FIG. 8, and the roll gap deviation in the plate width direction during correction with respect to the offset amount in the plate width direction of the steel plate is shown in FIG.
  • the offset amount when the offset amount is 0, the roll gap deviation in the sheet width direction is small, and a guaranteed value of 0.6 mm or less can be secured.
  • the roll gap deviation in the plate width direction was large and exceeded the guaranteed value of 0.6 mm.
  • the deviation is 0.4 mm or less even when the offset amount is 375 mm, and a particularly good value is obtained.
  • the plate material in consideration of the offset amount from the line center at the center in the width direction of the plate member, the vertical deflection correction of the housing and the horizontal deflection correction of the frame, or in addition to these, the reduction cylinder, the hydraulic crowning cylinder Since the compression deformation correction of the pair of roll frames, the backup roll, and the leveling roll is performed, the plate material can be corrected with high accuracy even if the width direction center of the plate material is deviated from the line center.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Straightening Metal Sheet-Like Bodies (AREA)
  • Press Drives And Press Lines (AREA)

Abstract

 板材(P)の板幅中心の通板ラインの中心からのオフセット量と幅方向両端の押圧シリンダ(4a,4b)にかかる荷重とから幅方向のそれぞれの端部の補正比率を算出し、幅方向両端の押圧シリンダ(4a,4b)における締め込み量を個別的に制御して縦撓み補正を行い、複数の撓み検出センサ(21)の検出値に基づいて複数の油圧式クラウニングシリンダ(12)の締め込み量を個別的に制御して横撓み補正を行い、前記板材(P)のオフセット量から板幅中心を求め、板幅中心における荷重と圧縮変形のミル定数に基づいて板厚中心の圧縮変形量を算出し、各油圧式クラウニングシリンダ(12)の位置において、前記板厚中心の圧縮変形量に板幅とオフセット量の関数を乗じることにより前記複数の油圧式クラウニングシリンダ(12)の締め込み量を個別的に制御して圧縮変形補正を行う。

Description

ローラレベラおよびそれを用いた板材の矯正方法
 本発明は、金属板例えば鋼板等の板材を矯正するローラレベラおよびそれを用いた板材の矯正方法に関する。
 鋼板等の板材を製造する過程では圧延や冷却などが実施されるが、これらの工程では板材に反りや波形状の変形が発生する。このため、このような反りや波形状の変形を矯正して板材を平坦化する目的で、複数本のレベリングロールを上下に千鳥状に配置したローラレベラが用いられる。
 ローラレベラは、矯正すべき板材を、複数の下レベリングロールに対し複数の上レベリングロールを押し込んだ状態、または複数の上レベリングロールに対して複数の下レベリングロールを押し込んだ状態で通板し、板材に繰り返し曲げを与えることによって、板材の反りや波形状を平坦化する。
 板材の矯正に際しては、駆動モータによりレベリングロールが駆動され、レベリングロールと矯正すべき板材とが接触することにより、板材に駆動力が伝達され、板材が上下のレベリングロール間に噛み込まれる。このとき、圧下シリンダによる上レベリングロールの押し込み量は、板材の厚さ、材料、形状、レベリングロールの径、ロールピッチ等の種々の条件に応じて必要な平坦度が得られるように設定される。
 ところで、このようなローラレベラにおいては、上フレームや下フレーム等の装置の構成要素が矯正反力により幅方向(これはフレームの幅方向を意味するが、フレームの幅方向は板材の幅方向と平行であるため、両者は広義の意味では同じである)に撓む場合があり(横撓み)、そのような横撓みが生じた場合には、その撓みの影響で板材の幅方向で圧下量が変動して高精度のレベリングが行えない。
 このような問題を解決する技術として、フレームの幅方向に沿って複数台の油圧式クラウニングシリンダを個別に締め込み制御可能に連続して配置し、矯正すべき板材の先端が上下の矯正ロール間に入ったときに、圧力検出器によりフレーム幅方向中央の撓み量を算出して、その撓み量を解消するに必要なフレーム幅中央の油圧式クラウニングシリンダの必要締め込み量を算出するとともに、他の油圧式クラウニングシリンダの必要締め込み量を、フレーム幅方向中央の必要締め込み量に板幅の関数を乗じた値に算出して、各油圧式クラウニングシリンダを個別に締め込み制御してフレームの横撓み補正する技術が提案されている(特許文献1)。
 また、シリンダにより押し込み力を与えた場合には、上記横撓みのみならず、クラウニングシリンダ、ロールフレーム、バックアップロール、レベリングロール等の圧縮変形が生じ、それによっても板材の幅方向で圧下量が変動することから、上記横撓みに加えてこのような圧縮変形を求め、これらの圧縮変形を解消するに必要な個々のクラウニングシリンダの必要締め込み量を算出し、上記横撓み補正に加えて圧縮変形を補正して、幅方向の圧下量差をより小さくすることができる技術も提案されている(特許文献2)。
特許第3726146号公報 特許第3443036号公報
 しかしながら、上記特許文献1、2の技術は、矯正すべき板材の中心をラインの中心に位置させて板材のレベリング矯正を行うライン中心基準を前提とするものであり、厚板工場のせん断ラインのように板エッジ基準で板材を搬送するライン中にこのようなローラレベラを配置する場合には、ローラレベラに通板する前にセンタリング装置により板材をセンタリングする必要があり煩雑である。また、このようなライン中心基準の装置では、搬送による板材の蛇行や板材のずれが生じた場合には精度よくレベリング矯正を行うことは困難である。
 本発明は、このような状況に鑑みてなされたものであり、金属板例えば鋼板等の板材の幅方向中心がライン中心からずれていても高精度で板材の矯正を行うことができるローラレベラおよびそれを用いた板材の矯正方法を提供することを課題とする。
 上記課題を解決するため、本発明の第1の観点は、板材の通板ラインの幅方向の任意の位置に前記板材を配置して前記板材をレベリング矯正するローラレベラであって、ハウジングと、前記通板ラインの上下に千鳥状に配置され、前記板材を挟んで矯正しつつ前記板材を通板させるように回転する複数のレベリングロールと、前記複数のレベリングロールを上下にバックアップする複数のバックアップロールと、前記レベリングロールおよび前記バックアップロールをこれらの上下で支持し、前記ハウジングに支持された一対のロールフレームと、前記一対のロールフレームを上下で支持する一対のフレームと、前記板材の入側端部および出側端部においてそれぞれ幅方向の両端部に設けられ、前記一対のフレームの一方である作動フレームを前記通板ラインに向けて押圧し、前記ロールフレームの対応する一方を介して前記レベリングロール間で前記板材を押圧する押圧シリンダと、前記レベリングロールを回転させる駆動装置と、前記作動フレームと前記ロールフレームの前記対応する一方との間に、前記板材の通板方向に直交する幅方向に沿って複数取り付けられた油圧式クラウニングシリンダと、前記油圧式クラウニングシリンダに対応する位置に設けられ、前記作動フレームの撓みを検出する複数の撓み検出センサと、前記板材の板幅中心の前記通板ラインの中心からのオフセット量を検出するオフセット量検出手段と、前記押圧シリンダにかかる荷重を計測する荷重計測手段と、前記板材のレベリング矯正を制御する制御装置と、を具備し、前記制御装置は、前記オフセット量検出手段により検出した前記板材の板幅中心の前記通板ラインの中心からのオフセット量と幅方向両端の前記押圧シリンダにかかる荷重とから幅方向のそれぞれの端部の補正比率を算出し、入側および出側において、幅方向両端の前記押圧シリンダにおける締め込み量を個別的に制御して、前記ハウジングの上下方向における縦撓み補正を行い、前記複数の撓み検出センサの検出値に基づいて前記複数の油圧式クラウニングシリンダの締め込み量を個別的に制御して、前記一対のフレームの幅方向における横撓み補正を行い、前記オフセット量検出手段により検出されたオフセット量から、板幅中心を求め、その板幅中心における荷重と圧縮変形のミル定数に基づいて板厚中心の圧縮変形量を算出し、各油圧式クラウニングシリンダの位置において、前記板厚中心の圧縮変形量に板幅とオフセット量の関数を乗じることにより前記複数の油圧式クラウニングシリンダの締め込み量を個別的に制御して、前記押圧シリンダ、前記油圧式クラウニングシリンダ、前記一対のロールフレーム、前記バックアップロール、前記レベリングロールの圧縮変形補正を行い、これら補正制御を行いながら、前記押圧シリンダにより前記板材の矯正に必要な押圧量で前記レベリングロールを介して前記板材を押圧するように制御することを特徴とするローラレベラを提供する。
 本発明の第2の観点は、板材の通板ラインの幅方向の任意の位置に前記板材を配置して前記板材をレベリング矯正するローラレベラであって、ハウジングと、前記通板ラインの上下に千鳥状に配置され、前記板材を挟んで矯正しつつ前記板材を通板させるように回転する複数のレベリングロールと、前記複数のレベリングロールを上下にバックアップする複数のバックアップロールと、前記レベリングロールおよび前記バックアップロールをこれらの上下で支持し、前記ハウジングに支持された一対のロールフレームと、前記一対のロールフレームを上下で支持する一対のフレームと、前記板材の入側端部および出側端部においてそれぞれ幅方向の両端部に設けられ、前記一対のフレームの一方である作動フレームを前記通板ラインに向けて押圧し、前記ロールフレームの対応する一方を介して前記レベリングロール間で前記板材を押圧する押圧シリンダと、前記レベリングロールを回転させる駆動装置と、前記作動フレームと前記ロールフレームの前記対応する一方との間に、前記板材の通板方向に直交する幅方向に沿って複数取り付けられた油圧式クラウニングシリンダと、前記油圧式クラウニングシリンダに対応する位置に設けられ、前記作動フレームの撓みを検出する複数の撓み検出センサと、前記板材の板幅中心の前記通板ラインの中心からのオフセット量を検出するオフセット量検出手段と、前記押圧シリンダにかかる荷重を計測する荷重計測手段と、前記板材のレベリング矯正を制御する制御装置と、を具備し、前記制御装置は、前記オフセット量検出手段により検出した前記板材の板幅中心の前記通板ラインの中心からのオフセット量と幅方向両端の前記押圧シリンダにかかる荷重とから幅方向のそれぞれの端部の補正比率を算出し、入側および出側において、幅方向両端の前記押圧シリンダにおける締め込み量を個別的に制御して、前記ハウジングの上下方向における縦撓み補正を行い、前記複数の撓み検出センサの検出値に基づいて前記複数の油圧式クラウニングシリンダの締め込み量を個別的に制御して、前記一対のフレームの幅方向における横撓み補正を行い、これら補正制御を行いながら、前記押圧シリンダにより前記板材の矯正に必要な押圧量で前記レベリングロールを介して前記板材を押圧するように制御することを特徴とするローラレベラを提供する。
 本発明の第3の観点は、ローラレベラを用いて板材の通板ラインの幅方向の任意の位置に前記板材を配置して前記板材をレベリング矯正する方法であって、前記ローラレベラは、ハウジングと、前記通板ラインの上下に千鳥状に配置され、前記板材を挟んで矯正しつつ前記板材を通板させるように回転する複数のレベリングロールと、前記複数のレベリングロールを上下にバックアップする複数のバックアップロールと、前記レベリングロールおよび前記バックアップロールをこれらの上下で支持し、前記ハウジングに支持された一対のロールフレームと、前記一対のロールフレームを上下で支持する一対のフレームと、前記板材の入側端部および出側端部においてそれぞれ幅方向の両端部に設けられ、前記一対のフレームの一方である作動フレームを前記通板ラインに向けて押圧し、前記ロールフレームの対応する一方を介して前記レベリングロール間で前記板材を押圧する押圧シリンダと、前記レベリングロールを回転させる駆動装置と、前記作動フレームと前記ロールフレームの前記対応する一方との間に、前記板材の通板方向に直交する幅方向に沿って複数取り付けられた油圧式クラウニングシリンダと、前記油圧式クラウニングシリンダに対応する位置に設けられ、前記作動フレームの撓みを検出する複数の撓み検出センサと、前記板材の板幅中心の前記通板ラインの中心からのオフセット量を検出するオフセット量検出手段と、前記押圧シリンダにかかる荷重を計測する荷重計測手段と、を具備し、前記方法は、前記オフセット量検出手段により検出した前記板材の板幅中心の前記通板ラインの中心からのオフセット量と幅方向両端の前記押圧シリンダにかかる荷重とから幅方向のそれぞれの端部の補正比率を算出し、入側および出側において、幅方向両端の前記押圧シリンダにおける締め込み量を個別的に制御して、前記ハウジングの上下方向における縦撓み補正を行い、前記複数の撓み検出センサの検出値に基づいて前記複数の油圧式クラウニングシリンダの締め込み量を個別的に制御して、前記一対のフレームの幅方向における横撓み補正を行い、前記オフセット量検出手段により検出されたオフセット量から、板幅中心を求め、その板幅中心における荷重と圧縮変形のミル定数に基づいて板厚中心の圧縮変形量を算出し、各油圧式クラウニングシリンダの位置において、前記板厚中心の圧縮変形量に板幅とオフセット量の関数を乗じることにより前記複数の油圧式クラウニングシリンダの締め込み量を個別的に制御して、前記押圧シリンダ、前記油圧式クラウニングシリンダ、前記一対のロールフレーム、前記バックアップロール、前記レベリングロールの圧縮変形補正を行い、これら補正制御を行いながら、前記押圧シリンダにより前記板材の矯正に必要な押圧量で前記レベリングロールを介して前記板材を押圧して前記板材をレベリング矯正することを特徴とする板材の矯正方法を提供する。
 本発明の第4の観点は、ローラレベラを用いて板材の通板ラインの幅方向の任意の位置に前記板材を配置して前記板材をレベリング矯正する方法であって、前記ローラレベラは、ハウジングと、前記通板ラインの上下に千鳥状に配置され、前記板材を挟んで矯正しつつ前記板材を通板させるように回転する複数のレベリングロールと、前記複数のレベリングロールを上下にバックアップする複数のバックアップロールと、前記レベリングロールおよび前記バックアップロールをこれらの上下で支持し、前記ハウジングに支持された一対のロールフレームと、前記一対のロールフレームを上下で支持する一対のフレームと、前記板材の入側端部および出側端部においてそれぞれ幅方向の両端部に設けられ、前記一対のフレームの一方である作動フレームを前記通板ラインに向けて押圧し、前記ロールフレームの対応する一方を介して前記レベリングロール間で前記板材を押圧する押圧シリンダと、前記レベリングロールを回転させる駆動装置と、前記作動フレームと前記ロールフレームの前記対応する一方との間に、前記板材の通板方向に直交する幅方向に沿って複数取り付けられた油圧式クラウニングシリンダと、前記油圧式クラウニングシリンダに対応する位置に設けられ、前記作動フレームの撓みを検出する複数の撓み検出センサと、前記板材の板幅中心の前記通板ラインの中心からのオフセット量を検出するオフセット量検出手段と、前記押圧シリンダにかかる荷重を計測する荷重計測手段と、を具備し、前記方法は、前記オフセット量検出手段により検出した前記板材の板幅中心の前記通板ラインの中心からのオフセット量と幅方向両端の前記押圧シリンダにかかる荷重とから幅方向のそれぞれの端部の補正比率を算出し、入側および出側において、幅方向両端の前記押圧シリンダにおける締め込み量を個別的に制御して、前記ハウジングの上下方向における縦撓み補正を行い、前記複数の撓み検出センサの検出値に基づいて前記複数の油圧式クラウニングシリンダの締め込み量を個別的に制御して、前記一対のフレームの幅方向における横撓み補正を行い、これら補正制御を行いながら、前記押圧シリンダにより前記板材の矯正に必要な押圧量で前記レベリングロールを介して前記板材を押圧して前記板材をレベリング矯正することを特徴とする板材の矯正方法を提供する。
本発明の一実施形態に係るローラレベラを示す側面図である。 本発明の一実施形態に係るローラレベラを示す平面図である。 油圧式クラウニングシリンダの構造を説明するための断面図である。 油圧式クラウニングシリンダよるクラウニング制御の制御ブロック図である。 本実施形態における縦撓み補正制御を説明するための模式図である。 本実施形態における横撓み補正制御を説明するための模式図である。 本実施形態における圧縮変形補正制御を説明するための模式図である。 鋼板の幅方向のオフセット量を変化させて、従来の制御方法により鋼板のレベリング矯正を行った場合における板幅方向位置とロールギャップとの関係を示す図である。 鋼板の幅方向のオフセット量を変化させて、従来の制御方法により鋼板のレベリング矯正を行った場合における鋼板の板幅方向のオフセット量と板幅方向のロールギャップ偏差との関係を示す図である。 鋼板の幅方向のオフセット量を375mmにした場合において、モード1(従来)、モード2A(本発明)、モード2B(本発明)で制御してレベリング矯正を行った場合における板幅方向位置とロールギャップとの関係を示す図である。 鋼板の幅方向のオフセット量を変化させて、モード1(従来)、モード2A(本発明)、モード2B(本発明)で制御してレベリング矯正を行った場合における鋼板の板幅方向のオフセット量と板幅方向のロールギャップ偏差との関係を示す図である。
 以下、添付図面を参照して本発明の実施形態について説明する。
 図1は本発明の一実施形態に係るローラレベラを示す側面図、図2はその正面図である。本実施形態のローラレベラ100は、ハウジング1と、ハウジング1の内側に設けられた上フレーム2と、ハウジング1を支持するように設けられた下フレーム3とを有している。上フレーム2の下方には上ロールフレーム5が上ロールグリップシリンダ(図示せず)で吊り下げられている。一方、下フレーム3上には下ロールフレーム10が設置されている。なお、上フレーム2は、後述するように、押圧シリンダ(圧下シリンダともいう)によって押すことによって上下に動作するため、作動フレームと呼ぶことができる。作動フレームは上フレーム2に限定されず、下フレーム3を作動フレームとして構成してその下に設けた押圧シリンダによって押すことによって上下に動作させることもできる。
 上ロールフレーム5と下ロールフレーム10との間には、鋼板等の金属板である板材Pのパス(通板)ラインを間に形成するように上下に千鳥状に配置された複数の上レベリングロール6と複数の下レベリングロール8とを有するレベリングロールユニット20が設けられている。レベリングロールユニット20において、上レベリングロール6は上ロールフレーム5の下で上ロールフレーム5に支持され、下レベリングロール8は下ロールフレーム10の上で下ロールフレーム10に支持されている。レベリングロールユニット20の板材Pの搬送方向上流側および下流側には、板材Pをガイドするガイドロール14が設けられている。上レベリングロール6および下レベリングロール8は、駆動装置15により回転されるようになっており、板材Pを例えば図1における矢印方向に移動して矯正することが可能となっている。移動方向は矢印と反対方向であってもよい。
 上レベリングロール6の上には、上レベリングロール6をバックアップする短尺の上バックアップロール7が上レベリングロール6の軸方向に沿って上ロールフレーム5に支持されるように複数配置されている。また、下レベリングロール8の下には、下レベリングロール8をバックアップする短尺の下バックアップロール9が下レベリングロール8の軸方向に沿って下ロールフレーム10に支持されるように複数配置されている。
 ハウジング1と上フレーム2との間のレベリングロールユニット20の板材P搬送方向の両端には、それぞれ板材Pを矯正するための圧下力(押圧力ともいう)を与える圧下シリンダ(押圧シリンダともいう)4aおよび4bが配置されている。圧下シリンダ4aおよび4bは、板材Pの幅方向の両端側(ドライブ側およびワーク側)に2基ずつ設けられている(図2参照。ただし、図2では圧下シリンダ4aのみ図示)。
 なお、本明細書において、「圧下」という用語は、図1に示すように圧力を下向きに加える場合だけでなく、後に変更例として説明するように圧力を上向きに加える場合も包含することを意図する。換言すれば、本明細書において、「圧下」という用語は、「押圧」という用語に置き換えることができる。
 圧下シリンダ4aおよび4bは、下ロールフレーム10に固定的に設けられた下レベリングロール8に対して、上ロールフレーム5、上バックアップロール7および上レベリングロール6を介して板材Pを圧下するようになっている。
 上レベリングロール6および下レベリングロール8には、個別的にまたは複数毎に回転モータを有する駆動装置15が設けられており(図1では便宜上1つのみ図示)、上レベリングロール6および下レベリングロール8は、駆動装置15により回転されるようになっている。そして、駆動装置15により上レベリングロール6と下レベリングロール8との間に板材Pを通板させつつ、圧下シリンダ4a、4bにより上レベリングロール6を介して板材Pを圧下して板材Pをレベリング矯正するようになっている。
 板材Pを図1の矢印方向へ搬送する場合には、圧下シリンダ4aが入側の圧下シリンダとして機能し、圧下シリンダ4bが出側の圧下シリンダとして機能する。また、板材Pを矢印と逆方向へ搬送する場合には、圧下シリンダ4bが入側の圧下シリンダとして機能し、圧下シリンダ4aが出側の圧下シリンダとして機能する。なお、上レベリングロール6を固定的に設け、下レベリングロール8を圧下シリンダで圧下するようにしてもよい。
 上フレーム2と上ロールフレーム5との間には、板幅方向に複数(本実施形態では7個)の油圧式クラウニングシリンダ12が連結されている。各クラウニングシリンダ12は、図2に示すように、板材Pの通板方向に直交する幅方向に沿ってレベリングロール6、8と対応するように等ピッチで設置されている。この油圧式クラウニングシリンダ12は、図1に示すように、2列設置されている。なお、クラウニングシリンダの列は3列以上でもよい。
 図3に示すように、油圧式クラウニングシリンダ12は、シリンダ本体31とピストン32とを有し、ピストン32の上端が球面継手材33を介して上フレーム2に連結され、シリンダ本体31の底部がスライド継手34を介して上ロールフレーム5に連結されている。この油圧式クラウニングシリンダ12には位置検出センサ35が内蔵されている。油圧式クラウニングシリンダ12は、油圧により伸縮するようになっており、伸長動作させるために伸長側油室(図示せず)に送油する送油ライン36と油圧を解除するためのリリースライン37とが接続されている。送油ライン36には、伸長側油室の油圧を検出するための圧力検出器38と、送油量を制御する制御弁39とが接続されている。制御弁39としては、サーボバルブまたは比例制御弁が用いられる。
 上フレーム2の上方には、図2に示すように、各油圧式クラウニングシリンダ12に対応する位置に上フレーム2の横撓みを検出する撓み検出センサ21が設けられている。本実施形態では、この撓み検出センサ21は各油圧式クラウニングシリンダ12に対応して合計14個設けられている。この撓み検出センサ21により常時上フレーム2の下端部までの距離を検出し、これに基づいて上フレーム2の撓み量を算出する。また、下フレーム3の内部空間には、各油圧式クラウニングシリンダ12に対応する位置に下フレーム3の横撓みを検出する撓み検出センサ22が設けられている。本実施形態では、この撓み検出センサ22も油圧式クラウニングシリンダ12に対応して合計14個設けられている。この撓み検出センサ22により常時下フレーム3の上端部までの距離を検出し、これに基づいて下フレーム3の撓み量を算出する。
 なお、撓み検出センサ21の個数は14個に限らず、油圧式クラウニングシリンダ12の数に応じて変化する。例えば、クラウニングシリンダが6個2列の場合には12個、5個2列の場合は10個、4個2列の場合は8個である。また、上フレーム2、下フレーム3の一方のみに撓み検出センサを設けて、他方のフレームの撓み量は比例計算で求めるようにしてもよい。
 圧下シリンダ4a,4bとハウジング1との間には、圧下シリンダ4a,4bにかかる荷重を計測するための荷重計測手段としてロードセル(または油圧圧力変換器)23が取り付けられ、これにより、圧下シリンダ4、油圧式クラウニングシリンダ12、上ロールフレーム5、上バックアップロール7、上レベリングロール6、下レベリングロール8、下バックアップロール9、下ロールフレーム10の圧縮変形を検出可能となっている。
 また、図1に示すように板材Pの入側(この例では圧下シリンダ4a側)には、板材Pの上方位置に板材Pのエッジ位置を計測するための手段としてスキャン式レーザーセンサ25が設けられている。スキャン式レーザーセンサ25は、図2に示すように、照射するレーザーをスキャンすることにより、板材Pの幅方向のエッジ位置を検出するようになっている。本実施形態では、板材Pはセンタリングされず、例えば板エッジ基準のように、板材Pの中心が搬送ラインの中心からオフセットした位置となるように板材Pが搬送されるため、スキャン式レーザーセンサ25を用いて板材Pの幅方向エッジ位置を検出する。なお、板材Pのエッジ位置を計測するための手段は、スキャン式レーザーセンサ25に限るものではない。
 本実施形態のローラレベラ100は、各構成要素が制御装置50により制御されるようになっている。制御装置50は、CPUを備えたプロセスコントローラと、これに接続された、キーボードやディスプレイ等を含むユーザーインターフェースと、制御プログラム(ソフトウエア)や処理条件データ等が記録されたレシピが格納された記憶部とを含む。ユーザーインターフェースからの指示等に応じて任意のレシピを記憶部から呼び出してプロセスコントローラにおいて実行させる。これにより、プロセスコントローラの制御下で、ローラレベラ100で後述するような所望の処理(操作シーケンス)が行われる。制御プログラムや処理条件データ等のレシピは、コンピュータ読み取り可能な記憶媒体、例えば磁気ディスク(フレキシブルディスク、ハードディスクなど)、光ディスク(CD、DVDなど)、マグネトオプティカルディスク(MOなど)、半導体メモリなどに格納された状態のものを利用することができる。代わりに、レシピは、他の装置から、例えば専用回線を介して随時伝送させてオンラインで利用したりすることもできる。
 制御装置50は、コンピュータ読み取り可能な記憶媒体に記憶された制御プログラムに従って、後述するように、板材Pの矯正(レベリング)のための圧下シリンダ4a,4bによるレベリングロール6,8の圧下量の制御、駆動装置15の制御を行うようになっている。また、制御装置50には撓み検出センサ21、22からの情報およびロードセル23からの情報が入力され、これら情報に基づいて圧下シリンダ4a,4bを制御することによるフレームの縦撓み補正、油圧式クラウニングシリンダ12の絞り込み制御によるフレームの横撓み補正および圧縮補正が行われる。
 図4に、油圧式クラウニングシリンダ12によるクラウニング制御の制御ブロック図を示す。制御装置50は、いずれもマイクロプロセッサからなる上位コントローラ52とクラウニングコントローラ54とを有している。上位コントローラ52は、ローラレベラ100の全体を制御するようになっており、クラウニングコントローラ54は、上位コントローラ52の指令に基づき、油圧式クラウニングシリンダ12の動作を制御する。
 上述した撓み検出センサ21,22、ロードセル23、位置検出センサ35、および圧力検出器38の検出値は、クラウニングコントローラ54に入力される。クラウニングコントローラ54は、上フレーム2および下フレーム3の横撓み量を、それぞれ撓み検出センサ21および22の検出値から常時把握し、フレームの横撓みを補正するに必要な各油圧式クラウニングシリンダ12の伸長量、すなわち締込み量を計算する。またクラウニングコントローラ54は、圧下シリンダ4、油圧式クラウニングシリンダ12、上ロールフレーム5、上バックアップロール7、上レベリングロール6、下レベリングロール8、下バックアップロール9、下ロールフレーム10の圧縮変形を圧下シリンダ4a,4bとハウジング1との間のロードセル23の検出値から常時把握し、それらの圧縮変形を補正するのに必要な各油圧式クラウニングシリンダ12の伸長量、すなわち締込み量を計算する。そして、クラウニングコントローラ54は、これらの締込み量を合計して、それに見合った圧力の圧油をそれぞれの油圧クラウニングシリンダ12に送油するよう出力信号を演算し、その出力信号を制御弁39にフィードバックして上記横撓みと圧縮変形が最小になるように各油圧式クラウニングシリンダ12を制御する。
 次に、このように構成されるローラレベラ100により板材Pの矯正を行う際の動作について説明する。
 まず、ローラレベラ100のレベリングロールユニット20の上流側からガイドロール14にガイドされた状態で板材Pをレベリングロールユニット20へ向けて搬送し、上レベリングロール6と下レベリングロール8との間に挿入する。例えば、板材Pの搬送方向が図中矢印方向の場合には、図1の右側から板材Pがレベリングユニット20に搬送され、圧下シリンダ4aが入側の圧下シリンダとなる。
 このとき、板材Pの厚さ等に応じて板材Pのレベリング(矯正)に必要な圧下シリンダ4aおよび4bの押込量(圧下量)が制御装置50に設定されており、その設定された押込量(圧下量)で板材Pの矯正が行われる。
 板材Pのレベリング矯正を行う際には、矯正反力によりハウジング1に縦撓みが生じ、上下フレーム2,3に横撓みが生じ、圧下シリンダ4、油圧式クラウニングシリンダ12、上ロールフレーム5、上バックアップロール7、上レベリングロール6、下レベリングロール8、下バックアップロール9、下ロールフレーム10に圧縮変形が生じる。
 従来のローラレベラにおいては、矯正すべき板材の中心をラインの中心に位置させ、ライン中心基準で板材のレベリング矯正を行っており、撓み等の補正量は幅方向で対称であった。しかし、板材の搬送ラインは、板材を板エッジ基準で搬送することが多く、板エッジ基準で板材を搬送するライン中にローラレベラを配置する場合には、ローラレベラに通板する前にセンタリング装置により板材をセンタリングする必要があり煩雑である。また、このようなライン中心基準の装置では、搬送による板材の蛇行や板材のずれが生じた場合には精度よくレベリング矯正を行うことは困難である。
 そこで、本実施形態では、板材の中心がライン中心からオフセットした場合でも、非対称レベリングを行ってフレームの撓み等を高精度で補正できるように制御する。
 本実施形態の非対称レベリングでは、板材Pのライン中心からのオフセットを考慮してフレーム等の撓みおよび圧縮変形の補正制御を行う。具体的には、レベリング矯正の際に、(1)縦撓み補正制御、(2)横撓み補正制御、(3)圧縮変形補正制御をオフセット量を考慮して行う。
 <(1)縦撓み補正制御>
 ローラレベラにおいては、矯正反力によりハウジング1に上下方向(縦方向)の撓み(縦撓み)を生じるため、このような縦撓みを補正する必要がある。従来は、板材の中心をライン中心に位置させた対称レベリングであったため、縦撓み補正制御において、入側の圧下シリンダおよび出側の圧下シリンダについて、入側矯正反力Feおよび出側矯正反力Fdのいずれも、ワーク側(WS)とドライブ側(DS)の和荷重を用い、これら入側矯正反力Feおよび出側矯正反力Fdと、ハウジングのミル定数:K1および入側圧下シリンダのミル定数および出側圧下シリンダのミル定数:K2と、機械手寸法による定数を用いて、入側および出側の縦撓みを計算し、入側圧下シリンダ4aおよび出側圧下シリンダ4bの締め込み量(位置)を制御していた。したがって、入側も出側も、板幅方向のワーク側(WS)とドライブ側(DS)とで同じ縦撓み値を用いていた。
 これに対して、本実施形態では、図5に示すように、板材Pがライン中心から幅方向にオフセットしているので、まず、スキャン式レーザーセンサ25により板材Pの端部を検出してオフセット量αを算出し、そのオフセット量αとワーク側(WS)の荷重Fおよびドライブ側(DS)の荷重Fとから、ワーク側(WS)およびドライブ側(DS)の補正比率を計算する。例えば、ワーク側の縦撓み量をδ、ドライブ側の縦撓み量をδとすると、以下のように表すことができる。
 δ=(F+F)f(α)/K
 δ=(F+F)(1-f(α))/K
 ただし、f(α)はオフセット量αの関数、Kは圧下シリンダのミル定数
 そして、入側圧下シリンダ4aおよび出側圧下シリンダ4bとも、これらδ、δの値が0になるようにワーク側(WS)の圧下シリンダ4a、4bおよびドライブ側(DS)の圧下シリンダ4a、4bの締め込み量(位置)を非対称制御する。
 <(2)横撓み補正制御>
 ローラレベラにおいては、矯正反力により、上下フレーム2,3に幅方向の撓み(横撓み)が生じるため、このような横撓みを補正する必要がある。従来は、板材の中心をライン中心に位置させた対称レベリングであったため、横撓み補正制御において、幅方向中央に設けた撓み検出センサの検出値に基づいて幅方向の各位置の撓み量を算出し、それを各位置での横撓み補正値とし、それに基づいて各油圧式クラウニングシリンダ12の締め込み量を算出していた。
 これに対して、本実施形態では、板材Pがライン中心から幅方向にオフセットしているので、横撓みはライン中心に対して対称とはならない。そこで、本実施形態では、入側および出側において、幅方向に複数(本例では7個)設けられた油圧式クラウニングシリンダ12に対応する位置の上下に撓み検出センサ21および撓み検出センサ22を設け、これら撓み検出センサ21および22の検出値を各位置での補正値とし、これに基づいて各油圧式クラウニングシリンダ12の締め込み量を算出し、横撓み補正制御を行う。
 具体的には、図6に示すように、油圧式クラウニング12の位置を左側から(1)~(7)とし、これに対応する位置の撓み検出センサ21による上フレーム2の横撓み量を、δu(1)、δu(2)、δu(3)、δu(4)、δu(5)、δu(6)、δu(7)とし、撓み検出センサ22による下フレーム3の横撓み量を、δl(1)、δl(2)、δl(3)、δl(4)、δl(5)、δl(6)、δl(7)とすると、各位置での上下フレームの合計の撓み量δ(1)~δ(7)は、これらの合計値となる。したがって、入側の各位置での上下フレームの合計の撓み量をδe(1)~δe(7)とし、出側の各位置での上下フレームの合計撓み量をδd(1)~δd(7)とすると、これらは、以下のようにして算出することができる。
 δe(1)=δeu(1)+δel(1)
 δe(2)=δeu(2)+δel(2)
 δe(3)=δeu(3)+δel(3)
 δe(4)=δeu(4)+δel(4)
 δe(5)=δeu(5)+δel(5)
 δe(6)=δeu(6)+δel(6)
 δe(7)=δeu(7)+δel(7)
 δd(1)=δdu(1)+δdl(1)
 δd(2)=δdu(2)+δdl(2)
 δd(3)=δdu(3)+δdl(3)
 δd(4)=δdu(4)+δdl(4)
 δd(5)=δdu(5)+δdl(5)
 δd(6)=δdu(6)+δdl(6)
 δd(7)=δdu(7)+δdl(7)
 したがって、これらの値が0になるように各油圧式クラウニングシリンダ12の締め込み量を個別的に制御することにより、横撓み補正制御を行うことができる。
 <(3)圧縮変形補正制御>
 ローラレベラにおいては、矯正反力により、油圧式クラウニングシリンダ12、上ロールフレーム5、上バックアップロール7、上レベリングロール6、下レベリングロール8、下バックアップロール9、下ロールフレーム10に圧縮変形が生じるため、このような圧縮変形を補正する必要がある。従来は、板材の中心をライン中心に位置させた対称レベリングであったため、入側および出側の圧下シリンダの荷重をロードセルで検出し、これにより油圧式クラウニングシリンダの入側と出側の反力を計算して、その計算値から入側と出側の圧縮変形のミル定数を求め、これらの値から板幅中心の圧縮変形量すなわち補正量を算出し、比例計算により板幅各位置での補正値を算出し、それに基づいて各油圧式クラウニングシリンダの締め込み量を算出していた。
 これに対して、本実施形態では、板材Pがライン中心から幅方向にオフセットしているので、圧縮変形はライン中心に対して対称とはならない。そこで、本実施形態では、まず、スキャン式レーザーセンサ25により板材Pの端部を検出してオフセット量を求めることにより、図7に示すように、板幅中心を求め、ロードセル23により検出されるワーク側(WS)の荷重Fおよびドライブ側(DS)の荷重Fとオフセット量から板厚中心の荷重を求め、また、オフセット量と板幅と荷重の関数である圧縮変形のミル定数を求めて板厚中心の圧縮変形量を算出する。そして、各油圧式クラウニングシリンダ12の位置(1)~(7)において、算出された板厚中心の圧縮変形量に、板幅とオフセット量の関数を乗じることにより、各油圧クラウニングシリンダ12の位置(1)~(7)での圧縮変形量を求めることができる。
 具体的には、入側の板幅中心の荷重をFceとし、入側の圧縮変形のミル定数をKeとし、入側の各油圧クラウニングシリンダ12の位置での板幅とオフセット量の関数をa1からa7とすると、入側の板幅中心の圧縮変形δec、および入側の各油圧クラウニングシリンダ12の位置での圧縮変形δe(1)~δe(7)は以下のようにして算出することができる。
 δec=Fce/Ke
 δe(1)=a1・δe
 δe(2)=a2・δe
 δe(3)=a3・δe
 δe(4)=a4・δe
 δe(5)=a5・δe
 δe(6)=a6・δe
 δe(7)=a7・δe
 また、出側の板幅中心の荷重をFcdとし、出側の圧縮変形のミル定数をKdとし、出側の各油圧クラウニングシリンダ12の位置での板幅とオフセット量の関数をb1からb7とすると、出側の板幅中心の圧縮変形δdc、および出側の各油圧クラウニングシリンダ12の位置での圧縮変形δd(1)~δd(7)は以下のようにして算出することができる。
 δdc=Fcd/Kd
 δd(1)=b1・δd
 δd(2)=b2・δd
 δd(3)=b3・δd
 δd(4)=b4・δd
 δd(5)=b5・δd
 δd(6)=b6・δd
 δd(7)=b7・δd
 したがって、これらの値が0になるように各油圧式クラウニングシリンダ12の締め込み量を個別的に制御することにより、圧縮変形補正制御を行うことができる。
 以上のような、板材のオフセット量からWSおよびDSの補正比率を計算して圧下シリンダ4a,4b,4a,4bの締め込み量(位置)を制御することによる縦撓み補正制御、油圧式クラウニングシリンダ12に対応して設けられた撓み検出センサ21,22の撓み量に基づいて油圧式クラウニングシリンダ12の締め込み量を制御することによる横撓み補正制御、および板幅中心の圧縮変形量に板幅とオフセット量の関数を乗じることにより、各油圧クラウニングシリンダ12の位置での圧縮変形量に基づいて油圧式クラウニングシリンダ12の締め込み量を制御することによる圧縮変形補正制御を、板材Pの噛み込みからしり抜けの間、常時行うことにより、ライン中心からオフセットした状態の板材を高精度でレベリング矯正することができる。
 なお、上記実施形態では、縦撓み補正制御、横撓み補正制御、圧縮変形補正制御について板材のオフセットを考慮した制御を行ったが、縦撓み補正制御および横撓み補正制御についてのみ板材のオフセットを考慮した制御を行ってもよい。
 また、上記実施形態では、上レベリングロールを圧下シリンダで通板ラインに向けて圧下(下向きに押圧)して板材の形状を矯正する場合について示したが、下レベリングロールを圧下シリンダで通板ラインに向けて圧下(上向きに押圧)して板材の形状を矯正するようにしてもよい。
 <実験例>
 次に、本発明の効果を確認した実験例について説明する。
 ここでは、幅1950mm、長さ6500mm、厚さ40mmで、降伏強度YPが356MPaの鋼板を用い、鋼板の板幅方向のオフセット量を変化させてレベリング矯正を行い、矯正中の板幅方向のロールギャップ偏差を計測した。
 まず、鋼板の幅方向のオフセット量を0mm、188mm、375mmとし、縦撓み、横撓み、および圧縮変形を、従来と同様の対称制御により補正制御してレベリング矯正を行った場合(モード1)の出側における板幅方向の各位置におけるロールギャップを求めた。その結果を図8に示し、鋼板の板幅方向のオフセット量に対する矯正中の板幅方向のロールギャップ偏差を図9に示す。これらの図に示すように、従来の対称制御では、オフセット量が0の場合には板幅方向のロールギャップ偏差が小さく、保証値である0.6mm以内を確保できたが、鋼板を中心から幅方向にオフセットさせた場合には、板幅方向のロールギャップ偏差が大きく、保証値である0.6mmを超えることが確認された。
 次に、同様の鋼板について鋼板の板幅方向のオフセット量を同様に変化させ、縦撓みおよび横撓みを、本発明の非対称制御により補正制御してレベリング矯正を行った場合(モード2A)、ならびに縦撓み、横撓み、および圧縮変形を、本発明の非対称制御により補正制御してレベリング矯正を行った場合(モード2B)について、矯正中の板幅方向のロールギャップ偏差を求めた。オフセット量が375mmの場合のモード1、モード2A、モード2Bの板幅方向の各位置におけるロールギャップを図10に示し、モード1、モード2A、モード2Bにおける鋼板の板幅方向のオフセット量に対する板幅方向のロールギャップ偏差を図11に示す。これらの図に示すように、従来の対称制御であるモード1では、オフセット量が375mmでは板幅方向のロールギャップ偏差が1.55mmと大きいのに対し、本発明の非対称制御であるモード2A、モード2Bではいずれも偏差が保証値である0.6mmを下回った。特に、縦撓み補正制御、横撓み補正制御、圧縮変形補正制御のいずれも非対称制御したモード2Bの場合には、オフセット量375mmでも偏差が0.4mm以下であり、特に良好な値が得られた。
 本発明の実施形態によれば、板材の幅方向中心のライン中心からのオフセット量を考慮して、ハウジングの縦撓み補正およびフレームの横撓み補正、またはこれらに加えて圧下シリンダ、油圧式クラウニングシリンダ、一対のロールフレーム、バックアップロール、レベリングロールの圧縮変形補正を行うので、板材の幅方向中心がライン中心からずれていても高精度で板材の矯正を行うことができる。
  1;ハウジング
  2;上フレーム(作動フレーム)
  3;下フレーム
  4a,4b;圧下シリンダ(押圧シリンダ)
  5;上ロールフレーム
  6;上レベリングロール
  7;上バックアップロール
  8;下レベリングロール
  9;下バックアップロール
  10;下ロールフレーム
  12;油圧式クラウニングシリンダ
  20;レベリングロールユニット
  21,22;撓み検出センサ
  23;ロードセル
  25;スキャン式レーザーセンサ
  31;シリンダ本体
  32;ピストン
  35;位置検出センサ
  36;送油ライン
  38;圧力検出器
  39;制御弁
  50;制御装置
  52;上位コントローラ
  54;クラウニングコントローラ
  100;ローラレベラ
  P;板材(被矯正材)

Claims (12)

  1.  板材の通板ラインの幅方向の任意の位置に前記板材を配置して前記板材をレベリング矯正するローラレベラであって、
     ハウジングと、
     前記通板ラインの上下に千鳥状に配置され、前記板材を挟んで矯正しつつ前記板材を通板させるように回転する複数のレベリングロールと、
     前記複数のレベリングロールを上下にバックアップする複数のバックアップロールと、
     前記レベリングロールおよび前記バックアップロールをこれらの上下で支持し、前記ハウジングに支持された一対のロールフレームと、
     前記一対のロールフレームを上下で支持する一対のフレームと、
     前記板材の入側端部および出側端部においてそれぞれ幅方向の両端部に設けられ、前記一対のフレームの一方である作動フレームを前記通板ラインに向けて押圧し、前記ロールフレームの対応する一方を介して前記レベリングロール間で前記板材を押圧する押圧シリンダと、
     前記レベリングロールを回転させる駆動装置と、
     前記作動フレームと前記ロールフレームの前記対応する一方との間に、前記板材の通板方向に直交する幅方向に沿って複数取り付けられた油圧式クラウニングシリンダと、
     前記油圧式クラウニングシリンダに対応する位置に設けられ、前記作動フレームの撓みを検出する複数の撓み検出センサと、
     前記板材の板幅中心の前記通板ラインの中心からのオフセット量を検出するオフセット量検出手段と、
     前記押圧シリンダにかかる荷重を計測する荷重計測手段と、
     前記板材のレベリング矯正を制御する制御装置と、
    を具備し、
     前記制御装置は、
     前記オフセット量検出手段により検出した前記板材の板幅中心の前記通板ラインの中心からのオフセット量と幅方向両端の前記押圧シリンダにかかる荷重とから幅方向のそれぞれの端部の補正比率を算出し、入側および出側において、幅方向両端の前記押圧シリンダにおける締め込み量を個別的に制御して、前記ハウジングの上下方向における縦撓み補正を行い、
     前記複数の撓み検出センサの検出値に基づいて前記複数の油圧式クラウニングシリンダの締め込み量を個別的に制御して、前記一対のフレームの幅方向における横撓み補正を行い、
     前記オフセット量検出手段により検出されたオフセット量から、板幅中心を求め、その板幅中心における荷重と圧縮変形のミル定数に基づいて板厚中心の圧縮変形量を算出し、各油圧式クラウニングシリンダの位置において、前記板厚中心の圧縮変形量に板幅とオフセット量の関数を乗じることにより前記複数の油圧式クラウニングシリンダの締め込み量を個別的に制御して、前記押圧シリンダ、前記油圧式クラウニングシリンダ、前記一対のロールフレーム、前記バックアップロール、前記レベリングロールの圧縮変形補正を行い、
     これら補正制御を行いながら、前記押圧シリンダにより前記板材の矯正に必要な押圧量で前記レベリングロールを介して前記板材を押圧するように制御するローラレベラ。
  2.  板材の通板ラインの幅方向の任意の位置に前記板材を配置して前記板材をレベリング矯正するローラレベラであって、
     ハウジングと、
     前記通板ラインの上下に千鳥状に配置され、前記板材を挟んで矯正しつつ前記板材を通板させるように回転する複数のレベリングロールと、
     前記複数のレベリングロールを上下にバックアップする複数のバックアップロールと、
     前記レベリングロールおよび前記バックアップロールをこれらの上下で支持し、前記ハウジングに支持された一対のロールフレームと、
     前記一対のロールフレームを上下で支持する一対のフレームと、
     前記板材の入側端部および出側端部においてそれぞれ幅方向の両端部に設けられ、前記一対のフレームの一方である作動フレームを前記通板ラインに向けて押圧し、前記ロールフレームの対応する一方を介して前記レベリングロール間で前記板材を押圧する押圧シリンダと、
     前記レベリングロールを回転させる駆動装置と、
     前記作動フレームと前記ロールフレームの前記対応する一方との間に、前記板材の通板方向に直交する幅方向に沿って複数取り付けられた油圧式クラウニングシリンダと、
     前記油圧式クラウニングシリンダに対応する位置に設けられ、前記作動フレームの撓みを検出する複数の撓み検出センサと、
     前記板材の板幅中心の前記通板ラインの中心からのオフセット量を検出するオフセット量検出手段と、
     前記押圧シリンダにかかる荷重を計測する荷重計測手段と、
     前記板材のレベリング矯正を制御する制御装置と、
    を具備し、
     前記制御装置は、
     前記オフセット量検出手段により検出した前記板材の板幅中心の前記通板ラインの中心からのオフセット量と幅方向両端の前記押圧シリンダにかかる荷重とから幅方向のそれぞれの端部の補正比率を算出し、入側および出側において、幅方向両端の前記押圧シリンダにおける締め込み量を個別的に制御して、前記ハウジングの上下方向における縦撓み補正を行い、
     前記複数の撓み検出センサの検出値に基づいて前記複数の油圧式クラウニングシリンダの締め込み量を個別的に制御して、前記一対のフレームの幅方向における横撓み補正を行い、
     これら補正制御を行いながら、前記押圧シリンダにより前記板材の矯正に必要な押圧量で前記レベリングロールを介して前記板材を押圧するように制御するローラレベラ。
  3.  前記一対のフレームの前記作動フレームではない他方のフレームによって前記ハウジングは支持され、前記押圧シリンダは前記ハウジングと前記作動フレームとの間に配置され、前記荷重計測手段は前記ハウジングと前記押圧シリンダとの間に配置される請求項1または2に記載のローラレベラ。
  4.  前記オフセット量検出手段は、前記板材の幅方向におけるエッジ位置を計測することにより前記オフセット量を検出する請求項1または2に記載のローラレベラ。
  5.  前記オフセット量検出手段は、照射レーザーのスキャンにより、前記エッジ位置を計測する請求項4に記載のローラレベラ。
  6.  前記ローラレベラは、前記一対のフレームの前記作動フレームではない他方のフレームの撓みを検出する複数の追加の撓み検出センサを更に具備し、前記制御装置は、前記横撓み補正を行う際に、前記複数の追加の撓み検出センサの検出値も考慮する請求項1または2に記載のローラレベラ。
  7.  ローラレベラを用いて板材の通板ラインの幅方向の任意の位置に前記板材を配置して前記板材をレベリング矯正する方法であって、前記ローラレベラは、
     ハウジングと、
     前記通板ラインの上下に千鳥状に配置され、前記板材を挟んで矯正しつつ前記板材を通板させるように回転する複数のレベリングロールと、
     前記複数のレベリングロールを上下にバックアップする複数のバックアップロールと、
     前記レベリングロールおよび前記バックアップロールをこれらの上下で支持し、前記ハウジングに支持された一対のロールフレームと、
     前記一対のロールフレームを上下で支持する一対のフレームと、
     前記板材の入側端部および出側端部においてそれぞれ幅方向の両端部に設けられ、前記一対のフレームの一方である作動フレームを前記通板ラインに向けて押圧し、前記ロールフレームの対応する一方を介して前記レベリングロール間で前記板材を押圧する押圧シリンダと、
     前記レベリングロールを回転させる駆動装置と、
     前記作動フレームと前記ロールフレームの前記対応する一方との間に、前記板材の通板方向に直交する幅方向に沿って複数取り付けられた油圧式クラウニングシリンダと、
     前記油圧式クラウニングシリンダに対応する位置に設けられ、前記作動フレームの撓みを検出する複数の撓み検出センサと、
     前記板材の板幅中心の前記通板ラインの中心からのオフセット量を検出するオフセット量検出手段と、
     前記押圧シリンダにかかる荷重を計測する荷重計測手段と、
    を具備し、前記方法は、
     前記オフセット量検出手段により検出した前記板材の板幅中心の前記通板ラインの中心からのオフセット量と幅方向両端の前記押圧シリンダにかかる荷重とから幅方向のそれぞれの端部の補正比率を算出し、入側および出側において、幅方向両端の前記押圧シリンダにおける締め込み量を個別的に制御して、前記ハウジングの上下方向における縦撓み補正を行い、
     前記複数の撓み検出センサの検出値に基づいて前記複数の油圧式クラウニングシリンダの締め込み量を個別的に制御して、前記一対のフレームの幅方向における横撓み補正を行い、
     前記オフセット量検出手段により検出されたオフセット量から、板幅中心を求め、その板幅中心における荷重と圧縮変形のミル定数に基づいて板厚中心の圧縮変形量を算出し、各油圧式クラウニングシリンダの位置において、前記板厚中心の圧縮変形量に板幅とオフセット量の関数を乗じることにより前記複数の油圧式クラウニングシリンダの締め込み量を個別的に制御して、前記押圧シリンダ、前記油圧式クラウニングシリンダ、前記一対のロールフレーム、前記バックアップロール、前記レベリングロールの圧縮変形補正を行い、
     これら補正制御を行いながら、前記押圧シリンダにより前記板材の矯正に必要な押圧量で前記レベリングロールを介して前記板材を押圧して前記板材をレベリング矯正する板材の矯正方法。
  8.  ローラレベラを用いて板材の通板ラインの幅方向の任意の位置に前記板材を配置して前記板材をレベリング矯正する方法であって、前記ローラレベラは、
     ハウジングと、
     前記通板ラインの上下に千鳥状に配置され、前記板材を挟んで矯正しつつ前記板材を通板させるように回転する複数のレベリングロールと、
     前記複数のレベリングロールを上下にバックアップする複数のバックアップロールと、
     前記レベリングロールおよび前記バックアップロールをこれらの上下で支持し、前記ハウジングに支持された一対のロールフレームと、
     前記一対のロールフレームを上下で支持する一対のフレームと、
     前記板材の入側端部および出側端部においてそれぞれ幅方向の両端部に設けられ、前記一対のフレームの一方である作動フレームを前記通板ラインに向けて押圧し、前記ロールフレームの対応する一方を介して前記レベリングロール間で前記板材を押圧する押圧シリンダと、
     前記レベリングロールを回転させる駆動装置と、
     前記作動フレームと前記ロールフレームの前記対応する一方との間に、前記板材の通板方向に直交する幅方向に沿って複数取り付けられた油圧式クラウニングシリンダと、
     前記油圧式クラウニングシリンダに対応する位置に設けられ、前記作動フレームの撓みを検出する複数の撓み検出センサと、
     前記板材の板幅中心の前記通板ラインの中心からのオフセット量を検出するオフセット量検出手段と、
     前記押圧シリンダにかかる荷重を計測する荷重計測手段と、
    を具備し、前記方法は、
     前記オフセット量検出手段により検出した前記板材の板幅中心の前記通板ラインの中心からのオフセット量と幅方向両端の前記押圧シリンダにかかる荷重とから幅方向のそれぞれの端部の補正比率を算出し、入側および出側において、幅方向両端の前記押圧シリンダにおける締め込み量を個別的に制御して、前記ハウジングの上下方向における縦撓み補正を行い、
     前記複数の撓み検出センサの検出値に基づいて前記複数の油圧式クラウニングシリンダの締め込み量を個別的に制御して、前記一対のフレームの幅方向における横撓み補正を行い、
     これら補正制御を行いながら、前記押圧シリンダにより前記板材の矯正に必要な押圧量で前記レベリングロールを介して前記板材を押圧して前記板材をレベリング矯正する板材の矯正方法。
  9.  前記一対のフレームの前記作動フレームではない他方のフレームによって前記ハウジングは支持され、前記押圧シリンダは前記ハウジングと前記作動フレームとの間に配置され、前記荷重計測手段は前記ハウジングと前記押圧シリンダとの間に配置される請求項7または8に記載の板材の矯正方法。
  10.  前記方法は、前記オフセット量検出手段によって、前記板材の幅方向におけるエッジ位置を計測することにより前記オフセット量を検出する請求項7または8に記載の板材の矯正方法。
  11.  前記オフセット量検出手段は、照射レーザーのスキャンにより、前記エッジ位置を計測する請求項10に記載の板材の矯正方法。
  12.  前記ローラレベラは、前記一対のフレームの前記作動フレームではない他方のフレームの撓みを検出する複数の追加の撓み検出センサを更に具備し、前記方法は、前記横撓み補正を行う際に、前記複数の追加の撓み検出センサの検出値も考慮する請求項7または8に記載の板材の矯正方法。
PCT/JP2012/069906 2011-09-14 2012-08-03 ローラレベラおよびそれを用いた板材の矯正方法 WO2013038837A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013533571A JP5883455B2 (ja) 2011-09-14 2012-08-03 ローラレベラおよびそれを用いた板材の矯正方法
KR1020147004749A KR101461043B1 (ko) 2011-09-14 2012-08-03 롤러 레벨러 및 이를 이용한 판재의 교정 방법
IN754/KOLNP/2014A IN2014KN00754A (en) 2011-09-14 2014-04-03 Roller leveler and plate flattening method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011200172 2011-09-14
JP2011-200172 2011-09-14

Publications (1)

Publication Number Publication Date
WO2013038837A1 true WO2013038837A1 (ja) 2013-03-21

Family

ID=47883075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069906 WO2013038837A1 (ja) 2011-09-14 2012-08-03 ローラレベラおよびそれを用いた板材の矯正方法

Country Status (5)

Country Link
JP (1) JP5883455B2 (ja)
KR (1) KR101461043B1 (ja)
CN (2) CN102989841B (ja)
IN (1) IN2014KN00754A (ja)
WO (1) WO2013038837A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106111742A (zh) * 2016-06-22 2016-11-16 新昌县七星街道鑫瑞机械厂 一种带红外检验器的防回卷钢板整平机
JP2018167325A (ja) * 2017-03-29 2018-11-01 新日鐵住金株式会社 被矯正板のローラ矯正方法およびローラ矯正設備
WO2020132270A1 (en) * 2018-12-20 2020-06-25 Ametek, Inc. Texture analyzer
CN113182383A (zh) * 2021-04-27 2021-07-30 北京京东乾石科技有限公司 一种分拣系统和次级板整形方法
CN115255032A (zh) * 2022-07-01 2022-11-01 泰安华鲁锻压工控技术有限公司 一种矫平机的平整度检测系统及检测方法
DE102015102271C5 (de) 2014-02-26 2022-12-01 Arku Maschinenbau Gmbh Verfahren und Vorrichtung zum Richten von metallischen Teilen mit einer Reduzierung von Quetschkanten
TWI803342B (zh) * 2022-06-08 2023-05-21 國立中山大學 矯直機的輥輪調整總成

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038837A1 (ja) * 2011-09-14 2013-03-21 スチールプランテック株式会社 ローラレベラおよびそれを用いた板材の矯正方法
CN106955912A (zh) * 2017-04-28 2017-07-18 上海葛世工业自动化有限公司 自动扰度补偿装置及折弯机
CN111957763A (zh) * 2019-05-20 2020-11-20 张挺锋 工作辊及支承梁变形量测量装置
CN111438227B (zh) * 2020-04-01 2022-04-26 首钢京唐钢铁联合有限责任公司 一种热矫直机框架调整方法
CN113857295B (zh) * 2021-09-03 2023-12-05 中冶赛迪工程技术股份有限公司 一种矫直机弯辊力的设定方法
CN115945543A (zh) * 2022-12-09 2023-04-11 二重(德阳)重型装备有限公司 一种拉伸机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4454738A (en) * 1981-06-29 1984-06-19 The Paxson Machine Company Roller leveler and method of operating same
JPH11123457A (ja) * 1997-10-22 1999-05-11 Sumitomo Heavy Ind Ltd ローラレベラーのクラウニング装置およびそれを用いた横撓み補正方法
JP2002361323A (ja) * 2001-06-06 2002-12-17 Mitsubishi Heavy Ind Ltd 形状矯正設備、形状矯正方法、板材の反り評価装置、及び、板材の反り評価方法
JP3443036B2 (ja) * 1999-05-20 2003-09-02 住友重機械工業株式会社 ローラレベラーのクラウニング補正方法およびクラウニング装置
JP2010172925A (ja) * 2009-01-29 2010-08-12 Nippon Steel Corp ローラ矯正における被矯正材の材料定数および矯正状態の推定方法ならびにローラレベラの操業方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2219163A (en) * 1937-04-30 1940-10-22 Friedrich K Maussnest Sheet straightening machine
WO2011092754A1 (ja) * 2010-01-29 2011-08-04 スチールプランテック株式会社 ローラレベラ
JP2012171005A (ja) * 2011-02-24 2012-09-10 Jp Steel Plantech Co ローラレベラおよび金属板の矯正方法
WO2013038837A1 (ja) * 2011-09-14 2013-03-21 スチールプランテック株式会社 ローラレベラおよびそれを用いた板材の矯正方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4454738A (en) * 1981-06-29 1984-06-19 The Paxson Machine Company Roller leveler and method of operating same
JPH11123457A (ja) * 1997-10-22 1999-05-11 Sumitomo Heavy Ind Ltd ローラレベラーのクラウニング装置およびそれを用いた横撓み補正方法
JP3443036B2 (ja) * 1999-05-20 2003-09-02 住友重機械工業株式会社 ローラレベラーのクラウニング補正方法およびクラウニング装置
JP2002361323A (ja) * 2001-06-06 2002-12-17 Mitsubishi Heavy Ind Ltd 形状矯正設備、形状矯正方法、板材の反り評価装置、及び、板材の反り評価方法
JP2010172925A (ja) * 2009-01-29 2010-08-12 Nippon Steel Corp ローラ矯正における被矯正材の材料定数および矯正状態の推定方法ならびにローラレベラの操業方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015102271C5 (de) 2014-02-26 2022-12-01 Arku Maschinenbau Gmbh Verfahren und Vorrichtung zum Richten von metallischen Teilen mit einer Reduzierung von Quetschkanten
DE102015102271C9 (de) 2014-02-26 2023-05-25 Arku Maschinenbau Gmbh Verfahren und Vorrichtung zum Richten von metallischen Teilen mit einer Reduzierung von Quetschkanten
CN106111742A (zh) * 2016-06-22 2016-11-16 新昌县七星街道鑫瑞机械厂 一种带红外检验器的防回卷钢板整平机
JP2018167325A (ja) * 2017-03-29 2018-11-01 新日鐵住金株式会社 被矯正板のローラ矯正方法およびローラ矯正設備
WO2020132270A1 (en) * 2018-12-20 2020-06-25 Ametek, Inc. Texture analyzer
US11293743B2 (en) 2018-12-20 2022-04-05 Ametek, Inc. Texture analyzer
CN113182383A (zh) * 2021-04-27 2021-07-30 北京京东乾石科技有限公司 一种分拣系统和次级板整形方法
CN113182383B (zh) * 2021-04-27 2023-01-31 北京京东乾石科技有限公司 一种分拣系统和次级板整形方法
TWI803342B (zh) * 2022-06-08 2023-05-21 國立中山大學 矯直機的輥輪調整總成
CN115255032A (zh) * 2022-07-01 2022-11-01 泰安华鲁锻压工控技术有限公司 一种矫平机的平整度检测系统及检测方法
CN115255032B (zh) * 2022-07-01 2023-07-18 泰安华鲁锻压工控技术有限公司 一种矫平机的平整度检测系统及检测方法

Also Published As

Publication number Publication date
KR20140036041A (ko) 2014-03-24
CN202951731U (zh) 2013-05-29
IN2014KN00754A (en) 2015-10-02
JP5883455B2 (ja) 2016-03-15
JPWO2013038837A1 (ja) 2015-03-26
CN102989841A (zh) 2013-03-27
CN102989841B (zh) 2014-12-31
KR101461043B1 (ko) 2014-11-13

Similar Documents

Publication Publication Date Title
JP5883455B2 (ja) ローラレベラおよびそれを用いた板材の矯正方法
KR101508711B1 (ko) 롤러 레벨러 및 금속판의 교정 방법
WO2013121891A1 (ja) ローラレベラおよび板材の矯正方法
KR101574032B1 (ko) 금속 판재의 압연 장치
JP4214150B2 (ja) 金属板材の圧延方法および圧延装置
KR101639145B1 (ko) 금속 판재의 압연 장치
JP5026091B2 (ja) 金属板材の圧延方法及び圧延装置
TWI380858B (zh) 板壓延機及板壓延方法
JP4924125B2 (ja) 鋼矢板の矯正方法および鋼矢板用矯正装置
TWI679069B (zh) 壓延機及壓延機的設定方法
JP6777051B2 (ja) 板クラウン制御方法、板クラウン制御装置、及び鋼板の製造方法
JP4505550B2 (ja) 金属板材の圧延方法および圧延装置
CN110382127B (zh) 交叉角识别方法、交叉角识别装置及轧机
JP4214069B2 (ja) 金属板材の圧延方法および圧延装置
CN112437701B (zh) 轧机和轧机的设定方法
CN112243394B (zh) 轧机以及轧机的设定方法
JP2017006941A (ja) ローラーレベラの零点調整方法
JP7127446B2 (ja) 圧延機の設定方法
JP4256832B2 (ja) 金属板材の圧延方法および圧延装置
JP4256827B2 (ja) 金属板材の圧延方法および圧延装置
JP2006116569A (ja) 金属板材の圧延方法および圧延装置
JP2018089696A (ja) テーパー鋼板の矯正方法
TWI505879B (zh) Roller straightening machine and plate correction method
JP2008030045A (ja) 厚鋼板の圧延方法
JP2018051628A (ja) 圧延制御方法、鋼板の製造方法、圧延制御装置および鋼板の製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831610

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147004749

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013533571

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12831610

Country of ref document: EP

Kind code of ref document: A1