WO2013038573A1 - 硬脆性材料の研削・研磨加工システム、および研削・研磨方法 - Google Patents

硬脆性材料の研削・研磨加工システム、および研削・研磨方法 Download PDF

Info

Publication number
WO2013038573A1
WO2013038573A1 PCT/JP2011/075979 JP2011075979W WO2013038573A1 WO 2013038573 A1 WO2013038573 A1 WO 2013038573A1 JP 2011075979 W JP2011075979 W JP 2011075979W WO 2013038573 A1 WO2013038573 A1 WO 2013038573A1
Authority
WO
WIPO (PCT)
Prior art keywords
grinding
polishing
workpiece
measuring
hard
Prior art date
Application number
PCT/JP2011/075979
Other languages
English (en)
French (fr)
Inventor
茂 棚橋
松本 尚
将太 澤井
Original Assignee
新東工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新東工業株式会社 filed Critical 新東工業株式会社
Priority to CN201180071168.6A priority Critical patent/CN103561908B/zh
Priority to KR1020137031519A priority patent/KR20140062431A/ko
Priority to JP2013533455A priority patent/JP5842920B2/ja
Publication of WO2013038573A1 publication Critical patent/WO2013038573A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/065Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of thin, brittle parts, e.g. semiconductors, wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B29/00Machines or devices for polishing surfaces on work by means of tools made of soft or flexible material with or without the application of solid or liquid polishing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B29/00Machines or devices for polishing surfaces on work by means of tools made of soft or flexible material with or without the application of solid or liquid polishing agents
    • B24B29/005Machines or devices for polishing surfaces on work by means of tools made of soft or flexible material with or without the application of solid or liquid polishing agents using brushes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • B24B49/04Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent involving measurement of the workpiece at the place of grinding during grinding operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain

Definitions

  • the present invention relates to grinding and polishing using a hard and brittle material for manufacturing a wafer by slicing as a workpiece.
  • the present invention relates to a grinding / polishing system and a grinding / polishing method for a hard and brittle material that removes strain and microcracks in the surface layer of a workpiece.
  • Impurities generated by melting and heating are attached or distorted on the surface layer portion of the ingot of the material for manufacturing the wafer, and the surface layer portion of the block formed by cutting the ingot Distortion and microcracks have occurred. For this reason, in the next process, when the final product wafer is sliced, product defects may occur due to cracks or chips. Therefore, the grinding process for removing the distortion of the surface layer of the block to adjust the outer dimensions of the wafer to the standard, the removal of microcracks in the surface part of the ingot or block, and the miniaturization of the surface roughness are performed. Therefore, it is necessary to perform polishing to reduce cracks and chips when the ingot or block is sliced.
  • a wafer used for a semiconductor substrate or the like is obtained through the following steps A, B, and C.
  • Step A A step of forming an ingot by molding a material as a raw material by a pulling method (CZ method), a Bernoulli method, a hydrothermal growth method, or the like.
  • Process B The process of forming a block by cut
  • Step C Step of slicing the block to obtain a wafer.
  • a method for manufacturing a prismatic silicon block will be described.
  • silicon blocks After the molten raw material is poured into a mold and the surface layer portion (six sides) of the silicon ingot formed into a cubic shape is cut and removed with a band saw or a wire saw, the four side portions intersecting at right angles with each other by cutting the section into a quadrangle, A silicon block whose crystal structure is a polycrystal with its four corners forming a minute plane (chamfered portion), After cutting the top part and tail part of the silicon ingot manufactured in a cylindrical shape by the pulling method (CZ method) or Bernoulli method, the four side parts parallel to the column axis and perpendicular to each other on the body surface layer part, A square columnar silicon block in which a crystal structure in which a minute circular arc surface that is a part of the cylindrical surface layer portion is left and four corner portions are formed at a position (ridge) where the four side surface portions intersect with each other is
  • the prismatic silicon block has a size of a square having a cross section of 125 mm ⁇ 125 mm (name: 5 inches), a square of 156 mm ⁇ 156 mm (name: 6 inches), and a square of 210 mm ⁇ 210 mm (name: 8 inches).
  • a cylindrical shape as another shape of the block.
  • a method of manufacturing a sapphire wafer from a sapphire ingot will be described.
  • the sapphire ingot is obtained by forming sapphire or the like into a columnar shape by a pulling method (CZ method) or Bernoulli method.
  • a sapphire wafer is obtained by slicing the ingot.
  • the surface layer portion of the sapphire ingot has adhesion, unevenness, and distortion of impurities such as molten residue generated during heating and melting. When these are removed and the outer diameter is ground to a desired dimension, microcracks are generated in the surface layer.
  • polishing is performed before slicing to remove microcracks and reduce surface roughness. It is necessary to make it finer.
  • the size of the sapphire ingot made of a single crystal is generally 2 to 6 inches (51 to 154 mm) in diameter and 50 to 300 mm in length.
  • Quartz lumbar is obtained by growing a crystal by a hydrothermal growth method or the like to obtain an artificial quartz, and then grinding the surface (lumbard processing) in order to clarify the axial direction of the artificial quartz.
  • a crystal wafer can be obtained through a step for adjusting the outer shape of the lump as a wafer and a step for removing the wax and the like.
  • the crystal lumbard may not be horizontal at both end faces.
  • microcracks that are generated when grinding from artificial quartz.
  • polishing is performed before slicing and microcracking is performed. It is necessary to remove and refine the surface roughness.
  • Japanese Patent No. 3649393 discloses surface processing of a polycrystalline silicon block formed by cutting a cubic polycrystalline silicon ingot into a prismatic shape. Before slicing the silicon block into a silicon wafer, the side surface of the silicon block is polished with a resin brush or the like mechanically mixed with abrasive grains so that the surface roughness Ry is 8 ⁇ m or less. It is described that the unevenness is flattened. However, there is no description of surface layer distortion or microcracks generated when the silicon ingot is cut, and removal thereof.
  • a silicon ingot cut into a predetermined length using a band saw is ground into a cylindrical shape using a cylindrical grinder to remove the undulation, and then the body surface layer portion is removed.
  • These four sides are cut and removed using a band saw to form a quadrangular columnar silicon block having four side portions, and the surface roughness Ry before flattening the four side portions of the silicon block is X ⁇ m (in the example, Ry10
  • the polishing amount is flattened to 5 ⁇ X ⁇ m or more (in the example, the polishing amount is 100 ⁇ m)
  • the surface roughness is refined (in the example, to Ry 3 to 4 ⁇ m). It is described that micro cracks can be removed, and the crack defect reduction ratio when the silicon block is sliced into a silicon wafer has been improved by 6 times or more. That.
  • the conventional wire saw cutting method is generally a free abrasive grain method in which the wire is contacted and rotated while spraying abrasive grains on the cutting portion by the jet pressure of pressurized water. A new wire saw with a fixed length has been developed, and the cutting time can be greatly reduced.
  • the inventors have made 5 polycrystalline silicon ingots as shown in FIG. A 6-inch square (size on one side: 156.0 mm) and a block having a length of 300 mm were cut.
  • the time required for cutting was 8 Hr or more in the conventional wire saw, but the new wire saw can be completed in about 3 Hr, and it was confirmed that the cutting time can be greatly shortened.
  • the reason why the cutting time can be shortened is estimated as follows. That is, in the conventional loose abrasive type wire saw, when the wire is rotated at a high speed during the cutting process, the abrasive grains are scattered and the cutting efficiency is lowered. In the new wire saw, since the abrasive grains are fixed to the wire, the abrasive grains are not scattered with the rotation of the wire and can be cut efficiently.
  • the silicon block cut and formed from the silicon ingot has irregularities with surface roughness of about Ry 10 to 20 ⁇ m (JISB0601: 1994) on the side surface and corner surface portions in the cutting process, and depth from the surface layer surface.
  • microcracks of 80 to 100 ⁇ m are generated.
  • the wafer may be cracked or chipped due to the block surface roughness and microcracks. Therefore, there is a demand for a polishing apparatus that removes microcracks and makes the surface roughness several ⁇ m or less before slicing.
  • the present invention solves the above-mentioned requirements, and grinds the side surface and the corner of a block (for example, a silicon block) formed by cutting an ingot into a quadrangular prism shape to process a cross-sectional dimension to a desired dimension, Alternatively, the distortion and impurities generated by melting and heating the outer periphery of an ingot (for example, a single crystal sapphire ingot) formed into a cylindrical shape by cutting the top portion and tail portion of an ingot having a substantially circular cross-sectional shape are removed.
  • a block for example, a silicon block
  • the distortion and impurities generated by melting and heating the outer periphery of an ingot (for example, a single crystal sapphire ingot) formed into a cylindrical shape by cutting the top portion and tail portion of an ingot having a substantially circular cross-sectional shape are removed.
  • a grinding / polishing system for hard and brittle materials is for manufacturing a wafer by slicing as shown in FIGS. 1, 2 and 5, for example.
  • a constant cutting amount (scientific term: belonging to “fixed cutting”) is set for the workpiece, the distortion of the workpiece is cut to adjust the shape, and the cross-sectional dimension is set.
  • Polishing to grind the surface layer of the workpiece by setting a grinding device that grinds the workpiece to the desired tolerance and a cutting amount (a scientific term: belonging to “constant pressure cutting”) with a constant pressing force on the workpiece Equipment, the cross-sectional dimensions and cross-sectional shape can be processed within the desired tolerances, and microcracks in the surface layer part can be accurately removed, and the surface roughness can be refined.
  • a grinding / polishing system is provided.
  • the dimensions of the workpiece are measured by the measuring means provided in the grinding apparatus or polishing apparatus, the measurement result is calculated by the control means, and the operation signal of the grinding apparatus or polishing apparatus is output. Accurate grinding / polishing can be performed.
  • the surface layer portion of the workpiece (W) is ground with a constant cutting amount, and the surface layer portion of the workpiece is processed.
  • the surface layer portion of the workpiece (W) is provided in the grinding / polishing system according to the second aspect.
  • a grinding device (1) having a measuring means (18) for measuring a dimension of (W) and a surface layer portion of the workpiece (W) after the grinding are polished with a constant pressing force, and the workpiece ( A polishing apparatus (2) for removing microcracks in the surface layer portion of W) and miniaturizing the surface roughness, and having a measuring means (18) for measuring the dimensions of the workpiece (2) (2) And / or).
  • a fixed cutting amount (scientific term: belonging to “fixed cutting”) is set for the workpiece, the distortion of the workpiece is scraped off and the shape is adjusted, Polishing the surface layer of the workpiece by setting the grinding means to grind the cross-sectional dimensions within the desired tolerance and the cutting amount (a scientific term: belonging to “constant pressure cutting”) with a certain pressing force on the workpiece
  • a polishing means capable of processing the cross-sectional dimensions and cross-sectional shape within desired tolerances, accurately removing microcracks in the surface layer portion, and miniaturizing the surface roughness.
  • a system for grinding and polishing brittle materials is provided.
  • the measurement means provided in the grinding / polishing apparatus measures the dimensions of the workpiece, the measurement result is calculated by the control means, and the operation signal of the grinding means or polishing means is output, so that it is based on the measured dimensions. Accurate grinding and polishing can be performed.
  • the grinding / polishing device and the grinding device or the polishing device can be combined in accordance with the shape of the workpiece and the processing purpose.
  • the apparatus (1) has a base (11) on which the work piece (W) can be moved in the vertical direction with its column axis placed horizontally, and a work piece ( W) is moved forward and backward in a direction perpendicular to the column axis of the workpiece (W) to position the workpiece (W) at the center of the base (11) and the shaft core is processed. It has a clamp shaft (13) that holds both ends of the workpiece (W) as the direction of the column axis of the workpiece (W), and the clamp shaft (13) centers the workpiece (W) on its axis.
  • a rotatable gripping means (12) and an abrasive layer (15a) in which abrasive grains are bonded to each other are fixed to a disk-like or annular base plate (15b).
  • the grinding device (1) has a base (11) on which the work piece (W) is placed horizontally with its column axis being movable, and a work placed on the base (11).
  • the grinding means (14) and the gripping means (12) or the grinding means (14) correspond to at least the length of the workpiece (W) in the column axis direction of the workpiece (W). Moving means (19) for moving the distance to be moved.
  • the workpiece is gripped by the gripping means, moved by the moving means, ground by the grinding means, and the workpiece is rotated by the clamp shaft of the gripping means. Since grinding can be performed, impurities in the surface layer portion of the workpiece and distortion in the column axis direction can be accurately removed. Further, since the workpiece gripped by the gripping means by the moving means or the grindstone as the rotating grinding means moves a distance corresponding to the length of the workpiece, it can be ground over the entire length of the workpiece. .
  • the apparatus (2) has a base (11) on which the work piece (W) can be moved in the vertical direction with its column axis placed horizontally, and a work piece ( W) is moved forward and backward in a direction perpendicular to the column axis of the workpiece (W) to position the workpiece (W) at the center of the base (11) and the shaft core is processed.
  • a clamp shaft (13) that grips both ends of the workpiece (W) as the direction of the column axis of the workpiece (W), and the clamp shaft (13) centers the workpiece (W) on its axis.
  • a bunch of brush bristle material (21) which has a gripping means (12) which can be rotated and a rotating disk (22) and which contains abrasive grains on a disk-shaped surface.
  • a polishing brush (20) wherein the polishing brush is detachably connected to a rotation drive source, and the brush bristle material (21) is pressed against the workpiece (W) to rotate.
  • the workpiece is gripped by the gripping means, moved by the moving means, polished by the polishing means, and the workpiece is rotated by the clamp shaft of the gripping means and polished. Therefore, it is possible to accurately perform a polishing process that removes microcracks from the workpiece and refines the surface roughness.
  • the workpiece gripped by the gripping means by the moving means or the polishing brush as the rotating polishing means moves a distance corresponding to the length of the workpiece, the workpiece can be polished over the entire length of the workpiece. it can.
  • a grinding / polishing system in the grinding / polishing system according to the second invention, for example, as shown in FIG. (W)
  • a base (11) that can be moved in the vertical direction with its column axis placed horizontally, and a direction in which the work piece placed on the base is orthogonal to the column axis of the work piece
  • a clamp (13) for gripping both ends of the work piece with the pressing tool (34) for positioning the work piece at the center of the base and the axis as the column axis of the work piece.
  • the clamp shaft can rotate the work piece around its axis, and the gripping means (12), the grinding means (14), or the polishing means (20) One of them corresponds to at least the length of the workpiece in the column axis direction of the workpiece.
  • Moving means (19) for moving the separation; the grinding means (14) combines the abrasive grains with each other to form a disk-shaped or annular base plate (15b).
  • polishing means (20) is arranged by bundling a brush bristle material containing abrasive grains on a disk-shaped surface, and presses the brush bristle member against the workpiece. And a polishing brush that is detachably held, and is configured to rotate the brush polishing.
  • a base (11) that can be moved in the vertical direction with its column axis placed horizontally, and the workpiece placed on the base in a direction perpendicular to the column axis of the workpiece.
  • a moving means (19) for moving the distance; the grinding means (14) is configured to turn a grinding body (15) in which an abrasive grain layer (15a) in which abrasive grains are bonded to each other is formed in a disk shape or an annular shape.
  • a grindstone fixed to 16) wherein the grindstone is detachably connected to a rotational drive source, and is rotated by pressing the abrasive layer (15a) against the workpiece (W).
  • the means (20) has a rotating disc in which a brush bristle material containing abrasive grains is bundled and arranged on a disk-shaped surface, and the brush bristle member is pressed against the workpiece to rotate. A polishing brush that is freely held is provided, and the brush polishing is rotated.
  • the workpiece is gripped by the gripping means, moved by the moving means, ground by the grinding means, the ground workpiece is polished by the polishing means, and Since the workpiece can be rotated and polished by the clamp shaft of the gripping means, impurities on the surface layer of the workpiece and distortion in the column axis direction can be accurately removed, and microcracks in the workpiece can be removed. It is possible to accurately perform a polishing process for reducing the surface roughness.
  • the workpiece gripped by the gripping means by the moving means, or the grindstone as the rotating grinding means and the polishing brush as the rotating polishing means move a distance corresponding to the length of the workpiece. It can be polished over the entire length of the workpiece.
  • the grain size of the abrasive grains of the grinding means is set as follows: F90 to F220 (JISR6001: 1998) for rough grinding, or # 240 to # 500 (JISR6001: 1998) for precision grinding.
  • the abrasive grain size of the grinding means is F90 to F220 (JISR6001: 1998) for rough grinding, or # 240 to # 500 (JISR6001: 1998) for precision grinding. Rough grinding or precision grinding can be performed efficiently.
  • the grinding / polishing system according to the tenth aspect of the present invention in the grinding / polishing system according to the sixth to eighth aspects, for example, as shown in FIG. ) Is characterized by having two or more types of abrasive grains.
  • the grain size of the abrasive grains is # 240 to # 500 (JISR6001: 1998) for rough polishing, or # 800 to # 1200 (JIS R6001: 1998) for precision polishing.
  • the polishing means contains coarse abrasive grains.
  • the brush bristle material (36) is arranged near the rotation center of the rotating disk, and the brush bristle material (35) containing fine abrasive grains is arranged with the brush bristle material (36) containing coarse abrasive grains. It is characterized by being arranged around the perimeter.
  • the abrasive grains contained in the brush bristle material of the polishing means have two or more types of grain sizes, rough polishing and precision polishing of the workpiece can be performed with one polishing apparatus. This can be done and the equipment cost can be reduced.
  • a brush bristle material containing abrasive grains having a coarse particle size is arranged in a portion close to the rotation center of the rotating disk, and a brush bristle material containing abrasive grains having a fine grain size is provided. It is desirable to arrange around the arrangement.
  • the grain size of the abrasive grains contained in the brush bristle material for rough polishing is set to # 240 to # 500 in the fine powder category defined in JIS R6001: 1998, and the fine grain size contained in the brush bristle material for precision polishing is used. It is desirable that the grain size is # 800 to # 1200 in the fine powder category.
  • the high polishing ability of the polishing brush for rough polishing accurately removes microcracks existing on the surface layer of the workpiece, and the surface roughness of the surface layer roughened by rough polishing by the polishing brush for precision polishing is reduced. It is possible to prevent cracking or chipping that occurs when the wafer is refined and sliced into a wafer in a subsequent process.
  • the grinding means of the grinding apparatus and the polishing means of the polishing apparatus are interchangeable.
  • the grinding device can be replaced with a polishing device, or the polishing device can be replaced with a grinding device by exchanging the grinding device and the polishing device.
  • the grinding means of the grinding apparatus and the polishing means of the polishing apparatus can be interchanged, and the grinding apparatus is replaced with the polishing apparatus by replacing the grinding means and the polishing means, or the polishing apparatus is the grinding apparatus.
  • the main body of the grinding apparatus and the polishing apparatus portions excluding the grinding means and the polishing means
  • the manufacturing cost of the apparatus main body can be reduced.
  • the grinding means and the polishing means of the grinding / polishing apparatus are interchangeable.
  • the grinding means and the polishing means can be interchanged by using the mounting portions of the grinding means and the polishing means in common.
  • a polishing apparatus can be obtained by replacing the polishing means with a grinding means.
  • it can be set as a grinding device by replacing
  • FIG. 23 in the case of a grinding / polishing apparatus in which a pair of grinding means and two pairs of grinding means are connected, by replacing the grinding means at the center in the left-right direction of the figure with a grinding means, Polishing can be performed after two-stage grinding.
  • the workpiece before grinding / polishing is ground / polished in the grinding / polishing system according to the first aspect, for example, as shown in FIG.
  • a transfer device (5) having a section (52).
  • the workpiece is transferred by the transfer device to the carry-in device, the grinding / polishing device, the grinding device, the polishing device, and the carry-out device.
  • the unpolished workpiece can be easily carried out to the carry-out device after the grinding and polishing processes are completed by the grinding device and the polishing device.
  • the workpiece can be rotated by the grip portion of the transfer device, the side surface processed by the grinding device or the polishing device can be changed.
  • the grinding means or the measuring means provided in the polishing apparatus comprises a workpiece.
  • a pair of reference surfaces formed with a known reference interval dimension in the horizontal direction perpendicular to the column axis, and a pair of reference surfaces formed with a known reference interval dimension in the vertical direction perpendicular to the column axis.
  • a reference block having a horizontal direction, a measuring tool for measuring the distance between the reference surface on both sides of the reference block and the grinding / polishing part on both sides of the workpiece, and a vertical direction as the measurement direction.
  • a measuring tool for measuring the height position of the grinding / polishing portion on the upper surface of the block and the upper surface of the workpiece.
  • the measuring means measures the height position of the reference block, the measuring tool that measures the horizontal dimension of the reference block and the workpiece, and the upper surface of the reference block and the workpiece.
  • the workpiece can be gripped by the gripping means with the column axis of the workpiece aligned with the axis of the clamp shaft.
  • the control means is a pair of reference blocks provided in the gripping means of the grinding apparatus and the polishing apparatus.
  • Grinding device and Polishing device are equipped with a function to perform arithmetic processing for centering and gripping the workpiece, initial setting items input before the start of processing, and grinding device and polishing device, respectively
  • a measurement signal measuring instrument outputs to the arithmetic processing of the measuring means, characterized in that a function of outputting an operation signal to the means of the grinding apparatus and polishing apparatus.
  • the control means is a pair of reference blocks provided in the gripping means of the grinding / polishing apparatus.
  • a function of calculating a base point position where the cutting amount of the grinding means or the polishing means becomes zero by bringing each tip of the grinding means or the polishing means into contact with a reference surface; and a measuring means of the grinding / polishing apparatus The difference between the reference surface on both sides of the reference block and the processed part on both sides of the workpiece is measured by a measuring tool provided on the workpiece, and the cross-sectional dimensions of the processed part of the workpiece before and after processing are calculated.
  • Functions a function for the grinding / polishing apparatus to perform arithmetic processing for centering and gripping the workpiece, initial setting items input before the start of processing, and measurement output by the measuring tool of the measuring means
  • Signal and Arithmetic processing characterized by comprising a function of outputting an operation signal to the grinding means and the polishing means.
  • control means is provided with each function for automating the grinding / polishing processing system, so that grinding and polishing of the processed portion of the workpiece can be accurately performed and labor saving can be achieved. Can be achieved.
  • the grinding / polishing system according to the twentieth aspect of the present invention is the grinding / polishing system according to the eighteenth or nineteenth aspect, wherein the workpiece has a prismatic shape and is subjected to grinding / polishing.
  • the tolerance of the cross-sectional dimension of the workpiece is ⁇ 0.5 mm, and the tolerance of the cross-sectional shape at the corner where the two side surfaces of the workpiece intersect each other is ⁇ 0.1 degrees.
  • the cross-sectional dimensions of the silicon block are 125 mm ⁇ 125 mm (name: 5 inches), 156 mm ⁇ 156 mm (name: 6 inches), 210 mm ⁇ 210 mm (name: 8 inches).
  • the required tolerance is ⁇ 0.5 mm, and the required tolerance of the cross-sectional shape of the corner where the two side surfaces of the silicon block cross each other is 90 ° ⁇ 0.1 °. Therefore, grinding and polishing can be performed based on cross-sectional dimension tolerance and cross-sectional shape tolerance.
  • the grinding / polishing system according to the twenty-first aspect of the present invention is the grinding / polishing system according to the eighteenth or nineteenth aspect, wherein the workpiece has a cylindrical shape and is subjected to grinding / polishing.
  • the tolerance of the cross-sectional dimension of the workpiece is ⁇ 0.5 mm.
  • the cross-sectional dimension is 2 to 6 inches (51 to 154 mm), and the required tolerance is ⁇ 0.5 mm.
  • the workpiece is ground by the grinding apparatus using the grinding / polishing system according to the first to third aspects, and then polished by the polishing apparatus. It is characterized by processing.
  • a constant depth of cut is set for the work piece, the distortion of the work piece is removed to adjust the shape, and the grinding device for grinding the cross-sectional dimension within a desired tolerance; Grinding and polishing is performed using a polishing device that polishes the surface layer of the workpiece by setting a cutting amount with a constant pressing force on the workpiece, so that the cross-sectional dimensions and cross-sectional shape are processed within the desired tolerances.
  • a method for grinding and polishing a hard and brittle material capable of accurately removing microcracks in the surface layer portion and miniaturizing the surface roughness is provided.
  • the dimensions of the workpiece are measured by the measuring means provided in the grinding apparatus or polishing apparatus, the measurement result is calculated by the control means, and the operation signal of the grinding apparatus or polishing apparatus is output. Accurate grinding / polishing can be performed.
  • a grinding device that sets a fixed depth of cut for a work piece of a hard and brittle material, trims the distortion of the work piece to adjust the shape, and grinds a cross-sectional dimension within a desired tolerance
  • a grinding device in the case of a grinding / polishing device and a polishing device that polishes the surface layer portion of the work piece by setting a cutting amount with a constant pressing force on the work piece (a polishing means in the case of a grinding / polishing device)
  • the cross-sectional dimensions and cross-sectional shape can be processed within the desired tolerances, and the microcracks in the surface layer can be accurately removed to reduce the surface roughness. it can. Thereby, in the next process, it is possible to reduce the occurrence rate of defective products due to cracks / chips generated when slicing the wafer.
  • FIG. 1 is a plan view of a grinding apparatus for processing a prismatic workpiece according to the present invention.
  • FIG. 2 is a plan view of a polishing apparatus for processing a prismatic workpiece according to the present invention.
  • FIG. 3 is a plan view of a grinding apparatus for processing a cylindrical workpiece according to the present invention.
  • FIG. 4 is a plan view of a polishing apparatus for processing a cylindrical workpiece according to the present invention. [FIG.
  • FIG. 5 A grinding device and a polishing device for processing prismatic and cylindrical workpieces according to the present invention, a transfer device for setting a workpiece on each of the devices, a workpiece carry-in device, and It is a top view which shows the Example of 1st Embodiment which has arrange
  • FIG. 6 is a front view showing the arrangement of gripping means and moving means by placing a workpiece on a base located at the operation start position of the grinding apparatus and polishing apparatus of the present invention.
  • FIG. 7 is a side view showing a state in which a workpiece is placed on the base of the grinding apparatus and polishing apparatus of the present invention and the pressing tool of the workpiece is released.
  • FIG. 6 is a front view showing the arrangement of gripping means and moving means by placing a workpiece on a base located at the operation start position of the grinding apparatus and polishing apparatus of the present invention.
  • FIG. 7 is a side view showing a state in which a workpiece is placed on the base
  • FIG. 8 is a side view showing the arrangement of the measuring tool of the measuring means with the workpiece placed on the base of the grinding apparatus and polishing apparatus of the present invention.
  • FIG. 9 is a front view of a cup-type grindstone according to the grinding means of the present invention.
  • 9A is a partial cross-sectional view seen from the front
  • FIG. 9B is an AA arrow view (bottom view).
  • FIG. 10 is a front view of a cup-type grindstone according to the grinding means of the present invention.
  • FIG. 10 (A) is a partial cross-sectional view as seen from the front
  • FIG. 10 (B) is an AA arrow view (bottom view).
  • FIG. 11 is a front view of a segment-type polishing brush provided with a brush bristle material with coarse abrasive grains and a fine brush bristle member on one rotating disk according to the polishing means of the present invention.
  • FIG. 12 is a bottom view of FIG.
  • FIG. 13 is a perspective view showing a roll-type grindstone of grinding means for grinding a cylindrical workpiece according to the present invention.
  • FIG. 14 is a perspective view showing a roll-type polishing brush of polishing means for polishing a cylindrical workpiece according to the present invention.
  • FIG. 15 is a perspective view when a polycrystalline silicon ingot is cut with a wire saw to form silicon blocks (A), (B), and (C).
  • FIG. 16 is a perspective view of polycrystalline silicon blocks (A), (B), and (C) formed in FIG. [FIG. 17] It is explanatory drawing which looked at the state which cut
  • FIG. 18 is a perspective view of a single crystal silicon block formed in FIG.
  • FIG. 19 is a perspective view showing a single crystal sapphire ingot formed into a columnar shape by cutting a top portion and a tail portion.
  • FIG. 20 is an explanatory diagram for explaining the shape of a quartz lumbard.
  • FIG. 21 is a plan view of a grinding / polishing apparatus for processing a prismatic workpiece according to the present invention.
  • FIG. 22 is a plan view of a grinding / polishing apparatus for processing a cylindrical workpiece according to the present invention.
  • FIG. 23 is a plan view of a modified example of a grinding / polishing apparatus for processing a prismatic workpiece according to the present invention.
  • FIG. 24 A grinding apparatus and a polishing apparatus for processing prismatic and cylindrical workpieces according to the present invention, a transfer device for setting a workpiece in each of the devices, a workpiece carry-in device, and It is a top view which shows the Example of 2nd Embodiment which has arrange
  • the grinding / polishing system grinds the surface layer portion of the work piece (W) made of a hard and brittle material, removes impurities in the surface layer portion of the work piece (W) and distortion in the column axis direction and reduces the cross-sectional dimension.
  • Grinding device (1) to make a desired dimension and the surface layer portion of the workpiece (W) after the grinding process are polished to remove microcracks in the surface layer portion of the workpiece (W) Processing based on polishing apparatus (2) for reducing surface roughness, initial setting items input before starting processing, measurement signal of grinding apparatus (1), and measurement signal of polishing apparatus (2) And a control means for outputting an operation signal of the grinding device (1) and an operation signal of the polishing device (2) based on the result of the arithmetic processing.
  • hard brittle materials refer to materials such as glass, ceramics, quartz, quartz, etc. that have high hardness and hardness but are weak to impact and brittle.
  • FIG. 1 shows a grinding apparatus (1) for grinding a prismatic workpiece (W) according to the present invention.
  • the grinding apparatus (1) includes a gripping means (12) for gripping the workpiece (W), and a grinding means A (14) for grinding the side surface portion (F) and the corner portion (C) of the workpiece (W). ), A reference block (K) that forms a reference surface, a measuring means (18) that measures a cross-sectional dimension of the workpiece (W), and the gripping means (12) that grips the workpiece (W).
  • a moving means (19) for moving and moving the workpiece (W) between the measuring means (18) and the grinding means A (14) is provided.
  • the moving means (19) measures the workpiece (W) by moving the gripping means (12) holding the workpiece (W) between the measuring means (18) and the grinding means A (14). Alternatively, the workpiece (W) is ground. However, the gripping means (12) that grips the work piece (W) is fixed, and the measurement means (18) and the grinding means A (14) are moved at the position of the work piece (W). W) may be measured and ground.
  • the workpiece (W) placed on the grinding device (1) is measured for cross-sectional dimensions by the measuring means (18) before starting the grinding process.
  • the cross-sectional dimension of the workpiece (W) was added to the grinding allowance, the polishing allowance, and the cross-sectional dimension after grinding / polishing, which have been input to the control means in advance as initial setting items. If it is smaller than the size, the grinding process of the grinding device (1) is stopped by the arithmetic processing of the control means.
  • the workpiece (W) can be returned to the remelting step after the gripping state of the gripping means (12) is released.
  • the workpiece (W) melted in the remelting step is re-formed into a cylindrical shape when the raw material is, for example, single crystal silicon or sapphire, and into a cubic shape when polycrystalline silicon is used. Molded again.
  • the grinding device (1) can place the workpiece (W) so that its column axis is horizontal and move up and down in the vertical direction.
  • the workpiece (W) placed on the platform (11) is moved forward and backward in a direction perpendicular to the column axis of the workpiece (W) (the workpiece (W)).
  • a clamp shaft (13) is provided for gripping. The clamp shaft (13) grips the workpiece (W).
  • the clamp shaft (13) grips the workpiece (W) around its axis. As shown in FIG. 6, the gripping means (12) enables the workpiece (W) to be “intermittently rotated” or “continuously rotated”.
  • the gripping means (12) grips the workpiece (W) so as to be capable of “intermittent rotation”.
  • the shape of the portion to be ground / polished of the workpiece (W) is a flat surface, 1.
  • “Intermittent rotation” of the clamp shaft (13) of the gripping means (12) gripping the workpiece (W) for positioning on both sides in the Y direction shown in FIG. It means to make it.
  • the operation and processing sequence of “intermittent rotation” will be described by taking an example of grinding / polishing of a rectangular column-shaped polycrystalline silicon block whose processing surfaces are both flat.
  • the first set of opposing side surface portions (F) ( 16) is positioned on both sides in the Y direction shown in FIGS.
  • the gripping means (12) grips the workpiece (W) so that it can be “continuously rotated” means that the section of the workpiece (W) to be ground and polished has an arc shape, for example, a single cylindrical shape.
  • the grinding means (20) or the polishing means (30) is arranged on one side, and the clamp shaft (13) that grips the workpiece (W) is "continuously rotated” at a rotational speed set separately. This refers to grinding and polishing.
  • the clamp shaft (13) of the gripping means (12) provided in the grinding device (1) or the polishing device (2) grips both end faces of the work piece (W) and the work piece (W ) Is measured and stored in the control means, and the measurement result is an operation signal for controlling the movement distance of the moving means (19) to be described later after being processed.
  • the clamp shaft (13) of the gripping means (12) that grips the workpiece (W) by the operation of the moving means (19) by the operation signal causes the measuring means (18) and the grinding means (1), or It is moved between the measuring means (18) and the polishing means (2) to measure the cross-sectional dimension of the workpiece (W) and perform grinding or polishing.
  • the measuring means (18) and the grinding means (1), or the measuring means (18) and the polishing means (2) may move between the clamp shafts (13).
  • the grinding means A (14) includes a grinding body (15) in which an abrasive layer A (15a) in which abrasive grains are bonded to each other is fixed to a disk-like or annular base plate (15b).
  • the grinding means A (14) is detachably connected to a rotational drive source via a rotating shaft (17), and the abrasive grain layer A (15a) faces the processing portion of the workpiece (W). It is made to contact, press and rotate.
  • the base plate (15b) does not have to be a flat surface, and for example, the position where the abrasive layer A (15a) is fixed can be a convex shape.
  • FIG. 10 the base plate (15b) does not have to be a flat surface, and for example, the position where the abrasive layer A (15a) is fixed can be a convex shape.
  • the grinding means A (14) may adhere the abrasive layer A (15a) to the rotating disk (16).
  • the means for fixing the abrasive layer A (15a) to the rotating disk (16) may be either fixed with a bolt or the like, or molded integrally with the rotating disk (16).
  • the grinding apparatus (1) is preferably provided with a pair of grinding means A (14) (grinding stones) facing each other so that the abrasive layer A (15a) is in surface contact with both sides of the workpiece (W).
  • the grinding means A (14) is detachably provided in the grinding device (1).
  • the grinding device (1) includes a measuring means (18) for measuring a cross-sectional dimension of a reference block in which a pair of reference surfaces are formed in a horizontal direction and a vertical direction perpendicular to a column axis, and a cross-sectional dimension of a workpiece (W). Is provided.
  • the distance between the gripping means (12) and the grinding means A (14) is at least equivalent to the length of the workpiece (W) in the column axis direction of the workpiece (W).
  • the moving means (19) which moves is provided.
  • the grinding apparatus (1) as the grinding means A (14), combines abrasive grains on a disk-shaped surface to integrally form an abrasive grain layer A (15a), and the abrasive grain layer A (15a) is applied to the covered layer. Since the grindstone is brought into surface contact with the processed portion of the workpiece (W) and pressed to rotate, it can be ground with a constant cutting depth.
  • FIG. 3 shows a grinding apparatus (1) for grinding a cylindrical workpiece (W) according to the present invention.
  • the grinding device (1) includes a gripping means (12) for gripping the workpiece (W), a grinding means B (24) for grinding the body (B) of the workpiece (W), and a reference surface.
  • the workpiece is moved by moving the reference block (K) to be formed, the measuring means (18) for measuring the cross-sectional dimension of the workpiece (W), and the gripping means (12) for gripping the workpiece (W).
  • a moving means (19) for moving the object (W) between the measuring means (18) and the grinding means B (24) is provided.
  • the transfer means (19) fixes the gripping means (12) that grips the workpiece (W) in the same manner as described above, and connects the measuring means (18) and the grinding means B (24) to the workpiece (W).
  • the workpiece (W) may be measured and ground by moving the workpiece at the position.
  • the gripping means (12) of the grinding device (1) grips the workpiece (W) so that it can be “continuously rotated” around its axis.
  • the grinding means B (24) includes an abrasive layer B (25) in which abrasive grains are bonded to a cylindrical body surface, and a rotating cylinder (27) provided with a rotating shaft (27).
  • a roll type grindstone fixed to the surface of No. 26) was used.
  • the rotary shaft (27) at the axis of the rotary cylinder (26) is detachably connected to a rotational drive source, and the abrasive layer B (25) is attached to the grinding means B (25).
  • the processed portion of the workpiece (W) is rotated in contact with the workpiece in parallel with the axis of the workpiece (W).
  • a cup-type grindstone that is less expensive than a roll-type grindstone can also be used.
  • the grinding apparatus (1) has a pair of grinding means B (24) (grinding stone) in which the abrasive grain layer B (25) is parallel to and opposed to the axis of the workpiece (W). Is preferred.
  • the grinding means B (24) is detachably provided in the grinding device (1).
  • the grinding means A (14) and the grinding means B (24) of the grinding apparatus (1) are a rigid grindstone, the distortion of the workpiece (W) is removed, the shape is adjusted, and the external dimensions are desired. The ability to grind to within tolerances will be excellent. Therefore, it is possible to accurately remove impurities and external distortion of the surface layer portion of the prismatic and cylindrical workpiece (W).
  • the grindstones of the grinding means A (14) and the grinding means B (24) of the grinding apparatus (1) are set to the grain sizes of the abrasive grains constituting the abrasive layer A (15a) and the abrasive grain layer B (25).
  • the grain size of the grinding means A (14) or grinding means B (24) made of a grindstone of the grinding apparatus (1) is set to coarse grinding: F90 to F220 (JIS R6001: 1998) and precision grinding: # 240 to # 500 (JIS R6001: 1998), and the abrasive grain size of the polishing means A (20) or the polishing means B (30) comprising the polishing brush of the polishing apparatus (2) is used for rough polishing: # 240 to ## 500 (JISR6001: 1998) and precision polishing: # 800 to # 1200 (JISR6001: 1998).
  • the grain size of the abrasive grains of grinding means A (14) or grinding means B (24) was set to two groups of coarse powder classification F90 to F220 and fine powder classification # 240 to # 500 defined in JIS R6001: 1998.
  • the reason is as follows. If the cross-sectional dimension of the workpiece (W) cut in the previous process or the squareness of the corner (C) of the workpiece (W) is out of the tolerance, the sectional dimension or the sectional shape is the tolerance.
  • coarse grains of F90 to F220 are used so as to increase the cutting efficiency and enable grinding.
  • chipping such as corners of polycrystalline silicon blocks
  • the fine powder classification of # 240 to # 500 It is good to select and use.
  • FIG. 2 shows a polishing apparatus (2) for polishing a prismatic workpiece (W) according to the present invention.
  • the polishing apparatus (2) polishes the gripping means (12) for gripping the workpiece (W) that has finished the grinding process, and the side surface portion (F) and the corner portion (C) of the workpiece (W).
  • the moving means (19) fixes the gripping means (12) that grips the workpiece (W) in the same manner as the moving means (19) of the grinding apparatus (1), and measures the measuring means (18) and the polishing means A. (20) may be moved at the position of the workpiece (W) to measure and grind the workpiece (W).
  • the polishing apparatus (2) has a base (11) on which the workpiece (W) is placed so that its column axis is horizontal and can be moved up and down in the vertical direction, and the base (11). Pressing to position the workpiece (W) at the center of the base (11) by moving the placed workpiece (W) forward and backward in a direction perpendicular to the column axis of the workpiece (W)
  • a clamp shaft (13) is provided for gripping both ends of the workpiece (W) with the tool (34) and the axis as the direction of the column axis of the workpiece (W).
  • the clamp shaft (13) grips the workpiece (W).
  • the gripping means (12) grips the workpiece (W) so that it can be “intermittently rotated” or “continuously rotated”.
  • the gripping means (12) grips the workpiece (W) so as to be capable of “intermittent rotation”.
  • the shape of the portion to be ground / polished of the workpiece (W) is a flat surface, 1.
  • “Intermittent rotation” of the clamp shaft (13) of the gripping means (12) gripping the workpiece (W) for positioning on both sides in the Y direction shown in FIG. It means to make it.
  • the operation and processing sequence of “intermittent rotation” will be described by taking an example of grinding / polishing of a rectangular column-shaped polycrystalline silicon block whose processing surfaces are both flat.
  • the first set of opposing side surface portions (F) ( 16) is positioned on both sides in the Y direction shown in FIGS.
  • the gripping means (12) grips the workpiece (W) so that it can be “continuously rotated” means that the section of the workpiece (W) to be ground and polished has an arc shape, for example, a single cylindrical shape.
  • the grinding means (20) or the polishing means (30) is arranged on one side, and the clamp shaft (13) that grips the workpiece (W) is "continuously rotated” at a rotational speed set separately. This refers to grinding and polishing.
  • the clamp shaft (13) of the gripping means (12) provided in the grinding device (1) or the polishing device (2) grips both end faces of the work piece (W) and the work piece (W ) Is measured and stored in the control means, and the measurement result is an operation signal for controlling the movement distance of the moving means (19) to be described later after being processed.
  • the clamp shaft (13) of the gripping means (12) that grips the workpiece (W) by the operation of the moving means (19) by the operation signal causes the measuring means (18) and the grinding means (1), or It is moved between the measuring means (18) and the polishing means (2) to measure the cross-sectional dimension of the workpiece (W) and perform grinding or polishing.
  • the measuring means (18) and the grinding means (1), or the measuring means (18) and the polishing means (2) may move between the clamp shafts (13).
  • the polishing means A (20) includes a rotating disk (22) and a rotating shaft (23) connected to a rotation driving source for rotating the rotating disk (22). And it was set as the polishing brush which bundled and arranged the brush bristle material A (21) containing the abrasive grain on the disk-shaped surface.
  • the polishing means A (20) is detachably connected to a rotational drive source, and presses the bristles of the brush bristle material A (21) in surface contact with the processed part of the workpiece (W). To be rotated.
  • the brush bristle material A (21) is consumed by bundling the brush bristle material A (21) mixed with abrasive grains so that it can be attached to and detached from the rotating disk (22).
  • a segment-type polishing brush in which only the brush bristle material A (21) needs to be replaced.
  • a cup-type polishing brush may be used in which the brush bristle material is fixedly attached to the rotating disk and is exchanged integrally with the rotating disk when the brush bristle material is consumed.
  • a segment type is used.
  • the polishing apparatus (2) includes a pair of polishing means A (20) (polishing brush) opposed so that the bristle portion of the brush bristle material A (21) is in surface contact with both sides of the workpiece (W). It is preferable to have.
  • the polishing means A (20) is detachably provided in the polishing apparatus (2).
  • the abrasive grain fixed to the brush bristle material A (21) of the grinding means A (20) of the grinding device (2) has two or more types of grain size, and the brush grain material A (35 having a coarse grain size). ) Is disposed on the inner ring portion close to the rotation center of the rotating disk (22), and the brush bristle material A (36) having a fine grain size of the abrasive grains is disposed on the outer ring portion far from the rotation center of the rotating disk (22). Also good.
  • the grain size of the abrasive grains to be fixed is, for example, for rough polishing for the purpose of removing microcracks and for precision polishing for the purpose of reducing the surface roughness.
  • the conventional polishing apparatus it was necessary to install two apparatuses for rough polishing and precision polishing separately.
  • As a polishing brush for polishing the prismatic workpiece (W) it is possible to provide the polishing means A (20) having both functions of rough polishing and precision polishing with a single polishing brush.
  • a single polishing apparatus (2) can perform rough polishing and precision polishing of the prismatic workpiece (W), thereby reducing equipment costs.
  • the polishing apparatus (2) is a measuring means (18) for measuring the cross-sectional dimension of the reference block in which a pair of reference surfaces are formed in the horizontal direction and the vertical direction perpendicular to the column axis and the cross-sectional dimension of the workpiece (W). Is provided.
  • the polishing apparatus (2) has a distance corresponding to at least the length of the workpiece (W) in the column axis direction of the workpiece (W) with respect to either the gripping means (12) or the polishing means A (20).
  • the moving means (19) which moves is provided.
  • the polishing apparatus (2) bundles and arranges the brush bristle material A (21) containing abrasive grains, and brings the bristle portion of the brush bristle material A (21) into surface contact with the processed part of the workpiece (W). Since it is pressed and rotated, it can be polished with a cutting amount with a constant pressing force.
  • FIG. 4 shows a polishing apparatus (2) for polishing a cylindrical workpiece (W) according to the present invention.
  • the polishing apparatus (2) polishes the gripping means (12) for gripping the workpiece (W) that has been subjected to the grinding process, and the body portion (B) of the workpiece (W), thereby performing microcracking.
  • the transfer means (19) fixes the holding means (12) holding the work piece (W) in the same manner as described above, and the measuring means (18) and the polishing means B (30) are connected to the work piece (W).
  • the workpiece (W) may be measured and ground by moving it at a position.
  • the gripping means (12) of the polishing apparatus (2) grips the workpiece (W) so that it can be “continuously rotated” about its axis.
  • the gripping means (12) of the polishing apparatus (2) can "continuously rotate" the workpiece (W) around its axis, similarly to the gripping means (12) of the grinding apparatus (1). Grip to.
  • the polishing means B (30) has a brush bristle material B (31 containing abrasive grains on the surface of the cylindrical body of the rotary cylinder (32) provided with the rotation shaft (33). ) was used.
  • the polishing efficiency can be improved (the polishing time can be shortened).
  • the rotary shaft (33) at the axis of the rotary cylinder (32) is detachably connected to a rotational drive source, and the bristles of the brush bristle material B (31) The part is brought into line contact with the processed part of the workpiece (W) in parallel with the axis of the workpiece (W) and pressed to rotate.
  • a segment-type or cup-type polishing brush that is less expensive than a roll-type polishing brush can also be used.
  • the polishing apparatus (2) arranges a brush bristle material B (31) containing abrasive grains on the surface of a cylindrical body, and the bristle portion of the brush bristle material B (31) is the workpiece (W). Since the processed portion is pressed and contacted in parallel with the axis of the workpiece, it is rotated, so that it can be polished with a cutting depth with a constant pressing force.
  • polishing means A (20) and the polishing means B (30) of the polishing apparatus (2) are used as polishing brushes, the bristle tips of the brush bristle material A (21) or the brush bristle material B (31) at the time of polishing processing
  • the surface of the workpiece (W) rotates in contact with the processing surface of the workpiece (W) while the periphery of the workpiece is pressed, and the surface layer portion of the workpiece (W) is polished around several tens to 100 ⁇ m. Therefore, the microcracking of the prismatic and columnar workpieces (W) can be removed and the polishing process can be accurately performed to reduce the surface roughness.
  • the abrasive grain fixed to the brush bristle material B (31) of the grinding means B (30) of the grinding device (2) has two or more kinds of grain sizes, and the brush bristle material B (37 with coarse grain size).
  • the brush bristle material B (37 with coarse grain size) Is arranged on the side of the rotary cylinder (32) where the workpiece (W) starts to be pressed and the brush bristle material B (38) having a fine grain size is used as the workpiece of the rotary cylinder (32). You may arrange
  • the polishing means B (30) having both the functions of rough polishing and precision polishing with a single polishing brush. Therefore, it is possible to perform rough polishing processing and precision polishing processing of the cylindrical workpiece (W) with a single polishing apparatus (2), and to reduce the equipment cost.
  • the fine particle classification # 240 to # 500 defined in JIS R6001: 1998 is used as the polishing brush for rough polishing
  • the fine particle classification ## of the fine powder classification is used for the polishing means A (20) or the polishing means B (30).
  • the reason why the two types of polishing brushes 800 to # 1200 are used as precision polishing brushes is as follows. Microcracks present in the surface layer portion of the workpiece (W) are accurately removed by the high polishing ability of the polishing brush for rough polishing. For precision polishing to reduce the surface roughness of the surface layer roughened by rough polishing with the polishing brush for precision polishing, and to eliminate the cracks and chips generated when the wafer is sliced in the subsequent process. It is preferable to polish with a polishing brush.
  • a mounting portion for the grinding means A (14) and the polishing means A (20) or the grinding means B (24) and the polishing means B (30) that are detachable from the grinding apparatus (1) and the polishing apparatus (2) Since the grinding device (1) main body and the polishing apparatus (2) main body can have the same specification, the manufacturing cost of the apparatus main body can be reduced.
  • [Processing by grinding / polishing system] 5 shows three grinding apparatuses (1) shown in FIG. 1, one polishing apparatus (2) shown in FIG. 2, one grinding apparatus (1) shown in FIG. 3, and FIG.
  • the control means (not shown) performs arithmetic processing based on the initial setting items that have been input before the start of machining and the measurement signals transmitted from the measurement means (18) provided in the grinding device (1) and the polishing device (2).
  • the control means functions to control the order in which the transfer device (5) swivels between the carry-in device (3), the grinding device (1), the polishing device (2), and the carry-out device (4). May be provided.
  • a transfer apparatus (5 ) Grips the workpiece (W), and the operating arm (51) turns. Therefore, the unground and polished workpiece (W) waiting on the carry-in device (3) is ground and polished by the grinding device (1) and the polishing device (2). 4) can be carried out fully automatically.
  • the gripping part (52) of the transfer device (5) is rotatable to a predetermined angle, the grinding device (1) and the polishing device (2) for processing the prismatic workpiece (W).
  • the “intermittent rotation” rotating mechanism provided on the clamp shaft (13) of the gripping means (12) may be eliminated, and the workpiece (W) may be “intermittently rotated” by the gripping portion (52).
  • Examples of the initial setting items that are input to the control unit according to the first aspect before the start of machining include the following items. 1. 1. A known reference interval dimension formed by a pair of two reference surfaces of a reference block (K) described later. Workpiece (W) type and shape information (number of prisms or cylinder) 3. 3. Grinding and polishing allowance for the surface layer of the workpiece (W) 4. Final cross-sectional dimensions and tolerances of workpiece (W) after grinding and polishing. Grinding means A (14) (described later) of the grinding apparatus (1) and polishing means A (20) (described later) of the polishing apparatus (2) when processing a prismatic workpiece (W).
  • the shape of the processed part of the work piece (W) is a case where an arc-shaped or cylindrical work piece (W) such as a corner part of a single crystal silicon block or a body part of a single crystal sapphire ingot is processed.
  • the moving speed of the workpiece (W) in the grinding and polishing processes needs to be set in a range in which no grinding trace or polishing trace remains, and the workpiece (W) has a prismatic shape, for example, a large number.
  • the side surface (F) and corner (C) of the crystalline silicon block and the side surface (F) of the single crystal silicon block it is set to 10 to 40 mm / second, and the workpiece (W) is cylindrical.
  • the speed is set to 10 mm / second or less.
  • the setting of the moving speed is related to the setting conditions of the grain size, depth of cut, and rotational speed of the abrasive grains for grinding / polishing, for example, if the grain size of the abrasive grains is coarse, set in the slow region of the range, If the grain size is small, it is necessary to set the area within the above range.
  • the workpiece (W) is shaped by removing a distortion of the workpiece (W) by setting a constant cutting amount in the grinding means A (14) or grinding means B (24) of the grinding device (1) with respect to the workpiece (W). And the function of grinding the cross-sectional dimension within a desired tolerance, and the pressing means A (20) or the polishing means B (30) of the polishing apparatus (2) with respect to the work piece (W). Since it has the function of setting the depth of cut by pressure and polishing the surface layer part of the workpiece (W) around several tens of ⁇ m to 100 ⁇ m, the cross-sectional dimensions and cross-sectional shape can be processed within the desired tolerances. The microcracks in the surface layer portion can be accurately removed, and the surface roughness can be made finer.
  • the cross-sectional dimension measured by the measuring means (18) of the grinding apparatus (1) before the start of grinding is arithmetically processed by the control means, and the workpiece (W) input to the control means in advance as an initial setting item. Since the grinding work and / or the polishing work and the final cross-sectional dimension after the grinding / polishing work are smaller than the total cross-sectional dimension, the grinding work and / or the polishing work cannot be performed.
  • the grinding process (1) is stopped and the gripping means (12) is placed on the base (11).
  • the workpiece (W) whose grinding / polishing processing has been stopped is re-melted (not shown) when the operating arm (51) of the transfer device (5) is rotated and operated to be held by the holding portion (52). It will be returned to the process.
  • the measuring means (18) provided in the grinding device (1) or the polishing device (2) is parallel to the column axis of the workpiece (W) on one of the clamp shafts (13) of the gripping means (12).
  • a reference block (K) is formed which has a pair of horizontal reference surfaces and a pair of vertical reference surfaces with a known reference interval dimension.
  • the measurement means (18) further sets the measurement direction to a direction orthogonal to the column axis direction of the workpiece (W), and performs vertical grinding / polishing of the reference block (K) and the workpiece (W).
  • the measuring tool A (18A) that measures the interval dimension (cross-sectional dimension) of the polishing portion, and the measurement direction is the vertical direction orthogonal to the measuring tool A (18A), and the upper surface of the reference block (K)
  • the measurement means (18) performs measurement as follows. ⁇ 1> For the measurement of the cross-sectional dimension of the reference block (K) in the horizontal direction perpendicular to the column axis (using the vertical reference plane), the reference interval dimension is controlled in advance as an initial setting item before processing starts. Is input. The distance between the reference surfaces of the reference block (K) is measured by the measuring tool A (18A) and transmitted to the control means. The measurement signal is arithmetically processed, and the measurement signal of the measuring tool A (18A) with respect to the reference dimension (cross-sectional dimension) of the reference block (K) is set.
  • the actual dimension between the horizontal processing parts perpendicular to the column axis which is the cross-sectional dimension of the workpiece (W)
  • the measuring tool A (18A) Is actually measured and the measurement signal is transmitted to the control means.
  • the measurement signal of the workpiece (W) is calculated based on the measurement signal of the reference dimension of the measuring tool A (18A) set in ⁇ 1>, and the actual dimension of the cross section of the workpiece (W) is calculated. Can be measured.
  • ⁇ 4> Regarding the setting of the cutting amount of the grinding means A (14) or grinding means B (24) and the polishing means A (20) or polishing means B (30), the above ⁇ 1>, ⁇ 2> and ⁇ 3>
  • the calculation results of ⁇ 1>, ⁇ 2>, and ⁇ 3>, which are automatically measured and automatically set, are based on the cross-sectional dimensions after grinding / polishing that have been input to the control means in advance as initial setting items before the start of machining.
  • the cutting amount of the grinding means A (14) or the grinding means B (24) and the grinding means A (20) or the grinding means B (30) is automatically set by further arithmetic processing.
  • the “cutting amount” is a feed amount neglecting deformation in a means that deforms during processing, such as a polishing brush, and is used separately from the “cutting allowance” that is actually ground or polished.
  • the operation signal For example, the workpiece (W) of the gripping means (12) is used as an operation signal determined by the type of workpiece (W) in the initial setting items and its shape information (the number of prisms or a cylinder). There is an actuation signal that determines "intermittent rotation” or “continuous rotation” of the clamp shaft (13) to be gripped.
  • a horizontal reference plane perpendicular to the column axis of the reference block (K) measured by the measuring tool A (18A) and a direction orthogonal to the column axis direction of the workpiece (W) (FIGS. 1 to 4).
  • the pressing tool (34) is positioned on both sides (FIGS. 1 to 4, 7) of the workpiece (W) based on the distance dimension (cross-sectional dimension) between the processing parts on both sides in the Y direction shown in FIGS.
  • the workpiece (W) is moved back and forth in the Y direction shown in FIG. 8 to set the workpiece (W) at the center position in the Y direction shown in FIGS. 1 to 4, 7 and 8 of the base (11). Can do.
  • the base (11) moves up and down, and the column axis of the workpiece (W) is ground by means of grinding means A (14) or polishing means A (20), grinding means B (24) or polishing means B. It can be set at the center position in the Z direction (see FIGS. 6 and 8) of (30).
  • a horizontal direction (Y direction shown in FIGS. 1 to 4, 7, and 8) perpendicular to a column axis direction of the workpiece (W) placed on the base (11) and a vertical direction (FIGS. 6 and 6). 8 in the Z direction) so that the clamp shaft (13) of the gripping means (12) can accurately grip the center positions of both end faces of the workpiece (W). Therefore, when the shape of the workpiece (W) to be ground and polished is a cylindrical shape (in the case of a single crystal sapphire ingot) or an arc shape (in the corner portion of a single crystal silicon block), the clamp of the gripping means (12) The shaft (13) can be processed accurately by "intermittent rotation” or “continuous rotation” about the axis.
  • the measuring instrument A (18A) and the measuring instrument B (18B) of the measuring means (18) include a contact method in which measurement is performed by directly contacting a measurement site, and a non-contact method in which measurement is performed by emitting laser light. Either of the formulas may be used.
  • the said control means is good to have the following function. That is, 1.
  • the grinding means A (14) and the polishing means A (20) or the grinding means B (14) and the polishing means are provided on the reference surfaces on both sides of the reference block (K) provided in the gripping means of the grinding apparatus and the polishing apparatus.
  • 1. A function of computing the base point position where the cutting amount of each means of the grinding device and the polishing device is “zero” by bringing the tips of B (30) into contact with each other.
  • the measuring tool A (18A) provided in the measuring means of the grinding apparatus and the polishing apparatus measures the difference between the reference surfaces on both sides of the reference block (K) and the processing parts on both sides of the workpiece (W). 2.
  • the workpiece (W) placed on the base (11) provided in the grinding device (1) and the polishing device (2) is pressed by the pressing tool (34) from both horizontal directions, and the workpiece After positioning at the center position in the horizontal direction orthogonal to the column axis of (W), by the measuring tool B (18B) of the measuring means (18) provided in the grinding device (1) and the polishing device (2), respectively.
  • the vertical position of the base (11) is adjusted, and the workpiece to be gripped by the clamp shaft (13) of the gripping means (12) provided in the grinding device (1) and the polishing device (2), respectively.
  • the initial setting items input before the start of processing, and the measuring tool A (18A) and measuring tool B (18B) of the measuring means (18) provided in the grinding device (1) and the polishing device (2), respectively, are output.
  • control means is equipped with various functions for automating the grinding / polishing system of hard and brittle materials, it is possible to accurately grind and polish the processed part of the workpiece (W) and to save labor. it can.
  • the tolerance of the cross-sectional dimension of the prismatic workpiece (W) to be ground and polished is ⁇ 0.5 mm, and the corner (C) where the two side surfaces (F) of the workpiece (W) intersect each other ) Of the cross-sectional shape is preferably ⁇ 0.1 degrees.
  • cross-sectional dimensions of a square pillar-shaped silicon block before the start of processing 125 mm ⁇ 125 mm (name: 5 inches), 156 mm ⁇ 156 mm (name: 6 inches), 210 mm ⁇ 210 mm (name: 8 inches) .
  • the required tolerance is ⁇ 0.5 mm
  • the required tolerance of the cross-sectional shape of the corner (C) where the two side surfaces (F) of the silicon block (W) cross each other is 90 ° ⁇ 0.1 °. It is. Therefore, grinding / polishing is accurately performed based on cross-sectional dimension tolerance and cross-sectional shape tolerance.
  • the tolerance of the cross-sectional dimension of the cylindrical workpiece (W) to be ground and polished should be ⁇ 0.5 mm.
  • the cylindrical single crystal sapphire ingot before the start of processing has a diameter of 2 to 6 inches (51 to 154 mm).
  • the required tolerance is ⁇ 0.5 mm. Therefore, grinding and polishing are accurately performed based on cross-sectional dimension tolerance.
  • the grinding means A (20) is then ground to grind and polish hard brittle materials. I do.
  • polishing is performed by the polishing means B (30).
  • polishing means A (20) or polishing means (30) by a cutting allowance 75 ⁇ m or more, the surface roughness Ry1.1 ⁇ m (JISB0601: 1994) may be performed ground and polished in the following.
  • processing steps of the prismatic workpiece (W) formed with the side surface portion (F) and the corner portion (C), which are grinding / polishing processing portions, may be performed in any of the following orders. 1. Grinding of the side surface (F), grinding of the corner (C), rough polishing of the side surface (F), precision polishing of the side surface (F), 2. Grinding of the side surface (F), rough polishing of the side surface (F), precision polishing of the side surface (F), grinding of the corner (C), 3. Rough grinding of side surface (F), precision grinding of side surface (F), grinding of corner (C), rough polishing of side surface (F), precision polishing of side surface (F)
  • drum body (B) whose shape of a grinding / polishing process part is a column shape in any of the following order. 1. Grinding, rough polishing, precision polishing, 2. Rough grinding, precision grinding, rough polishing, precision polishing
  • the machining start switch is turned on to start cutting / polishing.
  • the workpiece (W) conveyed on the carry-in device (3) is gripped by the gripping part (52) of the revolving transfer device (5).
  • the workpiece (W) is placed on the base (11) of the grinding apparatus (1) that performs the processing first.
  • the measuring means (18) measures the upper surface of the workpiece (W), and the vertical position of the column axis of the workpiece (W) matches the vertical position of the axis of the clamp shaft (13) of the gripping means (12). Thus, it is vertically moved by the base (11).
  • the pressing tool (14) advances from both sides in the horizontal direction (Y direction), and the workpiece (W) is positioned at the center thereof.
  • one of the clamp shafts (13) of the gripping means (12) moves forward in the X direction shown in FIG. 1 and is gripped by the clamp shafts (13) (13).
  • the base (11) is shrunk downward.
  • the gripping means (12) shown in FIG. 6 is moved between the grinding means A (14) and (14) by the operation of the moving means (19).
  • the tip of the abrasive layer A (15a) of the grinding means A (14) (14) comes into contact with the vertical reference surface of the reference block (K) provided on the gripping means (12), and the grinding means A ( The base point position where the cutting depth of the abrasive layer A (15a) of 14) is “zero” is stored in the control means.
  • the type of the workpiece (W) is common to the prismatic workpiece (W) (for example, polycrystalline or single crystal silicon block) or the cylindrical workpiece (W) (for example, single crystal sapphire ingot).
  • a grinding apparatus (1) equipped with a prismatic grinding means A (14) and a prismatic polishing means A when the polycrystalline silicon block is a workpiece (W). The details of the operation will be described by taking as an example a facility in which the carry-in device (3), the carry-out device (4) and the transfer device (5) are arranged in the polishing device (2) to which (20) is attached.
  • the gripping means (12) is moved to the measuring means (18) by the operation of the moving means (19), and as shown in FIG. 8 (Y direction), a first set facing both sides of the polycrystalline silicon block (W).
  • the cross-sectional dimension of the side surface portion (F) is measured by the measuring tool A (18A).
  • the measurement result is transmitted to the control means.
  • the measurement results transmitted to the control means are processed into actual dimensions in the control means, and the cutting means of the grinding means A (14) is cut based on the actual dimensions and the "cross-sectional dimensions after grinding" set in advance. The amount is set automatically.
  • the first set of both side surfaces (F) and (F) of the polycrystalline silicon block (W), whose cross-sectional dimensions are measured and the cutting depth of the grinding means A (14) is set, are ground by the operation of the moving means (19). It is moved between means A (14) and (14) and is ground. It is confirmed by the measuring tool A (18A) (18A) that the cross-sectional dimension between the side surface portions (F) and (F) is within the tolerance.
  • the clamp shafts (13) and (13) of the gripping means (12) are rotated 90 degrees by the rotation mechanism, and the second set of both side surfaces ( F) (F) is ground in the same manner as the first set of both side surfaces (F) and (F).
  • the grinding of the four side surfaces (F) is completed.
  • the polycrystalline silicon block (W) that has finished the grinding of the four side surfaces (F) returns to the operation start position shown in FIG. 6 while being held by the clamp shafts (13) and (13) of the holding means (12). Thus, the gripping state of the clamp shafts (13) and (13) is released and placed on the base (11).
  • the polycrystalline silicon block (W) is rotated by the operating arm (51) of the transfer device (5) and is held by the holding portion (52), so that the corner portion (C), which is the next processing step, is held. It is mounted on the base (11) of the grinding apparatus (1) for grinding.
  • the corner portion (C) is ground by the same operation sequence as that of the grinding device (1) for grinding the side surface portion (F).
  • the polycrystalline silicon block (W) that has finished grinding of the four corners (C) is shown in FIG. 6 in a state of being gripped by the clamp shafts (13) and (13) of the gripping means (12) in the same manner as described above.
  • the gripping state of the clamp shafts (13) (13) is released, and the clamp shafts (13) (13) are placed on the base (11).
  • the operating arm (51) of the transfer device (5) is turned to hold the polycrystalline silicon block (W) by the holding portion (52), and the base of the polishing device (2) which is the next processing step. It is mounted on a stand (11).
  • the four side portions (F) are polished by the same operation sequence as that of the grinding device (1). Thereby, all the grinding / polishing processes are completed.
  • the polycrystalline silicon block (W) placed on the base (11) of the polishing apparatus (2) is moved to the operating arm (51) of the transfer apparatus (5). ) Turns and is gripped by the gripping part (52), transferred to the carry-out device (4) and carried out.
  • grinding is performed by the grinding means A (14) or grinding means B (24) of the present invention, and the cross-sectional dimensions are ground within the tolerance of the processing dimensions, and the polishing means A (20) or the polishing means B (30).
  • the above-mentioned polycrystalline silicon block (W), single crystal silicon block (W), or single crystal sapphire ingot (W) whose surface roughness has been reduced by removing microcracks on the surface layer is sliced with a wire saw An embodiment formed on a wafer will now be described. In the example, the rate of occurrence of defective products due to cracks or chipping of the wafer could be reduced.
  • the workpiece (W) to be processed in Example 1 is perpendicular to the four side surfaces (F) cut by using a new wire saw made of a single abrasive ingot from a single silicon ingot.
  • This is a quadrangular prism-shaped polycrystalline silicon block (W) composed of four rectangular portions (C).
  • the polycrystalline silicon block A (W) located at the four corners was extracted and prepared. In the crystalline silicon block A (W), bulges were formed on the two side surfaces (F) as shown in FIG.
  • the grinding means A (14) of the grinding apparatus (1) employs a cup-type grindstone as shown in FIGS. From Table 3, diamond abrasive grains corresponding to F100 (JIS R6001: 1998) with high grinding ability were selected as the grain sizes of the abrasive grains forming the abrasive layer A (15a). The outer dimensions of the abrasive layer A (15a) were 250 mm in diameter and 8 mm in width.
  • the initial setting items shown in Tables 1 and 2 were input to the control means before starting machining.
  • the rectangular columnar polycrystalline silicon block (W), which is the workpiece (W) is placed on the base (11) of the grinding apparatus (1), and the processing start switch of the grinding apparatus (1) is turned on. It was.
  • the column axis is set at the center position in the Y direction.
  • both ends of the polycrystalline silicon block (W) were gripped by the operation of the clamp shafts (13) and (13) of the gripping means (12).
  • the moving means (19) is operated in the X direction shown in FIG. 1 to move the reference block (K) provided on the clamp shaft (13) to the position of the measuring tool A (18A).
  • the cross-sectional dimension of the reference block (K) was measured, and the output signal was transmitted to the control means.
  • the output signal obtained by measuring the cross-sectional dimension of the reference block (K) was stored in the control means as corresponding to the cross-sectional dimension (100 mm) of the reference surface input before the start of processing.
  • the polycrystalline silicon block A (W) held by the clamp shaft (13) of the holding means (12) was moved to the position of the measuring tool A (18A) by the next operation of the moving means (19).
  • the measuring tool A (18A) has a distance between a set of two side face portions (F) of the polycrystalline silicon block A (W) of 3 vertical positions ⁇ 3 horizontal positions. Measurements were made at a total of 18 locations, including 9 locations (total 9 locations) and another set of two side surface portions (F). As a result, the distance between the two side surfaces was 156.9 to 157.6 mm (average: 157.1 mm).
  • the surface roughness was Ry 21 to 27 ⁇ m (average: 24 ⁇ m), and the length was 499.6 mm.
  • the rotational speed was converted to 2700 min ⁇ 1 by converting from the reference peripheral speed of grinding process of 30 to 40 m / sec.
  • the clamp shaft (13) of the gripping means (12) is attached.
  • the other two side surface portions (F) were ground in the same manner as described above, and the grinding of the four side surface portions (F) was completed.
  • the clamp shaft (13) of the gripping means (12) gripping the polycrystalline silicon block A (W) is rotated by 45 degrees, and the first set The two corners (C) were positioned to face the grinding means (3) on both sides.
  • the grain size of the grinding means A (14) and the moving speed of the polycrystalline silicon block A (W) should be the same as those during the grinding of the side surface (F).
  • a crack called chipping was found at the joint with the side surface (F). Therefore, the grinding means A (14) was changed to a grindstone in which the grain size of the abrasive grains was reduced to # 500 (JIS R6001: 1998), and the moving speed of the polycrystalline silicon block A (W) was changed to 30 mm / second for grinding. .
  • the amount of grinding was reduced, but a C-plane having no chipping as described above could be formed.
  • the grinding of the other two corners (C) obtained by rotating the clamp shaft (13) of the gripping means (12) by 90 degrees also sets the grain size of the abrasive grains of the grinding means A (14) to # 500.
  • grinding was performed on the four corners (C).
  • the total of 18 dimensions between the two side surfaces (F) where the four side surfaces (F) face each other is 156.1 to 156.6 mm (average: 156.2 mm), and the four side surfaces (F) are cut.
  • the cost ( result calculated by measurement value / 2) was 390 to 480 ⁇ m (average: 430 ⁇ m), and the surface roughness was Ry 5 to 8 ⁇ m (average: 7 ⁇ m).
  • the polishing means A (20) of the polishing apparatus (2) used for the next processing includes the brush hair material A (35) for rough polishing and the brush hair material A (for precision polishing) (see FIG. 11 and FIG. 12).
  • a segment-type polishing brush was used in which the attachment base of 36) was bundled with each metal tube and made removable on the same rotating disk (22).
  • the brush bristle material A (35) for rough polishing of the polishing brush is obtained by selecting and fixing diamond abrasive grains corresponding to # 240 (JIS R6001: 1998) whose abrasive grain size is shown in Table 4.
  • Nine bundles of brush bristle material A (35) in which the mounting base was bundled with a metal tube to a thickness of ⁇ 23 mm were prepared.
  • the brush bristle material A (35) bundle was detachably attached by being evenly arranged on the circumference of the center diameter of 210 mm of the rotating disk (22).
  • brush bristle material A (36) for precision polishing diamond abrasive grains equivalent to # 800 (JIS R6001: 1998) shown in Table 4 are selected and fixed, and the mounting base is 23 mm in diameter with a metal tube. Bundled in thickness. 24 brush bristle materials A (36) bundles were prepared. The brush bristle material A (36) bundle was evenly arranged on the circumference of the center diameter of 280 mm of the rotating disk (22) and was detachably attached.
  • the processing conditions of the polishing means A (20) are as follows: the depth of cut is 0.5 mm, and the rotational speed is 1400 min ⁇ 1 converted from the reference peripheral speed of polishing processing of 10 to 20 m / sec.
  • the moving speed of (W) was 20 mm / sec.
  • the rough polishing and precision polishing of the four side surfaces (F) were simultaneously performed, and the polishing was completed in one step.
  • the total of 18 dimensions between the two side surface portions (F) facing each other of the four side surface portions (F) was 155.9 to 156.4 mm (average: 156.1 mm).
  • the machining allowance was 91 to 97 ⁇ m (average: 95 ⁇ m), and the surface roughness was Ry 0.9 to 1.1 ⁇ m (average: 1.0 ⁇ m).
  • Table 5 shows the results of grinding, rough polishing and precision polishing of the polycrystalline silicon block A (W) of Example 1 described above.
  • the workpiece (W) used in Example 2 is a single crystal silicon block (W) obtained by cutting and forming a cylindrical single crystal silicon ingot manufactured by a pulling method, as shown in FIGS. .
  • the upper and lower ends of the single crystal silicon ingot were cut and removed, and the nominal length was 300 mm (in the height direction in FIG. 18), and the measured length was cut into a range of 299.0 to 301.0 mm.
  • An ingot was prepared. The ingot was vertically set in a 5 ⁇ 5 array on a fixing jig as shown in FIG.
  • the 25 single crystal silicon ingots were cut and formed by using the same fixed-abrasive-type new wire saw as in Example 1 to cut the four side surfaces (F), each of which has a substantially right angle.
  • a silicon block (W) was prepared.
  • a part of the body part of each single crystal silicon ingot was left as a square part (C) having an arc width of about 25 mm.
  • One piece was randomly extracted from the single crystal silicon block to obtain a workpiece (W).
  • the shape of the single crystal silicon block (W) is a quadrangular prism shape composed of four side surfaces (F) and arcuate four corners (C) as shown in FIG.
  • the surface roughness was Ry 22 to 28 ⁇ m (average: 25 ⁇ m).
  • Example 1 was the same as Example 1 except that F180 was changed.
  • the reason why the grain size of the abrasive grains of the grinding means A (14) is changed to F180 is as follows.
  • the grinding is carried out by holding the prepared single crystal silicon block (W) with the clamp shaft (13) and passing the two side surfaces (F) between the grinding means A (14) opposed to both sides.
  • the polycrystalline silicon block (W) of Example 1 grinding of the four side surfaces (F) was completed.
  • Table 1 while continuously rotating the single crystal silicon block (W) at the rotational speed (87 min ⁇ 1 ) of the clamp shaft (13) set in advance to the control means, the crystalline silicon block (W ) was passed through the grinding means A (14) at a low speed of 2 mm / sec to complete the grinding of the corner (C).
  • the total of 18 dimensions between the two side surface portions (F) of the four side surface portions (F) facing each other is 125.3 to 126.1 mm (average: 125.4 mm).
  • the machining allowance was 283 to 350 ⁇ m (average: 316 ⁇ m), and the surface roughness of the four side surfaces (F) and the four corners (C) was Ry 4 to 6 ⁇ m (average: 5 ⁇ m).
  • the brush bristle material A (35) for rough polishing and the brush bristle material A (36) for precision polishing are rotated on a rotating disk (22 while the single crystal silicon block (W) is continuously rotated by the gripping means.
  • the polishing means A (20) composed of a pair of polishing brushes integrated with each other) is passed through the moving means (19) at a low speed of 2 mm / sec to complete the polishing of the corner (C). .
  • the polishing of the four side surface portions (F) was performed by passing the polishing means A (20) between the polishing means A (20) at a moving speed of 20 mm / sec in the same manner as in Example 1. . As described above, all grinding and polishing processes were completed.
  • the cross-sectional dimension was 124.7 to 125.4 mm (average: 125.2 mm). there were.
  • the machining allowance was 86 to 100 ⁇ m (average: 93 ⁇ m), and the surface roughness was Ry 0.8 to 1.0 ⁇ m (average: 0.9 ⁇ m).
  • Table 6 summarizes the cross-sectional external dimensions and surface roughness after finishing the grinding and polishing of the single crystal silicon block (W) of Example 2 described above.
  • the polishing allowance was 86 to 100 ⁇ m and the surface roughness was Ry average: 0.9 ⁇ m by polishing after grinding. It was possible to reduce the incidence of defective products due to cracks / chips to 1.0% or less.
  • the workpiece (W) used in Example 3 is a cylindrical single crystal sapphire ingot shown in FIG.
  • the cross-sectional dimension was 4 inches (diameter: 100 ⁇ 0.5 mm), and it was manufactured by a pulling method.
  • the body portion (B) of the single crystal sapphire ingot (W) is formed with unevenness due to adhesion of impurities generated by melting and heating during production.
  • the top part and the tail part were cut and removed, and the length (in the height direction in FIG. 19) was cut into a range of 200 mm and a measured length of 200 ⁇ 1.0 mm.
  • the specifications of the grinding means B (24) of the grinding apparatus (1) and the polishing means B (30) of the polishing apparatus (2) are as shown in Table 7 below.
  • a roll-type grindstone shown in FIG. 13 was adopted as the grinding means B (24).
  • the abrasive grains diamond abrasive grains corresponding to the grain size of F100 (JIS R6001: 1998) whose grinding ability is higher than that in Table 3 were used.
  • the outer dimensions of the abrasive layer B (25) were set to an outer diameter of 200 mm and a length of 100 mm.
  • the roll type grindstone was rotated by setting the depth of cut to 1.5 mm and the rotation speed (reference peripheral speed of grinding: converted from 15 to 30 m / sec) to 2200 min ⁇ 1 .
  • drum (B) of the said single crystal sapphire ingot (W) which finished grinding was measured in six places along the column axial center of this trunk
  • the clamp shaft (13) of the gripping means (12) that grips the single crystal sapphire ingot (W) is rotated 90 degrees, and its diameter dimension is measured at six locations in the same manner as described above. Was measured. As a result, it was 100.3 to 101.1 mm (average: 100.7 mm).
  • the surface roughness was Ry 5 to 7 ⁇ m (average: 6 ⁇ m). Note that the cutting of the single crystal sapphire ingot (W) included removal of impurities adhering to the body part (B), and therefore no cutting allowance measurement was recorded.
  • the polishing means B (30) of the next polishing apparatus (2) is provided with a brush member B (37) for rough polishing on one end side of the rotating cylinder (32) shown in FIG.
  • a roller-type polishing brush in which both rough polishing and precision polishing are integrally formed on a single rotating cylinder (32) having a length of 400 mm, in which the brush bristle material B (38) for polishing is disposed, is employed. .
  • the abrasive grains used for the polishing means B (30) are diamond abrasive grains equivalent to # 240 (JIS R6001: 1998) shown in Table 4 for the rough bristle brush bristle material B (37), Diamond brush grains corresponding to # 800 (JIS R6001: 1998) were used for the brush hair material B (38) for precision polishing. Further, the outer dimensions of the brush bristle material B (37) for rough polishing and the brush bristle material B (38) for precise polishing are (diameter of hair tip) ⁇ 150 mm ⁇ (axial center direction of the rotating cylinder (32)) The length was 200 mm.
  • the roll type polishing brush was rotated by setting the depth of cut to 0.5 mm and the rotation speed (reference peripheral speed of polishing: converted from 10 to 20 m / sec) to 2000 min ⁇ 1 .
  • the single crystal sapphire ingot (W) is clamped by a clamp shaft (13) of gripping means (12) that grips both ends of the column axis and is rotated at a rate of 153 min ⁇ 1 in the direction opposite to the rotational direction of the roll type polishing brush.
  • Continuous rotation was performed at a rotation speed (converted from a reference peripheral speed of 0.5 to 1.1 m / sec of the cylindrical workpiece (W) shown in Table 1).
  • the single crystal sapphire ingot (W) gripped and rotated by the clamp shafts (13) and (13) of the gripping means (12) by the operation of the moving means (19) is moved 2 mm in the column axis direction. It was moved at a low speed of / sec and passed through the rotating polishing means B (30) to complete the polishing of the body part (B).
  • the diameter dimension of the body part (B) of the single crystal sapphire ingot (W) after polishing was measured, and the diameter dimension along the column axis of the body part (B) was measured at six locations.
  • the clamp shaft (13) of the gripping means (12) that grips both ends of the column axis of the single crystal sapphire ingot (W) is rotated by 90 degrees, and its diameter dimension is measured at six points as described above.
  • a total of 12 diameter dimensions were measured. As a result, it was 100.2 to 100.9 mm (average: 100.6 mm).
  • the machining allowance was 94 to 102 ⁇ m (average: 98 ⁇ m), and the surface roughness was Ry 5 to 7 ⁇ m (average: 6 ⁇ m).
  • Table 8 summarizes the cross-sectional external dimensions and surface roughness of the single crystal sapphire ingot (W) used in Example 3 described above after grinding and polishing.
  • the “work piece (W) shape”, “finished target shape”, etc. are initially set.
  • the setting item may be set to perform grinding / polishing.
  • silicon wafers used for various semiconductor substrates such as crystal solar cell panels
  • crystal wafers used for electronic devices such as crystal resonators
  • quartz wafers used for electronic devices and optical substrates sapphire wafers used for LED substrates, etc.
  • the raw material of the workpiece is not limited to the above, but also other hard and brittle materials, and the shape is not only a prismatic and cylindrical shape, but also a complicated shape (irregular shape) such as a quartz lambard ) Columnar bodies (see FIG. 20) in general.
  • the cross-sectional dimensions and squareness or square or cylindrical ingot of a prismatic block that is a workpiece (W) formed by cutting an ingot made of a hard and brittle material with a wire saw or the like are reduced by the grinding function using the grinding means A (14) or the grinding means B (24) as a grindstone.
  • the cross-sectional dimension can be within a tolerance of ⁇ 0.5 mm.
  • the squareness of the corner portion (C) formed by intersecting the side surface portions (F) when the shape of the workpiece (W) is a prismatic shape can be within a tolerance of ⁇ 0.1 degrees.
  • the polishing function using the polishing means A (20) or the polishing means B (30) in the subsequent process as a polishing brush microcracks on the surface layer of the workpiece (W) after the grinding process are removed,
  • the surface roughness can be made Ry 1.1 ⁇ m (JISB0601: 1994) or less.
  • the grinding device (1) and the polishing are performed.
  • the main body of apparatus (2) can be made into the same specification. Therefore, the manufacturing cost of the apparatus main body can be reduced.
  • the clamp shaft (13) of the gripping means (12) for gripping the workpiece (W) attached to the grinding device (1) and the polishing device (2) can be “intermittently rotated” or “continuously rotated”. Therefore, it is possible to facilitate grinding / polishing of the workpiece (W) having a prismatic or cylindrical shape.
  • a polishing and polishing apparatus (6) comprising: polishing means for polishing a surface layer portion of the work piece with a constant pressing force, removing microcracks in the surface layer portion of the work piece, and reducing the surface roughness.
  • FIG. 21 shows a grinding / polishing apparatus (6) for grinding and polishing a prismatic workpiece (W) according to the present invention.
  • the grinding / polishing apparatus (6) includes a gripping means (12) for gripping the workpiece (W), and a grinding means A for grinding the side surface portion (F) and the corner portion (C) of the workpiece (W). (14), polishing means A (20) for polishing the side surface portion (F) and corner portion (C) of the workpiece (W) after grinding, and a reference block (K) for forming a reference surface And measuring means (18) for measuring the cross-sectional dimension of the workpiece (W), and measuring means for measuring the workpiece (W) by moving the gripping means (12) for gripping the workpiece (W).
  • the moving means (19) moves the gripping means (12) gripping the workpiece (W) between the measuring means (18), the grinding means A (14), and the polishing means A (20).
  • the workpiece (W) is measured, or the workpiece (W) is ground and polished.
  • the gripping means (12) that grips the workpiece (W) is fixed, and the measuring means (18), the grinding means A (14), and the polishing means A (20) are placed at the position of the workpiece (W).
  • the workpiece (W) may be moved to perform measurement, grinding and polishing.
  • the grinding means A (14) a cup-type grindstone was used as in the first embodiment.
  • the polishing means B (20) was a segment type polishing brush, as in the first embodiment.
  • FIG. 22 shows a grinding / polishing apparatus (6) for grinding and polishing a cylindrical workpiece (W) according to the present invention.
  • the grinding / polishing apparatus (6) includes a gripping means (12) for gripping the workpiece (W), a grinding means B (24) for grinding the body part (B) of the workpiece (W), and a grinding Polishing means B (30) for polishing the body portion (B) of the processed workpiece (W), a reference block (K) for forming a reference plane, and a cross-sectional dimension of the processed workpiece (W).
  • the measuring means (18) for measuring and the gripping means (12) for gripping the workpiece (W) are moved to move the workpiece (W) between the measuring means (18) and the grinding means B (24).
  • the transfer means (19) fixes the grip means (12) that grips the workpiece (W) in the same manner as described above, and measures the measurement means (18), the grinding means B (24), and the polishing means B (30). May be moved at the position of the workpiece (W) to measure, grind and polish the workpiece (W).
  • the grinding means B (24) a roll-type grindstone was used as in the first embodiment.
  • the polishing means B (30) was a roll-type polishing brush as in the first embodiment. It is also possible to use a cup-type grindstone that is less expensive than a roll-type grindstone, or a cup-type or segment-type polishing brush that is less expensive than a roll-type polishing brush.
  • the grinding / polishing apparatus (6) for grinding and polishing the prismatic and columnar workpieces (W) both shows the workpiece (W) fixed to the supporting means 12 to the right from the left in the figure. Processing is performed in the order of grinding and polishing.
  • a plurality of grinding means A (14) and polishing means A (20) may be connected.
  • two pairs of polishing means A (20) are connected to one pair of grinding means A (14).
  • the abrasive grains contained in the brush bristle material A (21) of the polishing means A (20) arranged on the left side of the figure are coarsened, and the polishing means A (20 arranged on the right side of the figure).
  • the two-stage polishing can be performed after the grinding by the grinding means A (14).
  • the unevenness generated by the grinding process is too large and it is difficult to smooth the unevenness with the processing capability of the polishing means A (20), etc.
  • the particle sizes of the abrasive grains contained in the brush bristle material A (21) of the means A (20) can be made substantially the same.
  • the grinding / polishing apparatus (6) for grinding and polishing the cylindrical workpiece (W) at least either of the grinding means B (20) and the polishing means B (20) is similarly used. A plurality of these can be connected.
  • the specifications of the mounting portions of the grinding means A (14) and the polishing means B (20) or the grinding means B (24) and the polishing means B (30) that are detachable from the grinding / polishing apparatus (6) are made common. So that you can exchange them.
  • a grinding apparatus (1) provided with two pairs of grinding means A (14) (grinding means B (24)), Or it can be set as the polisher (2) provided with two pairs of grinding
  • the processing time can be shortened. Further, by making the grain size of the abrasive grains on the left side of the figure coarse and making the grain size of the abrasive grains on the right side of the figure fine, two-stage grinding or polishing can be performed. For example, in the case of a grinding / polishing apparatus (6) as shown in FIG. 23, a grinding apparatus (1) provided with three pairs of grinding means A (14) (grinding means B (24)), or two pairs of grinding means (14). A polishing apparatus (2) provided with polishing means A (20) (polishing means B (30)) can be obtained.
  • polishing means A (20) polishing means B (30) located in the center in the left-right direction in the figure to the grinding means (14) (grinding means B (24)
  • polishing means B (24) grinding means
  • FIG. 24 shows a grinding apparatus (1) shown in FIG. 1, a polishing apparatus (2) shown in FIG. 2, a grinding / polishing apparatus (6) shown in FIG. 21, and a grinding / polishing apparatus (6) shown in FIG.
  • An operating arm (51) that swings between the devices (2) and the unloading device (4), and a gripping part that is attached to the tip of the operating arm (51) and grips the workpiece (W) ( 52) is a layout diagram showing the layout with the transfer device (5).
  • the control means includes initial setting items that have been input before the start of processing, and measurement data transmitted from the measurement means (18) provided in the grinding device (1), polishing device (2), and grinding / polishing device (6).
  • the combination of the grinding device (1), the grinding device (2), and the grinding / polishing device (6) can be appropriately selected according to the properties of the workpiece (W) and the required processing accuracy.
  • FIG. 24A two grinding / polishing apparatuses (6) shown in FIG. 21 are arranged, and processing of the side surface portion F and processing of the corner portion C are performed in processing of the prismatic workpiece (W). Each was performed with one grinding / processing apparatus (6).
  • FIG. 24B one grinding / polishing device (6) shown in FIG. 21 and one grinding device (1) shown in FIG.
  • FIG. 1 As shown, after each of the grinding / polishing apparatus (6), the grinding apparatus (1), and the polishing apparatus (2) are arranged and the side surface portion F is processed by the grinding / polishing apparatus (6), The corner C was processed in the order of grinding by the grinding device (1) and polishing by the polishing device (2).
  • the operation method (grip method, measurement method, intermittent rotation or continuous rotation, processing method, etc.) of the workpiece (W) by the grinding / polishing device (6) not specifically described is the grinding device (1) and the polishing device. It is the same as (2), and refer to the above for the specific operation and operation method.

Abstract

 硬脆性材料からなる被加工物の断面寸法を公差範囲内にする研削機能と、研削加工した被加工物の表層のマイクロクラックを除去するとともに表面粗さを微細化する研磨機能とを備えた硬脆性材料の研削・研磨加工システムおよび方法を提供する。研削・研磨加工システムは、硬脆性材料からなる被加工物(W)の表層部を研削し、該被加工物の表層部の不純物と柱軸方向の歪みを除去し断面寸法を所望の寸法にする研削装置(1)と、研削加工を終えた被加工物の表層部の凹凸を研磨し、該被加工物の表層部のマイクロクラックを除去して表面粗さを微細化する研磨装置(2)と、初期設定項目、研削装置および研磨装置の計測信号を基に演算処理し研削装置および研磨装置に作動信号を出力する制御手段とを備える。

Description

硬脆性材料の研削・研磨加工システム、および研削・研磨方法
 本発明は、スライス加工によりウェハを製造するための硬脆性材料を被加工物とした研削加工と研磨加工に関するものである。特に、被加工物の表層部の歪みやマイクロクラックを除去する硬脆性材料の研削・研磨加工システム、および研削・研磨方法に関する。
 
 ウェハを製造する素材のインゴットの表層部には、溶融加熱により発生した不純物が付着したり歪みが発生したりしており、該インゴットを切断して形成されたブロックの表層部には、その切断による歪みとマイクロクラックが発生している。そのため、次工程において、最終製品のウェハにスライス加工したときに、割れや欠けによる製品不良が発生することがある。そこで、前記ブロックの表層部の歪みを除去してウェハの外形寸法を規格内に調製するための研削加工と、前記インゴットまたはブロックの表層部のマイクロクラックの除去と表面粗さの微細化をして該インゴットまたはブロックをスライス加工したときの割れや欠けを低減する研磨加工、とを行う必要がある。
 半導体基板等に用いられるウェハは、次のA、B、Cの工程を経ることによって得られる。
工程A:原料となる物質を成型、引き上げ法(CZ法)、ベルヌーイ法、水熱育成法等によってインゴットを形成する工程。
工程B:前記インゴットを必要に応じてバンドソーやワイヤソー等によって適度な大きさに切断し、また必要に応じて形状を調整することでブロックを形成する工程。
工程C:前記ブロックをスライスしてウェハを得る工程。
 シリコンウェハを製造することを例として、角柱状シリコンブロックの製造方法を説明する。シリコンブロックの製造には、
 溶融原料を成形型に流し込んで、立方体形状に成形されたシリコンインゴットの表層部(6面)をバンドソーもしくはワイヤソーにより切断除去したのち、断面を四角形に切断して互いに直角に交わる4側面部と、その4角部が微小の平面(面取り加工部)を形成した結晶構造が多結晶から成るシリコンブロックと、
 引き上げ法(CZ法)やベルヌーイ法などにより円柱形状に製造されたシリコンインゴットのトップ部とテール部を切断したのち、胴体表層部に柱軸と平行し互いに直角を成した4側面部と、該4側面部が交わる位置(稜)に前記円柱表層部の一部である微小な円弧面が残されて4角部が形成された結晶構造が単結晶から成る角柱状のシリコンブロックと、の2種類がある。
 前記シリコンブロックの表層部には、双方とも切断加工時に歪みやマイクロクラックが発生し、そのために次工程においてウェハにするためにスライス加工をした際に割れや欠けによる不良製品が発生する。よって、スライス加工をする前に研磨加工を施して前記マイクロクラックの除去と表面粗さの微細化をする必要がある。
 前記角柱状のシリコンブロックの大きさは、断面が125mm×125mmの正方形(呼称:5インチ)、156mm×156mmの正方形(呼称:6インチ)、210mm×210mmの正方形(呼称:8インチ)の3種類があり、柱軸方向の長さが150~600mmの間で任意設定されている。
 また、ブロックの他の形状として円柱状がある。円柱状のブロックよりウェハを製造する一例としてサファイアインゴット(鋳塊)よりサファイアウェハを製造する方法を説明する。サファイアインゴットは、サファイアなどを原料とし、引き上げ法(CZ法)やベルヌーイ法などにより円柱状に形成することで得られる。サファイアウェハは、該インゴットをスライス加工することによって得られる。サファイアインゴットは、その表層部には、加熱溶融時に発生した溶融カス等の不純物の付着や凹凸、歪みがある。これらを除去し外径寸法を所望の寸法に研削するときに、その表層部にマイクロクラックが発生する。よって、前記のシリコンブロックと同様に、次工程におけるウェハの割れ・欠けによる不良製品の発生率を低下させるために、スライス加工をする前に研磨加工をしてマイクロクラックの除去と表面粗さの微細化をする必要がある。
 前記の単結晶からなるサファイアインゴットの大きさは、直径は2~6インチ(51~154mm)、長さは50~300mmのものが一般的である。
 また、異形状のブロックよりウェハを製造する一例として水晶ランバートより水晶ウェハを製造する方法を説明する。水晶ランバードは、水熱育成法等によって結晶を成長させて人工水晶を得た後、前記人工水晶の軸方向を明確にするために表面を研削する(ランバード加工)ことによって得られる。その後、ランバード加工された人工水晶を周波数特性に合わせて所定の角度で薄くスライスする工程、スライスされた人工水晶同士(例えば50~70枚)をワックス等で張り合わせて塊状体を形成する工程、前記塊状体の外形をウェハとしての外形の寸法を調製するための工程、前記ワックス等を取り除く工程、を経て水晶ウェハを得ることができる。前記水晶ランバードは図20に示すように、両端面が水平ではない場合がある。
 水晶ランバードの表層部には、人工水晶より研削される際に生じたマイクロクラックが存在している。前記のシリコンブロックやサファイアインゴットをスライス加工する場合と同様に、スライス加工時にウェハの割れ・欠けによる不良製品の発生率を低下させるために、スライス加工をする前に研磨加工をしてマイクロクラックの除去と表面粗さの微細化をする必要がある。
 これらの表層部の歪みやマイクロクラックを除去して、ウェハにするためのスライス加工によって発生する割れや欠けによる不良製品の発生率を低下させた先行技術について説明する。
 特許第3649393号公報に、立方体形状の多結晶シリコンインゴットから角柱状に切り出されて形成された多結晶シリコンブロックの表面加工について開示されている。シリコンブロックをスライス加工してシリコンウェハにする前に、シリコンブロックの側面部を機械的に砥粒が混入された樹脂ブラシなどを用いて研磨し、表面粗さRyが8μm以下となるように微小の凹凸を平坦化することが記載されている。
 しかしながら、シリコンインゴットを切断した際に発生する表層面の歪みやマイクロクラック、およびその除去については記載されていない。
 特許第4133935号公報には、バンドソーを用いて所定の長さ寸法に切断したシリコンインゴットを、胴体表層部を円筒研削装置を用いて円柱状に研削してうねりを除去したのち、該胴体表層部の4方をバンドソーを用いて切断除去して4側面部を形成した四角柱状のシリコンブロックとし、該シリコンブロックの4側面部を平坦化する前の表面粗さRyがXμm(実施例では、Ry10~20μm)のとき平坦化する研磨量を5×Xμm以上(実施例では、研磨量100μm)にして研磨したことによって、表面粗さが(実施例では、Ry3~4μmに)微細化されるとともにマイクロクラックの除去もでき、当該シリコンブロックをスライス加工してシリコンウェハにした際の割れ不良低減比が6倍以上に改善されたことが記載されている。
 特開2005-255463号公報には、単結晶サファイアインゴットをスライス加工して所望の外径のウェハを得るために、該単結晶サファイアインゴットの外周部を、円筒研削装置を用いて円柱状に研削加工して外径寸法の調製をすることが記載される。、該研削加工によって、前記単結晶サファイアインゴットの外周部に加工歪みやマイクロクラックが発生するから、前記単結晶サファイアインゴットをスライス加工する前に、該単結晶サファイアインゴットの外周部を化学研磨して前記加工歪みやマイクロクラックを除去することが記載されている。
 ウェハ用の硬脆性材料の切断方法には、前記したようにバンドソーまたはワイヤソーによる方法があって、複数本のワイヤにより切断するワイヤソーが好適に用いられている。
 従来のワイヤソーの切断方法は、圧力水の噴射圧により砥粒を切断部に吹き付けながらワイヤを接触回転させて切断するようにした遊離砥粒方式が一般的であるが、近年、ワイヤに砥粒を固定した新ワイヤソーが開発され、切断時間を大幅に短縮することができるようになった。
 発明者らは、前記新ワイヤソーの切断能力を従来のワイヤソーと比較確認するために、多結晶シリコンインゴットを図15に示すように縦5列×横5列=計25本、断面が(呼称)6インチ角(一辺の寸法:156.0mm)、長さが300mmのブロックに切断した。切断に要した時間は、従来のワイヤソーでは8Hr以上必要であったが、新ワイヤソーでは約3Hrで終了することができ、その切断時間を大幅に短縮することができることを確認した。
 前記切断時間を短縮できた理由としては次のように推測される。すなわち、従来の遊離砥粒方式のワイヤソーでは、切断加工時にワイヤを高速回転させると砥粒が飛散して切断効率が低下することとなる。新ワイヤソーでは、砥粒がワイヤに固定されているからワイヤの回転に伴う砥粒の飛散が無く効率よく切断できる。
 しかしながら、前記新ワイヤソーで多結晶シリコンインゴットを切断した場合、図15に示す四隅に位置するAの4本のブロックと、A間に位置するBの3本×4=12本のブロックは、切断前のシリコンインゴットの外側に面する側面部(Aのブロックにおいては2面、Bのブロックにおいては1面)の中央が、図16に示すように外側に膨らんだ状態で切断される。単結晶シリコンインゴットでは、図17に示すように夫々が独立して切断されるから、図18に示すように単結晶シリコンブロックの4側面部の中央が外側に膨らんだ状態で切断されて、その断面寸法が規定寸法公差内に入らないという新たな問題が発生する。したがって、シリコンブロックの側面の歪み除去と規定寸法公差内に納める研削装置が要求されている。
 また、シリコンインゴットより切断形成されたシリコンブロックには、切断過程において、その側面部と角部の表層部に表面粗さがRy10~20μm(JISB0601:1994)前後の凹凸と、表層面より深さが80~100μmのマイクロクラックが発生している。そのようなブロックを数10μm~100μm前後の厚さにスライス加工してウェハにしたときに、ブロックの表面粗さとマイクロクラックが原因でウェハに割れ・欠けが発生することがある。そのために、スライス加工前に、マイクロクラックを除去し、表面粗さを数μm以下にする研磨装置が要求されている。
 また、前記研削装置と研磨装置の各工程を効率よく実施する研削・研磨加工システム、および研削・研磨加工方法が要求されている。
 
発明の開示
 
 本発明は、前記要求事項を解決し、インゴットを四角柱状に切断して形成されたブロック(例えばシリコンブロック)の側面部と角部を研削して断面寸法を所望の寸法に加工する研削装置、或いは、断面形状が略円形であるインゴットのトップ部とテール部を切断して円柱状に形成されたインゴット(例えば、単結晶サファイアインゴット)の外周部の溶融加熱により発生した歪みや不純物を除去して断面寸法を所望の寸法に研削する研削装置、或いは、異形状のブロック(例えば水晶ランバード)の側面部と角部を研削する研削装置、と、前記研削加工を終えた被加工物の表層部のマイクロクラックの除去と表面粗さを微細化する研磨装置とを並設する硬脆性材料の研削・研磨加工システム、および研削・研磨加工方法、並びに、前記研削装置と研磨装置を制御する制御手段を備えて加工効率を向上させた柱形状の硬脆性材料の研削・研磨加工システム、および研削・研磨加工方法を提供することを目的とする。
 上記目的を達成するために、本発明の第1の態様に係る硬脆性材料の研削・研磨加工システムは、たとえば図1、図2および図5に示すように、スライス加工によりウェハを製造するための硬脆性材料からなる柱状の被加工物を研削及び研磨する研削・研磨加工システムであって:被加工物(W)の表層部を一定の切込み量で研削し、被加工物(W)の表層部の不純物と柱軸方向の歪みを除去するとともに断面寸法を所望の寸法にする研削装置(1)であって、被加工物(W)の寸法を計測する計測手段(18)を有する研削装置(1)と;研削を終えた被加工物(W)の表層部を一定の押圧力で研磨し、被加工物(W)の表層部のマイクロクラックを除去するとともに表面粗さを微細化する研磨装置(2)であって、被加工物(W)の寸法を計測する計測手段(18)を有する研磨装置(2)と;計測手段(18)で計測した被加工物(W)の寸法を演算し、前記演算の結果に応じて、研削装置(1)の作動信号および研磨装置(2)の作動信号を出力する制御手段と;を備える。
 第1の態様によれば、被加工物に対して一定の切込み量(学術用語:「定寸切込み」に属する)を設定して被加工物の歪みを切削して形状を整えるとともに、断面寸法を所望の公差内に研削する研削装置と、被加工物に対して一定の押圧力による切込み量(学術用語:「定圧切込み」に属する)を設定して被加工物の表層部を研磨する研磨装置とを備えているから、断面寸法と断面形状を所望の公差内に加工することができるとともに、表層部のマイクロクラックを的確に除去し、表面粗さを微細化することができる硬脆性材料の研削・研磨加工システムが提供される。また、研削装置あるいは研磨装置に設けられた計測手段で被加工物の寸法を計測し、その計測結果を制御手段で演算して研削装置あるいは研磨装置の作動信号を出力するので、計測した寸法に基づく正確な研削・研磨加工を行うことができる。
 本発明の第2の態様に係る研削・研磨加工システムでは、たとえは図21に示すように、被加工物(W)の表層部を一定の切込み量で研削し、該被加工物の表層部の不純物と柱軸方向の歪みを除去するとともに断面寸法を所望の寸法にする研削手段(14)と;前記研削を終えた被加工物の表層部を一定の押圧力で研磨し、該被加工物の表層部のマイクロクラックを除去するとともに表面粗さを微細化する研磨手段と(20);前記計測手段で計測した被加工物の寸法を演算し、前記演算の結果に応じて、前記研削手段の作動信号および前記研磨手段の作動信号を出力する制御手段と;を備えた研削・研磨装置を少なくとも1以上備える。
 本発明の第3の態様に係る研削・研磨加工システムでは、第2の様態に係る研削・研磨加工システムにおいて、例えば図1および図2に示すように、被加工物(W)の表層部を一定の切込み量で研削し、該被加工物(W)の表層部の不純物と柱軸方向の歪みを除去するとともに断面寸法を所望の寸法にする研削装置(1)であって、被加工物(W)の寸法を計測する計測手段(18)を有する研削装置(1)と、前記研削を終えた被加工物(W)の表層部を一定の押圧力で研磨し、該被加工物(W)の表層部のマイクロクラックを除去するとともに表面粗さを微細化する研磨装置(2)であって、被加工物(2)の寸法を計測する計測手段(18)を有する研磨装置(2)との少なくともいずれか;を備える。
 第2および第3の態様によれば、被加工物に対して一定の切込み量(学術用語:「定寸切込み」に属する)を設定して被加工物の歪みを削り取って形状を整えるとともに、断面寸法を所望の公差内に研削する研削手段と、被加工物に対して一定の押圧力による切込み量(学術用語:「定圧切込み」に属する)を設定して被加工物の表層部を研磨する研磨手段とを備えているから、断面寸法と断面形状を所望の公差内に加工することができるとともに、表層部のマイクロクラックを的確に除去し、表面粗さを微細化することができる硬脆性材料の研削・研磨加工システムが提供される。また、研削・研磨装置に備えられた計測手段で被加工物の寸法を計測し、その計測結果を制御手段で演算して研削手段あるいは研磨手段の作動信号を出力するので、計測した寸法に基づく正確な研削・研磨加工を行うことができる。
 第3の態様によれば、研削・研磨装置と、研削装置または研磨装置とを、被加工物の形状や加工目的に合わせて組み合わせることができる。
 本発明の第4の態様に係る研削・研磨加工システムでは、第1または第3の態様に係る研削・研磨加工システムにおいて、たとえば図1、図6、図7および図9に示すように、研削装置(1)が、被加工物(W)をその柱軸を水平に載置し垂直方向に移動可能である基台(11)と、基台(11)に載置された被加工物(W)を被加工物(W)の柱軸と直交する方向に進退動させて被加工物(W)を基台(11)の中心に位置決めをする押圧具(34)と軸芯を被加工物(W)の柱軸の方向として被加工物(W)の両端を把持するクランプ軸(13)を有し、クランプ軸(13)が被加工物(W)をその軸芯を中心にして回転可能な把持手段(12)と、砥粒同士を結合させた砥粒層(15a)を円盤状あるいは円環状の台板(15b)に固着させた研削体(15)を、回転盤(16)に固着させた砥石であって、前記砥石は回転駆動源に着脱自在に連結され、前記砥粒層(15a)を前記被加工物(W)に押圧して回転するようにした研削手段(14)と、把持手段(12)および研削手段(14)のどちらか一方を被加工物(W)の柱軸方向に少なくとも被加工物(W)の長さに相当する距離を移動させる移動手段(19)と、を備える。
 本発明の第5の態様に係る研削・研磨システムでは、第1または第3の態様に係る研削・研磨加工システムにおいて、たとえば図1、図6、図7、図9および図10に示すように、研削装置(1)が、被加工物(W)をその柱軸を水平に載置し垂直方向に移動可能である基台(11)と、基台(11)に載置された被加工物(W)を被加工物(W)の柱軸と直交する方向に進退動させて被加工物(W)を基台(11)の中心に位置決めをする押圧具(34)と軸芯を被加工物(W)の柱軸の方向として被加工物(W)の両端を把持するクランプ軸(13)を有し、クランプ軸(13)が被加工物(W)をその軸芯を中心にして回転可能な把持手段(12)と、砥粒同士を結合した砥粒層(15a)を円盤状または円環状に形成した研削体(15)を、回転盤(16)に固着させた砥石であって、前記砥石は回転駆動源に着脱自在に連結され、前記砥粒層(15a)を前記被加工物(W)に押圧して回転するようにした研削手段(14)と、把持手段(12)および研削手段(14)のどちらか一方を被加工物(W)の柱軸方向に少なくとも被加工物(W)の長さに相当する距離を移動させる移動手段(19)と、を備える。
 第4および第5の態様によれば、被加工物を把持手段で把持して、移動手段で移動させて、研削手段で研削し、かつ、把持手段のクランプ軸で被加工物を回転させて研削することができるので、被加工物の表層部の不純物と柱軸方向の歪みを的確に除去することができる。また、移動手段にて把持手段に把持された被加工物あるいは回転する研削手段である砥石が被加工物の長さに相当する距離を移動するので、被加工物の全長にわたり研削することができる。
 本発明の第6の態様に係る研削・研磨加工システムでは、第1または第3の態様に係る研削・研磨加工システムにおいて、たとえば図2、図6、図7および図11に示すように、研磨装置(2)が、被加工物(W)をその柱軸を水平に載置し垂直方向に移動可能である基台(11)と、基台(11)に載置された被加工物(W)を被加工物(W)の柱軸と直交する方向に進退動させて被加工物(W)を基台(11)の中心に位置決めをする押圧具(34)と軸芯を被加工物(W)の柱軸の方向として被加工物(W)の両端を把持するクランプ軸(13)とを有し、クランプ軸(13)が被加工物(W)をその軸芯を中心にして回転可能な把持手段(12)と、回転盤(22)を有し、円盤状の表面に砥粒を含有したブラシ毛材(21)を束ねて配置した研磨ブラシであって、前記研磨ブラシは回転駆動源に着脱自在に連結され、前記ブラシ毛材(21)を被加工物(W)に押圧して回転するようにした研磨手段(20)と、把持手段(12)および研磨手段(20)のどちらか一方を被加工物(W)の柱軸方向に少なくとも被加工物(W)の長さに相当する距離を移動させる移動手段(19)と、を備える。
 第6の態様によれば、被加工物を把持手段で把持して、移動手段で移動させて、研磨手段で研磨し、かつ、把持手段のクランプ軸で被加工物を回転させて研磨することができるので、被加工物のマイクロクラックを除去し表面粗さを微細化する研磨加工を的確に行うことができる。また、移動手段にて把持手段に把持された被加工物あるいは回転する研磨手段である研磨ブラシが被加工物の長さに相当する距離を移動するので、被加工物の全長にわたり研磨することができる。
 本発明の第7の態様に係る研削・研磨加工システムでは、第2の発明に係る研削・研磨加工システムにおいて、たとえば図21に示すように、研削・研磨装置(6)が、前記被加工物(W)をその柱軸を水平に載置し垂直方向に移動可能である基台(11)と、該基台に載置された被加工物を該被加工物の柱軸と直交する方向に進退動させて該被加工物を前記基台の中心に位置決めをする押圧具(34)と軸芯を被加工物の柱軸の方向として該被加工物の両端を把持するクランプ軸(13)とを有し、前記クランプ軸が被加工物をその軸芯を中心にして回転可能な把持手段(12)と、把持手段(12)または研削手段(14)若しくは研磨手段(20)のどちらか一方を前記被加工物の柱軸方向に少なくとも該被加工物の長さに相当する距離を移動させる移動手段(19)とを備え;研削手段(14)が、砥粒同士を結合させて円盤状に形成した砥粒層(15a)を円盤状あるいは円環状の台板(15b)に固着させた研削体(15)を、回転盤(16)に固着させた砥石であって、前記砥石は回転駆動源に着脱自在に連結され、前記砥粒層(15a)を前記被加工物(W)に押圧して回転するようにされ、研磨手段(20)が、円盤状の表面に砥粒を含有したブラシ毛材を束ねて配置し、該ブラシ毛材を前記被加工物に押圧して回転するようにした回転盤を有し、着脱自在に保持される研磨ブラシを備え、前記ブラシ研磨が回転するようにされる。
 本発明の第8の態様に係る研削・研磨加工システムでは、第2の発明に係る研削・研磨加工システムにおいて、たとえば図21に示すように、研削・研磨装置(6)が前記被加工物(W)をその柱軸を水平に載置し垂直方向に移動可能である基台(11)と、該基台に載置された被加工物を該被加工物の柱軸と直交する方向に進退動させて該被加工物を前記基台の中心に位置決めをする押圧具(34)と軸芯を被加工物の柱軸の方向として該被加工物の両端を把持するクランプ軸(13)とを有し、前記クランプ軸が被加工物をその軸芯を中心にして回転可能な把持手段(12)と、前記把持手段(12)または研削手段(14) 若しくは研磨手段(20)のどちらか一方を前記被加工物の柱軸方向に少なくとも該被加工物の長さに相当する距離を移動させる移動手段(19)とを備え;研削手段(14)が、砥粒同士を結合した砥粒層(15a)を円盤状または円環状に形成した研削体(15)を回転盤(16)に固着させた砥石であって、前記砥石は回転駆動源に着脱自在に連結され、前記砥粒層(15a)を前記被加工物(W)に押圧して回転するようにされ、研磨手段(20)が、円盤状の表面に砥粒を含有したブラシ毛材を束ねて配置し、該ブラシ毛材を前記被加工物に押圧して回転するようにした回転盤を有し、着脱自在に保持される研磨ブラシを備え、前記ブラシ研磨が回転するようにされる。
 第7および第8の態様によれば、被加工物を把持手段で把持して、移動手段で移動させて、研削手段によって研削し、研削された被加工物を研磨手段で研磨し、かつ、把持手段のクランプ軸で被加工物を回転させて研磨することができるので、被加工物の表層部の不純物と柱軸方向の歪みを的確に除去し、かつ被加工物のマイクロクラックを除去し表面粗さを微細化する研磨加工を的確に行うことができる。また、移動手段にて把持手段に把持された被加工物あるいは、回転する研削手段である砥石および回転する研磨手段である研磨ブラシが被加工物の長さに相当する距離を移動するので、被加工物の全長にわたり研磨することができる。
 本発明の第9の態様に係る研削・研磨加工システムでは、第4、第5、第7、第8のいずれかの態様に係る研削・研磨加工システムにおいて、研削手段の砥粒の粒度を、粗研削用にF90~F220(JISR6001:1998)、または、精密研削用に#240~#500(JISR6001:1998)としたことを特徴とする。
 第9の態様によれば、研削手段の砥粒の粒度を、粗研削用にF90~F220(JISR6001:1998)、または、精密研削用に#240~#500(JISR6001:1998)とするので、粗研削または精密研削を効率よく行うことができる。
 本発明の第10の態様に係る研削・研磨加工システムでは、第6乃至第8の態様に係る研削・研磨加工システムにおいて、たとえば図12に示すように、研磨手段のブラシ毛材(35、36)に含有される砥粒の粒度を2種類以上としたことを特徴とする
 本発明の第11の態様に係る研削・研磨加工システムでは、第10の態様に係る研削・研磨加工システムにおいて、砥粒の粒度を粗研磨用に#240~#500(JISR6001:1998)、または、精密研磨用に#800~#1200(JISR6001:1998)としたことを特徴とする。
 本発明の第12の態様に係る研削・研磨加工システムでは、第10の態様に係る研削・研磨加工システムにおいて、たとえば図12に示すように、研磨手段にて、粒度が粗い砥粒を含有するブラシ毛材(36)を回転盤の回転中心に近い部分に配置し、粒度が細かい砥粒を含有するブラシ毛材(35)を粒度が粗い砥粒を含有するブラシ毛材(36)が配置された周囲に配置したことを特徴とする。
 第10乃至第12の態様によれば、研磨手段のブラシ毛材に含有される砥粒の粒度を2種類以上とするので、1台の研磨装置で被加工物の粗研磨と精密研磨加工を行うことができ、設備費用の削減を図ることができる。特に、粒度が粗い砥粒を含有するブラシ毛材を回転盤の回転中心に近い部分に配置し、粒度が細かい砥粒を含有するブラシ毛材を粒度が粗い砥粒を含有するブラシ毛材が配置された周囲に配置するのが望ましい。さらに、粗研磨用としてブラシ毛材に含有される砥粒の粒度をJISR6001:1998に規定される微粉区分の#240~#500とし、精密研磨用としてブラシ毛材に含有される粒度が細かい砥粒の粒度を微粉区分の#800~#1200とすることが望ましい。粗研磨用の研磨ブラシの高研磨能力により被加工物の表層部に存在するマイクロクラックを的確に除去し、精密研磨用の研磨ブラシにより粗研磨加工にて粗れた表層部の表面粗さを微細化して、後工程においてスライス加工してウェハにした時に発生する割れや欠けを防止することができる。
 本発明の第13の態様に係る研削・研磨加工システムでは、第1または3のいずれかの態様に係る研削・研磨加工システムにおいて、研削装置の研削手段と研磨装置の研磨手段とが入れ替え可能で、研削手段と研磨手段を入れ替えることにより研削装置を研磨装置と、あるいは、研磨装置を研削装置とすることが可能であることを特徴とする。
 第13の態様によれば、研削装置の研削手段と研磨装置の研磨手段とが入れ替え可能で、研削手段と研磨手段を入れ替えることにより研削装置を研磨装置と、あるいは、研磨装置を研削装置とすることが可能であるので、すなわち、研削手段と研磨手段との取り付け部の仕様を共通にすることにより、研削装置と研磨装置の本体(研削手段、研磨手段を除いた部分)を同一仕様にすることができるから、装置本体の製造原価を安価にすることができる。
 本発明の第14の態様に係る研削・研磨加工システムでは、第2の態様に係る研削・研磨加工システムにおいて、前記研削・研磨装置の前記研削手段と前記研磨手段とが入れ替え可能であることを特徴とする。
 第14の態様によれば、研削手段と研磨手段との取り付け部の使用を共通にすることで、研削手段と研磨手段とが入れ替え可能である。例えば図21に示す場合は、研磨手段を研削手段と交換することで研磨装置とすることができる。また、研削手段を研磨手段と交換することで研削装置とすることができる。さらに、例えば図23に示すように、1対の研削手段と2対の研磨手段を連接させた研削・研磨装置の場合、同図左右方向の中央の研磨手段を研削手段に交換することで、2段階の研削加工を行った後に研磨加工を行うことができる。
 本発明の第15の態様に係る研削・研磨加工システムでは、第1の態様に係る研削・研磨加工システムにおいて、たとえば図5に示すように、研削・研磨加工前の被加工物を研削・研磨加工システムに搬入する搬入装置(3)と、研削・研磨加工を終了した被加工物を研削・研磨加工システムから搬出する搬出装置(4)と、搬入装置(3)、研削装置(1)、研磨装置(2)、搬出装置(4)の間で被加工物を移動する作動アーム(51)および作動アーム(51)の先端に取付けてられて、被加工物を所定の角度に回転する把持部(52)を有する移載装置(5)と、を備える。
 本発明の第16の態様に係る研削・研磨加工システムでは、第2または第3の態様の係る研削・研磨加工システムにおいて、例えば図22に示すように、研削・研磨加工前の被加工物(W)を前記研削・研磨加工システムに搬入する搬入装置(3)と、研削・研磨加工を終了した被加工物を前記研削・研磨加工システムから搬出する搬出装置(4)と、
 前記搬入装置(3)、研削・研磨装置(6)または研削装置(1)若しくは研磨装置(2)、搬出装置(4)の間で前記被加工物を移動する作動アーム(51)および該作動アーム(51)の先端に取付けてられて、前記被加工物を所定の角度に回転する把持部(52)を有する移載装置(5)と、を備える。
 第15および第16態様によれば、搬入装置、研削・研磨装置、研削装置、研磨装置、搬出装置へ、移載装置により被加工物を移送するので、搬入装置上に待機している研削・研磨未加工の被加工物は、研削装置と研磨装置により研削加工と研磨加工を終了し搬出装置に容易に搬出することができる。また、移載装置の把持部にて被加工物を回転することができるので、研削装置あるいは研磨装置で加工する側面を変えて加工することができる。
 本発明の第17の態様に係る研削・研磨加工システムでは、第1または第2の態様に係る研削・研磨加工システムにおいて、前記研削装置あるいは研磨装置に設けられている計測手段が、被加工物の柱軸と垂直な水平方向に既知の基準間隔寸法をおいて形成された一対の基準面と、前記柱軸と垂直な鉛直方向に既知の基準間隔寸法をおいて形成された一対の基準面を有する基準ブロックと、計測方向を水平方向とし、基準ブロックの両側の基準面および被加工物の両側の研削・研磨加工部の間隔寸法を計測する計測具と、計測方向を鉛直方向とし、基準ブロックの上面の基準面および被加工物の上面の研削・研磨加工部の高さ位置を計測する計測具と、から成ることを特徴とする。
 第17の態様によれば、計測手段が、基準ブロックと、基準ブロックと被加工物の水平方向の寸法を計測する計測具と、基準ブロックと被加工物の上面の高さ位置を計測する計測具とを備えるので、被加工物の柱軸をクランプ軸の軸芯と一致させて、被加工物を把持手段で把持することができる。
 本発明の第18の態様に係る研削・研磨加工システムでは、第17の態様に係る研削・研磨加工システムにおいて、制御手段が、研削装置ならびに研磨装置の把持手段に設けられた基準ブロックの一対の基準面に、研削手段および研磨手段の各先端を接触させて、研削装置ならびに研磨装置の各手段の切込み量がゼロとなる基点位置を演算処理する機能と、研削装置ならびに研磨装置の計測手段に設けられた計測具により基準ブロックの両側の基準面と被加工物の両側の加工部の差を計測して、被加工物の加工部の加工前および加工後の断面寸法を演算処理する機能と、研削装置ならびに研磨装置が被加工物を芯出しして把持するための演算処理をする機能と、加工開始前に入力した初期設定項目と、研削装置ならびに研磨装置に夫々設けられた計測手段の計測具が出力する計測信号とを演算処理し、研削装置ならびに研磨装置の各手段に作動信号を出力する機能とを備えたことを特徴とする。
 本発明の第19の態様に係る研削・研磨システムでは、第2の態様に係る研削・研磨加工システムにおいて、前記制御手段が、前記研削・研磨装置の把持手段に設けられた基準ブロックの一対の基準面に、前記研削手段または前記研磨手段の各先端を接触させて、前記研削手段または前記研磨手段の切込み量がゼロとなる基点位置を演算処理する機能と、前記研削・研磨装置の計測手段に設けられた計測具により前記基準ブロックの両側の基準面と被加工物の両側の加工部の差を計測して、被加工物の加工部の加工前および加工後の断面寸法を演算処理する機能と、前記研削・研磨装置が前記被加工物を芯出しして把持するための演算処理をする機能と、加工開始前に入力した初期設定項目と、前記計測手段の計測具が出力する計測信号とを演算処理し、前記研削手段および前記研磨手段に作動信号を出力する機能と、を備えたことを特徴とする。
 第18および第19の態様によれば、制御手段に研削・研磨加工システムを自動化するための各機能を設けたので、被加工物の加工部の研削加工と研磨加工が的確にできるとともに省力化を図ることができる。
 本発明の第20の態様に係る研削・研磨加工システムでは、第18または第19の態様に係る研削・研磨加工システムにおいて、被加工物の形状が角柱状であり、研削・研磨加工をする被加工物の断面寸法の公差を±0.5mmとし、該被加工物の2側面部が互い交わる角部の断面形状の公差を±0.1度としたことを特徴とする。
 第20の態様によれば、たとえば四角柱状のシリコンブロックにおいて、シリコンブロックの断面寸法は125mm×125mm(呼称:5インチ)、156mm×156mm(呼称:6インチ)、210mm×210mm(呼称:8インチ)の3種類があり、それぞれ要求される公差は±0.5mmであり、更に要求されるシリコンブロックの2側面部が互い交わる角部の断面形状の公差は、90度±0.1度であるので、断面寸法の公差および断面形状の公差に基づいた研削・研磨加工ができる。
 本発明の第21の態様に係る研削・研磨加工システムでは、第18または第19の態様に係る研削・研磨加工システムにおいて、被加工物の形状が円柱状であり、研削・研磨加工をする被加工物の断面寸法の公差を±0.5mmとしたことを特徴とする。
 第21の態様によれば、たとえば円柱状の単結晶サファイアインゴットにおいて、断面寸法は2~6インチ(51~154mm)であり、要求される公差は±0.5mmであるので、断面寸法の公差に基づいた研削・研磨加工ができる。
 本発明の第22の態様に係る研削・研磨加工方法では、第1乃至第3の態様に係る研削・研磨加工システムを用い、被加工物を研削装置により研削加工をしたのち、研磨装置により研磨加工をするようにしたことを特徴とする。
 第22の態様によれば、被加工物に対して一定の切込み量を設定して被加工物の歪みを削り取って形状を整えるとともに、断面寸法を所望の公差内に研削する研削装置と、被加工物に対して一定の押圧力による切込み量を設定して被加工物の表層部を研磨する研磨装置を用いて研削・研磨加工を行うから、断面寸法と断面形状を所望の公差内に加工することができるとともに、表層部のマイクロクラックを的確に除去し、表面粗さを微細化することができる硬脆性材料の研削・研磨加工方法が提供される。また、研削装置あるいは研磨装置に設けられた計測手段で被加工物の寸法を計測し、その計測結果を制御手段で演算して研削装置あるいは研磨装置の作動信号を出力するので、計測した寸法に基づく正確な研削・研磨加工を行うことができる。
 本発明によれば、硬脆性材料の被加工物に対して一定の切込み量を設定して被加工物の歪みを削り取って形状を整えるとともに、断面寸法を所望の公差内に研削する研削装置(研削・研磨装置の場合は研削手段)と、被加工物に対して一定の押圧力による切込み量を設定して被加工物の表層部を研磨する研磨装置(研削・研磨装置の場合は研磨手段)を用いて研削・研磨加工を行うから、断面寸法と断面形状を所望の公差内に加工することができるとともに、表層部のマイクロクラックを的確に除去し、表面粗さを微細化することができる。これにより、次工程において、ウェハにスライス加工する際に発生していた割れ・欠けによる不良製品の発生率を低減することができる。
 この出願は、日本国で2011年9月15日に出願された特願2011-201809号に基づいており、その内容は本出願の内容として、その一部を形成する。
 また、本発明は以下の詳細な説明により更に完全に理解できるであろう。しかしながら、詳細な説明および特定の実施例は、本発明の望ましい実施の形態であり、説明の目的のためにのみ記載されているものである。この詳細な説明から、種々の変更、改変が、当業者にとって明らかだからである。
 出願人は、記載された実施の形態のいずれをも公衆に献上する意図はなく、開示された改変、代替案のうち、特許請求の範囲内に文言上含まれないかもしれないものも、均等論下での発明の一部とする。
 本明細書あるいは請求の範囲の記載において、名詞及び同様な指示語の使用は、特に指示されない限り、または文脈によって明瞭に否定されない限り、単数および複数の両方を含むものと解釈すべきである。本明細書中で提供されたいずれの例示または例示的な用語(例えば、「等」)の使用も、単に本発明を説明し易くするという意図であるに過ぎず、特に請求の範囲に記載しない限り本発明の範囲に制限を加えるものではない。
 
  [図1]本発明に係る角柱状の被加工物を加工する研削装置の平面図である。
  [図2]本発明に係る角柱状の被加工物を加工する研磨装置の平面図である。
  [図3]本発明に係る円柱状の被加工物を加工する研削装置の平面図である。
  [図4]本発明に係る円柱状の被加工物を加工する研磨装置の平面図である。
  [図5]本発明に係る角柱状および円柱状の被加工物を加工する研削装置および研磨装置と、前記各装置に被加工物を設定する移載装置と、被加工物の搬入装置、および搬出装置を配置した第1実施形態の実施例を示す平面図である。
  [図6]本発明の研削装置および研磨装置の作動開始位置に位置する基台に被加工物を載置して、把持手段と移動手段の配置を示す正面図である。
  [図7]本発明の研削装置および研磨装置の基台に被加工物を載置し、該被加工物の押圧具が解除されている状態を示す側面図である。
  [図8]本発明の研削装置および研磨装置の基台に被加工物を載置し、計測手段の計測具の配置を示す側面図である。
  [図9]本発明の研削手段に係るカップ型の砥石の正面図である。図9(A)は正面からみた一部断面図、図9(B)はA-A矢視図(底面図)である。
  [図10]本発明の研削手段に係るカップ型の砥石の正面図である。図10(A)は正面からみた一部断面図、図10(B)はA-A矢視図(底面図)である。
  [図11]本発明の研磨手段に係る1個の回転盤に砥粒の粒度が粗いブラシ毛材と細かいブラシ毛材を備えたセグメント型の研磨ブラシの正面図である。
  [図12]図11の底面図である。
  [図13]本発明に係る円柱状の被加工物を研削する研削手段のロール型の砥石を示す斜視図である。
  [図14]本発明に係る円柱状の被加工物を研磨する研磨手段のロール型の研磨ブラシを示す斜視図である。
  [図15]多結晶シリコンインゴットをワイヤソーで切断しシリコンブロック(A)(B)(C)を形成したときの斜視図である。
  [図16]図15において形成された多結晶シリコンブロック(A)(B)(C)の斜視図である。
  [図17]単結晶シリコンインゴットをワイヤソーで切断する状態を平面から見た説明図である。
  [図18]図17において形成された単結晶シリコンブロックの斜視図である。
  [図19]トップ部とテール部を切断して円柱状に形成された単結晶サファイアインゴットを示す斜視図である。
  [図20]水晶ランバードの形状を説明するための説明図である。
  [図21]本発明に係る角柱状の被加工物を加工する研削・研磨装置の平面図である。
  [図22]本発明に係る円柱状の被加工物を加工する研削・研磨装置の平面図である。
  [図23]本発明に係る角柱状の被加工物を加工する研削・研磨装置の変更例の平面図である。
  [図24]本発明に係る角柱状および円柱状の被加工物を加工する研削装置および研磨装置と、前記各装置に被加工物を設定する移載装置と、被加工物の搬入装置、および搬出装置を配置した第2実施形態の実施例を示す平面図である。
  
発明を実施するための最良の形態
 以下、図面を参照して、本発明の実施の形態について説明する。なお、各図において、互いに同一又は相当する要素には同一符号を付し、重複した説明は省略する。
 研削・研磨加工システムの第1実施形態を説明する。研削・研磨加工システムは、硬脆性材料からなる被加工物(W)の表層部を研削し、該被加工物(W)の表層部の不純物と柱軸方向の歪みを除去するとともに断面寸法を所望の寸法にする研削装置(1)と、前記研削加工を終えた被加工物(W)の表層部の凹凸を研磨し、該被加工物(W)の表層部のマイクロクラックを除去するとともに表面粗さを微細化する研磨装置(2)と、加工開始前に入力する初期設定項目、および前記研削装置(1)の計測信号、および前記研磨装置(2)の計測信号を基に演算処理し、該演算処理の結果を基に前記研削装置(1)の作動信号および研磨装置(2)の作動信号を出力する制御手段と、を備える。
 ここで、硬脆性材料とは、ガラス、セラミックス、水晶、石英などのように、硬度が高く硬いが衝撃に弱く脆い性質をもった材料のことを指す。
 [研削装置]
 図1は、本発明に係る角柱状の被加工物(W)を研削する研削装置(1)を示す。研削装置(1)は、被加工物(W)を把持する把持手段(12)と、被加工物(W)の側面部(F)および角部(C)を研削加工する研削手段A(14)と、基準面を形成する基準ブロック(K)と、被加工物(W)の断面寸法を計測する計測手段(18)と、被加工物(W)を把持する前記把持手段(12)を移動して前記被加工物(W)を計測手段(18)と、研削手段A(14)の間に移動させる移動手段(19)とを備える。
 前記移動手段(19)は、被加工物(W)を把持した把持手段(12)を計測手段(18)と研削手段A(14)の間で移動させて被加工物(W)を計測し、または、被加工物(W)を研削加工する。しかし、被加工物(W)を把持した把持手段(12)を固定し、計測手段(18)と研削手段A(14)を被加工物(W)の位置で移動させて該被加工物(W)の計測と研削加工をするようにしてもよい。
 研削装置(1)に載置された被加工物(W)は、研削加工開始前に計測手段(18)よって断面寸法が計測される。該被加工物(W)の断面寸法が、初期設定項目として前もって制御手段に入力されている被加工物(W)の研削加工代と研磨加工代と研削・研磨加工後の断面寸法を加算した寸法より小さい場合は、前記制御手段の演算処理によって研削装置(1)の研削加工が中止される。該被加工物(W)は、把持手段(12)の把持状態が解除されて再溶融工程へ戻すことができる。再溶融工程にて溶解された該被加工物(W)は、その原料が、例えば単結晶のシリコンやサファイア等の場合は円柱形状に再度成形され、多結晶のシリコン等の場合は立方体形状に再度成形される。
 前記被加工物(W)の形状が角柱状の場合に、前記研削装置(1)は、被加工物(W)をその柱軸を水平となるように載置し垂直方向に上下動可能とした基台(11)と、該基台(11)に載置された被加工物(W)を該被加工物(W)の柱軸と直交する方向に進退動させて該被加工物(W)を前記基台(11)の中心に位置決めをする押圧具(34)(図7参照)および軸芯を被加工物(W)の柱軸の方向として該被加工物(W)の両端を把持するクランプ軸(13)を備える。該クランプ軸(13)が被加工物(W)を把持する。前記基台(11)が降下されたときに前記クランプ軸(13)が被加工物(W)をその軸芯を中心にして把持する。把持手段(12)は、図6に示すように、被加工物(W)を「間欠回転」または「連続回転」可能にする。
 把持手段(12)が被加工物(W)を「間欠回転」可能に把持するとは、被加工物(W)の研削・研磨する箇所の形状が平面である場合に、その加工面を、図1、図2に示すY方向の両側に位置決めするために該被加工物(W)を把持している把持手段(12)のクランプ軸(13)をその軸芯を中心にして「間欠回転」させることをいう。
 加工面がいずれも平面である四角柱状の多結晶シリコンブロックの研削・研磨加工を例にして「間欠回転」の作動と加工順序について説明すれば、対向する1組目の側面部(F)(図16参照)を図1、図2に示すY方向の両側に位置させ加工したのち90度回転させて2組目の側面部(F)を加工して4側面部(F)の加工を終了し、45度回転させて対向する1組目の角部(C)(図16参照)を図1、図2に示すY方向の両側に位置させ加工したのち90度回転させて2組目の角部(C)を加工して、研削・研磨加工が終了する。
 把持手段(12)が被加工物(W)を「連続回転」可能に把持するとは、被加工物(W)の研削・研磨する箇所の断面形状が円弧状である、例えば、円柱状の単結晶サファイアインゴットの胴体部(B)を研削・研磨加工する場合、或いは、四角柱状の単結晶シリコンブロックの4角部(C)を研削・研磨加工する場合に、図3、図4に示すように、一側に研削手段(20)或いは研磨手段(30)を配置し、該被加工物(W)を把持するクランプ軸(13)を別途入力設定した回転速度で「連続回転」させて、研削・研磨加工をすることをいう。
 また、前記研削装置(1)或いは研磨装置(2)に設けられた把持手段(12)のクランプ軸(13)は、被加工物(W)の両端面を把持するとともに該被加工物(W)の長手方向の寸法を計測して制御手段に記憶させる機能も備えており、その計測結果は、演算処理されて後記する移動手段(19)の移動距離を制御する作動信号となるものである。該作動信号による前記移動手段(19)の作動により、前記被加工物(W)を把持した把持手段(12)のクランプ軸(13)が、計測手段(18)と研削手段(1)、或いは計測手段(18)と研磨手段(2)の間を移動されて、該被加工物(W)の断面寸法の計測と研削加工或いは研磨加工が施されるものである。なお、計測手段(18)と研削手段(1)、或いは計測手段(18)と研磨手段(2)がクランプ軸(13)の間を移動してもよい。
 研削手段A(14)は、図9に示すように、砥粒同士を結合させた砥粒層A(15a)を円盤状あるいは円環状の台板(15b)に固着させた研削体(15)を、回転盤(16)に固着させたカップ型の砥石とした。前記研削手段A(14)は、回転軸(17)を介して回転駆動源と着脱自在に連結されており、前記砥粒層A(15a)を前記被加工物(W)の加工部に面接触させ押圧して回転するようにされている。なお、台板(15b)は平面でなくてもよく、例えば前記砥粒層A(15a)を固着させる位置を凸形状とすることができる。また、研削手段A(14)は、図10に示すように、砥粒層A(15a)を回転盤(16)に固着してもよい。この際、砥粒層A(15a)を回転盤(16)に固着させる手段は、ボルト等で固定しても、回転盤(16)と一体に成型しても、いずれでもよい。
 研削装置(1)は、砥粒層A(15a)が被加工物(W)の両側に面接触するように対向させた一対の研削手段A(14)(砥石)を配置するのが好ましい。研削手段A(14)は、研削装置(1)に着脱自在に設けられる。
 研削装置(1)は、柱軸と垂直な水平方向および垂直方向にそれぞれ一対の基準面を形成した基準ブロックの断面寸法、および被加工物(W)の断面寸法を計測する計測手段(18)を備える。研削装置(1)は、前記把持手段(12)と研削手段A(14)のどちらか一方を被加工物(W)の柱軸方向に少なくとも被加工物(W)の長さに相当する距離を移動させる移動手段(19)を備える。
 研削装置(1)は、研削手段A(14)として、円盤状の表面に砥粒同士を結合させて砥粒層A(15a)を一体形成し、該砥粒層A(15a)を前記被加工物(W)の加工部に面接触させ押圧して回転するようにした砥石を有するので、一定の切込み量で研削することができる。
 図3は、本発明に係る円柱状の被加工物(W)を研削する研削装置(1)を示す。研削装置(1)は、被加工物(W)を把持する把持手段(12)と、被加工物(W)の胴体部(B)を研削加工する研削手段B(24)と、基準面を形成する基準ブロック(K)と、被加工物(W)の断面寸法を計測する計測手段(18)と、被加工物(W)を把持する前記把持手段(12)を移動して前記被加工物(W)を計測手段(18)と研削手段B(24)の間に移動させる移動手段(19)とを備える。
 前記移送手段(19)は、前記と同様に被加工物(W)を把持した把持手段(12)を固定し、計測手段(18)と研削手段B(24)とを被加工物(W)の位置で移動させて該被加工物(W)の計測と研削加工とをするようにしてもよい。
 被加工物(W)が円柱状の場合、研削装置(1)の把持手段(12)は、被加工物(W)をその軸芯を中心にして「連続回転」可能に把持する。
 また、研削手段B(24)は、図13に示すように、円筒状の胴体表面に砥粒同士を結合させた砥粒層B(25)を、回転軸(27)を備えた回転筒(26)の表面に固着させたロール型の砥石を用いた。前記研削手段B(24)は、前記回転筒(26)の軸心にある前記回転軸(27)が、回転駆動源と着脱自在に連結されており、前記砥粒層B(25)を前記被加工物(W)の加工部に、該被加工物(W)の軸心と平行して線接触させ押圧して回転するようにされている。なお、ロール型の砥石より安価なカップ型の砥石を使用することもできる。
 また、研削装置(1)は、前記砥粒層B(25)が被加工物(W)の両側にその軸芯と平行させるとともに対向させた一対の研削手段B(24)(砥石)を有するのが好ましい。研削手段B(24)は、研削装置(1)に着脱自在に設けられる。
 前記研削装置(1)の研削手段A(14)および研削手段B(24)を剛性がある砥石にしたことによって、被加工物(W)の歪み等を削り取り形状を整えて外形寸法を所望する公差内に研削する能力が優れたものとなる。よって、角柱状および円柱状の被加工物(W)の表層部の不純物と外形歪みの除去が的確に行える。
 また、前記研削装置(1)の研削手段A(14)および研削手段B(24)の砥石を、その砥粒層A(15a)および砥粒層B(25)を構成する砥粒の粒度を1種類または2種類以上とし、前記研磨装置(2)の研磨手段A(20)および研磨手段B(30)のブラシ毛材A(21)およびブラシ毛材B(31)に固定される砥粒の粒度を2種類以上としてもよい。
 研削装置(1)の砥石からなる前記研削手段A(14)または研削手段B(24)の砥粒の粒度を、粗研削用:F90~F220(JISR6001:1998)、および、精密研削用:#240~#500(JISR6001:1998)とし、研磨装置(2)の研磨ブラシからなる前記研磨手段A(20)または研磨手段B(30)の砥粒の粒度を、粗研磨用:#240~#500(JISR6001:1998)、および、精密研磨用:#800~#1200(JISR6001:1998)としてもよい。
 研削手段A(14)または研削手段B(24)の砥粒の粒度を、JISR6001:1998に規定される粗粉区分のF90~F220、および微粉区分の#240~#500の2グループに設定したのは、次の理由による。前工程において切断された被加工物(W)の断面寸法、或いは被加工物(W)の角部(C)の直角度、が公差外である場合に、その断面寸法、或いは断面形状を公差内にするためには、切削効率を高めて研削加工ができるように、F90~F220の粗粒区分とする。チッピングと称する割れ・欠けが生じ易い箇所(多結晶シリコンブロックの角部など)の研削加工を、前記チッピングの発生を防いで研削加工ができるようにするために、#240~#500の微粉区分を選択して用いるのがよい。
 [研磨装置]
 図2は、本発明に係る角柱状の被加工物(W)を研磨する研磨装置(2)を示す。研磨装置(2)は、前記研削加工を終了した被加工物(W)を把持する把持手段(12)と、前記被加工物(W)の側面部(F)および角部(C)を研磨加工してマイクロクラックの除去と表面粗さを微細化する研磨手段A(20)と、基準面を形成する基準ブロック(K)と、被加工物(W)の断面寸法を計測する計測手段(18)と、被加工物(W)を把持する前記把持手段(12)を移動して前記被加工物(W)を計測手段(18)と研磨手段A(20)の間で移動させる移動手段(19)とを備える。
 前記移動手段(19)は、前記研削装置(1)の移動手段(19)と同様に被加工物(W)を把持した把持手段(12)を固定し、計測手段(18)と研磨手段A(20)とを被加工物(W)の位置で移動させて該被加工物(W)の計測と研削加工とをするようにしてもよい。
 前記研磨装置(2)は、被加工物(W)をその柱軸を水平となるように載置し垂直方向に上下動可能とした基台(11)と、該基台(11)に載置された被加工物(W)を該被加工物(W)の柱軸と直交する方向に進退動させて該被加工物(W)を前記基台(11)の中心に位置決めをする押圧具(34)および軸芯を被加工物(W)の柱軸の方向として該被加工物(W)の両端を把持するクランプ軸(13)を備える。該クランプ軸(13)が被加工物(W)を把持する。前記基台(11)が降下されたときに前記クランプ軸(13)が被加工物(W)をその軸芯を中心にして把持する。把持手段(12)は、被加工物(W)を「間欠回転」または「連続回転」可能に把持する。
 把持手段(12)が被加工物(W)を「間欠回転」可能に把持するとは、被加工物(W)の研削・研磨する箇所の形状が平面である場合に、その加工面を、図1、図2に示すY方向の両側に位置決めするために該被加工物(W)を把持している把持手段(12)のクランプ軸(13)をその軸芯を中心にして「間欠回転」させることをいう。
 加工面がいずれも平面である四角柱状の多結晶シリコンブロックの研削・研磨加工を例にして「間欠回転」の作動と加工順序について説明すれば、対向する1組目の側面部(F)(図16参照)を図1、図2に示すY方向の両側に位置させ加工したのち90度回転させて2組目の側面部(F)を加工して4側面部(F)の加工を終了し、45度回転させて対向する1組目の角部(C)(図16参照)を図1、図2に示すY方向の両側に位置させ加工したのち90度回転させて2組目の角部(C)を加工して、研削・研磨加工が終了する。
 把持手段(12)が被加工物(W)を「連続回転」可能に把持するとは、被加工物(W)の研削・研磨する箇所の断面形状が円弧状である、例えば、円柱状の単結晶サファイアインゴットの胴体部(B)を研削・研磨加工する場合、或いは、四角柱状の単結晶シリコンブロックの4角部(C)を研削・研磨加工する場合に、図3、図4に示すように、一側に研削手段(20)或いは研磨手段(30)を配置し、該被加工物(W)を把持するクランプ軸(13)を別途入力設定した回転速度で「連続回転」させて、研削・研磨加工をすることをいう。
 また、前記研削装置(1)或いは研磨装置(2)に設けられた把持手段(12)のクランプ軸(13)は、被加工物(W)の両端面を把持するとともに該被加工物(W)の長手方向の寸法を計測して制御手段に記憶させる機能も備えており、その計測結果は、演算処理されて後記する移動手段(19)の移動距離を制御する作動信号となるものである。該作動信号による前記移動手段(19)の作動により、前記被加工物(W)を把持した把持手段(12)のクランプ軸(13)が、計測手段(18)と研削手段(1)、或いは計測手段(18)と研磨手段(2)の間を移動されて、該被加工物(W)の断面寸法の計測と研削加工或いは研磨加工が施されるものである。なお、計測手段(18)と研削手段(1)、或いは計測手段(18)と研磨手段(2)がクランプ軸(13)の間を移動してもよい。
 研磨手段A(20)は、図11および図12に示すように、回転盤(22)および回転駆動源に連結されて該回転盤(22)を回転させるための回転軸(23)を有し、かつ円盤状の表面に砥粒を含有したブラシ毛材A(21)を束ねて配置した研磨ブラシとした。前記研磨手段A(20)は、回転駆動源と着脱自在に連結されており、前記ブラシ毛材A(21)の毛先部を前記被加工物(W)の加工部に面接触させ押圧して回転するようにされている。
 研磨手段A(14)に採用する研磨ブラシとしては、砥粒を混合したブラシ毛材A(21)を束ねて回転盤(22)に着脱できるようにして該ブラシ毛材A(21)が消耗した際にブラシ毛材A(21)のみを交換すればよいものとしたセグメント型研磨ブラシがある。また、ブラシ毛材を回転盤に固定取付けして、ブラシ毛材が消耗した際に回転盤共々一体で交換するようにしたカップ型研磨ブラシを使用しても良い。本実施形態ではセグメント型を用いた。
 研磨装置(2)は、前記ブラシ毛材A(21)の毛先部が被加工物(W)の両側に面接触するように対向させた一対の研磨手段A(20)(研磨ブラシ)を有するのが好ましい。研磨手段A(20)は、着脱自在に研磨装置(2)に設けられる。
 また、前記研磨装置(2)の研磨手段A(20)のブラシ毛材A(21)に固定される砥粒の粒度を2種類以上とし、該砥粒の粒度が粗いブラシ毛材A(35)を回転盤(22)の回転中心に近い内輪部に配置するとともに、前記砥粒の粒度が細かいブラシ毛材A(36)を回転盤(22)の回転中心より遠い外輪部に配置してもよい。
 研磨装置(2)の研磨手段A(20)において、固定する砥粒の粒度を、例えば、マイクロクラックの除去を目的としている粗研磨用と、その表面粗さを微細化する目的の精密研磨用の2種類にする場合、従来の研磨装置においては、粗研磨用および精密研磨用の装置を別々にして2台設置する必要があった。角柱状の被加工物(W)を研磨する研磨ブラシとして、1個の研磨ブラシで粗研磨用および精密研磨用の双方の機能を備えた研磨手段A(20)を提供することができるから、1台の研磨装置(2)で角柱状の被加工物(W)の粗研磨加工および精密研磨加工をすることができ、設備費用の削減を図ることができる。
 研磨装置(2)は、柱軸と垂直な水平方向および垂直方向にそれぞれ一対の基準面を形成した基準ブロックの断面寸法、および被加工物(W)の断面寸法を計測する計測手段(18)を備える。研磨装置(2)は、前記把持手段(12)と研磨手段A(20)のどちらか一方を被加工物(W)の柱軸方向に少なくとも被加工物(W)の長さに相当する距離を移動させる移動手段(19)を備える。
 研磨装置(2)は、砥粒を含有したブラシ毛材A(21)を束ねて配置し該ブラシ毛材A(21)の毛先部を被加工物(W)の加工部に面接触させ押圧して回転するようにしたので、一定の押圧力による切込み量で研磨することができる。
 図4は、本発明に係る円柱状の被加工物(W)を研磨する研磨装置(2)を示す。研磨装置(2)は、前記研削加工を終了した被加工物(W)を把持する把持手段(12)と、該被加工物(W)の胴体部(B)を研磨加工してマイクロクラックの除去と表面粗さを微細化する研磨手段B(30)と、基準面を形成する基準ブロック(K)と、被加工物(W)の断面寸法を計測する計測手段(18)と、被加工物(W)を把持する前記把持手段(12)を移動して前記被加工物(W)を計測手段(18)と研磨手段B(30)の間に移動させる移動手段(19)と、を備える。
 前記移送手段(19)は、前記と同様に被加工物(W)を把持した把持手段(12)を固定し、計測手段(18)と研磨手段B(30)を被加工物(W)の位置で移動させて該被加工物(W)の計測と研削加工をするようにしてもよい。
 また、被加工物(W)が円柱状の場合、研磨装置(2)の把持手段(12)は、被加工物(W)をその軸芯を中心にして「連続回転」可能に把持する。
 また、前記研磨装置(2)の把持手段(12)は、研削装置(1)の把持手段(12)と同様に、被加工物(W)をその軸芯を中心にして「連続回転」可能に把持する。
 また、研磨手段B(30)は、図14に示すように、回転軸(33)を備えた回転筒(32)の円筒状の胴体の表面に、砥粒を含有したブラシ毛材B(31)を配置したロール型の研磨ブラシを用いた。研磨手段B(30)をロール型の研磨ブラシとすることで、研磨効率を向上(研磨時間を短縮)することができる。前記研磨手段B(30)は、前記回転筒(32)の軸心にある前記回転軸(33)が回転駆動源と着脱自在に連結されており、前記ブラシ毛材B(31)の毛先部を前記被加工物(W)の加工部に、該被加工物(W)の軸心と平行して線接触させ押圧して回転するようにされている。なお、ロール型の研磨ブラシより安価なセグメント型またはカップ型の研磨ブラシを使用することもできる。
 研磨装置(2)は、円筒状の胴体表面に砥粒を含有したブラシ毛材B(31)を配置し、該ブラシ毛材B(31)の毛先部が前記被加工物(W)の加工部にその軸芯と平行して押圧接触されて回転するようにしたので、一定の押圧力による切込み量で研磨することができる。
 前記研磨装置(2)の研磨手段A(20)および研磨手段B(30)を研磨ブラシにしたことにより、研磨加工時に前記ブラシ毛材A(21)或いはブラシ毛材B(31)の毛先部周辺が被加工物(W)の加工面に押圧された状態で接触回転して、被加工物(W)の表層部を数10μm~100μm前後研磨する能力を備える。よって、角柱状および円柱状の被加工物(W)のマイクロクラックの除去をし、表面粗さを微細化する研磨加工が的確に行えるものである。
 また、前記研磨装置(2)の研磨手段B(30)のブラシ毛材B(31)に固定される砥粒の粒度を2種類以上とし、該砥粒の粒度が粗いブラシ毛材B(37)を回転筒(32)の被加工物(W)と押圧接触を開始する側に配置するとともに、前記砥粒の粒度が細かいブラシ毛材B(38)を回転筒(32)の被加工物(W)と押圧接触を終了して離間する側に配置してもよい。
 円柱状の被加工物(W)を研磨するロール型の研磨ブラシでは、1個の研磨ブラシで粗研磨用および精密研磨用の双方の機能を備えた研磨手段B(30)を提供することができるから、1台の研磨装置(2)で円柱状の被加工物(W)の粗研磨加工および精密研磨加工をすることができ、設備費用の削減を図ることができる。
 また、前記研磨手段A(20)または研磨手段B(30)の砥粒の粒度をJISR6001:1998に規定される微粉区分の#240~#500を粗研磨用の研磨ブラシとし、微粉区分の#800~#1200を精密研磨用の研磨ブラシとして2種類にしたのは、次の理由による。前記粗研磨用の研磨ブラシの高研磨能力により被加工物(W)の表層部に存在するマイクロクラックを的確に除去する。前記精密研磨用の研磨ブラシによる粗研磨加工にて荒れた表層部の表面粗さを微細化して、後工程においてスライス加工してウェハにした時に発生する割れや欠けがを無くすために精密研磨用の研磨ブラシにより研磨加工するのがよい。
 また、研削装置(1)および研磨装置(2)に着脱自在とした研削手段A(14)および研磨手段A(20)、あるいは研削手段B(24)および研磨手段B(30)、の取り付け部の仕様を共通にすることによって、前記研削装置(1)本体および研磨装置(2)本体を同一の仕様にすることができるから、装置本体の製造原価を安価にすることができる。
 [研削・研磨加工システムによる加工]
 図5は、図1に示す3台の研削装置(1)と、図2に示す1台の研磨装置(2)と、図3に示す1台の研削装置(1)と、図4に示す1台の研磨装置(2)と、未加工の被加工物(W)の搬入装置(3)と、加工後の被加工物(W)の搬出装置(4)と、前記搬入装置(3)、研削装置(1)、研磨装置(2)、搬出装置(4)の各装置間を旋回作動する作動アーム(51)および該作動アーム(51)の先端に取付けて被加工物(W)を把持するようにした把持部(52)を有する移載装置(5)との配置を示す配置図である。図示しない制御手段は、加工開始前に入力済みの初期設定項目、および研削装置(1)、研磨装置(2)に備えた計測手段(18)より送信された計測信号を基に演算処理して該研削装置(1)、研磨装置(2)の各手段に作動信号を出力する機能と、前記移載装置(5)の旋回作動および被加工物(W)を把持する把持作動を制御する機能を備える。また、前記制御手段は、該移載装置(5)が、前記搬入装置(3)、研削装置(1)、研磨装置(2)、搬出装置(4)間を旋回作動する順序を制御する機能を備えてもよい。
 このように構成すると、制御手段に前もって入力された搬入装置(3)、研削装置(1)、研磨装置(2)、搬出装置(4)への旋回作動順序に基づいて、移載装置(5)の把持部(62)が被加工物(W)を把持して作動アーム(51)が旋回作動することとなる。よって、搬入装置(3)上に待機している研削・研磨未加工の被加工物(W)は、研削装置(1)と研磨装置(2)により研削加工と研磨加工を終了し搬出装置(4)に全自動で搬出することができる。
 また、移載装置(5)の把持部(52)は、所定の角度に回転可能としているので、角柱状の被加工物(W)を加工する研削装置(1)と研磨装置(2)の把持手段(12)のクランプ軸(13)に設けた「間欠回転」の回転機構を無くし、把持部(52)で被加工物(W)を「間欠回転」させてもよい。
 [研削・研磨加工]
 前記第1の態様に記載の制御手段に、加工開始前に入力する初期設定項目の例としては、以下の項目が含まれる。
 1.後記する基準ブロック(K)の一対の2基準面により形成された既知の基準間隔寸法
 2.被加工物(W)の種類およびその形状情報(角柱の角数または円柱)
 3.被加工物(W)の表層部の研削加工代および研磨加工代
 4.被加工物(W)の研削・研磨加工後の最終断面寸法およびその公差
 5.角柱状の被加工物(W)を加工する場合の、研削装置(1)の(後記する)研削手段A(14)、ならびに研磨装置(2)の(後記する)研磨手段A(20)の外形寸法、砥粒の粒度、回転速度、および研削装置(1)の把持手段(12)と研削手段A(14)ならびに研磨装置(2)の把持手段(12)と研磨手段A(20)のどちらか一方を(後記する)移動手段(19)により移動させる移動速度
 6.円柱状の被加工物(W)を加工する場合の、研削装置(1)の(後記する)研削手段B(24)、ならびに研磨装置(2)の(後記する)研磨手段B(30)の外形寸法、砥粒の粒度、回転速度、および研削装置(1)の把持手段(12)と研削手段B(24)ならびに研磨装置(2)の把持手段(12)と研磨手段B(30)のどちらか一方を移動手段(19)により移動させる移動速度
 7.被加工物(W)の加工部の形状が、単結晶シリコンブロックの角部、あるいは単結晶サファイアインゴットの胴体部のような、円弧状もしくは円柱状の被加工物(W)を加工する場合に必要とする研削装置(1)ならびに研磨装置(2)の把持手段(12)の回転速度
 前記研削加工および研磨加工における被加工物(W)の移動速度は、研削加工痕または研磨加工痕が残らない範囲に設定する必要があって、被加工物(W)が角柱状の、例えば多結晶シリコンブロックの側面部(F)と角部(C)、ならびに単結晶シリコンブロックの側面部(F)を加工するときは10~40mm/秒に設定し、被加工物(W)が円柱状の、例えば単結晶サファイアインゴットの胴体部(B)、ならびに前記単結晶シリコンブロック(W)の角部(C)、を加工するときは10mm/秒以下に設定する。
 前記移動速度の設定は、研削・研磨加工の砥粒の粒度、切込み量、回転速度の設定条件が関係し、例えば、砥粒の粒度が粗ければ前記範囲の遅い領域に設定し、砥粒の粒度が細かければ前記範囲の速い領域に設定する必要がある。
 被加工物(W)に対して前記研削装置(1)の研削手段A(14)または研削手段B(24)に一定の切込み量を設定して被加工物(W)の歪みを削り取って形状を整えるとともに、断面寸法を所望の公差内に研削する機能と、被加工物(W)に対して前記研磨装置(2)の研磨手段A(20)または研磨手段B(30)に一定の押圧力による切込み量を設定して前記被加工物(W)の表層部を数10μm~100μm前後研磨する機能を備えているから、断面寸法と断面形状を所望の公差内に加工することができるとともに、表層部のマイクロクラックを的確に除去し、表面粗さを微細化することができる。
 また、研削開始前に研削装置(1)の計測手段(18)よって計測された断面寸法が、制御手段により演算処理されて、初期設定項目として前もって制御手段に入力された被加工物(W)の研削加工代と研磨加工代と研削・研磨加工後の最終断面寸法の合計寸法より小さい場合、研削加工および/または研磨加工をすることができないから、該被加工物(W)は、研削装置(1)の研削加工を中止して把持手段(12)により基台(11)上に載置されることとなる。
 研削・研磨加工が中止となった被加工物(W)は、前記移載装置(5)の作動アーム(51)が旋回・作動して把持部(52)に把持されて、図示しない再溶融工程へ戻されることとなる。
 前記研削装置(1)或いは研磨装置(2)に設けられている計測手段(18)が、把持手段(12)のクランプ軸(13)の一方に被加工物(W)の柱軸と平行な水平の一対の基準面と垂直な一対の基準面を既知の基準間隔寸法をおいて形成された基準ブロック(K)を備える。計測手段(18)はさらに、計測方向を被加工物(W)の柱軸方向と直交する方向とし、前記基準ブロック(K)の垂直な基準面および被加工物(W)の垂直な研削・研磨加工部の間隔寸法(断面寸法)を計測するようにした計測具A(18A)と、計測方向を前記計測具A(18A)と直交する垂直方向とし、前記基準ブロック(K)の上面の基準面および被加工物(W)の上面の研削・研磨加工部の高さ位置を計測する計測具B(18B)とを備える。
 上記の構成を用いて、計測手段(18)にて次のように計測を行う。
<1>柱軸と垂直な水平方向の(垂直の基準面を用いた)基準ブロック(K)の断面寸法、の計測については、加工開始前に、初期設定項目として基準間隔寸法が前もって制御手段に入力される。該基準ブロック(K)の基準面間を前記計測具A(18A)により実測して制御手段に送信される。計測信号が演算処理され、前記基準ブロック(K)の基準寸法(断面寸法)に対する計測具A(18A)の計測信号が設定されるものである。
<2>被加工物(W)の断面寸法の計測については、前記被加工物(W)の断面寸法である柱軸と垂直な水平方向の加工部間の実寸法を計測具A(18A)により実測してその計測信号が制御手段に送信される。該被加工物(W)の計測信号が前記<1>で設定された計測具A(18A)の基準寸法の計測信号を基に演算処理されて、被加工物(W)の断面の実寸法が計測できるものである。
<3>研削手段A(14)または研削手段B(24)、および研磨手段A(20)または研磨手段B(30)の切込み量が「ゼロ」の基点位置の設定については、前記研削手段A(14)または研削手段B(24)および研磨手段A(20)または研磨手段B(30)の先端部を基準ブロック(K)の基準面に接触させて、その接触位置の信号が制御手段に送信される。前記研削手段A(14)または研削手段B(24)および研磨手段A(20)または研磨手段B(30)の切込み量が「ゼロ」の基点位置が演算処理されて制御手段に記憶される。
<4>研削手段A(14)または研削手段B(24)、および研磨手段A(20)または研磨手段B(30)の切込み量の設定については、前記<1><2><3>が自動計測および自動設定されて、該<1><2><3>の演算処理結果が、加工開始前に初期設定項目として前もって制御手段に入力されている研削・研磨加工後の断面寸法を基に、さらに演算処理されて研削手段A(14)または研削手段B(24)、および研磨手段A(20)または研磨手段B(30)の切込み量が自動設定されるものである。
 なお、「切込み量」とは、特に研磨ブラシのように加工中に変形する手段において、変形を無視した送り量であり、実際に研削あるいは研磨された「削り代」と区別して用いる。
 また、制御手段に入力された初期設定項目と計測手段(18)から送信された計測信号の演算処理と、その演算処理により前記制御手段から研削装置(1)或いは研磨装置(2)に送信される作動信号について補足説明をする。
 前記初期設定項目の中の被加工物(W)の種類およびその形状情報(角柱の角数または円柱)によって決定される作動信号に、例えば、把持手段(12)の被加工物(W)を把持するクランプ軸(13)の「間欠回転」または「連続回転」を決定する作動信号がある。制御手段より
 研削装置(1)を構成する基台(11)、把持手段(12)、研削手段A(14)または研削手段B(24)、計測手段(18)、移動手段(19)、或いは
 研磨装置(2)を構成する基台(11)、把持手段(12)、研磨手段A(20)または研磨手段B(30)、計測手段(18)、移動手段(19)
 に送信されて前記各手段を作動させる信号がある。
 さらに、計測手段(18)の計測に関する前記<1><2><3><4>の演算処理に基づく、被加工物(W)の研削・研磨加工後の外形寸法の調製とマイクロクラック除去および表面粗さの調整をする作動信号がある。
 また、計測具A(18A)によって計測された基準ブロック(K)の柱軸と垂直な水平方向の基準面と被加工物(W)の柱軸方向と直交する方向(図1乃至図4、図7、図8に示すY方向)の両側の加工部の間隔寸法(断面寸法)に基づいて前記押圧具(34)が前記被加工物(W)の両側(図1乃至図4、図7、図8に示すY方向)に進退動して、前記被加工物(W)を基台(11)の図1乃至図4、図7、図8に示すY方向の中心位置に設定することができる。計測具B(18B)によって計測された基準ブロック(K)の上面の基準面および被加工物(W)の加工部の垂直方向(図6および図8に示すZ方向)の高さ位置に基づいて、前記基台(11)が上下動して、前記被加工物(W)の柱軸芯を研削手段A(14)または研磨手段A(20)、研削手段B(24)または研磨手段B(30)のZ方向(図6および図8参照)の中心位置に設定することができる。
 基台(11)に載置された被加工物(W)の柱軸方向と直交する水平方向(図1乃至図4、図7、図8に示すY方向)と垂直方向(図6および図8に示すZ方向)の芯出しをして把持手段(12)のクランプ軸(13)が被加工物(W)の両端面の中心位置を的確に把持できるようにした。そのため、研削・研磨加工する被加工物(W)の形状が、円柱状(単結晶サファイアインゴットの場合)もしくは円弧状(単結晶シリコンブロックの角部)の場合に、把持手段(12)のクランプ軸(13)をその軸芯を中心にして「間欠回転」または「連続回転」させて、的確に加工ができる。
 前記計測手段(18)の計測具A(18A)および計測具B(18B)の測定方式には、計測する箇所に直接接触させて計測する接触式と、レーザー光を放射して計測する非接触式とのどちらを用いても良い。
 また、前記制御手段は、下記の機能を有するとよい。すなわち、
 1.研削装置ならびに研磨装置の把持手段に設けられた基準ブロック(K)の垂直な両側の基準面に、研削手段A(14)ならびに研磨手段A(20)、または研削手段B(14)ならびに研磨手段B(30)、の各先端を接触させて、前記研削装置ならびに研磨装置の各手段の切込み量が「ゼロ」となる基点位置を演算処理する機能
 2.研削装置ならびに研磨装置の計測手段に設けられた計測具A(18A)により前記基準ブロック(K)の垂直な両側の基準面と被加工物(W)の両側の加工部の差を計測して、被加工物(W)の加工部の加工前および加工後の断面寸法を演算処理する機能
 3.研削装置(1)ならびに研磨装置(2)に設けられた基台(11)に載置された被加工物(W)を、その水平両方向から押圧具(34)により押圧して該被加工物(W)の柱軸と直交する水平方向の中心位置に位置決めをした後、前記研削装置(1)ならびに研磨装置(2)に夫々設けられた計測手段(18)の計測具B(18B)による計測によって、前記基台(11)の上下位置が調整されて、前記研削装置(1)ならびに研磨装置(2)に夫々設けられた把持手段(12)のクランプ軸(13)が把持する被加工物(W)の両端面のクランプ位置を前記被加工物(W)の軸芯と一致させる芯出しの演算処理をする機能
 4.加工開始前に入力した前記初期設定項目と、研削装置(1)ならびに研磨装置(2)に夫々設けられた計測手段(18)の計測具A(18A)および計測具B(18B)が出力する計測信号とより演算処理し、前記研削装置(1)ならびに研磨装置(2)の各手段に作動信号を出力する機能
 制御手段に硬脆性材料の研削・研磨加工システムを自動化するための各機能を設けたので、被加工物(W)の加工部の研削加工と研磨加工が的確にできるとともに省力化を図ることができる。
 また、研削・研磨加工をする角柱状の被加工物(W)の断面寸法の公差を±0.5mmとし、該被加工物(W)の2側面部(F)が互い交わる角部(C)の断面形状の公差を±0.1度とするとよい。
 例えば、加工開始前の四角柱状のシリコンブロックの断面寸法は、125mm×125mm(呼称:5インチ)、156mm×156mm(呼称:6インチ)、210mm×210mm(呼称:8インチ)の3種類がある。要求される公差は±0.5mmであり、更に要求されるシリコンブロック(W)の2側面部(F)が互い交わる角部(C)の断面形状の公差は、90度±0.1度である。そこで、断面寸法の公差、および断面形状の公差に基づいて研削・研磨加工を的確に行う。
 また、研削・研磨加工をする円柱状の被加工物(W)の断面寸法の公差を±0.5mmとするとよい。
 例えば、加工開始前の円柱状の単結晶サファイアインゴットの断面寸法は、直径は2~6インチ(51~154mm)である。要求される公差は±0.5mmである。そこで、断面寸法の公差に基づいて研削・研磨加工を的確に行う。
 これまでに説明した研削・研磨加工システムを用いて、研削手段A(14)により研削加工をしたのち、前記研磨手段A(20)により研磨加工をするようにして硬脆性材料の研削・研磨加工を行う。
 または、研削手段B(24)により研削加工をしたのち、前記研磨手段B(30)により研磨加工を行う。
 研削装置の研削手段A(14)または研削手段B(24)の砥粒の粒度がF90~F220(JISR6001:1998)からなる粗研削用の砥石と、砥粒の粒度が#240~#500(JISR6001:1998)からなる精密研削用の砥石を用い、研磨装置の研磨手段A(20)または研磨手段B(30)の砥粒の粒度が#240~#500(JISR6001:1998)からなる粗研磨用の研磨ブラシと、砥粒の粒度が#800~#1200(JISR6001:1998)からなる精密研磨用の研磨ブラシを備えて、研削手段A(14)または研削手段B(24)により、削り代を20μm~700μm、表面粗さをRy2.0~10.0μm(JISB0601:1994)にしたのち、研磨手段A(20)または研磨手段B(30)により削り代を75μm以上、表面粗さをRy1.1μm(JISB0601:1994)以下にして研削・研磨加工を行ってもよい。
 また、研削・研磨加工部である側面部(F)と角部(C)が形成された角柱状の被加工物(W)の加工工程は、下記の何れの順序で行ってもよい。
 1.側面部(F)の研削加工、角部(C)の研削加工、側面部(F)の粗研磨加工、側面部(F)の精密研磨加工、
 2.側面部(F)の研削加工、側面部(F)の粗研磨加工、側面部(F)の精密研磨加工、角部(C)の研削加工、
 3.側面部(F)の粗研削加工、側面部(F)の精密研削加工、角部(C)の研削加工、側面部(F)の粗研磨加工、側面部(F)の精密研磨加工
 また、研削・研磨加工部の形状が円柱状の胴体部(B)で形成された被加工物(W)の加工工程は、下記の何れの順序で行ってもよい。
 1.研削加工、粗研磨加工、精密研磨加工、
 2.粗研削加工、精密研削加工、粗研磨加工、精密研磨加工
 図示しない制御手段に、前記のように初期設定項目を設定したのち、加工開始スイッチをONして、切削・研磨加工を開始する。搬入装置(3)上に搬送されてきた被加工物(W)は、旋回した移載装置(5)の把持部(52)により把持される。図6に示すように、被加工物(W)が、最初に加工を行う研削装置(1)の基台(11)上に設置される。計測手段(18)で被加工物(W)の上面を計測し、被加工物(W)の柱軸の垂直位置が把持手段(12)のクランプ軸(13)の軸心の垂直位置と一致するように、基台(11)により垂直移動される。図7に示すように、押圧具(14)が水平方向の両側(Y方向)から夫々前進しその中央に被加工物(W)が位置決めされる。次に、把持手段(12)のクランプ軸(13)の一方が図1に示すX方向に前進して該クランプ軸(13)(13)に把持される。基台(11)は下方に縮められる。
 図6に示す把持手段(12)が、移動手段(19)の作動によって研削手段A(14)(14)間に移動される。該把持手段(12)に設けられた基準ブロック(K)の垂直方向の基準面に研削手段A(14)(14)の砥粒層A(15a)の先端が接触し、該研削手段A(14)の砥粒層A(15a)の切込み量を「ゼロ」とする基点位置が制御手段に記憶される。
 以上、被加工物(W)の種類が角柱状の被加工物(W)(例えば多結晶または単結晶シリコンブロック)、または円柱状の被加工物(W)(例えば単結晶サファイアインゴット)に共通する作動であり、以下に、多結晶シリコンブロックを被加工物(W)にしたときの、角柱状用の研削手段A(14)を取付けた研削装置(1)と角柱状用の研磨手段A(20)を取付けた研磨装置(2)に、搬入装置(3)と搬出装置(4)と移載装置(5)を配置した設備を例にし、その作動の詳細を説明する。
 前記把持手段(12)が移動手段(19)の作動により計測手段(18)に移動され、図8(Y方向)に示すように、多結晶シリコンブロック(W)の両側に対向する1組目の側面部(F)の断面寸法が計測具A(18A)により計測される。その測定結果が制御手段に送信される。
 前記制御手段に送信された測定結果は、制御手段内で実寸法に演算処理され、その実寸法と前もって入力設定された「研削加工後の断面寸法」を基にして研削手段A(14)の切込み量が自動設定される。
 断面寸法を測定し研削手段A(14)の切込み量が設定された前記多結晶シリコンブロック(W)の1組目の両側面部(F)(F)が、移動手段(19)の作動により研削手段A(14)(14)の間に移動されて研削加工される。該両側面部(F)(F)間の断面寸法が計測具A(18A)(18A)によって公差内であることが確認される。1組目の両側面部(F)(F)の研削加工が終了したら、把持手段(12)のクランプ軸(13)(13)が回転機構により90度回転されて、2組目の両側面部(F)(F)が前記1組目の両側面部(F)(F)と同様に、研削加工される。断面寸法が公差内であることが確認されると、4側面部(F)の研削加工が終了する。
 4側面部(F)の研削加工を終了した多結晶シリコンブロック(W)は、把持手段(12)のクランプ軸(13)(13)に把持された状態で図6に示す作動開始位置に戻って、クランプ軸(13)(13)の把持状態が解除されて基台(11)上に載置される。該多結晶シリコンブロック(W)は、前記移載装置(5)の作動アーム(51)が旋回してその把持部(52)に把持されて、次の加工工程である角部(C)の研削加工用の研削装置(1)の基台(11)上に載置される。前記側面部(F)を研削加工した研削装置(1)と同様の作動順序によって、4角部(C)の研削加工を行う。
 4角部(C)の研削加工を終了した多結晶シリコンブロック(W)は、前記と同様に、把持手段(12)のクランプ軸(13)(13)に把持された状態で図6に示す作動開始位置に戻って、クランプ軸(13)(13)の把持状態が解除されて基台(11)上に載置される。前記移載装置(5)の作動アーム(51)が旋回して、該多結晶シリコンブロック(W)をその把持部(52)に把持し、次の加工工程である研磨装置(2)の基台(11)上に載置される。前記の研削装置(1)と同様の作動順序によって、4側面部(F)の研磨加工を行う。これにより、全ての研削・研磨加工が終了する。
 全ての研削・研磨加工が終了し、研磨装置(2)の基台(11)上に載置されている前記多結晶シリコンブロック(W)は、前記移載装置(5)の作動アーム(51)が旋回してその把持部(52)により把持し、搬出装置(4)に移載し搬出する。
 次に、本発明の研削手段A(14)または研削手段B(24)により研削して断面寸法を前記加工寸法の公差内に研削加工し、研磨手段A(20)または研磨手段B(30)により、その表層部のマイクロクラックを除去し表面粗さを微細化した前記多結晶シリコンブロック(W)、または単結晶シリコンブロック(W)、または単結晶サファイアインゴット(W)を、ワイヤソーでスライス加工してウェハに形成する実施例について述べる。実施例では、該ウェハの割れ・欠け等による不良製品の発生率を低減することができた。
 本実施例1において加工する被加工物(W)は、図15に示すように、1個のシリコンインゴットから固定砥粒方式とした新ワイヤソーを用いて切断された4側面部(F)と直角形状の4角部(C)で構成された四角柱状の多結晶シリコンブロック(W)である。図15に示すように、該多結晶シリコンブロック(W)は、5列×5列=計25本が切断形成された。その4角に位置した多結晶シリコンブロックA(W)を抜き取って準備した。結晶シリコンブロックA(W)には、図16に示すように、2側面部(F)に膨らみが形成された。
 研削装置(1)の研削手段A(14)は、図9および図10に示すカップ型の砥石を採用した。表3から、砥粒層A(15a)を形成する砥粒の粒度として、研削能力が高いF100(JISR6001:1998)相当のダイヤモンド砥粒を選択した。砥粒層A(15a)の外形寸法を直径250mm、幅を8mmとした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 前記表1、表2に示す初期設定項目を加工開始前に制御手段に入力した。被加工物(W)である前記四角柱状の多結晶シリコンブロック(W)を研削装置(1)の基台(11)上に載置し、該研削装置(1)の加工開始スイッチをONさせた。
 研削装置(1)の押圧具(34)(34)が図1、図7に示すY方向の内側に互いに作動して、基台(11)上に載置された前記四角柱状の多結晶シリコンブロック(W)は、その柱軸芯がY方向の中心位置に設定される。次に、前記多結晶シリコンブロック(W)の両端が把持手段(12)のクランプ軸(13)(13)の作動により把持された。移動手段(19)が図1に示すX方向に作動してクランプ軸(13)に設けられた基準ブロック(K)を計測具A(18A)位置に移動した。該基準ブロック(K)の断面寸法を計測してその出力信号が制御手段に送信された。基準ブロック(K)の断面寸法を計測した出力信号が、加工開始前に入力された基準面の断面寸法(100mm)に相当するものとして、制御手段に記憶された。
 移動手段(19)の次の作動によって、把持手段(12)のクランプ軸(13)に把持された多結晶シリコンブロックA(W)が計測具A(18A)位置に移動された。該計測具A(18A)が図8(Y方向)に示すように多結晶シリコンブロックA(W)の対向する1組の2側面部(F)の間の距離を縦3箇所×横3箇所(計9箇所)と他の1組の2側面部(F)間の9箇所の合計18箇所で計測した。その結果、2側面部間の距離は、156.9~157.6mm(平均:157.1mm)であった。また、表面粗さは、Ry21~27μm(平均:24μm)であり、長さは499.6mmであった。
 被加工物(W)として準備した前記の多結晶シリコンブロックA(W)の平均断面寸法が呼称:6インチの156mm×156mmに対し+1.1mmであった。よって、、片側=0.55mmを削る必要があるから、切込み量を0.7mmとした。回転速度を研削加工の基準周速度30~40m/秒より換算して2700min-1とた。該研削手段A(14)に前記多結晶シリコンブロックA(W)を20mm/秒の速度で通過させて2側面部(F)を研削したのち、把持手段(12)のクランプ軸(13)を90度回転させ、他の2側面部(F)を前記と同様に研削して4側面部(F)の研削加工を終了した。
Figure JPOXMLDOC01-appb-T000003
 前記の4側面部(F)の研削加工を終了後に、該多結晶シリコンブロックA(W)を把持している把持手段(12)のクランプ軸(13)を45度回転させ、1組目の2角部(C)を両側の研削手段(3)に対向する位置とした。
 前記角部(C)の研削加工において、研削手段A(14)の砥粒の粒度と多結晶シリコンブロックA(W)の移動速度は、前記側面部(F)の研削時と同条件にして研削したところ、側面部(F)との接合箇所にチッピングと称する割れが発見された。そこで、前記研削手段A(14)の砥粒の粒度を#500(JISR6001:1998)に細かくした砥石に変更し多結晶シリコンブロックA(W)の移動速度を30mm/秒に変更して研削した。その結果、研削量は少なくなったが前記のようなチッピングの発生の無いC面を形成することができた。
 従って、前記把持手段(12)のクランプ軸(13)を90度回転させた他の2角部(C)の研削も、研削手段A(14)の砥粒の粒度を#500とし、前記と同様に研削し4角部(C)の研削加工を行った。その結果、4側面部(F)が互いに対向する2側面部(F)間の合計18箇所の寸法が156.1~156.6mm(平均:156.2mm)、4側面部(F)の削り代(=計測値/2で算出した結果)が390~480μm(平均:430μm)、表面粗さがRy5~8μm(平均:7μm)であった。
 本実施例に使用した砥石の研削加工における1回当りの「最大削り代とその切込み量」について確認した結果、最大削り代は700μmであり、そのときの切込み量は1.0mmであった。本実施例における研削加工の片側削り代(550μm)は、前記最大削り代(700μm)の範囲内であるから、砥石の切込み量を0.55mmに設定して1回で終了することができた。
 「削り代と切込み量」の関係については、前記の結果より1回の研削加工における「削り代=切込み量の70%以上」を目安に設定することができるもので、本実施例に使用した砥石を使用して、片側削り代が1.0mm以上である例えば1.1mmの研削加工を行う場合は、1回目の研削加工(切込み量:1.0mm、削り代:700μm)を行なったのち、2回目の研削加工(切込み量:0.57mm、削り代:400μm)を行なえばよいことになる。
 前記研削加工後(研磨加工前)の多結晶シリコンブロックA(W)を切断して内部を観察した結果、表面より70~90μmの深さにマイクロクラックがあった。また、参考として前記研削加工後(研磨加工前)の該多結晶シリコンブロックA(W)をワイヤソーを用いて厚さ200μmのウェハ状にスライス加工した結果、その割れ・欠け等の発生率は3.8%であった。
 次の加工に用いる研磨装置(2)の研磨手段A(20)には、図11および図12に示すような粗研磨用のブラシ毛材A(35)と精密研磨用のブラシ毛材A(36)の取付け基部を夫々の金属管で束ねて同一の回転盤(22)に着脱自在としたセグメント型の研磨ブラシを採用した。
 該研磨ブラシの粗研磨用のブラシ毛材A(35)は、砥粒の粒度を表4に示す#240(JISR6001:1998)相当のダイヤモンド砥粒を選択して固定したものである。その取付け基部を金属管でφ23mmの太さに束ねたブラシ毛材A(35)束を9本用意した。該ブラシ毛材A(35)束を回転盤(22)の中心直径210mmの円周上に均等配置して着脱自在に取付けた。精密研磨用のブラシ毛材A(36)は、砥粒の粒度を表4に示す#800(JISR6001:1998)相当のダイヤモンド砥粒を選択して固定し、その取付け基部を金属管でφ23mmの太さに束ねた。ブラシ毛材A(36)束を24本用意した。該ブラシ毛材A(36)束を回転盤(22)の中心直径280mmの円周上に均等配置して着脱自在に取付けた。
Figure JPOXMLDOC01-appb-T000004
 前記研磨手段A(20)の加工条件を、切込み量を0.5mmとし、回転速度を研磨加工の基準周速度10~20m/秒より換算して1400min-1とし、研磨する多結晶シリコンブロックA(W)の移動速度を20mm/秒とした。4側面部(F)の粗研磨加工と精密研磨加工を同時に行い、1工程で研磨加工を終了した。
 前記の研磨加工を終了した結果、4側面部(F)の互いに対向する2側面部(F)間の合計18箇所の寸法は155.9~156.4mm(平均:156.1mm)であった。また、削り代は91~97μm(平均:95μm)、表面粗さはRy0.9~1.1μm(平均:1.0μm)であった。
 本実施例に使用した前記研磨ブラシの1回の研磨加工における「ブラシ毛材A(21)が折れることなく削ることが可能な最大削り代とその切込み量」について確認した結果、最大削り代は174μmであり、そのときの切込み量は1.0mmであった。本実施例における研磨加工の片側削り代(100μm)は、前記最大削り代(174μm)の範囲内であるから、研磨ブラシの切込み量を0.5mmに設定して研磨加工を1回で終了することができた。
 なお、研磨加工における「削り代と切込み量」の関係については、前記の結果より1回の削り代=切込み量の15~25%を目安に設定する。
 以上、説明した実施例1の多結晶シリコンブロックA(W)の研削加工と、粗研磨加工および精密研磨加工を施した加工結果をまとめて、表5に示す。
Figure JPOXMLDOC01-appb-T000005
 前記研削加工と研磨加工を終了した多結晶シリコンブロックA(W)をワイヤソーでスライス加工してシリコンウェハにした時の割れ・欠け等による不良製品の発生率は、1.2%であった。前記したように研削加工後においては3~4%であったのに対し、表5に示すように削り代を平均:95μm、表面粗さをRy平均:1.0μmとした研磨加工により、その発生率を大きく低減することができた。
 本実施例2に使用した被加工物(W)は、図17および図18に示すように、引き上げ法により製造された円柱状の単結晶シリコンインゴットを切断形成した単結晶シリコンブロック(W)ある。前記単結晶シリコンインゴットの上下端部を切断除去して、呼称長さ:300mm(図18では、高さ方向)、実測の長さを299.0~301.0mmの範囲で切断した25本のインゴットを用意した。そのインゴットを図17に示すように固定治具へ5列×5列の配列で垂直に設定した。
 前記25本の単結晶シリコンインゴットを、前記実施例1と同様の固定砥粒方式の新ワイヤソーを用いて、夫々が略直角を成す4側面部(F)を切断形成して25本の単結晶シリコンブロック(W)を準備した。なお、各単結晶シリコンインゴットの胴体部の一部を円弧幅が約25mmとした4角部(C)として残した。該単結晶シリコンブロック中から無作為に1本を抜き取って被加工物(W)とした。
 単結晶シリコンブロック(W)の形状は、図18に示されるように、4側面部(F)と円弧状の4角部(C)で構成される四角柱状である。前記実施例1と同様に対向する2側面部(F)間の計測を合計18箇所行なった結果、125.4~126.0mm(平均:125.7mm)であり、長さは300.8mm、表面粗さは、Ry22~28μm(平均:25μm)であった。
 研削手段A(14)および研磨手段A(20)の仕様については、前記表2に示すとおりであって、研削手段A(14)に用いるカップ型砥石の砥粒の粒度を表3より選択してF180に変更した以外は、前記実施例1と同一とした。前記研削手段A(14)の砥粒の粒度をF180に変更した理由は、以下による。研削・研磨加工する単結晶シリコンブロック(W)の平均断面寸法が(呼称:5インチ)125mm×125mmに対し+0.7mmでありその削り代(片側)=0.35mmであって削り代として少ない。よって、前記実施例1で用いた表3に示されるF100より細かい粒度のF180(JISR6001:1998)としたものである。
 研削加工は、準備した単結晶シリコンブロック(W)をクランプ軸(13)で把持し、その2側面部(F)を両側に対向した研削手段A(14)の間を通過させて、前記実施例1の多結晶シリコンブロック(W)と同様に4側面部(F)の研削を終了させた。
 次に、表1に示すように、制御手段に前もって入力設定したクランプ軸(13)の回転速度(87min-1)で単結晶シリコンブロック(W)を連続回転させながら、該結晶シリコンブロック(W)を2mm/秒の低速度で研削手段A(14)を通過させて4角部(C)の研削加工を終了した。
 その結果、4側面部(F)の互いに対向する2側面部(F)間の合計18箇所の寸法は、125.3~126.1mm(平均:125.4mm)、4側面部(F)の削り代は283~350μm(平均:316μm)であり、4側面部(F)と4角部(C)の表面粗さはRy4~6μm(平均:5μm)であった。
 次の研磨加工は、単結晶シリコンブロック(W)を把持手段により連続回転させながら、粗研磨用のブラシ毛材A(35)と精密研磨用のブラシ毛材A(36)を回転盤(22)に一体にした一対の研磨ブラシから成る研磨手段A(20)の間を、移動手段(19)により2mm/秒の低速度で通過させて4角部(C)の研磨加工を終了させた。その後、4側面部(F)の研磨加工を前記実施例1と同様に、研磨手段A(20)の間を移動手段(19)により20mm/秒の移動速度で通過させて研磨加工を行った。以上のとおり、全ての研削・研磨加工を終了した。
 前記研磨加工を終了した4側面部(F)の互いに対向する2側面部(F)間の合計18箇所を計測した結果、断面寸法は124.7~125.4mm(平均:125.2mm)であった。また、削り代は86~100μm(平均:93μm)、表面粗さはRy0.8~1.0μm(平均:0.9μm)であった。
 以上説明した実施例2の単結晶シリコンブロック(W)の研削加工と研磨加工を終了した後の断面外形寸法と表面粗さをまとめて表6に示す。
Figure JPOXMLDOC01-appb-T000006
 また、前記研削加工と研磨加工を全て終了した単結晶シリコンブロック(W)をワイヤソーでスライス加工してシリコンウェハにし、該シリコンウェハの割れ・欠け等による不良製品の発生率を調べた。その結果、前記実施例1の多結晶シリコンブロック(W)と同様に、研削加工後の研磨加工によりその研磨代を86~100μmとし、表面粗さをRy平均:0.9μmとしたことにより、割れ・欠け等による不良製品の発生率を1.0%以下に低減することができた。
 本実施例3に使用した被加工物(W)は、図19に示す円柱状の単結晶サファイアインゴットである。断面寸法が呼称:4インチ(直径:100±0.5mm)で、の引き上げ法により製造された。該単結晶サファイアインゴット(W)の胴体部(B)には、製造時の溶融加熱などにより発生した不純物が付着して凹凸が形成されている。そのトップ部とテール部を切断除去し、長さ(図19では、高さ方向)を呼称:200mm、実測長さ200±1.0mmの範囲に切断して使用した。
  研削装置(1)の研削手段B(24)および、研磨装置(2)の研磨手段B(30)の仕様は、次の表7に示すとおりである。
Figure JPOXMLDOC01-appb-T000007
 研削手段B(24)には、図13に示すロール型砥石を採用した。その砥粒は、前記表3より研削能力が高いF100(JISR6001:1998)の粒度に相当するダイヤモンド砥粒を用いた。該砥粒層B(25)の外形寸法を外形200mm×長さ100mmとした。切込み量を1.5mm、回転速度(研削加工の基準周速度:15~30m/秒より換算)を2200min-1に設定して前記ロール型砥石を回転させた。被加工物である単結晶サファイアインゴット(W)を、その柱軸芯の両端を把持している把持手段(12)のクランプ軸(13)により、前記ロール型砥石の回転方向とは逆方向に153min-1の回転速度(表1に示す:円柱状の被加工物(W)の基準周速度0.5~1.1m/秒より換算)で連続回転させた。
 次に、単結晶サファイア・インゴット(W)を回転させながら、移動手段(19)の作動によって、単結晶サファイア・インゴット(W)の柱軸方向に2mm/秒の低速度で移動させて、回転している研削手段B(24)を通過させ、胴体部(B)の研削加工を終了した。
 研削加工を終了した前記単結晶サファイアインゴット(W)の胴体部(B)の直径寸法を、該胴体部(B)の柱軸心に沿って6箇所測定した。該単結晶サファイアインゴット(W)を把持している把持手段(12)のクランプ軸(13)を90度回転させてその直径寸法を前記と同様に6箇所測定して、合計12箇所の直径寸法を測定した。その結果、100.3~101.1mm(平均:100.7mm)であった。また、その表面粗さはRy5~7μm(平均:6μm)であった。なお、単結晶サファイア・インゴット(W)の切削加工は、胴体部(B)に付着した不純物の除去が含まれていたので削り代の測定記録はしなかった。
 次の研磨装置(2)の研磨手段B(30)には、図14に示す回転筒(32)の一端部側に粗研磨用のブラシ毛材B(37)を、他端部側に精密研磨用のブラシ毛材B(38)を配置した、長さが400mmの1個の回転筒(32)に粗研磨用と精密研磨用の双方を一体に形成したローラー型の研磨ブラシを採用した。
 前記研磨手段B(30)に使用する砥粒の粒径は、前記粗研磨用のブラシ毛材B(37)には表4に示す#240(JISR6001:1998)相当としたダイヤモンド砥粒とし、前記精密研磨用のブラシ毛材B(38)には#800(JISR6001:1998)相当としたダイヤモンド砥粒とした。
 また、前記粗研磨用のブラシ毛材B(37)と精密研磨用のブラシ毛材B(38)の夫々の外形寸法を(毛先の直径)φ150mm×(回転筒(32)の軸芯方向の長さ)200mmとした。切込み量を0.5mm、回転速度(研磨加工の基準周速度:10~20m/秒より換算)を2000min-1に設定して前記ロール型研磨ブラシを回転させた。前記単結晶サファイアインゴット(W)を、柱軸芯の両端を把持している把持手段(12)のクランプ軸(13)により、前記ロール型研磨ブラシの回転方向とは逆方向に153min-1の回転速度(表1に示す円柱状の被加工物(W)の基準周速度0.5~1.1m/秒より換算)で連続回転させた。
 次に、移動手段(19)の作動によって、前記把持手段(12)のクランプ軸(13)(13)に把持されて回転している単結晶サファイア・インゴット(W)をその柱軸方向に2mm/秒の低速度で移動させて、回転している研磨手段B(30)を通過させて、胴体部(B)の研磨加工を終了した。
 研磨加工を終了した前記単結晶サファイアインゴット(W)の胴体部(B)の直径寸法を、該胴体部(B)の柱軸心に沿った直径寸法を6箇所測定した。該単結晶サファイアインゴット(W)の柱軸芯の両端部を把持している把持手段(12)のクランプ軸(13)を90度回転させてその直径寸法を前記と同様に6箇所測定して、合計12箇所の直径寸法を測定した。その結果、100.2~100.9mm(平均:100.6mm)であった。また、その削り代は94~102μm(平均:98μm)、表面粗さはRy5~7μm(平均:6μm)であった。
 以上説明した実施例3に使用した単結晶サファイア・インゴット(W)の研削加工および研磨加工の終了後の断面外形寸法と表面粗さをまとめて表8に示す。
Figure JPOXMLDOC01-appb-T000008
 また、前記研削加工と研磨加工を全て終了した単結晶サファイアインゴット(W)をワイヤソーでスライス加工してウェハにしたときの割れ・欠け等による不良製品の発生率を調べた結果、1.0%以下に低減することができた。研磨代を94~102μmとし、表面粗さをRy平均:1.0μmとした研磨加工により、前記実施例1、実施例2に使用したシリコンブロック(W)と同様の効果を得ることができた。
(変更例)
 図20に示す水晶ランバートの様に、把持手段(12)によって把持される被加工物(W)の面が水平でない場合は、把持手段(12)の先端に、前記被加工物(W)の先端の形状にあわせた挟持補助部材(図示せず)を連結し、該挟持補助部材を介して被加工物(W)を把持してもよい。
 被加工物(W)の被加工面が図20に示すように不規則な形状(異形状)の場合は、例えば、「被加工物(W)の形状」や「仕上げ目標形状」などを初期設定項目で設定し、研削・研磨加工を行ってもよい。
 本発明は、多結晶および単結晶シリコンブロックと単結晶サファイアインゴットの研削・研磨に関する発明について説明したが、これらに限定されるものではない。例えば、結晶系太陽電池パネル等の各種半導体基板に用いられるシリコンウェハ、水晶振動子などの電子デバイスに用いられる水晶ウェハ、電子デバイスや光学基板に用いられる石英ウェハ、LED基板などに用いられるサファイアウェハや砒化ガリウムウェハやガリウム燐ウェハや窒化ガリウムウェハ、パワーデバイス等に用いられる炭化珪素単結晶ウェハ、SAWフィルタに用いられるタンタル酸リチウムウェハやニオブ酸リチウムウェハ、超高速半導体素子に用いられる燐化インジウムウェハ、等硬脆性材料全般のウェハの製造におけるインゴットおよびブロックの研削・研磨加工についても好適に用いることができる。該被加工物の原料については前記のものに限るものでなく、他の硬脆性材料も対象とし、形状については、角柱状および円柱状のみならず、水晶ランバードのような複雑な形状(異形状)の柱状体(図20を参照)を含む柱状体全般を対象とするものである。
 本発明の研削装置または研削方法によれば、硬脆性材料からなるインゴットをワイヤソー等で切断形成された被加工物(W)となる角柱状のブロックの断面寸法と直角度または円柱状のインゴットの断面寸法が公差範囲から外れた場合であっても、前記研削手段A(14)または研削手段B(24)を砥石とした研削機能によって、該被加工物(W)の表層の不純物と歪みを除去して断面寸法を±0.5mmの公差内とすることができる。さらに、被加工物(W)の形状が角柱状の場合の側面部(F)が交差して形成される角部(C)の直角度を±0.1度の公差内とすることができる。また、その後工程の前記研磨手段A(20)または研磨手段B(30)を研磨ブラシとした研磨機能によって、前記研削加工を終えた前記被加工物(W)の表層のマイクロクラックを除去し、表面粗さをRy1.1μm(JISB0601:1994)以下とすることができる。よって、次工程において、該被加工物(W)をワイヤソー等を用いて数百μmの厚さのウェハにスライス加工した時に、前記スライス加工の際に発生していた割れ・欠けによる不良製品の発生率を低減することができる。
 また、前記研削手段A(14)または研削手段B(24)および研磨手段A(20)または研磨手段B(30)の取付け部の仕様を共通にすることによって、前記研削装置(1)および研磨装置(2)の本体を同一仕様にすることができる。よって、装置本体の製造原価を安価にすることができる。さらに、前記研削装置(1)および研磨装置(2)に取付ける被加工物(W)を把持する把持手段(12)のクランプ軸(13)は「間欠回転」または「連続回転」可能である。よって、形状が角柱状または円柱状の被加工物(W)の研削・研磨加工を容易にすることができる。
 また、前記搬入装置(3)・研削装置(1)・研磨装置(2)・搬出装置(4)の各装置に被加工物(W)を載置し、取り出しをする移載装置(5)を備え、該移載装置(5)および研削装置(1)および研磨装置(2)の各工程を制御手段により自動化する。よって、加工精度の向上と省力化、および量産化を図ることができる。
 被加工物の表層部を一定の切込み量で研削し、該被加工物の表層部の不純物と柱軸方向の歪みを除去するとともに断面寸法を所望の寸法にする研削手段と、前記研削を終えた被加工物の表層部を一定の押圧力で研磨し、該被加工物の表層部のマイクロクラックを除去するとともに表面粗さを微細化する研磨手段と、を備える研削・研磨装置(6)を備えた研削・研磨加工システムを第2実施形態として説明する。ここでは、第1実施形態と異なる点についてのみ説明する。
 図21は、本発明に係る角柱状の被加工物(W)を研削および研磨を行う研削・研磨装置(6)を示す。研削・研磨装置(6)は、被加工物(W)を把持する把持手段(12)と、被加工物(W)の側面部(F)および角部(C)を研削加工する研削手段A(14)と、研削加工が終わった被加工物(W)の側面部(F)および角部(C)を研磨加工する研磨手段A(20)と、基準面を形成する基準ブロック(K)と、被加工物(W)の断面寸法を計測する計測手段(18)と、被加工物(W)を把持する前記把持手段(12)を移動して前記被加工物(W)を計測手段(18)と、研削手段A(14)の間に移動させる移動手段(19)とを備える。
 前記移動手段(19)は、被加工物(W)を把持した把持手段(12)を計測手段(18)と研削手段A(14)および研磨手段A(20)との間で移動させて被加工物(W)を計測し、または、被加工物(W)を研削加工および研磨加工を行う。しかし、被加工物(W)を把持した把持手段(12)を固定し、計測手段(18)と研削手段A(14)および研磨手段A(20)とを被加工物(W)の位置で移動させて該被加工物(W)の計測と研削加工および研磨加工とを行うようにしてもよい。
 研削手段A(14)は、第1実施形態と同様に、カップ型の砥石を用いた。また、研磨手段B(20)は、第1実施形態と同様に、セグメント型の研磨ブラシを用いた。
 図22は、本発明に係る円柱状の被加工物(W)を研削および研磨を行う研削・研磨装置(6)を示す。研削・研磨装置(6)は、被加工物(W)を把持する把持手段(12)と、被加工物(W)の胴体部(B)を研削加工する研削手段B(24)と、研削加工が終わった被加工物(W)の胴体部(B)を研磨加工する研磨手段B(30)と、基準面を形成する基準ブロック(K)と、被加工物(W)の断面寸法を計測する計測手段(18)と、被加工物(W)を把持する前記把持手段(12)を移動して前記被加工物(W)を計測手段(18)と研削手段B(24)の間に移動させる移動手段(19)とを備える。
 前記移送手段(19)は、前記と同様に被加工物(W)を把持した把持手段(12)を固定し、計測手段(18)と研削手段B(24)および研磨手段B(30)とを被加工物(W)の位置で移動させて該被加工物(W)の計測と研削加工および研磨加工とを行うようにしてもよい。
 研削手段B(24)は、第1実施形態と同様に、ロール型の砥石を用いた。また、研磨手段B(30)は、第1実施形態と同様に、ロール型の研磨ブラシを用いた。なお、ロール型の砥石より安価なカップ型の砥石や、ロール型の研磨ブラシより安価なカップ型またはセグメント型の研磨ブラシを使用することもできる。
 角柱状および円柱状の被加工物(W)の研削および研磨を行う研削・研磨装置(6)は、いずれも、担持手段12に固定された被加工物(W)を図中左方より右方へ相対的に移送させることで、研削、研磨の順に加工が行われる。
 また、研削手段A(14)と研磨手段A(20)との少なくとも何れかを複数個連接してもよい。例えば、図23では、1対の研削手段A(14)に、2対の研磨手段A(20)を連接させた。この場合、同図左方に配置される研磨手段A(20)のブラシ毛材A(21)に含有される砥粒の粒度を粗くし、同図右方に配置される研磨手段A(20)のブラシ毛材A(21)に含有される砥粒の粒度を細かくすることで、研削手段A(14)による研削加工の後、2段階の研磨加工を行うことができる。また、研削加工で生じた凹凸が大きすぎて、この凹凸を研磨手段A(20)の加工能力ではなだらかにすることが困難な場合等、研磨加工の能力を向上させたい場合は、全ての研磨手段A(20)のブラシ毛材A(21)に含有される砥粒の粒度を略同一とすることができる。
 また、図示しないが、円柱状の被加工物(W)の研削および研磨を行う研削・研磨装置(6)においても、同様に研削手段B(20)と研磨手段B(20)との少なくとも何れかを複数個連接することができる。
 研削・研磨装置(6)に着脱自在とした研削手段A(14)および研磨手段B(20)、あるいは研削手段B(24)および研磨手段B(30)、の取り付け部の仕様を共通にすることで、それらを交換することができる。これによって、例えば図21および図22に示すような研削・研磨装置(6)の場合は、2対の研削手段A(14)(研削手段B(24))を備えた研削装置(1)、あるいは2対の研磨手段A(20)(研磨手段B(30))を備えた研磨装置(2)、とすることができる。それぞれの砥粒層を構成する砥粒の粒度またはそれぞれのブラシ毛材に含有される砥粒の粒度を略同一とすることで、加工時間を短縮することができる。また、同図左方の砥粒の粒度を粗くし、同図右方の砥粒の粒度を細かくすることで、2段階の研削加工または研磨加工を行うことができる。また、例えば図23に示すような研削・研磨装置(6)の場合は、3対の研削手段A(14)(研削手段B(24))を備えた研削装置(1)、あるいは2対の研磨手段A(20)(研磨手段B(30))を備えた研磨装置(2)、とすることができる。あるいは、同図左右方向の中央に位置する研磨手段A(20)(研磨手段B(30))を研削手段(14)(研削手段B(24))に変更することで、2段階の研削加工を行った後、研磨加工を行うことができる。
 図24は、図1に示す研削装置(1)と、図2に示す研磨装置(2)と、図21に示す研削・研磨装置(6)と、図22に示す研削・研磨装置(6)と、未加工の被加工物(W)の搬入装置(3)と、加工後の被加工物(W)の搬出装置(4)と、前記搬入装置(3)、研削装置(1)、研磨装置(2)、搬出装置(4)の各装置間を旋回作動する作動アーム(51)および該作動アーム(51)の先端に取付けて被加工物(W)を把持するようにした把持部(52)を有する移載装置(5)との配置を示す配置図である。図示しない制御手段は、加工開始前に入力済みの初期設定項目、および研削装置(1)、研磨装置(2)、研削・研磨装置(6)に備えた計測手段(18)より送信された計測信号を基に演算処理して該研削装置(1)、研磨装置(2)、研削・研磨装置(6)の各手段に作動信号を出力する機能と、前記移載装置(5)の旋回作動および被加工物(W)を把持する把持作動を制御する機能を備える。
 研削装置(1)、研削装置(2)、研削・研磨装置(6)の組み合わせは、被加工物(W)の性状および要求される加工精度に応じて、適宜選択することができる。例えば図24(A)では、図21に示す研削・研磨装置(6)を2台配置し、角柱状の被加工物(W)の加工では、側面部Fの加工と角部Cの加工をそれぞれ1台の研削・加工装置(6)で行った。角部Cの表面粗さの要求が高くない例として、図24(B)では、図21に示す研削・研磨装置(6)と図1に示す研削装置(1)とをそれぞれ1台ずつ配置し、側面部Fの加工を研削・研磨装置(6)で行った後、角部Cの研削加工を研削装置(1)で行った。また、角部の加工において、被加工物(W)を同じ速度で移送させる必要のある研削・研磨装置(6)では要求される加工を行うことが出来ない例として、図24(C)に示すように、研削・研磨装置(6)と研削装置(1)と研磨装置(2)とをそれぞれ1台ずつ配置し、側面部Fの加工を研削・研磨装置(6)で行った後、角部Cの加工を研削装置(1)による研削加工、研磨装置(2)による研磨加工の順で行った。
 特に記載されていない研削・研磨装置(6)による被加工物(W)の運転方法(把持方法、計測方法、間欠回転または連続回転、加工方法、等)は、研削装置(1)および研磨装置(2)と同様であり、具体的な動作および運転方法は前述を参照されたい。
    本明細書および図面で用いた主な符号を以下にまとめて示す。
   1  研削装置
   2  研磨装置
   3  搬入装置
   4  搬出装置
   5  移載装置
   6  研削・研磨装置
  11  基台
  12  把持手段
  13  クランプ軸
  14  研削手段A
  15  研削体A
  15a 砥粒層A
  15b 台板
  16  回転盤
  17  回転軸
  18  計測手段
  18A 計測具A
  18B 計測具B
  19  移動手段
  20  研磨手段A
  21  ブラシ毛材A
  22  回転盤
  23  回転軸
  24  研削手段B
  25  砥粒層B
  26  回転筒
  27  回転軸
  30  研磨手段B
  31  ブラシ毛材B
  32  回転筒
  33  回転軸
  34  押圧具
  51  作動アーム
  52  把持部
  W   被加工物
  F   側面部
  C   角部
  B   胴体部
                 

Claims (22)

  1. スライス加工によりウェハを製造するための硬脆性材料からなる柱状の被加工物を研削及び研磨する研削・研磨加工システムであって:
     被加工物の表層部を一定の切込み量で研削し、該被加工物の表層部の不純物と柱軸方向の歪みを除去するとともに断面寸法を所望の寸法にする研削装置であって、被加工物の寸法を計測する計測手段を有する研削装置と;
     前記研削を終えた被加工物の表層部を一定の押圧力で研磨し、該被加工物の表層部のマイクロクラックを除去するとともに表面粗さを微細化する研磨装置であって、被加工物の寸法を計測する計測手段を有する研磨装置と;
     前記計測手段で計測した被加工物の寸法を演算し、前記演算の結果に応じて、前記研削装置の作動信号および前記研磨装置の作動信号を出力する制御手段と;
     を備えた研削・研磨加工システム。
  2. スライス加工によりウェハを製造するための硬脆性材料からなる柱状の被加工物を研削及び研磨する研削・研磨加工システムであって:
     被加工物の寸法を計測する計測手段と;
     被加工物の表層部を一定の切込み量で研削し、該被加工物の表層部の不純物と柱軸方向の歪みを除去するとともに断面寸法を所望の寸法にする研削手段と;
     前記研削を終えた被加工物の表層部を一定の押圧力で研磨し、該被加工物の表層部のマイクロクラックを除去するとともに表面粗さを微細化する研磨手段と;
     前記計測手段で計測した被加工物の寸法を演算し、前記演算の結果に応じて、前記研削手段の作動信号および前記研磨手段の作動信号を出力する制御手段と;
    を備えた研削・研磨装置を少なくとも1以上備えることを特徴とする研削・研磨加工システム。
  3. スライス加工によりウェハを製造するための硬脆性材料からなる柱状の被加工物を研削及び研磨する研削・研磨加工システムであって:
     被加工物の表層部を一定の切込み量で研削し、該被加工物の表層部の不純物と柱軸方向の歪みを除去するとともに断面寸法を所望の寸法にする研削装置であって、被加工物の寸法を計測する計測手段を有する研削装置と、前記研削を終えた被加工物の表層部を一定の押圧力で研磨し、該被加工物の表層部のマイクロクラックを除去するとともに表面粗さを微細化する研磨装置であって、被加工物の寸法を計測する計測手段を有する研磨装置との少なくともいずれか;
     を備えた請求項2記載の研削・研磨加工システム。
  4. 前記研削装置が、
     前記被加工物をその柱軸を水平に載置し垂直方向に移動可能である基台と、
     該基台に載置された被加工物を該被加工物の柱軸と直交する方向に進退動させて該被加工物を前記基台の中心に位置決めをする押圧具と軸芯を被加工物の柱軸の方向として該被加工物の両端を把持するクランプ軸を有し、前記クランプ軸が被加工物をその軸芯を中心にして回転可能な把持手段と、
     砥粒同士を結合させた砥粒層を円盤状あるいは円環状の台板に固着させた研削体を、回転盤に固着させた砥石であって、前記砥石は回転駆動源に着脱自在に連結され、前記砥粒層を前記被加工物に押圧して回転するようにした研削手段と、
     前記把持手段および研削手段のどちらか一方を前記被加工物の柱軸方向に少なくとも該被加工物の長さに相当する距離を移動させる移動手段と;
     を備えた請求項1または3記載の研削・研磨加工システム。
     
  5. 前記研削装置が、
     前記被加工物をその柱軸を水平に載置し垂直方向に移動可能である基台と、
     該基台に載置された被加工物を該被加工物の柱軸と直交する方向に進退動させて該被加工物を前記基台の中心に位置決めをする押圧具と軸芯を被加工物の柱軸の方向として該被加工物の両端を把持するクランプ軸を有し、前記クランプ軸が被加工物をその軸芯を中心にして回転可能な把持手段と、
     砥粒同士を結合させた砥粒層を円盤状または円環状に形成した研削体を、回転盤に固着させた砥石であって、前記砥石は回転駆動源に着脱自在に連結され、前記砥粒層を前記被加工物に押圧して回転するようにした研削手段と、
     前記把持手段および研削手段のどちらか一方を前記被加工物の柱軸方向に少なくとも該被加工物の長さに相当する距離を移動させる移動手段と;
     を備えた請求項1または3記載の研削・研磨加工システム。
     
  6. 前記研磨装置が、
     前記被加工物をその柱軸を水平に載置し垂直方向に移動可能である基台と、
     該基台に載置された被加工物を該被加工物の柱軸と直交する方向に進退動させて該被加工物を前記基台の中心に位置決めをする押圧具と軸芯を被加工物の柱軸の方向として該被加工物の両端を把持するクランプ軸とを有し、前記クランプ軸が被加工物をその軸芯を中心にして回転可能な把持手段と、
     回転盤を有し、円盤状の表面に砥粒を含有したブラシ毛材を束ねて配置した研磨ブラシであって、前記研磨ブラシは回転機構に着脱自在に連結され、前記ブラシ毛材を前記被加工物に押圧して回転するようにした研磨手段と、
     前記把持手段および研磨手段のどちらか一方を前記被加工物の柱軸方向に少なくとも該被加工物の長さに相当する距離を移動させる移動手段と;
     を備えた請求項1または3記載の硬脆性材料の研削・研磨加工システム。
     
  7. 前記研削・研磨装置が、
     前記被加工物をその柱軸を水平に載置し垂直方向に移動可能である基台と、
     該基台に載置された被加工物を該被加工物の柱軸と直交する方向に進退動させて該被加工物を前記基台の中心に位置決めをする押圧具と軸芯を被加工物の柱軸の方向として該被加工物の両端を把持するクランプ軸とを有し、前記クランプ軸が被加工物をその軸芯を中心にして回転可能な把持手段と、
     前記把持手段または研削手段若しくは研磨手段のどちらか一方を前記被加工物の柱軸方向に少なくとも該被加工物の長さに相当する距離を移動させる移動手段とを備え;
     前記研削手段が、砥粒同士を結合させて砥粒層を円盤状あるいは円環状の台板に固着させた研削体を回転盤に固着させた砥石であって、前記砥石は回転駆動源に着脱自在に連結され、前記砥粒層を前記被加工物に押圧して回転するようにされ、
     前記研磨手段が、円盤状の表面に砥粒を含有したブラシ毛材を束ねて配置し、該ブラシ毛材を前記被加工物に押圧して回転するようにした回転盤を有し、着脱自在に保持される研磨ブラシを備え、前記ブラシ研磨が回転するようにされた、
     請求項2記載の硬脆性材料の研削・研磨加工システム。
  8. 前記研削・研磨装置が、
     前記被加工物をその柱軸を水平に載置し垂直方向に移動可能である基台と、
     該基台に載置された被加工物を該被加工物の柱軸と直交する方向に進退動させて該被加工物を前記基台の中心に位置決めをする押圧具と軸芯を被加工物の柱軸の方向として該被加工物の両端を把持するクランプ軸とを有し、前記クランプ軸が被加工物をその軸芯を中心にして回転可能な把持手段と、
     前記把持手段または研削手段若しくは研磨手段のどちらか一方を前記被加工物の柱軸方向に少なくとも該被加工物の長さに相当する距離を移動させる移動手段とを備え;
     前記研削手段が、砥粒同士を結合した砥粒層を円盤状または円環状に形成した研削体を、回転盤に固着させた砥石であって、前記砥石は回転駆動源に着脱自在に連結され、前記砥粒層を前記被加工物に押圧して回転するようにされ、
     前記研磨手段が、円盤状の表面に砥粒を含有したブラシ毛材を束ねて配置し、該ブラシ毛材を前記被加工物に押圧して回転するようにした回転盤を有し、着脱自在に保持される研磨ブラシを備え、前記ブラシ研磨が回転するようにされた、
     請求項2記載の硬脆性材料の研削・研磨加工システム。
  9. 前記研削手段の砥粒の粒度を、粗研削用にF90~F220(JISR6001:1998)、または、精密研削用に#240~#500(JISR6001:1998)としたことを特徴とする;
     請求項4、5、7、8のいずれか記載の硬脆性材料の研削・研磨加工システム。
  10. 前記研磨手段のブラシ毛材に含有される砥粒の粒度を2種類以上としたことを特徴とする;
     請求項6乃至8のいずれか記載の硬脆性材料の研削・研磨加工システム。
  11. 前記研磨手段の砥粒の粒度を、粗研磨用に#240~#500(JISR6001:1998)、または、精密研磨用に#800~#1200(JISR6001:1998)としたことを特徴とする;
     請求項10記載の硬脆性材料の研削・研磨加工システム。
  12. 前記研磨手段において、粒度が粗い砥粒を含有するブラシ毛材を回転盤の回転中心に近い部分に配置し、粒度が細かい砥粒を含有するブラシ毛材を前記粒度が粗い砥粒を含有するブラシ毛材が配置された周囲に配置したことを特徴とする;
     請求項10記載の硬脆性材料の研削・研磨加工システム。
  13. 前記研削装置の前記研削手段と前記研磨装置の前記研磨手段とが入れ替え可能で、研削手段と研磨手段を入れ替えることにより研削装置を研磨装置と、あるいは、研磨装置を研削装置とすることが可能であることを特徴とする;
     請求項1または3記載の硬脆性材料の研削・研磨加工システム。
  14. 前記研削・研磨装置の前記研削手段と前記研磨手段とが入れ替え可能であることを特徴とする;
     請求項2記載の硬脆性材料の研削・研磨加工システム。
  15. 研削・研磨加工前の被加工物を前記研削・研磨加工システムに搬入する搬入装置と、
     研削・研磨加工を終了した被加工物を前記研削・研磨加工システムから搬出する搬出装置と、
     前記搬入装置、研削装置、研磨装置、搬出装置の間で前記被加工物を移動する作動アームおよび該作動アームの先端に取付けてられて、前記被加工物を所定の角度に回転する把持部を有する移載装置と;
     を備えた請求項1記載の硬脆性材料の研削・研磨加工システム。
  16. 研削・研磨加工前の被加工物を前記研削・研磨加工システムに搬入する搬入装置と、
     研削・研磨加工を終了した被加工物を前記研削・研磨加工システムから搬出する搬出装置と、
     前記搬入装置、研削・研磨装置または研削装置若しくは研磨装置、搬出装置の間で前記被加工物を移動する作動アームおよび該作動アームの先端に取付けてられて、前記被加工物を所定の角度に回転する把持部を有する移載装置と;
     を備えた請求項2または3記載の硬脆性材料の研削・研磨加工システム。
  17. 前記研削装置或いは研磨装置に設けられている計測手段が、
     前記被加工物の柱軸と垂直な水平方向に既知の基準間隔寸法をおいて形成された一対の基準面と、前記柱軸と垂直な鉛直方向に既知の基準間隔寸法をおいて形成された一対の基準面を有する基準ブロックと、
     計測方向を前記水平方向とし、前記基準ブロックの両側の基準面および被加工物の両側の研削・研磨加工部の間隔寸法を計測する計測具と、
     計測方向を前記鉛直方向とし、前記基準ブロックの上面の基準面および被加工物の上面の研削・研磨加工部の高さ位置を計測する計測具と、から成ることを特徴とする;
     請求項1または2記載の硬脆性材料の研削・研磨加工システム。
  18. 前記制御手段が、
     前記研削装置ならびに前記研磨装置の把持手段に設けられた基準ブロックの一対の基準面に、前記研削手段および前記研磨手段の各先端を接触させて、前記研削装置ならびに研磨装置の各手段の切込み量がゼロとなる基点位置を演算処理する機能と、
     前記研削装置ならびに前記研磨装置の計測手段に設けられた計測具により前記基準ブロックの両側の基準面と被加工物の両側の加工部の差を計測して、被加工物の加工部の加工前および加工後の断面寸法を演算処理する機能と、
     前記研削装置ならびに前記研磨装置が前記被加工物を芯出しして把持するための演算処理をする機能と、
     加工開始前に入力した初期設定項目と、前記研削装置ならびに前記研磨装置に夫々設けられた計測手段の計測具が出力する計測信号とを演算処理し、前記研削装置ならびに前記研磨装置の各手段に作動信号を出力する機能と、
     を備えたことを特徴とする請求項17記載の硬脆性材料の研削・研磨加工システム。
  19. 前記制御手段が、
     前記研削・研磨装置の把持手段に設けられた基準ブロックの一対の基準面に、前記研削手段または前記研磨手段の各先端を接触させて、前記研削手段または前記研磨手段の切込み量がゼロとなる基点位置を演算処理する機能と、
     前記研削・研磨装置の計測手段に設けられた計測具により前記基準ブロックの両側の基準面と被加工物の両側の加工部の差を計測して、被加工物の加工部の加工前および加工後の断面寸法を演算処理する機能と、
     前記研削・研磨装置が前記被加工物を芯出しして把持するための演算処理をする機能と、
     加工開始前に入力した初期設定項目と、前記計測手段の計測具が出力する計測信号とを演算処理し、前記研削手段および前記研磨手段に作動信号を出力する機能と、
     を備えたことを特徴とする請求項2記載の硬脆性材料の研削・研磨加工システム。
  20. 前記被加工物の形状が角柱状であり、
     研削・研磨加工をする被加工物の断面寸法の公差を±0.5mmとし、該被加工物の2側面部が互い交わる角部の断面形状の公差を±0.1度としたことを特徴とする
     請求項18または19記載の硬脆性材料の研削・研磨加工システム。
  21. 前記被加工物の形状が円柱状であり、
     研削・研磨加工をする被加工物の断面寸法の公差を±0.5mmとしたことを特徴とする
     請求項18または19記載の硬脆性材料の研削・研磨加工システム。
  22. 前記請求項1乃至請求項3のいずれか記載の硬脆性材料の研削・研磨加工システムを用い、
     前記研削装置により研削加工をしたのち、前記研磨装置により研磨加工をするようにしたことを特徴とする硬脆性材料の研削・研磨方法。
PCT/JP2011/075979 2011-09-15 2011-11-10 硬脆性材料の研削・研磨加工システム、および研削・研磨方法 WO2013038573A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180071168.6A CN103561908B (zh) 2011-09-15 2011-11-10 硬脆性材料的磨削、研磨加工系统以及磨削、研磨方法
KR1020137031519A KR20140062431A (ko) 2011-09-15 2011-11-10 경취성 재료의 연삭·연마 가공 시스템, 및 연삭·연마 방법
JP2013533455A JP5842920B2 (ja) 2011-09-15 2011-11-10 硬脆性材料の研削・研磨加工システム、および研削・研磨方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-201809 2011-09-15
JP2011201809 2011-09-15

Publications (1)

Publication Number Publication Date
WO2013038573A1 true WO2013038573A1 (ja) 2013-03-21

Family

ID=47882831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075979 WO2013038573A1 (ja) 2011-09-15 2011-11-10 硬脆性材料の研削・研磨加工システム、および研削・研磨方法

Country Status (5)

Country Link
JP (1) JP5842920B2 (ja)
KR (1) KR20140062431A (ja)
CN (1) CN103561908B (ja)
TW (1) TWI564948B (ja)
WO (1) WO2013038573A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103567840A (zh) * 2013-11-13 2014-02-12 佛山市博科数控机械有限公司 一种机械手多工位砂带抛光机
WO2015050218A1 (ja) * 2013-10-02 2015-04-09 日本碍子株式会社 研磨物の製造方法
CN109648466A (zh) * 2018-12-28 2019-04-19 深圳市芯思杰智慧传感技术有限公司 一种芯片封蜡装置
WO2019102629A1 (ja) * 2017-11-23 2019-05-31 新東工業株式会社 多角柱状部材の加工装置および加工方法
US10350722B2 (en) 2016-02-05 2019-07-16 Toshiba Kikai Kabushiki Kaisha Polishing apparatus
US10363647B2 (en) 2016-02-05 2019-07-30 Toshiba Kikai Kabushiki Kaisha Grinding tool
JP2021064777A (ja) * 2019-10-10 2021-04-22 曾峰 半導体素子用の単結晶シリコン外径研磨装置
CN117681107A (zh) * 2024-02-01 2024-03-12 山东豪迈机械制造有限公司 气平衡外圆抛光机

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105538103B (zh) * 2015-12-04 2017-12-22 无锡普瑞明思机械制造有限公司 一种五金件用手持抛光机
JP6976745B2 (ja) * 2017-06-30 2021-12-08 株式会社ディスコ ウエーハ生成装置
JP6482618B2 (ja) * 2017-08-22 2019-03-13 Towa株式会社 加工装置及び加工方法
JP6926828B2 (ja) * 2017-08-28 2021-08-25 村田機械株式会社 バリ取り装置
CN108527144B (zh) * 2018-03-28 2019-11-15 昆山国显光电有限公司 基板研磨装置及其研磨方法
CN110480466A (zh) * 2018-05-15 2019-11-22 浙江永耀机械科技有限公司 单游动无弧面水晶辊筒磨抛机
DE212018000039U1 (de) * 2018-09-17 2018-10-23 Suzhou Maichuang Information Technology Co., Ltd. Automatische Schleifmaschine
CN112207668A (zh) * 2020-09-26 2021-01-12 郑州竹蜻蜓电子科技有限公司 一种半导体器件制造的芯片角磨装置及其使用方法
CN113319669B (zh) * 2021-06-24 2022-04-08 福州天瑞线锯科技有限公司 一种料棒磨面抛光方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1058295A (ja) * 1996-08-14 1998-03-03 Mitsubishi Materials Corp スローアウェイチップ用ホーニング加工装置
JP2008049445A (ja) * 2006-08-25 2008-03-06 Disco Abrasive Syst Ltd 加工装置
WO2009084101A1 (ja) * 2007-12-28 2009-07-09 Sintobrator, Ltd. 角柱状部材の研磨装置
JP2009233795A (ja) * 2008-03-27 2009-10-15 Jcm:Kk シリコンインゴット用測定装置
JP2011005604A (ja) * 2009-06-26 2011-01-13 Sumco Corp 単結晶インゴットの円筒研削方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115873A (ja) * 1990-08-30 1992-04-16 Jason Inc 回転仕上げ工具
JP4133935B2 (ja) * 2004-06-07 2008-08-13 シャープ株式会社 シリコンウエハの加工方法
JP2010262955A (ja) * 2009-04-30 2010-11-18 Okamoto Machine Tool Works Ltd シリコンインゴットの面取り加工装置およびそれを用いる角柱状シリコンインゴットの面取り加工方法
CN102164710B (zh) * 2009-10-30 2014-08-20 新东工业株式会社 多棱柱状部件的研磨装置及其研磨方法
TWI566887B (zh) * 2010-09-01 2017-01-21 Sintokogio Ltd Cylindrical components of the grinding device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1058295A (ja) * 1996-08-14 1998-03-03 Mitsubishi Materials Corp スローアウェイチップ用ホーニング加工装置
JP2008049445A (ja) * 2006-08-25 2008-03-06 Disco Abrasive Syst Ltd 加工装置
WO2009084101A1 (ja) * 2007-12-28 2009-07-09 Sintobrator, Ltd. 角柱状部材の研磨装置
JP2009233795A (ja) * 2008-03-27 2009-10-15 Jcm:Kk シリコンインゴット用測定装置
JP2011005604A (ja) * 2009-06-26 2011-01-13 Sumco Corp 単結晶インゴットの円筒研削方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015050218A1 (ja) * 2013-10-02 2015-04-09 日本碍子株式会社 研磨物の製造方法
CN103567840A (zh) * 2013-11-13 2014-02-12 佛山市博科数控机械有限公司 一种机械手多工位砂带抛光机
US10350722B2 (en) 2016-02-05 2019-07-16 Toshiba Kikai Kabushiki Kaisha Polishing apparatus
US10363647B2 (en) 2016-02-05 2019-07-30 Toshiba Kikai Kabushiki Kaisha Grinding tool
WO2019102629A1 (ja) * 2017-11-23 2019-05-31 新東工業株式会社 多角柱状部材の加工装置および加工方法
CN109648466A (zh) * 2018-12-28 2019-04-19 深圳市芯思杰智慧传感技术有限公司 一种芯片封蜡装置
CN109648466B (zh) * 2018-12-28 2023-10-10 芯思杰技术(深圳)股份有限公司 一种芯片封蜡装置
JP2021064777A (ja) * 2019-10-10 2021-04-22 曾峰 半導体素子用の単結晶シリコン外径研磨装置
JP7206446B2 (ja) 2019-10-10 2023-01-18 杭州▲さん▼沃智能科技有限公司 半導体素子用の単結晶シリコン外径研磨装置
CN117681107A (zh) * 2024-02-01 2024-03-12 山东豪迈机械制造有限公司 气平衡外圆抛光机

Also Published As

Publication number Publication date
TW201312644A (zh) 2013-03-16
KR20140062431A (ko) 2014-05-23
TWI564948B (zh) 2017-01-01
CN103561908A (zh) 2014-02-05
JPWO2013038573A1 (ja) 2015-03-23
CN103561908B (zh) 2016-09-28
JP5842920B2 (ja) 2016-01-13

Similar Documents

Publication Publication Date Title
JP5842920B2 (ja) 硬脆性材料の研削・研磨加工システム、および研削・研磨方法
KR101616529B1 (ko) 다각기둥 형상 부재의 연삭·연마 가공장치 및 연삭·연마 가공방법
TWI389770B (zh) Polygonal columnar members, abrasive devices for polygonal columnar members and grinding methods thereof
JP5843155B2 (ja) 研磨ブラシ
TWI566887B (zh) Cylindrical components of the grinding device
TWI589398B (zh) Columnar processing equipment
JP5238317B2 (ja) シリコンブロックの研削研磨機及びシリコンウエハの加工方法
KR101600997B1 (ko) 원기둥형상 부재의 연마장치, 원기둥형상 부재 및 원기둥형상 부재의 연마방법
JP5517156B2 (ja) インゴットブロックの複合面取り加工装置
WO2019102629A1 (ja) 多角柱状部材の加工装置および加工方法
JP2004006997A (ja) シリコンウエハの製造方法
TW201509594A (zh) 半導體晶圓硏削裝置、半導體晶圓製造方法、及半導體晶圓硏削方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872270

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013533455

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137031519

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872270

Country of ref document: EP

Kind code of ref document: A1