WO2013035500A1 - 結晶性ガラス組成物およびそれを用いた接着材料 - Google Patents

結晶性ガラス組成物およびそれを用いた接着材料 Download PDF

Info

Publication number
WO2013035500A1
WO2013035500A1 PCT/JP2012/070633 JP2012070633W WO2013035500A1 WO 2013035500 A1 WO2013035500 A1 WO 2013035500A1 JP 2012070633 W JP2012070633 W JP 2012070633W WO 2013035500 A1 WO2013035500 A1 WO 2013035500A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass composition
crystalline glass
heat treatment
mgo
crystalline
Prior art date
Application number
PCT/JP2012/070633
Other languages
English (en)
French (fr)
Inventor
高山 佳久
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201280040230.XA priority Critical patent/CN103748050B/zh
Priority to US14/239,844 priority patent/US9409814B2/en
Publication of WO2013035500A1 publication Critical patent/WO2013035500A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0009Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0282Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a crystalline glass composition and an adhesive material using the same, and more specifically, a crystalline glass composition suitable for bonding a metal such as SUS or Fe, or a high expansion ceramic such as ferrite or zirconia, and the same
  • the present invention relates to an adhesive material using.
  • a fuel cell (Fuel Cell) has been attracting attention in recent years as an effective technology that has high energy efficiency and can significantly reduce CO 2 emissions.
  • the type of fuel cell varies depending on the type of electrolyte used.
  • PAFC phosphoric acid type
  • MCFC molten carbonate type
  • SOFC solid oxide type
  • solid polymer solid polymer
  • PEFC type of type
  • SOFC is known to have the highest power generation efficiency among fuel cells because of its low internal resistance.
  • it is not necessary to use a noble metal for a catalyst there also exists an advantage that manufacturing cost is suppressed. Therefore, the SOFC is a system that can be widely applied from a small-scale use such as home use to a large-scale use such as a power plant, and expectations are high for its future potential.
  • FIG. 1 shows a structure of a general flat plate type SOFC.
  • a general flat SOFC includes an electrolyte 1 made of ceramics such as yttria-stabilized zirconia (YSZ), an anode 2 made of Ni / YSZ, and a cathode made of (La, Ca) CrO 3. 3 has a cell integrated and laminated. Further, a first support substrate 4 in contact with the anode and a second support substrate 5 in contact with the cathode are fixed to the top and bottom of the cell.
  • the support substrates 4 and 5 are made of a metal such as SUS.
  • the first support substrate 4 is formed with a fuel channel 4a that is a passage for fuel gas
  • the second support substrate 5 is formed with an air channel 5a that is a passage for air.
  • the fuel channel 4a and the air channel 5a are formed to be orthogonal to each other.
  • a fuel gas such as hydrogen, city gas, natural gas, biogas, or liquid fuel is allowed to flow through the fuel channel 4a of the first support substrate 4; At the same time, air (or oxygen) is caused to flow through the air channel 5 a in the second support substrate 5.
  • the reaction of 1 / 2O 2 + 2e ⁇ ⁇ O 2 ⁇ occurs at the cathode, while the reaction of H 2 + O 2 ⁇ ⁇ H 2 O + 2e ⁇ occurs at the anode.
  • chemical energy can be directly converted into electric energy to generate electricity.
  • an actual flat plate type SOFC has a structure in which multiple layers of the unit shown in FIG. 1 are stacked.
  • the gasket is merely physically sandwiched between the constituent members, and since the bonding is not performed, there is a problem that a small amount of gas leak occurs and the fuel use efficiency is inferior. . Therefore, a method of melting and bonding each constituent member using a glass material has been studied.
  • SOFC Since each component used for SOFC is generally made of highly expanded metal or ceramics, it is necessary to adapt the thermal expansion coefficient when these members are bonded using a glass material. is there.
  • SOFC has a high temperature range (operation temperature range) where an electrochemical reaction occurs (approximately 600 to 800 ° C.) and is operated for a long period of time in the temperature range.
  • high heat resistance is required so as not to cause deterioration in airtightness and adhesiveness due to melting of the bonded portion and deterioration of power generation characteristics due to volatilization of the glass component.
  • Patent Document 1 As a glass material having a high expansion characteristic, for example, as disclosed in Patent Document 1, a SiO 2 —CaO—MgO-based crystalline glass composition in which a CaO—MgO—SiO 2 -based crystal is precipitated by heat treatment and exhibits a high expansion coefficient. Things have been proposed. Patent Document 2 discloses a SiO 2 —B 2 O 3 —SrO-based amorphous glass composition that has good denseness after sealing and provides stable gas sealing characteristics.
  • Patent Document 1 The crystalline glass composition disclosed in Patent Document 1 has a problem that it is difficult to obtain a stable sealing property because of high viscosity at high temperature and poor fluidity.
  • the object of the present invention is to exhibit a high coefficient of thermal expansion after heat treatment, excellent fluidity during heat treatment, and after heat treatment, even if exposed to high temperature for a long period of time, It is to provide a crystalline glass composition in which a decrease in property is difficult to occur.
  • the present invention is a crystalline glass composition in which MgO-based crystals are precipitated as a main crystal by heat treatment, and the glass composition is mol%, La 2 O 3 + Nb 2 O 5 + Y 2 O 3 + Ta 2 O 5 + Yb 2.
  • the present invention relates to a crystalline glass composition characterized by containing 0.1 to 30% of O 3 .
  • the crystalline glass of the present invention precipitates a MgO-based crystal having a relatively high melting point as a main crystal by heat treatment, so that the bonded portion is difficult to melt and suppresses the deterioration of the airtightness and adhesiveness of the bonded portion. it can. Moreover, since a high thermal expansion coefficient is shown, matching with the thermal expansion coefficient of the metal or ceramics which are to-be-adhered members can be aimed at.
  • crystallization can be achieved by including any of La 2 O 3 , Nb 2 O 5 , Y 2 O 3 , Ta 2 O 5 and Yb 2 O 3. It has been found that fluidity suitable for member adhesion can be imparted before it occurs.
  • the crystalline glass composition of the present invention is excellent in fluidity before crystallization, and has the property that MgO-based crystals precipitate when the crystalline glass composition flows to some extent. Therefore, both workability during bonding and heat resistance after bonding are excellent.
  • the “crystalline glass composition” means a glass composition having the property of precipitating crystals from the glass matrix upon heat treatment.
  • Heat treatment means that crystallization sufficiently proceeds at a temperature equal to or higher than the crystallization temperature, and means heat treatment under conditions of at least 800 ° C. and 10 minutes or more.
  • Precipitating MgO-based crystals as main crystals means that MgO-based crystals are the most among the precipitated crystals.
  • substantially free means that the material is not actively used as a raw material, and does not exclude the level of contamination as an inevitable impurity. Objectively, it means that the content is less than 0.1 mol%.
  • the crystalline glass composition of the present invention preferably contains 0.1 to 30% of La 2 O 3 .
  • La 2 O 3 is particularly effective in improving fluidity. Therefore, it becomes easy to obtain a crystalline glass composition exhibiting high fluidity by positively containing La 2 O 3 .
  • the crystalline glass composition of the present invention has a mol% composition, R 2 O (R represents Li, Na or K) is 5% or less, and P 2 O 5 is 5% or less. Preferably there is.
  • alkali metal oxides and P 2 O 5 have the effect of improving fluidity, but there is a problem that they tend to volatilize when exposed to high temperatures for long periods of time. Therefore, by regulating the content of these components as described above, it is possible to suppress the deterioration of the power generation characteristics due to the volatilization of the glass component.
  • the MgO-based crystal is preferably 2MgO ⁇ SiO 2 , BaO ⁇ 2MgO ⁇ 2SiO 2 or 2MgO ⁇ B 2 O 3 .
  • the crystalline glass composition of the present invention has a glass composition of mol%, SiO 2 30% to 50%, MgO 10 to 45%, BaO 5 to 40% and B 2 O 3 0 to 15%. It is preferable to contain.
  • MgO-based crystals can be easily precipitated.
  • the crystalline glass composition of the present invention further has a glass composition of mol%, CaO 0 to 20%, SrO 0 to 10%, ZnO 0 to 15%, Al 2 O 3 0 to 6%, It preferably contains 0 to 3% of ZrO 2 and 0 to 3% of SnO 2 .
  • the crystalline glass composition of the present invention preferably has a thermal expansion coefficient of 30 ⁇ 10 ⁇ 7 / ° C. or higher at 30 to 700 ° C. after heat treatment.
  • the crystalline glass composition of the present invention is preferably in powder form.
  • This configuration makes it easy to use as an adhesive material.
  • the present invention relates to an adhesive material characterized by using any of the crystalline glass compositions described above.
  • the adhesive material of the present invention is used for adhering components of fuel cells.
  • the crystalline glass composition of the present invention exhibits fluidity suitable for adhesion and a high coefficient of thermal expansion after heat treatment.
  • the crystalline glass composition of the present invention is suitable as an adhesive material for a constituent member in a fuel cell such as SOFC, such as adhesion and coating of highly expanded metals and ceramics.
  • FIG. 1 is an explanatory diagram showing the basic structure of SOFC.
  • the crystalline glass composition of the present invention is characterized in that MgO-based crystals are precipitated as main crystals by heat treatment.
  • the MgO-based crystal is not particularly limited, and examples thereof include 2MgO ⁇ SiO 2 , BaO ⁇ 2MgO ⁇ 2SiO 2 and 2MgO ⁇ B 2 O 3 .
  • the MgO-based crystal content in the glass composition after the heat treatment (after crystallization) is preferably 50% by mass or more, 70% by mass or more, and particularly preferably 90% by mass or more.
  • the bonded portion When the content of the MgO-based crystal in the glass composition after the heat treatment is too small, the bonded portion is melted by being exposed to a high temperature for a long period of time, and the airtightness and adhesiveness of the bonded portion are likely to be lowered. In addition, when the thermal expansion coefficient is low and it is used for bonding a member made of a metal or ceramic having a high thermal expansion coefficient, defects such as cracks are likely to occur.
  • the crystalline glass composition of the present invention contains La 2 O 3 + Nb 2 O 5 + Y 2 O 3 + Ta 2 O 5 + Yb 2 O 3 in a molar ratio of 0.1 to 30 in terms of glass composition. %contains.
  • the content of these components is too small, it is difficult to obtain the effect of improving fluidity.
  • the content is too large, devitrification tends to occur during melting or bonding of members, and the fluidity tends to decrease. Further, the crystallinity is lowered, the crystal is not sufficiently precipitated, and the heat resistance is likely to be lowered.
  • a preferable range of the content of La 2 O 3 + Nb 2 O 5 + Y 2 O 3 + Ta 2 O 5 + Yb 2 O 3 is 1 to 27%, further 3 to 24%.
  • the preferred ranges of the content of each component of La 2 O 3 , Nb 2 O 5 , Y 2 O 3 , Ta 2 O 5 and Yb 2 O 3 are 0.1 to 30%, 1 to 27%, Furthermore, it is 3 to 24%.
  • La 2 O 3 has a large effect of improving the fluidity, by containing the La 2 O 3 positively, crystalline glass composition showing high fluidity can be easily obtained.
  • SiO 2 is 30 to 50%, MgO 10 to 45%, BaO 5 to 40%, and B 2 in terms of glass composition so that precipitation of MgO-based crystals is easy. It is preferable to contain 0 to 15% of O 3 . The detailed reason for limiting each component in this way will be described below.
  • SiO 2 is a component that facilitates vitrification and improves water resistance and heat resistance.
  • the content of SiO 2 is preferably 30 to 50%, 31 to 49%, particularly 31 to 45%.
  • the content of SiO 2 is too small, it may be difficult to vitrify.
  • the content of SiO 2 is too large, crystals may be difficult to precipitate even after heat treatment.
  • the melting temperature rises and melting tends to be difficult.
  • MgO is an essential component of MgO-based crystals.
  • the MgO content is preferably 10 to 45%, 10 to 44%, particularly preferably 15 to 43%. If the content of MgO is too small, MgO-based crystals may not be sufficiently precipitated even after heat treatment, and the heat resistance tends to be lowered. Also, the thermal expansion coefficient tends to be low. On the other hand, when there is too much content of MgO, there exists a tendency for the vitrification range to become narrow and it may become difficult to obtain homogeneous glass.
  • BaO is a component for expanding the vitrification range, suppressing devitrification during melting and bonding, and obtaining fluidity suitable for bonding.
  • the BaO content is preferably 5 to 40%, 6 to 38%, particularly preferably 8 to 35%.
  • When there is too little content of BaO it will become easy to devitrify at the time of fusion
  • crystallinity will fall, precipitation of MgO type crystal
  • B 2 O 3 is a component for improving fluidity, and its content is preferably 0 to 15%, 0 to 13%, particularly preferably 0.1 to 11%. If the content of B 2 O 3 is too large, the excess B 2 O 3 component that did not precipitate as a crystal causes water resistance and heat resistance to decrease, or B 2 O 3 volatilizes at high temperatures. May be easier to do.
  • MgO / B 2 O 3 to a molar ratio of 2.0 or more, 2.1 or more, it is preferable to be particularly 2.3 or more. By doing so, 2MgO ⁇ B 2 O 3 crystals are likely to precipitate, and even when used at a high temperature for a long period of time, volatilization of B 2 O 3 is suppressed and high heat resistance is easily obtained.
  • the crystalline glass composition of the present invention has a glass composition in mol%, CaO 0 to 20%, SrO 0 to 10%, ZnO 0 to 15%, Al 2 O 3 0 to 6%, It preferably contains 0 to 3% of ZrO 2 and 0 to 3% of SnO 2 . The reason for limiting the glass composition in this way will be described below.
  • CaO is a component for increasing the thermal expansion coefficient, and its content is preferably 0 to 20%, 0 to 18%, particularly preferably 0.1 to 16%.
  • the precipitation amount of a MgO type crystal to decrease and for heat resistance to fall.
  • SrO is a component for increasing the thermal expansion coefficient, and its content is preferably 0 to 10%, 0 to 5%, particularly preferably 0.1 to 4%. If the content of SrO is too large, SrO ⁇ SiO 2 crystals having a low thermal expansion coefficient are likely to precipitate, and it may be difficult to obtain a crystalline glass having high expansion characteristics.
  • ZnO is a component for facilitating vitrification and lowering the softening point to enable low-temperature adhesion.
  • the content of ZnO is preferably 0 to 15%, 0 to 13%, particularly preferably 0.1 to 11%. When there is too much content of ZnO, heat resistance may fall easily.
  • Al 2 O 3 is a component for adjusting the viscosity, and its content is preferably 0 to 6%, 0 to 5.5%, particularly preferably 0.1 to 5%.
  • content of Al 2 O 3 is too large, 5SiO 2 .2Al 2 O 3 .2MgO crystals having a low thermal expansion coefficient are likely to precipitate, and it may be difficult to obtain a crystalline glass having high expansion characteristics.
  • ZrO 2 is a component for improving water resistance, and its content is preferably 0 to 3%, 0 to 2.5%, particularly preferably 0 to 2%. When the content of ZrO 2 is too large, devitrification tends to occur during melting or bonding, and it may be difficult to obtain fluidity suitable for bonding.
  • SnO 2 is a component for improving water resistance, and its content is preferably 0 to 3%, 0 to 2.5%, particularly preferably 0.1 to 2%.
  • content of SnO 2 is too large, easily devitrified or when the molten adhesive, there is a case where the fluidity becomes difficult to obtain suitable adhesion.
  • R 2 O represents Li, Na, or K
  • P 2 O 5 are liable to volatilize at high temperatures and to easily reduce electrical insulation. Therefore, there is a possibility that the power generation characteristics may be deteriorated when used for bonding the constituent members of the fuel cell. Therefore, the contents of R 2 O and P 2 O 5 are each preferably 5% or less, 3% or less, particularly preferably 1% or less, and most preferably not substantially contained.
  • substantially not containing means that these components are not intentionally added to the glass, and does not mean that unavoidable impurities are completely excluded. Objectively, it means that the content of these components including impurities is less than 0.1% each.
  • the thermal expansion coefficient at 30 to 700 ° C. after heat treatment of the crystalline glass composition of the present invention is 95 ⁇ 10 ⁇ 7 / ° C. or more, 100 ⁇ 10 ⁇ 7 / ° C. or more, particularly 110 ⁇ 10 ⁇ 7 / ° C. or more. It is preferable. If the coefficient of thermal expansion is too small, the difference in coefficient of thermal expansion with metals or ceramics that are members to be bonded becomes large, and defects such as cracks are likely to occur. On the other hand, the upper limit of the thermal expansion coefficient is not particularly limited, but is practically 160 ⁇ 10 ⁇ 7 / ° C. or less.
  • the thermal expansion coefficient of the crystalline glass composition after heat treatment is, for example, when the crystalline glass composition is in powder form, by performing heat treatment after press molding the powdered crystalline glass composition, crystallized glass A lump can be made and measured using the crystallized glass lump.
  • the form of the crystalline glass composition of the present invention is not particularly limited, but if it is in the form of powder, it can be easily used as an adhesive material.
  • the particle size (d 50 ) of the powdery crystalline glass composition (hereinafter referred to as “crystalline glass powder”) is preferably about 2 to 20 ⁇ m.
  • the particle size of the crystalline glass powder is too small, handling may be difficult.
  • the particle size of the crystalline glass powder is too large, pores remain in the adhesive layer after firing and the adhesive strength tends to be poor.
  • the crystalline glass powder has magnesium phosphate (3MgO ⁇ P 2 O 5 ), magnesia (MgO), zinc white (ZnO), zirconia (ZrO 2 ), titania (for adjustment of fluidity and thermal expansion coefficient).
  • a filler powder such as TiO 2 ) or alumina (Al 2 O 3 ) may be added.
  • the content of the filler powder in the adhesive material is preferably 0.1 to 10 parts by mass, particularly 1 to 8 parts by mass with respect to 100 parts by mass of the crystalline glass powder. If the content of the filler powder is too small, the above effect may be difficult to obtain. On the other hand, when there is too much content of filler powder, there exists a tendency for fluid fall to become large too much.
  • a filler powder having a particle size (d50) of about 0.2 to 20 ⁇ m it is preferable to use a filler powder having a particle size (d50) of about 0.2 to 20 ⁇ m.
  • d50 particle size of the filler powder
  • the filler powder dissolves in the crystalline glass powder during firing, and it may be difficult to obtain the effect of adjusting the thermal expansion coefficient.
  • the particle size of the filler powder is too large, the fluidity tends to decrease too much.
  • a glass raw material prepared to have the above composition is melted at 1400-1500 ° C. for 0.5-2 hours, for example.
  • the molten glass is formed into a film or the like, and then pulverized and classified to obtain a crystalline glass powder.
  • various filler powders are added to the crystalline glass powder, and an organic solvent, a resin, a plasticizer, a dispersant and the like are added and kneaded to obtain a paste.
  • Organic solvent is a material for pasting crystalline glass powder, such as terpineol, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, 2,2,4-trimethyl-1,3-pentadiol monoisobutyrate, dihydroterpineol Etc. can be used alone or in combination.
  • the content of the organic solvent is generally about 10 to 40% by mass.
  • Resin is a component that increases the film strength after drying and imparts flexibility, and its content is generally about 0.1 to 20% by mass.
  • a thermoplastic resin specifically, polybutyl methacrylate, polyvinyl butyral, polymethyl methacrylate, polyethyl methacrylate, ethyl cellulose and the like can be used, and these can be used alone or in combination.
  • the plasticizer is a component that controls the drying speed and imparts flexibility to the dried film, and the content thereof is generally about 0 to 10% by mass.
  • the plasticizer butyl benzyl phthalate, dioctyl phthalate, diisooctyl phthalate, dicapryl phthalate, dibutyl phthalate and the like can be used, and these can be used alone or in combination.
  • an ionic or nonionic dispersant can be used.
  • a polycarboxylic acid type such as a carboxylic acid or dicarboxylic acid type or an amine type
  • nonionic type a polyester condensation type or a polyhydric alcohol ether type
  • the content of the dispersant is generally about 0 to 5% by mass.
  • the crystalline glass composition of the present invention can be used for purposes such as coating or filling in addition to adhesion.
  • it can also be used in forms other than paste, specifically in the form of powder, green sheets or tablets (for example, a press-molded body of crystalline glass powder).
  • a crystalline glass powder of the present invention is filled together with a lead wire in a cylinder made of metal or ceramics, heat treated, and hermetically sealed.
  • a green sheet or tablet can be placed on a member made of metal or ceramics and coated by heat treatment.
  • Tables 1 and 2 show examples of the present invention (sample Nos. 1 to 9) and comparative examples (sample Nos. 10 to 12).
  • the glass raw material prepared so as to have the composition in the table was melted at 1400-1500 ° C. for about 1 hour, and then the molten glass was put between a pair of cooling rollers to form a film.
  • the obtained film-like molded product was pulverized using a ball mill and classified to obtain a crystalline glass powder having a particle size (d 50 ) of about 10 ⁇ m.
  • the devitrification resistance was evaluated by observing the film-like molded product with a microscope (50 times), and evaluating “ ⁇ ” when the devitrified material was not observed and “X” when it was recognized.
  • the thermal expansion coefficient was measured as follows. First, each sample was press-molded, heat-treated at 850 to 1000 ° C. for 15 minutes with a crystallization temperature of + 10 ° C. as a guide, and then ground into a cylindrical shape having a diameter of 4 mm and a length of 20 mm. Next, the coefficient of thermal expansion in a temperature range of 30 to 700 ° C. was measured based on JIS R3102 using the obtained cylindrical sample.
  • the glass transition point, softening point, crystallization temperature and crystal melting point were measured using a macro differential thermal analyzer. Specifically, in the graph measured up to 1050 ° C. for each glass powder sample, the first inflection point value is the glass transition point, the fourth inflection point value is the softening point, and the exothermic peak value is crystallized. The value of the endothermic peak obtained on the higher temperature side than the temperature and crystallization temperature was defined as the crystal melting point. Note that as the crystal melting point is higher or when the crystal melting point is not confirmed, it means that the crystal is stably present even at a high temperature, and it can be determined that the heat resistance is high.
  • the fluidity was evaluated as follows. A glass powder having a specific gravity (1 cm 3 ) was put into a mold having a diameter of 20 mm and press-molded to produce a button-shaped molded body. The obtained molded body was heat-treated by holding it at 850 to 1000 ° C. for 15 minutes on a SUS430 plate. Evaluation was made with a molded product having a diameter of 17 mm or more after heat treatment as “ ⁇ ” and a molded product having a diameter of less than 17 mm as “x”.
  • Precipitated crystal seeds were identified by comparing with a JCPDS card with respect to a diffraction line chart obtained by XRD measurement. As the precipitated crystal seeds identified at this time, 2MgO ⁇ 2SiO 2 is shown as “A”, BaO ⁇ 2MgO ⁇ 2SiO 2 as “B”, and 2MgO ⁇ B 2 O 3 as “C” in the table.
  • No. 1 as an example of the present invention.
  • Samples 1 to 9 were free from devitrification during molding, and were excellent in fluidity. Further, MgO-based crystals were precipitated as the main crystals and had a high thermal expansion coefficient of 114 to 138 ⁇ 10 ⁇ 7 / ° C.
  • sample No. which is a comparative example.
  • No. 10 was easily devitrified and difficult to vitrify, and was inferior in fluidity.
  • Sample No. No crystal 11 was deposited even after heat treatment, and the thermal expansion coefficient was as low as 93 ⁇ 10 ⁇ 7 / ° C.
  • Sample No. No. 12 was inferior in fluidity.
  • the crystalline glass composition of the present invention is suitable as an adhesive material for metals such as SUS and Fe, and high expansion ceramics such as ferrite and zirconia. Further, it is suitable as an adhesive material for hermetically sealing a support substrate, an electrolyte, an electrode, or the like used in manufacturing an SOFC.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Glass Compositions (AREA)
  • Ceramic Products (AREA)
  • Fuel Cell (AREA)

Abstract

 熱処理後に高い熱膨張係数を示すとともに、熱処理時の流動性に優れ、また、熱処理後においては、長期間に亘って高温に晒されても、接着箇所の気密性や接着性の低下や、ガラス成分の揮発が発生しにくい結晶性ガラス組成物を提供する。 熱処理によって、主結晶としてMgO系結晶を析出する結晶性ガラス組成物であって、ガラス組成としてモル%で、La+Nb+Y+Ta+Yb 0.1~30%を含有することを特徴とする結晶性ガラス組成物。

Description

結晶性ガラス組成物およびそれを用いた接着材料
 本発明は、結晶性ガラス組成物およびそれを用いた接着材料に関し、より具体的にはSUSやFeといった金属や、フェライトやジルコニアといった高膨張なセラミックスの接着に好適な結晶性ガラス組成物およびそれを用いた接着材料に関する。
 燃料電池(Fuel Cell)は、エネルギー効率が高く、しかもCOの排出を大きく削減できる有力な技術として近年注目されてきている。燃料電池のタイプは、使用する電解質の種類によって異なり、例えば工業用途で用いられるものとしては、リン酸型(PAFC)、溶融炭酸塩型(MCFC)、固体酸化物型(SOFC)および固体高分子型(PEFC)の4種類がある。中でもSOFCは、電池の内部抵抗が小さいため、燃料電池の中では最も発電効率が高いことで知られている。また、触媒に貴金属を使用する必要がないため、製造コストが抑えられるといった利点もある。よって、SOFCは、家庭用などの小規模用途から発電所などの大規模用途まで幅広く適用可能なシステムであり、その将来性に期待が高まってきている。
 図1に一般的な平板型SOFCの構造を示す。図1に示すように、一般的な平板型SOFCは、イットリア安定化ジルコニア(YSZ)等のセラミックスからなる電解質1、Ni/YSZ等からなるアノード2および(La、Ca)CrO等からなるカソード3が積層一体化されたセルを有している。さらに、アノードと接する第一の支持体基板4と、カソードと接する第二の支持体基板5とがセルの上下に固着されている。支持体基板4および5はSUS等の金属で構成されている。ここで、第一の支持体基板4には、燃料ガスの通り道である燃料チャネル4aが形成され、第二の支持体基板5には、空気の通り道である空気チャネル5aが形成されている。なお、燃料チャネル4aと空気チャネル5aは互いに直交するように形成されている。
 上記構造を有する平板型SOFCを用いて発電する際には、第一の支持体基板4における燃料チャネル4aには、水素、都市ガス、天然ガス、バイオガスまたは液体燃料等の燃料ガスを流し、同時に第二の支持体基板5における空気チャネル5aには、空気(または酸素)を流す。このときカソードでは、1/2O+2e→O2-の反応が生じ、一方、アノードでは、H+O2-→HO+2eの反応が起こる。当該反応により、化学エネルギーが直接電気エネルギーに変換されて発電を行うことができる。なお、高出力電流を得るために、実際の平板型SOFCは、図1のユニットを何層も積層した構造を有している。
 上記平板型SOFCを作製するに当たっては、アノード側とカソード側に流すガスが交じり合わないように、各構成部材を気密シールする必要がある。具体的には、支持体基板同士の気密シールや、固体電解質と支持体基板の接着、あるいは、固体電解質同士の気密シールが必要になる。その目的で、マイカ、バーミキュライトまたはアルミナといった無機物質からなるシート形状のガスケットを、各構成部材間に挟み込んで気密シールする方法が提案されている。しかしながら、当該方法では、単に各構成部材間にガスケットを物理的に挟み込んでいるにすぎず、接着が行われていないことから、微量のガスリークが発生し、燃料使用効率に劣るという問題があった。そのため、各構成部材間をガラス材料を用いて融解接着する方法が検討されている。
 SOFCに使用される各構成部材には、一般的に、高膨張な金属やセラミックスが使用されていることから、これらの部材をガラス材料を用いて接着する場合、熱膨張係数を適合させる必要がある。また、SOFCは電気化学反応が生じる温度域(作動温度域)がおよそ600~800℃と高く、当該温度域で長期間に亘って運転されるため、ガラス材料には、長期間高温に晒されても、接着箇所の融解による気密性や接着性の低下や、ガラス成分の揮発に起因する発電特性の劣化が起こらないように高い耐熱性が求められる。
 高膨張特性を有するガラス材料としては、例えば特許文献1で示されるように、熱処理によりCaO-MgO-SiO系結晶が析出して高膨張係数を示すSiO-CaO-MgO系結晶性ガラス組成物が提案されている。また、特許文献2には、シール後の緻密性が良好であり、安定したガスシール特性が得られるSiO-B-SrO系非晶質ガラス組成物が開示されている。
国際公開第09/017173号パンフレット 特開2006-56769号公報
 特許文献1に開示されている結晶性ガラス組成物は、高温粘性が高く流動性に劣るため、安定したシール特性が得られにくいという問題がある。
特許文献2に開示されている非晶質ガラス組成物は、熱処理をしても結晶が析出せず、また、ガラス転移点が600℃付近であるため、600~800℃の作業環境下では、接着箇所が融解し、気密性や接着性が低下しやすいという問題がある。
 本発明の目的は、熱処理後に高い熱膨張係数を示すとともに、熱処理時の流動性に優れ、また、熱処理後においては、長期間に亘って高温に晒されても、接着箇所の気密性や接着性の低下が発生しにくい結晶性ガラス組成物を提供することである。
 本発明は、熱処理によって、主結晶としてMgO系結晶を析出する結晶性ガラス組成物であって、ガラス組成としてモル%で、La+Nb+Y+Ta+Yb 0.1~30%を含有することを特徴とする結晶性ガラス組成物に関する。
 本発明の結晶性ガラスは、熱処理によって、主結晶として比較的融点の高いMgO系結晶を析出するため、接着箇所が融解しにくくなり、接着箇所の気密性や接着性の低下を抑制することができる。また、高い熱膨張係数を示すため、被接着部材である金属やセラミックスの熱膨張係数との整合を図ることができる。
 また、接着材料として使用するためには、結晶化する前に十分に軟化流動する必要がある。そこで、本発明者は種々の実験を行った結果、La、Nb、Y、TaおよびYbのいずれかを含有させることで、結晶化が生じる前に、部材接着に適した流動性を付与できることを見出した。
 以上のように、本発明の結晶性ガラス組成物は、結晶化前の流動性に優れ、かつ、結晶性ガラス組成物がある程度流動した段階でMgO系結晶が析出するという性質を有しているため、接着時の作業性および接着後の耐熱性の両方において優れる。
 なお、本発明において、「結晶性ガラス組成物」とは、熱処理するとガラスマトリックス中から結晶を析出する性質を有するガラス組成物を意味する。
 「熱処理」とは、結晶化温度以上で結晶化を充分に進行させることを意味し、少なくとも800℃以上かつ10分間以上の条件での熱処理を意味する。
「主結晶としてMgO系結晶を析出する」とは、析出結晶のうち、MgO系結晶が最も多いことを意味する。
 「実質的に含有しない」とは、積極的に原料として使用しないことを意味し、不可避的不純物として混入するレベルを排除するものではない。客観的には、含有量が0.1モル%未満であることを意味する。
 第二に、本発明の結晶性ガラス組成物は、Laを0.1~30%を含有することが好ましい。
 Laは特に流動性を向上させる効果が大きい。よって、Laを積極的に含有させることにより、高い流動性を示す結晶性ガラス組成物中が得られやすくなる。
 第三に、本発明の結晶性ガラス組成物は、組成としてモル%で、RO(RはLi、NaまたはKを示す)が5%以下、かつ、Pが5%以下であることが好ましい。
 結晶性ガラス組成物において、アルカリ金属酸化物およびPは流動性を向上させる効果を有するが、長期間高温に晒されると揮発しやすいという問題がある。よって、これらの成分の含有量を上記の通り規制することにより、ガラス成分の揮発に起因する発電特性の劣化を抑制することができる。
 第四に、本発明の結晶性ガラス組成物は、MgO系結晶が、2MgO・SiO、BaO・2MgO・2SiOまたは2MgO・Bであることが好ましい。
 第五に、本発明の結晶性ガラス組成物は、ガラス組成としてモル%で、SiO 30%~50%、MgO 10~45%、BaO 5~40%およびB 0~15%を含有することが好ましい。
 上記組成を有することにより、MgO系結晶を容易に析出させることができる。
 第六に、本発明の結晶性ガラス組成物は、さらに、ガラス組成としてモル%で、CaO 0~20%、SrO 0~10%、ZnO 0~15%、Al 0~6%、ZrO 0~3%およびSnO 0~3%を含有することが好ましい。
 第七に、本発明の結晶性ガラス組成物は、熱処理後において、30~700℃における熱膨張係数が95×10-7/℃以上であることが好ましい。
 第八に、本発明の結晶性ガラス組成物は、粉末状であることが好ましい。
 当該構成により、接着材料として使用しやすくなる。
 第九に、本発明は、前記いずれかの結晶性ガラス組成物を用いたことを特徴とする接着材料に関する。
 第十に、本発明の接着材料は、燃料電池の構成部材の接着に使用されることが好ましい。
 本発明の結晶性ガラス組成物は、接着に適した流動性と、熱処理後に高い熱膨張係数を示す。また、熱処理後においては、耐熱性が高いため、長期間に亘って高温下に晒されてもガラス成分が揮発しにくい。よって、本発明の結晶性ガラス組成物は、高膨張な金属やセラミックス等の接着や被覆、特にSOFC等の燃料電池における構成部材の接着材料として好適である。
図1はSOFCの基本構造を示す説明図である。
本発明の結晶性ガラス組成物は、熱処理によって、主結晶としてMgO系結晶を析出することを特徴とする。MgO系結晶としては特に限定されず、例えば2MgO・SiO、BaO・2MgO・2SiOまたは2MgO・Bが挙げられる。熱処理後(結晶化後)のガラス組成物におけるMgO系結晶の含有量は50質量%以上、70質量%以上、特に90質量%以上であることが好ましい。熱処理後のガラス組成物におけるMgO系結晶の含有量が少なすぎると、高温下に長期間晒されることにより、接着箇所が融解して接着箇所の気密性や接着性が低下しやすくなる。また、熱膨張係数が低くなって、熱膨張係数の高い金属やセラミックス等からなる部材の接着に使用した場合に、クラック等の不具合が発生しやすくなる。
 本発明の結晶性ガラス組成物は、流動性を向上させるため、ガラス組成としてモル%で、La+Nb+Y+Ta+Ybを0.1~30%含有する。これらの成分の含有量が少なすぎると、流動性を向上させる効果が得られにくく、一方、多すぎると、溶融中や部材接着時に失透しやすくなり、流動性が低下しやすくなる。また、結晶性が低下して結晶の析出が不十分になり、耐熱性が低下しやすくなる。La+Nb+Y+Ta+Ybの含有量の好ましい範囲は1~27%、さらには3~24%である。なお、La、Nb、Y、TaおよびYbの各成分の含有量の好ましい範囲は、それぞれ0.1~30%、1~27%、さらには3~24%である。なかでも、Laは流動性を向上させる効果が大きいため、Laを積極的に含有させることにより、高い流動性を示す結晶性ガラス組成物中が得られやすくなる。
 本発明の結晶性ガラス組成物は、MgO系結晶の析出が容易となるように、ガラス組成としてモル%で、SiO 30~50%、MgO 10~45%、BaO 5~40%およびB 0~15%を含有することが好ましい。各成分をこのように限定した詳細な理由を以下に説明する。
 SiOはガラス化を容易にするとともに、耐水性や耐熱性を向上させる成分である。SiOの含有量は30~50%、31~49%、特に31~45%であることが好ましい。SiOの含有量が少なすぎると、ガラス化しにくくなる場合がある。一方、SiOの含有量が多すぎると、熱処理しても結晶が析出しにくくなる場合がある。また、溶融温度が上昇して、溶融が困難になる傾向がある。
 MgOはMgO系結晶の必須構成成分である。MgOの含有量は10~45%、10~44%、特に15~43%であることが好ましい。MgOの含有量が少なすぎると、熱処理しても、MgO系結晶が十分に析出せず、耐熱性が低下しやすくなる場合がある。また、熱膨張係数が低くなりやすい。一方、MgOの含有量が多すぎると、ガラス化範囲が狭くなる傾向にあり、均質なガラスが得られにくくなる場合がある。
 BaOはガラス化範囲を広げて、溶融中や接着時における失透を抑制し、かつ、接着に適した流動性を得るための成分である。BaOの含有量は5~40%、6~38%、特に8~35%であることが好ましい。BaOの含有量が少なすぎると、溶融中や接着時に失透しやすくなり、接着に適した流動性が得られにくくなる場合がある。一方、BaOの含有量が多すぎると、結晶性が低下してMgO系結晶の析出が不十分となり、耐熱性が低下しやすくなる場合がある。また、熱膨張係数が低くなりやすい。
 Bは流動性を向上させるための成分であり、その含有量は0~15%、0~13%、特に0.1~11%であることが好ましい。Bの含有量が多すぎると、結晶として析出しなかった余剰のB成分が起因となって、耐水性や耐熱性が低下したり、高温下でBが揮発しやすくなる場合がある。
 なお、Bを含有させる場合は、MgO/Bをモル比で2.0以上、2.1以上、特に2.3以上となるようにすることが好ましい。このようにすることで、2MgO・B結晶が析出しやすくなり、長期間に亘る高温下での使用においてもBの揮発が抑えられ、高い耐熱性が得られやすくなる。
 本発明の結晶性ガラス組成物は、上記成分以外にも、ガラス組成としてモル%で、CaO 0~20%、SrO 0~10%、ZnO 0~15%、Al 0~6%、ZrO 0~3%およびSnO 0~3%を含有することが好ましい。このようにガラス組成を限定した理由を以下に説明する。
 CaOは熱膨張係数を高めるための成分であり、その含有量は0~20%、0~18%、特に0.1~16%であることが好ましい。CaOの含有量が多すぎると、MgO系結晶の析出量が少なくなり、耐熱性が低下する傾向がある。
 SrOは熱膨張係数を高めるための成分であり、その含有量は0~10%、0~5%、特に0.1~4%であることが好ましい。SrOの含有量が多すぎると、熱膨張係数が低いSrO・SiO結晶が析出しやすくなり、高膨張特性を有する結晶性ガラスが得られにくくなる場合がある。
 ZnOはガラス化を容易にするとともに、軟化点を低下させて低温接着を可能にするための成分である。ZnOの含有量は0~15%、0~13%、特に0.1~11%であることが好ましい。ZnOの含有量が多すぎると、耐熱性が低下しやすくなる場合がある。
 Alは粘性を調整するための成分であり、その含有量は0~6%、0~5.5%、特に0.1~5%であることが好ましい。Alの含有量が多すぎると、熱膨張係数が低い5SiO・2Al・2MgO結晶が析出しやすくなり、高膨張特性を有する結晶性ガラスが得られにくくなる場合がある。
 ZrOは耐水性を向上させるための成分であり、その含有量は0~3%、0~2.5%、特に0~2%であることが好ましい。ZrOの含有量が多すぎると、溶融中や接着時に失透しやすくなり、接着に適した流動性が得られにくくなる場合がある。
 SnOは耐水性を向上させるための成分であり、その含有量は0~3%、0~2.5%、特に0.1~2%であることが好ましい。SnOの含有量が多すぎると、溶融中や接着時に失透しやすくなり、接着に適した流動性が得られにくくなる場合がある。
なお、RO(RはLi、NaまたはKを示す)およびPは高温下で揮発しやすく、また、電気絶縁性を低下させやすい。したがって、燃料電池の構成部材の接着に使用した際に、発電特性が低下するおそれがある。したがって、ROおよびPの含有量はそれぞれ5%以下、3%以下、特に1%以下であることが好ましく、実質的に含有しないことが最も好ましい。なお、「実質的に含有しない」とは、これらの成分を意図的にガラス中に添加しないという意味であり、不可避的不純物まで完全に排除することを意味するものではない。客観的には、不純物を含めたこれらの成分の含有量が各々0.1%未満であることを意味する。
 本発明の結晶性ガラス組成物の熱処理後の30~700℃における熱膨張係数は95×10-7/℃以上、100×10-7/℃以上、特に110×10-7/℃以上であることが好ましい。熱膨張係数が小さすぎると、被接着部材である金属やセラミックス等との熱膨張係数差が大きくなって、クラック等の不具合が発生しやすくなる場合がある。一方、熱膨張係数の上限は特に限定されないが、現実的には160×10-7/℃以下である。
 なお、結晶性ガラス組成物の熱処理後の熱膨張係数は、例えば結晶性ガラス組成物が粉末状である場合は、粉末状の結晶性ガラス組成物をプレス成型した後に熱処理することにより結晶化ガラス塊を作製し、その結晶化ガラス塊を用いて測定することができる。
 本発明の結晶性ガラス組成物の形態は特に限定されないが、粉末状であれば、接着材料として使用しやすくなる。この場合、粉末状の結晶性ガラス組成物(以下、「結晶性ガラス粉末」という)の粒径(d50)は2~20μm程度であることが好ましい。結晶性ガラス粉末の粒径が小さすぎると、取り扱いが困難になる場合がある。一方、結晶性ガラス粉末の粒径が大きすぎると、焼成後に接着層に気孔が残存して接着強度に劣る傾向がある。
 結晶性ガラス粉末には、流動性や熱膨張係数の調整のために、リン酸マグネシウム(3MgO・P)、マグネシア(MgO)、亜鉛華(ZnO)、ジルコニア(ZrO)、チタニア(TiO)またはアルミナ(Al)等のフィラー粉末を添加してもよい。接着材料におけるフィラー粉末の含有量は、結晶性ガラス粉末100質量部に対して、0.1~10質量部、特に1~8質量部であることが好ましい。フィラー粉末の含有量が少なすぎると、上記効果が得られにくくなる場合がある。一方、フィラー粉末の含有量が多すぎると、流動性の低下が大きくなりすぎる傾向がある。なお、フィラー粉末の粒径(d50)は0.2~20μm程度のものを使用することが好ましい。フィラー粉末の粒径が小さすぎる場合は、焼成時に結晶性ガラス粉末にフィラー粉末が溶け込み、熱膨張係数を調整する効果が得られにくくなる場合がある。一方、フィラー粉末の粒径が大きすぎる場合は、流動性の低下が大きくなりすぎる傾向がある。
 次に、本発明の結晶性ガラス組成物を接着材料として使用する方法の一例について説明する。
 まず、上記した組成を有するように調合したガラス原料を、例えば1400~1500℃で0.5~2時間溶融する。次いで、溶融ガラスをフィルム状等に成形した後、粉砕および分級して結晶性ガラス粉末を得る。
 必要に応じて上記結晶性ガラス粉末に各種フィラー粉末を添加し、有機溶剤、樹脂、可塑剤、分散剤等を添加して混練することによりペーストを得る。
 有機溶剤は結晶性ガラス粉末をペースト化するための材料であり、例えばターピネオール、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテート、2,2,4-トリメチル-1,3-ペンタジオールモノイソブチレート、ジヒドロターピネオール等を単独または混合して使用することができる。有機溶剤の含有量は一般的に10~40質量%程度である。
 樹脂は、乾燥後の膜強度を高め、また柔軟性を付与する成分であり、その含有量は、0.1~20質量%程度が一般的である。樹脂は熱可塑性樹脂、具体的にはポリブチルメタアクリレート、ポリビニルブチラール、ポリメチルメタアクリレート、ポリエチルメタアクリレート、エチルセルロース等が使用可能であり、これらを単独あるいは混合して使用することができる。
 可塑剤は、乾燥速度をコントロールするとともに、乾燥膜に柔軟性を与える成分であり、その含有量は0~10質量%程度が一般的である。可塑剤としてはブチルベンジルフタレート、ジオクチルフタレート、ジイソオクチルフタレート、ジカプリルフタレート、ジブチルフタレート等が使用可能であり、これらを単独あるいは混合して使用することができる。
 分散剤としては、イオン系またはノニオン系の分散剤が使用可能である。イオン系としてはカルボン酸またはジカルボン酸系等のポリカルボン酸系やアミン系等、ノニオン系としてはポリエステル縮合型や多価アルコールエーテル型が使用可能である。分散剤の含有量は0~5質量%程度が一般的である。
 金属やセラミックスからなる第一の部材の接着箇所に上記ペーストを塗布し、乾燥させる。さらに、金属やセラミックスからなる第二の部材をペースト乾燥膜に接触させた状態で固定し、800~900℃で熱処理する。この熱処理により、結晶性ガラス粉末が軟化流動して第一および第二の部材を固着させる。なおこの時、結晶の析出は結晶性ガラス粉末が流動した後に起こる。
 なお、本発明の結晶性ガラス組成物は、接着以外にも被覆または充填等の目的で使用できる。また、ペースト以外の形態、具体的には粉末、グリーンシートまたはタブレット(例えば、結晶性ガラス粉末のプレス成型体)等の形態で使用することもできる。例えば、金属やセラミックスからなる円筒内にリード線とともに本発明の結晶性ガラス粉末を充填して熱処理し、気密封止を行う方法が挙げられる。また、グリーンシートやタブレットを金属やセラミックスからなる部材上に載置し、熱処理して被覆することもできる。
 以下、本発明の結晶性ガラス組成物を実施例に基づいて説明する。
 表1および2は、本発明の実施例(試料No.1~9)および比較例(試料No.10~12)を示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 各試料は次のようにして調製した。
 表中の組成になるように調合したガラス原料を1400~1500℃で約1時間溶融した後、溶融ガラスを一対の冷却ローラー間に投入してフィルム状に成形した。得られたフィルム状成形物をボールミルを用いて粉砕し、分級して粒径(d50)が約10μmの結晶性ガラス粉末を得た。
 次に、各試料について、成形時の耐失透性、熱膨張係数、ガラス転移点、軟化点、流動性、析出結晶種、結晶化温度および結晶融点を、下記の方法により測定または評価した。結果を表1に示す。
 耐失透性は、前記フィルム状成形物を顕微鏡(50倍)にて観察し、失透物が認められなかったものを「○」、認められたものを「×」として評価した。
 熱膨張係数は次のようにして測定した。まず、各試料をプレス成型し、結晶化温度+10℃の温度を目安に850~1000℃で15分間熱処理した後、直径4mm、長さ20mmの円柱状に研削加工した。次に、得られた円柱状の試料を用いて、JIS R3102に基づき30~700℃の温度範囲における熱膨張係数を測定した。
 ガラス転移点、軟化点、結晶化温度および結晶融点は、マクロ型示差熱分析計を用いて測定した。具体的には、各ガラス粉末試料につき1050℃まで測定したグラフにおいて、第一の変曲点の値をガラス転移点、第四の変曲点の値を軟化点、発熱ピークの値を結晶化温度、結晶化温度より高温側に得られた吸熱ピークの値を結晶融点とした。なお、結晶融点が高いほど、または、結晶融点が確認されなければ、高温下においても結晶が安定に存在していることを意味し、耐熱性が高いと判断することができる。
 流動性は次のようにして評価した。比重分(1cm)のガラス粉末を直径20mmの金型に投入してプレス成型し、ボタン型の成型体を作製した。得られた成型体をSUS430板上で850~1000℃で15分間保持することにより熱処理を行った。熱処理後の成型体の直径が17mm以上のものを「○」、17mm未満のものを「×」として評価した。
 析出結晶種は、XRD測定を行って得られた回折線チャートについて、JCPDSカードとの対比によって同定した。このとき同定された析出結晶種として、2MgO・2SiOを「A」、BaO・2MgO・2SiOを「B」、2MgO・Bを「C」として表中に示した。
 表から明らかなように、本発明の実施例であるNo.1~9の試料は、成形時に失透物が認められず、また、流動性に優れていた。さらに、主結晶としてMgO系結晶が析出しており、114~138×10-7/℃と高い熱膨張係数を有していた。
 一方、比較例である試料No.10は、失透しやすくガラス化が困難であり、流動性にも劣っていた。また、試料No.11は、熱処理を施しても結晶が析出せず、熱膨張係数が93×10-7/℃と低かった。試料No.12は流動性に劣っていた。
 本発明の結晶性ガラス組成物は、SUSやFeといった金属、フェライトやジルコニアといった高膨張セラミックスの接着材料として好適である。また、SOFCを作製する際に使用される支持体基板、電解質または電極等を気密封止するための接着材料として好適である。
 1…電解質
 2…アノード
 3…カソード
 4…第一の支持体基板
 4a…燃料チャネル
 5…第二の支持体基板
 5a…空気チャネル

Claims (10)

  1.  熱処理によって、主結晶としてMgO系結晶を析出する結晶性ガラス組成物であって、ガラス組成としてモル%で、La+Nb+Y+Ta+Yb 0.1~30%を含有することを特徴とする結晶性ガラス組成物。
  2.  Laを0.1~30%を含有することを特徴とする請求項1に記載の結晶性ガラス組成物。
  3.  組成としてモル%で、RO(RはLi、NaまたはKを示す)が5%以下、かつ、Pが5%以下であることを特徴とする請求項1または2に記載の結晶性ガラス組成物。
  4.  MgO系結晶が、2MgO・SiO、BaO・2MgO・2SiOまたは2MgO・Bであることを特徴とする請求項1~3のいずれかに記載の結晶性ガラス組成物。
  5.  ガラス組成としてモル%で、SiO 30~50%、MgO 10~45%、BaO 5~40%およびB 0~15%を含有することを特徴とする請求項1~4のいずれかに記載の結晶性ガラス組成物。
  6.  さらに、ガラス組成としてモル%で、CaO 0~20%、SrO 0~10%、ZnO 0~15%、Al 0~6%、ZrO 0~3%およびSnO 0~3%を含有することを特徴とする請求項5に記載の結晶性ガラス組成物。
  7.  熱処理後において、30~700℃における熱膨張係数が95×10-7/℃以上であることを特徴とする請求項1~6のいずれかに記載の結晶性ガラス組成物。
  8.  粉末状であることを特徴とする請求項1~7のいずれかに記載の結晶性ガラス組成物。
  9.  請求項1~8のいずれかに記載の結晶性ガラス組成物を用いたことを特徴とする接着材料。
  10.  燃料電池の構成部材の接着に使用されることを特徴とする請求項9に記載の接着材料。
PCT/JP2012/070633 2011-09-08 2012-08-13 結晶性ガラス組成物およびそれを用いた接着材料 WO2013035500A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280040230.XA CN103748050B (zh) 2011-09-08 2012-08-13 结晶性玻璃组合物和使用其的粘接材料
US14/239,844 US9409814B2 (en) 2011-09-08 2012-08-13 Crystalline glass composition and adhesive material using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-195588 2011-09-08
JP2011195588A JP5999297B2 (ja) 2011-09-08 2011-09-08 結晶性ガラス組成物およびそれを用いた接着材料

Publications (1)

Publication Number Publication Date
WO2013035500A1 true WO2013035500A1 (ja) 2013-03-14

Family

ID=47831950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070633 WO2013035500A1 (ja) 2011-09-08 2012-08-13 結晶性ガラス組成物およびそれを用いた接着材料

Country Status (4)

Country Link
US (1) US9409814B2 (ja)
JP (1) JP5999297B2 (ja)
CN (1) CN103748050B (ja)
WO (1) WO2013035500A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103274601A (zh) * 2013-06-07 2013-09-04 福州大学 一种含Nb2O5封接玻璃及其制备和使用方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9208929B2 (en) 2013-09-20 2015-12-08 Schott Corporation GTMS connector for oil and gas market
US9086548B2 (en) * 2013-09-30 2015-07-21 Corning Cable Systems Llc Optical connectors with inorganic adhesives and methods for making the same
CA2955762C (en) * 2014-07-23 2024-05-28 Flexitallic Investments, Inc. A glass coating composition
DE102015207285B4 (de) 2015-04-22 2019-05-02 Schott Ag Glasiges oder zumindest teilweise kristallisiertes Einschmelzmaterial, Fügeverbindung, Sperrschicht, und Schichtsystem mit dem Einschmelzmaterial und dessen Integration in Bauteilen
JP6709502B2 (ja) * 2016-03-28 2020-06-17 日本電気硝子株式会社 結晶性ガラス組成物
GB201614946D0 (en) * 2016-09-02 2016-10-19 Flexitallic Ltd And Flexitallic Invest Inc Gasket sealing material
CN106631087B (zh) * 2016-09-12 2019-08-20 中国科学院福建物质结构研究所 硼酸盐粘结瓷及其制备方法
WO2018190056A1 (ja) * 2017-04-13 2018-10-18 日本電気硝子株式会社 結晶性ガラス組成物
KR102119318B1 (ko) * 2018-10-02 2020-06-04 공주대학교 산학협력단 고체산화물 연료전지용 밀봉 유리 조성물 및 이를 포함하는 밀봉 페이스트
CN109279781A (zh) * 2018-10-12 2019-01-29 沈阳建筑大学 用于氧化锆和二硅酸锂玻璃陶瓷的粘结剂及其制法和应用
CN109020232B (zh) * 2018-10-31 2021-08-17 成都光明光电有限责任公司 微晶玻璃
JP7488260B2 (ja) 2018-11-26 2024-05-21 オウェンス コーニング インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー 改善された弾性率を有する高性能ガラス繊維組成物
EP3887328A2 (en) 2018-11-26 2021-10-06 Owens Corning Intellectual Capital, LLC High performance fiberglass composition with improved specific modulus
CN110190210B (zh) * 2019-03-12 2024-05-24 华电电力科学研究院有限公司 一种便于边缘封接的固体氧化物燃料电池结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007161569A (ja) * 2005-11-18 2007-06-28 Nihon Yamamura Glass Co Ltd 封着用ガラス組成物
WO2009017173A1 (ja) * 2007-08-01 2009-02-05 Asahi Glass Company, Limited 無鉛ガラス
JP2012162445A (ja) * 2011-01-18 2012-08-30 Nippon Electric Glass Co Ltd 高膨張結晶性ガラス組成物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4464475A (en) * 1983-01-13 1984-08-07 Corning Glass Works Glass-ceramic articles containing osumilite
US5250360A (en) * 1987-11-16 1993-10-05 Corning Incorporated Coated metal article
AU635043B2 (en) * 1989-07-12 1993-03-11 Medtronic, Inc. Lithium thionyl chloride resistant feedthrough
US5242722A (en) * 1990-10-29 1993-09-07 Matsushita Electric Industrial Co., Ltd. Strain sensor
NO314897B1 (no) * 2000-08-23 2003-06-10 Norsk Hydro As Barium-lantan-silikat baserte glasskeramer og deres anvendelse
JP4859288B2 (ja) * 2001-06-04 2012-01-25 京セラ株式会社 ガラス組成物、ガラス焼結体およびそれを用いた配線基板
JP2006056769A (ja) 2004-07-23 2006-03-02 Nippon Sheet Glass Co Ltd 封着用ガラス組成物、封着用ガラスフリット、及び封着用ガラスシート
US7521387B2 (en) * 2004-09-21 2009-04-21 General Electric Company Alkali-free composite sealant materials for solid oxide fuel cells
JP4994052B2 (ja) 2006-03-28 2012-08-08 京セラ株式会社 基板およびこれを用いた回路基板
JP5128203B2 (ja) * 2007-08-22 2013-01-23 日本山村硝子株式会社 封着用ガラス組成物
JP6032014B2 (ja) * 2012-04-24 2016-11-24 日本電気硝子株式会社 結晶性ガラス組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007161569A (ja) * 2005-11-18 2007-06-28 Nihon Yamamura Glass Co Ltd 封着用ガラス組成物
WO2009017173A1 (ja) * 2007-08-01 2009-02-05 Asahi Glass Company, Limited 無鉛ガラス
JP2012162445A (ja) * 2011-01-18 2012-08-30 Nippon Electric Glass Co Ltd 高膨張結晶性ガラス組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103274601A (zh) * 2013-06-07 2013-09-04 福州大学 一种含Nb2O5封接玻璃及其制备和使用方法

Also Published As

Publication number Publication date
US20140221190A1 (en) 2014-08-07
US9409814B2 (en) 2016-08-09
JP5999297B2 (ja) 2016-09-28
JP2013056795A (ja) 2013-03-28
CN103748050B (zh) 2016-12-28
CN103748050A (zh) 2014-04-23

Similar Documents

Publication Publication Date Title
JP5999297B2 (ja) 結晶性ガラス組成物およびそれを用いた接着材料
JP6032014B2 (ja) 結晶性ガラス組成物
JP5928777B2 (ja) 高膨張結晶性ガラス組成物
JP2014096277A (ja) 固体酸化物型燃料電池用シール材料
JP5787928B2 (ja) バリウムおよびストロンチウム不含のガラス質もしくはガラスセラミックの接合材料ならびにそれらの使用
JP2008516881A (ja) ガラス及びガラスセラミックシーラント組成物
JP2011522361A (ja) 非汚染性の電気化学的に安定なガラスフリットシーリング材料並びにそのようなシーリング材料を使用したシールおよびデバイス
US20150299026A1 (en) Glass composition for the use as a sealant
JP2013203627A (ja) ガラス組成物
JP6709502B2 (ja) 結晶性ガラス組成物
JP2014156377A (ja) 結晶性ガラス組成物
JP6031872B2 (ja) 固体酸化物型燃料電池用シール材料
JP5656044B2 (ja) 高膨張結晶性ガラス組成物
WO2018190056A1 (ja) 結晶性ガラス組成物
WO2017169308A1 (ja) 結晶性ガラス組成物
JP2019006642A (ja) 結晶性ガラス組成物
JP2020083662A (ja) 結晶性ガラス組成物
JP2019116397A (ja) 結晶性ガラス組成物
JP2019034876A (ja) 結晶性ガラス組成物
JP2018177629A (ja) 結晶性ガラス組成物
JP2016126974A (ja) 固体酸化物型燃料電池の製造方法
JP2016115554A (ja) 固体酸化物型燃料電池用シールガラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830160

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14239844

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12830160

Country of ref document: EP

Kind code of ref document: A1