WO2013035447A1 - 無段変速機の制御装置 - Google Patents

無段変速機の制御装置 Download PDF

Info

Publication number
WO2013035447A1
WO2013035447A1 PCT/JP2012/068491 JP2012068491W WO2013035447A1 WO 2013035447 A1 WO2013035447 A1 WO 2013035447A1 JP 2012068491 W JP2012068491 W JP 2012068491W WO 2013035447 A1 WO2013035447 A1 WO 2013035447A1
Authority
WO
WIPO (PCT)
Prior art keywords
continuously variable
variable transmission
speed
accelerator opening
acceleration
Prior art date
Application number
PCT/JP2012/068491
Other languages
English (en)
French (fr)
Inventor
智行 鈴木
明裕 牧山
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to BR112014005148-8A priority Critical patent/BR112014005148B1/pt
Priority to EP12829379.2A priority patent/EP2754925B1/en
Priority to US14/343,206 priority patent/US8996264B2/en
Priority to MX2014002672A priority patent/MX344873B/es
Priority to RU2014113405/11A priority patent/RU2558495C1/ru
Priority to CN201280043231.XA priority patent/CN103797280B/zh
Priority to JP2013532491A priority patent/JP5821962B2/ja
Publication of WO2013035447A1 publication Critical patent/WO2013035447A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66254Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling
    • F16H61/66259Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling using electrical or electronical sensing or control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • F16H2059/183Rate of change of accelerator position, i.e. pedal or throttle change gradient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H2061/6604Special control features generally applicable to continuously variable gearings
    • F16H2061/6611Control to achieve a particular driver perception, e.g. for generating a shift shock sensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/44Inputs being a function of speed dependent on machine speed of the machine, e.g. the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/48Inputs being a function of acceleration

Definitions

  • the present invention relates to a control device for a continuously variable transmission.
  • JP 2004-183854A discloses the following as a control device for a continuously variable transmission.
  • the shift characteristics of the downshift and the shift characteristics of the upshift are determined based on the accelerator opening and the vehicle speed, respectively.
  • the suppressed downshift target speed ratio and the upshift target speed ratio are calculated.
  • speed change control is performed along a virtual speedline that is upshifted according to the upshift target speed ratio.
  • the shift line at the time of acceleration is set according to the acceleration start vehicle speed.
  • the gear ratio is set to be smaller as the acceleration start vehicle speed is higher if the accelerator opening is the same.
  • the gear ratio is set in this way because the driving force does not increase as much as expected even though the engine speed has increased, and the driver feels as if the engine has been blown. This is to prevent the occurrence of a so-called rubber band feel that gives a sense of incongruity.
  • the control device of JP2004-183854A is configured to detect the driver's acceleration intention based on the accelerator opening, and to update the acceleration start vehicle speed when the acceleration intention is detected. For this reason, there is a possibility that a rubber band feel may occur when the accelerator pedal is further depressed to accelerate during traveling in the slow acceleration state.
  • a rubber band feel may occur when the accelerator pedal is further depressed to accelerate during traveling in the slow acceleration state.
  • the accelerator opening is relatively high at the time of joining, there is a possibility that even if the accelerator opening is increased for overtaking acceleration, it is not detected as an acceleration intention.
  • the acceleration start vehicle speed remains at a relatively low vehicle speed when acceleration is started in the acceleration lane, and the shift line also corresponds to the acceleration start vehicle speed. Therefore, since the accelerator opening is increased at a relatively high vehicle speed after merging, the shift control is performed according to the shift line set at a relatively low vehicle speed, and a rubber band feel is generated.
  • an object of the present invention is to provide a control device for a continuously variable transmission that can prevent the occurrence of a rubber band feel when the accelerator opening is further increased during acceleration.
  • the present invention includes an operation state detection unit that detects a vehicle operation state including a vehicle speed and an accelerator opening, a control unit that controls a speed ratio of the continuously variable transmission based on the operation state, Acceleration request determination means for determining whether or not the driver has requested acceleration based on the accelerator opening.
  • an operation state detection unit that detects a vehicle operation state including a vehicle speed and an accelerator opening
  • a control unit that controls a speed ratio of the continuously variable transmission based on the operation state
  • Acceleration request determination means for determining whether or not the driver has requested acceleration based on the accelerator opening.
  • gear ratio setting means for setting the reduction ratio controlled by the control means to be smaller as the acceleration start vehicle speed is higher if the accelerator opening is the same.
  • the control means updates the acceleration start vehicle speed to the vehicle speed at the time of the determination.
  • FIG. 1 is a schematic configuration diagram of a vehicle according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of shift lines in the normal mode and the linear mode.
  • FIG. 3 is a block diagram of control for creating a shift line executed by the continuously variable transmission controller in the linear mode.
  • FIG. 4 is a flowchart showing an acceleration start vehicle speed update routine executed by the continuously variable transmission controller during the linear mode.
  • FIG. 5 is a diagram for explaining the effect when the control routine of FIG. 4 is executed.
  • FIG. 6 is a diagram for explaining a method of creating a shift line according to the second embodiment.
  • FIG. 7 is a time chart when the accelerator opening is returned after re-acceleration.
  • FIG. 1 shows a schematic configuration of a vehicle equipped with a speed change control device according to the present invention.
  • the driving force of the internal combustion engine 1 is transmitted to the drive wheels 5 via the torque converter and forward / reverse switching mechanism 2, continuously variable transmission 3, final reduction gear and differential mechanism 4.
  • the internal combustion engine 1 is subjected to fuel injection amount control, ignition timing control, and the like by the engine controller 6.
  • the continuously variable transmission 3 is controlled steplessly by the continuously variable transmission controller 7.
  • the control device 8 includes a microcomputer and its peripheral devices together with the controllers 6 and 7, and performs comprehensive vehicle control.
  • the control device 8 includes an accelerator sensor 9 that detects the accelerator opening, a vehicle speed sensor 10 that detects the traveling speed of the vehicle, a wheel speed sensor 11 that detects the rotational speed of the drive wheels 5, and a rotational speed of the internal combustion engine 1.
  • An engine rotation sensor 12 and an input shaft rotation speed sensor 13 for detecting the input shaft rotation speed of the continuously variable transmission 3 are connected.
  • the continuously variable transmission controller 7 corresponds to the control means of the present invention
  • the accelerator sensor 9 and the vehicle speed sensor 10 correspond to the driving state detection means of the present invention.
  • a belt-type CVT with a variable pulley mechanism is assumed as the continuously variable transmission 3, and the gear ratio may be expressed by the term pulley ratio.
  • the pulley ratio or the gear ratio is synonymous with the reduction ratio, that is, the value represents the input pulley rotation speed / output pulley rotation speed.
  • the continuously variable transmission controller 7 usually executes a control mode (hereinafter referred to as a normal mode) in which the gear ratio is variably controlled based on the accelerator opening and the vehicle speed.
  • a control mode hereinafter referred to as a linear mode
  • the switching from the normal mode to the linear mode is performed by a known control routine as described in JP-A-2002-372143, for example.
  • FIG. 2 is a diagram illustrating an example of shift lines in the normal mode and the linear mode.
  • the vertical axis represents the input shaft speed of the continuously variable transmission 3
  • the horizontal axis represents the vehicle speed
  • the solid line in the figure represents the normal mode shift line
  • the broken line represents the linear mode shift line.
  • the vehicle speed V 0 is a vehicle speed when a predetermined acceleration condition is satisfied, that is, a vehicle speed for switching to the linear mode.
  • the gear ratio change is suppressed compared to the normal mode. Therefore, the increase in the input shaft rotation speed accompanying the increase in the vehicle speed is greater in the linear mode than in the normal mode. As a result, acceleration that matches the driver's feeling that the vehicle speed increases as the engine speed increases during acceleration is realized.
  • FIG. 3 is a block diagram of control executed by the continuously variable transmission controller 7 in the linear mode.
  • the vehicle speed VSP detected by the vehicle speed sensor 10 and the accelerator opening APO detected by the accelerator sensor 9 are input to the downshift speed map 30, the upshift ratio map 31, and the upper limit speed map 32, respectively.
  • the downshift speed map 30 is a map for calculating the downshift speed LNRdwREV0 at the start of acceleration.
  • the upshift ratio map 31 is a map for calculating the gear ratio in the linear mode.
  • the upper limit rotational speed map is a map for calculating the upper limit rotational speed LMODLim of the input shaft rotational speed. Note that any map is set for each accelerator opening APO, and when there is no value corresponding to the input accelerator opening APO, a value is calculated from the preceding and following maps by a complementary operation.
  • the calculation result of each map is input to the shift line generation unit 33.
  • the shift line generation unit 33 calculates the input shaft speed of the continuously variable transmission 3 in the linear mode (hereinafter referred to as target CVT input speed DsrREV) by the following procedure. Determining a target CVT input speed DsrREV in vehicle speed V 0 based on the downshift rotational speed LNRdwREV0 firstly calculated in downshift rotational speed map 30. Then, the shift line is determined according to the speed ratio change characteristic calculated by the upshift ratio map 31. Further, the upper limit of the target CVT input rotational speed DsrREV is limited by the upper limit rotational speed LMODLim calculated by the upper limit rotational speed map 32. In this way, the shift line in the linear mode is created. This procedure is expressed by equations (1) and (2).
  • DratioLNR [LNRdwREV 0 / LNROutREV 0 ] + [UpRTOV n -UpRTOV 0] ⁇ (1)
  • DsrREVLNR MIN [DratioLNR ⁇ OutREV, LMODlim] ... (2)
  • the first term in equation (1) that is, [LNRdwREV 0 / LNROUTREV 0 ] is to convert the rotational speed to a gear ratio by dividing the downshift rotational speed LNRdwREV0 at the start of acceleration by the output shaft rotational speed LNROutREV0. is there.
  • [UpRTOV n -UpRTOV 0 ] which is the second term, represents the gradient of the speed ratio change during the linear mode.
  • Equation (2) calculates the target rotational speed during the linear mode.
  • the target gear ratio calculated by the equation (1) is multiplied by the output shaft rotational speed OutREV to convert the gear ratio into the rotational speed, and the smaller one of this and the upper limit rotational speed LMODLim is selected, and the target CVT input rotational speed is selected. DsrREV.
  • FIG. 4 is a flowchart showing an acceleration start vehicle speed update routine executed by the continuously variable transmission controller 7 during the linear mode.
  • this control routine if the driver further depresses the accelerator pedal during execution of the linear mode, the acceleration start vehicle speed V 0 is updated from the vehicle speed set at the time of switching the linear mode to the vehicle speed at the time of further depression. The effect of this will be described later. Hereinafter, it demonstrates according to the step of a flowchart.
  • step S100 the continuously variable transmission controller 7 determines whether or not the linear mode is being executed. If it is being executed, the process of step S110 is executed; otherwise, the process of step S130 is executed.
  • step S110 the continuously variable transmission controller 7 performs the re-depression determination based on the detection value of the accelerator sensor 9, and executes the process of step S120 if it has been re-depressed. If it is not depressed again, the process of step S130 is executed.
  • Re-depression determination is to determine whether or not there is an intention of further acceleration during execution of the linear mode. For example, when the accelerator opening APO is greater than a preset threshold A and the accelerator opening speed is greater than a preset threshold B, it is determined that there is further acceleration intention.
  • the threshold A is set to an opening of about 2/8 of the entire stroke, for example.
  • the threshold B is set to 20 [deg / sec], for example.
  • further acceleration during execution of the linear mode is referred to as “re-acceleration”.
  • step S120 the continuously variable transmission controller 7 updates the acceleration start vehicle speed V 0 and ends the current process.
  • the acceleration start vehicle speed V 0 is updated here, a new shift line is created according to the control block of FIG. 3 described above.
  • step S130 the CVT controller 7 ends the current process without updating the acceleration start vehicle speed V 0.
  • FIG. 5 is a diagram for explaining the effect when the control routine of FIG. 4 is executed.
  • the horizontal axis is the vehicle speed VSP, the upper stage shows the change in the accelerator opening APO, and the lower stage shows the shift line.
  • the broken line in the figure indicates the normal mode shift line.
  • the solid line R1 in the figure is a case where the vehicle speed V 1 is set as the acceleration start vehicle speed V 0, a shift line for the accelerator opening degree A1.
  • solid R2 is when the vehicle speed V 2 is set as the acceleration start vehicle speed V 0, a shift line for the accelerator opening degree A2.
  • dashed line R3 is the case where the vehicle speed V 1 is set as the acceleration start vehicle speed V 0, a shift line for the accelerator opening degree A2.
  • D1 to D4 indicate operating points determined from the vehicle speed and the input shaft rotational speed.
  • the accelerator pedal is depressed from the accelerator opening A0 to the accelerator opening A1 at the vehicle speed V 1 to start acceleration, and then is accelerated to the vehicle speed V 2 with the accelerator opening A1.
  • the vehicle speed V 1 is set as the acceleration start vehicle speed V 0 at the time of vehicle speeds V 1 to
  • downshift speed and shift line R1 is set based on this. That is, the continuously variable transmission controller 7 sets the operating point at the time of starting acceleration as D1, and controls the gear ratio according to the shift line R1 from there to D2.
  • the accelerator pedal for reacceleration vehicle speed V 2 is depressed until the accelerator opening A2.
  • the acceleration start vehicle speed V 0 is updated to the vehicle speed V2
  • the downshift speed and shift line R2 based on the vehicle speed V 2 is newly created.
  • the continuously variable transmission controller 7 operating points in accordance with a change in the accelerator opening APO at the vehicle speed V 2 shifts from D2 to D3, controls the speed ratio according to a shift line R2 from D3. That is, according to this control routine, the operating point changes as indicated by the arrows in the figure.
  • the acceleration start vehicle speed V 0 is not updated at the time of reacceleration, the shift line is not updated. Therefore, at the time of reacceleration at the vehicle speed V 2 , the driving point shifts from D2 to D4. That is, the range of increase in the input shaft rotation speed associated with re-acceleration is larger than when this control routine is executed, and there is a risk that a rubber band feel will occur.
  • the acceleration start vehicle speed V 0 is updated. Therefore, it is possible to prevent the target CVT input rotation speed DsrREV from excessively increasing during reacceleration, and as a result, reaccelerate It is possible to prevent the occurrence of rubber band feel at the time.
  • the driver's intention can be detected with high accuracy.
  • the configuration of the vehicle to which the second embodiment is applied is the same as that of the first embodiment.
  • the gear ratio control executed by the continuously variable transmission controller 7 is basically the same. However, there is a difference in the method of creating a shift line when there is a reacceleration request during execution of the linear mode.
  • FIG. 6 is a diagram for explaining a method of creating a shift line according to the present embodiment.
  • the horizontal axis represents the vehicle speed VSP
  • the upper stage shows the change in the accelerator opening APO
  • the lower stage shows the shift line.
  • the broken line in the figure indicates the normal mode shift line.
  • the solid line R1 in the figure is a case where the vehicle speed V 1 is set as the acceleration start vehicle speed V 0, a shift line for the accelerator opening degree A1.
  • solid R2 is when the vehicle speed V 2 is set as the acceleration start vehicle speed V 0, a shift line for the accelerator opening degree A2.
  • the alternate long and short dash line R4 is a shift line when the target CVT input rotational speed DsrREV is maintained at the lower limit value DWNmin.
  • Migrate at vehicle speeds V 1 to the linear mode perform the transmission ratio control according to a shift line R1, detects reacceleration by the vehicle speed V 2, and updates the acceleration start vehicle speed V 0 to the speed V 2, the acceleration of the updated
  • the process until the shift line R2 is created based on the start vehicle speed is the same as in the first embodiment.
  • a lower limit value DWNmin is provided for the target CVT input rotational speed DsrREV after the acceleration start vehicle speed is updated so that the target CVT input rotational speed DsrREV does not decrease when shifting to the linear mode.
  • the lower limit value DWNmin for example, a target CVT input rotational speed DsrREV 80 ms before the acceleration start vehicle speed update (hereinafter, simply referred to as “target CVT input rotational speed DsrREV 80 ms before”) is used. That is, the first term of the equation (1) in FIG. 3 becomes the following equation (3).
  • target CVT input rotational speed DsrREV 80 milliseconds before is merely an example of the vehicle speed before the acceleration start vehicle speed update, and may be another value.
  • a transmission line R4 having a transmission ratio change characteristic similar to that of the transmission line R2 is created, and transmission ratio control is performed according to the transmission line R4. Further, the lower limit value DWNmin is stored.
  • the continuously variable transmission controller 7 continues to decrease the lower limit value DWNmin during the accelerator opening returning operation when the accelerator opening returning operation is performed after re-acceleration during execution of the linear mode. That is, the lower limit value DWNmin is continuously updated to a small value during the accelerator opening returning operation.
  • FIG. 7 is a time chart when the accelerator opening is returned after re-acceleration during execution of the linear mode.
  • the solid line in the figure indicates the case where the lower limit value DWNmin is updated during the return operation, and the broken line indicates the case where the lower limit value DWNmin is not updated.
  • the continuously variable transmission controller 7 calculates the target CVT input rotational speed DsrREV while limiting the lower limit value DWNmin by the above-described equations (1) and (3) during execution of the linear mode. Therefore, when the accelerator pedal is depressed and acceleration is started at timing t0, an initial downshift speed LNRdwnREV0 is calculated. Since this initial downshift speed LNRdwnREV0 is lower than lower limit value DWNmin, lower limit value DWNmin is employed as the downshift speed.
  • the initial downshift speed LNRdwnREV0 decreases as is apparent from the downshift speed map 30 of FIG. Further, as is apparent from the upshift ratio map 31 of FIG. 3 and the equation (1), the inclination during the linear mode is also reduced.
  • the lower limit value DWNmin is adopted as the downshift speed. Therefore, if the lower limit value DWNmin is not updated, the target CVT input rotation speed DsrREV increases even though the accelerator pedal is returned at the timing t1, as indicated by the broken line in FIG. On the other hand, if the lower limit value DWNmin is gradually updated to a smaller value, the target CVT input rotational speed DsrREV stops increasing in response to the accelerator opening returning operation.
  • the update of the lower limit value DWNmin should be at least gradually reduced. This is because if the lower limit value DWNmin decreases, the target CVT input rotation speed DsrREV stops increasing.
  • the lower limit value DWNmin decreases with the same slope as the initial downshift speed LNRdwnREV0 that changes in response to the driver's accelerator operation.
  • the target CVT input speed DsrREV is more in line with the driver's intention. Because it will change.
  • the lower limit value DWNmin is set to the target CVT input rotation speed DsrREV after the acceleration start vehicle speed is updated, and the gear ratio control is performed so that the target CVT input rotation speed DsrREV does not become lower than this.
  • the lower limit value DWNmin is updated to a small value during the accelerator opening returning operation, it is possible to avoid a situation in which the increase in the target CVT input rotation speed DsrREV does not stop despite the returning operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

 車速とアクセル開度を含む車両の運転状態を検出する運転状態検出手段と、運転状態に基づいて無段変速機の変速比を制御する制御手段と、アクセル開度に基づいて運転者の加速要求の有無を判定する加速要求判定手段とを備え、加速中は、制御手段が制御する減速比を、アクセル開度が同じであれば加速開始車速が高いほど小さく設定する変速比設定手段とを備え、制御手段は加速中にアクセル開度が増加したと判定したら、加速開始車速を当該判定時の車速に更新する。

Description

無段変速機の制御装置
 本発明は、無段変速機の制御装置に関する。
 無段変速機の制御装置として、JP2004-183854Aには次のようなものが開示されている。キックダウン加速の要求があったときに、アクセル開度と車速に基づいてダウンシフトの変速特性とアップシフトの変速特性をそれぞれ決定し、これらの変速特性に基づいて、通常の目標変速比よりも抑制されたダウンシフト目標変速比と、アップシフト目標変速比とを演算する。そして、ダウンシフト目標変速比へダウンシフトした後、アップシフト目標変速比に応じてアップシフトする仮想変速線に沿って変速制御する。このとき、加速時の変速線は加速開始車速に応じて設定される。そして、変速比は、アクセル開度が同じであれば加速開始車速が高いほど小さくなるように設定される。このように変速比を設定するのは、エンジン回転数が上昇したにもかかわらず、駆動力はそれから期待するほどは増大せず、あたかもエンジンが空吹かしされたような状態となって運転者に違和感を与える、いわゆるラバーバンドフィールの発生を防止する為である。
 JP2004-183854Aの制御装置では、アクセル開度に基づいて運転者の加速意図を検知し、加速意図を検知したときに加速開始車速を更新する構成となっている。このため、緩加速状態での走行中にアクセルペダルをさらに踏み込んで加速する場合に、ラバーバンドフィールが発生するおそれがある。これについてより具体的に説明するために、例えば、高速道路進入時に加速レーンで加速をしながら本線に合流し、合流後に車線変更をしてさらに追い越し加速をする場合を考える。この場合、合流した時点でアクセル開度は比較的高開度となっているため、追い越し加速のためにアクセル開度を増加しても、加速意図として検知されないおそれがある。加速意図が検知されなければ、加速開始車速は加速レーンで加速を開始したときの比較的低車速のままとなり、変速線もその加速開始車速に応じたものとなっている。したがって、合流後の比較的高車速でアクセル開度を増加したために、比較的低車速で設定した変速線にしたがって変速制御されることとなり、ラバーバンドフィールが発生することになる。
 本発明の目的は、したがって、加速中にさらにアクセル開度を増加した場合のラバーバンドフィールの発生を防止し得る無段変速機の制御装置を提供することである。
 上記目的を達成するため、本発明は、車速とアクセル開度を含む車両の運転状態を検出する運転状態検出手段と、運転状態に基づいて無段変速機の変速比を制御する制御手段と、アクセル開度に基づいて運転者の加速要求の有無を判定する加速要求判定手段とを備える。そして、加速中は、制御手段が制御する減速比を、アクセル開度が同じであれば加速開始車速が高いほど小さく設定する変速比設定手段を備える。さらに、制御手段は加速中にアクセル開度が増加したと判定したら、加速開始車速を当該判定時の車速に更新する。
 この発明の詳細並びに他の特徴や利点は、明細書の以降の記載の中で説明されるとともに、添付された図面に示される。
図1は本発明の第1実施形態による車両の概略構成図である。 図2はノーマルモード及びリニアモードの変速線の一例を示す図である。 図3はリニアモードにおいて無段変速機コントローラが実行する変速線作成用の制御のブロック図である。 図4はリニアモード中に無段変速機コントローラが実行する加速開始車速更新ルーチンを示すフローチャートである。 図5は図4の制御ルーチンを実行した場合の効果について説明する為の図である。 図6は第2実施形態の変速線の作成方法について説明するための図である。 図7は再加速後にアクセル開度戻し操作された場合のタイムチャートである。
(第1実施形態)
 図1は本発明による変速制御装置を備えた車両の概略構成を示したものである。内燃機関1の駆動力は、トルクコンバータおよび正逆切換機構2、無段変速機3、最終減速機および差動機構4を介して駆動輪5に伝達される。
 内燃機関1は、エンジンコントローラ6によって燃料噴射量制御、点火時期制御などが行われる。
 無段変速機3は、無段変速機コントローラ7によって変速比が無段階に制御される。
 制御装置8は、前記各コントローラ6、7と共にマイクロコンピュータおよびその周辺装置から構成され、総合的な車両の制御を行う。制御装置8には、アクセル開度を検出するアクセルセンサ9、車両の走行速度を検出する車速センサ10、駆動輪5の回転速度を検出する車輪速センサ11、内燃機関1の回転速度を検出するエンジン回転センサ12、無段変速機3の入力軸回転数を検出する入力軸回転数センサ13などが接続されている。無段変速機コントローラ7が本発明の制御手段に、アクセルセンサ9と車速センサ10が本発明の運転状態検出手段に、それぞれ対応する。
 なお、以下の説明においては無段変速機3として可変プーリ機構によるベルト式CVTを想定し、変速比をプーリ比という語で表す場合がある。プーリ比または変速比は減速比と同義であり、すなわちその値は入力プーリ回転数/出力プーリ回転数を表している。
 無段変速機コントローラ7は、通常はアクセル開度及び車速に基づいて変速比を可変制御する制御モード(以下、これをノーマルモードという。)を実行する。そして、所定の加速条件を満たしたときには、変速比変化をノーマルモードより抑制する制御モード(以下、これをリニアモードという。)に切り替える。このノーマルモードからリニアモードへの切り替えは、例えば特開2002-372143号公報に記載されているような、公知の制御ルーチンにより行う。
 図2は、ノーマルモード及びリニアモードの変速線の一例を示す図である。縦軸は無段変速機3の入力軸回転数、横軸は車速、図中の実線はノーマルモードの変速線、同じく破線はリニアモードの変速線を示している。また、車速V0は所定の加速条件を満たしたときの車速、つまりリニアモードへ切り替える車速である。
 リニアモードでは、変速比変化がノーマルモードに比べて抑制される。したがって、車速の上昇に伴う入力軸回転数の上昇は、リニアモードの方がノーマルモードより大きくなる。これにより、加速時にはエンジン回転数の上昇とともに車速が上昇するものという運転者の感覚に合った加速を実現している。
 図3は、リニアモードにおいて無段変速機コントローラ7が実行する制御のブロック図である。
 車速センサ10で検出した車速VSP及びアクセルセンサ9で検出したアクセル開度APOが、ダウンシフト回転数マップ30、アップシフトレシオマップ31、及び上限回転数マップ32にそれぞれ入力される。
 ダウンシフト回転数マップ30は、加速開始時のダウンシフト回転数LNRdwREV0を算出する為のマップである。
 アップシフトレシオマップ31は、リニアモード中のギヤ比を算出する為のマップである。
 上限回転数マップは、入力軸回転数の上限回転数LMODLimを算出するためのマップである。なお、いずれのマップもアクセル開度APO毎に設定されており、入力されたアクセル開度APOに対応する値が無い場合には、前後のマップから補完演算によって値を算出する。
 各マップの算出結果は変速線生成部33に入力される。
 変速線生成部33では、次の手順によりリニアモード中の無段変速機3の入力軸回転数(以下、目標CVT入力回転数DsrREVという)を算出する。まずダウンシフト回転数マップ30で算出したダウンシフト回転数LNRdwREV0に基づいて車速V0における目標CVT入力回転数DsrREVを決定する。そして、アップシフトレシオマップ31で算出した変速比変化特性にしたがって変速線を決定する。さらに、上限回転数マップ32で算出した上限回転数LMODLimで目標CVT入力回転数DsrREVの上限を制限する。このようにしてリニアモード中の変速線を作成する。この手順を式に表すと、式(1)、(2)のようになる。
  DratioLNR=[LNRdwREV0/LNROutREV0]+[UpRTOVn-UpRTOV0]   ・・・(1)
  DsrREVLNR=MIN[DratioLNR×OutREV,LMODLlim]   ・・・(2)
 式(1)の第1項、つまり[LNRdwREV0/LNROutREV0]は、加速開始時のダウンシフト回転数LNRdwREV0を出力軸回転数LNROutREV0で除算することで、回転数を変速比に変換するものである。同じく第2項である[UpRTOVn-UpRTOV0]は、リニアモード中の変速比変化の傾きを表している。
 式(2)で、リニアモード中の目標回転数を算出している。すなわち、式(1)で算出した目標変速比に出力軸回転数OutREVを乗算することで変速比を回転数に変換し、これと上限回転数LMODLimの小さい方を選択し、目標CVT入力回転数DsrREVとしている。
 図4は、リニアモード中に無段変速機コントローラ7が実行する加速開始車速更新ルーチンを示すフローチャートである。本制御ルーチンは、リニアモード実行中に運転者がアクセルペダルをさらに踏み込んだら、加速開始車速V0をリニアモード切り換え時に設定した車速から、さらに踏み込まれたときの車速に更新するものである。これによる効果については後述する。以下、フローチャートのステップにしたがって説明する。
 ステップS100で、無段変速機コントローラ7はリニアモード実行中か否かを判定し、実行中であればステップS110の処理を実行し、実行中でなければステップS130の処理を実行する。
 ステップS110で、無段変速機コントローラ7はアクセルセンサ9の検出値に基づいて再踏込み判定を行い、再踏込みされていた場合はステップS120の処理を実行する。再踏込みされていなければステップS130の処理を実行する。
 再踏込み判定とは、リニアモード実行中にさらなる加速の意図があるか否かを判定するものである。例えば、アクセル開度APOが予め設定した閾値Aより大きく、かつアクセル開速度が予め設定した閾値Bより大きい場合に、さらなる加速意図有りと判定する。閾値Aは、例えば全ストロークの2/8程度の開度に設定する。また、閾値Bは、例えば20[deg/sec]に設定する。なお、以下の説明において、リニアモード実行中のさらなる加速を「再加速」と称する。
 ステップS120で、無段変速機コントローラ7は加速開始車速V0を更新して今回の処理を終了する。ここで加速開始車速V0が更新されると、上述した図3の制御ブロックにしたがって、新たな変速線が作成される。
 ステップS130で、無段変速機コントローラ7は加速開始車速V0を更新せずに今回の処理を終了する。
 図5は、図4の制御ルーチンを実行した場合の効果について説明する為の図である。横軸は車速VSPであり、上段はアクセル開度APOの変化を示し、下段は変速線を示している。図中の破線はノーマルモードの変速線を示している。図中の実線R1は車速V1が加速開始車速V0として設定された場合の、アクセル開度A1用の変速線である。同じく実線R2は車速V2が加速開始車速V0として設定された場合の、アクセル開度A2用の変速線である。同じく一点鎖線R3は、車速V1が加速開始車速V0として設定された場合の、アクセル開度A2用の変速線である。また、D1-D4は車速と入力軸回転数から定まる運転点を示している。
 図5では、車速V1でアクセルペダルがアクセル開度A0からアクセル開度A1まで踏みこまれて加速を開始し、その後アクセル開度A1のまま車速V2まで加速している。この場合、車速V1の時点で車速V1が加速開始車速V0として設定され、これに基づいてダウンシフト回転数及び変速線R1が設定される。すなわち、無段変速機コントローラ7は、加速開始時の運転点をD1とし、そこからD2まで変速線R1にしたがって変速比を制御する。
 そして、車速V2で再加速のためにアクセルペダルがアクセル開度A2まで踏み込まれている。この場合、加速開始車速V0が車速V2に更新され、車速V2に基づくダウンシフト回転数及び変速線R2が新たに作成される。その結果、無段変速機コントローラ7は車速V2においてアクセル開度APOの変化に応じて運転点をD2からD3へ移行し、D3から変速線R2にしたがって変速比を制御する。すなわち、本制御ルーチンによれば、運転点は図中に矢印で示したように変化する。
 これに対して、再加速時に加速開始車速V0を更新しない場合には、変速線も更新されない。したがって、車速V2での再加速時に、運転点はD2からD4に移行する。すなわち、再加速に伴う入力軸回転数の上昇幅は本制御ルーチンを実行した場合に比べて大きくなり、ラバーバンドフィールが発生するおそれがある。
 このように本実施形態では、再加速の意図を検知した場合に加速開始車速V0を更新するので、再加速時に目標CVT入力回転数DsrREVが過剰に上昇することを防止でき、結果として再加速時のラバーバンドフィールの発生を防止することができる。
 また、再加速の意図をアクセル開度及びアクセル開速度に基づいて判定するので、運転者の意図を精度よく検知することができる。
(第2実施形態)
 第2実施形態は、適用する車両の構成は第1実施形態と同様である。また、無段変速機コントローラ7が実行する変速比制御についても、基本的には同様である。ただし、リニアモード実行中に再加速要求が有った場合の変速線の作成方法に異なる点がある。
 図6は、本実施形態の変速線の作成方法について説明するための図である。図5と同様に、横軸は車速VSPであり、上段はアクセル開度APOの変化を示し、下段は変速線を示している。図中の破線はノーマルモードの変速線を示している。図中の実線R1は車速V1が加速開始車速V0として設定された場合の、アクセル開度A1用の変速線である。同じく実線R2は車速V2が加速開始車速V0として設定された場合の、アクセル開度A2用の変速線である。同じく一点鎖線R4は目標CVT入力回転数DsrREVが下限値DWNminに維持される場合の変速線である。
 車速V1でリニアモードに移行して、変速線R1にしたがって変速比制御を行い、車速V2で再加速する検知して、加速開始車速V0を車速V2に更新し、更新後の加速開始車速に基づいて変速線R2を作成するところまでは、第1実施形態と同様である。
 しかし、加速開始車速の更新に応じて変速線R1から変速線R2へ移行すると、運転点がD2からD3へ移行することになり、目標CVT入力回転数DsrREVが低下することになる。このような加速時における目標CVT入力回転数DsrREVの低下は、運転者に違和感を与えてしまう。
 そこで、加速開始車速更新後の目標CVT入力回転数DsrREVに下限値DWNminを設け、リニアモードへの移行時に目標CVT入力回転数DsrREVが低下しないようにする。下限値DWNminとしては、例えば加速開始車速更新時の80ミリ秒前の目標CVT入力回転数DsrREV(以下、単に「80ミリ秒前の目標CVT入力回転数DsrREV」という)を用いる。すなわち、図3の式(1)の第1項が下式(3)のようになる。
  MAX(LNRdwREV0、80ミリ秒前のDsrREV)/LNROutREV0   ・・・(3)
 なお、80ミリ秒前の目標CVT入力回転数DsrREVは、あくまでも加速開始車速更新前の車速の一例であって、他の値であっても構わない。
 上記のように定まる運転点D2を起点として、変速比変化特性が変速線R2と同様の変速線R4を作成し、この変速線R4にしたがって変速比制御を行うこととする。また、下限値DWNminを記憶する。
 上記のように下限値DWNminを設けることにより、運転者に対して、再加速時にもかかわらず無段変速機3の入力回転数が低下するという違和感を与えることを回避できる。
 次に、リニアモード実行中の再加速後にアクセルペダルが戻し操作(以下、アクセル開度戻し操作という)された場合の制御について説明する。無段変速機コントローラ7は、リニアモード実行中の再加速後にアクセル開度戻し操作されたら、アクセル開度戻し操作中は下限値DWNminを低下させ続ける。つまり、アクセル開度戻し操作中は下限値DWNminを小さい値に更新し続ける。
 図7は、リニアモード実行中の再加速後にアクセル開度戻し操作された場合のタイムチャートである。図中の実線は戻し操作中に下限値DWNminを更新する場合、破線は更新しない場合を示している。
 無段変速機コントローラ7は、リニアモード実行中に上述した式(1)、(3)により下限値DWNminを制限しつつ目標CVT入力回転数DsrREVを算出する。したがって、タイミングt0でアクセルペダルが踏みこまれて加速を開始すると、初期ダウンシフト回転数LNRdwnREV0を算出する。この初期ダウンシフト回転数LNRdwnREV0が下限値DWNminより低いので、ダウンシフト回転数として下限値DWNminが採用される。
 タイミングt1まではアクセル開度一定のままなので、目標CVT入力回転数DsrREVは一定の傾きで上昇する。
 タイミングt1でアクセル開度戻し操作されると、図3のダウンシフト回転数マップ30から明らかなように、初期ダウンシフト回転数LNRdwnREV0は低下する。また、図3のアップシフトレシオマップ31及び式(1)から明らかなように、リニアモード中の傾きも小さくなる。
 このとき、初期ダウンシフト回転数LNRdwnREV0は下限値DWNminより低いので、ダウンシフト回転数として下限値DWNminが採用されている。したがって、下限値DWNminが更新されなければ、図7の破線で示したように、タイミングt1でアクセルペダルを戻したにもかかわらず目標CVT入力回転数DsrREVは上昇してしまう。これに対して、下限値DWNminを徐々に小さい値に更新すれば、アクセル開度戻し操作に対応して目標CVT入力回転数DsrREVの上昇が止まる。
 下限値DWNminの更新は、少なくとも、徐々に小さな値になるようにすればよい。下限値DWNminが低下すれば、目標CVT入力回転数DsrREVの上昇が止まるからである。
 ただし、図7に示すように、戻し操作開始時における下限値DWNminと初期ダウンシフト回転数LNRdwREV0との差分を保持するように低下させることが、より望ましい。運転者のアクセル操作に対応して変化する初期ダウンシフト回転数LNRdwnREV0と同じ傾きで下限値DWNminが低下することになり、その結果、目標CVT入力回転数DsrREVが、より運転者の意図に沿った変化をすることになるからである。
 このように本実施形態では、加速開始車速を更新した後の目標CVT入力回転数DsrREVに下限値DWNminを設定し、目標CVT入力回転数DsrREVがこれ以下にならないように変速比制御を行う。これにより、加速中にもかかわらず入力軸回転数が低下するという違和感を運転者に与えることを回避できる。
 また、アクセル開度戻し操作中には、下限値DWNminを小さい値に更新するので、戻し操作したにもかかわらず目標CVT入力回転数DsrREVの上昇が止まらないという状況を回避できる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は2011年9月7日に日本国特許庁に出願された特願2011-194774に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (4)

  1.  車速とアクセル開度を含む車両の運転状態を検出する運転状態検出手段と、
     前記運転状態に基づいて無段変速機の変速比を制御する制御手段と、
     前記アクセル開度に基づいて運転者の加速要求の有無を判定する加速要求判定手段と、
     を備え、
     加速中は、前記制御手段が制御する減速比を、アクセル開度が同じであれば加速開始車速が高いほど小さく設定する変速比設定手段と、
    を備える無段変速機の制御装置において、
     前記制御手段は加速中にアクセル開度が増加したと判定したら、前記加速開始車速を当該判定時の車速に更新する無段変速機の制御装置。
  2.  請求項1の無段変速機の制御装置において、
     前記制御手段は、アクセル開度がアクセル開度閾値より大きく、かつアクセル開度変化速度が変化速度閾値より大きい場合に、アクセル開度が増加したと判定する無段変速機の制御装置。
  3.  請求項1または2に記載の無段変速機の制御装置において、
     前記制御手段は、加速開始車速更新後の変速特性に基づく無段変速機入力軸回転数が更新前の変速特性に基づく無段変速機入力軸回転数より低下する場合には、前記更新前の変速特性に基づく無段変速機入力軸回転数を前記更新後の無段変速機入力軸回転数の下限値として設定する無段変速機の制御装置。
  4.  請求項3に記載の無段変速機の制御装置において、
     前記制御手段は、アクセル開度が増加した後にアクセル開度戻し操作開始を検知したら、アクセル開度戻し操作中は前記無段変速機入力軸回転数の下限値を低下させる無段変速機の制御装置。
PCT/JP2012/068491 2011-09-07 2012-07-20 無段変速機の制御装置 WO2013035447A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112014005148-8A BR112014005148B1 (pt) 2011-09-07 2012-07-20 dispositivo de controle para transmissão continuamente variável e método de controle para transmissão continuamente variável
EP12829379.2A EP2754925B1 (en) 2011-09-07 2012-07-20 Control device for continuously variable transmission
US14/343,206 US8996264B2 (en) 2011-09-07 2012-07-20 Control device for continuously variable transmission and control method for continuously variable transmission
MX2014002672A MX344873B (es) 2011-09-07 2012-07-20 Dispositivo de control para la transmisión variable continua y método de control para la transmisión variable continua.
RU2014113405/11A RU2558495C1 (ru) 2011-09-07 2012-07-20 Управляющее устройство для бесступенчато регулируемой трансмиссии
CN201280043231.XA CN103797280B (zh) 2011-09-07 2012-07-20 无级变速机的控制装置及无级变速机的控制方法
JP2013532491A JP5821962B2 (ja) 2011-09-07 2012-07-20 無段変速機の変速制御装置及び変速制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-194774 2011-09-07
JP2011194774 2011-09-07

Publications (1)

Publication Number Publication Date
WO2013035447A1 true WO2013035447A1 (ja) 2013-03-14

Family

ID=47831899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068491 WO2013035447A1 (ja) 2011-09-07 2012-07-20 無段変速機の制御装置

Country Status (9)

Country Link
US (1) US8996264B2 (ja)
EP (1) EP2754925B1 (ja)
JP (1) JP5821962B2 (ja)
CN (1) CN103797280B (ja)
BR (1) BR112014005148B1 (ja)
MX (1) MX344873B (ja)
MY (1) MY170394A (ja)
RU (1) RU2558495C1 (ja)
WO (1) WO2013035447A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045697A1 (ja) * 2012-09-19 2014-03-27 日産自動車株式会社 車両制御装置および車両の制御方法
JP2015224730A (ja) * 2014-05-28 2015-12-14 アイシン・エィ・ダブリュ株式会社 無段変速機の制御装置および制御方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106143784A (zh) * 2015-03-23 2016-11-23 久鼎金属实业股份有限公司 配合行星齿轮组的自行车的无段变速控制方法
CN108351023B (zh) * 2015-10-28 2020-02-14 加特可株式会社 车辆的控制装置及车辆的控制方法
JP6523946B2 (ja) * 2015-12-25 2019-06-05 株式会社クボタ 動力伝達機構
CN113785143B (zh) * 2019-05-20 2022-08-26 日产自动车株式会社 变速控制方法以及变速控制系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002372143A (ja) 2001-06-18 2002-12-26 Nissan Motor Co Ltd 無段変速機の変速制御装置
JP2004183854A (ja) 2002-12-06 2004-07-02 Nissan Motor Co Ltd 無段変速機の変速制御装置
JP2006051842A (ja) * 2004-08-09 2006-02-23 Toyota Motor Corp 無段変速機を備えた車両の制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260753A (ja) * 1984-06-06 1985-12-23 Toyota Motor Corp 車両用無段変速機の制御装置
JP2641004B2 (ja) * 1992-01-21 1997-08-13 本田技研工業株式会社 車両用無段変速機における加速および減速スキップ変速制御方法
DE19834750B4 (de) * 1998-08-01 2014-06-18 Conti Temic Microelectronic Gmbh Verfahren zur Steuerung der Antriebseinheit eines Kraftfahrzeuges mit stufenlosem Automatikgetriebe
JP3546302B2 (ja) * 1999-08-05 2004-07-28 トヨタ自動車株式会社 無段変速機を備えた車両の制御装置
JP2003254421A (ja) * 2002-02-28 2003-09-10 Fuji Heavy Ind Ltd 無段変速機の変速制御装置
DE60335697D1 (de) 2002-11-13 2011-02-24 Nissan Motor Schaltsteuerung für ein stufenloses Getriebe
JP2009101910A (ja) * 2007-10-24 2009-05-14 Toyota Motor Corp 車両の制御装置
JP4488062B2 (ja) * 2007-11-16 2010-06-23 トヨタ自動車株式会社 駆動力源回転数制御装置
JP4613225B2 (ja) * 2008-05-30 2011-01-12 ジヤトコ株式会社 無段変速機の制御装置
US8585551B2 (en) * 2010-01-27 2013-11-19 Toyota Motor Engineering & Manufacturing North America, Inc. Method and system for adaptive continuously variable transmission gear ratio control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002372143A (ja) 2001-06-18 2002-12-26 Nissan Motor Co Ltd 無段変速機の変速制御装置
JP2004183854A (ja) 2002-12-06 2004-07-02 Nissan Motor Co Ltd 無段変速機の変速制御装置
JP2006051842A (ja) * 2004-08-09 2006-02-23 Toyota Motor Corp 無段変速機を備えた車両の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2754925A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045697A1 (ja) * 2012-09-19 2014-03-27 日産自動車株式会社 車両制御装置および車両の制御方法
US9376113B2 (en) 2012-09-19 2016-06-28 Nissan Motor Co., Ltd. Vehicle control device and vehicle control method
JPWO2014045697A1 (ja) * 2012-09-19 2016-08-18 日産自動車株式会社 車両制御装置および車両の制御方法
JP2015224730A (ja) * 2014-05-28 2015-12-14 アイシン・エィ・ダブリュ株式会社 無段変速機の制御装置および制御方法

Also Published As

Publication number Publication date
EP2754925A4 (en) 2016-11-16
MX344873B (es) 2017-01-11
BR112014005148A2 (pt) 2017-04-18
CN103797280B (zh) 2016-01-20
JPWO2013035447A1 (ja) 2015-03-23
MX2014002672A (es) 2014-04-14
EP2754925A1 (en) 2014-07-16
US8996264B2 (en) 2015-03-31
EP2754925B1 (en) 2022-03-30
JP5821962B2 (ja) 2015-11-24
BR112014005148B1 (pt) 2021-01-12
MY170394A (en) 2019-07-27
US20140214292A1 (en) 2014-07-31
RU2558495C1 (ru) 2015-08-10
CN103797280A (zh) 2014-05-14

Similar Documents

Publication Publication Date Title
JP4793331B2 (ja) 車両変速時の制御装置
JP5388303B2 (ja) 無段変速機の変速制御装置
CN108725421B (zh) 车辆的驱动力控制装置
JP5821962B2 (ja) 無段変速機の変速制御装置及び変速制御方法
JP2007064137A (ja) クルーズ制御装置
JP6274148B2 (ja) 車両の制御装置
JP2008239130A (ja) 車両の制御装置
JP3666391B2 (ja) 駆動力制御装置
JP2012187965A (ja) 運転支援装置
JP5967207B2 (ja) 車両制御装置および車両の制御方法
JP5999188B2 (ja) 車両制御装置および車両の制御方法
JP2006242266A (ja) 車輌用の変速制御装置
JP5082943B2 (ja) 車両用無段変速機の変速制御装置
JP5626471B2 (ja) 無段変速機の変速制御装置及び変速制御方法
JP2004183854A (ja) 無段変速機の変速制御装置
JP5071335B2 (ja) 駆動力制御装置
JP2004162799A (ja) 無段変速機の変速制御装置
JP3147741B2 (ja) 無段変速機の変速制御装置
JP2008038653A (ja) 車両の制御装置
JP2016132418A (ja) 車両の制御装置
JP2008215502A (ja) 自動変速機の変速速度制御装置
JP2017115935A (ja) 車両の変速制御装置
JP4340434B2 (ja) 無段変速機の変速制御装置
JP2015197203A (ja) 無段変速機の制御装置
JP6187402B2 (ja) 車両駆動ユニットの制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829379

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14343206

Country of ref document: US

Ref document number: MX/A/2014/002672

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2013532491

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014113405

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014005148

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014005148

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140306