WO2013035329A1 - 有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2013035329A1
WO2013035329A1 PCT/JP2012/005652 JP2012005652W WO2013035329A1 WO 2013035329 A1 WO2013035329 A1 WO 2013035329A1 JP 2012005652 W JP2012005652 W JP 2012005652W WO 2013035329 A1 WO2013035329 A1 WO 2013035329A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
group
unsubstituted
carbon atoms
ring
Prior art date
Application number
PCT/JP2012/005652
Other languages
English (en)
French (fr)
Inventor
加藤 朋希
伸浩 藪ノ内
貴康 佐土
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to KR1020147005945A priority Critical patent/KR102059328B1/ko
Priority to JP2013532453A priority patent/JP6212391B2/ja
Priority to US14/343,841 priority patent/US20140217393A1/en
Publication of WO2013035329A1 publication Critical patent/WO2013035329A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/007Squaraine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1096Heterocyclic compounds characterised by ligands containing other heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/27Combination of fluorescent and phosphorescent emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • H10K50/131OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit with spacer layers between the electroluminescent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom

Definitions

  • the present invention relates to an organic electroluminescence element.
  • Organic EL devices include a fluorescent type and a phosphorescent type, and an optimum device design is being studied according to each light emission mechanism.
  • phosphorescent organic EL elements it is known from their light emission characteristics that high-performance elements cannot be obtained by simple diversion of fluorescent element technology. The reason is generally considered as follows.
  • the energy gap of the compound used for the light emitting layer must be large. This is because the value of the energy gap (hereinafter also referred to as singlet energy) of a compound usually refers to the triplet energy of the compound (in the present invention, the energy difference between the lowest excited triplet state and the ground state). This is because it is larger than the value of).
  • a host material having a triplet energy larger than the triplet energy of the phosphorescent dopant material must be used for the light emitting layer. Don't be.
  • an electron transport layer and a hole transport layer adjacent to the light emitting layer are provided, and a compound having a triplet energy higher than that of the phosphorescent dopant material must be used for the electron transport layer and the hole transport layer.
  • a compound having a larger energy gap than the compound used for the fluorescent organic EL element is used for the phosphorescent organic EL element.
  • the drive voltage of the entire element increases.
  • hydrocarbon compounds having high oxidation resistance and reduction resistance useful for fluorescent elements have a large energy gap due to the large spread of ⁇ electron clouds. Therefore, in a phosphorescent organic EL element, it is difficult to select such a hydrocarbon compound, and an organic compound containing a heteroatom such as oxygen or nitrogen is selected. As a result, the phosphorescent organic EL element is There is a problem that the lifetime is shorter than that of a fluorescent organic EL element.
  • the exciton relaxation rate of the triplet exciton of the phosphorescent dopant material is much longer than that of the singlet exciton also greatly affects the device performance. That is, since light emitted from singlet excitons has a high relaxation rate that leads to light emission, the diffusion of excitons to the peripheral layers of the light-emitting layer (for example, a hole transport layer or an electron transport layer) hardly occurs and is efficient. Light emission is expected. On the other hand, light emission from triplet excitons is spin-forbidden and has a slow relaxation rate, so that excitons are likely to diffuse to the peripheral layer, and thermal energy deactivation occurs from other than specific phosphorescent compounds. End up.
  • control of the recombination region of electrons and holes is more important than the fluorescent organic EL element.
  • material selection and element design different from those of fluorescent organic EL elements are required.
  • Patent Document 1 discloses an organic EL device in which a phosphorescent light emitting layer using carbazole biphenyl and a blocking layer made of bactoproine or the like are inserted between an electron transport layer (Alq).
  • Alq electron transport layer
  • Patent Document 2 describes an element using a carbazole derivative for a hole transport layer, a light emitting layer, and an electron transport layer.
  • this element two hole transport layers are provided, and a carbazole derivative having an electron block and electron resistance is used for the hole transport layer on the light emitting layer side.
  • Patent Document 2 is a technique that focuses on the interface between the hole transport region and the light emitting layer.
  • An object of the present invention is to provide an organic EL element having a long lifetime and high luminous efficiency.
  • the present inventors have a long life by using a combination of a first organic thin film layer containing an aromatic heterocyclic derivative A and a second organic thin film layer containing an aromatic heterocyclic derivative B, which will be described later, and The inventors have found that an organic EL device with high luminous efficiency can be obtained, and completed the present invention. According to the present invention, the following organic EL elements are provided. 1.
  • a first organic thin film layer and a second organic thin film layer are provided in this order from the anode side between the opposing anode and cathode, and the first organic thin film layer is represented by the following formula (1-1):
  • An organic electroluminescence device comprising an aromatic heterocyclic derivative A and a phosphorescent material, wherein the second organic thin film layer comprises an aromatic heterocyclic derivative B represented by the following formula (2-1).
  • W 1 and W 2 each independently represents a single bond, CR 1 R 2 or SiR 1 R 2 .
  • R 1 and R 2 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, a substituted or unsubstituted carbon number A haloalkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted ring atom having 5 to 30 ring atoms; Represents a heteroaryl group.
  • L 1 and L 2 each independently represents a single bond, a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroarylene group having 5 to 30 ring atoms.
  • X 1 to X 16 one of X 5 to X 8 and one of X 9 to X 12 represent carbon atoms bonded to each other.
  • the other X 1 to X 16 are a carbon atom or a nitrogen atom bonded to the following R 3 .
  • a ring containing the adjacent carbon atoms may be formed without bonding to R 3 .
  • R 3 each independently represents a hydrogen atom, a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, substituted or unsubstituted Of 1 to 20 carbon atoms, substituted or unsubstituted haloalkyl groups having 1 to 20 carbon atoms, substituted or unsubstituted haloalkoxy groups having 1 to 20 carbon atoms, substituted or unsubstituted silyl groups, substituted or unsubstituted A substituted aralkyl group having 7 to 30 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms.
  • P 1 and P 2 each independently represents a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms.
  • at least one of P 1 and P 2 is a group represented by the following formula (1-a), (1-b), or (1-c).
  • Z 1 to Z 8 are each independently a carbon atom bonded to L 1 or L 2 , a carbon atom bonded to R 4 below, or a nitrogen atom.
  • a ring containing the adjacent carbon atoms may be formed without bonding to R 4 .
  • Each R 4 independently represents a hydrogen atom, a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, a substituted or unsubstituted group;
  • Ring A represents a substituted or unsubstituted aromatic ring that is condensed with an adjacent ring.
  • Y 1 to Y 4 are each independently a carbon atom or a nitrogen atom bonded to the following R 5 . However, when two adjacent carbon atoms are carbon atoms, a ring containing the adjacent carbon atoms may be formed without bonding to R 5 .
  • R 5 each independently represents a hydrogen atom, a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, substituted or unsubstituted Of 1 to 20 carbon atoms, substituted or unsubstituted haloalkyl groups having 1 to 20 carbon atoms, substituted or unsubstituted haloalkoxy groups having 1 to 20 carbon atoms, substituted or unsubstituted silyl groups, substituted or unsubstituted A substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms (provided that Not an unsubstit
  • L 3 represents a single bond, a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroarylene group having 5 to 30 ring atoms.
  • Q 1 represents the above formula (1-a), (1-b), (1-c), the following formula (2-c), (2-d), (2-e), or (2-f) It is group represented by these.
  • [In the formulas (2-c), (2-d), (2-e), (2-f) Z 9 to Z 12 are each independently a carbon atom bonded to L 3 , a carbon atom bonded to R 6 below, or a nitrogen atom.
  • R 6 and K 1 to K 4 each independently represent a hydrogen atom, a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms.
  • R 7 to R 9 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, or a substituted or unsubstituted carbon number.
  • Y 1 to Y 8 are each independently a carbon atom or a nitrogen atom bonded to the following R 10 . However, when two adjacent carbon atoms are carbon atoms, a ring containing the adjacent carbon atoms may be formed without bonding to R 10 .
  • R 10 is independently hydrogen atom, fluorine atom, cyano group, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, substituted or unsubstituted.
  • substituted or unsubstituted haloalkyl groups having 1 to 20 carbon atoms substituted or unsubstituted haloalkoxy groups having 1 to 20 carbon atoms, substituted or unsubstituted silyl groups, substituted or unsubstituted
  • substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms (provided that Not an unsubstituted carbazolyl group).
  • L 3 represents a single bond, a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroarylene group having 5 to 30 ring atoms.
  • Q 1 is represented by the formula (1-a), (1-b), (1-c), (2-c), (2-d), (2-e), or (2-f).
  • Group. 3. The organic electroluminescence device according to 1 or 2, wherein the aromatic heterocyclic derivative A is represented by the following formula (1-2). Wherein, X 1 ⁇ X 16, L 1, L 2, P 1 and P 2, respectively, X 1 ⁇ X 16, L 1 in the formula (1-1), L 2, P 1 and P 2 And represents the same group. ] 4). 4.
  • the organic electroluminescence device according to any one of 1 to 3, wherein the aromatic heterocyclic derivative A is represented by the following formula (1-3). Wherein, X 1 ⁇ X 16, L 1, L 2, P 1 and P 2, respectively, X 1 ⁇ X 16, L 1 in the formula (1-1), L 2, P 1 and P 2 And represents the same group. ] 5. 4. The organic electroluminescence device according to any one of 1 to 3, wherein the aromatic heterocyclic derivative A is represented by the following formula (1-4) or (1-5). Wherein, X 1 ⁇ X 16, L 1, L 2, P 1 and P 2, respectively, X 1 ⁇ X 16, L 1 in the formula (1-1), L 2, P 1 and P 2 And represents the same group. ] 6). 6.
  • the organic electroluminescence device according to any one of 1 to 5, wherein the aromatic heterocyclic derivative B is represented by the following formula (3-1). [Wherein L 3 , Y 1 to Y 8 and Q 1 represent the same groups as L 3 , Y 1 to Y 4 and Q 1 in the formula (2-1), respectively. ] 7). 6. The organic electroluminescence device according to any one of 2 to 5, wherein the aromatic heterocyclic derivative B is represented by the following formula (4-1) or (4-2). [In the formula (4-1) or (4-2), L 3, Y 1 ⁇ Y 8 , and Q 1 each represent L 3, Y 1 ⁇ Y 8 , and Q 1 and similar groups of the formula (2-3).
  • K 5 is a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, a substituted or unsubstituted carbon group having 1 to 20 carbon atoms.
  • a represents an integer of 0 to 2.
  • W 31 represents CR 8 R 9 , SiR 8 R 9 , an oxygen atom, or a sulfur atom.
  • W 32 represents NR 7 , CR 8 R 9 , SiR 8 R 9 , an oxygen atom, or a sulfur atom.
  • R 7 to R 9 each represents a group similar to R 7 to R 9 in W 3 of the formula (2-b). ] 8).
  • the organic electroluminescence device according to any one of 2 to 5, wherein the aromatic heterocyclic derivative B is represented by the following formulas (5-1) to (5-3). [In the formulas (5-1) to (5-3), W 3, L 3, Y 1 ⁇ Y 8, and Q 1, respectively, represent the W 3, L 3, Y 1 ⁇ Y 8, and Q 1 and similar groups of the formula (2-3).
  • K 5 is a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, a substituted or unsubstituted carbon group having 1 to 20 carbon atoms.
  • a represents an integer of 0 to 2.
  • the organic electroluminescence device according to any one of 2 to 5, wherein the aromatic heterocyclic derivative B is represented by the following formula (6-1).
  • L 3, Y 1 ⁇ Y 8 , and Q 1 each represent L 3, Y 1 ⁇ Y 8 , and Q 1 and similar groups of the formula (2-3).
  • K 5 is a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, a substituted or unsubstituted carbon group having 1 to 20 carbon atoms.
  • a represents an integer of 0 to 2.
  • W 33 represents CR 8 R 9 , SiR 8 R 9 , an oxygen atom, or a sulfur atom.
  • R 7 to R 9 each represents a group similar to R 7 to R 9 in W 3 of the formula (2-b).
  • L 3, Y 1 ⁇ Y 8 , and Q 1 each represent L 3, Y 1 ⁇ Y 8 , and Q 1 and similar groups of the formula (2-3).
  • W 34 represents CR 8 R 9 or SiR 8 R 9 .
  • R 8 and R 9 each represent the same group as R 8 and R 9 in W 3 of the formula (2-b).
  • the organic electroluminescence device according to any one of 1 to 10, wherein a layer containing a compound represented by the following formula (10) is bonded to the anode.
  • R 11 to R 16 are each independently a cyano group, —CONH 2 , a carboxy group, or —COOR 17 (R 17 is an alkyl group having 1 to 20 carbon atoms), or R 11 and R 12 , R 13 and R 14 , or R 15 and R 16 are bonded together to form —CO—O—CO—.
  • 12 The organic electroluminescence device according to any one of 1 to 11, wherein the phosphorescent material is an orthometalated complex of iridium (Ir), osmium (Os), or platinum (Pt) metal. 13.
  • a first element which is an organic electroluminescence element according to any one of 1 to 12 above; Having an organic electroluminescence element (second element) that emits fluorescence in parallel on the substrate; An organic electroluminescence light-emitting device, wherein at least one of the layers forming the hole transport band and the electron transport band of the first element and the second element is a common layer.
  • 14 A nitrogen-containing aromatic heterocyclic derivative represented by the formula (11-1) or (11-2). [In the formula (11-1) or (11-1), Ring B ′ represents a ring represented by the formula (11-a) fused with an adjacent ring, and Ring C ′ represents a ring represented by the formula (11-b) fused with an adjacent ring.
  • W 4 represents NR 21 , CR 22 R 23 , SiR 22 R 23 , or an oxygen atom.
  • R 21 to R 23 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, or a substituted or unsubstituted carbon number.
  • Y 11 to Y 18 are each independently a carbon atom or a nitrogen atom bonded to the following R 24 . However, when two adjacent carbon atoms are carbon atoms, a ring containing the adjacent carbon atoms may be formed without bonding to R 24 .
  • R 24 each independently represents a hydrogen atom, a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, substituted or unsubstituted Of 1 to 20 carbon atoms, substituted or unsubstituted haloalkyl groups having 1 to 20 carbon atoms, substituted or unsubstituted haloalkoxy groups having 1 to 20 carbon atoms, substituted or unsubstituted silyl groups, substituted or unsubstituted A substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms (provided that Not an unsubstit
  • L 11 represents a single bond, a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroarylene group having 5 to 30 ring atoms.
  • Q 11 is a group represented by the following formula (11-c), (11-d), (11-e), or (11-f). [In the formulas (11-c), (11-d), (11-e), (11-f), Z 21 to Z 24 are each independently a carbon atom bonded to L 11 , a carbon atom bonded to R 25 below, or a nitrogen atom.
  • R 25 and K 11 to K 14 each independently represent a hydrogen atom, a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms.
  • W 41 represents CR 22 R 23 , SiR 22 R 23 , or an oxygen atom.
  • W 42 is, NR 21, CR 22 R 23 , SiR 22 R 23, or represents an oxygen atom.
  • R 21 to R 23 each represents a group similar to R 21 to R 23 in the formula (11-b).
  • K 15 is a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, a substituted or unsubstituted carbon group having 1 to 20 carbon atoms.
  • a represents an integer of 0 to 2. ] 16.
  • K 15 is a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, a substituted or unsubstituted carbon group having 1 to 20 carbon atoms.
  • a represents an integer of 0 to 2. ] 17. 14.
  • W 43 represents CR 22 R 23 , SiR 22 R 23 , or an oxygen atom.
  • R 22 and R 23 represent the same groups as R 22 and R 23 in the formula (11-b), respectively.
  • K 15 is a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, a substituted or unsubstituted carbon group having 1 to 20 carbon atoms.
  • a represents an integer of 0 to 2. ] 18. 15.
  • W 44 represents CR 22 R 23 or SiR 22 R 23 .
  • R 22 and R 23 represent the same groups as R 22 and R 23 in the formula (11-b), respectively.
  • Q 12 represents a group represented by the formula (11-c), (11-d), or (11-e).
  • an organic EL element having a long lifetime and high luminous efficiency can be provided.
  • FIG. 1 is a schematic cross-sectional view showing an example of an organic EL light emitting device using an organic EL element 1.
  • FIG. It is the schematic which shows the layer structure of the organic EL element of other embodiment of this invention. It is the schematic which shows the layer structure of the organic EL element of other embodiment of this invention.
  • the organic EL device of the present invention includes a first organic thin film layer and a second organic thin film layer in this order from the anode side between the opposing anode and cathode.
  • the first organic thin film layer includes an aromatic heterocyclic derivative A represented by the following formula (1-1) and a phosphorescent material, and the second organic thin film layer is represented by the following formula (2-1).
  • the aromatic heterocyclic derivative B is used.
  • the lifetime of a organic EL element and luminous efficiency can be improved by forming combining a 1st organic thin film layer and a 2nd organic thin film layer.
  • the first organic thin film layer can function as a light emitting layer that emits phosphorescent light.
  • the aromatic heterocyclic derivative A which is the main component (host material) of the first organic thin film layer, has a structure in which two nitrogen-containing aromatic heterocycles are directly bonded by a carbon-carbon bond. By introducing a nitrogen-containing heterocyclic structural group such as formula (1-a), (1-b) or (1-c) described later into this structure, the hole transportability is higher than that of a normal carbazole derivative.
  • the compound is extremely high and has a particularly low ionization potential of 5.7 eV or less.
  • the two bridged arylamine skeletons are directly bonded to each other through a carbon-carbon bond, whereby the intramolecular electron density is increased and the amine property is greatly increased. As a result, the ionization potential is significantly reduced.
  • a normal bridged arylamine skeleton it has a very high hole injection / transport property.
  • a nitrogen-containing heterocyclic group such as formula (1-a), (1-b) or (1-c) described later is bonded, so that electron injection / transport properties are also achieved. At the same time, it functions as a host compound.
  • the aromatic heterocyclic derivative B constituting the second organic thin film layer is a compound having a large triplet energy (T1) of 2.50 eV or more and an ionization potential of 5.8 eV or more.
  • the aromatic heterocyclic derivative B has a structure in which an aromatic ring is further condensed to a carbazole skeleton or an indole skeleton, and in this skeleton, the intramolecular electron density is remarkably increased like the aromatic heterocyclic derivative A. Therefore, the ionization potential does not decrease. Therefore, by laminating the aromatic heterocyclic derivative A and the aromatic heterocyclic derivative B, a hole injection barrier can be created at the interface.
  • the triplet energy is 2.50 eV or more, diffusion of triplet energy from the first organic thin film layer can be prevented. That is, it has a function of an exciton barrier layer.
  • the aromatic heterocyclic derivative B has bipolar properties and high hole resistance.
  • the aromatic heterocyclic derivative B since the aromatic heterocyclic derivative B has a high ability to draw electrons from the cathode side layer and is excellent in electron transport properties, it also functions as an electron transport layer. Therefore, since electrons are efficiently supplied to the first organic thin film layer, when the first organic thin film layer is a light emitting layer, recombination of holes and electrons is promoted, and the light emission efficiency is improved.
  • W 1 and W 2 each independently represent a single bond, CR 1 R 2 or SiR 1 R 2 . Compared with a single bond, when W 1 and W 2 are CR 1 R 2 or SiR 1 R 2 , the amine property of the compound is increased and the hole transport performance is improved.
  • R 1 and R 2 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, a substituted or unsubstituted carbon number A haloalkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted ring atom having 5 to 30 ring atoms; Represents a heteroaryl group.
  • L 1 and L 2 each independently represents a single bond, a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroarylene group having 5 to 30 ring atoms.
  • X 1 to X 16 one of X 5 to X 8 and one of X 9 to X 12 represent carbon atoms bonded to each other.
  • the other X 1 to X 16 are a carbon atom or a nitrogen atom bonded to the following R 3 .
  • a ring containing the adjacent carbon atoms may be formed without bonding to R 3 .
  • R 3 each independently represents a hydrogen atom, a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, substituted or unsubstituted Of 1 to 20 carbon atoms, substituted or unsubstituted haloalkyl groups having 1 to 20 carbon atoms, substituted or unsubstituted haloalkoxy groups having 1 to 20 carbon atoms, substituted or unsubstituted silyl groups, substituted or unsubstituted A substituted aralkyl group having 7 to 30 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms.
  • P 1 and P 2 each independently represents a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms. However, at least one of P 1 and P 2 is a group represented by the following formula (1-a), (1-b), or (1-c).
  • Z 1 to Z 8 are each independently a carbon atom bonded to L 1 or L 2 , or a carbon atom bonded to R 4 below. Or it is a nitrogen atom. However, when two adjacent carbon atoms are carbon atoms, a ring containing the adjacent carbon atoms may be formed without bonding to R 4 .
  • Each R 4 independently represents a hydrogen atom, a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, a substituted or unsubstituted group;
  • a compound represented by the following formula (1-2) is preferable among the above formulas (1-1) from the viewpoint of resistance of the compound.
  • ring A represents a substituted or unsubstituted aromatic ring that is condensed with an adjacent ring.
  • the aromatic ring include a ring having 6 to 30 ring carbon atoms or a heterocyclic ring having 5 to 30 ring atoms.
  • Y 1 to Y 4 are each independently a carbon atom or a nitrogen atom bonded to the following R 5 . However, when two adjacent carbon atoms are carbon atoms, a ring containing the adjacent carbon atoms may be formed without bonding to R 5 .
  • R 5 each independently represents a hydrogen atom, a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, substituted or unsubstituted Of 1 to 20 carbon atoms, substituted or unsubstituted haloalkyl groups having 1 to 20 carbon atoms, substituted or unsubstituted haloalkoxy groups having 1 to 20 carbon atoms, substituted or unsubstituted silyl groups, substituted or unsubstituted A substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms (provided that Not an unsubstit
  • Q 1 is a group represented by the formula (1-a), (1-b) or (1-c) in the above formula (1-1), or the following formula (2-c), A group represented by (2-d), (2-e) or (2-f).
  • Z 9 to Z 12 are each independently a carbon atom bonded to L 3 and the following R 6 Carbon atom or nitrogen atom. However, when two adjacent carbon atoms are carbon atoms, a ring containing the adjacent carbon atoms may be formed without bonding to R 6 .
  • R 6 , K 1 to K 4 are a hydrogen atom, a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, substituted or unsubstituted Unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted haloalkyl group having 1 to 20 carbon atoms, substituted or unsubstituted haloalkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted silyl group, substituted Alternatively, it is an unsubstituted aralkyl group having 7 to 30 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms
  • ring B represents a ring represented by formula (2-a) that is condensed with an adjacent ring
  • ring C is a formula (2-b) that is condensed with an adjacent ring.
  • W 3 represents NR 7 , CR 8 R 9 , SiR 8 R 9 , an oxygen atom, or a sulfur atom.
  • R 7 to R 9 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, or a substituted or unsubstituted carbon number.
  • Y 1 to Y 8 are each independently a carbon atom or a nitrogen atom bonded to the following R 10 . However, when two adjacent carbon atoms are carbon atoms, a ring containing the adjacent carbon atoms may be formed without bonding to R 10 .
  • R 10 is independently hydrogen atom, fluorine atom, cyano group, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, substituted or unsubstituted.
  • substituted or unsubstituted haloalkyl groups having 1 to 20 carbon atoms substituted or unsubstituted haloalkoxy groups having 1 to 20 carbon atoms, substituted or unsubstituted silyl groups, substituted or unsubstituted
  • substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms (provided that Not an unsubstituted carbazolyl group).
  • L 3 represents a single bond, a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroarylene group having 5 to 30 ring atoms.
  • Q 1 is represented by the formula (1-a), (1-b), (1-c), (2-c), (2-d), (2-e), or (2-f) described above. The group represented.
  • aromatic heterocyclic derivative B the following formulas (3-1), (4-1), (4-2), (5-1), (5-2), (5-3), (6 The compound represented by -1) or (7-1) is preferred.
  • L 3 , Y 1 to Y 8 and Q 1 represent the same groups as L 3 , Y 1 to Y 4 and Q 1 in the formula (2-1), respectively.
  • L 3, Y 1 ⁇ Y 8 , and Q 1 each represent L 3, Y 1 ⁇ Y 8 , and Q 1 and similar groups of the formulas (2-3) and formula (2-a).
  • K 5 is a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, a substituted or unsubstituted carbon group having 1 to 20 carbon atoms.
  • a represents an integer of 0 to 2.
  • W 31 represents CR 8 R 9 , SiR 8 R 9 , an oxygen atom, or a sulfur atom.
  • W 32 represents NR 7 , CR 8 R 9 , SiR 8 R 9 , an oxygen atom, or a sulfur atom.
  • R 7 to R 9 each represents the same group as R 7 to R 9 in W 3 of
  • K 5 is a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, a substituted or unsubstituted carbon group having 1 to 20 carbon atoms.
  • a represents an integer of 0 to 2.
  • L 3, Y 1 ⁇ Y 8 , and Q 1 each represent L 3, Y 1 ⁇ Y 8 , and Q 1 and similar groups of the formula (2-3).
  • K 5 is a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, a substituted or unsubstituted carbon group having 1 to 20 carbon atoms.
  • a represents an integer of 0 to 2.
  • W 33 represents CR 8 R 9 , SiR 8 R 9 , an oxygen atom, or a sulfur atom.
  • R 7 to R 9 each represents a group similar to R 7 to R 9 in W 3 of the formula (2-b). ]
  • L 3 , Y 1 to Y 8 , and Q 1 represent the same groups as L 3 , Y 1 to Y 8 , and Q 1 in Formula (2-3), respectively.
  • W 34 represents CR 8 R 9 or SiR 8 R 9 .
  • R 8 and R 9 each represent the same group as R 8 and R 9 in W 3 of the formula (2-b).
  • the nitrogen-containing aromatic heterocyclic derivatives represented by the following formula (11-1) or (11-2) are novel substances. is there.
  • Ring B ′ represents a ring represented by the formula (11-a) fused with an adjacent ring
  • Ring C ′ represents a ring represented by the formula (11-b) fused with an adjacent ring
  • W 4 represents NR 21 , CR 22 R 23 , SiR 22 R 23 , or an oxygen atom.
  • R 21 to R 23 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, or a substituted or unsubstituted carbon number.
  • Y 11 to Y 18 are each independently a carbon atom or a nitrogen atom bonded to the following R 24 . However, when two adjacent carbon atoms are carbon atoms, a ring containing the adjacent carbon atoms may be formed without bonding to R 24 .
  • R 24 each independently represents a hydrogen atom, a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, substituted or unsubstituted Of 1 to 20 carbon atoms, substituted or unsubstituted haloalkyl groups having 1 to 20 carbon atoms, substituted or unsubstituted haloalkoxy groups having 1 to 20 carbon atoms, substituted or unsubstituted silyl groups, substituted or unsubstituted A substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms (provided that Not an unsubstit
  • L 11 represents a single bond, a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroarylene group having 5 to 30 ring atoms.
  • Q 11 is a group represented by the following formula (11-c), (11-d), (11-e), or (11-f). [In the formulas (11-c), (11-d), (11-e), (11-f), Z 21 to Z 24 are each independently a carbon atom bonded to L 11 , a carbon atom bonded to R 25 below, or a nitrogen atom.
  • R 25 and K 11 to K 14 each independently represent a hydrogen atom, a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms.
  • substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms substituted or unsubstituted haloalkyl group having 1 to 20 carbon atoms, substituted or unsubstituted haloalkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted Silyl group, substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms, substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or substituted or unsubstituted heteroaryl having 5 to 30 ring atoms It is a group. ]
  • the nitrogen-containing aromatic heterocyclic derivatives represented by the following formula (11-1) or (11-2) are preferred.
  • the following formulas (12-1), (12-2), (13-1) to (13) -3), (14-1) or those represented by formula (15-1) are preferred.
  • the formula (12-1) or (12-2) L 11, Y 11 ⁇ Y 18 , and Q 11, respectively, the formula (11-1) represents the L 11, Y 11 ⁇ Y 18 , and Q 11 and similar groups.
  • W 41 represents CR 22 R 23 , SiR 22 R 23 , or an oxygen atom.
  • W 42 is, NR 21, CR 22 R 23 , SiR 22 R 23, or represents an oxygen atom.
  • R 21 to R 23 each represents a group similar to R 21 to R 23 in the formula (11-b).
  • K 15 is a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, a substituted or unsubstituted carbon group having 1 to 20 carbon atoms.
  • a represents an integer of 0 to 2.
  • K 15 is a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, a substituted or unsubstituted carbon group having 1 to 20 carbon atoms.
  • a represents an integer of 0 to 2.
  • the formula (11-1) represents the L 11, Y 11 ⁇ Y 18 , and Q 11 and similar groups.
  • W 43 represents CR 22 R 23 , SiR 22 R 23 , or an oxygen atom.
  • R 22 and R 23 represent the same groups as R 22 and R 23 in the formula (11-b), respectively.
  • K 15 is a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, a substituted or unsubstituted carbon group having 1 to 20 carbon atoms.
  • a represents an integer of 0 to 2.
  • L 11 and Y 11 to Y 18 represent the same groups as L 11 and Y 11 to Y 18 in the formula (11-1), respectively.
  • W 44 represents CR 22 R 23 or SiR 22 R 23 .
  • R 22 and R 23 represent the same groups as R 22 and R 23 in the formula (11-b), respectively.
  • Q 12 represents a group represented by the formula (11-c), (11-d), or (11-e).
  • the above nitrogen-containing aromatic heterocyclic derivative is suitable as a material for an organic electroluminescence device, particularly as an electron transport material.
  • the “ring-forming carbon” means a carbon atom constituting a saturated ring, an unsaturated ring, or an aromatic ring
  • the “ring-forming atom” includes a hetero ring (including a saturated ring, an unsaturated ring, and an aromatic ring). ) Is a carbon atom and a hetero atom.
  • alkyl group having 1 to 20 carbon atoms examples include linear or branched alkyl groups, and specifically include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec- Examples include butyl group, tert-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group and the like, preferably methyl group, ethyl group, propyl group, isopropyl group, n-butyl Group, isobutyl group, sec-butyl group, and tert-butyl group, preferably methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, and t-butyl group.
  • Examples of the cycloalkyl group having 3 to 20 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a 1-adamantyl group, a 2-adamantyl group, a 1-norbornyl group, and a 2-norbornyl group. Is a cyclopentyl group or a cyclohexyl group.
  • haloalkyl group having 1 to 20 carbon atoms one or more halogens (including a fluorine atom, a chlorine atom and a bromine atom, preferably a fluorine atom) are substituted for the above-described alkyl group having 1 to 20 carbon atoms.
  • Group. Specific examples include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a fluoroethyl group, a trifluoromethylmethyl group, and a pentafluoroethyl group.
  • they are a trifluoromethyl group and a pentafluoroethyl group.
  • the aryl group having 6 to 30 ring carbon atoms is preferably an aryl group having 6 to 20 ring carbon atoms, and more preferably an aryl group having 6 to 12 ring carbon atoms.
  • Specific examples of the aryl group include phenyl, naphthyl, anthryl, phenanthryl, naphthacenyl, pyrenyl, chrysenyl, benzo [c] phenanthryl, benzo [g] chrysenyl, triphenylenyl, fluorenyl, , 9-dimethylfluorenyl group, benzofluorenyl group, dibenzofluorenyl group, biphenylyl group, terphenyl group, fluoranthenyl group, etc., preferably phenyl group, biphenyl group, tolyl group, xylyl Group, a naphthyl group.
  • the aralkyl group having 7 to 30 carbon atoms is represented by —Y—Z.
  • Y include alkylene examples corresponding to the above alkyl examples, and examples of Z include the above aryl examples.
  • the aryl part of the aralkyl group preferably has 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms.
  • the alkyl moiety preferably has 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms.
  • the heteroaryl group having 5 to 30 ring atoms is preferably a heteroaryl group having 5 to 20 ring atoms, and more preferably a heteroaryl group having 5 to 14 ring atoms.
  • Specific examples of heteroaryl groups include pyrrolyl, pyrazinyl, pyridinyl, indolyl, isoindolyl, imidazolyl, furyl, benzofuranyl, isobenzofuranyl, dibenzofuranyl, dibenzothiophenyl, quinolyl Group, isoquinolyl group, quinoxalinyl group, carbazolyl group, phenanthridinyl group, acridinyl group, phenanthrolinyl group, phenazinyl group, phenothiazinyl group, phenoxazinyl group, oxazolyl group, oxadiazolyl group, furazanyl group, thienyl group, benzothio
  • An arylene group having 6 to 30 ring carbon atoms (preferably 6 to 20 and more preferably 6 to 12) and a heteroarylene group having 5 to 30 ring atoms (preferably 5 to 20 and more preferably 5 to 14)
  • Specific examples of these include divalent groups corresponding to the specific examples of the aryl group having 6 to 30 ring carbon atoms and the heteroaryl group having 5 to 30 ring atoms.
  • a divalent group such as phenyl group, fluorenyl group, 9,9-dimethylfluorenyl group, naphthyl group, phenanthryl group, biphenylyl group, terphenylyl group, dibenzofluorenyl group, pyridinyl group, isoquinolyl group, etc. Is mentioned.
  • the ring having 6 to 30 ring carbon atoms or the heterocyclic ring having 5 to 30 ring atoms represented by the ring A in formula (2-1) is the aryl having 6 to 30 ring carbon atoms described above. Examples thereof include rings corresponding to specific examples of the group and the heteroaryl group having 5 to 30 ring atoms.
  • the alkoxy group having 1 to 20 carbon atoms is represented as —OY, and examples of Y include the above alkyl examples.
  • the alkoxy group is, for example, a methoxy group or an ethoxy group.
  • Examples of the haloalkoxy group having 1 to 20 carbon atoms include groups in which one or more halogens (including a fluorine atom, a chlorine atom and a bromine atom are preferable, and a fluorine atom is preferable) are substituted on the above alkoxy group. Preferably, it is a trifluoromethoxy group.
  • the substituted or unsubstituted silyl group includes a silyl group, an alkylsilyl group having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms), 6 to 30 carbon atoms (preferably 6 to 20 carbon atoms, more preferably carbon atoms). And arylsilyl groups of formula 6 to 10).
  • Specific examples of the alkylsilyl group include a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, and a propyldimethylsilyl group.
  • arylsilyl group examples include a triphenylsilyl group, a phenyldimethylsilyl group, a t-butyldiphenylsilyl group, a tolylsilylsilyl group, a trixylsilyl group, a trinaphthylsilyl group, and the like.
  • the ring when the adjacent carbon atom is not bonded to R and forms a ring containing the adjacent carbon atom, the ring includes an aromatic ring such as a benzene ring, a cycloalkyl ring such as cyclohexane, cyclohexene and the like. And cycloalkene.
  • the aryloxy group is represented by —OZ, and examples of Z include the above aryl groups.
  • the aryloxy group is, for example, a phenoxy group.
  • “unsubstituted” in “substituted or unsubstituted...” Means that a hydrogen atom is substituted with a substituent.
  • the hydrogen atom includes isotopes having different numbers of neutrons, that is, light hydrogen (protium), deuterium (triuterium), and tritium.
  • aromatic heterocyclic derivative A Specific examples of the aromatic heterocyclic derivative A are shown below.
  • aromatic heterocyclic derivative B Specific examples of the aromatic heterocyclic derivative B are shown below.
  • the aromatic heterocyclic derivative A can be synthesized by referring to WO2011 / 018156.
  • the aromatic heterocyclic derivative B can be synthesized by referring to WO2008 / 056746 and the like.
  • the phosphorescent material (phosphorescent dopant) forming the first organic thin film layer includes a metal complex compound, and the metal complex compound is preferably selected from Ir, Pt, Os, Au, Cu, Re, and Ru.
  • the metal complex compound is preferably selected from Ir, Pt, Os, Au, Cu, Re, and Ru.
  • the ligand preferably has an ortho metal bond.
  • the phosphorescent dopant is preferably a compound containing a metal atom selected from Ir, Os and Pt in that the phosphorescent quantum yield is high and the external quantum efficiency of the light-emitting element can be further improved, and an iridium complex, It is more preferable that it is a metal complex such as an osmium complex and a platinum complex, among which an iridium complex and a platinum complex are more preferable, and an orthometalated iridium complex is most preferable.
  • the dopant may be a single type or a mixture of two or more types.
  • the addition concentration of the phosphorescent dopant in the first organic thin film layer is not particularly limited, but is preferably 0.1 to 30 wt% (wt%), more preferably 0.1 to 10 wt% (wt%). is there
  • organic EL device of the present invention other configurations are not particularly limited as long as the organic EL device has the laminated structure of the first organic thin film layer and the second organic thin film layer described above, and a known device configuration can be adopted.
  • a known device configuration can be adopted.
  • the example of an organic EL element is demonstrated using drawing.
  • FIG. 1 is a schematic view showing a layer structure of an embodiment of the organic EL device of the present invention.
  • the organic EL element 1 has a configuration in which an anode 20, a hole transport zone 30, a first organic thin film layer 40, a second organic thin film layer 50, an electron transport zone 60, and a cathode 70 are laminated on a substrate 10 in this order.
  • the hole transport zone 30 means a hole transport layer or a hole injection layer.
  • the electron transport zone 60 means an electron transport layer, an electron injection layer, or the like. These need not be formed, but preferably each is formed of one or more layers.
  • the first organic thin film layer 40 functions as a phosphorescent light emitting layer
  • the second organic thin film layer 50 functions as an electron transport layer and a hole barrier layer.
  • the second organic thin film layer 50 functions as a hole barrier layer.
  • the aromatic heterocyclic derivative B since the aromatic heterocyclic derivative B has a high triplet energy, it also functions as an exciton barrier layer.
  • the second organic thin film layer 50 has a high ability to draw electrons from the layer on the cathode 70 side, and is excellent in electron transportability. Accordingly, since electrons are also efficiently supplied to the first organic thin film layer 40, recombination of holes and electrons in the first organic thin film layer 40 is promoted, and the light emission efficiency is improved.
  • FIG. 1 schematically shows the organic EL element 1 as one light emitting unit, but an organic EL multicolor light emitting device can be formed by combining the organic EL element 1 and another organic EL element. it can.
  • FIG. 2 is a schematic cross-sectional view showing an example of an organic EL light emitting device using the organic EL element 1.
  • the organic EL light emitting device shown in FIG. 2 is a device having an organic EL element 1 (first element) and a fluorescent organic EL element 1A as a second element in parallel on a substrate 10.
  • the configuration of the organic EL element 1 is the same as that of FIG. 1 described above except that the patterned anode 20A is used.
  • the fluorescent organic EL element 1A has the same configuration as the organic EL element 1 except that a fluorescent light emitting layer 42 is formed as a light emitting layer instead of the first organic thin film layer 40.
  • An insulating layer 44 that separates the light emitting layer is provided between the first organic thin film layer 40 and the fluorescent light emitting layer 42.
  • the organic EL element 1 and the fluorescent organic EL element 1A share each organic layer (layer forming a hole transport zone and an electron transport zone) except for the light emitting layer.
  • a device capable of multicolor emission can be obtained by setting the emission color of the organic EL element 1 to yellow to red and the emission color of the fluorescent organic EL element 1A to blue to green.
  • the second organic thin film layer 50 also functions as a triplet barrier layer.
  • WO2010 / 134350 can be referred to.
  • organic EL elements two types are used.
  • the present invention is not limited to this, and three (three colors) or more organic EL elements may be used.
  • the fluorescent organic EL element was illustrated as a 2nd light emitting element, a phosphorescent light emitting element may be sufficient.
  • band were formed as a common layer, either one may be sufficient.
  • FIG. 3 is a schematic view showing the layer structure of another embodiment of the organic EL device of the present invention.
  • the organic EL element 2 is an example of a hybrid organic EL element in which a phosphorescent light emitting layer and a fluorescent light emitting layer are stacked.
  • the organic EL element 2 has the same configuration as the organic EL element 1 except that the fluorescent light emitting layer 52 is formed between the second organic thin film layer 50 and the electron transport zone 60.
  • the first organic thin film layer 40 functions as a phosphorescent light emitting layer
  • the second organic thin film layer 50 functions as a space layer.
  • a space layer may be provided between the fluorescent light emitting layer and the phosphorescent light emitting layer in order not to diffuse excitons formed in the phosphorescent light emitting layer into the fluorescent light emitting layer. Since the aromatic heterocyclic derivative B forming the second organic thin film layer 50 has a large triplet energy (T1), it can function as a space layer.
  • a white light emitting organic EL element can be obtained by setting the phosphorescent light emitting layer to emit yellow light and the fluorescent light emitting layer to blue light emitting layer.
  • the phosphorescent light-emitting layer and the fluorescent light-emitting layer are formed one by one.
  • the present invention is not limited to this, and two or more layers may be formed, and can be appropriately set according to the application such as lighting and display device.
  • a full color light emitting device is formed using a white light emitting element and a color filter
  • a plurality of wavelength regions such as red, green, blue (RGB), red, green, blue, yellow (RGBY) are used from the viewpoint of color rendering. In some cases, it may be preferable to include luminescence.
  • FIG. 4 is a schematic view showing the layer structure of another embodiment of the organic EL device of the present invention.
  • the organic EL element 3 is an example of a tandem organic EL element in which a phosphorescent light emitting layer and a fluorescent light emitting layer are stacked via an intermediate electrode.
  • the organic EL element 3 includes an anode 20, a hole transport zone 30, a first organic thin film layer 40, a second organic thin film layer 50, an intermediate electrode layer 54, a hole transport zone 32, a fluorescent light emitting layer 52, The electron transport zone 60 and the cathode 70 are stacked in this order.
  • a region sandwiched between the anode 20 and the intermediate electrode layer 54 is a first light emitting unit (phosphorescent light emission), and a region sandwiched between the intermediate electrode layer 54 and the cathode 70 is a second light emitting unit (phosphorescent light emission).
  • the first organic thin film layer 40 functions as a phosphorescent light emitting layer
  • the second organic thin film layer 50 functions as an electron transport layer and a hole barrier layer.
  • a white light emitting organic EL element can be obtained by setting the phosphorescent light emitting layer to emit yellow light and the fluorescent light emitting layer to blue light emitting layer.
  • the number of light emitting units is two.
  • the present invention is not limited to this, and three or more light emitting units may be formed. It can be set as appropriate.
  • the organic EL element of the present invention can employ various known configurations. Further, light emission of the light emitting layer can be taken out from the anode side, the cathode side, or both sides.
  • a layer containing a compound represented by the following formula (10) is bonded to the anode.
  • This compound has strong acceptor properties and further increases the amount of holes injected into the light emitting layer.
  • the configuration of the present invention has a more remarkable effect.
  • R 11 to R 16 are each independently a cyano group, —CONH 2 , a carboxy group, or —COOR 17 (R 17 is an alkyl group having 1 to 20 carbon atoms), or R 11 and R 12 , R 13 and R 14 , or R 15 and R 16 are bonded together to form —CO—O—CO—.
  • Examples of the alkyl group having 1 to 20 carbon atoms of R 17 include a linear or branched alkyl group, and specifically include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, and an isobutyl group.
  • R 11 to R 16 are preferably a cyano group.
  • the organic EL device of the present invention other configurations of the first organic thin film layer and the second organic thin film layer described above are not particularly limited, and known materials and the like can be used.
  • the layer of the element of Embodiment 1 is demonstrated easily, the material applied to the organic EL element of this invention is not limited to the following.
  • a glass plate, a polymer plate or the like can be used as the substrate.
  • the glass plate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfone, and polysulfone.
  • the anode is made of, for example, a conductive material, and a conductive material having a work function larger than 4 eV is suitable.
  • the conductive material include carbon, aluminum, vanadium, iron, cobalt, nickel, tungsten, silver, gold, platinum, palladium, and their alloys, ITO substrate, tin oxide used for NESA substrate, indium oxide, and the like.
  • examples thereof include metal oxides and organic conductive resins such as polythiophene and polypyrrole.
  • the anode may be formed with a layer structure of two or more layers if necessary.
  • the cathode is made of, for example, a conductive material, and a conductive material having a work function smaller than 4 eV is suitable.
  • the conductive material include, but are not limited to, magnesium, calcium, tin, lead, titanium, yttrium, lithium, ruthenium, manganese, aluminum, lithium fluoride, and alloys thereof.
  • the alloy include magnesium / silver, magnesium / indium, lithium / aluminum, and the like, but are not limited thereto.
  • the ratio of the alloy is controlled by the temperature of the vapor deposition source, the atmosphere, the degree of vacuum, etc., and is selected to an appropriate ratio.
  • the cathode may be formed with a layer structure of two or more layers, and the cathode can be produced by forming a thin film from the conductive material by a method such as vapor deposition or sputtering.
  • the transmittance of the cathode for light emission is preferably greater than 10%.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually 10 nm to 1 ⁇ m, preferably 50 to 200 nm.
  • the first organic thin film layer is a phosphorescent light emitting layer, but it may be combined with an organic EL element having a fluorescent light emitting layer as in the apparatus shown in FIG.
  • a known material can be used for the fluorescent light emitting layer.
  • the light emitting layer may be a double host (also referred to as host / cohost). Specifically, the carrier balance in the light emitting layer may be adjusted by combining an electron transporting host and a hole transporting host in the light emitting layer. Moreover, it is good also as a double dopant. In the light emitting layer, each dopant emits light by adding two or more dopant materials having a high quantum yield.
  • a yellow light emitting layer may be realized by co-evaporating a host, a red dopant, and a green dopant.
  • the light emitting layer may be a single layer or a laminated structure.
  • the recombination region can be concentrated on the light emitting layer interface by accumulating electrons and holes at the light emitting layer interface. This improves the quantum efficiency.
  • the hole injection / transport layer is a layer that assists hole injection into the light emitting layer and transports it to the light emitting region, and has a high hole mobility and a small ionization energy of usually 5.6 eV or less.
  • As the material for the hole injection / transport layer a material that transports holes to the light emitting layer with lower electric field strength is preferable. Further, when an electric field is applied with a hole mobility of, for example, 10 4 to 10 6 V / cm, At least 10 ⁇ 4 cm 2 / V ⁇ sec is preferable.
  • the material for the hole injection / transport layer include triazole derivatives (see US Pat. No. 3,112,197) and oxadiazole derivatives (see US Pat. No. 3,189,447). ), Imidazole derivatives (see JP-B-37-16096, etc.), polyarylalkane derivatives (US Pat. Nos. 3,615,402, 3,820,989, 3,542,544) Nos. 45-555, 51-10983, 51-93224, 55-17105, 56-4148, 55-108667, 55-156953, 56-36656, etc.), pyrazoline derivatives and pyrazolone derivatives (US Pat. No. 3,180,729, No.
  • Gazette 55-52063, 55-52064, 55-46760, 57-11350, 57 No. 148749, JP-A-2-311591, etc.), stilbene derivatives (JP-A Nos. 61-210363, 61-228451, 61-14642, 61-72255, etc.) 62-47646, 62-36684, 62-10652, 62-30255, 60-93455, 60-94462, 60-174749, 60 -175052, etc.), silazane derivatives (US Pat. No. 4,950,950), polysilanes (JP-A-2-204996), aniline copolymers (JP-A-2-282263) Etc.
  • inorganic compounds such as p-type Si and p-type SiC can also be used as the hole injection material.
  • a cross-linkable material can be used as the material of the hole injection / transport layer.
  • a cross-linkable hole injection / transport layer for example, Chem. Mater. 2008, 20, 413-422, Chem. Mater. Examples include a layer obtained by insolubilizing a cross-linking material such as 2011, 23 (3), 658-681, WO2008108430, WO2009102027, WO2009123269, WO2010016555, WO2010018813 by heat, light or the like.
  • the electron injection / transport layer is a layer that assists the injection of electrons into the light emitting layer and transports it to the light emitting region, and has a high electron mobility.
  • an electrode for example, a cathode
  • the electron injecting / transporting layer is appropriately selected with a film thickness of several nm to several ⁇ m.
  • the electron mobility is preferably at least 10 ⁇ 5 cm 2 / Vs or more when an electric field of V / cm is applied.
  • an aromatic heterocyclic compound containing one or more heteroatoms in the molecule is preferably used, and a nitrogen-containing ring derivative is particularly preferable.
  • the nitrogen-containing ring derivative is preferably an aromatic ring having a nitrogen-containing 6-membered ring or 5-membered ring skeleton, or a condensed aromatic ring compound having a nitrogen-containing 6-membered ring or 5-membered ring skeleton.
  • an organic layer having semiconductivity may be formed by doping (n) with a donor material and doping (p) with an acceptor material.
  • n doping
  • p doping
  • a typical example of N doping is to dope a metal such as Li or Cs to the material of the electron transport layer
  • P doping is to dope an acceptor material such as F4TCNQ to the material of the hole transport layer.
  • each layer of the organic EL device of the present invention a known method such as a dry film forming method such as vacuum deposition, sputtering, plasma, or ion plating, or a wet film forming method such as spin coating, dipping, or flow coating is applied. be able to.
  • the thickness of each layer is not particularly limited, but must be set to an appropriate thickness. If the film thickness is too thick, a large applied voltage is required to obtain a constant light output, resulting in poor efficiency. If the film thickness is too thin, pinholes and the like are generated, and sufficient light emission luminance cannot be obtained even when an electric field is applied.
  • the normal film thickness is suitably in the range of 5 nm to 10 ⁇ m, but more preferably in the range of 10 nm to 0.2 ⁇ m.
  • the Li body adjusted as described above was pumped using a cannula. After 2.5 hours, 80 ml of water was added dropwise. The reaction mixture was separated, and the aqueous layer was extracted with ethyl acetate, washed with water and saturated brine, and dried over Na 2 SO 4 . The organic layer was concentrated to about half the amount, poured into another reaction vessel under an argon atmosphere, 38.5 g (443.9 mmol) of manganese oxide was added, and the mixture was stirred for 20 hours. After filtration through celite, the filtrate was concentrated and recrystallized to obtain 15.3 g of a white solid. The powder was identified as Intermediate 1-4 by FD-MS analysis (yield 82%).
  • Example 1 (Production of organic EL device) A glass substrate with an ITO transparent electrode line of 25 mm ⁇ 75 mm ⁇ 1.1 mm (manufactured by Geomatic) was ultrasonically cleaned in isopropyl alcohol for 5 minutes and further UV-cleaned with UV (Ultraviolet) for 30 minutes. A glass substrate with a transparent electrode line after washing is mounted on a substrate holder of a vacuum vapor deposition apparatus, and the following compound (A) is vapor-deposited so as to cover the transparent electrode on the surface on which the transparent electrode line is formed. An A film having a thickness of 10 nm was formed.
  • the following aromatic amine derivative (X1) was vapor-deposited as a 1st positive hole transport material, and the 1st positive hole transport layer with a film thickness of 65 nm was formed into a film.
  • the following compound (H1) was deposited as a second hole transport material to form a second hole transport layer having a thickness of 10 nm.
  • a phosphorescent host (aromatic heterocyclic derivative A) compound (B1) and a phosphorescent dopant Ir (ppy) 3 described below were co-deposited at a thickness of 35 nm to obtain phosphorescence.
  • a light emitting layer was obtained.
  • the concentration of Ir (ppy) 3 was 10% by mass.
  • the following (B3) was vapor-deposited as the aromatic heterocyclic derivative B on the phosphorescent light-emitting layer to form a first electron transport layer (second organic thin film layer) having a thickness of 5 nm.
  • the following (C1) was deposited to form a second electron transport layer having a thickness of 20 nm.
  • 1 nm thick LiF and 80 nm thick metal Al were sequentially laminated to form a cathode. Note that LiF, which is an electron injecting electrode, was formed at a deposition rate of 1 ⁇ / min.
  • the produced organic EL element was caused to emit light by direct current driving, and the luminance (L) and current density were measured, and the current efficiency (L / J) and driving voltage (V) at a current density of 10 mA / cm 2 were obtained. Further, the device lifetime at an initial luminance of 20000 cd / m 2 was determined. The results are shown in Table 1.
  • Example 2 In Example 1, an organic EL device was produced and evaluated in the same manner as in Example 1 except that (B2) was used instead of (B1) as the host material. The results are shown in Table 1.
  • Example 1 an organic EL device was produced and evaluated in the same manner as in Example 1 except that the materials listed in Table 1 were used as the host material and the electron transport material. The results are shown in Table 1.
  • B3 having a large triplet energy is laminated on the electron transport layer side, thereby exhibiting an exciton barrier function and improving luminous efficiency. Further, in Comparative Example 3, since B3 having a large ionization potential is used as a host material, holes cannot be accumulated at the interface of the electron transport layer, the light emission efficiency is reduced, and the lifetime is also reduced.
  • Table 2 shows the measurement results of the ionization potential (Ip) and triplet energy (T1) for the electron transport material and the host material.
  • the measurement method is as follows.
  • Ionization potential (IP) The ionization potential was measured in the atmosphere using a photoelectron spectrometer (manufactured by Riken Keiki Co., Ltd .: AC-3). Specifically, the measurement was performed by irradiating the material with light and measuring the amount of electrons generated by charge separation at that time.
  • the ionization potential (Ip) means the energy required for removing electrons from the host material compound and ionizing.
  • Triplet energy (T1) Triplet energy was measured using a commercially available apparatus F-4500 (manufactured by Hitachi High-Technologies Corporation).
  • ⁇ edge (unit: nm) is a tangent to the rising edge of the phosphorescence spectrum on the short wavelength side when the phosphorescence spectrum is represented by taking the phosphorescence intensity on the vertical axis and the wavelength on the horizontal axis. It means the wavelength value at the intersection of the tangent and the horizontal axis.
  • Reference example 1 An example in which an aromatic heterocyclic derivative B is used for the electron transport layer of a fluorescent organic EL device is shown.
  • a glass substrate with a transparent electrode line after washing is mounted on a substrate holder of a vacuum vapor deposition apparatus, and the electron-accepting compound (A) is first deposited so as to cover the transparent electrode on the surface on which the transparent electrode line is formed. Then, an A film having a thickness of 5 nm was formed.
  • the following aromatic amine derivative (X2) was vapor-deposited as a 1st positive hole transport material, and the 1st positive hole transport layer with a film thickness of 85 nm was formed into a film.
  • the compound (H1) was deposited as a second hole transport material to form a second hole transport layer having a thickness of 10 nm.
  • the following compound (B4) as a fluorescent host and the following compound (BD1) as a fluorescent dopant were co-evaporated at a thickness of 25 nm to obtain a fluorescent light emitting layer.
  • the concentration of BD1 was 5% by mass.
  • the above (B3) was vapor-deposited as a first electron transporting material on this fluorescent light emitting layer to form a first electron transporting layer having a thickness of 20 nm.
  • the following (C2) was deposited as a second electron transport material to form a second electron transport layer having a thickness of 5 nm.
  • 1 nm thick LiF and 80 nm thick metal Al were sequentially laminated to form a cathode. Note that LiF, which is an electron injecting electrode, was formed at a deposition rate of 1 ⁇ / min.
  • the organic EL device produced as described above is caused to emit light by direct current drive, and the luminance (L) and current density are measured to obtain the current efficiency (L / J) and drive voltage (V) at a current density of 10 mA / cm 2 . It was. Further, the device lifetime at an initial luminance of 20000 cd / m 2 was determined. The results are shown in Table 2.
  • Reference example 2 In Reference Example 1, an organic EL device was prepared and evaluated in the same manner except that the materials listed in Table 1 were used as the electron transport material. The results are shown in Table 2.
  • the aromatic heterocyclic derivative B can also be used as an electron transport layer of a fluorescent organic EL device. Accordingly, when the phosphorescent organic EL element of the above-described embodiment and the fluorescent organic EL element of Reference Example 1 are formed in parallel, the electron transport layer can be formed as a common layer.
  • the organic EL element of the present invention has a long life and can be driven with high efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

対向する陽極と陰極との間に、陽極側から、第一有機薄膜層と第二有機薄膜層とをこの順に備え、第一有機薄膜層は下記式(1-1)で表される芳香族複素環誘導体Aと、燐光発光性材料とを含み、第二有機薄膜層は下記式(2-1)で表される芳香族複素環誘導体Bを含む、有機エレクトロルミネッセンス素子。

Description

有機エレクトロルミネッセンス素子
 本発明は、有機エレクトロルミネッセンス素子に関する。
 有機EL素子には、蛍光型及び燐光型があり、それぞれの発光メカニズムに応じ、最適な素子設計が検討されている。燐光型の有機EL素子については、その発光特性から、蛍光素子技術の単純な転用では高性能な素子が得られないことが知られている。その理由は、一般的に以下のように考えられている。
 まず、燐光発光は、三重項励起子を利用した発光であるため、発光層に用いる化合物のエネルギーギャップが大きくなくてはならない。何故なら、ある化合物のエネルギーギャップ(以下、一重項エネルギーともいう。)の値は、通常、その化合物の三重項エネルギー(本発明では、最低励起三重項状態と基底状態とのエネルギー差をいう。)の値よりも大きいからである。
 従って、燐光発光性ドーパント材料の三重項エネルギーを効率的に素子内に閉じ込めるためには、まず、燐光発光性ドーパント材料の三重項エネルギーよりも大きい三重項エネルギーのホスト材料を発光層に用いなければならない。さらに、発光層に隣接する電子輸送層、及び正孔輸送層を設け、電子輸送層、及び正孔輸送層に燐光発光性ドーパント材料の三重項エネルギーよりも大きい化合物を用いなければならない。
 このように、従来の有機EL素子の素子設計思想に基づく場合、蛍光型の有機EL素子に用いる化合物と比べて大きなエネルギーギャップを有する化合物を燐光型の有機EL素子に用いることにつながり、有機EL素子全体の駆動電圧が上昇する。
 また、蛍光素子で有用であった酸化耐性や還元耐性の高い炭化水素系の化合物はπ電子雲の広がりが大きいため、エネルギーギャップが小さい。そのため、燐光型の有機EL素子では、このような炭化水素系の化合物が選択され難く、酸素や窒素等のヘテロ原子を含んだ有機化合物が選択され、その結果、燐光型の有機EL素子は、蛍光型の有機EL素子と比較して寿命が短いという問題を有する。
 さらに、燐光発光性ドーパント材料の三重項励起子の励起子緩和速度が一重項励起子と比較して非常に長いことも素子性能に大きな影響を与える。即ち、一重項励起子からの発光は、発光に繋がる緩和速度が速いため、発光層の周辺層(例えば、正孔輸送層や電子輸送層)への励起子の拡散が起きにくく、効率的な発光が期待される。一方、三重項励起子からの発光は、スピン禁制であり緩和速度が遅いため、周辺層への励起子の拡散が起きやすく、特定の燐光発光性化合物以外からは熱的なエネルギー失活が起きてしまう。つまり、電子、及び正孔の再結合領域のコントロールが蛍光型の有機EL素子よりも重要である。
 以上のような理由から燐光型の有機EL素子の高性能化には、蛍光型の有機EL素子と異なる材料選択、及び素子設計が必要になっている。
 上記のような状況の下、燐光型の有機EL素子では、発光層のホスト材料や正孔輸送層には、カルバゾール誘導体が使用されることが多い。カルバゾール誘導体は、三重項エネルギーが大きく、また、正孔輸送性が高いためである。
 例えば、特許文献1にはカルバゾールビフェニルを使用した燐光発光層と、電子輸送層(Alq)の間にバクトプロイン等からなるブロッキング層を挿入した有機EL素子が開示されている。ブロッキング層は、正孔が電子輸送領域に到達することを抑制し、電子輸送層の劣化を低減するものである。
 また、特許文献2には正孔輸送層、発光層及び電子輸送層にカルバゾール誘導体を使用した素子が記載されている。この素子では、正孔輸送層を2層有し、発光層側の正孔輸送層に電子ブロック及び電子耐性のあるカルバゾール誘導体を用いている。このように、特許文献2は正孔輸送領域と発光層の界面に着目した技術である。
特表2002-525808号公報 国際公開WO2009/041635
 本発明は、寿命が長く、発光効率が高い有機EL素子を提供することを目的とする。
 本発明者らは、後述する芳香族複素環誘導体Aを含有する第一有機薄膜層と芳香族複素環誘導体Bを含有する第二有機薄膜層を組み合わせて使用することにより、寿命が長く、かつ、発光効率の高い有機EL素子が得られることを見出し、本発明を完成させた。
 本発明によれば、以下の有機EL素子が提供される。
1.対向する陽極と陰極との間に、前記陽極側から、第一有機薄膜層と第二有機薄膜層とをこの順に備え、該第一有機薄膜層は下記式(1-1)で表される芳香族複素環誘導体Aと、燐光発光性材料とを含み、該第二有機薄膜層は下記式(2-1)で表される芳香族複素環誘導体Bを含む、有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000001
[式(1-1)において、
 W及びWは、それぞれ独立に、単結合、CR又はSiRを表わす。
 R及びRは、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリール基を表す。
 L及びLは、それぞれ独立に、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリーレン基を表す。
 X~X16のうち、X~Xのうち一つと、X~X12のうち一つは、互いに結合する炭素原子を表わす。それ以外のX~X16は、下記Rと結合する炭素原子又は窒素原子である。但し、X~X16のうち、隣り合う二つが炭素原子である場合、Rと結合せずに、当該隣り合う炭素原子を含む環を形成してもよい。
 Rは、それぞれ独立に、水素原子、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。
 P及びPは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリール基を表す。
 但し、P及びPの少なくとも1つが下記式(1-a)、(1-b)、又は(1-c)で表わされる基である。
Figure JPOXMLDOC01-appb-C000002
(式(1-a)、(1-b)、(1-c)において、
 Z~Zは、それぞれ独立に、LもしくはLに結合する炭素原子、下記Rと結合する炭素原子又は窒素原子である。但し、隣り合う二つが炭素原子である場合、Rと結合せずに、当該隣り合う炭素原子を含む環を形成してもよい。
 Rはそれぞれ独立に、水素原子、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。)
Figure JPOXMLDOC01-appb-C000003
[式(2-1)において、
 環Aは、隣接環と縮合する置換もしくは無置換の芳香族環を示す。
 Y~Yは、それぞれ独立に、下記Rと結合する炭素原子又は窒素原子である。但し、隣り合う二つが炭素原子である場合、Rと結合せずに、当該隣り合う炭素原子を含む環を形成してもよい。
 Rは、それぞれ独立に、水素原子、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基(但し、置換もしくは無置換のカルバゾリル基ではない)である。
 Lは、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリーレン基を表わす。
 Qは、前記式(1-a)、(1-b)、(1-c)、下記式(2-c)、(2-d)、(2-e)、又は(2-f)で表わされる基である。
Figure JPOXMLDOC01-appb-C000004
[式(2-c)、(2-d)、(2-e)、(2-f)において、
 Z~Z12は、それぞれ独立に、Lに結合する炭素原子、下記Rと結合する炭素原子又は窒素原子である。但し、隣り合う二つが炭素原子である場合、Rと結合せずに、当該隣り合う炭素原子を含む環を形成してもよい。
 R、K~Kは、それぞれ独立に、水素原子、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。
 aは、0~2の整数を表す。
 bは、0~4の整数を表す。
 cは、0~5の整数を表す。
 dは、0~7の整数を表す。]
2.前記芳香族複素環誘導体Bが下記式(2-2)~(2-4)のいずれかで表される1に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000005
[式(2-2)~(2-4)において、
 環Bは、隣接環と縮合する式(2-a)で表わされる環を示し、環Cは、隣接環と縮合する式(2-b)で表わされる環を示す。
 Wは、NR、CR、SiR、酸素原子、又は硫黄原子を表わす。
 R~Rは、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリール基を表す。
 Y~Yは、それぞれ独立に、下記R10と結合する炭素原子又は窒素原子である。但し、隣り合う二つが炭素原子である場合、R10と結合せずに、当該隣り合う炭素原子を含む環を形成してもよい。
 R10は、それぞれ独立に、水素原子、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基(但し、置換もしくは無置換のカルバゾリル基ではない)である。
 Lは、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリーレン基を表わす。
 Qは、前記式(1-a)、(1-b)、(1-c)、(2-c)、(2-d)、(2-e)、又は(2-f)で表わされる基である。
3.前記芳香族複素環誘導体Aが下記式(1-2)で表される1又は2に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000006
[式中、X~X16、L、L、P及びPは、それぞれ、前記式(1-1)のX~X16、L、L、P及びPと同様な基を表す。]
4.前記芳香族複素環誘導体Aが下記式(1-3)で表される1~3のいずれかに記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000007
[式中、X~X16、L、L、P及びPは、それぞれ、前記式(1-1)のX~X16、L、L、P及びPと同様な基を表す。]
5.前記芳香族複素環誘導体Aが下記式(1-4)又は(1-5)で表される1~3のいずれかに記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000008
[式中、X~X16、L、L、P及びPは、それぞれ、前記式(1-1)のX~X16、L、L、P及びPと同様な基を表す。]
6.前記芳香族複素環誘導体Bが下記式(3-1)で表される1~5のいずれかに記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000009
[式中、L、Y~Y及びQは、それぞれ、前記式(2-1)のL、Y~Y及びQと同様な基を表す。]
7.前記芳香族複素環誘導体Bが下記式(4-1)又は(4-2)で表される2~5のいずれかに記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000010
[式(4-1)、又は(4-2)において、
 L、Y~Y、及びQは、それぞれ、前記式(2-3)のL、Y~Y、及びQと同様な基を表す。
 Kは、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。
 aは、0~2の整数を表す。
 W31は、CR、SiR、酸素原子、又は硫黄原子を表わす。
 W32は、NR、CR、SiR、酸素原子、又は硫黄原子を表わす。
 R~Rは、それぞれ、前記式(2-b)のWにおけるR~Rと同様な基を表す。]
8.前記芳香族複素環誘導体Bが下記式(5-1)~(5-3)で表される2~5のいずれかに記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000011
[式(5-1)~(5-3)において、
 W、L、Y~Y、及びQは、それぞれ、前記式(2-3)のW、L、Y~Y、及びQと同様な基を表す。
 Kは、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。
 aは、0~2の整数を表す。]
9.前記芳香族複素環誘導体Bが下記式(6-1)で表される2~5のいずれかに記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000012
[式(6-1)において、
 L、Y~Y、及びQは、それぞれ、前記式(2-3)のL、Y~Y、及びQと同様な基を表す。
 Kは、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。
 aは、0~2の整数を表す。
 W33は、CR、SiR、酸素原子、又は硫黄原子を表わす。
 R~Rは、それぞれ、前記式(2-b)のWにおけるR~Rと同様な基を表す。]
10.前記芳香族複素環誘導体Bが下記式(7-1)で表される2~5のいずれかに記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000013
[式(7-1)において、
 L、Y~Y、及びQは、それぞれ、前記式(2-3)のL、Y~Y、及びQと同様な基を表す。
 W34は、CR、又はSiRを表わす。
 R及びRは、それぞれ、前記式(2-b)のWにおけるR及びRと同様な基を表す。]
11.前記陽極に、下記式(10)で表される化合物を含有する層が接合している1~10のいずれかに記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000014
(式中、R11~R16は、それぞれ独立にシアノ基、-CONH、カルボキシ基、もしくは-COOR17(R17は、炭素数1~20のアルキル基である)であるか、又はR11及びR12、R13及びR14、又はR15及びR16が互いに結合して-CO-O-CO-を形成する。)
12.前記燐光発光材料がイリジウム(Ir),オスミウム(Os)又は白金(Pt)金属のオルトメタル化錯体である1~11のいずれかに記載の有機エレクトロルミネッセンス素子。
13.上記1~12のいずれかに記載の有機エレクトロルミネッセンス素子である第1の素子と、
 蛍光発光する有機エレクトロルミネッセンス素子(第2の素子)とを、基板上に並列して有し、
 前記第1の素子及び第2の素子の、正孔輸送帯域及び電子輸送帯域を形成する層のうち少なくとも1層が共通層である、有機エレクトロルミネッセンス発光装置。
14.前記式(11-1)、又は(11-2)で表わされる含窒素芳香族複素環誘導体。
Figure JPOXMLDOC01-appb-C000015
[式(11-1)、又は(11-1)において、
 環B’は、隣接環と縮合する式(11-a)で表わされる環を示し、環C’は、隣接環と縮合する式(11-b)で表わされる環を示す。
 Wは、NR21、CR2223、SiR2223、又は酸素原子を表わす。
 R21~R23は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリール基を表す。
 Y11~Y18は、それぞれ独立に、下記R24と結合する炭素原子又は窒素原子である。但し、隣り合う二つが炭素原子である場合、R24と結合せずに、当該隣り合う炭素原子を含む環を形成してもよい。
 R24は、それぞれ独立に、水素原子、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基(但し、置換もしくは無置換のカルバゾリル基ではない)である。
 L11は、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリーレン基を表わす。
 Q11は、下記式(11-c)、(11-d)、(11-e)、又は(11-f)で表わされる基である。
Figure JPOXMLDOC01-appb-C000016
[式(11-c)、(11-d)、(11-e)、(11-f)において、
 Z21~Z24は、それぞれ独立に、L11に結合する炭素原子、下記R25と結合する炭素原子又は窒素原子である。但し、隣り合う二つが炭素原子である場合、R25と結合せずに、当該隣り合う炭素原子を含む環を形成してもよい。
 R25、K11~K14は、それぞれ独立に、水素原子、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。]
15.下記式(12-1)、又は(12-2)で表わされる14に記載の含窒素芳香族複素環誘導体。
Figure JPOXMLDOC01-appb-C000017
[式(12-1)、又は(12-2)において、
 L11、Y11~Y18、及びQ11は、それぞれ、前記式(11-1)の、L11、Y11~Y18、及びQ11と同様な基を表す。
 W41は、CR2223、SiR2223、又は酸素原子を表わす。
 W42は、NR21、CR2223、SiR2223、又は酸素原子を表わす。
 R21~R23は、それぞれ、前記式(11-b)のR21~R23と同様な基を表す。
 K15は、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。
 aは、0~2の整数を表す。]
16.下記式(13-1)~(13-3)で表わされる14に記載の含窒素芳香族複素環誘導体。
Figure JPOXMLDOC01-appb-C000018
[式(13-1)~(13-3)において、
 W、L11、Y11~Y18、及びQ11は、それぞれ、前記式(11-1)の、W、L11、Y11~Y18、及びQ11と同様な基を表す。
 K15は、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。
 aは、0~2の整数を表す。]
17.下記式(14-1)で表わされる14に記載の含窒素芳香族複素環誘導体。
Figure JPOXMLDOC01-appb-C000019
[式(14-1)において、
 L11、Y11~Y18、及びQ11は、それぞれ、前記式(11-1)の、L11、Y11~Y18、及びQ11と同様な基を表す。
 W43は、CR2223、SiR2223、又は酸素原子を表わす。
 R22及びR23は、それぞれ、前記式(11-b)のR22及びR23と同様な基を表す。
 K15は、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。
 aは、0~2の整数を表す。]
18.下記式(15-1)で表わされる14に記載の含窒素芳香族複素環誘導体。
Figure JPOXMLDOC01-appb-C000020
[式(15-1)において、
 L11、Y11~Y18は、それぞれ、前記式(11-1)のL11、Y11~Y18と同様な基を表す。
 W44は、CR2223、又はSiR2223を表わす。
 R22及びR23は、それぞれ、前記式(11-b)のR22及びR23と同様な基を表す。
 Q12は、前記式(11-c)、(11-d)、又は(11-e)で示される基を表わす。]
19.有機エレクトロルミネッセンス素子用材料である14~18のいずれかに記載の含窒素芳香族複素環誘導体。
20.有機エレクトロルミネッセンス素子用電子輸送材料である14~18のいずれかに記載の含窒素芳香族複素環誘導体。
 本発明によれば、寿命が長く、発光効率が高い有機EL素子を提供できる。
本発明の一実施形態の有機EL素子の層構成を示す概略図である。 有機EL素子1を使用した有機EL発光装置の例を示す概略断面図である。 本発明の他の実施形態の有機EL素子の層構成を示す概略図である。 本発明の他の実施形態の有機EL素子の層構成を示す概略図である。
 本発明の有機EL素子は、対向する陽極と陰極との間に、陽極側から、第一有機薄膜層と第二有機薄膜層とをこの順に備える。そして、第一有機薄膜層は下記式(1-1)で表される芳香族複素環誘導体Aと、燐光発光性材料とを含み、第二有機薄膜層は下記式(2-1)で表される芳香族複素環誘導体Bを含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000021
 本発明では、第一有機薄膜層と第二有機薄膜層を組み合わせて形成することにより、有機EL素子の寿命、及び発光効率を向上できる。
 第一有機薄膜層は、燐光性発光する発光層として機能することができる。第一有機薄膜層の主成分(ホスト材料)である芳香族複素環誘導体Aは、2つの含窒素芳香族複素環を炭素-炭素結合で直接結合した構造を有している。この構造に、後述する式(1-a)、(1-b)又は(1-c)のような含窒素複素環構造基を導入することにより、通常のカルバゾール誘導体よりも正孔輸送性が非常に高く、かつイオン化ポテンシャルが5.7eV以下と特異的に低い化合物となる。
 芳香族複素環誘導体Aは、2つの架橋アリールアミン骨格が互いに炭素-炭素結合で直接結合することにより、分子内電子密度が増加しアミン性が非常に高まる結果、イオン化ポテンシャルが顕著に低減し、通常の架橋アリールアミン骨格と比較して非常に高い正孔注入・輸送性を有する。一方、電子注入・輸送部位として、後述する式(1-a)、(1-b)又は(1-c)のような含窒素複素環構造基が結合することにより、電子注入・輸送性も同時に有し、ホスト化合物として機能する。
 一方、第二有機薄膜層を構成する芳香族複素環誘導体Bは、三重項エネルギー(T1)が2.50eV以上と大きい化合物であり、かつイオン化ポテンシャルが5.8eV以上と高い。
 芳香族複素環誘導体Bは、カルバゾール骨格、あるいはインドール骨格にさらに芳香族環が縮環した構造を有するが、この骨格においては芳香族複素環誘導体Aのように分子内電子密度は顕著に上昇せず、イオン化ポテンシャルの低減は起こらない。従って、芳香族複素環誘導体Aと芳香族複素環誘導体Bを積層させることにより、界面に正孔注入障壁を作ることができる。
 三重項エネルギーが2.50eV以上であることにより、第一有機薄膜層からの三重項エネルギーの拡散を防止することができる。即ち、励起子障壁層の機能を有する。
 さらに、芳香族複素環誘導体Bはバイポーラ性を有し、正孔耐性が高い。また、芳香族複素環誘導体Bは陰極側の層から電子を引き込む能力が高く、電子輸送性に優れているため、電子輸送層としても機能する。従って、第一有機薄膜層に電子が効率よく供給されるため、第一有機薄膜層が発光層ある場合、正孔と電子の再結合が促進され、発光効率が向上する。
 上記式(1-1)において、W及びWは、それぞれ独立に、単結合、CR又はSiRを表わす。
 単結合と比較して、W及びWがCR又はSiRである場合、化合物のアミン性が増し、正孔輸送性能が向上する。
 R及びRは、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリール基を表す。
 L及びLは、それぞれ独立に、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリーレン基を表す。
 X~X16のうち、X~Xのうち一つと、X~X12のうち一つは、互いに結合する炭素原子を表わす。それ以外のX~X16は、下記Rと結合する炭素原子又は窒素原子である。但し、X~X16のうち、隣り合う二つが炭素原子である場合、Rと結合せずに、当該隣り合う炭素原子を含む環を形成してもよい。
 Rは、それぞれ独立に、水素原子、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。
 P及びPは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリール基を表す。
 但し、P及びPの少なくとも1つが下記式(1-a)、(1-b)、又は(1-c)で表わされる基である。
Figure JPOXMLDOC01-appb-C000022
 式(1-a)、(1-b)、(1-c)において、Z~Zは、それぞれ独立に、LもしくはLに結合する炭素原子、下記Rと結合する炭素原子又は窒素原子である。但し、隣り合う二つが炭素原子である場合、Rと結合せずに、当該隣り合う炭素原子を含む環を形成してもよい。
 Rはそれぞれ独立に、水素原子、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。
 本発明では、化合物の耐性という観点から上記式(1-1)のなかでも、下記式(1-2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000023
[式中、X~X16、L、L、P及びPは、それぞれ、式(1-1)のX~X16、L、L、P及びPと同様な基を表す。]
 より好ましくは、下記式(1-3)~(1-5)で表される化合物である。
Figure JPOXMLDOC01-appb-C000024
[式中、X~X16、L、L、P及びPは、それぞれ、式(1-1)のX~X16、L、L、P及びPと同様な基を表す。]
 上記式(2-1)において、環Aは、隣接環と縮合する置換もしくは無置換の芳香族環を示す。芳香族環としては、環形成炭素数6~30の環、又は、環形成原子数5~30の複素環が挙げられる。
 Y~Yは、それぞれ独立に、下記Rと結合する炭素原子又は窒素原子である。但し、隣り合う二つが炭素原子である場合、Rと結合せずに、当該隣り合う炭素原子を含む環を形成してもよい。
 Rは、それぞれ独立に、水素原子、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基(但し、置換もしくは無置換のカルバゾリル基ではない)である。
 Lは、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリーレン基を表わす。
 Qは、上述した式(1-1)の式(1-a)、(1-b)若しくは(1-c)で表される基であるか、又は、下記式(2-c)、(2-d)、(2-e)若しくは(2-f)で表わされる基である。
Figure JPOXMLDOC01-appb-C000025
 式(2-c)、(2-d)、(2-e)、(2-f)において、Z~Z12は、それぞれ独立に、Lに結合する炭素原子、下記Rと結合する炭素原子又は窒素原子である。但し、隣り合う二つが炭素原子である場合、Rと結合せずに、当該隣り合う炭素原子を含む環を形成してもよい。
 R、K~Kは、水素原子、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。
 aは、0~2の整数を表す。
 bは、0~4の整数を表す。
 cは、0~5の整数を表す。
 dは、0~7の整数を表す。
 尚、K~Kは、窒素原子に結合してもよい。
 本発明では、上記式(2-1)のなかでも、下記式(2-2)~(2-4)のいずれかで表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000026
 式(2-2)~(2-4)において、環Bは、隣接環と縮合する式(2-a)で表わされる環を示し、環Cは、隣接環と縮合する式(2-b)で表わされる環を示す。
 Wは、NR、CR、SiR、酸素原子、又は硫黄原子を表わす。
 R~Rは、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリール基を表す。
 Y~Yは、それぞれ独立に、下記R10と結合する炭素原子又は窒素原子である。但し、隣り合う二つが炭素原子である場合、R10と結合せずに、当該隣り合う炭素原子を含む環を形成してもよい。
 R10は、それぞれ独立に、水素原子、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基(但し、置換もしくは無置換のカルバゾリル基ではない)である。
 Lは、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリーレン基を表わす。
 Qは、上述した式(1-a)、(1-b)、(1-c)、(2-c)、(2-d)、(2-e)、又は(2-f)で表わされる基である。
 特に、芳香族複素環誘導体Bとして、下記式(3-1)、(4-1)、(4-2)、(5-1)、(5-2)、(5-3)、(6-1)又は(7-1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000027
[式中、L、Y~Y及びQは、それぞれ、式(2-1)のL、Y~Y及びQと同様な基を表す。]
Figure JPOXMLDOC01-appb-C000028
[式(4-1)、又は(4-2)において、
 L、Y~Y、及びQは、それぞれ、前記式(2-3)及び式(2-a)のL、Y~Y、及びQと同様な基を表す。
 Kは、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。
 aは、0~2の整数を表す。
 W31は、CR、SiR、酸素原子、又は硫黄原子を表わす。
 W32は、NR、CR、SiR、酸素原子、又は硫黄原子を表わす。
 R~Rは、それぞれ、式(2-b)のWにおけるR~Rと同様な基を表す。]
Figure JPOXMLDOC01-appb-C000029
[式(5-1)~(5-3)において、
 W、L、Y~Y、及びQは、それぞれ、前記式(2-3)のW、L、Y~Y、及びQと同様な基を表す。
 Kは、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。
 aは、0~2の整数を表す。]
Figure JPOXMLDOC01-appb-C000030
[式(6-1)において、
 L、Y~Y、及びQは、それぞれ、前記式(2-3)のL、Y~Y、及びQと同様な基を表す。
 Kは、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。
 aは、0~2の整数を表す。
 W33は、CR、SiR、酸素原子、又は硫黄原子を表わす。
 R~Rは、それぞれ、前記式(2-b)のWにおけるR~Rと同様な基を表す。]
Figure JPOXMLDOC01-appb-C000031
[式(7-1)において、L、Y~Y、及びQは、それぞれ、式(2-3)のL、Y~Y、及びQと同様な基を表す。
 W34は、CR、又はSiRを表わす。
 R及びRは、それぞれ、前記式(2-b)のWにおけるR及びRと同様な基を表す。]
 尚、上記式(2-1)で表される芳香族複素環誘導体Bのうち、下記式(11-1)、又は(11-2)で表わされる含窒素芳香族複素環誘導体は新規物質である。
Figure JPOXMLDOC01-appb-C000032
[式(11-1)、又は(11-1)において、
 環B’は、隣接環と縮合する式(11-a)で表わされる環を示し、環C’は、隣接環と縮合する式(11-b)で表わされる環を示す。
 Wは、NR21、CR2223、SiR2223、又は酸素原子を表わす。
 R21~R23は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリール基を表す。
 Y11~Y18は、それぞれ独立に、下記R24と結合する炭素原子又は窒素原子である。但し、隣り合う二つが炭素原子である場合、R24と結合せずに、当該隣り合う炭素原子を含む環を形成してもよい。
 R24は、それぞれ独立に、水素原子、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基(但し、置換もしくは無置換のカルバゾリル基ではない)である。
 L11は、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリーレン基を表わす。
 Q11は、下記式(11-c)、(11-d)、(11-e)、又は(11-f)で表わされる基である。
Figure JPOXMLDOC01-appb-C000033
[式(11-c)、(11-d)、(11-e)、(11-f)において、
 Z21~Z24は、それぞれ独立に、L11に結合する炭素原子、下記R25と結合する炭素原子又は窒素原子である。但し、隣り合う二つが炭素原子である場合、R25と結合せずに、当該隣り合う炭素原子を含む環を形成してもよい。
 R25、K11~K14は、それぞれ独立に、水素原子、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。]
 下記式(11-1)、又は(11-2)で表わされる含窒素芳香族複素環誘導体のなかでも、下記式(12-1)、(12-2)、(13-1)~(13-3)、(14-1)又は式(15-1)で表わされるものが好ましい。
Figure JPOXMLDOC01-appb-C000034
[式(12-1)、又は(12-2)において、
 L11、Y11~Y18、及びQ11は、それぞれ、前記式(11-1)の、L11、Y11~Y18、及びQ11と同様な基を表す。
 W41は、CR2223、SiR2223、又は酸素原子を表わす。
 W42は、NR21、CR2223、SiR2223、又は酸素原子を表わす。
 R21~R23は、それぞれ、前記式(11-b)のR21~R23と同様な基を表す。
 K15は、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。
 aは、0~2の整数を表す。]
Figure JPOXMLDOC01-appb-C000035
[式(13-1)~(13-3)において、
 W、L11、Y11~Y18、及びQ11は、それぞれ、前記式(11-1)の、W、L11、Y11~Y18、及びQ11と同様な基を表す。
 K15は、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。
 aは、0~2の整数を表す。]
Figure JPOXMLDOC01-appb-C000036
[式(14-1)において、
 L11、Y11~Y18、及びQ11は、それぞれ、前記式(11-1)の、L11、Y11~Y18、及びQ11と同様な基を表す。
 W43は、CR2223、SiR2223、又は酸素原子を表わす。
 R22及びR23は、それぞれ、前記式(11-b)のR22及びR23と同様な基を表す。
 K15は、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。
 aは、0~2の整数を表す。]
Figure JPOXMLDOC01-appb-C000037
[式(15-1)において、
 L11、Y11~Y18は、それぞれ、前記式(11-1)のL11、Y11~Y18と同様な基を表す。
 W44は、CR2223、又はSiR2223を表わす。
 R22及びR23は、それぞれ、前記式(11-b)のR22及びR23と同様な基を表す。
 Q12は、前記式(11-c)、(11-d)、又は(11-e)で示される基を表わす。]
 上記の含窒素芳香族複素環誘導体は、有機エレクトロルミネッセンス素子用材料、特に、電子輸送材料として好適である。
 以下、上述した本発明で使用する芳香族複素環誘導体A及び芳香族複素環誘導体Bの各基の例について説明する。
 尚、「環形成炭素」とは飽和環、不飽和環、又は芳香環を構成する炭素原子を意味し、「環形成原子」とはヘテロ環(飽和環、不飽和環、及び芳香環を含む)を構成する炭素原子及びヘテロ原子を意味する。
 炭素数1~20のアルキル基としては、直鎖状もしくは分岐状のアルキル基があり、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基等が挙げられ、好ましくは、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基が挙げられ、好ましくはメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、t-ブチル基である。
 炭素数3~20のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基、1-ノルボルニル基、2-ノルボルニル基等が挙げられ、好ましくはシクロペンチル基、シクロヘキシル基である。
 炭素数1~20のハロアルキル基としては、上述した炭素数1~20のアルキル基に1つ以上のハロゲン(フッ素原子、塩素原子及び臭素原子が挙げられ、好ましくはフッ素原子である。)が置換した基が挙げられる。具体的には、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、トリフルオロメチルメチル基、ペンタフルオロエチル基等が挙げられる。好ましくは、トリフルオロメチル基、ペンタフルオロエチル基である。
 環形成炭素数6~30のアリール基は、好ましくは環形成炭素数6~20のアリール基であり、より好ましくは環形成炭素数6~12のアリール基である。
 アリール基の具体例としては、フェニル基、ナフチル基、アントリル基、フェナントリル基、ナフタセニル基、ピレニル基、クリセニル基、ベンゾ[c]フェナントリル基、ベンゾ[g]クリセニル基、トリフェニレニル基、フルオレニル基、9,9-ジメチルフルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、ビフェニルイル基、ターフェニル基、フルオランテニル基等が挙げられ、好ましくはフェニル基、ビフェニル基、トリル基、キシリル基、ナフチル基である。
 炭素数7~30のアラルキル基は、-Y-Zと表され、Yの例として上記のアルキルの例に対応するアルキレンの例が挙げられ、Zの例として上記のアリールの例が挙げられる。アラルキル基のアリール部分は、炭素数が6~20が好ましく、特に好ましくは6~12である。アルキル部分は炭素数1~10が好ましく、特に好ましくは1~6である。例えば、ベンジル基、フェニルエチル基、2-フェニルプロパン-2-イル基である。
 環形成原子数5~30のヘテロアリール基は、好ましくは環形成原子数5~20のヘテロアリール基であり、より好ましくは環形成原子数5~14のヘテロアリール基である。
 ヘテロアリール基の具体例としては、ピロリル基、ピラジニル基、ピリジニル基、インドリル基、イソインドリル基、イミダゾリル基、フリル基、ベンゾフラニル基、イソベンゾフラニル基、ジベンゾフラニル基、ジベンゾチオフェニル基、キノリル基、イソキノリル基、キノキサリニル基、カルバゾリル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基、オキサゾリル基、オキサジアゾリル基、フラザニル基、チエニル基、ベンゾチオフェニル基等が挙げられ、好ましくは、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基である。
 環形成炭素数6~30(好ましくは6~20、より好ましくは6~12)のアリーレン基及び環形成原子数5~30(好ましくは5~20、より好ましくは5~14)のヘテロアリーレン基の具体例としては、上記の環形成炭素数6~30のアリール基及び環形成原子数5~30のヘテロアリール基の具体例に対応する2価の基が挙げられる。好ましくはフェニル基、フルオレニル基、9,9-ジメチルフルオレニル基、ナフチル基、フェナントリル基、ビフェニルイル基、ターフェニルイル基、ジベンゾフルオレニル基、ピリジニル基、イソキノリル基等の2価の基が挙げられる。
 同様に、式(2-1)の環Aが示す環形成炭素数6~30の環、又は、環形成原子数5~30の複素環としては、上記の環形成炭素数6~30のアリール基及び環形成原子数5~30のヘテロアリール基の具体例に対応する環が挙げられる。
 炭素数1~20のアルコキシ基は、-OYと表され、Yの例として上記のアルキルの例が挙げられる。アルコキシ基は、例えばメトキシ基、エトキシ基である。
 炭素数1~20のハロアルコキシ基としては、上記アルコキシ基に1つ以上のハロゲン(フッ素原子、塩素原子及び臭素原子が挙げられ、好ましくはフッ素原子である。)が置換した基が挙げられる。好ましくは、トリフルオロメトキシ基である。
 置換又は無置換のシリル基としては、シリル基、炭素数1~10(好ましくは炭素数1~6)のアルキルシリル基、炭素数6~30(好ましくは炭素数6~20、より好ましくは炭素数6~10)のアリールシリル基等が挙げられる。
 アルキルシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、ビニルジメチルシリル基、プロピルジメチルシリル基等が挙げられる。
 アリールシリル基の具体例としては、トリフェニルシリル基、フェニルジメチルシリル基、t-ブチルジフェニルシリル基、トリトリルシリル基、トリキシリルシリル基、トリナフチルシリル基等が挙げられる。
 各式において、隣り合う炭素原子がRと結合せずに、隣り合う炭素原子を含む環を形成する場合の環としては、ベンゼン環等の芳香族環、シクロヘキサン等のシクロアルキル環、シクロヘキセン等のシクロアルケン等が挙げられる。
 芳香族複素環誘導体A及び芳香族複素環誘導体Bの各基の「置換もしくは無置換の・・・」の置換基としては、上記のアルキル基、置換シリル基、アリール基、シクロアルキル基、ヘテロアリール基、アルコキシ基、アラルキル基、ハロアルキル基や、その他にハロゲン原子(フッ素、塩素、臭素、ヨウ素等が挙げられ、好ましくはフッ素原子である。)、シリル基、ヒドロキシル基、ニトロ基、シアノ基、カルボキシ基、アリールオキシ基等が挙げられる。
 尚、アリールオキシ基は、-OZで表わされ、Zの例としては上記アリール基が挙げられる。アリールオキシ基は、例えばフェノキシ基である。
 また、「置換もしくは無置換の・・・」の「無置換」とは、水素原子が置換基により置換されていることを意味する。
本発明において、水素原子とは、中性子数が異なる同位体、すなわち、軽水素(protium)、重水素(deuterium)、三重水素(tritium)、を包含する。
 芳香族複素環誘導体Aの具体例を以下に示す。
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
 芳香族複素環誘導体Bの具体例を以下に示す。
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
 芳香族複素環誘導体Aは、WO2011/019156等を参照することにより合成できる。
 芳香族複素環誘導体Bは、WO2008/056746等を参照することにより合成できる。
 第一有機薄膜層を形成する燐光発光性材料(燐光ドーパント)としては、金属錯体化合物が挙げられ、当該金属錯体化合物は、好ましくはIr,Pt,Os,Au,Cu,Re及びRuから選択される金属原子と、配位子とを有する化合物である。配位子は、オルトメタル結合を有すると好ましい。
 燐光量子収率が高く、発光素子の外部量子効率をより向上させることができるという点で、燐光ドーパントは、Ir,Os及びPtから選ばれる金属原子を含有する化合物であると好ましく、イリジウム錯体、オスミウム錯体、白金錯体等の金属錯体であるとさらに好ましく、中でもイリジウム錯体及び白金錯体がより好ましく、オルトメタル化イリジウム錯体が最も好ましい。ドーパントは、1種単独でも、2種以上の混合物でもよい。
 第一有機薄膜層における燐光ドーパントの添加濃度は特に限定されるものではないが、好ましくは0.1~30重量%(wt%)、より好ましくは0.1~10重量%(wt%)である
 本発明の有機EL素子では、上述した第一有機薄膜層及び第二有機薄膜層の積層構造を有していれば、他の構成は特に限定されず、公知の素子構成を採用できる。以下、有機EL素子の形態例を、図面を用いて説明する。
実施形態1
 図1は、本発明の有機EL素子の一実施形態の層構成を示す概略図である。
 有機EL素子1は、基板10上に、陽極20、正孔輸送帯域30、第一有機薄膜層40、第二有機薄膜層50、電子輸送帯域60及び陰極70を、この順で積層した構成を有する。正孔輸送帯域30は、正孔輸送層又は正孔注入層等を意味する。同様に、電子輸送帯域60は、電子輸送層又は電子注入層等を意味する。これらは形成しなくともよいが、好ましくはそれぞれ1層以上形成する。
 有機EL素子1では、第一有機薄膜層40は燐光発光層として機能し、第二有機薄膜層50は、電子輸送層及び正孔障壁層として機能する。
 陽極20側から第一有機薄膜層40及び第二有機薄膜層50を隣接して形成すると、第一有機薄膜層40と第二有機薄膜層50の界面にイオン化ポテンシャルのギャップが形成される。そのため、陽極20側から供給される正孔は第一有機薄膜層40及び第二有機薄膜層50の界面抵抗によりブロックされ、第一有機薄膜層40に留まることになる。即ち、第二有機薄膜層50が正孔障壁層として機能する。また、芳香族複素環誘導体Bは三重項エネルギーが高いため、励起子障壁層としても機能する。
 一方、第二有機薄膜層50は陰極70側の層から電子を引き込む能力が高く、電子輸送性に優れている。従って、第一有機薄膜層40に電子も効率よく供給されるため、第一有機薄膜層40での正孔と電子の再結合が促進され、発光効率が向上する。
 図1は、有機EL素子1を1つの発光単位として模式的に示したものであるが、有機EL素子1と他の有機EL素子を組み合わせることにより、有機EL多色発光装置を形成することができる。
 図2は、有機EL素子1を使用した有機EL発光装置の例を示す概略断面図である。
 図2に示す有機EL発光装置は、基板10上に有機EL素子1(第1の素子)と第2の素子である蛍光有機EL素子1Aを並列に有する装置である。
 有機EL素子1の構成は、パターン化された陽極20Aを使用した他は上述した図1と同様である。蛍光有機EL素子1Aは、発光層として第一有機薄膜層40に代えて蛍光発光層42を形成した他は有機EL素子1と同様の構成を有する。第一有機薄膜層40と蛍光発光層42の間には発光層を分離する絶縁層44を設けてある。
 有機EL素子1と蛍光有機EL素子1Aは、発光層を除き、各有機層(正孔輸送帯域及び電子輸送帯域を形成する層)を共通としている。例えば、有機EL素子1の発光色を黄~赤色とし、蛍光有機EL素子1Aの発光色を青~緑色とすることにより、多色発光が可能な装置が得られる。特に、蛍光有機EL素子1Aの発光色を青色とし、TTF現象(Triplet-Triplet-Fusion)を利用した素子とした場合、第二有機薄膜層50は、トリプレット障壁層としても機能する。尚、TTF現象を利用した素子については、WO2010/134350を参照できる。
 尚、本例では、2種の有機EL素子を使用したが、これに限らず、3種(3色)以上の有機EL素子を用いてもよい。また、第2の発光素子として蛍光有機EL素子を例示したが、燐光発光素子であってもよい。
 また、正孔輸送帯域及び電子輸送帯域を形成する層のいずれも共通層として形成したが、いずれか一方でもよい。
実施形態2
 図3は、本発明の有機EL素子の他の実施形態の層構成を示す概略図である。
 有機EL素子2は、燐光発光層及び蛍光発光層を積層したハイブリッド型の有機EL素子の例である。
 有機EL素子2は、第二有機薄膜層50と電子輸送帯域60の間に蛍光発光層52を形成した他は、上記有機EL素子1と同様な構成を有する。有機EL素子2では、第一有機薄膜層40は燐光発光層として機能し、第二有機薄膜層50は、スペース層として機能する。燐光発光層及び蛍光発光層を積層した構成では、燐光発光層で形成された励起子を蛍光発光層に拡散させないため、蛍光発光層と燐光発光層の間にスペース層を設けることがある。第二有機薄膜層50を形成する芳香族複素環誘導体Bは、三重項エネルギー(T1)が大きいため、スペース層として機能できる。
 有機EL素子2において、例えば、燐光発光層を黄色発光とし、蛍光発光層を青色発光層とすることにより、白色発光の有機EL素子が得られる。尚、本実施形態では燐光発光層及び蛍光発光層を1層ずつとしているが、これに限らず、それぞれ2層以上形成してもよく、照明や表示装置等、用途に合わせて適宜設定できる。例えば、白色発光素子とカラーフィルタを利用してフルカラー発光装置とする場合、演色性の観点から、赤、緑、青(RGB)、赤、緑、青、黄(RGBY)等、複数の波長領域の発光を含んでいることが好ましい場合がある。
実施形態3
 図4は、本発明の有機EL素子の他の実施形態の層構成を示す概略図である。
 有機EL素子3は、燐光発光層及び蛍光発光層を、中間電極を介して積層したタンデム型の有機EL素子の例である。
 有機EL素子3は、基板10上に、陽極20、正孔輸送帯域30、第一有機薄膜層40、第二有機薄膜層50、中間電極層54、正孔輸送帯域32、蛍光発光層52、電子輸送帯域60及び陰極70を、この順で積層した構成を有する。陽極20と中間電極層54に挟まれた領域が第一発光ユニット(燐光発光)であり、中間電極層54と陰極70に挟まれた領域が第二発光ユニット(燐光発光)である。
 有機EL素子3では、第一有機薄膜層40は燐光発光層として機能し、第二有機薄膜層50は、電子輸送層及び正孔障壁層として機能する。
 有機EL素子3において、例えば、燐光発光層を黄色発光とし、蛍光発光層を青色発光層とすることにより、白色発光の有機EL素子が得られる。尚、本実施形態では発光ユニットを2つとしているが、これに限られず、発光ユニットを3つ以上形成してもよく、上述した有機EL素子2と同様に、照明や表示装置等、用途に合わせて適宜設定できる。
 上述した実施形態1~3のように、本発明の有機EL素子は、公知の様々な構成を採用できる。また、発光層の発光は、陽極側、陰極側、あるいは両側から取り出すことができる。
 本発明の有機EL素子では、陽極に、下記式(10)で表される化合物を含有する層が接合していることが好ましい。この化合物は、アクセプター性が強く、発光層への正孔注入量がさらに増加する。正孔注入量の多い素子では、本発明の構成がより顕著な効果を有する。
Figure JPOXMLDOC01-appb-C000077
(式中、R11~R16は、それぞれ独立にシアノ基、-CONH、カルボキシ基、もしくは-COOR17(R17は、炭素数1~20のアルキル基である)であるか、又はR11及びR12、R13及びR14、又はR15及びR16が互いに結合して-CO-O-CO-を形成する。)
 R17の炭素数1~20のアルキル基としては、直鎖状もしくは分岐状のアルキル基があり、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基等が挙げられ、好ましくは、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基が挙げられる。
 R11~R16は、シアノ基であることが好ましい。
 本発明の有機EL素子では、上述した第一有機薄膜層と第二有機薄膜層の他の構成については、特に限定されず、公知の材料等を使用できる。以下、実施形態1の素子の層について簡単に説明するが、本発明の有機EL素子に適用される材料は以下に限定されない。
[基板]
 基板としてはガラス板、ポリマー板等を用いることができる。
 ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等が挙げられる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルフォン、ポリサルフォン等を挙げることができる。
[陽極]
 陽極は例えば導電性材料からなり、4eVより大きな仕事関数を有する導電性材料が適している。
 上記導電性材料としては、炭素、アルミニウム、バナジウム、鉄、コバルト、ニッケル、タングステン、銀、金、白金、パラジウム等及びそれらの合金、ITO基板、NESA基板に使用される酸化スズ、酸化インジウム等の酸化金属、さらにはポリチオフェンやポリピロール等の有機導電性樹脂が挙げられる。
 陽極は、必要があれば2層以上の層構成により形成されていてもよい。
[陰極]
 陰極は例えば導電性材料からなり、4eVより小さな仕事関数を有する導電性材料が適している。
 上記導電性材料としては、マグネシウム、カルシウム、錫、鉛、チタニウム、イットリウム、リチウム、ルテニウム、マンガン、アルミニウム、フッ化リチウム等及びこれらの合金が挙げられるが、これらに限定されるものではない。
 また、上記合金としては、マグネシウム/銀、マグネシウム/インジウム、リチウム/アルミニウム等が代表例として挙げられるが、これらに限定されるものではない。合金の比率は、蒸着源の温度、雰囲気、真空度等により制御され、適切な比率に選択される。
 陰極は、必要があれば2層以上の層構成により形成されていてもよく、陰極は上記導電性材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。
 発光層からの発光を陰極から取り出す場合、陰極の発光に対する透過率は10%より大きくすることが好ましい。
 また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~1μmであり、好ましくは50~200nmである。
[発光層]
 本発明では、第一有機薄膜層が燐光発光層となるが、図2に示す装置のように、蛍光発光層を有する有機EL素子と組み合わせてもよい。蛍光発光層としては、公知の材料が使用できる。
 発光層では、ダブルホスト(ホスト・コホストともいう)としてもよい。具体的に、発光層において電子輸送性のホストと正孔輸送性のホストを組み合わせることで、発光層内のキャリアバランスを調整してもよい。
 また、ダブルドーパントとしてもよい。発光層において、量子収率の高いドーパント材料を2種類以上入れることによって、それぞれのドーパントが発光する。例えば、ホストと赤色ドーパント、緑色のドーパントを共蒸着することによって、黄色の発光層を実現することがある。
 発光層は単層でもよく、また、積層構造でもよい。発光層を積層させると、発光層界面に電子と正孔を蓄積させることによって再結合領域を発光層界面に集中させることができる。これによって、量子効率を向上させる。
[正孔注入層及び正孔輸送層]
 正孔注入・輸送層は、発光層への正孔注入を助け、発光領域まで輸送する層であって、正孔移動度が大きく、イオン化エネルギーが通常5.6eV以下と小さい層である。
 正孔注入・輸送層の材料としては、より低い電界強度で正孔を発光層に輸送する材料が好ましく、さらに正孔の移動度が、例えば10~10V/cmの電界印加時に、少なくとも10-4cm/V・秒であれば好ましい。
 正孔注入・輸送層の材料としては、具体的には、トリアゾール誘導体(米国特許3,112,197号明細書等参照)、オキサジアゾール誘導体(米国特許3,189,447号明細書等参照)、イミダゾール誘導体(特公昭37-16096号公報等参照)、ポリアリールアルカン誘導体(米国特許3,615,402号明細書、同第3,820,989号明細書、同第3,542,544号明細書、特公昭45-555号公報、同51-10983号公報、特開昭51-93224号公報、同55-17105号公報、同56-4148号公報、同55-108667号公報、同55-156953号公報、同 56-36656号公報等参照)、ピラゾリン誘導体及びピラゾロン誘導体(米国特許第3,180,729号明細書、同第4,278,746号明細書、特開昭55-88064号公報、同55-88065号公報、同49-105537号公報、同55-51086号公報、同56-80051号公報、同56-88141号公報、同57-45545号公報、同54-112637号公報、同55-74546号公報等参照)、フェニレンジアミン誘導体(米国特許第3,615,404号明細書、特公昭51-10105号公報、同46-3712号公報、同47-25336号公報、同54-119925号公報等参照)、アリールアミン誘導体(米国特許第3,567,450号明細書、同第3,240,597号明細書、同第3,658,520号明細書、同第4,232,103号明細書、同第4,175,961号明細書、同第4,012,376号明細書、特公昭49-35702号公報、同39-27577号公報、特開昭55-144250号公報、同56-119132号公報、同56-22437号公報、西独特許第1,110,518号明細書等参照)、アミノ置換カルコン誘導体(米国特許第3,526,501号明細書等参照)、オキサゾール誘導体(米国特許第3,257,203号明細書等に開示のもの)、スチリルアントラセン誘導体(特開昭56-46234号公報等参照)、フルオレノン誘導体(特開昭54-110837号公報等参照)、ヒドラゾン誘導体(米国特許第3,717,462号明細書、特開昭54-59143号公報、同55-52063号公報、同55-52064号公報、同55-46760号公報、同57-11350号公報、同57-148749号公報、特開平2-311591号公報等参照)、スチルベン誘導体(特開昭61-210363号公報、同第61-228451号公報、同61-14642号公報、同61-72255号公報、同62-47646号公報、同62-36674号公報、同62-10652号公報、同62-30255号公報、同60-93455号公報、同60-94462号公報、同60-174749号公報、同60-175052号公報等参照)、シラザン誘導体(米国特許第4,950,950号明細書)、ポリシラン系(特開平2-204996号公報)、アニリン系共重合体(特開平2-282263号公報)等を挙げることができる。
 また、p型Si、p型SiC等の無機化合物も正孔注入材料として使用することができる。
 正孔注入・輸送層の材料には架橋型材料を用いることができ、架橋型の正孔注入輸送層としては、例えば、Chem.Mater.2008,20,413-422、Chem.Mater.2011,23(3),658-681、WO2008108430、WO2009102027、WO2009123269、WO2010016555、WO2010018813等の架橋材を、熱、光等により不溶化した層が挙げられる。
[電子注入層及び電子輸送層]
 電子注入・輸送層は、発光層への電子の注入を助け、発光領域まで輸送する層であって、電子移動度が大きい層である。
 有機EL素子は発光した光が電極(例えば陰極)により反射するため、直接陽極から取り出される発光と、電極による反射を経由して取り出される発光とが干渉することが知られている。この干渉効果を効率的に利用するため、電子注入・輸送層は数nm~数μmの膜厚で適宜選ばれるが、特に膜厚が厚いとき、電圧上昇を避けるために、10~10V/cmの電界印加時に電子移動度が少なくとも10-5cm/Vs以上であることが好ましい。
 電子注入・輸送層に用いる電子輸送性材料としては、分子内にヘテロ原子を1個以上含有する芳香族ヘテロ環化合物が好ましく用いられ、特に含窒素環誘導体が好ましい。また、含窒素環誘導体としては、含窒素6員環もしくは5員環骨格を有する芳香族環、又は含窒素6員環もしくは5員環骨格を有する縮合芳香族環化合物が好ましい。
 その他、ドナー性材料のドーピング(n)、アクセプター材料のドーピング(p)により、半導体性を備えた有機層を形成してもよい。Nドーピングの代表例は、電子輸送層の材料にLiやCs等の金属をドーピングさせるものであり、Pドーピングの代表例は、正孔輸送層の材料にF4TCNQ等のアクセプター材をドープするものである(例えば、特許3695714参照)。
 本発明の有機EL素子の各層の形成は、真空蒸着、スパッタリング、プラズマ、イオンプレーティング等の乾式成膜法やスピンコーティング、ディッピング、フローコーティング等の湿式成膜法等の公知の方法を適用することができる。
 各層の膜厚は特に限定されるものではないが、適切な膜厚に設定する必要がある。膜厚が厚すぎると、一定の光出力を得るために大きな印加電圧が必要になり効率が悪くなる。膜厚が薄すぎるとピンホール等が発生して、電界を印加しても充分な発光輝度が得られない。通常の膜厚は5nm~10μmの範囲が適しているが、10nm~0.2μmの範囲がさらに好ましい。
合成例1(中間体1-1の合成)
 下記合成スキームに従って、中間体1-1を合成した。
Figure JPOXMLDOC01-appb-C000078
 2-ブロモニトロベンゼン10g(49.5mmol)、酢酸ナトリウム13g(163mmol)、及び4-ブロモアニリン10g(59mmol)をアルゴン雰囲気下180℃で8時間加熱攪拌した。反応溶液を室温まで冷却し、酢酸エチルで薄め、ろ過した。ろ液を濃縮後、残査をメタノールで洗浄することで、(4-ブロモフェニル)-(2-ニトロフェニル)アミン3.8gをオレンジ色結晶として得た(収率22%)。
 (4-ブロモフェニル)-(2-ニトロフェニル)アミン3.8g(13mmol)をテトラヒドロフラン30mLに溶解させ、アルゴン雰囲気下、室温で攪拌しているところに、ハイドロサルファイトナトリウム11g(64mmol)/水30mlの溶液を滴下した。5時間攪拌した後、酢酸エチル20mLを加えて、炭酸水素ナトリウム2.2g(26mmol)/水20mlの溶液を加えた。さらにベンゾイルクロリド2.5g(18mmol)/酢酸エチル10mlの溶液を滴下し、室温で1時間攪拌した。酢酸エチルで抽出し、10%炭酸カリウム水溶液、水、飽和食塩水で順次洗浄した後、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去し、N-[2-(4-ブロモフェニルアミノ)フェニル]ベンズアミド2.1g(収率45%)を得た。
 N-[2-(4-ブロモフェニルアミノ)フェニル]ベンズアミド2.1g(5.7mmol)をキシレン30ml中に懸濁させ、p-トルエンスルホン酸1水和物0.6g(2.9mmol)を加え、3時間加熱還流させながら共沸脱水を行った。放冷後、反応溶液に酢酸エチル、塩化メチレン、水を加え、不溶物をろ別した。母液から有機層を抽出し、水、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去した。残査をシリカゲルカラムクロマトグラフィーにて精製し、1.0gのわずかに桃色を帯びた白色結晶を得た。FD-MSの分析により、上記中間体1-1と同定した(収率52%)。
合成例2(中間体1-2の合成)
 下記合成スキームに従って、中間体1-2を合成した。
Figure JPOXMLDOC01-appb-C000079
 2-ニトロジフェニルアミン2.8g(13mmol)をテトラヒドロフラン30mLに溶解させ、アルゴン雰囲気下、室温で攪拌しているところに、ハイドロサルファイトナトリウム11g(64mmol)/水30mLの溶液を滴下した。5時間攪拌した後、酢酸エチル20mLを加えて、炭酸水素ナトリウム2.2g(26mmol)/水20mlの溶液を加えた。さらに4-ブロモベンゾイルクロリド4.0g(18mmol)/酢酸エチル10mlの溶液を滴下し、室温で1時間攪拌した。酢酸エチルで抽出し、10%炭酸カリウム水溶液、水、飽和食塩水で順次洗浄した後、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去し、4-ブロモ-N-(2-(フェニルアミノ)フェニル)ベンズアミド2.1g(収率45%)を得た。
 4-ブロモ-N-(2-(フェニルアミノ)フェニル)ベンズアミド2.1g(5.7mmol)をキシレン30ml中に懸濁させ、p-トルエンスルホン酸1水和物0.6g(2.9mmol)を加え、3時間加熱還流させながら共沸脱水を行った。放冷後、反応溶液に酢酸エチル、塩化メチレン、水を加え、不溶物をろ別した。母液から有機層を抽出し、水、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去した。残査をシリカゲルカラムクロマトグラフィーにて精製し、1.2gのわずかに桃色を帯びた白色結晶を得た。FD-MSの分析により、中間体1-2と同定した(収率54%)。
合成例3(中間体1-3の合成)
 下記中間体1-3を合成した。
Figure JPOXMLDOC01-appb-C000080
 4-ブロモフェナシルブロミド15g(54mmol)、及び2-アミノピリジン5.2g(55mmol)をエタノール100mlに溶解し、炭酸水素ナトリウム7.0gを加え、6時間加熱還流した。反応終了後、生成した結晶をろ別し、水、エタノールで洗浄し、12.5gの白色結晶を得た。FD-MSの分析により、中間体1-3と同定した(収率85%)。
合成例4(中間体1-4の合成)
 下記中間体1-4を合成した。
Figure JPOXMLDOC01-appb-C000081
 暗室中、アルゴン雰囲気下、1,4-ジブロモベンゼン32.7g(138.6mmol)を脱水エーテル80ml、脱水トルエン240ml混合溶媒に溶解させ、-10℃まで冷却した。1.6M濃度のn-ブチルリチウム-ヘキサン溶液76ml(121.9mmol)を0℃以下にて滴下し、1時間撹拌した。別の反応容器にフェナントロリン10.0g(55.4mmol)を脱水エーテル30ml、脱水トルエン100ml混合溶媒に溶解させ、5℃に冷却した。そこに、上記にて調整したLi体をキャヌーラを用いて圧送した。2.5時間後、水80mlを滴下した。反応液を分液し、水層を酢酸エチルにて抽出後、水、及び飽和食塩水で洗浄後、NaSOで乾燥した。有機層を半量程度まで濃縮し、アルゴン雰囲気下の別の反応容器に注ぎ、酸化マンガン38.5g(443.9mmol)を添加し、20時間撹拌した。セライト濾過後、濾液を濃縮再結晶し、15.3gの白色固体を得た。FD-MSの分析により、中間体1-4と同定した(収率82%)。
合成例5(中間体2-1の合成)
 下記中間体2-1を合成した。
Figure JPOXMLDOC01-appb-C000082
 アルゴン雰囲気下、インドロ[2,3-a]カルバゾール(Synlett p.42-48(2005)に記載の方法に従って合成した。)15.0g(58.5mmol)、ヨードベンゼン11.9g(58.5mmol)、ヨウ化銅11.2g(58.5mmol)、trans-1,2-シクロヘキサンジアミン20.0g(175.5mmol)、リン酸三カリウム37.3g(175.5mmol)に脱水1,4-ジオキサン90mlを加えて、24時間加熱還流攪拌した。反応溶液を減圧下で濃縮して得られた残渣に、トルエン500mlを加えて120℃に加熱し、不溶物を濾別した。濾液を減圧下で濃縮して得られた残渣をシリカゲルカラムクロマトグラフィーで精製することにより、10.0gの白色固体を得た。FD-MSの分析により、中間体2-1と同定した(収率51%)。
合成例6(中間体2-2の合成)
 下記中間体2-2を合成した。
Figure JPOXMLDOC01-appb-C000083
 アルゴン雰囲気下、2-ブロモニトロベンゼン25.0g(123.8mmol)、4-ジベンゾフランボロン酸31.5g(148.5mmol)に、2M NaCO水溶液124ml(248mmol)、DME(250ml)、トルエン(250ml)、Pd[PPh7.2g(6.2mmol)を加えて、12時間加熱還流攪拌した。
 反応終了後、室温まで冷却した。試料を分液ロートに移し、水(500ml)を加え、ジクロロメタンにて抽出した。MgSOで乾燥後、ろ過、濃縮した。試料をシリカゲルカラムクロマトグラフィーで精製し、24.0gの白色固体を得た。FD-MSの分析により、中間体2-2と同定した(収率67%)。
合成例7(中間体2-3の合成)
 下記中間体2-3を合成した。
Figure JPOXMLDOC01-appb-C000084
 アルゴン雰囲気下、中間体2-4 24.0g(83.0mmol)、トリフェニルホスフィン54.4g(207.4mmol)にジメチルアセトアミド(166ml)を加え、20時間加熱還流攪拌した。
 反応終了後、室温まで冷却した。試料を分液ロートに移し、水(400ml)を加え、ジクロロメタンにて抽出した。MgSOで乾燥後、ろ過、濃縮した。試料をシリカゲルカラムクロマトグラフィーで精製し、14.5gの白色固体を得た。FD-MSの分析により、中間体2-3と同定した(収率68%)。
合成例8(中間体2-4の合成)
 下記中間体2-4を合成した。
Figure JPOXMLDOC01-appb-C000085
 1-インダノン18.7g(142.0mmol)、塩化フェニルヒドラジニウム20.5g(142.0mmol)をエタノール400mlに加えた溶液に、濃硫酸2.0mlを加えて、8時間加熱還流攪拌した。反応溶液を放冷し、析出物を濾集した。濾取した固体をメタノール500mlで洗浄した。粗生成物を再結晶することにより、17.5gの白色固体を得た。FD-MSの分析により、中間体2-4と同定した(収率60%)。
合成例9(芳香族複素環誘導体(E1)の製造)
 下記の芳香族複素環誘導体(E1)を合成した。
Figure JPOXMLDOC01-appb-C000086
 アルゴン雰囲気下、中間体1-1 3.5g(10.0mmol)、中間体2-1 3.3g(10.0mmol)、Pd(dba) 0.14g(0.15mmol)、P(tBu)HBF 0.087g(0.3mmol)、t-ブトキシナトリウム1.9g(20.0mmol)に、無水キシレン50mlを加えて8時間加熱還流した。
 反応終了後、反応液を50℃に冷却し、セライト、及びシリカゲルを通して濾過を行い、濾液を濃縮した。得られた濃縮残渣をシリカゲルカラムクロマトグラフィーにて精製し白色固体を得た。粗生成物をトルエンにて再結晶し、1.0gの白色結晶を得た。FD-MSの分析により、芳香族複素環誘導体(E1)と同定した。(収率17%)
FD-MS分析 C43H28N4:理論値600、観測値600
合成例10(芳香族複素環誘導体(E2)の製造)
 下記の芳香族複素環誘導体(E2)を合成した。
Figure JPOXMLDOC01-appb-C000087
 合成例9において、中間体1-1の代わりに中間体1-2を3.5g用いた以外は同様にした。その結果、1.2gの白色結晶を得た。FD-MSの分析により、芳香族複素環誘導体(E2)と同定した。(収率20%)
FD-MS分析 C43H28N4:理論値600、観測値600
合成例11(芳香族複素環誘導体(E3)の製造)
 下記の芳香族複素環誘導体(E3)を合成した。
Figure JPOXMLDOC01-appb-C000088
 合成例9において、中間体1-1の代わりに中間体1-3を2.7g用いた以外は同様にした。その結果、1.3gの白色結晶を得た。FD-MSの分析により、芳香族複素環誘導体(E3)と同定した。(収率25%)
FD-MS分析 C37H24N4:理論値524、観測値524
合成例12(芳香族複素環誘導体(E4)の製造)
 下記の芳香族複素環誘導体(E4)を合成した。
Figure JPOXMLDOC01-appb-C000089
 合成例9において、中間体1-1の代わりに中間体1-4を3.4g用いた以外は同様にした。その結果、1.1gの白色結晶を得た。FD-MSの分析により、芳香族複素環誘導体(E4)と同定した。(収率19%)
FD-MS分析 C42H26N4:理論値586、観測値586
合成例13(芳香族複素環誘導体(E5)の製造)
 下記の芳香族複素環誘導体(E5)を合成した。
Figure JPOXMLDOC01-appb-C000090
 合成例9において、中間体2-1の代わりに中間体2-3を2.6g用いた以外は同様に反応を行ったところ、2.6gの白色結晶を得た。FD-MSの分析により、芳香族複素環誘導体(E5)と同定した。(収率50%)
FD-MS分析 C37H23N3O:理論値525、観測値525
合成例14(芳香族複素環誘導体(E6)の製造)
 下記の芳香族複素環誘導体(E6)を合成した。
Figure JPOXMLDOC01-appb-C000091
 合成例9において、中間体1-1の代わりに中間体1-2を3.5g、中間体2-1の代わりに中間体2-3を2.6g用いた以外は同様に反応を行ったところ、2.6gの白色結晶を得た。FD-MSの分析により、芳香族複素環誘導体(E6)と同定した。(収率50%)
FD-MS分析 C37H23N3O:理論値525、観測値525
合成例15(芳香族複素環誘導体(E7)の製造)
 下記の芳香族複素環誘導体(E7)を合成した。
Figure JPOXMLDOC01-appb-C000092
 合成例9において、中間体1-1の代わりに中間体1-3を2.7g、中間体2-1の代わりに中間体2-3を2.6g用いた以外は同様に反応を行ったところ、2.9gの白色結晶を得た。FD-MSの分析により、芳香族複素環誘導体(E7)と同定した。(収率65%)
FD-MS分析 C31H19N3O:理論値449、観測値449
合成例16(芳香族複素環誘導体(E8)の製造)
 下記の芳香族複素環誘導体(E8)を合成した。
Figure JPOXMLDOC01-appb-C000093
 合成例9において、中間体1-1の代わりに中間体1-4を3.4g、中間体2-1の代わりに中間体2-3を2.6g用いた以外は同様に反応を行ったところ、2.0gの白色結晶を得た。FD-MSの分析により、芳香族複素環誘導体(E8)と同定した。(収率40%)
FD-MS分析 C36H21N3O:理論値511、観測値511
合成例17(芳香族複素環誘導体(E9)の製造)
 下記合成スキームに従って、芳香族複素環誘導体(E9)を合成した。
Figure JPOXMLDOC01-appb-C000094
 アルゴン雰囲気下、中間体1-1 7.0g(20.0mmol)、中間体2-4 4.1g(20.0mmol)、ヨウ化銅3.8g(20.0mmol)、trans-1,2-シクロヘキサンジアミン6.9g(60.0mmol)、リン酸三カリウム12.7g(60.0mmol)に、脱水1,4-ジオキサン50mlを加えて、48時間加熱還流攪拌した。反応溶液を減圧下で濃縮して得られた残渣に、トルエン1000mlを加えて120℃に加熱し、不溶物を濾別した。濾液を減圧下で濃縮して得られた残渣をシリカゲルカラムクロマトグラフィーで精製することにより、5.0gの白色固体を得た。FD-MSの分析により、中間体(9-a)と同定した。
FD-MS分析 C34H23N3:理論値473、観測値473
 t-ブトキシカリウム5.6g(50.0mmol)を脱水THF(300ml)に加え、0℃に冷却し、さらに上記で得られた白色個体 4.7g(10.0mmol)を加え、0℃で1時間撹拌した。さらにヨウ化メチル7.1g(50.0mmol)を徐々に加えた後、室温で4時間撹拌した。
 反応終了後、反応溶液に水(100ml)を加え、ジクロロメタンにて抽出した。MgSOで乾燥後、濾過、濃縮した。濃縮残渣をシリカゲルカラムクロマトグラフィーで精製し白色固体を得た。粗生成物をトルエンにて再結晶し、3.5gの白色固体を得た。FD-MSの分析により、芳香族複素環誘導体(E9)と同定した。(収率35%)
FD-MS分析 C36H27N3:理論値501、観測値501
合成例18(芳香族複素環誘導体(E10)の製造)
 下記合成スキームに従って、芳香族複素環誘導体(E10)を合成した。
Figure JPOXMLDOC01-appb-C000095
 合成例17において、中間体1-1の代わりに中間体1-2を7.0g用いた以外は同様にした。その結果、4.0gの白色結晶を得た。FD-MSの分析により、芳香族複素環誘導体(E10)と同定した。(収率40%)
FD-MS分析 C36H27N3:理論値501、観測値501
実施例1(有機EL素子の作製)
 25mm×75mm×1.1mmのITO透明電極ライン付きガラス基板(ジオマティック社製)をイソプロピルアルコール中で5分間超音波洗浄し、さらに、30分間UV(Ultraviolet)オゾン洗浄した。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている面上に前記透明電極を覆うようにして下記化合物(A)を蒸着し、膜厚10nmのA膜を成膜した。このA膜上に、第1正孔輸送材料として下記芳香族アミン誘導体(X1)を蒸着し、膜厚65nmの第1正孔輸送層を成膜した。第1正孔輸送層の成膜に続けて、第2正孔輸送材料として下記化合物(H1)を蒸着し、膜厚10nmの第2正孔輸送層を成膜した。
 第2正孔輸送層上に、燐光用ホスト(芳香族複素環誘導体A)である化合物(B1)と燐光用ドーパントである下記のIr(ppy)とを厚さ35nmで共蒸着し、燐光発光層(第一有機薄膜層)を得た。Ir(ppy)の濃度は10質量%であった。
 続いて、燐光発光層上に、芳香族複素環誘導体Bとして下記(B3)を蒸着し、膜厚5nmの第1電子輸送層(第二有機薄膜層)を成膜した。第1電子輸送層の成膜に続けて、下記(C1)を蒸着し、膜厚20nmの第2電子輸送層を成膜した。さらに、厚さ1nmのLiF、厚さ80nmの金属Alを順次積層し、陰極を形成した。尚、電子注入性電極であるLiFは、1Å/minの成膜速度で形成した。
Figure JPOXMLDOC01-appb-C000096
 作製した有機EL素子を直流電流駆動により発光させ、輝度(L)、電流密度を測定し、電流密度10mA/cmにおける電流効率(L/J)、駆動電圧(V)を求めた。さらに初期輝度20000cd/mにおける素子寿命を求めた。結果を表1に示す。
実施例2
 実施例1において、ホスト材料として(B1)の代わりに、上記(B2)を用いた以外は、実施例1と同様にして有機EL素子を作製し、評価した。結果を表1に示す。
比較例1~3
 実施例1において、ホスト材料、及び電子輸送材料として表1に記載の材料を用いた以外は、実施例1と同様にして有機EL素子を作製し、評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 比較例1、2と比べ、三重項エネルギーの大きいB3が電子輸送層側に積層されることにより、励起子の障壁機能が発揮され発光効率が向上する。また、比較例3ではイオン化ポテンシャルの大きなB3をホスト材料として使っているため、電子輸送層界面に正孔を蓄積することができず、発光効率が低下し、寿命も低下する。
 上記電子輸送材料及びホスト材料につき、イオン化ポテンシャル(Ip)及び三重項エネルギー(T1)の測定結果を表2に示す。尚、測定方法は以下のとおりである。
(1)イオン化ポテンシャル(IP)
 イオン化ポテンシャルは、大気下で光電子分光装置(理研計器(株)社製:AC-3)を用いて測定した。具体的には、材料に光を照射し、その際に電荷分離によって生じる電子量を測定することにより測定した。
 尚、イオン化ポテンシャル(Ip)は、ホスト材料の化合物から電子を取り去ってイオン化するために要するエネルギーを意味する。
(2)三重項エネルギー(T1)
 三重項エネルギーは、市販の装置F-4500(株式会社日立ハイテクノロジーズ製)を用いて測定した。T1の換算式は以下の通りである。
 換算式 T1(eV)=1239.85/λedge
 尚、λedge(単位:nm)とは、縦軸にリン光強度、横軸に波長をとって、リン光スペクトルを表したときに、リン光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸の交点の波長値を意味する。
Figure JPOXMLDOC01-appb-T000002
参考例1
 蛍光型有機EL素子の電子輸送層に、芳香族複素環誘導体Bを使用した例を示す。
 25mm×75mm×1.1mmのITO透明電極ライン付きガラス基板(ジオマティック社製)をイソプロピルアルコール中で5分間超音波洗浄し、さらに、30分間UV(Ultraviolet)オゾン洗浄した。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている面上に前記透明電極を覆うようにして上記電子受容性化合物(A)を蒸着し、膜厚5nmのA膜を成膜した。
 このA膜上に、第1正孔輸送材料として下記芳香族アミン誘導体(X2)を蒸着し、膜厚85nmの第1正孔輸送層を成膜した。
 第1正孔輸送層の成膜に続けて、第2正孔輸送材料として上記化合物(H1)を蒸着し、膜厚10nmの第2正孔輸送層を成膜した。
 この正孔輸送層上に、蛍光用ホストである下記化合物(B4)と蛍光用ドーパントである下記化合物(BD1)とを厚さ25nmで共蒸着し、蛍光発光層を得た。BD1の濃度は5質量%であった。
 続いて、この蛍光発光層上に、第1電子輸送材料として上記(B3)を蒸着し、膜厚20nmの第1電子輸送層を成膜した。第1電子輸送層の成膜に続けて、第2電子輸送材料として下記(C2)を蒸着し、膜厚5nmの第2電子輸送層を成膜した。さらに、厚さ1nmのLiF、厚さ80nmの金属Alを順次積層し、陰極を形成した。尚、電子注入性電極であるLiFは、1Å/minの成膜速度で形成した。
Figure JPOXMLDOC01-appb-C000097
(有機EL素子の発光性能評価)
 以上のように作製した有機EL素子を直流電流駆動により発光させ、輝度(L)、電流密度を測定し、電流密度10mA/cmにおける電流効率(L/J)、駆動電圧(V)を求めた。さらに初期輝度20000cd/mにおける素子寿命を求めた。結果を表2に示す。
参考例2
 参考例1において、電子輸送材料として表1に記載の材料を用いた以外は、同様にして有機EL素子を作製し、評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 参考例1の結果から、芳香族複素環誘導体Bは蛍光型有機EL素子の電子輸送層としても使用できる。従って、上述した実施例の燐光型有機EL素子と参考例1の蛍光型有機EL素子を並列して発光装置を形成する際には、電子輸送層を共通層として形成することができる。
 本発明の有機EL素子は、長寿命であり、高効率での駆動が可能である。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献及び本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。

Claims (20)

  1.  対向する陽極と陰極との間に、前記陽極側から、第一有機薄膜層と第二有機薄膜層とをこの順に備え、
     該第一有機薄膜層は下記式(1-1)で表される芳香族複素環誘導体Aと、燐光発光性材料とを含み、
     該第二有機薄膜層は下記式(2-1)で表される芳香族複素環誘導体Bを含む、有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000098
    [式(1-1)において、
     W及びWは、それぞれ独立に、単結合、CR又はSiRを表わす。
     R及びRは、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリール基を表す。
     L及びLは、それぞれ独立に、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリーレン基を表す。
     X~X16のうち、X~Xのうち一つと、X~X12のうち一つは、互いに結合する炭素原子を表わす。それ以外のX~X16は、下記Rと結合する炭素原子又は窒素原子である。但し、X~X16のうち、隣り合う二つが炭素原子である場合、Rと結合せずに、当該隣り合う炭素原子を含む環を形成してもよい。
     Rは、それぞれ独立に、水素原子、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。
     P及びPは、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリール基を表す。
     但し、P及びPの少なくとも1つが下記式(1-a)、(1-b)、又は(1-c)で表わされる基である。
    Figure JPOXMLDOC01-appb-C000099
    (式(1-a)、(1-b)、(1-c)において、
     Z~Zは、それぞれ独立に、LもしくはLに結合する炭素原子、下記Rと結合する炭素原子又は窒素原子である。但し、隣り合う二つが炭素原子である場合、Rと結合せずに、当該隣り合う炭素原子を含む環を形成してもよい。
     Rはそれぞれ独立に、水素原子、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。)
    Figure JPOXMLDOC01-appb-C000100
    [式(2-1)において、
     環Aは、隣接環と縮合する置換もしくは無置換の芳香族環を示す。
     Y~Yは、それぞれ独立に、下記Rと結合する炭素原子又は窒素原子である。但し、隣り合う二つが炭素原子である場合、Rと結合せずに、当該隣り合う炭素原子を含む環を形成してもよい。
     Rは、それぞれ独立に、水素原子、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基(但し、置換もしくは無置換のカルバゾリル基ではない)である。
     Lは、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリーレン基を表わす。
     Qは、前記式(1-a)、(1-b)、(1-c)、下記式(2-c)、(2-d)、(2-e)、又は(2-f)で表わされる基である。
    Figure JPOXMLDOC01-appb-C000101
    [式(2-c)、(2-d)、(2-e)、(2-f)において、
     Z~Z12は、それぞれ独立に、Lに結合する炭素原子、下記Rと結合する炭素原子又は窒素原子である。但し、隣り合う二つが炭素原子である場合、Rと結合せずに、当該隣り合う炭素原子を含む環を形成してもよい。
     R、K~Kは、それぞれ独立に、水素原子、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。
     aは、0~2の整数を表す。
     bは、0~4の整数を表す。
     cは、0~5の整数を表す。
     dは、0~7の整数を表す。]
  2.  前記芳香族複素環誘導体Bが下記式(2-2)~(2-4)のいずれかで表される請求項1に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000102
    [式(2-2)~(2-4)において、
     環Bは、隣接環と縮合する式(2-a)で表わされる環を示し、環Cは、隣接環と縮合する式(2-b)で表わされる環を示す。
     Wは、NR、CR、SiR、酸素原子、又は硫黄原子を表わす。
     R~Rは、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリール基を表す。
     Y~Yは、それぞれ独立に、下記R10と結合する炭素原子又は窒素原子である。但し、隣り合う二つが炭素原子である場合、R10と結合せずに、当該隣り合う炭素原子を含む環を形成してもよい。
     R10は、それぞれ独立に、水素原子、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基(但し、置換もしくは無置換のカルバゾリル基ではない)である。
     Lは、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリーレン基を表わす。
     Qは、前記式(1-a)、(1-b)、(1-c)、(2-c)、(2-d)、(2-e)、又は(2-f)で表わされる基である。
  3.  前記芳香族複素環誘導体Aが下記式(1-2)で表される請求項1又は2に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000103
    [式中、X~X16、L、L、P及びPは、それぞれ、前記式(1-1)のX~X16、L、L、P及びPと同様な基を表す。]
  4.  前記芳香族複素環誘導体Aが下記式(1-3)で表される請求項1~3のいずれかに記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000104
    [式中、X~X16、L、L、P及びPは、それぞれ、前記式(1-1)のX~X16、L、L、P及びPと同様な基を表す。]
  5.  前記芳香族複素環誘導体Aが下記式(1-4)又は(1-5)で表される請求項1~3のいずれかに記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000105
    [式中、X~X16、L、L、P及びPは、それぞれ、前記式(1-1)のX~X16、L、L、P及びPと同様な基を表す。]
  6.  前記芳香族複素環誘導体Bが下記式(3-1)で表される請求項1~5のいずれかに記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000106
    [式中、L、Y~Y及びQは、それぞれ、前記式(2-1)のL、Y~Y及びQと同様な基を表す。]
  7.  前記芳香族複素環誘導体Bが下記式(4-1)又は(4-2)で表される請求項2~5のいずれかに記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000107
    [式(4-1)、又は(4-2)において、
     L、Y~Y、及びQは、それぞれ、前記式(2-3)のL、Y~Y、及びQと同様な基を表す。
     Kは、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。
     aは、0~2の整数を表す。
     W31は、CR、SiR、酸素原子、又は硫黄原子を表わす。
     W32は、NR、CR、SiR、酸素原子、又は硫黄原子を表わす。
     R~Rは、それぞれ、前記式(2-b)のWにおけるR~Rと同様な基を表す。]
  8.  前記芳香族複素環誘導体Bが下記式(5-1)~(5-3)で表される請求項2~5のいずれかに記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000108
    [式(5-1)~(5-3)において、
     W、L、Y~Y、及びQは、それぞれ、前記式(2-3)のW、L、Y~Y、及びQと同様な基を表す。
     Kは、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。
     aは、0~2の整数を表す。]
  9.  前記芳香族複素環誘導体Bが下記式(6-1)で表される請求項2~5のいずれかに記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000109
    [式(6-1)において、
     L、Y~Y、及びQは、それぞれ、前記式(2-3)のL、Y~Y、及びQと同様な基を表す。
     Kは、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。
     aは、0~2の整数を表す。
     W33は、CR、SiR、酸素原子、又は硫黄原子を表わす。
     R~Rは、それぞれ、前記式(2-b)のWにおけるR~Rと同様な基を表す。]
  10.  前記芳香族複素環誘導体Bが下記式(7-1)で表される請求項2~5のいずれかに記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000110
    [式(7-1)において、
     L、Y~Y、及びQは、それぞれ、前記式(2-3)のL、Y~Y、及びQと同様な基を表す。
     W34は、CR、又はSiRを表わす。
     R及びRは、それぞれ、前記式(2-b)のWにおけるR及びRと同様な基を表す。]
  11.  前記陽極に、下記式(10)で表される化合物を含有する層が接合している請求項1~10のいずれかに記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000111
    (式中、R11~R16は、それぞれ独立にシアノ基、-CONH、カルボキシ基、もしくは-COOR17(R17は、炭素数1~20のアルキル基である)であるか、又はR11及びR12、R13及びR14、又はR15及びR16が互いに結合して-CO-O-CO-を形成する。)
  12.  前記燐光発光材料がイリジウム(Ir),オスミウム(Os)又は白金(Pt)金属のオルトメタル化錯体である請求項1~11のいずれかに記載の有機エレクトロルミネッセンス素子。
  13.  請求項1~12のいずれかに記載の有機エレクトロルミネッセンス素子である第1の素子と、
     蛍光発光する有機エレクトロルミネッセンス素子(第2の素子)とを、基板上に並列して有し、
     前記第1の素子及び第2の素子の、正孔輸送帯域及び電子輸送帯域を形成する層のうち少なくとも1層が共通層である、有機エレクトロルミネッセンス発光装置。
  14.  前記式(11-1)、又は(11-2)で表わされる含窒素芳香族複素環誘導体。
    Figure JPOXMLDOC01-appb-C000112
    [式(11-1)、又は(11-1)において、
     環B’は、隣接環と縮合する式(11-a)で表わされる環を示し、環C’は、隣接環と縮合する式(11-b)で表わされる環を示す。
     Wは、NR21、CR2223、SiR2223、又は酸素原子を表わす。
     R21~R23は、それぞれ独立に、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリール基を表す。
     Y11~Y18は、それぞれ独立に、下記R24と結合する炭素原子又は窒素原子である。但し、隣り合う二つが炭素原子である場合、R24と結合せずに、当該隣り合う炭素原子を含む環を形成してもよい。
     R24は、それぞれ独立に、水素原子、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基(但し、置換もしくは無置換のカルバゾリル基ではない)である。
     L11は、単結合、置換もしくは無置換の環形成炭素数6~30のアリーレン基、又は置換もしくは無置換の環形成原子数5~30のヘテロアリーレン基を表わす。
     Q11は、下記式(11-c)、(11-d)、(11-e)、又は(11-f)で表わされる基である。
    Figure JPOXMLDOC01-appb-C000113
    [式(11-c)、(11-d)、(11-e)、(11-f)において、
     Z21~Z24は、それぞれ独立に、L11に結合する炭素原子、下記R25と結合する炭素原子又は窒素原子である。但し、隣り合う二つが炭素原子である場合、R25と結合せずに、当該隣り合う炭素原子を含む環を形成してもよい。
     R25、K11~K14は、それぞれ独立に、水素原子、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。]
  15.  下記式(12-1)、又は(12-2)で表わされる請求項14に記載の含窒素芳香族複素環誘導体。
    Figure JPOXMLDOC01-appb-C000114
    [式(12-1)、又は(12-2)において、
     L11、Y11~Y18、及びQ11は、それぞれ、前記式(11-1)の、L11、Y11~Y18、及びQ11と同様な基を表す。
     W41は、CR2223、SiR2223、又は酸素原子を表わす。
     W42は、NR21、CR2223、SiR2223、又は酸素原子を表わす。
     R21~R23は、それぞれ、前記式(11-b)のR21~R23と同様な基を表す。
     K15は、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。
     aは、0~2の整数を表す。]
  16.  下記式(13-1)~(13-3)で表わされる請求項14に記載の含窒素芳香族複素環誘導体。
    Figure JPOXMLDOC01-appb-C000115
    [式(13-1)~(13-3)において、
     W、L11、Y11~Y18、及びQ11は、それぞれ、前記式(11-1)の、W、L11、Y11~Y18、及びQ11と同様な基を表す。
     K15は、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。
     aは、0~2の整数を表す。]
  17.  下記式(14-1)で表わされる請求項14に記載の含窒素芳香族複素環誘導体。
    Figure JPOXMLDOC01-appb-C000116
    [式(14-1)において、
     L11、Y11~Y18、及びQ11は、それぞれ、前記式(11-1)の、L11、Y11~Y18、及びQ11と同様な基を表す。
     W43は、CR2223、SiR2223、又は酸素原子を表わす。
     R22及びR23は、それぞれ、前記式(11-b)のR22及びR23と同様な基を表す。
     K15は、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換のシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基である。
     aは、0~2の整数を表す。]
  18.  下記式(15-1)で表わされる請求項14に記載の含窒素芳香族複素環誘導体。
    Figure JPOXMLDOC01-appb-C000117
    [式(15-1)において、
     L11、Y11~Y18は、それぞれ、前記式(11-1)のL11、Y11~Y18と同様な基を表す。
     W44は、CR2223、又はSiR2223を表わす。
     R22及びR23は、それぞれ、前記式(11-b)のR22及びR23と同様な基を表す。
     Q12は、前記式(11-c)、(11-d)、又は(11-e)で示される基を表わす。]
  19.  有機エレクトロルミネッセンス素子用材料である請求項14~18のいずれかに記載の含窒素芳香族複素環誘導体。
  20.  有機エレクトロルミネッセンス素子用電子輸送材料である請求項14~18のいずれかに記載の含窒素芳香族複素環誘導体。
PCT/JP2012/005652 2011-09-09 2012-09-06 有機エレクトロルミネッセンス素子 WO2013035329A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147005945A KR102059328B1 (ko) 2011-09-09 2012-09-06 유기 전계발광 소자
JP2013532453A JP6212391B2 (ja) 2011-09-09 2012-09-06 有機エレクトロルミネッセンス素子
US14/343,841 US20140217393A1 (en) 2011-09-09 2012-09-06 Organic electroluminescence element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-196638 2011-09-09
JP2011196638 2011-09-09

Publications (1)

Publication Number Publication Date
WO2013035329A1 true WO2013035329A1 (ja) 2013-03-14

Family

ID=47831799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005652 WO2013035329A1 (ja) 2011-09-09 2012-09-06 有機エレクトロルミネッセンス素子

Country Status (5)

Country Link
US (1) US20140217393A1 (ja)
JP (1) JP6212391B2 (ja)
KR (1) KR102059328B1 (ja)
TW (1) TW201329195A (ja)
WO (1) WO2013035329A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017484A1 (ja) * 2012-07-25 2014-01-30 東レ株式会社 発光素子材料および発光素子
WO2015174791A1 (ko) * 2014-05-16 2015-11-19 주식회사 동진쎄미켐 신규한 화합물 및 이를 포함하는 유기발광소자
WO2016018076A1 (en) * 2014-07-29 2016-02-04 Rohm And Haas Electronic Materials Korea Ltd. Electron buffering material and organic electroluminescent device
WO2016111270A1 (ja) * 2015-01-07 2016-07-14 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
US20160293850A1 (en) * 2015-03-31 2016-10-06 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
CN106458893A (zh) * 2014-05-16 2017-02-22 东进世美肯株式会社 新型化合物及包含其的有机发光元件
CN106753340A (zh) * 2016-12-20 2017-05-31 中节能万润股份有限公司 一种苯并咪唑类有机电致发光材料及其制备方法和应用
US10008674B2 (en) 2014-10-15 2018-06-26 Samsung Display Co., Ltd. Organic light emitting diode and organic light emitting display device including the same
US10014477B2 (en) 2012-08-31 2018-07-03 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element using same
US10164195B2 (en) 2015-12-22 2018-12-25 Samsung Display Co., Ltd. Organic light-emitting device
US11617290B2 (en) 2015-12-22 2023-03-28 Samsung Display Co., Ltd. Organic light-emitting device
US11696496B2 (en) 2015-12-22 2023-07-04 Samsung Display Co., Ltd. Organic light-emitting device
US11937500B2 (en) 2015-12-22 2024-03-19 Samsung Display Co., Ltd. Organic light-emitting device

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013039221A1 (ja) 2011-09-16 2013-03-21 出光興産株式会社 芳香族アミン誘導体およびそれを用いた有機エレクトロルミネッセンス素子
CN103380508B (zh) 2011-11-22 2017-09-08 出光兴产株式会社 芳香族杂环衍生物、有机电致发光元件用材料以及有机电致发光元件
JP5989000B2 (ja) 2011-11-25 2016-09-07 出光興産株式会社 芳香族アミン誘導体、有機エレクトロルミネッセンス素子用材料および有機エレクトロルミネッセンス素子
JP5898683B2 (ja) 2011-12-05 2016-04-06 出光興産株式会社 有機エレクトロルミネッセンス素子用材料および有機エレクトロルミネッセンス素子
JP5905584B2 (ja) * 2012-02-27 2016-04-20 エルジー・ケム・リミテッド 有機発光素子
KR20160029187A (ko) * 2014-09-04 2016-03-15 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함하는 유기 발광 표시 장치
KR102248158B1 (ko) * 2014-09-05 2021-05-06 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함하는 표시 장치
KR102364220B1 (ko) 2014-12-03 2022-02-18 삼성디스플레이 주식회사 유기 발광 소자
US10497876B2 (en) * 2014-12-24 2019-12-03 Hodogaya Chemical Co., Ltd. Organic electroluminescent device
WO2016111301A1 (ja) * 2015-01-08 2016-07-14 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
WO2016121561A1 (ja) * 2015-01-26 2016-08-04 シャープ株式会社 有機エレクトロルミネッセンス素子、及び、有機エレクトロルミネッセンスパネル
WO2016125706A1 (ja) * 2015-02-03 2016-08-11 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
KR20170028496A (ko) 2015-09-03 2017-03-14 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
KR102399570B1 (ko) 2015-11-26 2022-05-19 삼성디스플레이 주식회사 유기 발광 소자
US11910707B2 (en) 2015-12-23 2024-02-20 Samsung Display Co., Ltd. Organic light-emitting device
KR20170127101A (ko) 2016-05-10 2017-11-21 삼성디스플레이 주식회사 유기 발광 소자
KR102341067B1 (ko) * 2019-12-16 2021-12-17 에스케이머티리얼즈 주식회사 화합물, 유기 전계 발광 소자 및 표시 장치

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006005355A (ja) * 2004-06-15 2006-01-05 Samsung Sdi Co Ltd 有機電界発光素子
WO2009136595A1 (ja) * 2008-05-08 2009-11-12 新日鐵化学株式会社 有機電界発光素子用化合物及び有機電界発光素子
KR20100082049A (ko) * 2009-01-08 2010-07-16 제일모직주식회사 신규한 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2010107244A2 (en) * 2009-03-20 2010-09-23 Dow Advanced Display Materials, Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2010136109A1 (de) * 2009-05-29 2010-12-02 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011010844A1 (en) * 2009-07-23 2011-01-27 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
KR20110011579A (ko) * 2009-07-27 2011-02-08 에스에프씨 주식회사 인돌로카바졸 유도체 및 이를 이용한 유기전계발광소자
WO2011055934A2 (ko) * 2009-11-03 2011-05-12 제일모직 주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2011071255A1 (en) * 2009-12-11 2011-06-16 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
JP2011146610A (ja) * 2010-01-18 2011-07-28 Canon Inc 有機エレクトロルミネッセンス表示装置とその製造方法
WO2012136295A1 (de) * 2011-04-05 2012-10-11 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6097147A (en) 1998-09-14 2000-08-01 The Trustees Of Princeton University Structure for high efficiency electroluminescent device
KR100377321B1 (ko) * 1999-12-31 2003-03-26 주식회사 엘지화학 피-형 반도체 성질을 갖는 유기 화합물을 포함하는 전기소자
JP2003133075A (ja) * 2001-07-25 2003-05-09 Toray Ind Inc 発光素子
JP4261855B2 (ja) * 2002-09-19 2009-04-30 キヤノン株式会社 フェナントロリン化合物及びそれを用いた有機発光素子
TWI428053B (zh) * 2004-02-09 2014-02-21 Idemitsu Kosan Co Organic electroluminescent element
KR100729089B1 (ko) * 2005-08-26 2007-06-14 삼성에스디아이 주식회사 유기 발광표시장치 및 그 제조방법
WO2009041635A1 (ja) 2007-09-28 2009-04-02 Idemitsu Kosan Co., Ltd. 有機el素子
TWI471406B (zh) * 2009-03-31 2015-02-01 Nippon Steel & Sumikin Chem Co A phosphorescent element, and an organic electroluminescent device using the same
JP4590020B1 (ja) * 2009-07-31 2010-12-01 富士フイルム株式会社 電荷輸送材料及び有機電界発光素子
KR101431644B1 (ko) * 2009-08-10 2014-08-21 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20120057561A (ko) * 2010-04-20 2012-06-05 이데미쓰 고산 가부시키가이샤 비스카르바졸 유도체, 유기 일렉트로루미네선스 소자용 재료 및 그것을 사용한 유기 일렉트로루미네선스 소자
KR101753172B1 (ko) * 2010-08-20 2017-07-04 유니버셜 디스플레이 코포레이션 Oled를 위한 바이카르바졸 화합물
EP2643368B1 (de) * 2010-11-23 2015-09-23 Basf Se Copolymere, die carbonsäuregruppen, sulfonsäuregruppen und polyalkylenoxidgruppen enthalten, als belagsinhibierender zusatz zu wasch- und reinigungsmitteln

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006005355A (ja) * 2004-06-15 2006-01-05 Samsung Sdi Co Ltd 有機電界発光素子
WO2009136595A1 (ja) * 2008-05-08 2009-11-12 新日鐵化学株式会社 有機電界発光素子用化合物及び有機電界発光素子
KR20100082049A (ko) * 2009-01-08 2010-07-16 제일모직주식회사 신규한 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2010107244A2 (en) * 2009-03-20 2010-09-23 Dow Advanced Display Materials, Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2010136109A1 (de) * 2009-05-29 2010-12-02 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011010844A1 (en) * 2009-07-23 2011-01-27 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
KR20110011579A (ko) * 2009-07-27 2011-02-08 에스에프씨 주식회사 인돌로카바졸 유도체 및 이를 이용한 유기전계발광소자
WO2011055934A2 (ko) * 2009-11-03 2011-05-12 제일모직 주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2011071255A1 (en) * 2009-12-11 2011-06-16 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
JP2011146610A (ja) * 2010-01-18 2011-07-28 Canon Inc 有機エレクトロルミネッセンス表示装置とその製造方法
WO2012136295A1 (de) * 2011-04-05 2012-10-11 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014017484A1 (ja) * 2012-07-25 2016-07-11 東レ株式会社 発光素子材料および発光素子
WO2014017484A1 (ja) * 2012-07-25 2014-01-30 東レ株式会社 発光素子材料および発光素子
US11444246B2 (en) 2012-08-31 2022-09-13 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element using same
US11362279B2 (en) 2012-08-31 2022-06-14 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element using same
US10014477B2 (en) 2012-08-31 2018-07-03 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element using same
WO2015174791A1 (ko) * 2014-05-16 2015-11-19 주식회사 동진쎄미켐 신규한 화합물 및 이를 포함하는 유기발광소자
CN106458893B (zh) * 2014-05-16 2020-09-29 东进世美肯株式会社 新型化合物及包含其的有机发光元件
CN106458893A (zh) * 2014-05-16 2017-02-22 东进世美肯株式会社 新型化合物及包含其的有机发光元件
WO2016018076A1 (en) * 2014-07-29 2016-02-04 Rohm And Haas Electronic Materials Korea Ltd. Electron buffering material and organic electroluminescent device
JP2017529689A (ja) * 2014-07-29 2017-10-05 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 電子緩衝材及び有機エレクトロルミネセントデバイス
US10008674B2 (en) 2014-10-15 2018-06-26 Samsung Display Co., Ltd. Organic light emitting diode and organic light emitting display device including the same
JPWO2016111270A1 (ja) * 2015-01-07 2017-10-19 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
US9905775B2 (en) 2015-01-07 2018-02-27 Hodogaya Chemical Co., Ltd. Organic electroluminescent device
WO2016111270A1 (ja) * 2015-01-07 2016-07-14 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
KR20160117802A (ko) * 2015-03-31 2016-10-11 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
KR102388728B1 (ko) 2015-03-31 2022-04-21 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
US20160293850A1 (en) * 2015-03-31 2016-10-06 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US10164195B2 (en) 2015-12-22 2018-12-25 Samsung Display Co., Ltd. Organic light-emitting device
US11617290B2 (en) 2015-12-22 2023-03-28 Samsung Display Co., Ltd. Organic light-emitting device
US11696496B2 (en) 2015-12-22 2023-07-04 Samsung Display Co., Ltd. Organic light-emitting device
US11937500B2 (en) 2015-12-22 2024-03-19 Samsung Display Co., Ltd. Organic light-emitting device
CN106753340A (zh) * 2016-12-20 2017-05-31 中节能万润股份有限公司 一种苯并咪唑类有机电致发光材料及其制备方法和应用

Also Published As

Publication number Publication date
JP6212391B2 (ja) 2017-10-11
JPWO2013035329A1 (ja) 2015-03-23
KR102059328B1 (ko) 2020-02-20
US20140217393A1 (en) 2014-08-07
TW201329195A (zh) 2013-07-16
KR20140074286A (ko) 2014-06-17

Similar Documents

Publication Publication Date Title
JP6212391B2 (ja) 有機エレクトロルミネッセンス素子
JP6148982B2 (ja) 含窒素へテロ芳香族環化合物
JP6012611B2 (ja) 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2013105206A1 (ja) 有機エレクトロルミネッセンス素子用材料及びそれを用いた素子
JP6196554B2 (ja) 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
JP6220341B2 (ja) ラダー化合物、及びそれを用いた有機エレクトロルミネッセンス素子
WO2013102992A1 (ja) 有機エレクトロルミネッセンス素子用材料とそれを用いた素子
WO2013179645A1 (ja) 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2013175746A1 (ja) 有機エレクトロルミネッセンス素子
WO2013069242A1 (ja) 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
JP2013108015A (ja) 有機エレクトロルミネッセンス素子用材料
WO2013108589A1 (ja) 新規化合物、有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
JP6031302B2 (ja) ヘテロ芳香族化合物及びそれを用いた有機エレクトロルミネッセンス素子
US9496508B2 (en) Material for organic electroluminescent element and organic electroluminescent element using same
WO2014112359A1 (ja) 有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829530

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013532453

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20147005945

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14343841

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12829530

Country of ref document: EP

Kind code of ref document: A1