WO2016111270A1 - 有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2016111270A1
WO2016111270A1 PCT/JP2016/050064 JP2016050064W WO2016111270A1 WO 2016111270 A1 WO2016111270 A1 WO 2016111270A1 JP 2016050064 W JP2016050064 W JP 2016050064W WO 2016111270 A1 WO2016111270 A1 WO 2016111270A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
compound
aromatic
carbon atoms
Prior art date
Application number
PCT/JP2016/050064
Other languages
English (en)
French (fr)
Inventor
秀一 林
直朗 樺澤
望月 俊二
セジン イ
ウンギュ イ
ボンギ シン
Original Assignee
保土谷化学工業株式会社
エスエフシー カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 保土谷化学工業株式会社, エスエフシー カンパニー リミテッド filed Critical 保土谷化学工業株式会社
Priority to US15/541,429 priority Critical patent/US9905775B2/en
Priority to EP16735009.9A priority patent/EP3244464B1/en
Priority to JP2016568378A priority patent/JP6731352B2/ja
Publication of WO2016111270A1 publication Critical patent/WO2016111270A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/12Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D495/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium

Definitions

  • the present invention relates to an organic electroluminescence device, and more specifically, an organic electroluminescence device (hereinafter referred to as an organic EL device) using a specific arylamine compound and a heterocyclic compound having a specific condensed ring structure (and a specific pyrimidine derivative). Abbreviated).
  • the organic EL element is a self-luminous element, it is brighter and more visible than a liquid crystal element, and a clear display is possible. Therefore, active research has been done.
  • the light emitting layer can also be produced by doping a charge transporting compound generally called a host material with a fluorescent compound, a phosphorescent compound, or a material that emits delayed fluorescence.
  • a charge transporting compound generally called a host material with a fluorescent compound, a phosphorescent compound, or a material that emits delayed fluorescence.
  • the selection of the organic material in the organic EL element greatly affects various characteristics such as efficiency and durability of the element.
  • the light injected from both electrodes is recombined in the light emitting layer to obtain light emission. Therefore, in an organic EL device, it is important how efficiently both holes and electrons are transferred to the light emitting layer, and it is necessary to make the device excellent in carrier balance.
  • the probability of recombination of holes and electrons is improved by improving the hole injection property and blocking the electron injected from the cathode, and further excitons generated in the light emitting layer. By confining, high luminous efficiency can be obtained. Therefore, the role of the hole transport material is important, and there is a demand for a hole transport material that has high hole injectability, high hole mobility, high electron blocking properties, and high durability against electrons. ing.
  • the heat resistance and amorphousness of the material are also important.
  • thermal decomposition occurs even at a low temperature due to heat generated when the element is driven, and the material deteriorates.
  • the thin film is crystallized even in a short time, and the element deteriorates. Therefore, the material to be used is required to have high heat resistance and good amorphous properties.
  • NPD N, N′-diphenyl-N, N′-di ( ⁇ -naphthyl) benzidine
  • various aromatic amine derivatives are known as hole transport materials that have been used in organic EL devices so far.
  • NPD has a good hole transport capability, but its glass transition point (Tg), which is an index of heat resistance, is as low as 96 ° C., and device characteristics are degraded by crystallization under high temperature conditions.
  • Tg glass transition point
  • the aromatic amine derivatives described in Patent Documents 1 and 2 there are compounds having excellent mobility such as hole mobility of 10 ⁇ 3 cm 2 / Vs or more.
  • Patent Document 3 reports a highly durable aromatic amine derivative.
  • the aromatic amine derivative of Patent Document 3 is used as a charge transport material for an electrophotographic photosensitive member, and no examples of using it as an organic EL element have been studied.
  • An arylamine compound having a substituted carbazole structure has been proposed as a compound with improved characteristics such as heat resistance and hole injection properties (see Patent Document 4 and Patent Document 5).
  • heat resistance and light emission efficiency have been improved, but they are still insufficient, and further lower driving voltage and higher light emission efficiency can be achieved. It has been demanded.
  • the yield of device fabrication is improved by combining materials excellent in hole injection / transport performance, electron injection / transport performance, thin film stability, durability, and the like.
  • it is required to improve the device characteristics, realize a carrier with good carrier balance, recombination of holes and electrons with high efficiency, high luminous efficiency, low driving voltage, and long life. ing.
  • JP-A-8-048656 Japanese Patent No. 3194657 Japanese Patent No. 4943840 JP 2006-151979 A WO2008 / 62636 Special table 2014-513064 gazette Korean Open Patent 2013-060157 JP-A-7-126615 JP 2005-108804 A
  • the object of the present invention is as a material for organic EL devices with high luminous efficiency and durability, hole injection / transport performance, electron injection / transport performance, electron blocking ability, stability in a thin film state, durability Combining various materials for organic EL elements that are superior to each other so that the characteristics of the respective materials can be effectively expressed, (1) high luminous efficiency and power efficiency, and (2) low emission starting voltage. (3) To provide an organic EL device having a low practical driving voltage and (4) a long lifetime.
  • the inventors of the present invention have an arylamine-based material that is excellent in hole injection / transport capability, thin film stability and durability, and has a specific condensed ring structure.
  • the present inventors variously combine a hole transport material, an arylamine compound as a material of the light emitting layer, and a heterocyclic compound (indenoindole derivative and carbazole derivative) having a condensed ring structure having a specific structure. Create an organic EL device, evaluate its device characteristics, efficiently inject and transport holes to the light emitting layer, and combine materials that match the characteristics of the material of the light emitting layer. investigated.
  • pyrimidine derivatives are excellent in electron injection / transport capability, thin film stability and durability. Then, various pyrimidine derivatives are selected as the electron transport material, and various organic EL devices are produced by combining with the hole transport material and the material of the light emitting layer. The device characteristics are intensively evaluated, and electrons are injected into the light emitting layer. We investigated the combination of materials that improved transport efficiency and the carrier balance better matched the characteristics of the material of the light emitting layer.
  • the present inventors have made the first positive transport layer a two-layer structure of a first positive hole transport layer and a second positive hole transport layer so that holes can be efficiently injected and transported to the light emitting layer.
  • a material for the hole transport layer and selecting a material with excellent electron blocking properties as the material for the second hole transport layer, various organic EL devices with elaborate combinations that can achieve carrier balance are prepared. The characteristics of the device were earnestly evaluated.
  • an organic EL device having at least an anode, a hole transport layer, a light emitting layer, an electron transport layer and a cathode in this order
  • the hole transport layer contains an arylamine compound represented by the following general formula (1)
  • An organic EL device is provided in which the light emitting layer contains an indenoindole derivative represented by the following general formula (2) or a carbazole derivative represented by the following general formula (3).
  • Ar 1 to Ar 4 each represents an aromatic hydrocarbon group, an aromatic heterocyclic group, or a condensed polycyclic aromatic group.
  • a 1 represents a divalent group of an aromatic hydrocarbon, a divalent group of an aromatic heterocyclic ring, a condensed polycyclic aromatic divalent group or a single bond
  • Ar 5 represents an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group
  • R 1 to R 8 are each a hydrogen atom; a deuterium atom; a fluorine atom; a chlorine atom; a cyano group; a nitro group; an alkyl group having 1 to 6 carbon atoms; a cycloalkyl group having 5 to 10 carbon atoms; An alkenyl group having 2 to 6 atoms; an alkyloxy group having 1 to 6 carbon atoms; a cycloalkyloxy group having 5 to 10 carbon atoms; an aromatic hydrocarbon group; an aromatic heterocyclic group; and a condensed polycyclic aromatic group.
  • R 1 to R 4 may be bonded to each other via a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring
  • R 5 to R 8 may be bonded to each other via a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring
  • a part of R 1 to R 4 is desorbed
  • R 1 to R 4 Other groups may be bonded via a substituted or unsubstituted methylene group, oxygen atom, sulfur atom or monoarylamino group to form a ring
  • a part of R 5 to R 8 is desorbed, and R 5 to R 8 Other groups may be bonded to each other through a substituted or unsubstituted m
  • R 9 and R 10 are each an alkyl group having 1 to 6 carbon atoms, an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group, and R 9 and R 10 10 may be bonded to each other through a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring.
  • a 2 represents a divalent group of an aromatic hydrocarbon, a divalent group of an aromatic heterocyclic ring, a condensed polycyclic aromatic divalent group or a single bond
  • Ar 6 represents an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group
  • R 11 to R 18 are each a hydrogen atom; a deuterium atom; a fluorine atom; a chlorine atom; a cyano group; a nitro group; an alkyl group having 1 to 6 carbon atoms; a cycloalkyl group having 5 to 10 carbon atoms.
  • R 11 to R 14 may be bonded to each other via a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring; R 15 to R 18 may combine with each other via a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring; A part of R 11 to R 14 is desorbed, and R 11 Other groups of R 14 may be bonded to each other via a substituted or unsubstituted
  • the electron transport layer contains a pyrimidine derivative represented by the following general formula (4), Where Ar 7 represents an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group, Ar 8 and Ar 9 each represent a hydrogen atom, an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group, and Ar 8 and Ar 9 do not simultaneously become a hydrogen atom, B represents a monovalent group represented by the following structural formula (5).
  • R 19 to R 22 are each a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, or 1 to 6 carbon atoms.
  • the pyrimidine derivative is represented by the following general formula (4a), Where Ar 7 to Ar 9 and B are as shown in the general formula (4).
  • the pyrimidine derivative is represented by the following general formula (4b), Where Ar 7 to Ar 9 and B are as shown in the general formula (4).
  • B is a monovalent group represented by the following structural formula (5a), Where Ar 10 and R 19 to R 22 are as shown in the structural formula (5), 6)
  • the hole transport layer has a two-layer structure of a first hole transport layer and a second hole transport layer, the second hole transport layer is located on the light emitting layer side, and Containing an arylamine compound represented by the general formula (1), 7)
  • the light emitting layer contains a red light emitting material, 8)
  • the light emitting layer contains a phosphorescent light emitting material, 9)
  • the aforementioned phosphorescent light-emitting material is a metal complex containing iridium or platinum, Is preferred.
  • an arylamine compound having a specific structure that has excellent hole injection / transport performance, thin film stability, and durability and can effectively express the role of hole injection / transport is used to emit light.
  • a light-emitting material having excellent efficiency holes can be efficiently injected and transported to the light-emitting layer, and an organic EL element with high efficiency, low driving voltage, and long life can be realized.
  • the combination of the arylamine compound having a specific structure and the material of the light emitting layer having the specific structure can be combined with a specific electron transport material to achieve high efficiency and low driving voltage.
  • a long-life organic EL element can be realized.
  • the hole transport layer has a two-layer structure of a first hole transport layer and a second hole transport layer, and two kinds of arylamine compounds having a specific structure are considered in consideration of carrier balance and material characteristics.
  • an organic EL element with a longer life can be realized.
  • FIG. 3 is a diagram showing organic EL element configurations of Examples 1 to 12 and Comparative Examples 1 to 3.
  • FIG. 2 is a diagram showing structural formulas of compounds (1-1) to (1-7) which are arylamine compounds of the general formula (1).
  • FIG. 2 is a diagram showing structural formulas of compounds (1-8) to (1-14) which are arylamine compounds of general formula (1).
  • FIG. 2 is a diagram showing structural formulas of compounds (1-15) to (1-21) which are arylamine compounds of the general formula (1).
  • FIG. 2 is a diagram showing the structural formulas of compounds (1-22) to (1-27) which are arylamine compounds of general formula (1).
  • FIG. 3 is a diagram showing the structural formulas of compounds (1-28) to (1-33) that are arylamine compounds of general formula (1).
  • FIG. 1 is a diagram showing structural formulas of compounds (1-1) to (1-7) which are arylamine compounds of the general formula (1).
  • FIG. 2 is a diagram showing structural formulas of compounds (1-8) to
  • FIG. 3 is a diagram showing structural formulas of compounds (1-34) to (1-39) which are arylamine compounds of the general formula (1).
  • FIG. 4 is a diagram showing structural formulas of compounds (1-40) to (1-45) which are arylamine compounds of the general formula (1).
  • FIG. 2 is a diagram showing structural formulas of compounds (1-46) to (1-50) which are arylamine compounds of the general formula (1).
  • FIG. 2 is a diagram showing structural formulas of compounds (1-51) to (1-55) that are arylamine compounds of the general formula (1).
  • FIG. 2 is a diagram showing structural formulas of compounds (1-56) to (1-59) which are arylamine compounds of the general formula (1).
  • FIG. 2 is a diagram showing structural formulas of compounds (1-60) to (1-64) which are arylamine compounds of the general formula (1).
  • FIG. 2 is a diagram showing structural formulas of compounds (1-65) to (1-70) which are arylamine compounds of the general formula (1).
  • FIG. 2 is a diagram showing structural formulas of compounds (1-71) to (1-76) which are arylamine compounds of the general formula (1).
  • FIG. 2 is a diagram showing the structural formulas of compounds (1-77) to (1-81), which are arylamine compounds of general formula (1).
  • FIG. 2 is a diagram showing structural formulas of compounds (1-82) to (1-87) which are arylamine compounds of the general formula (1).
  • FIG. 2 is a diagram showing the structural formulas of compounds (1-88) to (1-93) which are arylamine compounds of general formula (1).
  • FIG. 2 is a diagram showing the structural formulas of compounds (1-94) to (1-99), which are arylamine compounds of general formula (1).
  • FIG. 2 is a diagram showing structural formulas of compounds (1-100) to (1-105) which are arylamine compounds of the general formula (1).
  • FIG. 3 is a diagram showing the structural formulas of compounds (2-1) to (2-5), which are indenoindole derivatives of the general formula (2).
  • FIG. 3 is a diagram showing the structural formulas of compounds (2-6) to (2-10) which are indenoindole derivatives of the general formula (2).
  • FIG. 2 is a diagram showing the structural formulas of compounds (2-11) to (2-15), which are indenoindole derivatives of the general formula (2).
  • FIG. 3 is a diagram showing structural formulas of compounds (3-1) to (3-6) which are carbazole derivatives of the general formula (3).
  • FIG. 3 is a diagram showing the structural formulas of compounds (3-7) to (3-12) which are carbazole derivatives of the general formula (3).
  • FIG. 3 is a diagram showing structural formulas of compounds (3-13) to (3-18) which are carbazole derivatives of the general formula (3).
  • FIG. 3 is a diagram showing structural formulas of compounds (3-19) to (3-23) which are carbazole derivatives of the general formula (3).
  • FIG. 3 is a diagram showing the structural formulas of compounds (4-1) to (4-6) which are pyrimidine derivatives of the general formula (4).
  • FIG. 6 is a diagram showing the structural formulas of compounds (4-7) to (4-11) which are pyrimidine derivatives of the general formula (4).
  • FIG. 4 is a diagram showing the structural formulas of compounds (4-12) to (4-16), which are pyrimidine derivatives of the general formula (4).
  • FIG. 4 is a diagram showing the structural formulas of compounds (4-17) to (4-21) which are pyrimidine derivatives of the general formula (4).
  • FIG. 3 is a diagram showing the structural formulas of compounds (4-22) to (4-26), which are pyrimidine derivatives of the general formula (4).
  • FIG. 3 is a diagram showing the structural formulas of compounds (4-27) to (4-31) that are pyrimidine derivatives of the general formula (4).
  • FIG. 3 is a diagram showing structural formulas of compounds (4-32) to (4-36) that are pyrimidine derivatives of the general formula (4).
  • FIG. 4 is a diagram showing structural formulas of compounds (4-37) to (4-41) that are pyrimidine derivatives of the general formula (4).
  • FIG. 4 is a diagram showing structural formulas of compounds (4-42) to (4-46) which are pyrimidine derivatives of the general formula (4).
  • FIG. 4 is a diagram showing structural formulas of compounds (4-47) to (4-51) which are pyrimidine derivatives of the general formula (4).
  • FIG. 5 is a diagram showing the structural formulas of compounds (4-52) to (4-56) which are pyrimidine derivatives of the general formula (4).
  • FIG. 5 is a diagram showing the structural formulas of compounds (4-57) to (4-61) that are pyrimidine derivatives of the general formula (4).
  • FIG. 3 is a diagram showing the structural formulas of compounds (4-62) to (4-66) that are pyrimidine derivatives of the general formula (4).
  • FIG. 4 is a diagram showing the structural formulas of compounds (4-67) to (4-71) that are pyrimidine derivatives of the general formula (4).
  • FIG. 4 is a diagram showing structural formulas of compounds (4-72) to (4-76) which are pyrimidine derivatives of the general formula (4).
  • FIG. 3 is a diagram showing the structural formulas of compounds (4-77) to (4-80) that are pyrimidine derivatives of the general formula (4).
  • FIG. 3 is a diagram showing the structural formulas of compounds (4-81) to (4-84) that are pyrimidine derivatives of the general formula (4).
  • FIG. 5 is a diagram showing the structural formulas of compounds (4-85) to (4-88) which are pyrimidine derivatives of the general formula (4).
  • FIG. 3 is a diagram showing the structural formulas of compounds (4-89) to (4-92) that are pyrimidine derivatives of the general formula (4).
  • FIG. 2 is a diagram showing the structural formulas of compounds (4-93) to (4-96) that are pyrimidine derivatives of the general formula (4).
  • FIG. 4 is a diagram showing the structural formulas of compounds (4-97) to (4-100) that are pyrimidine derivatives of the general formula (4).
  • FIG. 3 is a diagram showing the structural formulas of compounds (4-101) to (4-104) that are pyrimidine derivatives of the general formula (4).
  • FIG. 2 is a diagram showing the structural formulas of compounds (4-105) to (4-108) that are pyrimidine derivatives of the general formula (4).
  • FIG. 4 is a diagram showing the structural formulas of compounds (4-109) to (4-112) that are pyrimidine derivatives of the general formula (4).
  • FIG. 5 is a diagram showing the structural formulas of compounds (4-113) to (4-116) which are pyrimidine derivatives of the general formula (4).
  • FIG. 4 is a diagram showing the structural formulas of compounds (4-117) to (4-120) which are pyrimidine derivatives of the general formula (4).
  • FIG. 4 is a diagram showing the structural formulas of compounds (4-121) to (4-124) which are pyrimidine derivatives of the general formula (4).
  • FIG. 3 is a diagram showing the structural formulas of compounds (4-125) and (4-126), which are pyrimidine derivatives of the general formula (4).
  • FIG. 5 is a diagram showing the structural formulas of compounds (6-1) to (6-5), which are triarylamine compounds of general formula (6).
  • FIG. 6 is a diagram showing the structural formulas of compounds (6-6) to (6-10), which are triarylamine compounds of general formula (6).
  • FIG. 5 is a diagram showing the structural formulas of compounds (6-11) to (6-15), which are triarylamine compounds of general formula (6).
  • FIG. 6 is a diagram showing the structural formulas of compounds (6-16) to (6-20), which are triarylamine compounds of general formula (6).
  • FIG. 3 is a diagram showing the structural formulas of compounds (6-21) to (6-23), which are triarylamine compounds of general formula (6).
  • FIG. 3 is a diagram showing the structural formulas of compounds (6′-1) and (6′-2) other than the triarylamine compound of the general formula (6) among the triarylamine compounds having two triarylamine structures.
  • FIG. 5 is a diagram showing the structural formulas of compounds (7-1) to (7-5), which are triarylamine compounds of general formula (7).
  • FIG. 6 is a diagram showing the structural formulas of compounds (7-6) to (7-9), which are triarylamine compounds of general formula (7).
  • FIG. 5 is a diagram showing the structural formulas of compounds (7-10) to (7-13), which are triarylamine compounds of general formula (7).
  • FIG. 6 is a diagram showing the structural formulas of compounds (7-14) to (7-17), which are triarylamine compounds of general formula (7).
  • the organic EL device of the present invention has a basic structure in which an anode, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode are provided in this order on a substrate such as a glass substrate or a transparent plastic substrate (for example, a polyethylene terephthalate substrate).
  • a substrate such as a glass substrate or a transparent plastic substrate (for example, a polyethylene terephthalate substrate).
  • the layer structure can take various forms, for example, an electron blocking layer is provided between the hole transport layer and the light emitting layer, or the light emitting layer and the electron transport layer. It is possible to provide a hole blocking layer between them, and an electron injection layer between the electron transport layer and the cathode. It is also possible to omit or double some organic layers.
  • a layer that serves as a hole injection layer and a hole transport layer is formed, or a layer that serves as an electron injection layer and an electron transport layer is formed. It is also possible. It is also possible to have a structure in which two or more organic layers having the same function are laminated. Specifically, a structure in which two hole transport layers are laminated, a structure in which two light emitting layers are laminated, an electron A configuration in which two transport layers are laminated is also possible.
  • the hole transport layer preferably has a structure in which two layers of a first hole transport layer and a second hole transport layer are laminated.
  • FIG. 1 shows a layer configuration employed in an example described later.
  • a transparent anode 2 On a glass substrate 1, a transparent anode 2, a hole injection layer 3, a hole transport layer 5, a light emitting layer 6, an electron transport.
  • the layer 7, the electron injection layer 8, and the cathode 9 are formed in this order, and the hole transport layer 5 has a layer configuration in which the first hole transport layer 5a and the second hole transport layer 5b are two layers. ing.
  • each layer which comprises the organic EL element of this invention is demonstrated.
  • the anode 2 is provided on the transparent substrate 1 by vapor deposition of an electrode material having a large work function such as ITO or gold.
  • a hole injection layer 3 may be provided between the anode 2 and the hole transport layer 5 as necessary.
  • the hole injection layer 3 includes a known material such as a starburst type triphenylamine derivative; various triphenylamine tetramers; a porphyrin compound represented by copper phthalocyanine; an acceptor property such as hexacyanoazatriphenylene. Heterocyclic compounds; coating-type polymer materials; and the like can be used.
  • the arylamine compound of General formula (1) mentioned later, the triarylamine compound of General formula (6), or the triarylamine compound of General formula (7) can also be used.
  • the hole injection layer 3 it is preferable to use a triarylamine compound of the general formula (6) or the general formula (7). This is because these (tri) arylamine compounds have high hole mobility.
  • the (tri) arylamine compound of the general formula (1), (6) or (7) is used for the hole injection layer 3, the composition of the hole injection layer 3 and the composition of the hole transport layer 5 are different. Must be.
  • These materials may be used alone for film formation, or may be mixed with other materials for film formation. Further, trisbromophenylamine hexachloroantimony, a P-doped raradiene derivative (see International Publication No. 2014/009310) or a polymer compound having a partial structure of a benzidine derivative such as TPD may be used. Good.
  • the hole injection layer 3 can be obtained.
  • each layer described below can be obtained by forming a thin film by a known method such as a spin coating method or an ink jet method in addition to the vapor deposition method.
  • the hole transport layer 5 is provided between the anode 2 and the light emitting layer 6.
  • the hole transport layer 5 includes an arylamine compound represented by the following general formula (1). (In this specification, it may be abbreviated as “arylamine compound of general formula (1)”). This is because the arylamine compound of the general formula (1) has high hole mobility, and therefore can improve the hole transport efficiency from the hole transport layer to the light emitting layer.
  • Arylamine compounds of general formula (1) are Arylamine compounds of general formula (1);
  • Ar 1 to Ar 4 each represents an aromatic hydrocarbon group, an aromatic heterocyclic group, or a condensed polycyclic aromatic group.
  • Aromatic hydrocarbon groups represented by Ar 1 ⁇ Ar 4 the aromatic heterocyclic group or condensed polycyclic aromatic group, specifically, a phenyl group, biphenylyl group, terphenylyl group, a naphthyl group, anthracenyl group, phenanthrenyl Group, fluorenyl group, indenyl group, pyrenyl group, perylenyl group, fluoranthenyl group, triphenylenyl group, pyridyl group, pyrimidinyl group, triazinyl group, furyl group, pyrrolyl group, thienyl group, quinolyl group, isoquinolyl group, quinazolinyl group, benzofuranyl group Group, benzothienyl group, indolyl group, carbazolyl group, benz
  • the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 1 to Ar 4 may be unsubstituted or may have a substituent.
  • substituents include the following groups in addition to a deuterium atom, a cyano group, and a nitro group.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom
  • Alkyl groups having 1 to 6 carbon atoms such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl An n-hexyl group
  • An alkenyl group such as a vinyl group, an allyl group
  • An aryloxy group such as a phenyloxy group, a tolyloxy group
  • Arylalkyloxy groups such as benzyloxy group, phenethyloxy group
  • Aromatic hydrocarbon group or condensed polycyclic aromatic group for example,
  • substituents may be further substituted with the substituents exemplified above. These substituents may be present independently of each other to form a ring, but are bonded to each other through a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom. A ring may be formed.
  • Ar 1 to Ar 4 are preferably an aromatic hydrocarbon group, an oxygen-containing aromatic heterocyclic group or a condensed polycyclic aromatic group, and include a phenyl group, a biphenylyl group, a terphenylyl group, a naphthyl group, a phenanthrenyl group, a triphenylenyl group, a fluorenyl group. Group and dibenzofuranyl group are more preferable.
  • Examples of the substituent that the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 1 to Ar 4 may have include a deuterium atom and an alkyl having 1 to 6 carbon atoms.
  • Group, an alkenyl group having 2 to 6 carbon atoms, an aromatic hydrocarbon group, an oxygen-containing aromatic heterocyclic group or a condensed polycyclic aromatic group is preferable, and a deuterium atom, phenyl group, biphenylyl group, naphthyl group, dibenzofura Nyl group and vinyl group are more preferable.
  • Ar 1 to Ar 4 are bonded to each other through a single bond to form a condensed aromatic ring.
  • Ar 1 and Ar 2 are different groups, or Ar 3 and Ar 4 are different groups, and Ar 1 and Ar 2 are different groups and Ar 3 and Ar 4 are different groups. Is more preferable.
  • “Different” includes not only the case where the basic structure is different, but also the case where the basic structure is the same and the substituents are different, or the case where the basic structure and substituents are the same and the positions of the substituents are different. .
  • a skeleton in which all the bonds are 1,4-bonds (for example, 4,4 ′′-) from the viewpoint of the stability of the thin film that affects the device lifetime (for example, 4,4 ′′- Diamino- [1,1 ′; 4 ′, 1 ′′] terphenyl skeleton) is not preferred, and skeletons containing 1,2-bonds or 1,3-linkages are preferred, ie as shown below A skeleton in which phenylene groups are not linearly linked is preferable.
  • FIGS. 2 to 19 Specific examples of preferred compounds among the arylamine compounds represented by the general formula (1) are shown in FIGS. 2 to 19, but such arylamine compounds are not limited to these compounds.
  • D in the structural formula represents deuterium.
  • compounds corresponding to the formula (1a-a) are (1-1) to (1-3), (1-5) to (1-7). , (1-9) to (1-10), (1-12), (1-14), (1-18) to (1-20), (1-25) to (1-26), ( 1-28), (1-33) to (1-34), (1-45), (1-94) to (1-97) and (1-104).
  • the compounds corresponding to the formula (1a-b) are (1-15), (1-40), (1-43) to (1-44) and (1-47).
  • the compounds corresponding to the formula (1b-a) are (1-23), (1-38) to (1-39), (1-41) to (1-42) and (1-103).
  • Compounds corresponding to the formula (1c-a) are (1-24), (1-27), (1-30) to (1-32), (1-35) to (1-37), (1 -93) and (1-99) to (1-100).
  • the compounds corresponding to formula (1c-b) are (1-22), (1-29), (1-46), (1-48) to (1-65), (1-98) and (1 ⁇ 105).
  • the compound corresponding to the formula (1c-c) is (1-21).
  • the arylamine compound represented by the general formula (1) can be synthesized by a known method such as Suzuki coupling.
  • Purification of the arylamine compound represented by the general formula (1) may be performed by purification by column chromatography, adsorption purification by silica gel, activated carbon, activated clay, etc., recrystallization or crystallization by a solvent, sublimation purification method, etc. it can.
  • Other compounds used in the organic EL device of the present invention are also purified by column chromatography, adsorption purification by silica gel, activated carbon, activated clay, etc., and resolving by a solvent, like the arylamine compound represented by the general formula (1).
  • the compound can be identified by NMR analysis. As physical properties, glass transition point (Tg) and work function can be measured.
  • Glass transition point (Tg) is an indicator of the stability of the thin film state.
  • the glass transition point (Tg) can be measured with a high-sensitivity differential scanning calorimeter (manufactured by Bruker AXS, DSC3100SA) using powder.
  • Work function is an indicator of hole transportability.
  • the work function can be measured with an ionization potential measuring device (PYS-202, manufactured by Sumitomo Heavy Industries, Ltd.) by forming a 100 nm thin film on the ITO substrate.
  • PYS-202 manufactured by Sumitomo Heavy Industries, Ltd.
  • the arylamine compound of the general formula (1) may be used alone for film formation, but may be mixed with other materials for film formation.
  • Examples of the hole transporting material that can be mixed with or simultaneously used with the arylamine compound of the general formula (1) include the following.
  • Benzidine derivatives such as N, N′-diphenyl-N, N′-di (m-tolyl) benzidine (TPD), N, N′-diphenyl-N, N′-di ( ⁇ -naphthyl) benzidine (NPD), N, N, N ′, N′-tetrabiphenylylbenzidine; 1,1-bis [4- (di-4-tolylamino) phenyl] cyclohexane (TAPC);
  • trisbromophenylamine hexachloroantimony, a P-doped radialene derivative (see International Publication No. 2014/009310) or a polymer compound having a partial structure of a benzidine derivative such as TPD is used in combination. Also good.
  • the hole transport layer 5 includes, for example, as shown in FIG. 1, the first hole transport layer 5a located on the anode 2 side and the second hole transport located on the light emitting layer 6 side. It is preferable to have a two-layer structure with the layer 5b. The hole transport layer 5 having such a two-layer structure will be described later.
  • the light-emitting layer 6 is an indenoindole derivative represented by the following general formula (2) (sometimes abbreviated as “indenoindole derivative of the general formula (2)” in this specification) or It is important to include a carbazole derivative represented by the following general formula (3) (sometimes abbreviated as “carbazole derivative of general formula (3)” in this specification).
  • a 1 represents an aromatic hydrocarbon divalent group, an aromatic heterocyclic divalent group, a condensed polycyclic aromatic divalent group or a single bond.
  • the aromatic hydrocarbon divalent group, aromatic heterocyclic divalent group or condensed polycyclic aromatic divalent group represented by A 1 is an aromatic hydrocarbon, aromatic heterocyclic ring or condensed polycyclic aromatic group. It is a divalent group formed by removing two hydrogen atoms from a hydrogen atom.
  • aromatic hydrocarbon, aromatic heterocyclic ring or condensed polycyclic aromatic in this case include benzene, biphenyl, terphenyl, tetrakisphenyl, styrene, naphthalene, anthracene, acenaphthalene, fluorene, phenanthrene, indane, Pyrene, triphenylene, pyridine, pyrimidine, triazine, pyrrole, furan, thiophene, quinoline, isoquinoline, benzofuran, benzothiophene, indoline, carbazole, carboline, benzoxazole, benzothiazole, quinoxaline, benzimidazole, pyrazole, dibenzofuran, dibenzothiophene, naphthyridine , Phenanthroline, acridine and the like.
  • Divalent aromatic hydrocarbon represented by A 1 divalent divalent group or condensed polycyclic aromatic-aromatic heterocyclic ring may be unsubstituted but may have a substituent.
  • the aromatic hydrocarbon group, the aromatic heterocyclic group or the condensed polycyclic aromatic represented by Ar 1 to Ar 4 in the general formula (1) may be shown. The same thing can be given. The aspect which a substituent can take is also the same.
  • a 1 is preferably an aromatic hydrocarbon divalent group, a condensed polycyclic aromatic divalent group or a single bond, and a divalent group or single bond formed by removing two hydrogen atoms from benzene, biphenyl or naphthalene. More preferred is a divalent group or a single bond formed by removing two hydrogen atoms from benzene.
  • Ar 5 represents an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group.
  • aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 5 an aromatic hydrocarbon group represented by Ar 1 to Ar 4 in the general formula (1), The thing similar to what was shown regarding the aromatic heterocyclic group or condensed polycyclic aromatic group can be mention
  • the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 5 may be unsubstituted or may have a substituent.
  • the aromatic hydrocarbon group represented by Ar 1 to Ar 4 in the general formula (1), the aromatic heterocyclic group, or the condensed polycyclic aromatic group may have a substituent.
  • the same thing can be given.
  • the aspect which a substituent can take is also the same.
  • a phenyl group, a biphenylyl group, a naphthyl group or an aromatic heterocyclic group is preferable, and an aromatic heterocyclic group is particularly preferable.
  • aromatic heterocyclic groups triazinyl group, quinazolinyl group, naphthopyrimidinyl group, benzoimidazolyl group, pyridopyrimidinyl group, naphthyridinyl group, pyridyl group, quinolyl group, and isoquinolyl group are particularly preferable.
  • R 1 to R 8 are each a hydrogen atom; a deuterium atom; a fluorine atom; a chlorine atom; a cyano group; a nitro group; an alkyl group having 1 to 6 carbon atoms; Cycloalkyl group having 10 to 6 carbon atoms; alkenyl group having 2 to 6 carbon atoms; alkyloxy group having 1 to 6 carbon atoms; cycloalkyloxy group having 5 to 10 carbon atoms; aromatic hydrocarbon group; aromatic heterocyclic group A condensed polycyclic aromatic group; an aryloxy group; or a disubstituted amino group having an aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group as a substituent.
  • the alkyl group having 1 to 6 carbon atoms, the alkenyl group having 2 to 6 carbon atoms, and the alkyloxy group having 1 to 6 carbon atoms may be linear or branched.
  • alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms or the alkenyl group having 2 to 6 carbon atoms represented by R 1 to R 8 include a methyl group, ethyl Group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, cyclopentyl group, cyclohexyl group, 1-adamantyl group, Examples thereof include 2-adamantyl group, vinyl group, allyl group, isopropenyl group, 2-butenyl group and the like.
  • the alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms, or the alkenyl group having 2 to 6 carbon atoms represented by R 1 to R 8 may be unsubstituted but has a substituent. May be.
  • substituents include the following groups in addition to a deuterium atom, a cyano group, and a nitro group.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom;
  • An alkenyl group such as a vinyl group, an allyl group;
  • An aryloxy group such as a phenyloxy group, a tolyloxy group;
  • Arylalkyloxy groups such as benzyloxy group, phenethyloxy group;
  • Aromatic hydrocarbon group or condensed polycyclic aromatic group such as phenyl group, biphenylyl group, terphenylyl group, naphthyl group, anthracenyl group, phenanthrenyl group, fluorenyl group, indenyl group, pyrenyl group, perylenyl group, fluoranthenyl group A triphenyleny
  • substituents may be further substituted with the substituents exemplified above. These substituents may be present independently of each other to form a ring, but are bonded to each other through a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom. A ring may be formed.
  • alkyloxy group having 1 to 6 carbon atoms or the cycloalkyloxy group having 5 to 10 carbon atoms represented by R 1 to R 8 include a methyloxy group, an ethyloxy group, and an n-propyloxy group. , Isopropyloxy group, n-butyloxy group, tert-butyloxy group, n-pentyloxy group, n-hexyloxy group, cyclopentyloxy group, cyclohexyloxy group, cycloheptyloxy group, cyclooctyloxy group, 1-adamantyloxy group , 2-adamantyloxy group and the like.
  • the alkyloxy group having 1 to 6 carbon atoms or the cycloalkyloxy group having 5 to 10 carbon atoms represented by R 1 to R 8 may be unsubstituted or may have a substituent.
  • the substituent include an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or a group having 2 to 6 carbon atoms represented by R 1 to R 8 in the general formula (2).
  • lifted The aspect which a substituent can take is also the same.
  • Examples of the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 1 to R 8 include aromatic carbon groups represented by Ar 1 to Ar 4 in the general formula (1).
  • the thing similar to what was shown regarding the hydrogen group, the aromatic heterocyclic group, or the condensed polycyclic aromatic group can be mention
  • the aromatic hydrocarbon group represented by Ar 1 to Ar 4 in the general formula (1), the aromatic heterocyclic group, or the condensed polycyclic aromatic group may have a substituent.
  • the same thing can be given.
  • the aspect which a substituent can take is also the same.
  • aryloxy group represented by R 1 to R 8 include a phenyloxy group, a biphenylyloxy group, a terphenylyloxy group, a naphthyloxy group, an anthracenyloxy group, and a phenanthrenyloxy group. Fluorenyloxy group, indenyloxy group, pyrenyloxy group, perylenyloxy group, and the like.
  • the aryloxy group represented by R 1 to R 8 may be unsubstituted or may have a substituent.
  • the aromatic hydrocarbon group represented by Ar 1 to Ar 4 in the general formula (1), the aromatic heterocyclic group, or the condensed polycyclic aromatic group may have a substituent. The same thing can be given. The aspect which a substituent can take is also the same.
  • the condensed polycyclic aromatic group includes those shown for the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 1 to Ar 4 in the general formula (1). The same can be mentioned.
  • the disubstituted amino group represented by R 1 to R 8 may be unsubstituted or may further have a substituent.
  • the aromatic hydrocarbon group represented by Ar 1 to Ar 4 in the general formula (1), the aromatic heterocyclic group, or the condensed polycyclic aromatic group may have a substituent.
  • the same thing can be given.
  • the aspect which a substituent can take is also the same.
  • R 1 to R 4 may be present independently and do not form a ring, but are a single bond, a substituted or unsubstituted methylene group such as compound 2-14 and compound 2-15 in FIG. May be bonded to each other via an oxygen atom or a sulfur atom to form a ring.
  • R 5 to R 8 may be independently present and may not form a ring, but may be bonded to each other via a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom.
  • a ring may be formed. Further, for example, as in compounds 2-1 to 2-5 of FIG.
  • R 1 to R 4 a part of R 1 to R 4 is eliminated, and other groups of R 1 to R 4 are present in the vacancies generated by this elimination. May be bonded via a substituted or unsubstituted methylene group, oxygen atom, sulfur atom or monoarylamino group to form a ring.
  • R 5 to R 8 a part of R 5 to R 8 is eliminated, and another group of R 5 to R 8 is substituted with a substituted or unsubstituted methylene group, oxygen atom, sulfur atom or mono
  • a ring may be formed by bonding via an arylamino group.
  • R 1 ⁇ R 8 as described above forms a ring
  • the embodiment contributes group in the ring formation is di-substituted amino group
  • each other R 1 ⁇ R 8 is an aromatic having di-substituted amino group
  • R 1 to R 4 a part of R 1 to R 4 is eliminated, and another group (disubstituted amino group) of R 1 to R 4 is an aromatic group having a disubstituted amino group at a vacancy generated by the elimination.
  • a part of R 5 to R 8 is eliminated, and the other group (disubstituted amino group) of R 5 to R 8 is a fragrance possessed by the disubstituted amino group at the vacancy generated by this elimination.
  • the aryl group in the monoarylamino group that serves as a linking group in ring formation includes an aromatic hydrocarbon group, an aromatic heterocyclic group, or a condensed group represented by Ar 1 to Ar 4 in the general formula (1).
  • lifted The thing similar to what was shown regarding the polycyclic aromatic group can be mention
  • these groups may have a substituent, and as the substituent, an aromatic hydrocarbon group, an aromatic heterocyclic group, or a condensed polyvalent group represented by Ar 1 to Ar 4 in the general formula (1).
  • lifted The aspect which a substituent can take is also the same.
  • any one of R 1 to R 4 is an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group, and these groups Are bonded to each other via a benzene ring to which R 1 to R 4 are bonded and a linking group such as a substituted or unsubstituted methylene group, oxygen atom, sulfur atom or monoarylamino group to form a ring. preferable.
  • the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group is preferably a phenyl group, an indenyl group, an indolyl group, a benzofuranyl group or a benzothienyl group, and these groups are R 1 to R 4 fluorene ring with a benzene ring which is bonded, a carbazole ring, a dibenzofuran ring, a dibenzothiophene ring, indeno indole ring, indeno benzofuran ring, indenobenzothiophene ring, benzo furo indole ring, benzo thieno indole ring, indolo
  • An embodiment in which an indole ring is formed is preferred.
  • the embodiments represented by the following general formulas (2a) to (2c) are particularly preferable.
  • R 1 to R 4 are an alkenyl group having 2 to 6 carbon atoms, an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group, and two adjacent groups ( In a preferred embodiment, R 1 to R 4 ) are bonded to each other through a single bond, and these groups form a condensed ring together with the benzene ring to which R 1 to R 4 are bonded.
  • the alkenyl group having 2 to 6 carbon atoms, aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group is preferably a vinyl group or a phenyl group, that is, R 1 to R 4 are
  • R 1 to R 4 are
  • An embodiment in which a naphthalene ring, a phenanthrene ring or a triphenylene ring is formed together with the bonded benzene ring is preferable.
  • an embodiment represented by the following general formula (2d) or (2e) is particularly preferable.
  • X represents a substituted or unsubstituted methylene group, oxygen atom, sulfur atom or monoarylamino group, and A 1 , Ar 5 and R 1 to R 10 are as shown in the general formula (2). Represents the meaning of
  • R 5 to R 8 are vinyl groups and the two adjacent vinyl groups are bonded to each other via a single bond to form a condensed ring, that is, R 5 to
  • An embodiment in which a naphthalene ring or a phenanthrene ring is formed together with a benzene ring to which R 8 is bonded is also preferred.
  • R 9 and R 10 are each an alkyl group having 1 to 6 carbon atoms, an aromatic hydrocarbon group, an aromatic heterocyclic group, or a condensed polycyclic aromatic group.
  • the alkyl group having 1 to 6 carbon atoms may be linear or branched.
  • Examples of the alkyl group having 1 to 6 carbon atoms represented by R 9 and R 10 are the alkyl groups having 1 to 6 carbon atoms represented by R 1 to R 8 in the general formula (2). The same thing can be given.
  • the alkyl group having 1 to 6 carbon atoms represented by R 9 and R 10 may be unsubstituted or may have a substituent.
  • Examples of the substituent include an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or a group having 2 to 6 carbon atoms represented by R 1 to R 8 in the general formula (2).
  • the thing similar to what was shown as a substituent which an alkenyl group may have can be mention
  • the aspect which a substituent can take is also the same.
  • Examples of the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 9 and R 10 include aromatic carbon groups represented by Ar 1 to Ar 4 in the general formula (1).
  • the thing similar to what was shown regarding the hydrogen group, the aromatic heterocyclic group, or the condensed polycyclic aromatic group can be mention
  • the aromatic hydrocarbon group represented by Ar 1 to Ar 4 in the general formula (1), the aromatic heterocyclic group, or the condensed polycyclic aromatic group may have a substituent.
  • the same thing can be given.
  • the aspect which a substituent can take is also the same.
  • R 9 and R 10 an alkyl group having 1 to 6 carbon atoms is preferable, and a methyl group is particularly preferable.
  • R 9 and R 10 may be independently present to form a ring, but are bonded to each other via a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring. May be.
  • a 2 represents an aromatic hydrocarbon divalent group, an aromatic heterocyclic divalent group, a condensed polycyclic aromatic divalent group or a single bond.
  • the divalent group of the aromatic hydrocarbon represented by A 2 , the divalent group of the aromatic heterocyclic ring or the divalent group of the condensed polycyclic aromatic is represented by A 1 in the general formula (2). Examples thereof include those similar to those shown for the aromatic hydrocarbon divalent group, aromatic heterocyclic divalent group or condensed polycyclic aromatic divalent group. These divalent groups may be unsubstituted or may have a substituent.
  • the aromatic hydrocarbon group, the aromatic heterocyclic group or the condensed polycyclic aromatic represented by Ar 1 to Ar 4 in the general formula (1) may be shown. The same thing can be given. The aspect which a substituent can take is also the same.
  • a 2 is preferably an aromatic hydrocarbon divalent group, a condensed polycyclic aromatic divalent group or a single bond, and a divalent group or single bond formed by removing two hydrogen atoms from benzene, biphenyl or naphthalene. More preferred is a divalent group or a single bond formed by removing two hydrogen atoms from benzene.
  • Ar 6 represents an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group.
  • aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 6 an aromatic hydrocarbon group represented by Ar 1 to Ar 4 in the general formula (1).
  • lifted These groups may be unsubstituted or may have a substituent.
  • the aromatic hydrocarbon group represented by Ar 1 to Ar 4 in the general formula (1), the aromatic heterocyclic group, or the condensed polycyclic aromatic group may have a substituent.
  • the same thing can be given.
  • the aspect which a substituent can take is also the same.
  • a phenyl group, a biphenylyl group, a naphthyl group or an aromatic heterocyclic group is preferable, and an aromatic heterocyclic group is particularly preferable.
  • aromatic heterocyclic groups triazinyl group, quinazolinyl group, naphthopyrimidinyl group, benzoimidazolyl group, pyridopyrimidinyl group, naphthyridinyl group, pyridyl group, quinolyl group, and isoquinolyl group are particularly preferable.
  • R 11 to R 18 are each a hydrogen atom; a deuterium atom; a fluorine atom; a chlorine atom; a cyano group; a nitro group; an alkyl group having 1 to 6 carbon atoms; Cycloalkyl group having 10 to 6 carbon atoms; alkenyl group having 2 to 6 carbon atoms; alkyloxy group having 1 to 6 carbon atoms; cycloalkyloxy group having 5 to 10 carbon atoms; aromatic hydrocarbon group; aromatic heterocyclic group A condensed polycyclic aromatic group; an aryloxy group; or a disubstituted amino group having an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group as a substituent.
  • the alkyl group having 1 to 6 carbon atoms, the alkenyl group having 2 to 6 carbon atoms, and the alkyloxy group having 1 to 6 carbon atoms may be linear or branched
  • Examples of the alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms, or the alkenyl group having 2 to 6 carbon atoms represented by R 11 to R 18 include those in the general formula (2). Examples of the alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms or the alkenyl group having 2 to 6 carbon atoms represented by R 1 to R 8 are the same. Can do. These groups may be unsubstituted or may have a substituent.
  • substituents examples include an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or a group having 2 to 6 carbon atoms represented by R 1 to R 8 in the general formula (2).
  • lifted The aspect which a substituent can take is also the same.
  • the alkyloxy group having 1 to 6 carbon atoms or the cycloalkyloxy group having 5 to 10 carbon atoms represented by R 11 to R 18 is represented by R 1 to R 8 in the general formula (2).
  • Examples of the alkyloxy group having 1 to 6 carbon atoms or the cycloalkyloxy group having 5 to 10 carbon atoms are the same as those described above. These groups may be unsubstituted or may have a substituent.
  • Examples of the substituent include an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or a group having 2 to 6 carbon atoms represented by R 1 to R 8 in the general formula (2).
  • the thing similar to what was shown as a substituent which an alkenyl group may have can be mention
  • the aspect which a substituent can take is also the same.
  • the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 11 to R 18 is an aromatic carbon group represented by R 1 to R 8 in the general formula (2).
  • lifted These groups may be unsubstituted or may have a substituent.
  • the aromatic hydrocarbon group represented by Ar 1 to Ar 4 in the general formula (1), the aromatic heterocyclic group, or the condensed polycyclic aromatic group may have a substituent.
  • the same thing can be given.
  • the aspect which a substituent can take is also the same.
  • Examples of the aryloxy group represented by R 11 to R 18 include the same aryloxy groups represented by R 1 to R 8 in the general formula (2).
  • the aryloxy group represented by R 11 to R 18 may be unsubstituted or may have a substituent.
  • the aromatic hydrocarbon group represented by Ar 1 to Ar 4 in the general formula (1), the aromatic heterocyclic group, or the condensed polycyclic aromatic group may have a substituent. The same thing can be given. The aspect which a substituent can take is also the same.
  • Examples of the disubstituted amino group represented by R 11 to R 18 include the same ones as shown for the disubstituted amino group represented by R 1 to R 8 in the general formula (2). .
  • the disubstituted amino group represented by R 11 to R 18 may be unsubstituted or may further have a substituent.
  • the substituent which the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 1 to Ar 4 in the general formula (1) may have The thing similar to what was shown as can be mention
  • R 11 to R 14 may be independently present to form a ring, but are bonded to each other through a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring. May be.
  • R 15 to R 18 may be independently present and do not form a ring, but may be bonded to each other via a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom.
  • a ring may be formed. Further, for example, as in compounds 3-1 to 3-6 in FIG.
  • a ring may be formed by bonding via a substituted or unsubstituted methylene group, oxygen atom, sulfur atom or monoarylamino group.
  • R 15 to R 18 is eliminated, and another group of R 15 to R 18 is substituted with a substituted or unsubstituted methylene group, oxygen atom, sulfur atom or mono
  • a ring may be formed by bonding via an arylamino group.
  • each other R 11 ⁇ R 18 is an aromatic having di-substituted amino group A mode in which a ring is bonded to each other via a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom through an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group. included.
  • R 11 to R 14 a part of R 11 to R 14 is eliminated, and another group (disubstituted amino group) of R 11 to R 14 is an aromatic hydrocarbon having a disubstituted amino group at a vacancy generated by the elimination. Also included is a mode in which a ring is bonded to each other via a substituted or unsubstituted methylene group, oxygen atom, sulfur atom or monoarylamino group via a group, aromatic heterocyclic group or condensed polycyclic aromatic group It is.
  • R 15 to R 18 Furthermore, a part of R 15 to R 18 is eliminated, and another group (disubstituted amino group) of R 15 to R 18 is substituted with an aromatic carbon atom possessed by the disubstituted amino group at the vacancy generated by the elimination.
  • Examples of the monoarylamino group that plays a role as a linking group in ring formation include the same monoarylamino groups as the linking group in the general formula (2). Moreover, this monoarylamino group may be unsubstituted or may have a substituent. As the substituent, the aromatic hydrocarbon group, the aromatic heterocyclic group or the condensed polycyclic aromatic group represented by Ar 1 to Ar 4 in the general formula (1) may be shown. The same thing can be given. The aspect which a substituent can take is also the same.
  • two adjacent R 15 to R 18 are alkenyl groups having 2 to 6 carbon atoms, aromatic hydrocarbon groups
  • An embodiment in which a condensed ring is formed with a benzene ring is preferred.
  • the alkenyl group having 2 to 6 carbon atoms, the aromatic hydrocarbon group, the aromatic heterocyclic group or the condensed polycyclic aromatic group is preferably a vinyl group or a phenyl group, that is, R 15 to R 18 are
  • R 15 to R 18 are An embodiment in which a naphthalene ring, a phenanthrene ring or a triphenylene ring is formed together with the bonded benzene ring is preferable.
  • any one of R 11 to R 14 is an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group, and a benzene ring to which R 11 to R 14 are bonded to a substituted or
  • a ring is bonded to each other via a linking group such as an unsubstituted methylene group, oxygen atom, sulfur atom or monoarylamino group is preferred.
  • the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group is preferably a phenyl group, an indenyl group, an indolyl group, a benzofuranyl group or a benzothienyl group.
  • the benzene ring to which R 11 to R 14 and R 11 to R 14 are bonded includes a fluorene ring, a carbazole ring, a dibenzofuran ring, a dibenzothiophene ring, an indenoindole ring, an indenobenzofuran ring, an inde It is preferable to form a nobenzothiophene ring, a benzofuroindole ring, a benzothienoindole ring, or an indoloindole ring.
  • X represents a substituted or unsubstituted methylene group, oxygen atom, sulfur atom or monoarylamino group, and A 2 , Ar 6 and R 11 to R 18 are as shown in the general formula (3). Represents the meaning of
  • R 11 to R 14 are vinyl groups and the two adjacent vinyl groups are bonded to each other via a single bond to form a condensed ring, that is, R 11 to R 14 are
  • R 11 to R 14 are
  • a naphthalene ring or a phenanthrene ring is formed with a bonded benzene ring is also preferable.
  • any one of R 15 to R 18 is an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group, and any one of R 15 to R 18 is a fluorenyl group, a carbazolyl group. More preferably a group selected from a dibenzofuranyl group or a dibenzothienyl group, wherein R 16 is a fluorenyl group, a carbazolyl group, a dibenzofuranyl group or a dibenzothienyl group, and R 15 , R 17 and R 18 are Particularly preferred is a hydrogen atom.
  • FIGS. 20 to 22 Specific examples of preferable compounds among the indenoindole derivatives of the general formula (2) are shown in FIGS. 20 to 22.
  • the indenoindole derivatives of the general formula (2) are limited to these exemplified compounds. It is not a thing.
  • the compounds corresponding to the formula (2a) are (2-1) to (2-4) and (2-9) to (2-10).
  • the compounds corresponding to the formula (2b) are (2-5) to (2-6) and (2-11) to (2-12).
  • the compounds corresponding to the formula (2c) are (2-7) to (2-8).
  • the compound corresponding to the formula (2d) is (2-14).
  • the compound corresponding to the formula (2e) is (2-15).
  • compounds corresponding to the formula (3a-1) are (3-1) to (3-6), (3-8) to (3-10), (3- 12) and (3-15).
  • the compound corresponding to the formula (3a-2) is (3-14).
  • the compound corresponding to the formula (3a-3) is (3-7).
  • the compound corresponding to the formula (3a-4) is (3-11).
  • the compound corresponding to the formula (3b-1) is (3-13).
  • the indenoindole derivative of the general formula (2) and the carbazole derivative of the general formula (3) are superior in luminous efficiency as compared with conventional materials, and emit light containing a host material of the light emitting layer, particularly a phosphorescent light emitting material. Preferred compounds as the layer host material.
  • the light emitting layer in the organic EL device of the present invention has Alq 3 within the range where the excellent properties of the above-described indenoindole derivative of the general formula (2) or the carbazole derivative of the general formula (3) are not impaired.
  • Various metal complexes such as metal complexes of quinolinol derivatives including: anthracene derivatives; bisstyrylbenzene derivatives; pyrene derivatives; oxazole derivatives; polyparaphenylene vinylene derivatives;
  • the light emitting layer may be composed of a host material and a dopant material.
  • the host material include the indenoindole derivative of the general formula (2); the carbazole derivative of the general formula (3); the luminescent material; the thiazole derivative; the benzimidazole derivative; the polydialkylfluorene derivative; The indenoindole derivative of the general formula (2) or the carbazole derivative of the general formula (3) is preferable.
  • quinacridone As the dopant material, quinacridone, coumarin, rubrene, perylene, pyrene and derivatives thereof; benzopyran derivatives; indenophenanthrene derivatives; rhodamine derivatives; aminostyryl derivatives;
  • a phosphorescent light-emitting material is preferably used as the light-emitting material.
  • a phosphorescent light emitting material a phosphorescent material of a metal complex containing iridium, platinum or the like can be used.
  • a green phosphorescent material such as Ir (ppy) 3
  • a blue phosphorescent material such as FIrpic or FIr6 A phosphor
  • a red phosphorescent emitter such as Btp 2 Ir (acac) is used.
  • the indenoindole derivative of the general formula (2) or the carbazole derivative of the general formula (3) can be used.
  • the following hole injection / transport host materials can also be used.
  • Carbazole derivatives such as 4,4′-di (N-carbazolyl) biphenyl (CBP), TCTA, mCP;
  • the following electron transporting host material can also be used.
  • the doping of the phosphorescent light-emitting material into the host material is preferably performed by co-evaporation in the range of 1 to 30 weight percent with respect to the entire light-emitting layer in order to avoid concentration quenching.
  • a material that emits delayed fluorescence such as CDCB derivatives such as PIC-TRZ, CC2TA, PXZ-TRZ, and 4CzIPN, can be used as the light-emitting material.
  • a red light-emitting material is preferably used as the light-emitting material used in combination with the indenoindole derivative represented by the general formula (2) or the carbazole derivative represented by the general formula (3).
  • the electron transport layer 7 is provided on the light emitting layer 6 described above.
  • the electron transport layer 7 may be formed of a known electron transport material, for example, various metal complexes such as metal complexes of quinolinol derivatives including Alq 3 and BAlq; triazole derivatives; triazine derivatives; oxadiazole derivatives; pyridine Anthracene derivatives; benzimidazole derivatives; thiadiazole derivatives; benzotriazole derivatives; carbodiimide derivatives; quinoxaline derivatives; pyridoindole derivatives; phenanthroline derivatives;
  • a pyrimidine derivative represented by the following general formula (4) (sometimes abbreviated as “pyrimidine derivative of general formula (4)” in this specification) is used as an electron transporting material. It is preferable to form an electron transport layer, and it is more preferable to form an electron transport layer using a pyrimidine derivative represented by the following general formula (4a) or (4b) as an electron transport material.
  • a pyrimidine derivative represented by the following general formula (4a) or (4b) as an electron transport material.
  • Such pyrimidine derivatives have excellent electron injection and transport capabilities, and also have excellent thin film stability and durability. Therefore, in an electron transport layer containing such a pyrimidine derivative, electrons from the electron transport layer to the light-emitting layer are used. This is because the transportation efficiency is improved.
  • Ar 7 represents an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group
  • Ar 8 and Ar 9 are A hydrogen atom, an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group is represented.
  • Ar 8 and Ar 9 are not hydrogen atoms at the same time.
  • aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 7 to Ar 9 include a phenyl group, a biphenylyl group, a terphenylyl group, a tetrakisphenyl group, a styryl group, Naphthyl, anthracenyl, acenaphthenyl, phenanthrenyl, fluorenyl, indenyl, pyrenyl, perylenyl, fluoranthenyl, triphenylenyl, spirobifluorenyl, furyl, thienyl, benzofuranyl, benzothienyl Group, dibenzofuranyl group, dibenzothienyl group and the like.
  • the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 7 to Ar 9 may be unsubstituted or may have a substituent.
  • substituents include the following groups in addition to a deuterium atom, a cyano group, and a nitro group.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom
  • Alkyl groups having 1 to 6 carbon atoms such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl An n-hexyl group
  • An alkenyl group such as a vinyl group, an allyl group
  • An aryloxy group such as a phenyloxy group, a tolyloxy group
  • Arylalkyloxy groups such as benzyloxy group, phenethyloxy group
  • Aromatic hydrocarbon group or condensed polycyclic aromatic group such as
  • substituents may be further substituted with the above-exemplified substituents. These substituents may be present independently and do not form a ring, but are bonded to each other through a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring. These substituents and Ar 7 , Ar 8 or Ar 9 to which the substituent is bonded may be bonded to each other via an oxygen atom or a sulfur atom to form a ring.
  • Ar 7 includes: phenyl group; biphenylyl group; naphthyl group; anthracenyl group; acenaphthenyl group; phenanthrenyl group; fluorenyl group; indenyl group; pyrenyl group; perylenyl group; fluoranthenyl group; triphenylenyl group; Preferred are oxygen-containing aromatic heterocyclic groups such as furyl group, benzofuranyl group, dibenzofuranyl group; or sulfur-containing aromatic heterocyclic groups such as thienyl group, benzothienyl group, dibenzothienyl group; phenyl group, biphenylyl group, A naphthyl group, a phenanthrenyl group, a fluorenyl group, a pyrenyl group, a fluoranthenyl group, a triphenylenyl group, a spirobifluorenyl group, a dibenzofuranyl
  • the phenyl group preferably has a substituted or unsubstituted condensed polycyclic aromatic group or a phenyl group as a substituent, and includes a naphthyl group, a phenanthrenyl group, a pyrenyl group, a fluoran group. More preferably, it has a substituent selected from a tenenyl group, a triphenylenyl group, a spirobifluorenyl group or a phenyl group. It is also preferred that the substituent of the phenyl group and the phenyl group are bonded to each other via an oxygen atom or a sulfur atom to form a ring.
  • Ar 8 includes a phenyl group having a substituent; a substituted or unsubstituted spirobifluorenyl group; an oxygen-containing aromatic heterocyclic group such as a furyl group, a benzofuranyl group, a dibenzofuranyl group; or a sulfur-containing aromatic complex.
  • a cyclic group such as a thienyl group, a benzothienyl group, or a dibenzothienyl group is preferable.
  • the substituent of the phenyl group includes an aromatic hydrocarbon group such as a phenyl group, a biphenylyl group, and a terphenyl group; a condensed polycyclic aromatic group such as a naphthyl group, an acenaphthenyl group, a phenanthrenyl group, a fluorenyl group, and an indenyl group.
  • Ar 9 includes a hydrogen atom; a substituted phenyl group; a substituted or unsubstituted spirobifluorenyl group; an oxygen-containing aromatic heterocyclic group such as a furyl group, a benzofuranyl group, a dibenzofuranyl group; or a sulfur-containing group.
  • Aromatic heterocyclic groups such as thienyl, benzothienyl, dibenzothienyl are preferred.
  • the substituent of the phenyl group includes an aromatic hydrocarbon group such as a phenyl group, a biphenylyl group, and a terphenyl group; a condensed polycyclic aromatic group such as a naphthyl group, an acenaphthenyl group, a phenanthrenyl group, a fluorenyl group, and an indenyl group.
  • one of Ar 8 and Ar 9 is a hydrogen atom.
  • B represents a monovalent group represented by the following structural formula (5), and from the viewpoint of thin film stability, preferably, the following structural formula The monovalent group represented by (5a) is represented.
  • the Ar 10 bonding position on the benzene ring is the meta position with respect to the bonding position with the pyrimidine ring represented by the general formula (4).
  • Ar 10 represents an aromatic heterocyclic group.
  • Specific examples of the aromatic heterocyclic group represented by Ar 10 include triazinyl group, pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, thienyl group, quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group, indolyl group.
  • the aromatic heterocyclic group represented by Ar 10 may be unsubstituted or may have a substituent.
  • an aromatic hydrocarbon group represented by Ar 7 to Ar 9 in the general formula (4), an aromatic heterocyclic group or a condensed polycyclic aromatic group may be shown. The same thing can be given. The aspect which a substituent can take is also the same.
  • Ar 10 includes a nitrogen-containing heterocyclic group such as a triazinyl group, pyridyl group, pyrimidinyl group, pyrrolyl group, quinolyl group, isoquinolyl group, indolyl group, carbazolyl group, benzoxazolyl group, benzothiazolyl group, quinoxalinyl group, benzoimidazolyl group , A pyrazolyl group, an azafluorenyl group, a diazafluorenyl group, a naphthyridinyl group, a phenanthrolinyl group, an acridinyl group, a carbolinyl group, an azaspirobifluorenyl group or a diazaspirobifluorenyl group, and a triazinyl group , Pyridyl group, pyrimidinyl group, quinolyl group, isoquinolyl group, indolyl group, quinoxalinyl
  • R 19 to R 22 are each a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, or an alkyl having 1 to 6 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms may be linear or branched.
  • R 19 to R 22 and Ar 10 may be present independently and do not form a ring, but are bonded to each other via a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom.
  • a ring may be formed.
  • alkyl group having 1 to 6 carbon atoms represented by R 19 to R 22 include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, and 2-methylpropyl.
  • the alkyl group having 1 to 6 carbon atoms represented by R 19 to R 22 may be unsubstituted or may have a substituent.
  • the substituent include an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or a group having 2 to 6 carbon atoms represented by R 1 to R 8 in the general formula (2).
  • lifted The aspect which a substituent can take is also the same.
  • aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 19 to R 22 include a phenyl group, a biphenylyl group, a terphenylyl group, a tetrakisphenyl group, a styryl group, Naphtyl group, Anthracenyl group, Acenaphthenyl group, Phenanthrenyl group, Fluorenyl group, Indenyl group, Pyrenyl group, Perylenyl group, Fluoranthenyl group, Triphenylenyl group, Spirobifluorenyl group, Triazinyl group, Pyridyl group, Pyrimidinyl group, Furyl group , Pyrrolyl group, thienyl group, quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group, indolyl group, carbazolyl group, benzoxazolyl
  • the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 19 to R 22 may be unsubstituted or may have a substituent.
  • an aromatic hydrocarbon group represented by Ar 7 to Ar 9 in the general formula (4), an aromatic heterocyclic group or a condensed polycyclic aromatic group may be shown. The same thing can be given. The aspect which a substituent can take is also the same.
  • compounds corresponding to the formula (4a) are (4-1) to (4-49), (4-66) to (4-99), and (4-103). To (4-105) and (4-107) to (4-126).
  • Compounds corresponding to formula (4b) are (4-50) to (4-65).
  • those in which the group B is a monovalent group represented by the structural formula (5a) are (4-1) to (4-66), (4-68), (4-71) to (4-72) , (4-105) to (4-107) and (4-112) to (4-122).
  • the above-described electron transport material may be used alone for film formation, or may be mixed with other materials for film formation.
  • the organic EL device of the present invention may have an electron injection layer 8 between the electron transport layer 7 and the cathode 9.
  • the electron injection layer 8 may contain alkali metal salts such as lithium fluoride and cesium fluoride; alkaline earth metal salts such as magnesium fluoride; metal oxides such as aluminum oxide; This can be omitted in the preferred choice of transport layer and cathode.
  • an electrode material having a low work function such as aluminum, or an alloy having a lower work function such as a magnesium silver alloy, a magnesium indium alloy, or an aluminum magnesium alloy is used as the electrode material. It is done.
  • the organic EL device of the present invention may have other layers as necessary.
  • an electron blocking layer can be provided between the hole transport layer 5 and the light emitting layer 6, and a hole between the light emitting layer 6 and the electron transport layer 7.
  • a blocking layer can also be provided.
  • Electron blocking layer A known compound having an electron blocking action can be used for the electron blocking layer.
  • Carbazole derivatives such as 4,4 ′, 4 ′′ -tri (N-carbazolyl) triphenylamine (TCTA); 9,9-bis [4- (carbazol-9-yl) phenyl] fluorene; 1,3-bis (carbazol-9-yl) benzene (mCP); 2,2-bis (4-carbazol-9-ylphenyl) adamantane (Ad-Cz); Compounds having a triphenylsilyl group and a triarylamine structure, such as 9- [4- (carbazol-9-yl) phenyl] -9- [4- (triphenylsilyl) phenyl] -9H-fluorene;
  • the arylamine compound represented by the general formula (1) can be suitably used for the electron blocking layer. This is because the electron blocking performance is high.
  • the composition of the electron blocking layer and the composition of the hole transport layer must be different. These materials may be used alone for film formation, or may be mixed with other materials for film formation.
  • Hole blocking layer in addition to metal complexes of phenanthroline derivatives such as bathocuproine (BCP), quinolinol derivatives such as aluminum (III) bis (2-methyl-8-quinolinato) -4-phenylphenolate (BAlq), Various kinds of rare earth complexes, triazole derivatives, triazine derivatives, oxadiazole derivatives, and other compounds having a hole blocking action can be used. These materials may be used alone for film formation, but may be mixed with other materials for film formation. These materials may also serve as the material for the electron transport layer.
  • phenanthroline derivatives such as bathocuproine (BCP)
  • quinolinol derivatives such as aluminum (III) bis (2-methyl-8-quinolinato) -4-phenylphenolate (BAlq)
  • Various kinds of rare earth complexes, triazole derivatives, triazine derivatives, oxadiazole derivatives, and other compounds having a hole blocking action can be used. These materials may
  • each layer constituting the organic EL element may have a single layer structure or a multi-layer structure.
  • the hole transport layer 5 in order to exhibit the excellent characteristics of the arylamine compound of the general formula (1) described above, the hole transport layer 5 is replaced with the first hole transport layer 5a as shown in FIG. And a second hole transport layer 5b.
  • the hole transport layer 5 having the two-layer structure will be described.
  • the arylamine compound represented by the general formula (1) is used for forming the hole transport layer 5.
  • a layer structure is preferred. That is, as shown in FIG. 1, the hole transport layer 5 includes a first hole transport layer 5a located on the anode 2 side and a second hole transport located on the light emitting layer 6 side. A two-layer structure divided into the layer 5b is preferable.
  • the second hole transport layer 5b preferably contains the arylamine compound of the general formula (1). This is because the electron blocking performance is high. In this case, the second hole transport layer 5b may be used in combination with the above-described hole transport material.
  • the composition of the first hole transport layer 5a is different from the composition of the second hole transport layer 5b.
  • the first hole transport layer 5a is a triarylamine compound having 2 to 6 triarylamine structures in the molecule in addition to the above-described hole transporting material, A triarylamine compound having a structure linked by a single bond or a divalent group containing no hetero atom can be used. This is because the arylamine skeleton exhibits excellent hole transport properties.
  • triarylamine compound having 2 to 6 triarylamine structures described above examples include a triarylamine compound having two triarylamine structures represented by the following general formula (6). (Sometimes abbreviated as “triarylamine compound of (6)”) or a triarylamine compound having four triarylamine structures represented by the following general formula (7) (herein “general formula ( 7) is sometimes abbreviated as “triarylamine compound”.
  • a triarylamine compound of the general formula (6) A triarylamine compound of the general formula (6);
  • r 23 to r 28 are each an integer indicating the number of groups R 23 to R 28 bonded to the benzene ring.
  • r 23 , r 24 , r 27 and r 28 each represents an integer of 0 to 5
  • r 25 and r 26 each represents an integer of 0 to 4.
  • r 23 to r 28 an integer of 0 to 3 is preferable, and an integer of 0 to 2 is more preferable.
  • R 23 to R 28 are not present on the benzene ring, that is, the benzene ring is not substituted with a group represented by R 23 to R 28. .
  • a plurality of R 23 to R 28 are present in the same benzene ring.
  • a plurality of substituents may be present independently of each other to form a ring, but may be mutually connected via a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom. They may combine to form a ring.
  • substituents may be bonded to form a naphthalene ring.
  • R 23 to R 28 are a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, an alkyl group having 1 to 6 carbon atoms, and a cycloalkyl group having 5 to 10 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms, the alkenyl group having 2 to 6 carbon atoms, and the alkyloxy group having 1 to 6 carbon atoms may be linear or branched.
  • alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms or the alkenyl group having 2 to 6 carbon atoms represented by R 23 to R 28 include a methyl group, ethyl Group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, cyclopentyl group, cyclohexyl group, 1-adamantyl group, Examples thereof include 2-adamantyl group, vinyl group, allyl group, isopropenyl group, 2-butenyl group and the like.
  • the alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms, or the alkenyl group having 2 to 6 carbon atoms represented by R 23 to R 28 may be unsubstituted but has a substituent. May be.
  • substituents include the following groups in addition to a deuterium atom, a cyano group, and a nitro group.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom;
  • An alkenyl group such as a vinyl group, an allyl group;
  • An aryloxy group such as a phenyloxy group, a tolyloxy group;
  • Arylalkyloxy groups such as benzyloxy group, phenethyloxy group;
  • Aromatic hydrocarbon group or condensed polycyclic aromatic group such as phenyl group, biphenylyl group, terphenylyl group, naphthyl group, anthracenyl group, phenanthrenyl group, fluorenyl group, indenyl group, pyrenyl group, perylenyl group, fluoranthenyl group A triphenyleny
  • substituents may be further substituted with the above-exemplified substituents. These substituents may be present independently and do not form a ring, but are bonded to each other via a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom. May be formed.
  • alkyloxy group having 1 to 6 carbon atoms or the cycloalkyloxy group having 5 to 10 carbon atoms represented by R 23 to R 28 include a methyloxy group, an ethyloxy group, and an n-propyloxy group. , Isopropyloxy group, n-butyloxy group, tert-butyloxy group, n-pentyloxy group, n-hexyloxy group, cyclopentyloxy group, cyclohexyloxy group, cycloheptyloxy group, cyclooctyloxy group, 1-adamantyloxy group , 2-adamantyloxy group and the like.
  • the alkyloxy group having 1 to 6 carbon atoms or the cycloalkyloxy group having 5 to 10 carbon atoms represented by R 23 to R 28 may be unsubstituted or may have a substituent.
  • the substituent include an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, and a C 2 to 6 carbon atom represented by R 23 to R 28 in the general formula (6).
  • the thing similar to what was shown as a substituent which an alkenyl group may have can be mention
  • Examples of the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 23 to R 28 include aromatic carbon groups represented by Ar 1 to Ar 4 in the general formula (1).
  • the thing similar to what was shown regarding the hydrogen group, the aromatic heterocyclic group, or the condensed polycyclic aromatic group can be mention
  • the aromatic hydrocarbon group represented by Ar 1 to Ar 4 in the general formula (1), the aromatic heterocyclic group, or the condensed polycyclic aromatic group may have a substituent.
  • the same thing can be given.
  • the aspect which a substituent can take is also the same.
  • aryloxy group represented by R 23 to R 28 include a phenyloxy group, a biphenylyloxy group, a terphenylyloxy group, a naphthyloxy group, an anthracenyloxy group, and a phenanthrenyloxy group. Fluorenyloxy group, indenyloxy group, pyrenyloxy group, perylenyloxy group and the like.
  • the aryloxy group represented by R 23 to R 28 may be unsubstituted or may have a substituent.
  • the aromatic hydrocarbon group represented by Ar 1 to Ar 4 in the general formula (1), the aromatic heterocyclic group, or the condensed polycyclic aromatic group may have a substituent. The same thing can be given. The aspect which a substituent can take is also the same.
  • R 23 to R 28 are preferably a deuterium atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an aromatic hydrocarbon group or a condensed polycyclic aromatic group, and a deuterium atom More preferred are a phenyl group, a biphenylyl group, a naphthyl group, and a vinyl group. It is also preferred that R 23 to R 28 are bonded to each other through a single bond to form a condensed aromatic ring. In particular, a deuterium atom, a phenyl group, and a biphenylyl group are preferable.
  • L 1 is a bridging group that bonds two triarylamine structures, and represents a divalent group or a single bond represented by the following structural formulas (B) to (G).
  • n1 represents an integer of 1 to 4.
  • L 1 is preferably a divalent group or a single bond represented by the structural formula (B), (D) or (G), and a divalent group or a single bond represented by the structural formula (D) or (G). Is more preferable.
  • N1 in the structural formula (B) is preferably 1 or 2.
  • a triarylamine compound of the general formula (7) A triarylamine compound of the general formula (7);
  • r 29 to r 40 are each an integer indicating the number of groups R 29 to R 40 bonded to the benzene ring.
  • r 29 , r 30 , r 33 , r 36 , r 39 , r 40 represent an integer of 0 to 5
  • r 31 , r 32 , r 34 , r 35 , r 37 , r 38 represent an integer of 0 to 4 To express.
  • r 29 to r 40 an integer of 0 to 3 is preferable, and an integer of 0 to 2 is more preferable.
  • R 29 to R 40 are not present on the benzene ring, that is, the benzene ring is not substituted with a group represented by R 29 to R 40 .
  • r 29 , r 30 , r 33 , r 36 , r 39 , r 40 are integers of 2 to 5, or r 31 , r 32 , r 34 , r 35 , r 37 , r 38 are 2 to 4
  • a plurality of R 29 to R 40 are bonded to the same benzene ring.
  • a plurality of substituents may be present independently of each other to form a ring, but may be mutually connected via a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom. They may combine to form a ring.
  • a plurality of substituents may be bonded to form a naphthalene ring.
  • R 29 to R 40 are a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, an alkyl group having 1 to 6 carbon atoms, and a cycloalkyl group having 5 to 10 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms, the alkenyl group having 2 to 6 carbon atoms, and the alkyloxy group having 1 to 6 carbon atoms may be linear or branched.
  • Examples of the alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms, or the alkenyl group having 2 to 6 carbon atoms represented by R 29 to R 40 include those in the general formula (6). Examples of the alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms, or the alkenyl group having 2 to 6 carbon atoms represented by R 23 to R 28 are the same. Can do. These groups may be unsubstituted or may have a substituent.
  • substituents examples include an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, and a C 2 to 6 carbon atom represented by R 23 to R 28 in the general formula (6).
  • lifted The aspect which a substituent can take is also the same.
  • the alkyloxy group having 1 to 6 carbon atoms or the cycloalkyloxy group having 5 to 10 carbon atoms represented by R 29 to R 40 is represented by R 23 to R 28 in the general formula (6).
  • Examples of the alkyloxy group having 1 to 6 carbon atoms or the cycloalkyloxy group having 5 to 10 carbon atoms are the same as those described above. These groups may be unsubstituted or may have a substituent. Examples of the substituent include an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, and a C 2 to 6 carbon atom represented by R 23 to R 28 in the general formula (6).
  • the thing similar to what was shown regarding the substituent in an alkenyl group can be mention
  • the aspect which these groups can take is also the same.
  • Examples of the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 29 to R 40 include aromatic carbon groups represented by Ar 1 to Ar 4 in the general formula (1).
  • the thing similar to what was shown regarding the hydrogen group, the aromatic heterocyclic group, or the condensed polycyclic aromatic group can be mention
  • the aromatic hydrocarbon group represented by Ar 1 to Ar 4 in the general formula (1), the aromatic heterocyclic group, or the condensed polycyclic aromatic group may have a substituent.
  • the same thing can be given.
  • the aspect which a substituent can take is also the same.
  • Examples of the aryloxy group represented by R 29 to R 40 include the same aryloxy groups represented by R 23 to R 28 in the general formula (6).
  • the aryloxy group represented by R 29 to R 40 may be unsubstituted or may have a substituent.
  • the aromatic hydrocarbon group represented by Ar 1 to Ar 4 in the general formula (1), the aromatic heterocyclic group, or the condensed polycyclic aromatic group may have a substituent. The same thing can be given. The aspect which a substituent can take is also the same.
  • R 29 to R 40 are preferably a deuterium atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an aromatic hydrocarbon group or a condensed polycyclic aromatic group, and a deuterium atom More preferred are a phenyl group, a biphenylyl group, a naphthyl group, and a vinyl group.
  • R 29 to R 40 may be present independently and do not form a ring, but are preferably bonded to each other via a single bond to form a condensed aromatic ring.
  • a deuterium atom, a phenyl group, and a biphenylyl group are preferable.
  • L 2 ⁇ L 4 is a bridge ⁇ joining two triarylamine skeleton, respectively, by the following structural formula (B ') or the structural formula (C) ⁇ (G) Represents the divalent group or single bond shown.
  • the divalent group represented by the following structural formula (B ′) may be unsubstituted, or may be substituted with deuterium as in the example compound 7-17 of FIG.
  • n2 represents an integer of 1 to 3.
  • L 2 to L 4 are preferably a divalent group or a single bond represented by the structural formula (B ′) or (D), more preferably a divalent group or a single bond represented by the structural formula (B ′).
  • n2 is preferably 1 or 2, and more preferably 1.
  • FIGS. 55 to 59 Specific examples of preferable compounds among the triarylamine compounds of the general formula (6) are shown in FIGS. 55 to 59, but the triarylamine compounds of the general formula (6) are limited to these exemplified compounds. It is not a thing. Further, regarding the triarylamine compound having two triarylamine structures among the triarylamine compounds having 2 to 6 triarylamine structures described above, suitable compounds other than the triarylamine compounds of the general formula (6) are preferred. A specific example is shown in FIG. However, the triarylamine compound having two triarylamine structures is not limited to these exemplified compounds. Note that D in the structural formula represents deuterium.
  • FIGS. 61 to 64 Specific examples of preferred compounds among the arylamine compounds of the general formula (7) are shown in FIGS. 61 to 64.
  • the triarylamine compounds of the general formula (7) are limited to these exemplified compounds. It is not something. Note that D in the structural formula represents deuterium.
  • Triarylamine compounds having 2 to 6 triarylamine structures such as the triarylamine compound of the general formula (6) and the triarylamine compound of the general formula (7) can be synthesized according to a known method ( (See Patent Document 1, 8-9).
  • the mixture was allowed to cool, methanol was added, and the precipitate was collected by filtration.
  • the precipitate was heated and dissolved in chlorobenzene and subjected to adsorption purification using silica gel. Subsequently, adsorption purification using activated clay was performed. Then, crystallization was performed using a mixed solvent of chlorobenzene / methanol. Thereafter, reflux washing using methanol was performed.
  • Compound of Synthesis Example 9 (Compound 1-39) 106 ° C.
  • Compound of Synthesis Example 10 (Compound 1-41) 127 ° C.
  • Compound of Synthesis Example 11 (Compound 1-42) 111 ° C.
  • Compound of Synthesis Example 12 (Compound 1-45) 122 ° C
  • Compound of Synthesis Example 13 (Compound 1-47) 116 ° C.
  • Compound of Synthesis Example 14 (Compound 1-49) 117 ° C Compound of Synthesis Example 15 (Compound 1-88) 163 ° C.
  • the arylamine compound represented by the general formula (1) has a glass transition point of 100 ° C. or higher, indicating that the thin film state is stable.
  • a deposited film having a film thickness of 100 nm was prepared on the ITO substrate, and the work function was measured by an ionization potential measuring apparatus (PYS-202, manufactured by Sumitomo Heavy Industries, Ltd.). Was measured.
  • the arylamine compound represented by the general formula (1) exhibits a suitable energy level as compared with a work function of 5.4 eV possessed by a general hole transport material such as NPD or TPD. It had a hole transport capability.
  • a hole injection layer 3, a first hole transport layer 5a, a second hole transport layer 5b, and a light emitting layer are formed on a glass substrate 1 on which an ITO electrode is previously formed as a transparent anode 2.
  • an ITO electrode is previously formed as a transparent anode 2.
  • the electron carrying layer 7, the electron injection layer 8, and the cathode (aluminum electrode) 9 were vapor-deposited in order, and the organic EL element was produced.
  • the glass substrate 1 on which ITO having a thickness of 150 nm was formed was subjected to ultrasonic cleaning in isopropyl alcohol for 20 minutes, and then dried on a hot plate heated to 200 ° C. for 10 minutes. Thereafter, UV ozone treatment was performed for 15 minutes. Next, this ITO-attached glass substrate was mounted in a vacuum vapor deposition machine, and the pressure was reduced to 0.001 Pa or less. Subsequently, a hole injection layer 3 was formed. Specifically, HIM-1 having the following structural formula was deposited so as to cover the transparent anode 2 to form a hole injection layer 3 having a thickness of 5 nm. Subsequently, a first hole transport layer 5a was formed.
  • a triarylamine compound 6-1 represented by the following structural formula was deposited on the hole injection layer 3 to form a first hole transport layer 5a having a thickness of 60 nm. Subsequently, a second hole transport layer 5b was formed. Specifically, the compound 1-5 of Synthesis Example 1 was deposited on the first hole transport layer 5a to form the second hole transport layer 5b having a thickness of 5 nm. Subsequently, the light emitting layer 6 was formed.
  • Binary vapor deposition was performed at a vapor deposition rate to form an electron transport layer 7 having a thickness of 30 nm.
  • an electron injection layer 8 was formed.
  • lithium fluoride was deposited on the electron transport layer 7 to form an electron injection layer 8 having a thickness of 1 nm.
  • aluminum was deposited to 100 nm to form the cathode 9.
  • the layer structure is shown in Table 1, and the measurement results are shown in Table 2.
  • Example 2 An organic EL device was produced under the same conditions as in Example 1, except that Compound 1-34 of Synthesis Example 6 was used instead of Compound 1-5 of Synthesis Example 1 as the material for the second hole transport layer 5b. .
  • the layer structure is shown in Table 1, and the measurement results are shown in Table 2.
  • Example 3 An organic EL device was produced under the same conditions as in Example 1, except that instead of the pyrimidine derivative 4-123, a pyrimidine derivative 4-125 having the following structural formula was used as the material for the electron transport layer 7. About the produced organic EL element, the light emission characteristic when a DC voltage was applied at normal temperature in air
  • Example 4 An organic EL device was produced under the same conditions as in Example 3, except that Compound 1-34 of Synthesis Example 6 was used instead of Compound 1-5 of Synthesis Example 1 as the material for the second hole transport layer 5b. .
  • the layer structure is shown in Table 1, and the measurement results are shown in Table 2.
  • Example 5 An organic EL device was produced under the same conditions as in Example 1, except that Compound 3-14 of Synthesis Example 45 was used instead of Compound 2-4 of Synthesis Example 23 as the material of the light-emitting layer 6. About the produced organic EL element, the light emission characteristic when a DC voltage was applied at normal temperature in air
  • Example 6 An organic EL device was produced under the same conditions as in Example 5, except that Compound 1-34 of Synthesis Example 6 was used instead of Compound 1-5 of Synthesis Example 1 as the material for the second hole transport layer 5b. .
  • the layer structure is shown in Table 1, and the measurement results are shown in Table 2.
  • Example 7 An organic EL device was produced under the same conditions as in Example 5 except that the pyrimidine derivative 4-125 was used instead of the pyrimidine derivative 4-123 as the material for the electron transport layer 7. About the produced organic EL element, the light emission characteristic when a DC voltage was applied at normal temperature in air
  • Example 8 An organic EL device was produced under the same conditions as in Example 7, except that Compound 1-34 of Synthesis Example 6 was used instead of Compound 1-5 of Synthesis Example 1 as the material for the second hole transport layer 5b. .
  • the layer structure is shown in Table 1, and the measurement results are shown in Table 2.
  • Example 9 An organic EL device was produced under the same conditions as in Example 1, except that the carbazole derivative 3-16 having the following structural formula was used as the material of the light-emitting layer 6 instead of the compound 2-4 of Synthesis Example 23. About the produced organic EL element, the light emission characteristic when a DC voltage was applied at normal temperature in air
  • Example 10 An organic EL device was produced under the same conditions as in Example 9, except that Compound 1-34 of Synthesis Example 6 was used instead of Compound 1-5 of Synthesis Example 1 as the material for the second hole transport layer 5b. .
  • the layer structure is shown in Table 1, and the measurement results are shown in Table 2.
  • Example 11 An organic EL device was produced under the same conditions as in Example 9, except that pyrimidine derivative 4-125 was used instead of pyrimidine derivative 4-123 as the material for electron transport layer 7. About the produced organic EL element, the light emission characteristic when a DC voltage was applied at normal temperature in air
  • Example 12 An organic EL device was produced under the same conditions as in Example 11 except that Compound 1-34 of Synthesis Example 6 was used instead of Compound 1-5 of Synthesis Example 1 as the material for the second hole transport layer 5b. .
  • the layer structure is shown in Table 1, and the measurement results are shown in Table 2.
  • Example 3 a triarylamine compound 6′-2 represented by the following structural formula was used instead of the compound 6-1 as the material of the first hole transport layer 5a, and the second hole transport layer 5b
  • An organic EL device was produced under the same conditions except that the triarylamine compound 6′-2 represented by the following structural formula was used instead of the compound 1-5 of Synthesis Example 1 as a material.
  • the first hole transport layer 5a and the second hole transport layer 5b functioned as an integral hole transport layer (film thickness 65 nm).
  • the compound (6′-2) was a triarylamine compound having two triarylamine structures in the molecule.
  • the layer structure is shown in Table 1, and the measurement results are shown in Table 2.
  • Example 7 the triarylamine compound 6′-2 represented by the above structural formula was used instead of the compound 6-1 as the material of the first hole transport layer 5a, and the material of the second hole transport layer 5b was used.
  • An organic EL device was produced under the same conditions except that the triarylamine compound 6′-2 represented by the structural formula was used in place of the compound 1-5 of Synthesis Example 1.
  • the first hole transport layer 5a and the second hole transport layer 5b functioned as an integral hole transport layer (film thickness 65 nm).
  • atmosphere was measured.
  • the layer structure is shown in Table 1, and the measurement results are shown in Table 2.
  • Example 11 the triarylamine compound 6′-2 represented by the above structural formula was used instead of the compound 6-1 as the material of the first hole transport layer 5a, and the second hole transport layer 5b
  • An organic EL device was produced under the same conditions except that the triarylamine compound 6′-2 represented by the structural formula was used instead of the compound 1-5 of Synthesis Example 1 as a material.
  • atmosphere was measured.
  • the layer structure is shown in Table 1, and the measurement results are shown in Table 2.
  • the device lifetime is the time when constant current driving was performed using the organic EL device produced in each Example and Comparative Example, with the light emission luminance (initial luminance) at the start of light emission being 7000 cd / m 2.
  • the emission luminance was measured as the time until it attenuated to 6790 cd / m 2 (equivalent to 97% when the initial luminance was 100%: 97% attenuation).
  • an arylamine compound having a specific structure and a heterocyclic compound (and a specific pyrimidine derivative) having a specific condensed ring structure improve the carrier balance inside the organic EL device, and further, a light emitting material It is combined to achieve a carrier balance that matches the characteristics of Therefore, compared with the conventional organic EL element, an organic EL element with high luminous efficiency and long life can be realized.
  • the organic EL device of the present invention in which an arylamine compound having a specific structure and a heterocyclic compound having a specific condensed ring structure (and a specific pyrimidine derivative) are combined, luminous efficiency is improved and durability of the organic EL device is improved. Sex has been improved. For this reason, the organic EL element of the present invention can be used for home appliances and lighting applications, for example.

Abstract

 本発明によれば、少なくとも陽極、正孔輸送層、発光層、電子輸送層および陰極をこの順で有する有機エレクトロルミネッセンス素子において、前記正孔輸送層が、特定の構造を有するアリールアミン化合物を含有し、前記発光層が、特定の構造を有するインデノインドール誘導体またはカルバゾール誘導体を含有することを特徴とする有機EL素子が提供される。本発明の有機EL素子は、発光効率、駆動電圧および耐久性が改良された有機EL素子である。

Description

有機エレクトロルミネッセンス素子
 本発明は、有機エレクトロルミネッセンス素子に関し、詳しくは、特定のアリールアミン化合物と特定の縮合環構造を有する複素環化合物(および特定のピリミジン誘導体)を用いた有機エレクトロルミネッセンス素子(以下、有機EL素子と略称する)に関する。
 有機EL素子は自己発光性素子であるため、液晶素子にくらべて明るく視認性に優れ、鮮明な表示が可能である。そのため、活発な研究がなされてきた。
 1987年にイーストマン・コダック社のC.W.Tangらは、各種の役割を各材料に分担した積層構造素子を開発し、有機材料を用いた有機EL素子を実用的なものにした。かかる有機EL素子は、電子を輸送することのできる蛍光体と正孔を輸送することのできる有機物とを積層することにより形成されるものである。これにより、正電荷と負電荷とを蛍光体の層の中に注入して発光させ、10V以下の電圧で1000cd/m以上の高輝度が得られるようになった(特許文献1および特許文献2参照)。
 現在まで、有機EL素子の実用化のために多くの改良がなされている。例えば、積層構造における各層の役割をさらに細分化し、基板上に、陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層および陰極を設けた電界発光素子によって高効率と耐久性が達成されるようになってきた。
 また、発光効率の更なる向上を目的として三重項励起子の利用が試みられ、燐光発光性化合物の利用が検討されている。更に、熱活性化遅延蛍光(TADF)による発光を利用する素子も開発されている。2011年に九州大学の安達らは、熱活性化遅延蛍光材料を用いた素子によって5.3%の外部量子効率を実現させている。
 発光層は、一般的にホスト材料と称される電荷輸送性の化合物に、蛍光性化合物、燐光発光性化合物または遅延蛍光を放射する材料をドープして作製することもできる。有機EL素子における有機材料の選択は、その素子の効率や耐久性など諸特性に大きな影響を与える。
 有機EL素子においては、両電極から注入された電荷が発光層で再結合して発光が得られる。そのため、有機EL素子では、正孔、電子の両電荷を如何に効率良く発光層に受け渡すかが重要であり、キャリアバランスに優れた素子とする必要がある。また、正孔注入性を高め、陰極から注入された電子をブロックする電子阻止性を高めることによって、正孔と電子が再結合する確率を向上させ、更には発光層内で生成した励起子を閉じ込めることによって、高発光効率を得ることができる。そのため、正孔輸送材料の果たす役割は重要であり、正孔注入性が高く、正孔の移動度が大きく、電子阻止性が高く、さらには電子に対する耐久性が高い正孔輸送材料が求められている。
 また、素子寿命の観点からは、材料の耐熱性やアモルファス性も重要である。耐熱性が低い材料では、素子駆動時に生じる熱により、低温でも熱分解が起こり、材料が劣化する。アモルファス性が低い材料では、短い時間でも薄膜の結晶化が起こり、素子が劣化する。そのため使用する材料には、耐熱性が高く、アモルファス性が良好な性質が求められる。
 これまで有機EL素子に用いられてきた正孔輸送材料としては、N,N’-ジフェニル-N,N’-ジ(α-ナフチル)ベンジジン(NPD)や種々の芳香族アミン誘導体が知られていた(特許文献1および特許文献2参照)。NPDは良好な正孔輸送能力を持っているが、耐熱性の指標となるガラス転移点(Tg)が96℃と低く、高温条件下では結晶化による素子特性の低下が起こる。
 また、特許文献1および2に記載の芳香族アミン誘導体の中には、正孔の移動度が10-3cm/Vs以上と優れた移動度を有する化合物もある。しかし、かかる芳香族アミン誘導体は、電子阻止性が不十分であるため、電子の一部が発光層を通り抜けてしまい、発光効率の向上が期待できない。よって、更なる高効率化のため、より電子阻止性が高く、薄膜がより安定で耐熱性の高い材料が求められている。
 更に、特許文献3には、耐久性の高い芳香族アミン誘導体が報告されている。しかし、特許文献3の芳香族アミン誘導体は、電子写真感光体の電荷輸送材料として用いられるものであり、有機EL素子として用いた例については全く検討されていなかった。
 耐熱性や正孔注入性などの特性を改良した化合物として、置換カルバゾール構造を有するアリールアミン化合物が提案されている(特許文献4および特許文献5参照)。これらの化合物を正孔注入層または正孔輸送層に用いた素子では、耐熱性や発光効率などの改良はされているが未だ不十分であり、さらなる低駆動電圧化やさらなる高発光効率化が求められている。
 このように、有機EL素子の分野では、正孔の注入・輸送性能、電子の注入・輸送性能、薄膜の安定性、耐久性などに優れた材料を組み合わせることで、素子作製の歩留まりを向上させることや、素子特性を改善させて、キャリアバランスが良好であり、正孔と電子が高効率で再結合でき、発光効率が高く、駆動電圧が低く、長寿命な素子を実現させることが求められている。
特開平8-048656号公報 特許第3194657号公報 特許第4943840号公報 特開2006-151979号公報 WO2008/62636号公報 特表2014-513064号公報 韓国公開特許2013-060157号公報 特開平7-126615号公報 特開2005-108804号公報
 本発明の目的は、高発光効率、高耐久性の有機EL素子用の材料として、正孔の注入・輸送性能、電子の注入・輸送性能、電子阻止能力、薄膜状態での安定性、耐久性などに優れた有機EL素子用の各種材料を、それぞれの材料が有する特性が効果的に発現できるように組み合わせることで、(1)発光効率および電力効率が高く、(2)発光開始電圧が低く、(3)実用駆動電圧が低く、(4)長寿命である有機EL素子を提供することである。
 本発明者らは、上記の目的を達成するために、アリールアミン系材料が正孔の注入・輸送能力、薄膜の安定性および耐久性に優れていること、並びに、特定の縮合環構造を有する複素環化合物の発光効率が優れていることに着目した。そして、本発明者らは、正孔輸送材料と発光層の材料としてアリールアミン化合物と特定の構造を有する縮合環構造を有する複素環化合物(インデノインドール誘導体およびカルバゾール誘導体)とを様々に組み合わせて有機EL素子を作成し、その素子特性を評価して、発光層へ正孔を効率良く注入・輸送することができ、発光層の材料の特性に合ったキャリアバランスがとれるような材料の組み合わせを検討した。
 また、本発明者等は、ピリミジン誘導体が電子の注入・輸送能力、薄膜の安定性および耐久性に優れていることにも着目した。そして、電子輸送材料として様々なピリミジン誘導体を選択し、正孔輸送材料および発光層の材料と組み合わせて種々の有機EL素子を作製し、素子特性評価を鋭意行ない、発光層への電子の注入・輸送効率を高め、キャリアバランスがより発光層の材料の特性に合う材料の組み合わせを検討した。
 さらにまた、本発明者等は、正孔輸送層を第一正孔輸送層と第二正孔輸送層の2層構造とし、発光層へ正孔を効率良く注入・輸送できるように第一正孔輸送層の材料を選択し、且つ、電子阻止性の優れた材料を第二正孔輸送層の材料に選択し、キャリアバランスのとれるような組合せを精緻化した種々の有機EL素子を作製し、素子の特性評価を鋭意行なった。
 上記のような様々な検討により、本発明者等は、本発明を完成するに至った。
 すなわち、本発明によれば、少なくとも陽極、正孔輸送層、発光層、電子輸送層及び陰極をこの順に有する有機EL素子において、
 前記正孔輸送層が、下記一般式(1)で表されるアリールアミン化合物を含有し、
 前記発光層が、下記一般式(2)で表されるインデノインドール誘導体または下記一般式(3)で表されるカルバゾール誘導体を含有することを特徴とする有機EL素子が提供される。
Figure JPOXMLDOC01-appb-C000009
  式中、
   Ar~Arは、それぞれ、芳香族炭化水素基、芳香族複素環基ま
  たは縮合多環芳香族基を表す。
Figure JPOXMLDOC01-appb-C000010
  式中、
   Aは、芳香族炭化水素の2価基、芳香族複素環の2価基、縮合多環
  芳香族の2価基または単結合を表し、
   Arは、芳香族炭化水素基、芳香族複素環基または縮合多環芳香族
  基を表し、
   R~Rは、それぞれ、水素原子;重水素原子;フッ素原子;塩素
  原子;シアノ基;ニトロ基;炭素原子数1~6のアルキル基;炭素原子
  数5~10のシクロアルキル基;炭素原子数2~6のアルケニル基;炭
  素原子数1~6のアルキルオキシ基;炭素原子数5~10のシクロアル
  キルオキシ基;芳香族炭化水素基;芳香族複素環基;縮合多環芳香族基
  ;アリールオキシ基;または置換基として芳香族炭化水素基、芳香族複
  素環基もしくは縮合多環芳香族基を有するジ置換アミノ基;であり、
   R~Rは、単結合、置換もしくは無置換のメチレン基、酸素原子
  または硫黄原子を介して互いに結合して環を形成してもよく、
   R~Rは、単結合、置換もしくは無置換のメチレン基、酸素原子
  または硫黄原子を介して互いに結合して環を形成してもよく、
   R~Rの一部が脱離し、この脱離により生じた空位に、R~R
  の他の基が、置換もしくは無置換のメチレン基、酸素原子、硫黄原子ま
  たはモノアリールアミノ基を介して結合して環を形成してもよく、
   R~Rの一部が脱離し、この脱離により生じた空位に、R~R
  の他の基が、置換もしくは無置換のメチレン基、酸素原子、硫黄原子ま
  たはモノアリールアミノ基を介して結合して環を形成してもよい。
   RとR10は、それぞれ、炭素原子数1~6のアルキル基、芳香族
  炭化水素基、芳香族複素環基または縮合多環芳香族基であり、RとR
  10は、単結合、置換もしくは無置換のメチレン基、酸素原子または硫
  黄原子を介して互いに結合して環を形成してもよい。
Figure JPOXMLDOC01-appb-C000011
  式中、
   Aは、芳香族炭化水素の2価基、芳香族複素環の2価基、縮合多環
  芳香族の2価基または単結合を表し、
   Arは、芳香族炭化水素基、芳香族複素環基または縮合多環芳香族
  基を表し、
   R11~R18は、それぞれ、水素原子;重水素原子;フッ素原子;塩
  素原子;シアノ基;ニトロ基;炭素原子数1~6のアルキル基;炭素原
  子数5~10のシクロアルキル基;炭素原子数2~6のアルケニル基;
  炭素原子数1~6のアルキルオキシ基;炭素原子数5~10のシクロア
  ルキルオキシ基;芳香族炭化水素基;芳香族複素環基;縮合多環芳香族
  基;アリールオキシ基;または置換基として芳香族炭化水素基、芳香族
  複素環基もしくは縮合多環芳香族基を有するジ置換アミノ基;であり、
   R11~R14は、単結合、置換もしくは無置換のメチレン基、酸素原
  子又は硫黄原子を介して互いに結合して環を形成してもよく、
   R15~R18は、単結合、置換もしくは無置換のメチレン基、酸素原
  子又は硫黄原子を介して互いに結合して環を形成してもよく、
   R11~R14の一部が脱離し、この脱離により生じた空位に、R11
  ~R14の他の基が、置換もしくは無置換のメチレン基、酸素原子、硫
  黄原子またはモノアリールアミノ基を介して結合して環を形成してもよ
  く、
   R15~R18の一部が脱離し、この脱離により生じた空位に、R15
  ~R18の他の基が、置換もしくは無置換のメチレン基、酸素原子、硫
  黄原子またはモノアリールアミノ基を介して結合して環を形成してもよ
  い。
 本発明の有機EL素子においては、
2)前記電子輸送層が、下記一般式(4)で表されるピリミジン誘導体を含有すること、
Figure JPOXMLDOC01-appb-C000012
  式中、
   Arは、芳香族炭化水素基、芳香族複素環基または縮合多環芳香族
  基を表し、
   Ar、Arは、それぞれ、水素原子、芳香族炭化水素基、芳香族
  複素環基または縮合多環芳香族基を表し、ArとArは同時に水素
  原子となることはなく、
   Bは、下記構造式(5)で示される1価基を表す、
Figure JPOXMLDOC01-appb-C000013
    式中、
     Ar10は、芳香族複素環基を表し、
     R19~R22は、それぞれ、水素原子、重水素原子、フッ素原子
    、塩素原子、シアノ基、トリフルオロメチル基、炭素原子数1~6
    のアルキル基、芳香族炭化水素基、芳香族複素環基または縮合多環
    芳香族基を表し、
     R19~R22とAr10が、単結合、置換もしくは無置換のメチ
    レン基、酸素原子または硫黄原子を介して互いに結合して環を形成
    していてもよい、
3)前記ピリミジン誘導体が、下記一般式(4a)で表されること、
Figure JPOXMLDOC01-appb-C000014
  式中、
   Ar~ArおよびBは、前記一般式(4)に示す通りである、
4)前記ピリミジン誘導体が、下記一般式(4b)で表されること、
Figure JPOXMLDOC01-appb-C000015
  式中、
   Ar~ArおよびBは、前記一般式(4)に示す通りである、
5)前記一般式(4)において、Bが下記構造式(5a)で示される1価基であること、
Figure JPOXMLDOC01-appb-C000016
  式中、
   Ar10およびR19~R22は前記構造式(5)に示す通りである、
6)前記正孔輸送層が、第一正孔輸送層および第二正孔輸送層の2層構造を有しており、該第二正孔輸送層が発光層側に位置しており且つ前記一般式(1)で表されるアリールアミン化合物を含有すること、
7)前記発光層が、赤色の発光材料を含有すること、
8)前記発光層が、燐光性の発光材料を含有すること、
9)前記した燐光性の発光材料が、イリジウムまたは白金を含む金属錯体であること、
が好ましい。
 本発明では、正孔の注入・輸送性能、薄膜の安定性、耐久性に優れ、正孔の注入・輸送の役割を効果的に発現できる特定の構造を有するアリールアミン化合物を用い、これを発光効率の優れた発光材料と組み合わせることにより、発光層へ正孔を効率良く注入・輸送でき、高効率、低駆動電圧、長寿命の有機EL素子を実現することができる。また、キャリアバランスを考慮して、特定の構造を有するアリールアミン化合物と特定の構造を有する発光層の材料の組み合わせに対し、更に特定の電子輸送材料を組み合わせることで、高効率、低駆動電圧であって、特に長寿命の有機EL素子を実現することができる。さらにまた、正孔輸送層を第一正孔輸送層と第二正孔輸送層の2層構造とし、特定の構造を有する二種類のアリールアミン化合物を、キャリアバランスや材料の特性を考慮しながら組合せてこれらの2層に使用した場合には、さらなる長寿命の有機EL素子を実現することができる。このように、本発明によれば、従来の有機EL素子の発光効率および駆動電圧、特に耐久性を改良することができる。
実施例1~12、比較例1~3の有機EL素子構成を示した図である。 一般式(1)のアリールアミン化合物である化合物(1-1)~(1-7)の構造式を示す図である。 一般式(1)のアリールアミン化合物である化合物(1-8)~(1-14)の構造式を示す図である。 一般式(1)のアリールアミン化合物である化合物(1-15)~(1-21)の構造式を示す図である。 一般式(1)のアリールアミン化合物である化合物(1-22)~(1-27)の構造式を示す図である。 一般式(1)のアリールアミン化合物である化合物(1-28)~(1-33)の構造式を示す図である。 一般式(1)のアリールアミン化合物である化合物(1-34)~(1-39)の構造式を示す図である。 一般式(1)のアリールアミン化合物である化合物(1-40)~(1-45)の構造式を示す図である。 一般式(1)のアリールアミン化合物である化合物(1-46)~(1-50)の構造式を示す図である。 一般式(1)のアリールアミン化合物である化合物(1-51)~(1-55)の構造式を示す図である。 一般式(1)のアリールアミン化合物である化合物(1-56)~(1-59)の構造式を示す図である。 一般式(1)のアリールアミン化合物である化合物(1-60)~(1-64)の構造式を示す図である。 一般式(1)のアリールアミン化合物である化合物(1-65)~(1-70)の構造式を示す図である。 一般式(1)のアリールアミン化合物である化合物(1-71)~(1-76)の構造式を示す図である。 一般式(1)のアリールアミン化合物である化合物(1-77)~(1-81)の構造式を示す図である。 一般式(1)のアリールアミン化合物である化合物(1-82)~(1-87)の構造式を示す図である。 一般式(1)のアリールアミン化合物である化合物(1-88)~(1-93)の構造式を示す図である。 一般式(1)のアリールアミン化合物である化合物(1-94)~(1-99)の構造式を示す図である。 一般式(1)のアリールアミン化合物である化合物(1-100)~(1-105)の構造式を示す図である。 一般式(2)のインデノインドール誘導体である化合物(2-1)~(2-5)の構造式を示す図である。 一般式(2)のインデノインドール誘導体である化合物(2-6)~(2-10)の構造式を示す図である。 一般式(2)のインデノインドール誘導体である化合物(2-11)~(2-15)の構造式を示す図である。 一般式(3)のカルバゾール誘導体である化合物(3-1)~(3-6)の構造式を示す図である。 一般式(3)のカルバゾール誘導体である化合物(3-7)~(3-12)の構造式を示す図である。 一般式(3)のカルバゾール誘導体である化合物(3-13)~(3-18)の構造式を示す図である。 一般式(3)のカルバゾール誘導体である化合物(3-19)~(3-23)の構造式を示す図である。 一般式(4)のピリミジン誘導体である化合物(4-1)~(4-6)の構造式を示す図である。 一般式(4)のピリミジン誘導体である化合物(4-7)~(4-11)の構造式を示す図である。 一般式(4)のピリミジン誘導体である化合物(4-12)~(4-16)の構造式を示す図である。 一般式(4)のピリミジン誘導体である化合物(4-17)~(4-21)の構造式を示す図である。 一般式(4)のピリミジン誘導体である化合物(4-22)~(4-26)の構造式を示す図である。 一般式(4)のピリミジン誘導体である化合物(4-27)~(4-31)の構造式を示す図である。 一般式(4)のピリミジン誘導体である化合物(4-32)~(4-36)の構造式を示す図である。 一般式(4)のピリミジン誘導体である化合物(4-37)~(4-41)の構造式を示す図である。 一般式(4)のピリミジン誘導体である化合物(4-42)~(4-46)の構造式を示す図である。 一般式(4)のピリミジン誘導体である化合物(4-47)~(4-51)の構造式を示す図である。 一般式(4)のピリミジン誘導体である化合物(4-52)~(4-56)の構造式を示す図である。 一般式(4)のピリミジン誘導体である化合物(4-57)~(4-61)の構造式を示す図である。 一般式(4)のピリミジン誘導体である化合物(4-62)~(4-66)の構造式を示す図である。 一般式(4)のピリミジン誘導体である化合物(4-67)~(4-71)の構造式を示す図である。 一般式(4)のピリミジン誘導体である化合物(4-72)~(4-76)の構造式を示す図である。 一般式(4)のピリミジン誘導体である化合物(4-77)~(4-80)の構造式を示す図である。 一般式(4)のピリミジン誘導体である化合物(4-81)~(4-84)の構造式を示す図である。 一般式(4)のピリミジン誘導体である化合物(4-85)~(4-88)の構造式を示す図である。 一般式(4)のピリミジン誘導体である化合物(4-89)~(4-92)の構造式を示す図である。 一般式(4)のピリミジン誘導体である化合物(4-93)~(4-96)の構造式を示す図である。 一般式(4)のピリミジン誘導体である化合物(4-97)~(4-100)の構造式を示す図である。 一般式(4)のピリミジン誘導体である化合物(4-101)~(4-104)の構造式を示す図である。 一般式(4)のピリミジン誘導体である化合物(4-105)~(4-108)の構造式を示す図である。 一般式(4)のピリミジン誘導体である化合物(4-109)~(4-112)の構造式を示す図である。 一般式(4)のピリミジン誘導体である化合物(4-113)~(4-116)の構造式を示す図である。 一般式(4)のピリミジン誘導体である化合物(4-117)~(4-120)の構造式を示す図である。 一般式(4)のピリミジン誘導体である化合物(4-121)~(4-124)の構造式を示す図である。 一般式(4)のピリミジン誘導体である化合物(4-125)および(4-126)の構造式を示す図である。 一般式(6)のトリアリールアミン化合物である化合物(6-1)~(6-5)の構造式を示す図である。 一般式(6)のトリアリールアミン化合物である化合物(6-6)~(6-10)の構造式を示す図である。 一般式(6)のトリアリールアミン化合物である化合物(6-11)~(6-15)の構造式を示す図である。 一般式(6)のトリアリールアミン化合物である化合物(6-16)~(6-20)の構造式を示す図である。 一般式(6)のトリアリールアミン化合物である化合物(6-21)~(6-23)の構造式を示す図である。 トリアリールアミン構造を2個有するトリアリールアミン化合物のうち、一般式(6)のトリアリールアミン化合物以外の化合物(6´-1)および(6´-2)の構造式を示す図である。 一般式(7)のトリアリールアミン化合物である化合物(7-1)~(7-5)の構造式を示す図である。 一般式(7)のトリアリールアミン化合物である化合物(7-6)~(7-9)の構造式を示す図である。 一般式(7)のトリアリールアミン化合物である化合物(7-10)~(7-13)の構造式を示す図である。 一般式(7)のトリアリールアミン化合物である化合物(7-14)~(7-17)の構造式を示す図である。
発明が実施しようとする形態
 本発明の有機EL素子は、ガラス基板や透明プラスチック基板(例えばポリエチレンテレフタレート基板)などの基板上に、陽極、正孔輸送層、発光層、電子輸送層および陰極がこの順に設けられた基本構造を有している。このような基本構造を有している限り、その層構造は種々の態様を採ることができ、例えば正孔輸送層と発光層の間に電子阻止層を設けることや、発光層と電子輸送層の間に正孔阻止層を設けること、電子輸送層と陰極の間に電子注入層を設けることが可能である。また、有機層を何層か省略あるいは兼ねることも可能であり、例えば正孔注入層と正孔輸送層を兼ねた層を形成すること、電子注入層と電子輸送層を兼ねた層を形成することなども可能である。また、同一の機能を有する有機層を2層以上積層した構成とすることも可能であり、具体的には、正孔輸送層を2層積層した構成、発光層を2層積層した構成、電子輸送層を2層積層した構成も可能である。本発明においては、正孔輸送層を第一正孔輸送層と第二正孔輸送層の2層が積層した構成とすることが好ましい。例えば図1には、後述する実施例で採用された層構成が示されており、ガラス基板1上に、透明陽極2、正孔注入層3、正孔輸送層5、発光層6、電子輸送層7、電子注入層8および陰極9がこの順に形成されており、正孔輸送層5が、第一正孔輸送層5aと第二正孔輸送層5bの2層である層構成を有している。
 以下、本発明の有機EL素子を構成する各層について説明する。
<陽極2>
 陽極2は、ITOや金のような仕事関数の大きな電極材料の蒸着により、透明基板1上に設けられるものである。
<正孔注入層3>
 陽極2と正孔輸送層5との間には、必要に応じて、正孔注入層3を設けてもよい。正孔注入層3には、公知の材料、例えば、スターバースト型のトリフェニルアミン誘導体;種々のトリフェニルアミン4量体;銅フタロシアニンに代表されるポルフィリン化合物;ヘキサシアノアザトリフェニレンのようなアクセプター性の複素環化合物;塗布型の高分子材料;などを用いることができる。また、後述する一般式(1)のアリールアミン化合物、一般式(6)のトリアリールアミン化合物または一般式(7)のトリアリールアミン化合物を用いることもできる。正孔注入層3には、一般式(6)または一般式(7)のトリアリールアミン化合物を用いることが好ましい。これらの(トリ)アリールアミン化合物は、正孔の移動度が高いからである。但し、正孔注入層3に一般式(1)、(6)または(7)の(トリ)アリールアミン化合物を用いる場合、正孔注入層3の組成と正孔輸送層5の組成とは異なっていなければならない。
 これらの材料は、単独で成膜に供してもよいが、他の材料とともに混合して成膜に供してもよい。また、トリスブロモフェニルアミンヘキサクロルアンチモン、ラジアレン誘導体(国際公開2014/009310号参照)などをPドーピングしたものや、TPDなどのベンジジン誘導体の構造をその部分構造に有する高分子化合物などを用いてもよい。
 これらの材料を用いて、蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うと、正孔注入層3を得ることができる。以下に述べる各層も、同様に、蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことで得ることができる。
<正孔輸送層5>
 正孔輸送層5は、上記の陽極2と発光層6との間に設けられるものであり、本発明では、この正孔輸送層5に、下記一般式(1)で表されるアリールアミン化合物(本明細書では「一般式(1)のアリールアミン化合物」と略称することがある。)が含まれている。一般式(1)のアリールアミン化合物は、正孔の移動度が高いため、正孔輸送層から発光層への正孔輸送効率を向上させることができるからである。
一般式(1)のアリールアミン化合物;
Figure JPOXMLDOC01-appb-C000017
 一般式(1)において、Ar~Arは、それぞれ、芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基を表す。Ar~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、具体的に、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基、ピリジル基、ピリミジニル基、トリアジニル基、フリル基、ピロリル基、チエニル基、キノリル基、イソキノリル基、キナゾリニル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、ピリドピリミジニル基、ナフチリジニル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ナフトピリミジニル基、ジベンゾフラニル基、ジベンゾチエニル基、ナフチリジニル基、フェナントロリニル基、アクリジニル基、カルボリニル基、ベンゾキナゾリニル基などをあげることができる。
 Ar~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基は、無置換でもよいが置換基を有してもよい。置換基としては、重水素原子、シアノ基、ニトロ基の他、例えば以下の基を挙げることができる。
  ハロゲン原子、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子;
  炭素原子数1~6のアルキル基、例えばメチル基、エチル基、n-プロ
 ピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチ
 ル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル
 基;
  炭素原子数1~6のアルキルオキシ基、例えばメチルオキシ基、エチル
 オキシ基、プロピルオキシ基;
  アルケニル基、例えばビニル基、アリル基;
  アリールオキシ基、例えばフェニルオキシ基、トリルオキシ基;
  アリールアルキルオキシ基、例えばベンジルオキシ基、フェネチルオキ
 シ基;
  芳香族炭化水素基もしくは縮合多環芳香族基、例えばフェニル基、ビフ
 ェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナ
 ントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル
 基、フルオランテニル基、トリフェニレニル基;
  芳香族複素環基、例えばピリジル基、ピリミジニル基、トリアジニル基
 、チエニル基、フリル基、ピロリル基、キノリル基、イソキノリル基、ベ
 ンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベ
 ンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイ
 ミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基
 、カルボリニル基;
  アリールビニル基、例えばスチリル基、ナフチルビニル基;
  アシル基、例えばアセチル基、ベンゾイル基;
炭素数1~6のアルキル基、炭素数1~6のアルキルオキシ基およびアルケニル基は、直鎖状であっても分枝状であってもよい。これらの置換基には、さらに前記例示した置換基が置換していても良い。また、これらの置換基同士は、互いに独立して存在して環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
 Ar~Arとしては、芳香族炭化水素基、含酸素芳香族複素環基または縮合多環芳香族基が好ましく、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、フェナントレニル基、トリフェニレニル基、フルオレニル基、ジベンゾフラニル基がより好ましい。
 Ar~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基としては、重水素原子、炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基、芳香族炭化水素基、含酸素芳香族複素環基または縮合多環芳香族基が好ましく、重水素原子、フェニル基、ビフェニリル基、ナフチル基、ジベンゾフラニル基、ビニル基がより好ましい。また、Ar~Arが単結合を介して互いに結合して縮合芳香環を形成する態様も好ましい。
 また、ArとArが異なる基であるか又はArとArが異なる基である態様が好ましく、ArとArが異なる基であり且つArとArが異なる基である態様がより好ましい。尚、「異なる」には、基本の構造が異なる場合だけでなく、基本の構造が同じで置換基が異なる場合や、基本の構造および置換基が同じで置換基の位置が異なる場合も含まれる。
 一般式(1)におけるフェニレン基の結合様式としては、素子寿命に影響を与える薄膜の安定性の観点から、全ての結合が1,4-結合となっている骨格(例えば4,4’’-ジアミノ-[1,1’;4’,1’’]ターフェニル骨格)は好ましくなく、1,2-結合もしくは1,3-結合が含まれている骨格が好ましく、即ち、以下に示すような、フェニレン基が直線的に連結していない骨格が好ましい。
 4,4’’-ジアミノ-[1,1’;3’,1’’]ターフェニル骨格;
 3,3’’-ジアミノ-[1,1’;3’,1’’]ターフェニル骨格;
 2,2’’-ジアミノ-[1,1’;3’,1’’]ターフェニル骨格;
 4,4’’-ジアミノ-[1,1’;2’,1’’]ターフェニル骨格;
 3,3’’-ジアミノ-[1,1’;2’,1’’]ターフェニル骨格;
 2,2’’-ジアミノ-[1,1’;2’,1’’]ターフェニル骨格;
 2,4’’-ジアミノ-[1,1’;4’,1’’]ターフェニル骨格;
 2,2’’-ジアミノ-[1,1’;4’,1’’]ターフェニル骨格;
 3,3’’-ジアミノ-[1,1’;4’,1’’]ターフェニル骨格;
 特に、下記一般式(1a-a)、(1a-b)、(1b-a)、(1c-a)、(1c-b)または(1c-c)で表されるアリールアミン化合物が好ましい。
Figure JPOXMLDOC01-appb-C000018
 式中、Ar~Arは前記一般式(1)で示した通りの意味を表す。
 一般式(1)で表されるアリールアミン化合物の中で、好ましい化合物の具体例を図2~図19に示すが、かかるアリールアミン化合物は、これらの化合物に限定されるものではない。尚、構造式中のDは、重水素を表す。
 図2~図19に示されている例示化合物のうち、式(1a―a)に該当する化合物は、(1-1)~(1-3)、(1-5)~(1-7)、(1-9)~(1-10)、(1-12)、(1-14)、(1-18)~(1-20)、(1-25)~(1-26)、(1-28)、(1-33)~(1-34)、(1-45)、(1-94)~(1-97)および(1-104)である。式(1a―b)に該当する化合物は、(1-15)、(1-40)、(1-43)~(1-44)および(1-47)である。式(1b―a)に該当する化合物は、(1-23)、(1-38)~(1-39)、(1-41)~(1-42)および(1-103)である。式(1c―a)に該当する化合物は、(1-24)、(1-27)、(1-30)~(1-32)、(1-35)~(1-37)、(1-93)および(1-99)~(1-100)である。式(1c―b)に該当する化合物は、(1-22)、(1-29)、(1-46)、(1-48)~(1-65)、(1-98)および(1-105)である。式(1c―c)に該当する化合物は、(1-21)である。
 前記一般式(1)で表されるアリールアミン化合物は、鈴木カップリング等の公知の方法で合成することができる。
 一般式(1)で表されるアリールアミン化合物の精製は、カラムクロマトグラフによる精製、シリカゲル、活性炭、活性白土等による吸着精製、溶媒による再結晶や晶析法、昇華精製法などによって行うことができる。本発明の有機EL素子に用いられるその他の化合物も、一般式(1)で表されるアリールアミン化合物と同様に、カラムクロマトグラフによる精製、シリカゲル、活性炭、活性白土等による吸着精製、溶媒による再結晶や晶析法などによって精製を行った後、最後に昇華精製法によって精製して得ることができる。化合物の同定は、NMR分析によって行なうことができる。物性としては、ガラス転移点(Tg)と仕事関数の測定を行うことができる。
 ガラス転移点(Tg)は薄膜状態の安定性の指標となる。ガラス転移点(Tg)は、粉体を用いて高感度示差走査熱量計(ブルカー・エイエックスエス製、DSC3100SA)で測定することができる。
 仕事関数は正孔輸送性の指標となる。仕事関数は、ITO基板の上に100nmの薄膜を作製して、イオン化ポテンシャル測定装置(住友重機械工業株式会社製、PYS-202)で測定することができる。
 前記一般式(1)のアリールアミン化合物は、単独で成膜に供してもよいが、他の材料とともに混合して成膜に供してもよい。前記一般式(1)のアリールアミン化合物と混合もしくは同時に使用できる正孔輸送性の材料としては、例えば以下を挙げることができる。
  ベンジジン誘導体、例えば
   N,N’-ジフェニル-N,N’-ジ(m-トリル)ベンジジン
  (TPD)、
   N,N’-ジフェニル-N,N’-ジ(α-ナフチル)ベンジジン
  (NPD)、
   N,N,N’,N’-テトラビフェニリルベンジジン;
  1,1-ビス[4-(ジ-4-トリルアミノ)フェニル]シクロヘキサ
 ン(TAPC);
  分子中にトリアリールアミン構造を2個有するトリアリールアミン化合
 物であって、該トリアリールアミン構造が、ヘテロ原子を含まない2価基
 または単結合で連結しているトリアリールアミン化合物、例えば
   後述の一般式(6)で表されるトリアリールアミン化合物;
  分子中にトリアリールアミン構造を4個有するトリアリールアミン化合
 物であって、該トリアリールアミン構造が、ヘテロ原子を含まない2価基
 または単結合で連結しているトリアリールアミン化合物、例えば
   後述の一般式(7)で表されるトリアリールアミン化合物;
  種々のトリフェニルアミン3量体;
 更に、トリスブロモフェニルアミンヘキサクロルアンチモン、ラジアレン誘導体(国際公開2014/009310号参照)などをPドーピングしたものや、TPDなどのベンジジン誘導体の構造をその部分構造に有する高分子化合物などを併用してもよい。
 また、本発明では、正孔輸送層5は、例えば図1に示されているように、陽極2側に位置する第一正孔輸送層5aと発光層6側に位置する第二正孔輸送層5bとの二層構造を有していることが好適である。このような二層構造の正孔輸送層5については後述する。
<発光層6>
 本発明においては、発光層6が、下記一般式(2)で表されるインデノインドール誘導体(本明細書では「一般式(2)のインデノインドール誘導体」と略称することがある。)または下記一般式(3)で表されるカルバゾール誘導体(本明細書では「一般式(3)のカルバゾール誘導体」と略称することがある。)を含んでいることが重要である。
一般式(2)のインデノインドール誘導体;
Figure JPOXMLDOC01-appb-C000019
(A
 一般式(2)において、Aは、芳香族炭化水素の2価基、芳香族複素環の2価基、縮合多環芳香族の2価基または単結合を表す。Aで表される芳香族炭化水素の2価基、芳香族複素環の2価基または縮合多環芳香族の2価基は、芳香族炭化水素、芳香族複素環または縮合多環芳香族から水素原子を2個取り除いてできる2価基である。この場合の芳香族炭化水素、芳香族複素環または縮合多環芳香族としては、具体的に、ベンゼン、ビフェニル、ターフェニル、テトラキスフェニル、スチレン、ナフタレン、アントラセン、アセナフタレン、フルオレン、フェナントレン、インダン、ピレン、トリフェニレン、ピリジン、ピリミジン、トリアジン、ピロール、フラン、チオフェン、キノリン、イソキノリン、ベンゾフラン、ベンゾチオフェン、インドリン、カルバゾール、カルボリン、ベンゾオキサゾール、ベンゾチアゾール、キノキサリン、ベンゾイミダゾール、ピラゾール、ジベンゾフラン、ジベンゾチオフェン、ナフチリジン、フェナントロリン、アクリジンなどをあげることができる。
 Aで表される芳香族炭化水素の2価基、芳香族複素環の2価基または縮合多環芳香族の2価基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族が有してもよい置換基として示したものと同様のものをあげることができる。置換基がとりうる態様も同様である。
 Aとしては、芳香族炭化水素の2価基、縮合多環芳香族の2価基または単結合が好ましく、ベンゼン、ビフェニルもしくはナフタレンから水素原子を2個取り除いてできる2価基または単結合がより好ましく、ベンゼンから水素原子を2個取り除いてできる2価基または単結合が特に好ましい。
(Ar
 一般式(2)においてArは、芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基を表す。Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基に関して示したものと同様のものをあげることができる。
 Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基として示したものと同様のものをあげることができる。置換基がとりうる態様も同様である。
 Arとしては、フェニル基、ビフェニリル基、ナフチル基または芳香族複素環基が好ましく、芳香族複素環基が特に好ましい。芳香族複素環基の中では、トリアジニル基、キナゾリニル基、ナフトピリミジニル基、ベンゾイミダゾリル基、ピリドピリミジニル基、ナフチリジニル基、ピリジル基、キノリル基、イソキノリル基が特に好ましい。
(R~R
 一般式(2)において、R~Rは、それぞれ、水素原子;重水素原子;フッ素原子;塩素原子;シアノ基;ニトロ基;炭素原子数1~6のアルキル基;炭素原子数5~10のシクロアルキル基;炭素原子数2~6のアルケニル基;炭素原子数1~6のアルキルオキシ基;炭素原子数5~10のシクロアルキルオキシ基;芳香族炭化水素基;芳香族複素環基;縮合多環芳香族基;アリールオキシ基;または置換基として芳香族炭化水素基、芳香族複素環基もしくは縮合多環芳香族基を有するジ置換アミノ基;である。尚、炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基、炭素原子数1~6のアルキルオキシ基は、直鎖状でも分枝状でもよい。
 R~Rで表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基としては、具体的に、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基、ビニル基、アリル基、イソプロペニル基、2-ブテニル基などをあげることができる。
 R~Rで表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基は、無置換でもよいが置換基を有してもよい。置換基としては、重水素原子、シアノ基、ニトロ基の他、例えば以下の基を挙げることができる。
  ハロゲン原子、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子;
  炭素原子数1~6のアルキルオキシ基、例えばメチルオキシ基、エチル
 オキシ基、プロピルオキシ基;
  アルケニル基、例えばビニル基、アリル基;
  アリールオキシ基、例えばフェニルオキシ基、トリルオキシ基;
  アリールアルキルオキシ基、例えばベンジルオキシ基、フェネチルオキ
 シ基;
  芳香族炭化水素基または縮合多環芳香族基、例えばフェニル基、ビフェ
 ニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナン
 トレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基
 、フルオランテニル基、トリフェニレニル基;
  芳香族複素環基、例えばピリジル基、ピリミジニル基、トリアジニル基
 、チエニル基、フリル基、ピロリル基、キノリル基、イソキノリル基、ベ
 ンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベ
 ンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイ
 ミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基
 、カルボリニル基;
  芳香族炭化水素基で置換されたジ置換アミノ基、例えばジフェニルアミ
 ノ基;
  縮合多環芳香族基で置換されたジ置換アミノ基、例えばジナフチルアミ
 ノ基;
  芳香族複素環基で置換されたジ置換アミノ基、例えばジピリジルアミノ
 基、ジチエニルアミノ基;
  芳香族炭化水素基、縮合多環芳香族基または芳香族複素環基から選択さ
 れる置換基で置換されたジ置換アミノ基;
尚、アルケニル基、炭素原子数1~6のアルキルオキシ基は、直鎖状でも分枝状でもよい。これらの置換基には、さらに、前記例示した置換基が置換していても良い。また、これらの置換基同士は、互いに独立して存在して環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
 R~Rで表される炭素原子数1~6のアルキルオキシ基または炭素原子数5~10のシクロアルキルオキシ基としては、具体的に、メチルオキシ基、エチルオキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、tert-ブチルオキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基、1-アダマンチルオキシ基、2-アダマンチルオキシ基などをあげることがでる。
 R~Rで表される炭素原子数1~6のアルキルオキシ基または炭素原子数5~10のシクロアルキルオキシ基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(2)中のR~Rで表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基が有してもよい置換基として示したものと同様のものをあげることができる。置換基がとりうる態様も同様である。
 R~Rで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基に関して示したものと同様のものをあげることができる。これらの基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基として示したものと同様のものをあげることができる。置換基がとりうる態様も同様である。
 R~Rで表されるアリールオキシ基としては、具体的に、フェニルオキシ基、ビフェニリルオキシ基、ターフェニリルオキシ基、ナフチルオキシ基、アントラセニルオキシ基、フェナントレニルオキシ基、フルオレニルオキシ基、インデニルオキシ基、ピレニルオキシ基、ペリレニルオキシ基などをあげることができる。
 R~Rで表されるアリールオキシ基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基として示したものと同様のものをあげることができる。置換基がとりうる態様も同様である。
 R~Rで表される「置換基として芳香族炭化水素基、芳香族複素環基もしくは縮合多環芳香族基を有するジ置換アミノ基」における芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基に関して示したものと同様のものをあげることができる。R~Rで表されるジ置換アミノ基は、無置換でもよいが更に置換基を有していてもよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基として示したものと同様のものをあげることができる。置換基がとりうる態様も同様である。
 R~Rは、独立して存在して環を形成していなくてもよいが、図22の化合物2-14や化合物2-15のように、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよい。同様に、R~Rは、独立して存在して環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよい。また、例えば図20の化合物2-1~化合物2-5のように、R~Rの一部が脱離し、この脱離により生じた空位に、R~Rの他の基が、置換もしくは無置換のメチレン基、酸素原子、硫黄原子またはモノアリールアミノ基を介して結合して環を形成してもよい。同様に、R~Rの一部が脱離し、この脱離により生じた空位に、R~Rの他の基が、置換もしくは無置換のメチレン基、酸素原子、硫黄原子またはモノアリールアミノ基を介して結合して環を形成してもよい。
 尚、上記のとおりR~Rが環を形成しており、環形成に寄与する基がジ置換アミノ基である態様には、R~R同士が、ジ置換アミノ基が有する芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基を介しつつ、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成する態様が含まれる。また、R~Rの一部が脱離しており、この脱離により生じた空位に、R~Rの他の基(ジ置換アミノ基)が、ジ置換アミノ基が有する芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基を介しつつ、置換もしくは無置換のメチレン基、酸素原子、硫黄原子、モノアリールアミノ基を介して互いに結合して環を形成する態様も含まれる。更にまた、R~Rの一部が脱離しており、この脱離により生じた空位に、R~Rの他の基(ジ置換アミノ基)が、ジ置換アミノ基が有する芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基を介しつつ、置換もしくは無置換のメチレン基、酸素原子、硫黄原子、モノアリールアミノ基を介して互いに結合して環を形成する態様も含まれる。
 環形成に際して連結基としての役割を果たすモノアリールアミノ基におけるアリール基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基に関して示したものと同様のものをあげることができる。また、これらの基は置換基を有していてよく、置換基として、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基として示したものと同様のものをあげることができる。置換基がとりうる態様も同様である。
 一般式(2)のインデノインドール誘導体の態様としては、R~Rのいずれか一つが芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基であって、これらの基がR~Rが結合しているベンゼン環と、置換もしくは無置換のメチレン基、酸素原子、硫黄原子またはモノアリールアミノ基等の連結基を介して互いに結合して環を形成する態様が好ましい。この場合の芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、フェニル基、インデニル基、インドリル基、ベンゾフラニル基、ベンゾチエニル基が好ましく、これらの基がR~Rが結合しているベンゼン環と共にフルオレン環、カルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環、インデノインドール環、インデノベンゾフラン環、インデノベンゾチオフェン環、ベンゾフロインドール環、ベンゾチエノインドール環、インドロインドール環を形成する態様が好ましい。このような態様のうち、特に、下記一般式(2a)~(2c)で表される態様が好ましい。
 また、R~Rの隣り合う二つが炭素原子数2~6のアルケニル基、芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基であって、隣り合う二つの基(R~R)が単結合を介して互いに結合して、これらの基がR~Rが結合しているベンゼン環と共に縮合環を形成する態様が好ましい。この場合の炭素原子数2~6のアルケニル基、芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、ビニル基、フェニル基が好ましく、即ち、R~Rが結合しているベンゼン環と共にナフタレン環、フェナントレン環またはトリフェニレン環を形成する態様が好ましい。このような態様のうち、特に下記一般式(2d)または(2e)で表される態様が好ましい。
Figure JPOXMLDOC01-appb-C000020
 式中、Xは、置換もしくは無置換のメチレン基、酸素原子、硫黄原子またはモノアリールアミノ基を表し、A、ArおよびR~R10は、前記一般式(2)で示した通りの意味を表す。
 同様に、R~Rの隣り合う二つまたは全てがビニル基であって、隣り合う二つのビニル基が単結合を介して互いに結合して縮合環を形成する態様、すなわち、R~Rが結合しているベンゼン環と共にナフタレン環もしくはフェナントレン環を形成する態様も好ましい。
(R、R10
 一般式(2)において、RとR10は、それぞれ、炭素原子数1~6のアルキル基、芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基である。尚、炭素原子数1~6のアルキル基は、直鎖状でも分枝状でもよい。
 R、R10で表される炭素原子数1~6のアルキル基としては、前記一般式(2)中のR~Rで表される炭素原子数1~6のアルキル基に関して示したものと同様のものをあげることができる。R、R10で表される炭素原子数1~6のアルキル基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(2)中のR~Rで表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基が有してもよい置換基として示したものと同様のものをあげることができる。置換基がとりうる態様も同様である。
 R、R10で表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基に関して示したものと同様のものをあげることができる。これらの基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基として示したものと同様のものをあげることができる。置換基がとりうる態様も同様である。
 R、R10としては、炭素原子数1~6のアルキル基が好ましく、メチル基が特に好ましい。
 R、R10は、独立して存在して環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよい。
一般式(3)のカルバゾール誘導体;
Figure JPOXMLDOC01-appb-C000021
(A
 一般式(3)において、Aは、芳香族炭化水素の2価基、芳香族複素環の2価基、縮合多環芳香族の2価基または単結合を表す。Aで表される芳香族炭化水素の2価基、芳香族複素環の2価基または縮合多環芳香族の2価基としては、前記一般式(2)中のAで表される芳香族炭化水素の2価基、芳香族複素環の2価基または縮合多環芳香族の2価基に関して示したものと同様のものをあげることができる。これらの2価基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族が有してもよい置換基として示したものと同じものをあげることができる。置換基がとりうる態様も同様である。
 Aとしては、芳香族炭化水素の2価基、縮合多環芳香族の2価基または単結合が好ましく、ベンゼン、ビフェニルもしくはナフタレンから水素原子を2個取り除いてできる2価基または単結合がより好ましく、ベンゼンから水素原子を2個取り除いてできる2価基または単結合が特に好ましい。
(Ar
 一般式(3)において、Arは、芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基を表す。Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基に関して示したものと同様のものをあげることができる。これらの基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基として示したものと同様のものをあげることができる。置換基がとりうる態様も同様である。
 Arとしては、フェニル基、ビフェニリル基、ナフチル基または芳香族複素環基が好ましく、芳香族複素環基が特に好ましい。芳香族複素環基の中では、トリアジニル基、キナゾリニル基、ナフトピリミジニル基、ベンゾイミダゾリル基、ピリドピリミジニル基、ナフチリジニル基、ピリジル基、キノリル基、イソキノリル基が特に好ましい。
(R11~R18
 一般式(3)において、R11~R18は、それぞれ、水素原子;重水素原子;フッ素原子;塩素原子;シアノ基;ニトロ基;炭素原子数1~6のアルキル基;炭素原子数5~10のシクロアルキル基;炭素原子数2~6のアルケニル基;炭素原子数1~6のアルキルオキシ基;炭素原子数5~10のシクロアルキルオキシ基;芳香族炭化水素基;芳香族複素環基;縮合多環芳香族基;アリールオキシ基;または置換基として芳香族炭化水素基、芳香族複素環基もしくは縮合多環芳香族基を有するジ置換アミノ基;を表す。尚、炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基、炭素原子数1~6のアルキルオキシ基は、直鎖状でも分枝状でもよい。
 R11~R18で表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基としては、前記一般式(2)中のR~Rで表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基に関して示したものと同様のものをあげることができる。これらの基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(2)中のR~Rで表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基が有してもよい置換基として示したものと同様のものをあげることができる。置換基がとりうる態様も同様である。
 R11~R18で表される炭素原子数1~6のアルキルオキシ基または炭素原子数5~10のシクロアルキルオキシ基としては、前記一般式(2)中のR~Rで表される炭素原子数1~6のアルキルオキシ基または炭素原子数5~10のシクロアルキルオキシ基に関して示したものと同様のものをあげることができる。これらの基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(2)中のR~Rで表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基が有してもよい置換基として示したものと同様のものをあげることができる。置換基がとりうる態様も同様である。
 R11~R18で表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、前記一般式(2)中のR~Rで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基に関して示したものと同様のものをあげることができる。これらの基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基として示したものと同様のものをあげることができる。置換基がとりうる態様も同様である。
 R11~R18で表されるアリールオキシ基としては、前記一般式(2)中のR~Rで表されるアリールオキシ基に関して示したものと同様のものをあげることができる。R11~R18で表されるアリールオキシ基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基として示したものと同様のものをあげることができる。置換基がとりうる態様も同様である。
 R11~R18で表されるジ置換アミノ基としては、前記一般式(2)中のR~Rで表されるジ置換アミノ基に関して示したものと同様のものをあげることができる。R11~R18で表されるジ置換アミノ基は、無置換でもよいが更に置換基を有していてもよい。更に有する置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基として示したものと同様のものをあげることができる。置換基がとりうる態様も同様である。
 R11~R14は、独立して存在して環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよい。同様に、R15~R18は、独立して存在して環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよい。また、例えば図23の化合物3-1~3-6のように、R11~R14の一部が脱離し、この脱離により生じた空位に、R11~R14の他の基が、置換もしくは無置換のメチレン基、酸素原子、硫黄原子またはモノアリールアミノ基を介して結合して環を形成してもよい。同様に、R15~R18の一部が脱離し、この脱離により生じた空位に、R15~R18の他の基が、置換もしくは無置換のメチレン基、酸素原子、硫黄原子またはモノアリールアミノ基を介して結合して環を形成してもよい。
 尚、上記のとおりR11~R18が環を形成しており、環形成に寄与する基がジ置換アミノ基である態様には、R11~R18同士が、ジ置換アミノ基が有する芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基を介しつつ、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成する態様が含まれる。また、R11~R14の一部が脱離し、この脱離により生じた空位に、R11~R14の他の基(ジ置換アミノ基)が、ジ置換アミノ基が有する芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基を介しつつ、置換もしくは無置換のメチレン基、酸素原子、硫黄原子、モノアリールアミノ基を介して互いに結合して環を形成する態様も含まれる。更にまた、R15~R18の一部が脱離し、この脱離により生じた空位に、R15~R18の他の基(ジ置換アミノ基)が、ジ置換アミノ基が有する芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基を介しつつ、置換もしくは無置換のメチレン基、酸素原子、硫黄原子、モノアリールアミノ基を介して互いに結合して環を形成する態様も含まれる。
 環形成に際して連結基としての役割を果たすモノアリールアミノ基としては、前記一般式(2)における連結基としてのモノアリールアミノ基と同様のものをあげることができる。また、このモノアリールアミノ基は、無置換でもよいが置換基を有していてもよい。置換基として、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基として示したものと同様のものをあげることができる。置換基がとりうる態様も同様である。
 前記一般式(3)のカルバゾール誘導体の態様としては、図24の化合物3-12のように、R15~R18の隣り合う二つが炭素原子数2~6のアルケニル基、芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基であって、隣り合う二つの基(R15~R18)が単結合を介して互いに結合して、R15~R18が結合しているベンゼン環と共に縮合環を形成する態様が好ましい。この場合の炭素原子数2~6のアルケニル基、芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、ビニル基、フェニル基が好ましく、すなわち、R15~R18が結合しているベンゼン環と共にナフタレン環、フェナントレン環もしくはトリフェニレン環を形成する態様が好ましい。
 また、R11~R14のいずれか一つが芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基であって、R11~R14が結合しているベンゼン環と、置換もしくは無置換のメチレン基、酸素原子、硫黄原子またはモノアリールアミノ基などの連結基を介して互いに結合して環を形成する態様が好ましい。この場合の芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、フェニル基、インデニル基、インドリル基、ベンゾフラニル基またはベンゾチエニル基が好ましい。このように、R11~R14とR11~R14が結合しているベンゼン環とが、互いに結合して環を形成する態様として、下記一般式(3a-1)、(3a-2)、(3a-3)、(3a-4)または(3b-1)で表される態様が特に好ましい。具体的には、R11~R14とR11~R14が結合しているベンゼン環とが、フルオレン環、カルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環、インデノインドール環、インデノベンゾフラン環、インデノベンゾチオフェン環、ベンゾフロインドール環、ベンゾチエノインドール環、インドロインドール環を形成することが好ましい。
Figure JPOXMLDOC01-appb-C000022
 式中、Xは、置換もしくは無置換のメチレン基、酸素原子、硫黄原子またはモノアリールアミノ基を表し、A、Ar、R11~R18は、前記一般式(3)で示した通りの意味を表す。
 R11~R14の隣り合う二つまたは全てがビニル基であって、隣り合う二つのビニル基が単結合を介して互いに結合して縮合環を形成する態様、すなわち、R11~R14が結合しているベンゼン環と共にナフタレン環またはフェナントレン環を形成する態様も好ましい。
 R15~R18のいずれか一つが芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基である態様も好ましく、R15~R18のいずれか一つが、フルオレニル基、カルバゾリル基、ジベンゾフラニル基またはジベンゾチエニル基から選ばれる基であることがより好ましく、R16がフルオレニル基、カルバゾリル基、ジベンゾフラニル基またはジベンゾチエニル基であって、R15、R17およびR18が水素原子であることが特に好ましい。
 前記一般式(2)のインデノインドール誘導体の中で、好ましい化合物の具体例を図20~図22に示すが、一般式(2)のインデノインドール誘導体は、これらの例示化合物に限定されるものではない。
 尚、図20~図22中の例示化合物のうち、式(2a)に該当する化合物は、(2-1)~(2-4)および(2-9)~(2-10)である。式(2b)に該当する化合物は、(2-5)~(2-6)および(2-11)~(2-12)である。式(2c)に該当する化合物は、(2-7)~(2-8)である。式(2d)に該当する化合物は、(2-14)である。式(2e)に該当する化合物は、(2-15)である。
 また、前記一般式(3)のカルバゾール誘導体の中で、好ましい化合物の具体例を図23~図26に示すが、一般式(3)のカルバゾール誘導体もこれらの例示化合物に限定されるものではない。
 図23~図26中の例示化合物のうち、式(3a―1)に該当する化合物は(3-1)~(3-6)、(3-8)~(3-10)、(3-12)および(3-15)である。式(3a―2)に該当する化合物は(3-14)である。式(3a―3)に該当する化合物は(3-7)である。式(3a―4)に該当する化合物は(3-11)である。式(3b―1)に該当する化合物は(3-13)である。
 上述した前記一般式(2)のインデノインドール誘導体および前記一般式(3)のカルバゾール誘導体は、公知の方法に準じて合成することができる(特許文献6参照)。
 前記一般式(2)のインデノインドール誘導体および前記一般式(3)のカルバゾール誘導体は、従来の材料に比べて発光効率に優れ、発光層のホスト材料、特に燐光性の発光材料を含有する発光層のホスト材料として好ましい化合物である。
 また、本発明の有機EL素子中の発光層には、上述した一般式(2)のインデノインドール誘導体または一般式(3)のカルバゾール誘導体の優れた特性が損なわれない範囲内で、Alqをはじめとするキノリノール誘導体の金属錯体などの各種の金属錯体;アントラセン誘導体;ビススチリルベンゼン誘導体;ピレン誘導体;オキサゾール誘導体;ポリパラフェニレンビニレン誘導体;などの公知の発光材料を併用することもできる。
 本発明においては、発光層をホスト材料とドーパント材料とで構成しても良い。ホスト材料としては、前記一般式(2)のインデノインドール誘導体;前記一般式(3)のカルバゾール誘導体;前記発光材料;チアゾール誘導体;ベンズイミダゾール誘導体;ポリジアルキルフルオレン誘導体;などをあげることができるが、前記一般式(2)のインデノインドール誘導体または前記一般式(3)のカルバゾール誘導体が好適である。
 ドーパント材料としては、キナクリドン、クマリン、ルブレン、ペリレン、ピレンおよびそれらの誘導体;ベンゾピラン誘導体;インデノフェナントレン誘導体;ローダミン誘導体;アミノスチリル誘導体;などを用いることができる。
 また、発光材料として燐光性の発光材料を使用することが好ましい。燐光性の発光材料としては、イリジウムや白金などを含む金属錯体の燐光発光体を使用することができ、例えば、Ir(ppy)などの緑色の燐光発光体;FIrpic、FIr6などの青色の燐光発光体;BtpIr(acac)などの赤色の燐光発光体;が用いられる。
 このときのホスト材料としては、前記一般式(2)のインデノインドール誘導体または前記一般式(3)のカルバゾール誘導体を用いることができる。更に、以下の正孔注入・輸送性のホスト材料を用いることもできる。
  カルバゾール誘導体、例えば
   4,4’-ジ(N-カルバゾリル)ビフェニル(CBP)、
   TCTA、
   mCP;
更にまた、以下の電子輸送性のホスト材料を用いることもできる。
  p-ビス(トリフェニルシリル)ベンゼン(UGH2);
  2,2’,2’’-(1,3,5-フェニレン)-トリス(1-フェニ
 ル-1H-ベンズイミダゾール)(TPBI);
このようなホスト材料を用いると、高性能の有機EL素子を作製することができる。
 燐光性の発光材料のホスト材料へのドープは、濃度消光を避けるため、発光層全体に対して1~30重量パーセントの範囲で、共蒸着によって行うことが好ましい。
 また、本発明においては、発光材料としてPIC-TRZ、CC2TA、PXZ-TRZ、4CzIPNなどのCDCB誘導体などの遅延蛍光を放射する材料を使用することも可能である。
 本発明において、上記一般式(2)のインデノインドール誘導体または前記一般式(3)のカルバゾール誘導体と併用する発光材料としては、赤色の発光材料が好適に利用される。
<電子輸送層7>
 本発明において、上述した発光層6の上には電子輸送層7が設けられている。電子輸送層7は、公知の電子輸送材料から形成されていてよく、例えばAlq、BAlqをはじめとするキノリノール誘導体の金属錯体などの各種金属錯体;トリアゾール誘導体;トリアジン誘導体;オキサジアゾール誘導体;ピリジン誘導体;アントラセン誘導体;ベンズイミダゾール誘導体;チアジアゾール誘導体;ベンゾトリアゾール誘導体;カルボジイミド誘導体;キノキサリン誘導体;ピリドインドール誘導体;フェナントロリン誘導体;シロール誘導体;などから形成されていてよい。
 また、本発明においては、下記一般式(4)で表されるピリミジン誘導体(本明細書では「一般式(4)のピリミジン誘導体」と略称することがある。)を電子輸送材料として使用して電子輸送層を形成することが好ましく、下記一般式(4a)または(4b)で表されるピリミジン誘導体を電子輸送材料として使用して電子輸送層を形成することがより好ましい。かかるピリミジン誘導体は、電子の注入および輸送能力に優れており、さらに薄膜の安定性や耐久性も優れているので、かかるピリミジン誘導体を含有する電子輸送層では、電子輸送層から発光層への電子輸送効率が向上するからである。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
(Ar~Ar
 上記一般式(4)、(4a)および(4b)において、Arは、芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基を表し、Ar、Arは、それぞれ、水素原子、芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基を表す。ArとArは同時に水素原子となることはない。
 Ar~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、具体的に、フェニル基、ビフェニリル基、ターフェニリル基、テトラキスフェニル基、スチリル基、ナフチル基、アントラセニル基、アセナフテニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基、スピロビフルオレニル基、フリル基、チエニル基、ベンゾフラニル基、ベンゾチエニル基、ジベンゾフラニル基、ジベンゾチエニル基などをあげることができる。
 Ar~Arで表される芳香族炭化水素基、芳香族複素環基又は縮合多環芳香族基は、無置換でもよいが置換基を有していてもよい。置換基としては、重水素原子、シアノ基、ニトロ基の他、例えば以下の基を挙げることができる。
  ハロゲン原子、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子;
  炭素原子数1~6のアルキル基、例えばメチル基、エチル基、n-プロ
 ピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチ
 ル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル
 基;
  炭素原子数1~6のアルキルオキシ基、例えばメチルオキシ基、エチル
 オキシ基、プロピルオキシ基;
  アルケニル基、例えばビニル基、アリル基;
  アリールオキシ基、例えばフェニルオキシ基、トリルオキシ基;
  アリールアルキルオキシ基、例えばベンジルオキシ基、フェネチルオキ
 シ基;
  芳香族炭化水素基または縮合多環芳香族基、例えばフェニル基、ビフェ
 ニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナン
 トレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基
 、フルオランテニル基、トリフェニレニル基、スピロビフルオレニル基、
 アセナフテニル基;
  芳香族複素環基、例えばピリジル基、チエニル基、フリル基、ピロリル
 基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基
 、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾ
 リル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベ
 ンゾフラニル基、ジベンゾチエニル基、アザフルオレニル基、ジアザフル
 オレニル基、カルボリニル基、アザスピロビフルオレニル基、ジアザスピ
 ロビフルオレニル基;
  アリールビニル基、例えばスチリル基、ナフチルビニル基;
  アシル基、例えばアセチル基、ベンゾイル基;
炭素原子数1~6のアルキル基、アルケニル基、炭素原子数1~6のアルキルオキシ基は、直鎖状でも分枝状でもよい。これらの置換基にはさらに、前記例示した置換基が置換していても良い。また、これらの置換基は、独立して存在して環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよく、これらの置換基と当該置換基が結合しているAr、ArまたはArが酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
 Arとしては、フェニル基;ビフェニリル基;ナフチル基;アントラセニル基;アセナフテニル基;フェナントレニル基;フルオレニル基;インデニル基;ピレニル基;ペリレニル基;フルオランテニル基;トリフェニレニル基;スピロビフルオレニル基;含酸素芳香族複素環基、例えばフリル基、ベンゾフラニル基、ジベンゾフラニル基;または含硫黄芳香族複素環基、例えばチエニル基、ベンゾチエニル基、ジベンゾチエニル基;が好ましく、フェニル基、ビフェニリル基、ナフチル基、フェナントレニル基、フルオレニル基、ピレニル基、フルオランテニル基、トリフェニレニル基、スピロビフルオレニル基、ジベンゾフラニル基、ジベンゾチエニル基がより好ましい。
 Arがフェニル基の場合、このフェニル基は、置換もしくは無置換の縮合多環芳香族基またはフェニル基を置換基として有していることが好ましく、ナフチル基、フェナントレニル基、ピレニル基、フルオランテニル基、トリフェニレニル基、スピロビフルオレニル基またはフェニル基から選ばれる置換基を有していることがより好ましい。フェニル基が有する置換基とフェニル基とが酸素原子または硫黄原子を介して互いに結合して環を形成することも好ましい。
 Arとしては、置換基を有するフェニル基;置換もしくは無置換のスピロビフルオレニル基;含酸素芳香族複素環基、例えばフリル基、ベンゾフラニル基、ジベンゾフラニル基;または含硫黄芳香族複素環基、例えばチエニル基、ベンゾチエニル基、ジベンゾチエニル基が好ましい。
 この場合のフェニル基の置換基としては、芳香族炭化水素基、例えばフェニル基、ビフェニリル基、ターフェニル基;縮合多環芳香族基、例えばナフチル基、アセナフテニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基、スピロビフルオレニル基;含酸素芳香族複素環基、例えばフリル基、ベンゾフラニル基、ジベンゾフラニル基;または含硫黄芳香族複素環基、例えばチエニル基、ベンゾチエニル基、ジベンゾチエニル基;が好ましく、フェニル基、ナフチル基、フェナントレニル基、フルオレニル基、ピレニル基、フルオランテニル基、トリフェニレニル基、スピロビフルオレニル基、ジベンゾフラニル基、ジベンゾチエニル基がより好ましい。フェニル基が有する置換基とフェニル基とが酸素原子または硫黄原子を介して互いに結合して環を形成することも好ましい。
 Arとしては、水素原子;置換基を有するフェニル基;置換もしくは無置換のスピロビフルオレニル基;含酸素芳香族複素環基、例えばフリル基、ベンゾフラニル基、ジベンゾフラニル基;または含硫黄芳香族複素環基、例えばチエニル基、ベンゾチエニル基、ジベンゾチエニル基;が好ましい。
 この場合のフェニル基の置換基としては、芳香族炭化水素基、例えばフェニル基、ビフェニリル基、ターフェニル基;縮合多環芳香族基、例えばナフチル基、アセナフテニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基、スピロビフルオレニル基;含酸素芳香族複素環基、例えばフリル基、ベンゾフラニル基、ジベンゾフラニル基;または含硫黄芳香族複素環基、例えばチエニル基、ベンゾチエニル基、ジベンゾチエニル基;が好ましく、フェニル基、ナフチル基、フェナントレニル基、フルオレニル基、ピレニル基、フルオランテニル基、トリフェニレニル基、スピロビフルオレニル基、ジベンゾフラニル基、ジベンゾチエニル基がより好ましい。フェニル基が有する置換基とフェニル基とが酸素原子または硫黄原子を介して互いに結合して環を形成することも好ましい。
 また、ArとArの一方が水素原子であることが好ましい。
(B)
 上記一般式(4)、(4a)および(4b)において、Bは、下記構造式(5)で表される1価基を表し、薄膜の安定性の観点から、好適には、下記構造式(5a)で表される1価基を表す。構造式(5a)は、ベンゼン環におけるAr10の結合位置が、一般式(4)に示されるピリミジン環との結合位置に対し、メタ位となっている。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
 上記構造式(5)および(5a)において、Ar10は、芳香族複素環基を表す。Ar10で表される芳香族複素環基としては、具体的に、トリアジニル基、ピリジル基、ピリミジニル基、フリル基、ピロリル基、チエニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、アザフルオレニル基、ジアザフルオレニル基、ナフチリジニル基、フェナントロリニル基、アクリジニル基、カルボリニル基、アザスピロビフルオレニル基、ジアザスピロビフルオレニル基などをあげることができる。
 Ar10で表される芳香族複素環基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(4)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基として示したものと同様のものをあげることができる。置換基がとりうる態様も同様である。
 Ar10としては、含窒素複素環基、例えばトリアジニル基、ピリジル基、ピリミジニル基、ピロリル基、キノリル基、イソキノリル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、アザフルオレニル基、ジアザフルオレニル基、ナフチリジニル基、フェナントロリニル基、アクリジニル基、カルボリニル基、アザスピロビフルオレニル基またはジアザスピロビフルオレニル基が好ましく、トリアジニル基、ピリジル基、ピリミジニル基、キノリル基、イソキノリル基、インドリル基、キノキサリニル基、アザフルオレニル基、ジアザフルオレニル基、ベンゾイミダゾリル基、ナフチリジニル基、フェナントロリニル基、アクリジニル基、アザスピロビフルオレニル基またはジアザスピロビフルオレニル基がより好ましく、ピリジル基、ピリミジニル基、キノリル基、イソキノリル基、インドリル基、アザフルオレニル基、ジアザフルオレニル基、キノキサリニル基、ベンゾイミダゾリル基、ナフチリジニル基、フェナントロリニル基、アクリジニル基、アザスピロビフルオレニル基またはジアザスピロビフルオレニル基が特に好ましい。
 上記構造式(5)および(5a)において、R19~R22は、それぞれ、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、炭素原子数1~6のアルキル基、芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基を表す。炭素原子数1~6のアルキル基は、直鎖状でも分枝状でもよい。R19~R22とAr10は、独立して存在して環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
 R19~R22で表される炭素原子数1~6のアルキル基としては、具体的に、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、2-メチルプロピル基、t-ブチル基、n-ペンチル基、3-メチルブチル基、tert-ペンチル基、n-ヘキシル基、iso-ヘキシル基、tert-ヘキシル基などをあげることができる。
 R19~R22で表される炭素原子数1~6のアルキル基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(2)中のR~Rで表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基が有してもよい置換基として示したものと同様のものをあげることができる。置換基がとりうる態様も同様である。
 R19~R22で表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、具体的に、フェニル基、ビフェニリル基、ターフェニリル基、テトラキスフェニル基、スチリル基、ナフチル基、アントラセニル基、アセナフテニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基、スピロビフルオレニル基、トリアジニル基、ピリジル基、ピリミジニル基、フリル基、ピロリル基、チエニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、アザフルオレニル基、ジアザフルオレニル基、ナフチリジニル基、フェナントロリニル基、アクリジニル基、カルボリニル基、フェノキサジニル基、フェノチアジニル基、フェナジニル基、アザスピロビフルオレニル基、ジアザスピロビフルオレニル基などをあげることができる。
 R19~R22で表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(4)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基として示したものと同様のものをあげることができる。置換基がとりうる態様も同様である。
 前記一般式(4)で表されるピリミジン誘導体の中で、好ましい化合物の具体例を図27~図54に示すが、かかるピリミジン誘導体は、これらの例示化合物に限定されるものではない。構造式中のDは、重水素を表す。
 図27~図54中の例示化合物のうち、式(4a)に該当する化合物は(4-1)~(4-49)、(4-66)~(4-99)、(4-103)~(4-105)および(4-107)~(4-126)である。式(4b)に該当する化合物は(4-50)~(4-65)である。また、基Bが構造式(5a)で表される1価基であるものは(4-1)~(4-66)、(4-68)、(4-71)~(4-72)、(4-105)~(4-107)および(4-112)~(4-122)である。
 上述した一般式(4)のピリミジン誘導体は、公知の方法に準じて合成することができる(特許文献7参照)。
 上述の電子輸送材料は、単独で成膜に供してもよいが、他の材料とともに混合して成膜に供してもよい。
<電子注入層8>
 本発明の有機EL素子は、電子輸送層7と陰極9の間に電子注入層8を有してもよい。電子注入層8には、フッ化リチウム、フッ化セシウムなどのアルカリ金属塩;フッ化マグネシウムなどのアルカリ土類金属塩;酸化アルミニウムなどの金属酸化物;などが含まれていてもよいが、電子輸送層と陰極の好ましい選択においては、これを省略することができる。
<陰極9>
 本発明の有機EL素子の陰極9としては、アルミニウムのような仕事関数の低い電極材料や、マグネシウム銀合金、マグネシウムインジウム合金、アルミニウムマグネシウム合金のような、より仕事関数の低い合金が電極材料として用いられる。
<その他の層>
 本発明の有機EL素子は、必要に応じてその他の層を有していてもよい。例えば、図1には示されていないが、正孔輸送層5と発光層6との間には電子阻止層を設けることができ、発光層6と電子輸送層7との間には正孔阻止層を設けることもできる。
電子阻止層;
 電子阻止層には、電子阻止作用を有する公知の化合物を用いることができる。公知の化合物としては、以下を例示することができる。
  カルバゾール誘導体、例えば
   4,4’,4’’-トリ(N-カルバゾリル)トリフェニルアミン
  (TCTA);
   9,9-ビス[4-(カルバゾール-9-イル)フェニル]フルオレ
  ン;
   1,3-ビス(カルバゾール-9-イル)ベンゼン(mCP);
   2,2-ビス(4-カルバゾール-9-イルフェニル)アダマンタン
  (Ad-Cz);
  トリフェニルシリル基とトリアリールアミン構造を有する化合物、例え
 ば
   9-[4-(カルバゾール-9-イル)フェニル]-9-[4-(ト
  リフェニルシリル)フェニル]-9H-フルオレン;
 また、電子阻止層には、前記一般式(1)で表されるアリールアミン化合物を好適に用いることができる。電子阻止性能が高いからである。但し、この場合、電子阻止層の組成と正孔輸送層の組成とは異なっていなければならない。これらの材料は、単独で成膜に供してもよいが、他の材料とともに混合して成膜に供してもよい。
正孔阻止層;
 正孔阻止層には、バソクプロイン(BCP)などのフェナントロリン誘導体や、アルミニウム(III)ビス(2-メチル-8-キノリナート)-4-フェニルフェノレート(BAlq)などのキノリノール誘導体の金属錯体の他、各種の希土類錯体、トリアゾール誘導体、トリアジン誘導体、オキサジアゾール誘導体など、正孔阻止作用を有する化合物を用いることができる。これらの材料は単独で成膜に供してもよいが、他の材料とともに混合して成膜に供してもよい。また、これらの材料は電子輸送層の材料を兼ねてもよい。
 本発明において有機EL素子を構成する各層は、単層構造であってもよいし、複数層の構造としてもよい。特に、本発明においては、前述した一般式(1)のアリールアミン化合物の優れた特性を発揮させるため、図1に示されているように、正孔輸送層5を第一正孔輸送層5aと第二正孔輸送層5bの2層構造とすることが好ましい。以下、この2層構造の正孔輸送層5について説明する。
<二層構造の正孔輸送層5>
 本発明の有機EL素子においては、正孔輸送層5の形成に一般式(1)で表されるアリールアミン化合物が使用されるが、このようなアリールアミン化合物を含む正孔輸送層5が二層構造であることが好ましい。即ち、図1に示されているように、正孔輸送層5を、陽極2側に位置している第一正孔輸送層5aと、発光層6側に位置している第二正孔輸送層5bとに分割した2層構造とすることが好ましい。
 第二正孔輸送層5bには、前記一般式(1)のアリールアミン化合物を含有させることが好ましい。電子阻止性能が高いからである。この場合、第二正孔輸送層5bには、前記した正孔輸送性の材料などを併用することもできる。
 第一正孔輸送層5aの組成は、第二正孔輸送層5bの組成と異なっている。具体的には、第一正孔輸送層5aには、前記した正孔輸送性の材料の他、分子中にトリアリールアミン構造を2~6個有するトリアリールアミン化合物であって該トリアリールアミン構造が、単結合またはヘテロ原子を含まない2価基で連結しているトリアリールアミン化合物などを用いることができる。アリールアミン骨格が優れた正孔輸送性を示すからである。
 前記したトリアリールアミン構造を2~6個有するトリアリールアミン化合物としては、下記一般式(6)で表される、トリアリールアミン構造を2個有するトリアリールアミン化合物(本明細書では「一般式(6)のトリアリールアミン化合物」と略称することがある。)または下記一般式(7)で表される、トリアリールアミン構造を4個有するトリアリールアミン化合物(本明細書では「一般式(7)のトリアリールアミン化合物」と略称することがある。)が好ましい。
一般式(6)のトリアリールアミン化合物;
Figure JPOXMLDOC01-appb-C000028
(r23~r28
 上記一般式(6)において、r23~r28は、それぞれ、ベンゼン環に結合している基R23~R28の数を示す整数である。r23、r24、r27、r28は0~5の整数を表し、r25、r26は0~4の整数を表す。r23~r28としては、0~3の整数が好ましく、0~2の整数がより好ましい。
 尚、r23~r28が0である場合は、ベンゼン環上にR23~R28は存在しておらず、即ち、R23~R28で表される基によってベンゼン環が置換されていない。
 また、r23、r24、r27、r28が2~5の整数である場合またはr25、r26が2~4の整数である場合、同一のベンゼン環にR23~R28が複数個結合している。この場合、複数存在している置換基は、互いに独立して存在して環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよい。例えば、図57の例示化合物6-13および6-14のように、複数の置換基が結合してナフタレン環を形成していてもよい。
(R23~R28
 一般式(6)において、R23~R28は、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基、炭素原子数2~6のアルケニル基、炭素原子数1~6のアルキルオキシ基、炭素原子数5~10のシクロアルキルオキシ基、芳香族炭化水素基、芳香族複素環基、縮合多環芳香族基またはアリールオキシ基を表す。尚、炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基、炭素原子数1~6のアルキルオキシ基は、直鎖状でも分枝状でもよい。
 R23~R28で表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基としては、具体的に、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基、ビニル基、アリル基、イソプロペニル基、2-ブテニル基などをあげることができる。
 R23~R28で表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基は、無置換でもよいが置換基を有してもよい。置換基としては、重水素原子、シアノ基、ニトロ基の他、例えば以下の基を挙げることができる。
  ハロゲン原子、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子;
  炭素原子数1~6のアルキルオキシ基、例えばメチルオキシ基、エチル
 オキシ基、プロピルオキシ基;
  アルケニル基、例えばビニル基、アリル基;
  アリールオキシ基、例えばフェニルオキシ基、トリルオキシ基;
  アリールアルキルオキシ基、例えばベンジルオキシ基、フェネチルオキ
 シ基;
  芳香族炭化水素基または縮合多環芳香族基、例えばフェニル基、ビフェ
 ニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナン
 トレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基
 、フルオランテニル基、トリフェニレニル基;
  芳香族複素環基、例えばピリジル基、ピリミジニル基、トリアジニル基
 、チエニル基、フリル基、ピロリル基、キノリル基、イソキノリル基、ベ
 ンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベ
 ンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイ
 ミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基
 、カルボリニル基;
アルケニル基および炭素原子数1~6のアルキルオキシ基は、直鎖状でも分枝状でもよい。これらの置換基にはさらに、前記例示した置換基が置換していても良い。また、これらの置換基同士は、独立して存在して環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
 R23~R28で表される炭素原子数1~6のアルキルオキシ基または炭素原子数5~10のシクロアルキルオキシ基としては、具体的に、メチルオキシ基、エチルオキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、tert-ブチルオキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基、1-アダマンチルオキシ基、2-アダマンチルオキシ基などをあげることができる。
 R23~R28で表される炭素原子数1~6のアルキルオキシ基または炭素原子数5~10のシクロアルキルオキシ基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(6)中のR23~R28で表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基が有してもよい置換基として示したものと同様のものをあげることができる。置換基がとりうる態様も同様である。
 R23~R28で表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基に関して示したものと同様のものをあげることができる。これらの基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基として示したものと同様のものをあげることができる。置換基がとりうる態様も同様である。
 R23~R28で表されるアリールオキシ基としては、具体的に、フェニルオキシ基、ビフェニリルオキシ基、ターフェニリルオキシ基、ナフチルオキシ基、アントラセニルオキシ基、フェナントレニルオキシ基、フルオレニルオキシ基、インデニルオキシ基、ピレニルオキシ基、ペリレニルオキシ基などをあげることができる。
 R23~R28で表されるアリールオキシ基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基として示したものと同様のものをあげることができる。置換基がとりうる態様も同様である。
 R23~R28としては、重水素原子、炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基、芳香族炭化水素基または縮合多環芳香族基が好ましく、重水素原子、フェニル基、ビフェニリル基、ナフチル基、ビニル基がより好ましい。R23~R28が単結合を介して互いに結合して縮合芳香環を形成する場合も好ましい。特に、重水素原子、フェニル基、ビフェニリル基が好ましい。
(L
 一般式(6)において、Lは、2つのトリアリールアミン構造を結合する橋絡基であり、下記構造式(B)~(G)で示される2価基または単結合を表す。
Figure JPOXMLDOC01-appb-C000029
  式中、n1は1~4の整数を表す。
 Lとしては、前記構造式(B)、(D)もしくは(G)で示される2価基または単結合が好ましく、前記構造式(D)もしくは(G)で示される2価基または単結合がより好ましい。構造式(B)におけるn1は、1または2であることが好ましい。
一般式(7)のトリアリールアミン化合物;
Figure JPOXMLDOC01-appb-C000030
(r29~r40
 一般式(7)において、r29~r40は、それぞれ、ベンゼン環に結合している基R29~R40の数を示す整数である。r29、r30、r33、r36、r39、r40は0~5の整数を表し、r31、r32、r34、r35、r37、r38は0~4の整数を表す。r29~r40としては、0~3の整数が好ましく、0~2の整数がより好ましい。
 r29~r40が0である場合、ベンゼン環上にR29~R40は存在せず、すなわち、R29~R40で表される基によってベンゼン環は置換されていない。
 また、r29、r30、r33、r36、r39、r40が2~5の整数である場合またはr31、r32、r34、r35、r37、r38が2~4の整数である場合、同一のベンゼン環にR29~R40が複数個結合している。この場合、複数存在している置換基は、互いに独立して存在して環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよい。例えば、図62の例示化合物7-8のように、複数の置換基が結合してナフタレン環を形成していてもよい。
(R29~R40
 一般式(7)において、R29~R40は、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基、炭素原子数2~6のアルケニル基、炭素原子数1~6のアルキルオキシ基、炭素原子数5~10のシクロアルキルオキシ基、芳香族炭化水素基、芳香族複素環基、縮合多環芳香族基またはアリールオキシ基を表す。尚、炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基、炭素原子数1~6のアルキルオキシ基は、直鎖状でも分枝状でもよい。
 R29~R40で表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基としては、前記一般式(6)中のR23~R28で表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基に関して示したものと同様のものをあげることができる。これらの基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(6)中のR23~R28で表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基が有してもよい置換基として示したものと同様のものをあげることができる。置換基がとりうる態様も同様である。
 R29~R40で表される炭素原子数1~6のアルキルオキシ基または炭素原子数5~10のシクロアルキルオキシ基としては、前記一般式(6)中のR23~R28で表される炭素原子数1~6のアルキルオキシ基または炭素原子数5~10のシクロアルキルオキシ基に関して示したものと同様のものをあげることができる。これらの基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(6)中のR23~R28で表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基における置換基に関して示したものと同様のものをあげることができる。これらの基がとりうる態様も同様である。
 R29~R40で表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基に関して示したものと同様のものをあげることができる。これらの基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基として示したものと同様のものをあげることができる。置換基がとりうる態様も同様である。
 R29~R40で表されるアリールオキシ基としては、前記一般式(6)中のR23~R28で表されるアリールオキシ基に関して示したものと同様のものをあげることができる。R29~R40で表されるアリールオキシ基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基として示したものと同様のものをあげることができる。置換基がとりうる態様も同様である。
 R29~R40としては、重水素原子、炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基、芳香族炭化水素基または縮合多環芳香族基が好ましく、重水素原子、フェニル基、ビフェニリル基、ナフチル基、ビニル基がより好ましい。R29~R40は、独立して存在して環を形成していなくてもよいが、単結合を介して互いに結合して縮合芳香環を形成する場合が好ましい。特に、重水素原子、フェニル基、ビフェニリル基が好ましい。
(L~L
 一般式(7)において、L~Lは、2つのトリアリールアミン骨格を結合する橋絡基であり、それぞれ、下記構造式(B’)もしくは前記構造式(C)~(G)で示される2価基または単結合を表す。尚、下記構造式(B’)で表される2価基は、無置換でもよいが、図64の例示化合物7-17のように、重水素で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000031
  式中、n2は1~3の整数を表す。
 L~Lとしては、前記構造式(B’)もしくは(D)で示される2価基または単結合が好ましく、前記構造式(B’)で示される2価基または単結合がより好ましい。前記構造式(B’)におけるn2としては、1または2が好ましく、1がより好ましい。
 前記一般式(6)のトリアリールアミン化合物の中で、好ましい化合物の具体例を図55~図59に示すが、一般式(6)のトリアリールアミン化合物は、これらの例示化合物に限定されるものではない。また、前述のトリアリールアミン構造を2~6個有するトリアリールアミン化合物のうちトリアリールアミン構造を2個有するトリアリールアミン化合物に関し、前記一般式(6)のトリアリールアミン化合物以外の化合物の好適な具体例を図60に示す。しかし、トリアリールアミン構造を2個有するトリアリールアミン化合物は、これらの例示化合物に限定されるものではない。尚、構造式中のDは、重水素を表す。
 また、前記一般式(7)のアリールアミン化合物の中で、好ましい化合物の具体例を図61~図64に示すが、一般式(7)のトリアリールアミン化合物は、これらの例示化合物に限定されるものではない。尚、構造式中のDは、重水素を表す。
 一般式(6)のトリアリールアミン化合物、一般式(7)のトリアリールアミン化合物といったトリアリールアミン構造を2~6個有するトリアリールアミン化合物は、公知の方法に準じて合成することができる(特許文献1、8~9参照)。
 以下、本発明の実施の形態について、実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。
<合成例1:化合物1-5>
4-{(ビフェニル-4-イル)-フェニルアミノ)-4’’-{(9,9-ジメチル-9H-フルオレン-2-イル)-フェニルアミノ}-1,1’:3’,1’’-ターフェニルの合成;
 窒素置換した反応容器に、
   N-(ビフェニル-4-イル)-N-(4-ブロモフェニル)アニリ
  ン                        8.0g、
   N-(9,9-ジメチル-9H-フルオレン-2-イル)-N-{3
  ’-(4,4,5,5-テトラメチル-[1,3,2]ジオキサボラン
  -2-イル)ビフェニル-4-イル}アニリン    11.4g、
   炭酸カリウム                  7.5g、
   水                       64ml、
   トルエン                    64ml、
   エタノール                   16mlおよび
   テトラキス(トリフェニルホスフィン)パラジウム 0.8g
を加えて加熱し、70℃で16時間撹拌して、混合液を調整した。混合液を室温まで冷却し、酢酸エチルと水を加えた後、分液操作によって有機層を採取した。有機層を濃縮した後、THF/アセトンの混合溶媒を用いての再結晶を行った。その結果、4-{(ビフェニル-4-イル)-フェニルアミノ)-4’’-{(9,9-ジメチル-9H-フルオレン-2-イル)-フェニルアミノ}-1,1’:3’,1’’-ターフェニル(化合物1-5)の白色粉体9.54g(収率69%)を得た。
Figure JPOXMLDOC01-appb-C000032
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR(THF-d)で以下の44個の水素のシグナルを検出した。
δ(ppm)=7.86(1H)
       7.68-6.97(37H)
       1.41(6H)
<合成例2:化合物1-6>
4-{(9,9-ジメチル-9H-フルオレン-2-イル)-フェニルアミノ}-4’’-{(ナフタレン-1-イル)-フェニルアミノ}-1,1’:3’,1’’-ターフェニルの合成;
 合成例1において、
   N-(ビフェニル-4-イル)-N-(4-ブロモフェニル)アニリ
  ン
に代えて
   N-(3’-ブロモビフェニル-4-イル)-N-(ナフタレン-1
  -イル)アニリン
を用い、
   N-(9,9-ジメチル-9H-フルオレン-2-イル)-N-{3
  ’-(4,4,5,5-テトラメチル-[1,3,2]ジオキサボラン
  -2-イル)ビフェニル-4-イル}アニリン
に代えて
   4-{N-(9,9-ジメチル-9H-フルオレン-2-イル)-フ
  ェニルアミノ}-フェニルボロン酸
を用い、同様の条件で反応を行った。その結果、4-{(9,9-ジメチル-9H-フルオレン-2-イル)-フェニルアミノ}-4’’-{(ナフタレン-1-イル)-フェニルアミノ}-1,1’:3’,1’’-ターフェニル(化合物1-6)の淡黄白色粉体7.88g(収率62%)を得た。
Figure JPOXMLDOC01-appb-C000033
 得られた淡黄白色粉体についてNMRを使用して構造を同定した。H-NMR(CDCl)で以下の42個の水素のシグナルを検出した。
δ(ppm)=7.98(1H)
       7.92(1H)
       7.84-7.75(2H)
       7.70-6.94(32H)
       1.49(6H)
<合成例3:化合物1-21>
3、3’’-ビス{(ビフェニル-4-イル)-フェニルアミノ}-1,1’:4’,1’’-ターフェニルの合成;
 窒素置換した反応容器に、
   1,4-ジブロモベンゼン           6.20g、
   N-(ビフェニル-4-イル)-N-{3-(4,4,5,5-テト
  ラメチル-[1,3,2]ジオキサボラン-2-イル)フェニル}アニ
  リン                      25.1g、
   炭酸カリウム                 10.8g、
   水                      39ml、
   トルエン                   380mlおよび
   エタノール                  95ml
を加え、30分間超音波を照射しながら窒素ガスを通気し、混合液を調整した。かかる混合液に、テトラキス(トリフェニルホスフィン)パラジウム0.95gを加えて加熱し、18時間還流撹拌した。その後、混合液を室温まで冷却し、水200mlおよびヘプタン190mlを加えた後、析出物をろ過によって採取した。析出物を1,2-ジクロロベンゼン1200mlに加熱溶解し、シリカゲル39gを用いた吸着精製を行い、続いて、活性白土19gを用いた吸着精製を行った。その後、メタノール725mlを加え、析出する粗製物をろ過によって採取した。粗製物について、1,2-ジクロロメタン/メタノールの混合溶媒を用いた晶析を繰り返した後、メタノール300mlを用いた還流洗浄を行った。その結果、3、3’’-ビス{(ビフェニル-4-イル)-フェニルアミノ}-1,1’:4’,1’’-ターフェニル(化合物1-21)の白色粉体15.22g(収率81%)を得た。
Figure JPOXMLDOC01-appb-C000034
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR(CDCl)で以下の40個の水素のシグナルを検出した。
δ(ppm)=7.61(2H)
       7.56-6.83(38H)
<合成例4:化合物1-22>
2、2’’-ビス{(ビフェニル-4-イル)-フェニルアミノ}-1,1’:4’,1’’-ターフェニルの合成;
 合成例3において、
   N-(ビフェニル-4-イル)-N-{3-(4,4,5,5-テト
  ラメチル-[1,3,2]ジオキサボラン-2-イル)フェニル}アニ
  リン
に代えて
   N-(ビフェニル-4-イル)-N-{2-(4,4,5,5-テト
  ラメチル-[1,3,2]ジオキサボラン-2-イル)フェニル}アニ
  リン
を用い、同様の条件で反応を行った。その結果、2、2’’-ビス{(ビフェニル-4-イル)-フェニルアミノ}-1,1’:4’,1’’-ターフェニル(化合物1-22)の白色紛体11.11g(収率58%)を得た。
Figure JPOXMLDOC01-appb-C000035
 得られた白色紛体についてNMRを使用して構造を同定した。H-NMR(THF-d)で以下の40個の水素のシグナルを検出した。
δ(ppm)=7.52(4H)
       7.40-7.20(18H)
       7.03(8H)
       6.90-6.75(10H)
<合成例5:化合物1-32>
4-{(ビフェニル-4-イル)-フェニルアミノ}-2’’-{(9,9-ジメチル-9H-フルオレン-2-イル)-フェニルアミノ}-1,1’:4’,1’’-ターフェニルの合成;
 窒素置換した反応容器に、
   N-(ビフェニル-4-イル)-N-(2’’-ブロモ-1,1’:
  4’,1’’-ターフェニル-4-イル)アニリン
                         10.0g、
   2-(フェニルアミノ)-9,9-ジメチル-9H-フルオレン
                         6.2g、
   酢酸パラジウム               0.081g、
   t-ブトキシナトリウム           3.5g、
   トリ-t-ブチルホスフィンの50%(w/v)トルエン溶液
                         0.146gおよび
   トルエン                  100ml
を加えて加熱し、一夜、100℃で撹拌して、混合液を調整した。ろ過によって混合液から不溶物を除き、濃縮をした。次いで、カラムクロマトグラフ(担体:シリカゲル、溶離液:ヘプタン/ジクロロメタン)を用いた精製を行った。その結果、4-{(ビフェニル-4-イル)-フェニルアミノ}-2’’-{(9,9-ジメチル-9H-フルオレン-2-イル)-フェニルアミノ}-1,1’:4’,1’’-ターフェニル(化合物1-32)の白色紛体4.77g(収率35%)を得た。
Figure JPOXMLDOC01-appb-C000036
 得られた白色紛体についてNMRを使用して構造を同定した。H-NMR(THF-d)で以下の44個の水素のシグナルを検出した。
δ(ppm)=7.61-7.48(4H)
       7.42-6.92(32H)
       6.81(1H)
       6.76(1H)
       1.28(6H)
<合成例6:化合物1-34>
4,4’’-ビス{(9,9-ジメチル-9H-フルオレン-2-イル)-フェニルアミノ}-1,1’:3’,1’’-ターフェニルの合成;
 窒素置換した反応容器に、
   4,4’’-ジブロモ-1,1’:3’,1’’-ターフェニル
                          8.81g、
   2-(フェニルアミノ)-9,9-ジメチル-9H-フルオレン
                          13.6g、
   t-ブトキシナトリウム            5.12g、
   トリス(ジベンジリデンアセトン)ジパラジウム 0.33gおよび
   トリ-t-ブチルホスフィンの50%(w/v)トルエン溶液
                          0.63ml
を加えて加熱し、2時間還流撹拌し、混合液を調整した。かかる混合液を放冷した後、メタノールを加え、析出物をろ過によって採取した。析出物をクロロベンゼンに加熱溶解し、シリカゲルを用いた吸着精製を行った。続いて、活性白土を用いた吸着精製を行った。次いで、クロロベンゼン/メタノールの混合溶媒を用いた晶析を行った。その後、メタノールを用いた還流洗浄を行った。その結果、4,4’’-ビス{(9,9-ジメチル-9H-フルオレン-2-イル)-フェニルアミノ}-1,1’:3’,1’’-ターフェニル(化合物1-34)の白色粉体16.25g(収率90%)を得た。
Figure JPOXMLDOC01-appb-C000037
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR(CDCl)で以下の48個の水素のシグナルを検出した。
δ(ppm)=7.84(1H)
       7.70-7.03(35H)
       1.48(12H)
<合成例7:化合物1-37>
2-{(ビフェニル-4-イル)-フェニルアミノ}-4’’-{(9,9-ジメチル-9H-フルオレン-2-イル)-フェニルアミノ}-1,1’:4’,1’’-ターフェニルの合成;
 合成例5において、
   N-(ビフェニル-4-イル)-N-(2’’-ブロモ-1,1’:
  4’,1’’-ターフェニル-4-イル)アニリン
に代えて
   N-(9,9-ジメチル-9H-フルオレン-2-イル)-N-(2
  ’’-ブロモ-1,1’:4’,1’’-ターフェニル-4-イル)ア
  ニリン
を用い、
   2-(フェニルアミノ)-9,9-ジメチル-9H-フルオレン
に代えて
   N-(ビフェニル-4-イル)アニリン
を用い、同様の条件で反応を行った。その結果、2-{(ビフェニル-4-イル)-フェニルアミノ}-4’’-{(9,9-ジメチル-9H-フルオレン-2-イル)-フェニルアミノ}-1,1’:4’,1’’-ターフェニル(化合物1-37)の白色粉体11.7g(収率73%)を得た。
Figure JPOXMLDOC01-appb-C000038
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR(CDCl)で以下の44個の水素のシグナルを検出した。
δ(ppm)=7.68(1H)
       7.64-6.84(37H)
       1.48(6H)
<合成例8:化合物1-38>
4,4’’-ビス{(9,9-ジメチル-9H-フルオレン-2-イル)-フェニルアミノ}-1,1’:2’,1’’-ターフェニルの合成;
 合成例3において、
   1,4-ジブロモベンゼン
に代えて
   1,2-ジヨードベンゼン
を用い、
   N-(ビフェニル-4-イル)-N-{3-(4,4,5,5-テト
  ラメチル-[1,3,2]ジオキサボラン-2-イル)フェニル}アニ
  リン
に代えて
   4-{(9,9-ジメチル-9H-フルオレン-2-イル)-フェニ
  ルアミノ}-フェニルボロン酸
を用い、同様の条件で反応を行った。その結果、4,4’’-ビス{(9,9-ジメチル-9H-フルオレン-2-イル)-フェニルアミノ}-1,1’:2’,1’’-ターフェニル(化合物1-38)の白色粉体6.6g(収率39%)を得た。
Figure JPOXMLDOC01-appb-C000039
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR(CDCl)で以下の48個の水素のシグナルを検出した。
δ(ppm)=7.64(2H)
       7.58(2H)
       7.45-6.99(32H)
       1.38(12H)
<合成例9:化合物1-39>
4,4’’-ビス{ビス(ビフェニル-4-イル)アミノ}-1,1’:2’,1’’-ターフェニルの合成;
 合成例3において、
   1,4-ジブロモベンゼン
に代えて
   1,2-ジヨードベンゼン
を用い、
   N-(ビフェニル-4-イル)-N-{3-(4,4,5,5-テト
  ラメチル-[1,3,2]ジオキサボラン-2-イル)フェニル}アニ
  リン
に代えて
   4-{ビス(ビフェニル-4-イル)アミノ}-フェニルボロン酸
を用い、同様の条件で反応を行った。その結果、4,4’’-ビス{ビス(ビフェニル-4-イル)アミノ}-1,1’:2’,1’’-ターフェニル(化合物1-39)の白色粉体4.6g(収率24%)を得た。
Figure JPOXMLDOC01-appb-C000040
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR(CDCl)で以下の48個の水素のシグナルを検出した。
δ(ppm)=7.57-7.28(32H)
       7.21(8H)
       7.11(8H)
<合成例10:化合物1-41>
4,4’’-ビス{(ビフェニル-4-イル)-(ナフタレン-1-イル)アミノ}-1,1’:2’,1’’-ターフェニルの合成;
 合成例6において、
   4,4’’-ジブロモ-1,1’:3’,1’’-ターフェニル
に代えて
   4,4’’-ジブロモ-1,1’:2’,1’’-ターフェニル
を用い、
   2-(フェニルアミノ)-9,9-ジメチル-9H-フルオレン
に代えて
   (ビフェニル-4-イル)-(ナフタレン-1-イル)アミン
を用い、同様の条件で反応を行った。その結果、4,4’’-ビス{(ビフェニル-4-イル)-(ナフタレン-1-イル)アミノ}-1,1’:2’,1’’-ターフェニル(化合物1-41)の白色粉体5.0g(収率30%)を得た。
Figure JPOXMLDOC01-appb-C000041
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR(CDCl)で以下の44個の水素のシグナルを検出した。
δ(ppm)=7.93-7.84(4H)
       7.79(2H)
       7.60-7.26(24H)
       7.25-6.92(14H)
<合成例11:化合物1-42>
4,4’’-ビス[{4-(ナフタレン-1-イル)フェニル}-フェニルアミノ]-1,1’:2’,1’’-ターフェニルの合成;
 合成例6において、
   4,4’’-ジブロモ-1,1’:3’,1’’-ターフェニル
に代えて
   4,4’’-ジブロモ-1,1’:2’,1’’-ターフェニル
を用い、
   2-(フェニルアミノ)-9,9-ジメチル-9H-フルオレン
に代えて
   N-{4-(ナフタレン-1-イル)フェニル}アニリン
を用い、同様の条件で反応を行った。その結果、4,4’’-ビス[{4-(ナフタレン-1-イル)フェニル}-フェニルアミノ]-1,1’:2’,1’’-ターフェニル(化合物1-42)の白色粉体7.3g(収率43%)を得た。
Figure JPOXMLDOC01-appb-C000042
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR(CDCl)で以下の44個の水素のシグナルを検出した。
δ(ppm)=8.01(2H)
       7.91(2H)
       7.84(2H)
       7.53-6.98(38H)
<合成例12:化合物1-45>
4,4’’-ビス[{4-(ナフタレン-1-イル)フェニル}-フェニルアミノ]-1,1’:3’,1’’-ターフェニルの合成;
 合成例6において、
   2-(フェニルアミノ)-9,9-ジメチル-9H-フルオレン
に代えて
   N-{4-(ナフタレン-1-イル)フェニル}アニリン
を用い、同様の条件で反応を行った。その結果、4,4’’-ビス[{4-(ナフタレン-1-イル)フェニル}-フェニルアミノ]-1,1’:3’,1’’-ターフェニル(化合物1-45)の白色粉体16.7g(収率79%)を得た。
Figure JPOXMLDOC01-appb-C000043
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR(CDCl)で以下の44個の水素のシグナルを検出した。
δ(ppm)=8.08(2H)
       7.94(2H)
       7.90-7.80(3H)
       7.65-7.00(37H)
<合成例13:化合物1-47>
2,2’’-ビス{(9,9-ジメチル-9H-フルオレン-2-イル)-フェニルアミノ}-1,1’:3’,1’’-ターフェニルの合成;
 合成例3において、
   1,4-ジブロモベンゼン
に代えて
   1,3-ジヨードベンゼン
を用い、
   N-(ビフェニル-4-イル)-N-{3-(4,4,5,5-テト
  ラメチル-[1,3,2]ジオキサボラン-2-イル)フェニル}アニ
  リン
に代えて
   2-{(9,9-ジメチル-9H-フルオレン-2-イル)-フェニ
  ルアミノ}-フェニルボロン酸
を用い、同様の条件で反応を行った。その結果、2,2’’-ビス{(9,9-ジメチル-9H-フルオレン-2-イル)-フェニルアミノ}-1,1’:3’,1’’-ターフェニル(化合物1-47)の白色粉体4.2g(収率25%)を得た。
Figure JPOXMLDOC01-appb-C000044
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR(CDCl)で以下の48個の水素のシグナルを検出した。
δ(ppm)=7.60(2H)
       7.38-7.09(14H)
       6.95-6.71(14H)
       6.66-6.56(4H)
       6.35(2H)
       1.26(12H)
<合成例14:化合物1-49>
2,2’’-ビス{(9,9-ジメチル-9H-フルオレン-2-イル)-フェニルアミノ}-1,1’:4’,1’’-ターフェニルの合成;
 合成例3において、
   N-(ビフェニル-4-イル)-N-{3-(4,4,5,5-テト
  ラメチル-[1,3,2]ジオキサボラン-2-イル)フェニル}アニ
  リン
に代えて
   2-{(9,9-ジメチル-9H-フルオレン-2-イル)-フェニ
  ルアミノ}-フェニルボロン酸
を用い、同様の条件で反応を行った。その結果、2,2’’-ビス{(9,9-ジメチル-9H-フルオレン-2-イル)-フェニルアミノ}-1,1’:4’,1’’-ターフェニル(化合物1-49)の白色粉体13.7g(収率76%)を得た。
Figure JPOXMLDOC01-appb-C000045
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR(THF-d)で以下の48個の水素のシグナルを検出した。
δ(ppm)=7.53(2H)
       7.35-6.81(30H)
       6.76(2H)
       6.67(2H)
       1.29(12H)
<合成例15:化合物1-88>
4,4’’-ビス{(トリフェニレン-2-イル)-フェニルアミノ}-1,1’;4’,1’’-ターフェニルの合成;
 合成例6において、
   4,4’’-ジブロモ-1,1’:3’,1’’-ターフェニル
に代えて
   4,4’’-ジヨード-1,1’;4’,1’’-ターフェニル
を用い、
   2-(フェニルアミノ)-9,9-ジメチル-9H-フルオレン
に代えて
   N-(トリフェニレン-2-イル)アニリン
を用い、同様の条件で反応を行った。その結果、4,4’’-ビス{(トリフェニレン-2-イル)-フェニルアミノ}-1,1’;4’,1’’-ターフェニル(化合物1-88)の白色粉体11.4g(収率74%)を得た。
Figure JPOXMLDOC01-appb-C000046
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR(THF-d)で以下の44個の水素のシグナルを検出した。
δ(ppm)=8.72-8.62(8H)
       8.45(2H)
       8.36(2H)
       7.75(4H)
       7.70-7.21(26H)
       7.09(2H)
<合成例16:化合物1-91>
4-{(ビフェニル-4-イル)-フェニルアミノ}-4’’-[{4-(1-フェニル-インドール-4-イル)フェニル}-フェニルアミノ]-1,1’;4’,1’’-ターフェニルの合成;
 合成例1において、
   N-(ビフェニル-4-イル)-N-(4-ブロモフェニル)アニリ
  ン
に代えて
   N-(4’-ブロモ-1,1’-ビフェニル-4-イル)-{4-(
  1-フェニル-インドール-4-イル)フェニル}アニリン
を用い、
   N-(9,9-ジメチル-9H-フルオレン-2-イル)-N-{3
  ’-(4,4,5,5-テトラメチル-[1,3,2]ジオキサボラン
  -2-イル)ビフェニル-4-イル}アニリン
に代えて
   N-{4-(4,4,5,5-テトラメチル-1,3,2-ジオキサ
  ボロラン-2-イル)フェニル}-(1,1’-ビフェニル-4-イル
  )アニリン
を用い、同様の条件で反応を行った。その結果、4-{(ビフェニル-4-イル)-フェニルアミノ}-4’’-[{4-(1-フェニル-インドール-4-イル)フェニル}-フェニルアミノ]-1,1’;4’,1’’-ターフェニル(化合物1-91)の淡黄色粉体6.80g(収率67%)を得た。
Figure JPOXMLDOC01-appb-C000047
 得られた淡黄色粉体についてNMRを使用して構造を同定した。H-NMR(THF-d)で以下の45個の水素のシグナルを検出した。
δ(ppm)=7.70(4H)
       7.68-7.50(16H)
       7.42-7.11(23H)
       7.05(1H)
       6.88(1H)
<合成例17:化合物1-101>
4,4’’-ビス{N-フェニル-N-(2-フェニルビフェニル-4-イル)アミノ}-1,1’;4’,1’’-ターフェニルの合成;
 窒素置換した反応容器に、
   4,4’’-ジヨード-1,1’;4’,1’’-ターフェニル
                          13.0g、
   N-(2-フェニルビフェニル-4-イル)アニリン
                          20.0g、
   銅粉                     0.18g、
   炭酸カリウム                 11.3g、
   3,5-ジ-tert-ブチルサリチル酸    0.7g、
   亜硫酸水素ナトリウム             0.86gおよび
   ドデシルベンゼン               30ml
を加えて加熱し、210℃で24時間撹拌し、混合液を調整した。かかる混合液を冷却した後、キシレン30mlおよびメタノール60mlを加え、ろ過によって析出物を採取した。析出物にトルエン250mlおよびシリカ20gを加え、90℃まで加熱し、析出物溶解液を調整した。次いで、析出物溶解液から熱ろ過によって不溶物を除去し、その後、析出物溶解液を濃縮した。次いで、析出物濃縮液に酢酸エチルおよびメタノールを加えることによって析出する粗製物をろ過によって採取した。得られた粗製物について、クロロベンゼンを用いての再結晶を行い、続いて、メタノールを用いた還流洗浄操作を行った。その結果、4,4’’-ビス{N-フェニル-N-(2-フェニルビフェニル-4-イル)アミノ}-1,1’;4’,1’’-ターフェニル(化合物1-101)の白色粉体16.9g(収率72%)を得た。
Figure JPOXMLDOC01-appb-C000048
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR(CDCl)で以下の48個の水素のシグナルを検出した。
δ(ppm)=7.68(4H)
       7.62-7.55(4H)
       7.39-7.06(40H)
<合成例18:化合物1-103>
4,4’’-ビス{(2-フェニルビフェニル-4-イル)-フェニルアミノ}-1,1’;2’,1’’-ターフェニルの合成;
 合成例6において、
   4,4’’-ジブロモ-1,1’:3’,1’’-ターフェニル
に代えて
   4,4’’-ジブロモ-1,1’;2’,1’’-ターフェニル
を用い、
   2-(フェニルアミノ)-9,9-ジメチル-9H-フルオレン
に代えて
   N-(2-フェニルビフェニル-4-イル)アニリン
を用い、同様の条件で反応を行った。その結果、4,4’’-ビス{(2-フェニルビフェニル-4-イル)-フェニルアミノ}-1,1’;2’,1’’-ターフェニル(化合物1-103)の白色粉体4.3g(収率42%)を得た。
Figure JPOXMLDOC01-appb-C000049
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR(CDCl)で以下の48個の水素のシグナルを検出した。
δ(ppm)=7.50-7.39(4H)
       7.31-6.97(44H)
<合成例19:化合物1-104>
4,4’’-ビス{(2-フェニルビフェニル-4-イル)-フェニルアミノ}-1,1’;3’,1’’-ターフェニルの合成;
 合成例6において、
   2-(フェニルアミノ)-9,9-ジメチル-9H-フルオレン
に代えて
   N-(2-フェニルビフェニル-4-イル)アニリン
を用い、同様の条件で反応を行った。その結果、4,4’’-ビス{(2-フェニルビフェニル-4-イル)-フェニルアミノ}-1,1’;3’,1’’-ターフェニル(化合物1-104)の白色粉体7.7g(収率53%)を得た。
Figure JPOXMLDOC01-appb-C000050
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR(CDCl)で以下の48個の水素のシグナルを検出した。
δ(ppm)=7.81(2H)
       7.61-7.48(14H)
       7.39-7.06(32H)
 各合成例で得られた化合物について高感度示差走査熱量計(ブルカー・エイエックスエス製、DSC3100SA)によってガラス転移点を求めた。
                     ガラス転移点
  合成例1の化合物(化合物1-5)    117℃
  合成例2の化合物(化合物1-6)    117℃
  合成例3の化合物(化合物1-21)   103℃
  合成例5の化合物(化合物1-32)   115℃
  合成例6の化合物(化合物1-34)   124℃
  合成例7の化合物(化合物1-37)   114℃
  合成例8の化合物(化合物1-38)   119℃
  合成例9の化合物(化合物1-39)   106℃
  合成例10の化合物(化合物1-41)  127℃
  合成例11の化合物(化合物1-42)  111℃
  合成例12の化合物(化合物1-45)  122℃
  合成例13の化合物(化合物1-47)  116℃
  合成例14の化合物(化合物1-49)  117℃
  合成例15の化合物(化合物1-88)  163℃
  合成例16の化合物(化合物1-91)  125℃
  合成例17の化合物(化合物1-101) 124℃
  合成例18の化合物(化合物1-103) 115℃
  合成例19の化合物(化合物1-104) 122℃
 一般式(1)で表されるアリールアミン化合物は100℃以上のガラス転移点を有しており、薄膜状態が安定であることを示す。
 各合成例で得られたアリールアミン化合物を用いて、ITO基板の上に膜厚100nmの蒸着膜を作製して、イオン化ポテンシャル測定装置(住友重機械工業株式会社製、PYS-202)によって仕事関数を測定した。
                       仕事関数
  合成例1の化合物(化合物1-5)    5.68eV
  合成例2の化合物(化合物1-6)    5.65eV
  合成例3の化合物(化合物1-21)   5.79eV
  合成例4の化合物(化合物1-22)   5.83eV
  合成例5の化合物(化合物1-32)   5.69eV
  合成例6の化合物(化合物1-34)   5.65eV
  合成例7の化合物(化合物1-37)   5.67eV
  合成例8の化合物(化合物1-38)   5.64eV
  合成例9の化合物(化合物1-39)   5.66eV
  合成例10の化合物(化合物1-41)  5.69eV
  合成例11の化合物(化合物1-42)  5.75eV
  合成例12の化合物(化合物1-45)  5.76eV
  合成例13の化合物(化合物1-47)  5.72eV
  合成例14の化合物(化合物1-49)  5.72eV
  合成例15の化合物(化合物1-88)  5.62eV
  合成例16の化合物(化合物1-91)  5.67eV
  合成例17の化合物(化合物1-101) 5.67eV
  合成例18の化合物(化合物1-103) 5.75eV
  合成例19の化合物(化合物1-104) 5.76eV
 一般式(1)で表されるアリールアミン化合物はNPD、TPDなどの一般的な正孔輸送材料がもつ仕事関数5.4eVと比較して、好適なエネルギー準位を示しており、良好な正孔輸送能力を有していた。
<合成例20:化合物2-1>
7,7-ジメチル-12-(4-フェニルキナゾリン-2-イル)-7,12-ジヒドロベンゾ[4,5]チエノ[3,2-g]インデノ[1,2-b]インドールの合成;
 窒素置換した反応容器に、
   7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ[3
   ,2-g]インデノ[1,2-b]インドール   4.9g、
   2-クロロ-4-フェニルキナゾリン       5.7g、
   トリス(ジベンジリデンアセトン)ジパラジウム  0.3g、
   トリ-tert-ブチルホスホニウムテトラフルオロボレート
                           0.4g、
   tert-ブトキシナトリウム          4.0gおよび
   キシレン                    74ml
を加えて加熱し、12時間還流撹拌して混合液を調整した。かかる混合液を室温まで冷却した後、酢酸エチルおよび水を加え、分液操作によって有機層を採取した。有機層を濃縮し、カラムクロマトグラフによる精製を行った。その結果、7,7-ジメチル-12-(4-フェニルキナゾリン-2-イル)-7,12-ジヒドロベンゾ[4,5]チエノ[3,2-g]インデノ[1,2-b]インドール(化合物2-1)の粉体3.0g(収率38%)を得た。
Figure JPOXMLDOC01-appb-C000051
<合成例21:化合物2-2>
7,7-ジメチル-12-(4-フェニルベンゾ[h]キナゾリン-2-イル)-7,12-ジヒドロベンゾ[4,5]チエノ[3,2-g]インデノ[1,2-b]インドールの合成;
 合成例20において、
   2-クロロ-4-フェニルキナゾリン
に代えて
   2-クロロ-4-フェニルベンゾ[h]キナゾリン
を用い、同様の条件で反応を行った。その結果、7,7-ジメチル-12-(4-フェニルベンゾ[h]キナゾリン-2-イル)-7,12-ジヒドロベンゾ[4,5]チエノ[3,2-g]インデノ[1,2-b]インドール(化合物2-2)の粉体3.2g(収率38%)を得た。
Figure JPOXMLDOC01-appb-C000052
<合成例22:化合物2-3>
12-(4,7-ジフェニルキナゾリン-2-イル)-7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ[3,2-g]インデノ[1,2-b]インドールの合成;
 合成例20において、
   2-クロロ-4-フェニルキナゾリン
に代えて
   2-クロロ-4,7-ジフェニルキナゾリン
を用い、同様の条件で反応を行った。その結果、12-(4,7-ジフェニルキナゾリン-2-イル)-7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ[3,2-g]インデノ[1,2-b]インドール(化合物2-3)の粉体3.3g(収率38%)を得た。
Figure JPOXMLDOC01-appb-C000053
<合成例23:化合物2-4>
12-(4,6-ジフェニルキナゾリン-2-イル)-7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ[3,2-g]インデノ[1,2-b]インドールの合成;
 合成例20において、
   2-クロロ-4-フェニルキナゾリン
に代えて
   2-クロロ-4,6-ジフェニルキナゾリン
を用い、同様の条件で反応を行った。その結果、12-(4,6-ジフェニルキナゾリン-2-イル)-7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ[3,2-g]インデノ[1,2-b]インドール(化合物2-4)の粉体3.3g(収率38%)を得た。
Figure JPOXMLDOC01-appb-C000054
<合成例24:化合物2-5>
13,13-ジメチル-8-(4-フェニルキナゾリン-2-イル)-8,13-ジヒドロベンゾ[4,5]チエノ[3,2-e]インデノ[1,2-b]インドール;
 合成例20において、
   7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ[3
  ,2-g]インデノ[1,2-b]インドール
に代えて
   13,13-ジメチル-8,13-ジヒドロベンゾ[4,5]チエノ
  [3,2-e]インデノ[1,2-b]インドール
を用い、同様の条件で反応を行った。その結果、13,13-ジメチル-8-(4-フェニルキナゾリン-2-イル)-8,13-ジヒドロベンゾ[4,5]チエノ[3,2-e]インデノ[1,2-b]インドール(化合物2-5)の粉体3.0g(収率38%)を得た。
Figure JPOXMLDOC01-appb-C000055
<合成例25:化合物2-6>
8-(4,6-ジフェニルキナゾリン-2-イル)-13,13-ジメチル-8,13-ジヒドロベンゾ[4,5]チエノ[3,2-e]インデノ[1,2-b]インドールの合成;
 合成例24において、
   2-クロロ-4-フェニルキナゾリン
に代えて
   2-クロロ-4,6-ジフェニルキナゾリン
を用い、同様の条件で反応を行った。その結果、8-(4,6-ジフェニルキナゾリン-2-イル)-13,13-ジメチル-8,13-ジヒドロベンゾ[4,5]チエノ[3,2-e]インデノ[1,2-b]インドール(化合物2-6)の粉体3.3g(収率38%)を得た。
Figure JPOXMLDOC01-appb-C000056
<合成例26:化合物2-7>
7,7,13,13-テトラメチル-5-(4-フェニルキナゾリン-2-イル)-7,13-ジヒドロ-5H-ジインデノ[1,2-b:1’,2’-f]インドールの合成;
 合成例20において、
   7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ[3
  ,2-g]インデノ[1,2-b]インドール
に代えて
   7,7,13,13-テトラメチル-7,13-ジヒドロ-5H-ジ
  インデノ[1,2-b:1’,2’-f]インドール
を用い、同様の条件で反応を行った。その結果、7,7,13,13-テトラメチル-5-(4-フェニルキナゾリン-2-イル)-7,13-ジヒドロ-5H-ジインデノ[1,2-b:1’,2’-f]インドール(化合物2-7)の粉体3.0g(収率38%)を得た。
Figure JPOXMLDOC01-appb-C000057
<合成例27:化合物2-8>
7,7,13,13-テトラメチル-5-[3-(4-フェニルキナゾリン-2-イル)フェニル]-7,13-ジヒドロ-5H-ジインデノ[1,2-b:1’,2’-f]インドールの合成;
 合成例26において、
   2-クロロ-4-フェニルキナゾリン
に代えて
   2-(3-ブロモフェニル)-4-フェニルキナゾリン
を用い、同様の条件で反応を行った。その結果、7,7,13,13-テトラメチル-5-[3-(4-フェニルキナゾリン-2-イル)フェニル]-7,13-ジヒドロ-5H-ジインデノ[1,2-b:1’,2’-f]インドール(化合物2-8)の粉体3.4g(収率38%)を得た。
Figure JPOXMLDOC01-appb-C000058
<合成例28:化合物2-9>
7,7-ジメチル-12-(4-フェニルベンゾ[h]キナゾリン-2-イル)-7,12-ジヒドロベンゾフロ[3,2-g]インデノ[1,2-b]インドールの合成;
 合成例21において、
   7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ[3
  ,2-g]インデノ[1,2-b]インドール
に代えて
   7,7-ジメチル-7,12-ジヒドロベンゾフロ[3,2-g]イ
  ンデノ[1,2-b]インドール
を用い、同様の条件で反応を行った。その結果、7,7-ジメチル-12-(4-フェニルベンゾ[h]キナゾリン-2-イル)-7,12-ジヒドロベンゾフロ[3,2-g]インデノ[1,2-b]インドール(化合物2-9)の粉体3.0g(収率38%)を得た。
Figure JPOXMLDOC01-appb-C000059
<合成例29:化合物2-10>
12-(4,6-ジフェニルベンゾ[h]キナゾリン-2-イル)-7,7-ジメチル-7,12-ジヒドロベンゾフロ[3,2-g]インデノ[1,2-b]インドールの合成;
 合成例28において、
   2-クロロ-4-フェニルベンゾ[h]キナゾリン
に代えて
   2-クロロ-4,6-ジフェニルベンゾ[h]キナゾリン
を用い、同様の条件で反応を行った。その結果、12-(4,6-ジフェニルベンゾ[h]キナゾリン-2-イル)-7,7-ジメチル-7,12-ジヒドロベンゾフロ[3,2-g]インデノ[1,2-b]インドール(化合物2-10)の粉体3.5g(収率38%)を得た。
Figure JPOXMLDOC01-appb-C000060
<合成例30:化合物2-11>
13,13-ジメチル-8-(4-フェニルキナゾリン-2-イル)-8,13-ジヒドロベンゾフロ[3,2-e]インデノ[1,2-b]インドールの合成;
 合成例20において、
   7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ[3
  ,2-g]インデノ[1,2-b]インドール
に代えて
   13,13-ジメチル-8,13-ジヒドロベンゾフロ[3,2-e
  ]インデノ[1,2-b]インドール
を用い、同様の条件で反応を行った。その結果、13,13-ジメチル-8-(4-フェニルキナゾリン-2-イル)-8,13-ジヒドロベンゾフロ[3,2-e]インデノ[1,2-b]インドール(化合物2-11)の粉体3.0g(収率38%)を得た。
Figure JPOXMLDOC01-appb-C000061
<合成例31:化合物2-12>
13,13-ジメチル-8-(4,6-ジフェニルキナゾリン-2-イル)-8,13-ジヒドロベンゾフロ[3,2-e]インデノ[1,2-b]インドールの合成;
 合成例30において、
   2-クロロ-4-フェニルキナゾリン
に代えて
   2-クロロ-4,6-ジフェニルキナゾリン
を用い、同様の条件で反応を行った。その結果、13,13-ジメチル-8-(4,6-ジフェニルキナゾリン-2-イル)-8,13-ジヒドロベンゾフロ[3,2-e]インデノ[1,2-b]インドール(化合物2-12)の粉体3.2g(収率38%)を得た。
Figure JPOXMLDOC01-appb-C000062
<合成例32:化合物3-1>
13-(4,6-ジフェニルキナゾリン-2-イル)-7,7-ジメチル-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾールの合成;
 合成例31において、
   13,13-ジメチル-8,13-ジヒドロベンゾフロ[3,2-e
  ]インデノ[1,2-b]インドール
に代えて
   7,7-ジメチル-7,13-ジヒドロインデノ[2’,1’:4,
  5]チエノ[2,3-a]カルバゾール
を用い、同様の条件で反応を行った。その結果、13-(4,6-ジフェニルキナゾリン-2-イル)-7,7-ジメチル-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾール(化合物3-1)の粉体7.0g(収率38%)を得た。
Figure JPOXMLDOC01-appb-C000063
<合成例33:化合物3-2>
13-[4-(ビフェニル-4-イル)キナゾリン-2-イル]-7,7-ジメチル-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾールの合成;
 合成例32において、
   2-クロロ-4,6-ジフェニルキナゾリン
に代えて
   4-(ビフェニル-4-イル)-2-クロロキナゾリン
を用い、同様の条件で反応を行った。その結果、13-[4-(ビフェニル-4-イル)キナゾリン-2-イル]-7,7-ジメチル-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾール(化合物3-2)の粉体6.7g(収率37%)を得た。
Figure JPOXMLDOC01-appb-C000064
<合成例34:化合物3-3>
7,7-ジメチル-13-[4-(フェニル-d)キナゾリン-2-イル]-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾールの合成;
 合成例32において、
   2-クロロ-4,6-ジフェニルキナゾリン
に代えて
   2-クロロ-4-(フェニル-d)キナゾリン
を用い、同様の条件で反応を行った。その結果、7,7-ジメチル-13-[4-(フェニル-d)キナゾリン-2-イル]-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾール(化合物3-3)の粉体8.4g(収率32%)を得た。
Figure JPOXMLDOC01-appb-C000065
<合成例35:化合物3-4>
7,7-ジメチル-13-[4-(4-フェニルキナゾリン-2-イル)フェニル]-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾールの合成;
 合成例32において、
   2-クロロ-4,6-ジフェニルキナゾリン
に代えて
   2-(4-ブロモフェニル)-4-フェニルキナゾリン
を用い、同様の条件で反応を行った。その結果、7,7-ジメチル-13-[4-(4-フェニルキナゾリン-2-イル)フェニル]-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾール(化合物3-4)の粉体5.2g(収率28%)を得た。
Figure JPOXMLDOC01-appb-C000066
<合成例36:化合物3-5>
7,7-ジメチル-13-[3-(4-フェニルキナゾリン-2-イル)フェニル]-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾールの合成;
 合成例32において、
   2-クロロ-4,6-ジフェニルキナゾリン
に代えて
   2-(3-ブロモフェニル)-4-フェニルキナゾリン
を用い、同様の条件で反応を行った。その結果、7,7-ジメチル-13-[3-(4-フェニルキナゾリン-2-イル)フェニル]-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾール(化合物3-5)の粉体8.4g(収率32%)を得た。
Figure JPOXMLDOC01-appb-C000067
<合成例37:化合物3-6>
7,7-ジメチル-13-(4-フェニルベンゾ[h]キナゾリン-2-イル)-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾールの合成;
 合成例32において、
   2-クロロ-4,6-ジフェニルキナゾリン
に代えて
   2-クロロ-4-フェニルベンゾ[h]キナゾリン
を用い、同様の条件で反応を行った。その結果、7,7-ジメチル-13-(4-フェニルベンゾ[h]キナゾリン-2-イル)-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾール(化合物3-6)の粉体8.4g(収率32%)を得た。
Figure JPOXMLDOC01-appb-C000068
<合成例38:化合物3-7>
8,8-ジメチル-5-(4-フェニルベンゾ[h]キナゾリン-2-イル)-5,8-ジヒドロインデノ[2’,1’:4,5]チエノ[3,2-c]カルバゾールの合成;
 合成例37において、
   7,7-ジメチル-7,13-ジヒドロインデノ[2’,1’:4,
  5]チエノ[2,3-a]カルバゾール
に代えて
   8,8-ジメチル-5,8-ジヒドロインデノ[2’,1’:4,5
  ]チエノ[3,2-c]カルバゾール
を用い、同様の条件で反応を行った。その結果、8,8-ジメチル-5-(4-フェニルベンゾ[h]キナゾリン-2-イル)-5,8-ジヒドロインデノ[2’,1’:4,5]チエノ[3,2-c]カルバゾール(化合物3-7)の粉体9.3g(収率35%)を得た。
Figure JPOXMLDOC01-appb-C000069
<合成例39:化合物3-8>
7,7-ジメチル-13-(4-フェニルキナゾリン-2-イル)-7,13-ジヒドロインデノ[2’,1’:4,5]フロ[2,3-a]カルバゾールの合成;
 合成例20において、
   7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ[3
  ,2-g]インデノ[1,2-b]インドール
に代えて
   7,7-ジメチル-7,13-ジヒドロインデノ[2’,1’:4,
  5]フロ[2,3-a]カルバゾール
を用い、同様の条件で反応を行った。その結果、7,7-ジメチル-13-(4-フェニルキナゾリン-2-イル)-7,13-ジヒドロインデノ[2’,1’:4,5]フロ[2,3-a]カルバゾール(化合物3-8)の粉体6.2g(収率32%)を得た。
Figure JPOXMLDOC01-appb-C000070
<合成例40:化合物3-9>
7,7-ジメチル-13-(4-フェニルベンゾ[h]キナゾリン-2-イル)-7,13-ジヒドロインデノ[2’,1’:4,5]フロ[2,3-a]カルバゾールの合成
 合成例39において、
   2-クロロ-4-フェニルキナゾリン
に代えて
   2-クロロ-4-フェニルベンゾ[h]キナゾリン
を用い、同様の条件で反応を行った。その結果、7,7-ジメチル-13-(4-フェニルベンゾ[h]キナゾリン-2-イル)-7,13-ジヒドロインデノ[2’,1’:4,5]フロ[2,3-a]カルバゾール(化合物3-9)の粉体8.6g(収率30%)を得た。
Figure JPOXMLDOC01-appb-C000071
<合成例41:化合物3-10>
13-(4,6-ジフェニルキナゾリン-2-イル)-7,7-ジメチル-7,13-ジヒドロインデノ[2’,1’:4,5]フロ[2,3-a]カルバゾールの合成;
 合成例39において、
   2-クロロ-4-フェニルキナゾリン
に代えて
   2-クロロ-4,6-ジフェニルキナゾリン
を用い、同様の条件で反応を行った。その結果、13-(4,6-ジフェニルキナゾリン-2-イル)-7,7-ジメチル-7,13-ジヒドロインデノ[2’,1’:4,5]フロ[2,3-a]カルバゾール(化合物3-10)の粉体7.2g(収率29%)を得た。
Figure JPOXMLDOC01-appb-C000072
<合成例42:化合物3-11>
7,7-ジフェニル-13-(4-フェニルキナゾリン-2-イル)-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾールの合成;
 合成例20において、
   7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ[3
  ,2-g]インデノ[1,2-b]インドール
に代えて
   7,7-ジフェニル-7,13-ジヒドロインデノ[2’,1’:4
  ,5]チエノ[2,3-a]カルバゾール
を用い、同様の条件で反応を行った。その結果、7,7-ジフェニル-13-(4-フェニルキナゾリン-2-イル)-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾール(化合物3-11)の粉体6.7g(収率37%)を得た。
Figure JPOXMLDOC01-appb-C000073
<合成例43:化合物3-12>
9,9-ジメチル-15-(4-フェニルキナゾリン-2-イル)-9,15-ジヒドロベンゾ[a]インデノ[2’,1’:4,5]チエノ[3,2-i]カルバゾールの合成;
 合成例20において、
   7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ[3
  ,2-g]インデノ[1,2-b]インドール
に代えて
   9,9-ジメチル-9,15-ジヒドロベンゾ[a]インデノ[2’

  ,1’:4,5]チエノ[3,2-i]カルバゾール
を用い、同様の条件で反応を行った。その結果、9,9-ジメチル-15-(4-フェニルキナゾリン-2-イル)-9,15-ジヒドロベンゾ[a]インデノ[2’,1’:4,5]チエノ[3,2-i]カルバゾール(化合物3-12)の粉体4.8g(収率42%)を得た。
Figure JPOXMLDOC01-appb-C000074
<合成例44:化合物3-13>
7-フェニル-13-(4-フェニルキナゾリン-2-イル)-7,13-ジヒドロインドロ[2’,3’:4,5]チエノ[2,3-a]カルバゾールの合成;
 合成例20において、
   7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ[3
  ,2-g]インデノ[1,2-b]インドール
に代えて
   7-フェニル-7,13-ジヒドロインドロ[2’,3’:4,5]
  チエノ[2,3-a]カルバゾール
を用い、同様の条件で反応を行った。その結果、7-フェニル-13-(4-フェニルキナゾリン-2-イル)-7,13-ジヒドロインドロ[2’,3’:4,5]チエノ[2,3-a]カルバゾール(化合物3-13)の粉体4.3g(収率43%)を得た。
Figure JPOXMLDOC01-appb-C000075
<合成例45:化合物3-14>
12,12-ジメチル-1-(4-フェニルキナゾリン-2-イル)-1,12-ジヒドロインデノ[1’,2’:4,5]チエノ[2,3-a]カルバゾールの合成;
 合成例20において、
   7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ[3
  ,2-g]インデノ[1,2-b]インドール
に代えて
   12,12-ジメチル-1,12-ジヒドロインデノ[1’,2’:
  4,5]チエノ[2,3-a]カルバゾール
を用い、同様の条件で反応を行った。その結果、12,12-ジメチル-1-(4-フェニルキナゾリン-2-イル)-1,12-ジヒドロインデノ[1’,2’:4,5]チエノ[2,3-a]カルバゾール(化合物3-14)の粉体6.3g(収率44%)を得た。
Figure JPOXMLDOC01-appb-C000076
<合成例46:化合物3-15>
7,7-ジメチル-13-(ナフタレン-2-イル)-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾールの合成;
 合成例32において、
   2-クロロ-4,6-ジフェニルキナゾリン
に代えて
   2-ブロモナフタレン
を用い、同様の条件で反応を行った。その結果、7,7-ジメチル-13-(ナフタレン-2-イル)-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾール(化合物3-15)の粉体5.4g(収率47%)を得た。
Figure JPOXMLDOC01-appb-C000077
<実施例1>
 図1に示すように、ガラス基板1上に透明陽極2としてITO電極をあらかじめ形成したものの上に、正孔注入層3、第一正孔輸送層5a、第二正孔輸送層5b、発光層6、電子輸送層7、電子注入層8、陰極(アルミニウム電極)9の順に蒸着して有機EL素子を作製した。
 具体的には、膜厚150nmのITOを成膜したガラス基板1をイソプロピルアルコール中にて20分間超音波洗浄し、その後、200℃に加熱したホットプレート上で10分間乾燥した。その後、UVオゾン処理を15分間行った。次いで、このITO付きガラス基板を真空蒸着機内に取り付け、0.001Pa以下まで減圧した。
 続いて正孔注入層3を形成した。具体的には、透明陽極2を覆うように、下記構造式のHIM-1を蒸着し、膜厚5nmの正孔注入層3を形成した。
Figure JPOXMLDOC01-appb-C000078
 続いて、第一正孔輸送層5aを形成した。具体的には、正孔注入層3の上に、下記構造式で表されるトリアリールアミン化合物6-1を蒸着し、膜厚60nmの第一正孔輸送層5aを形成した。
Figure JPOXMLDOC01-appb-C000079
 続いて、第二正孔輸送層5bを形成した。具体的には、第一正孔輸送層5aの上に、合成例1の化合物1-5を蒸着し、膜厚5nmの第二正孔輸送層5bを形成した。
Figure JPOXMLDOC01-appb-C000080
 続いて、発光層6を形成した。具体的には、第二正孔輸送層5bの上に、下記構造式の化合物EMD-1と合成例23の化合物2-4を、蒸着速度比がEMD-1:化合物2-4=5:95となる蒸着速度で二元蒸着し、膜厚20nmの発光層6を形成した。
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
 続いて、電子輸送層7を形成した。具体的には、発光層6の上に、下記構造式のピリミジン誘導体4-123と下記構造式のETM-1を、蒸着速度比がピリミジン誘導体4-123:ETM-1=50:50となる蒸着速度で二元蒸着し、膜厚30nmの電子輸送層7を形成した。
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
 続いて、電子注入層8を形成した。具体的には、電子輸送層7の上に、フッ化リチウムを蒸着し、膜厚1nmの電子注入層8を形成した。
 最後に、アルミニウムを100nm蒸着して陰極9を形成した。
 作製した有機EL素子について、大気中、常温で直流電圧を印加したときの発光特性を測定した。層構成を表1に示し、測定結果を表2に示した。
<実施例2>
 実施例1において、第二正孔輸送層5bの材料として合成例1の化合物1-5に代えて合成例6の化合物1-34を用いた以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で直流電圧を印加したときの発光特性を測定した。層構成を表1に示し、測定結果を表2に示した。
Figure JPOXMLDOC01-appb-C000085
<実施例3>
 実施例1において、電子輸送層7の材料としてピリミジン誘導体4-123に代えて下記構造式のピリミジン誘導体4-125を用いた以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で直流電圧を印加したときの発光特性を測定した。層構成を表1に示し、測定結果を表2に示した。
Figure JPOXMLDOC01-appb-C000086
<実施例4>
 実施例3において、第二正孔輸送層5bの材料として合成例1の化合物1-5に代えて合成例6の化合物1-34を用いた以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で直流電圧を印加したときの発光特性を測定した。層構成を表1に示し、測定結果を表2に示した。
<実施例5>
 実施例1において、発光層6の材料として合成例23の化合物2-4に代えて合成例45の化合物3-14を用いた以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で直流電圧を印加したときの発光特性を測定した。層構成を表1に示し、測定結果を表2に示した。
Figure JPOXMLDOC01-appb-C000087
<実施例6>
 実施例5において、第二正孔輸送層5bの材料として合成例1の化合物1-5に代えて合成例6の化合物1-34を用いた以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で直流電圧を印加したときの発光特性を測定した。層構成を表1に示し、測定結果を表2に示した。
<実施例7>
 実施例5において、電子輸送層7の材料としてピリミジン誘導体4-123に代えてピリミジン誘導体4-125を用いた以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で直流電圧を印加したときの発光特性を測定した。層構成を表1に示し、測定結果を表2に示した。
<実施例8>
 実施例7において、第二正孔輸送層5bの材料として合成例1の化合物1-5に代えて合成例6の化合物1-34を用いた以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で直流電圧を印加したときの発光特性を測定した。層構成を表1に示し、測定結果を表2に示した。
<実施例9>
 実施例1において、発光層6の材料として合成例23の化合物2-4に代えて下記構造式のカルバゾール誘導体3-16を用いた以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で直流電圧を印加したときの発光特性を測定した。層構成を表1に示し、測定結果を表2に示した。
Figure JPOXMLDOC01-appb-C000088
<実施例10>
 実施例9において、第二正孔輸送層5bの材料として合成例1の化合物1-5に代えて合成例6の化合物1-34を用いた以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で直流電圧を印加したときの発光特性を測定した。層構成を表1に示し、測定結果を表2に示した。
<実施例11>
 実施例9において、電子輸送層7の材料としてピリミジン誘導体4-123に代えてピリミジン誘導体4-125を用いた以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で直流電圧を印加したときの発光特性を測定した。層構成を表1に示し、測定結果を表2に示した。
<実施例12>
 実施例11において、第二正孔輸送層5bの材料として合成例1の化合物1-5に代えて合成例6の化合物1-34を用いた以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で直流電圧を印加したときの発光特性を測定した。層構成を表1に示し、測定結果を表2に示した。
<比較例1>
 実施例3において、第一正孔輸送層5aの材料として化合物6-1に代えて下記構造式で表されるトリアリールアミン化合物6’-2を用い、更に、第二正孔輸送層5bの材料として合成例1の化合物1-5に代えて下記構造式で表されるトリアリールアミン化合物6’-2を用いた以外は、同様の条件で有機EL素子を作製した。この場合、第一正孔輸送層5aと第二正孔輸送層5bは一体の正孔輸送層(膜厚65nm)として機能した。構造式から明らかな通り、化合物(6’-2)は、その分子中にトリアリールアミン構造を2個有するトリアリールアミン化合物であった。作製した有機EL素子について、大気中、常温で直流電圧を印加したときの発光特性を測定した。層構成を表1に示し、測定結果を表2に示した。
Figure JPOXMLDOC01-appb-C000089
<比較例2>
 実施例7において、第一正孔輸送層5aの材料として化合物6-1に代えて前記構造式で表されるトリアリールアミン化合物6’-2を用い、第二正孔輸送層5bの材料として合成例1の化合物1-5に代えて前記構造式で表されるトリアリールアミン化合物6’-2を用いた以外は、同様の条件で有機EL素子を作製した。この場合、第一正孔輸送層5aと第二正孔輸送層5bは一体の正孔輸送層(膜厚65nm)として機能した。作製した有機EL素子について、大気中、常温で直流電圧を印加したときの発光特性を測定した。層構成を表1に示し、測定結果を表2に示した。
<比較例3>
 実施例11において、第一正孔輸送層5aの材料として化合物6-1に代えて前記構造式で表されるトリアリールアミン化合物6’-2を用い、更に、第二正孔輸送層5bの材料として合成例1の化合物1-5に代えて前記構造式で表されるトリアリールアミン化合物6’-2を用いた以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で直流電圧を印加したときの発光特性を測定した。層構成を表1に示し、測定結果を表2に示した。
 尚、下記表2において、素子寿命は、各実施例および比較例で作製した有機EL素子を用いて、発光開始時の発光輝度(初期輝度)を7000cd/mとして定電流駆動を行った時、発光輝度が6790cd/m(初期輝度を100%とした時の97%に相当:97%減衰)に減衰するまでの時間として測定した。
Figure JPOXMLDOC01-appb-T000090
Figure JPOXMLDOC01-appb-T000091
 表1および表2を参照して、発光層の材料が同じ組合せである実施例1~4と比較例1とを比較すると、発光効率については、比較例1で22.33cd/Aであったのに対し、実施例1~4では25.72~27.01cd/Aといずれも高効率であった。また、電力効率についても、比較例1で17.04lm/Wであったのに対し、実施例1~4では19.77~19.95lm/Wといずれも高効率であった。素子寿命については、比較例1で96時間であったのに対し、実施例1~4では255~320時間と大きく長寿命化していた。
 表1および表2を参照して、発光層の材料が同じ組合せである実施例5~8と比較例2とを比較すると、発光効率については、比較例2で19.85cd/Aであるのに対し、実施例5~8では25.13~25.78cd/Aといずれも高効率であった。また、電力効率についても、比較例2で18.24lm/Wであったのに対し、実施例5~8では23.17~23.99lm/Wといずれも高効率であった。素子寿命については、比較例2で79時間であったのに対し、実施例5~8では298~388時間と大きく長寿命化していた。
 表1および表2を参照して、発光層の材料が同じ組合せである実施例9~12と比較例3とを比較すると、発光効率については、比較例3で20.16cd/Aであったのに対し、実施例9~12では24.95~25.23cd/Aといずれも高効率であった。また、電力効率についても、比較例3では16.55lm/Wであったのに対し、実施例9~12では20.28~20.80m/Wといずれも高効率であった。素子寿命については、比較例3で68時間であったのに対し、実施例9~12では200~358時間と大きく長寿命化していた。
 本発明の有機EL素子では、特定の構造を有するアリールアミン化合物と特定の縮合環構造を有する複素環化合物(および特定のピリミジン誘導体)が、有機EL素子内部のキャリアバランスを改善し、さらに発光材料の特性に合ったキャリアバランスとなるように組み合わされている。そのため、従来の有機EL素子と比較して、高発光効率、長寿命の有機EL素子を実現できる。
 特定の構造を有するアリールアミン化合物と特定の縮合環構造を有する複素環化合物(および特定のピリミジン誘導体)を組み合わせた本発明の有機EL素子においては、発光効率が向上すると共に、有機EL素子の耐久性が改善されている。そのため、本発明の有機EL素子は、例えば、家庭電化製品や照明の用途への展開が可能である。
1  ガラス基板
2  透明陽極
3  正孔注入層
5  正孔輸送層
5a 第一正孔輸送層
5b 第二正孔輸送層
6  発光層
7  電子輸送層
8  電子注入層
9  陰極

Claims (9)

  1.  少なくとも陽極、正孔輸送層、発光層、電子輸送層および陰極をこの順で有する有機エレクトロルミネッセンス素子において、
     前記正孔輸送層が、下記一般式(1)で表されるアリールアミン化合物を含有し、
     前記発光層が、下記一般式(2)で表されるインデノインドール誘導体または下記一般式(3)で表されるカルバゾール誘導体を含有することを特徴とする有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001
      式中、
       Ar~Arは、それぞれ、芳香族炭化水素基、芳香族複素
      環基または縮合多環芳香族基を表す。
    Figure JPOXMLDOC01-appb-C000002
      式中、
       Aは、芳香族炭化水素の2価基、芳香族複素環の2価基、縮
      合多環芳香族の2価基または単結合を表し、
       Arは、芳香族炭化水素基、芳香族複素環基または縮合多環
      芳香族基を表し、
       R~Rは、それぞれ、水素原子;重水素原子;フッ素原子
      ;塩素原子;シアノ基;ニトロ基;炭素原子数1~6のアルキル
      基;炭素原子数5~10のシクロアルキル基;炭素原子数2~6
      のアルケニル基;炭素原子数1~6のアルキルオキシ基;炭素原
      子数5~10のシクロアルキルオキシ基;芳香族炭化水素基;芳
      香族複素環基;縮合多環芳香族基;アリールオキシ基;または置
      換基として芳香族炭化水素基、芳香族複素環基もしくは縮合多環
      芳香族基を有するジ置換アミノ基;であり、
       R~Rは、単結合、置換もしくは無置換のメチレン基、酸
      素原子または硫黄原子を介して互いに結合して環を形成してもよ
      く、
       R~Rは、単結合、置換もしくは無置換のメチレン基、酸
      素原子または硫黄原子を介して互いに結合して環を形成してもよ
      く、
       R~Rの一部が脱離し、この脱離により生じた空位に、R
      ~Rの他の基が、置換もしくは無置換のメチレン基、酸素原子
      、硫黄原子またはモノアリールアミノ基を介して結合して環を形
      成してもよく、
       R~Rの一部が脱離し、この脱離により生じた空位に、R
      ~Rの他の基が、置換もしくは無置換のメチレン基、酸素原子
      、硫黄原子またはモノアリールアミノ基を介して結合して環を形
      成してもよい。
       RとR10は、それぞれ、炭素原子数1~6のアルキル基、芳
      香族炭化水素基、芳香族複素環基または縮合多環芳香族基であり
      、RとR10は、単結合、置換もしくは無置換のメチレン基、酸
      素原子または硫黄原子を介して互いに結合して環を形成してもよ
      い。
    Figure JPOXMLDOC01-appb-C000003
      式中、
       Aは、芳香族炭化水素の2価基、芳香族複素環の2価基、縮
      合多環芳香族の2価基または単結合を表し、
       Arは、芳香族炭化水素基、芳香族複素環基または縮合多環
      芳香族基を表し、
       R11~R18は、それぞれ、水素原子;重水素原子;フッ素原
      子;塩素原子;シアノ基;ニトロ基;炭素原子数1~6のアルキ
      ル基;炭素原子数5~10のシクロアルキル基;炭素原子数2~
      6のアルケニル基;炭素原子数1~6のアルキルオキシ基;炭素
      原子数5~10のシクロアルキルオキシ基;芳香族炭化水素基;
      芳香族複素環基;縮合多環芳香族基;アリールオキシ基;または
      置換基として芳香族炭化水素基、芳香族複素環基もしくは縮合多
      環芳香族基を有するジ置換アミノ基;であり、
       R11~R14は、単結合、置換もしくは無置換のメチレン基、
      酸素原子または硫黄原子を介して互いに結合して環を形成しても
      よく、
       R15~R18は、単結合、置換もしくは無置換のメチレン基、
      酸素原子または硫黄原子を介して互いに結合して環を形成しても
      よく、
       R11~R14の一部が脱離し、この脱離により生じた空位に、
      R11~R14の他の基が、置換もしくは無置換のメチレン基、酸
      素原子、硫黄原子またはモノアリールアミノ基を介して結合して
      環を形成してもよく、
       R15~R18の一部が脱離し、この脱離により生じた空位に、
      R15~R18の他の基が、置換もしくは無置換のメチレン基、酸
      素原子、硫黄原子またはモノアリールアミノ基を介して結合して
      環を形成してもよい。
  2.  前記電子輸送層が、下記一般式(4)で表されるピリミジン誘導体を含有する、請求項1記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000004
      式中、
       Arは、芳香族炭化水素基、芳香族複素環基または縮合多環
      芳香族基を表し、
       Ar、Arは、それぞれ、水素原子、芳香族炭化水素基、
      芳香族複素環基または縮合多環芳香族基を表し、ArとA
      rは同時に水素原子となることはなく、
       Bは、下記構造式(5)で示される1価基を表す。
    Figure JPOXMLDOC01-appb-C000005
        式中、
         Ar10は、芳香族複素環基を表し、
         R19~R22は、それぞれ、水素原子、重水素原子、フ
        ッ素原子、塩素原子、シアノ基、トリフルオロメチル基、
        炭素原子数1~6のアルキル基、芳香族炭化水素基、芳香
        族複素環基または縮合多環芳香族基を表し、
         R19~R22とAr10は、単結合、置換もしくは無置換
        のメチレン基、酸素原子または硫黄原子を介して互いに結
        合して環を形成していてもよい。
  3.  前記ピリミジン誘導体が、下記一般式(4a)で表される、請求項2記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000006
      式中、
       Ar~ArおよびBは、前記一般式(4)に示す通りであ
      る。
  4.  前記ピリミジン誘導体が、下記一般式(4b)で表される、請求項2記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000007
      式中、
       Ar~ArおよびBは、前記一般式(4)に示す通りであ
      る。
  5.  前記一般式(4)において、Bが下記構造式(5a)で示される1価基である、請求項2記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000008
         式中、Ar10およびR19~R22は、前記構造式(5)
        に示す通りである。
  6.  前記正孔輸送層が、第一正孔輸送層および第二正孔輸送層の2層構造を有しており、該第二正孔輸送層が前記発光層側に位置しており且つ前記一般式(1)で表されるアリールアミン化合物を含有する、請求項1記載の有機エレクトロルミネッセンス素子。
  7.  前記発光層が、赤色の発光材料を含有する、請求項1記載の有機エレクトロルミネッセンス素子。
  8.  前記発光層が、燐光性の発光材料を含有する、請求項1記載の有機エレクトロルミネッセンス素子。
  9.  前記燐光性の発光材料が、イリジウムまたは白金を含む金属錯体である、請求項8記載の有機エレクトロルミネッセンス素子。
PCT/JP2016/050064 2015-01-07 2016-01-05 有機エレクトロルミネッセンス素子 WO2016111270A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/541,429 US9905775B2 (en) 2015-01-07 2016-01-05 Organic electroluminescent device
EP16735009.9A EP3244464B1 (en) 2015-01-07 2016-01-05 Organic electroluminescent element
JP2016568378A JP6731352B2 (ja) 2015-01-07 2016-01-05 有機エレクトロルミネッセンス素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015001298 2015-01-07
JP2015-001298 2015-01-07

Publications (1)

Publication Number Publication Date
WO2016111270A1 true WO2016111270A1 (ja) 2016-07-14

Family

ID=56355958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050064 WO2016111270A1 (ja) 2015-01-07 2016-01-05 有機エレクトロルミネッセンス素子

Country Status (4)

Country Link
US (1) US9905775B2 (ja)
EP (1) EP3244464B1 (ja)
JP (1) JP6731352B2 (ja)
WO (1) WO2016111270A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016111301A1 (ja) * 2015-01-08 2017-10-19 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
WO2019059334A1 (ja) * 2017-09-25 2019-03-28 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
JP2020503672A (ja) * 2016-12-27 2020-01-30 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 有機エレクトロルミネセント化合物及びそれを含む有機エレクトロルミネセントデバイス

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102446760B1 (ko) * 2015-01-08 2022-09-22 호도가야 가가쿠 고교 가부시키가이샤 유기 전계발광 소자
US20210013437A1 (en) * 2018-09-29 2021-01-14 Tcl Technology Group Corporation Quantum dot light-emitting diode
CN114276366A (zh) * 2021-04-20 2022-04-05 北京八亿时空液晶科技股份有限公司 一种吲哚衍生物及其应用
CN114805386B (zh) * 2022-06-08 2024-02-09 上海钥熠电子科技有限公司 有机化合物、主体材料和有机光电器件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219393A (ja) * 2005-02-09 2006-08-24 Canon Inc 化合物、発光素子及び画像表示装置
JP2008016827A (ja) * 2006-06-08 2008-01-24 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置および照明装置
JP2010040829A (ja) * 2008-08-06 2010-02-18 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置、照明装置
WO2011049123A1 (ja) * 2009-10-20 2011-04-28 東ソー株式会社 カルバゾール化合物及びその用途
WO2013035329A1 (ja) * 2011-09-09 2013-03-14 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2014058183A1 (ko) * 2012-10-11 2014-04-17 덕산하이메탈(주) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2014129201A1 (ja) * 2013-02-22 2014-08-28 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
WO2016017594A1 (ja) * 2014-07-29 2016-02-04 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3194657B2 (ja) 1993-11-01 2001-07-30 松下電器産業株式会社 電界発光素子
EP0650955B1 (en) 1993-11-01 1998-08-19 Hodogaya Chemical Co., Ltd. Amine compound and electro-luminescence device comprising same
JP3828595B2 (ja) 1994-02-08 2006-10-04 Tdk株式会社 有機el素子
EP0666298A3 (en) 1994-02-08 1995-11-15 Tdk Corp Organic electroluminescent element and compound used therein.
JP4487587B2 (ja) 2003-05-27 2010-06-23 株式会社デンソー 有機el素子およびその製造方法
KR100787425B1 (ko) 2004-11-29 2007-12-26 삼성에스디아이 주식회사 페닐카바졸계 화합물 및 이를 이용한 유기 전계 발광 소자
US8188315B2 (en) 2004-04-02 2012-05-29 Samsung Mobile Display Co., Ltd. Organic light emitting device and flat panel display device comprising the same
CN101885685B (zh) 2004-05-25 2012-08-22 保土谷化学工业株式会社 对三联苯化合物和使用该化合物的电子照相用感光体
US8021765B2 (en) 2004-11-29 2011-09-20 Samsung Mobile Display Co., Ltd. Phenylcarbazole-based compound and organic electroluminescent device employing the same
KR101347519B1 (ko) 2006-11-24 2014-01-03 이데미쓰 고산 가부시키가이샤 방향족 아민 유도체 및 그것을 이용한 유기 전기발광 소자
KR101427611B1 (ko) 2011-03-08 2014-08-11 롬엔드하스전자재료코리아유한회사 신규한 유기 전자재료용 화합물 및 이를 포함하는 유기 전계 발광 소자
KR102013399B1 (ko) 2011-11-29 2019-08-22 에스에프씨 주식회사 안트라센 유도체 및 이를 포함하는 유기전계발광소자
KR102072019B1 (ko) * 2012-10-18 2020-01-31 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN106831796B (zh) * 2016-12-30 2019-06-11 上海天马有机发光显示技术有限公司 一种有机电致发光材料以及有机光电装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219393A (ja) * 2005-02-09 2006-08-24 Canon Inc 化合物、発光素子及び画像表示装置
JP2008016827A (ja) * 2006-06-08 2008-01-24 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置および照明装置
JP2010040829A (ja) * 2008-08-06 2010-02-18 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置、照明装置
WO2011049123A1 (ja) * 2009-10-20 2011-04-28 東ソー株式会社 カルバゾール化合物及びその用途
WO2013035329A1 (ja) * 2011-09-09 2013-03-14 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2014058183A1 (ko) * 2012-10-11 2014-04-17 덕산하이메탈(주) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2014129201A1 (ja) * 2013-02-22 2014-08-28 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
WO2016017594A1 (ja) * 2014-07-29 2016-02-04 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3244464A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016111301A1 (ja) * 2015-01-08 2017-10-19 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
JP2020503672A (ja) * 2016-12-27 2020-01-30 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 有機エレクトロルミネセント化合物及びそれを含む有機エレクトロルミネセントデバイス
WO2019059334A1 (ja) * 2017-09-25 2019-03-28 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
JPWO2019059334A1 (ja) * 2017-09-25 2020-11-05 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
EP3690970A4 (en) * 2017-09-25 2021-07-07 Hodogaya Chemical Co., Ltd. ORGANIC ELECTROLUMINESCENT ELEMENT
US11605785B2 (en) 2017-09-25 2023-03-14 Hodogaya Chemical Co., Ltd. Organic electroluminescence device
JP7250683B2 (ja) 2017-09-25 2023-04-03 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子

Also Published As

Publication number Publication date
JP6731352B2 (ja) 2020-07-29
JPWO2016111270A1 (ja) 2017-10-19
EP3244464A1 (en) 2017-11-15
EP3244464A4 (en) 2018-09-12
US20170358753A1 (en) 2017-12-14
US9905775B2 (en) 2018-02-27
EP3244464B1 (en) 2022-02-23

Similar Documents

Publication Publication Date Title
JP6329937B2 (ja) 有機エレクトロルミネッセンス素子
JP6674892B2 (ja) 有機エレクトロルミネッセンス素子
CN108352454B (zh) 有机电致发光器件
JP6417326B2 (ja) 有機エレクトロルミネッセンス素子
JP5851014B2 (ja) 有機エレクトロルミネッセンス素子
JP6731352B2 (ja) 有機エレクトロルミネッセンス素子
JP6755806B2 (ja) 有機エレクトロルミネッセンス素子
JP6901977B2 (ja) 有機エレクトロルミネッセンス素子
JP6038387B2 (ja) 有機エレクトロルミネッセンス素子
JP6671283B2 (ja) 有機エレクトロルミネッセンス素子
JP7250683B2 (ja) 有機エレクトロルミネッセンス素子
KR20190128169A (ko) 유기 일렉트로루미네선스 소자
EP4095216A1 (en) Organic electroluminescent element
JP6752226B2 (ja) 有機エレクトロルミネッセンス素子
JP6807849B2 (ja) 有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16735009

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016568378

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15541429

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016735009

Country of ref document: EP