WO2019059334A1 - 有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2019059334A1
WO2019059334A1 PCT/JP2018/034990 JP2018034990W WO2019059334A1 WO 2019059334 A1 WO2019059334 A1 WO 2019059334A1 JP 2018034990 W JP2018034990 W JP 2018034990W WO 2019059334 A1 WO2019059334 A1 WO 2019059334A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
ring
atom
Prior art date
Application number
PCT/JP2018/034990
Other languages
English (en)
French (fr)
Inventor
雄太 平山
剛史 山本
駿河 和行
セジン イ
ウンギュ イ
ボンギ シン
Original Assignee
保土谷化学工業株式会社
エスエフシー カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 保土谷化学工業株式会社, エスエフシー カンパニー リミテッド filed Critical 保土谷化学工業株式会社
Priority to JP2019543724A priority Critical patent/JP7250683B2/ja
Priority to EP18859295.0A priority patent/EP3690970B1/en
Priority to CN201880061993.XA priority patent/CN111164778B/zh
Priority to KR1020207010915A priority patent/KR102687394B1/ko
Priority to US16/650,717 priority patent/US11605785B2/en
Publication of WO2019059334A1 publication Critical patent/WO2019059334A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure

Definitions

  • the present invention relates to an organic electroluminescent device which is a self-light emitting device suitable for various display devices, and more specifically, to an organic electroluminescent device using a specific arylamine compound and a compound having a specific benzoazole ring structure (Hereafter, it may be called an organic EL element.).
  • the organic EL element is a self-light emitting element, it has been brightly studied compared to a liquid crystal element and has excellent visibility and can be clearly displayed. Therefore, active research has been conducted.
  • Eastman Kodak Company C.I. W. Tang et al. Made the organic EL device using the organic material practical by developing a laminated structure device in which various functions are shared by the respective materials. They stack phosphors capable of transporting electrons and organic substances capable of transporting holes, and inject both charges into the phosphor layer to emit light, with a voltage of 10 V or less A high luminance of 1000 cd / m 2 or more can be obtained (see, for example, Patent Document 1 and Patent Document 2).
  • Non-Patent Document 3 An element utilizing light emission by thermally activated delayed fluorescence (TADF) has also been developed.
  • TADF thermally activated delayed fluorescence
  • the light emitting layer can also be produced by doping a charge transporting compound generally called a host material with a fluorescent compound, a phosphorescent compound, or a material that emits delayed fluorescence.
  • a charge transporting compound generally called a host material with a fluorescent compound, a phosphorescent compound, or a material that emits delayed fluorescence.
  • the selection of the organic material in the organic EL element has a great influence on various characteristics such as the efficiency and durability of the element. (For example, refer to Non-Patent Document 2)
  • the organic EL element charges injected from both electrodes are recombined in the light emitting layer to obtain light emission.
  • efficient transfer of both charges of holes and electrons to the light emitting layer balance of both charges injected to the light emitting layer, confinement of generated excitons, etc. are important.
  • the electron blocking property of the hole transport layer is enhanced by enhancing the hole injection property from the hole transport layer to the light emitting layer and preventing the leakage of electrons from the light emitting layer to the hole transport layer, the holes in the light emitting layer The probability of electron recombination improves, and excitons can be generated efficiently.
  • high luminous efficiency can be obtained by enclosing the excitons generated in the light emitting layer in the light emitting layer without leaking to the transport layer. Therefore, the role played by the hole transport material is important, and a hole transport material with high hole injection property, high hole mobility, high electron blocking property, and high electron resistance is required. ing.
  • the heat resistance and the amorphous property of the material are also important with respect to the lifetime of the element.
  • the heat generated at the time of device operation causes thermal decomposition even at low temperatures, and the materials deteriorate.
  • crystallization of a thin film occurs even for a short time, and the device is degraded. Therefore, the material to be used is required to have high heat resistance and good amorphousness.
  • NPD N, N'-diphenyl-N, N'-di ( ⁇ -naphthyl) benzidine (NPD) and various aromatic amine derivatives are known as hole transport materials that have been used in organic EL devices so far.
  • NPD has good hole transportability
  • its glass transition point (Tg) which is an indicator of heat resistance
  • Tg glass transition point
  • arylamine compounds having a substituted carbazole structure have been proposed as compounds having improved properties such as heat resistance and hole injection properties (see, for example, Patent Document 4 and Patent Document 5), these compounds are subjected to hole injection.
  • the heat resistance and the light emission efficiency are improved, it is not sufficient yet, and a further reduction in drive voltage and a further increase in light emission efficiency are required. .
  • the physical characteristics that the organic EL device to be provided by the present invention should have include (1) high luminous efficiency and high power efficiency, (2) low luminous initiation voltage, and (3) practical driving voltage. It can be mentioned that it is low, in particular (4) long life.
  • arylamine materials have excellent hole injection / transport ability, thin film stability and durability, and heterocyclic compounds having a fused ring structure. It paid attention to the fact that the luminous efficiency of By selecting a specific arylamine compound and a heterocyclic compound having a fused ring structure having a specific structure, it is possible to inject and transport the success to the light emitting layer efficiently, and the carrier balance matched to the characteristics of the material of the light emitting layer As can be obtained, various organic EL devices in which the hole transport material and the material of the light emitting layer were combined were manufactured, and the characteristics of the device were carefully evaluated.
  • the electron to the light emitting layer Of various organic EL devices combining the hole transport material, the material of the light emitting layer and the electron transporting material so as to enhance the injection and transport efficiency of the carrier and to further match the carrier balance to the characteristics of the material of the light emitting layer. I made an evaluation carefully. As a result, the present invention was completed.
  • the following organic EL element is provided.
  • the hole transport layer contains an arylamine compound represented by the following general formula (1)
  • the light emitting layer contains a heterocyclic compound having a fused ring structure represented by the following general formula (2) or a heterocyclic compound having a fused ring structure represented by the following general formula (3):
  • Ar 1 to Ar 5 may be the same as or different from each other, and are substituted or unsubstituted aromatic hydrocarbon groups, substituted or unsubstituted aromatic heterocyclic groups, or substituted or unsubstituted fused polycyclic rings.
  • Ar 6 to Ar 8 may be the same as or different from each other, and are a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, or a substituted or unsubstituted aromatic heterocyclic group; Represents a substituted fused polycyclic aromatic group, n 1 represents 0, 1 or 2.
  • Ar 3 and Ar 4 may form a ring with a single bond, and may be a substituted or unsubstituted methylene group
  • Ar 3 or Ar 4 may form a ring by a single bond with a benzene ring to which an Ar 3 Ar 4 -N group is bonded, to form a ring by bonding to each other through an oxygen atom or a sulfur atom. May be substituted or unsubstituted methyl Down group, an oxygen atom or a sulfur atom may be bonded to each other to form a ring via.
  • a 1 represents a substituted or unsubstituted aromatic hydrocarbon divalent group, a substituted or unsubstituted aromatic heterocyclic divalent group, a substituted or unsubstituted fused polycyclic aromatic divalent group
  • Ar 9 represents a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, or a substituted or unsubstituted fused polycyclic aromatic group
  • R 1 to R 4 may be the same as or different from each other, and a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, a linear or branched chain having 1 to 6 carbon atoms which may have a substituent, A branched alkyl group, an optionally substituted cycloalkyl group having 5 to 10 carbon atoms, an optionally substituted linear or branched alkenyl having 2 to 6 carbon atoms Group
  • R 1 to R 4 may be combined with each other to form a ring, R 1 to R 4 may be a benzene ring to which R 1 to R 4 is bonded, a substituted or unsubstituted methylene group, an oxygen atom, a sulfur atom, or a monomer
  • R 5 to R 8 may be the same or different from each other via a linking group of a reelamino group, and R 5 to R 8 may be the same or different, and a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, cyano Group, a nitro group, a linear or branched alkyl group having 1 to 6 carbon atoms which may have a substituent, a cycloalkyl having 5 to 10 carbon atoms which may have a substituent Or C 2 -C 6 linear or branched alkenyl group which may have a substituent, C 1-C 6 linear or branched chain which may have a substituent An alky
  • Each group of R 5 to R 8 may form a ring by a single bond, or may be bonded to each other through a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring.
  • R 5 to R 8 are bonded to each other via a linking group of a benzene ring to which R 5 to R 8 is bonded and a substituted or unsubstituted methylene group, an oxygen atom, a sulfur atom, or a monoarylamino group It may form a ring.
  • R 9 and R 10 may be the same as or different from each other, and may have a substituent and may be a linear or branched alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon A group, a substituted or unsubstituted aromatic heterocyclic group, or a substituted or unsubstituted fused polycyclic aromatic group.
  • Each group of R 9 and R 10 may form a ring with a single bond, or may be combined with each other through a substituted or unsubstituted methylene group, an oxygen atom, or a sulfur atom to form a ring .
  • a 2 represents a substituted or unsubstituted aromatic hydrocarbon divalent group, a substituted or unsubstituted aromatic heterocyclic divalent group, a substituted or unsubstituted fused polycyclic aromatic divalent group
  • Ar 10 represents a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, or a substituted or unsubstituted fused polycyclic aromatic group
  • R 11 to R 14 may be the same as or different from each other, and a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, a linear or branched chain having 1 to 6 carbon atoms which may have a substituent, A branched alkyl group, an optionally substituted cycloalkyl group having 5 to 10 carbon atoms, an optionally substituted linear or branched alkenyl having 2 to 6 carbon atoms Group
  • Each group of R 15 to R 18 may form a ring by a single bond, or may be bonded to each other via a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring.
  • R 15 ⁇ R 18 is a benzene ring which R 15 ⁇ R 18 are attached, a substituted or unsubstituted methylene group, an oxygen atom, a sulfur atom, bonded to each other through a linking group of the mono-arylamino group ring May be formed.
  • Ar 1 to Ar 5 may be the same as or different from each other, and are substituted or unsubstituted aromatic hydrocarbon groups, substituted or unsubstituted aromatic heterocyclic groups, or substituted or unsubstituted fused polycyclic rings.
  • Ar 6 to Ar 8 may be the same as or different from each other, and are a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, or a substituted or unsubstituted aromatic heterocyclic group; Represents a substituted fused polycyclic aromatic group, n 1 represents 0, 1 or 2.
  • Ar 3 and Ar 4 may form a ring with a single bond, and may be a substituted or unsubstituted methylene group, Ar 3 or Ar 4 may form a ring by a single bond with a benzene ring to which an Ar 3 Ar 4 -N group is bonded, to form a ring through an oxygen atom or a sulfur atom. May be substituted or unsubstituted. Ren group, an oxygen atom or a sulfur atom may be bonded to each other to form a ring via.)
  • the hole transport layer has a two-layer structure of a first hole transport layer and a second hole transport layer, and the second hole transport layer, or the first hole transport layer and the light emitting layer.
  • Ar 11 represents a substituted or unsubstituted aromatic hydrocarbon group or a substituted or unsubstituted fused polycyclic aromatic group.
  • Ar 12 and Ar 13 may be the same or different, and a hydrogen atom R 14 represents a substituted or unsubstituted aromatic hydrocarbon group or a substituted or unsubstituted fused polycyclic aromatic group
  • Ar 14 represents a substituted or unsubstituted aromatic heterocyclic group
  • R 19 to R 22 are The same or different hydrogen atom, deuterium atom, fluorine atom, chlorine atom, cyano group, trifluoromethyl group, linear or branched alkyl group having 1 to 6 carbon atoms
  • the organic EL device of the present invention selects a specific arylamine compound that can effectively exhibit the role of injection / transport of holes, and selects a heterocyclic compound having a specific fused ring structure, thereby forming a light emitting layer. Holes can be efficiently injected and transported, and an organic EL device having high luminous efficiency, low driving voltage, and long life can be realized. In addition, it is combined with a specific electron transport material so that the carrier balance matched to the characteristics of the heterocyclic compound having a specific fused ring structure can be obtained, and an organic EL device with high efficiency and low driving voltage, in particular a long lifetime is realized. can do.
  • the hole transport layer has a two-layer structure of the first hole transport layer and the second hole transport layer
  • the two types of arylamine compounds having the characteristic structure are considered in consideration of the carrier balance and the characteristics of the material.
  • the luminous efficiency, the driving voltage, and the durability of the conventional organic EL element can be improved.
  • FIG. 1 is a view showing Compound 1-1 to Compound 1-15 which are arylamine compounds represented by General Formula (1) of the present invention.
  • FIG. 2 is a view showing Compounds 1-16 to 1-30, which are arylamine compounds represented by General Formula (1) of the present invention.
  • FIG. 2 is a view showing Compound 1-31 to Compound 1-44, which are arylamine compounds represented by General Formula (1) of the present invention.
  • FIG. 2 is a view showing Compound 2-1 to Compound 2-15 which are heterocyclic compounds having a fused ring structure represented by General Formula (2) of the present invention.
  • FIG. 7 is a view showing Compound 3-1 to Compound 3-15, which are heterocyclic compounds having a fused ring structure represented by General Formula (3) of the present invention.
  • FIG. 5 is a view showing compounds 3-16 to 3-23, which are heterocyclic compounds having a fused ring structure represented by General Formula (3) of the present invention.
  • FIG. 7 is a view showing Compound 4-1 to Compound 4-15, which are pyrimidine ring compounds represented by General Formula (4) of the present invention.
  • FIG. 7 is a view showing Compounds 4-16 to 4-30, which are pyrimidine ring compounds represented by General Formula (4) of the present invention.
  • FIG. 7 is a view showing Compound 4-31 to Compound 4-45, which are pyrimidine ring compounds represented by General Formula (4) of the present invention.
  • FIG. 7 is a view showing Compound 4-46 to Compound 4-60, which are pyrimidine ring compounds represented by General Formula (4) of the present invention.
  • FIG. 6 is a view showing Compound 4-61 to Compound 4-75 which are pyrimidine ring compounds represented by General Formula (4) of the present invention.
  • FIG. 7 is a view showing Compound 4-76 to Compound 4-90, which are pyrimidine ring compounds represented by General Formula (4) of the present invention.
  • FIG. 7 is a view showing Compound 4-91 to Compound 4-105, which are pyrimidine ring compounds represented by General Formula (4) of the present invention.
  • FIG. 5 is a view showing Compound 4-106 to Compound 4-117 which are pyrimidine ring compounds represented by General Formula (4) of the present invention.
  • FIG. 5 is a view showing Compound 4-118 to Compound 4-126, which are pyrimidine ring compounds represented by General Formula (4) of the present invention. It is the figure which showed the organic EL element structure of Examples 8-13 and Comparative Examples 1-4.
  • “Substituted or unsubstituted aromatic hydrocarbon group”, “substituted or unsubstituted aromatic heterocyclic group” represented by Ar 1 to Ar 8 in the general formulas (1) and (1a), or “substituted or unsubstituted Specific examples of the "aromatic hydrocarbon group”, “aromatic heterocyclic group” or “fused polycyclic aromatic group” in the substituted fused polycyclic aromatic group include phenyl group, biphenylyl group, terphenylyl group, Naphthyl group, anthracenyl group, phenanthrenyl group, fluorenyl group, indenyl group, pyrenyl group, perylenyl group, fluoranthenyl group, triphenylenyl group, pyridyl group, pyrimidinyl group, triazinyl group, furyl group, pyrrolyl group, thienyl group, quinolyl group, Isoquinolyl group
  • Ar 3 and Ar 4 may form a ring with a single bond, or may form a ring by being bonded to each other via a substituted or unsubstituted methylene group, an oxygen atom, or a sulfur atom.
  • Ar 3 or Ar 4 may form a ring as a single bond with a benzene ring to which an Ar 3 Ar 4 -N group is bonded, and may be a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom They may be combined with each other to form a ring.
  • Specific examples of the “group” include a deuterium atom, a cyano group, a nitro group; a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; a methyl group, an ethyl group, an n-propyl group, an isopropyl group, n -C1-C6 linear or branched alkyl group such as -butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group; methyloxy group, A linear or branched alkyloxy group having 1 to 6 carbon
  • substituents may be further substituted by the substituents exemplified above. You may In addition, these substituents may form a ring by a single bond, or may form a ring by bonding through a substituted or unsubstituted methylene group, an oxygen atom, or a sulfur atom.
  • Specific examples of the "aromatic hydrocarbon", “aromatic heterocycle” or “fused polycyclic aromatic” include benzene, biphenyl, terphenyl, tetrakisphenyl, styrene, naphthalene, anthracene, acenaphthalene, fluorene, phenanthrene , Indane, pyrene, triphenylene, pyridine, pyrimidine,
  • a divalent group of a substituted or unsubstituted aromatic hydrocarbon “a divalent group of a substituted or unsubstituted aromatic heterocyclic ring” or “substituted or unsubstituted aromatic hydrocarbon represented by A 1 in the general formula (2)”
  • the unsubstituted fused polycyclic aromatic divalent group is obtained by removing two hydrogen atoms from the above “aromatic hydrocarbon", “aromatic heterocycle” or "fused polycyclic aromatic”. Represent.
  • these divalent groups may have a substituent, and as the substituent, “substituted aromatic hydrocarbon group” represented by Ar 1 to Ar 8 in the general formulas (1) and (1a), Mention may be made of the same ones as described for "substituent” in “substituted aromatic heterocyclic group” or “substituted fused polycyclic aromatic group", and the same may be mentioned as possible modes. .
  • these groups may have a substituent, and as a substituent, “substituted aromatic hydrocarbon group” represented by Ar 1 to Ar 8 in the general formulas (1) and (1a), “substituted”
  • substituted aromatic hydrocarbon group represented by Ar 1 to Ar 8 in the general formulas (1) and (1a
  • substituted The same groups as those described with respect to the “substituent” in the “aromatic heterocyclic group” or the “substituted fused polycyclic aromatic group” can be exemplified, and the same can also be exemplified as a possible aspect.
  • C1-C6 linear or branched alkyl group optionally having substituent (s), which may be substituted represented by R 1 to R 8 in the general formula (2), “having a substituent” C 1 -C 10 cycloalkyl group which may be substituted or substituted by “C 5 -C 10 cycloalkyl group” or “C 2 -C 6 linear or branched alkenyl group which may have a substituent (s)”
  • the linear or branched alkyl group of 6 are specifically mentioned , Methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, cycl
  • the rings may be bonded to each other through a linking group such as a substituted or unsubstituted methylene group, an oxygen atom, a sulfur atom, or a monoarylamino group with a directly bonded benzene ring.
  • a linking group such as a substituted or unsubstituted methylene group, an oxygen atom, a sulfur atom, or a monoarylamino group with a directly bonded benzene ring.
  • C1-C6 linear or branched alkyl group having a substituent which is represented by R 1 to R 8 in the general formula (2),“ c-5 to 10 carbon atom having a substituent ”
  • substituents include deuterium atom, cyano group, nitro group; A halogen atom such as fluorine atom, chlorine atom, bromine atom and iodine atom; a linear or branched alkyloxy group having 1 to 6 carbon atoms such as methyloxy group, ethyloxy group and propyloxy group; vinyl group, allyl group
  • An alkenyl group such as a phenyl group, an aryloxy group such as a tolyloxy group, an arylalkyloxy group such as a benzyloxy group or a phenethyloxy group;
  • methyloxy group, ethyloxy group, n-propyloxy group isopropyloxy group, n-butyloxy group, tert-butyloxy group, n-pentyloxy group, n-hexyloxy group, cyclopentyloxy group , Cyclohexyloxy group, cycloheptyloxy group, cyclooctyloxy group, 1-adamantyloxy group, 2-adamantyloxy group Etc.
  • These groups may form a ring by a single bond, or may be bonded to each other via a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring, and these groups (R 1 in the benzene ring ⁇ R 8) and these groups (R 1 ⁇ R 8) is directly bonded, a substituted or unsubstituted methylene group, an oxygen atom, a linking group such as a sulfur atom or mono-arylamino group, You may combine with each other to form a ring.
  • these groups may have a substituent, and as the substituent, “a linear group having 1 to 6 carbon atoms having a substituent, represented by R 1 to R 8 in the general formula (2) Or “branched alkyl group”, “substituted cycloalkyl group having 5 to 10 carbon atoms”, or “substituted linear substituted or branched alkenyl group having 2 to 6 carbon atoms” in “substituted” The same thing can be mentioned as what was shown regarding "group", and the aspect which can take can mention the same thing.
  • Substituted or unsubstituted aromatic hydrocarbon group “substituted or unsubstituted aromatic heterocyclic group” represented by R 1 to R 8 in the general formula (2), or “substituted or unsubstituted fused multiple ring”
  • Ar 1 to Ar 8 in the general formulas (1) and (1a) can be used.
  • Aromamatic hydrocarbon group in “substituted or unsubstituted aromatic hydrocarbon group”, “substituted or unsubstituted aromatic heterocyclic group” or “substituted or unsubstituted fused polycyclic aromatic group” And the same as those described for “aromatic heterocyclic group” or "fused polycyclic aromatic group”.
  • These groups may form a ring by a single bond, or may be bonded to each other via a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring, and these groups (R 1 in the benzene ring ⁇ R 8) and these groups (R 1 ⁇ R 8) is directly bonded, a substituted or unsubstituted methylene group, an oxygen atom, a linking group such as a sulfur atom or mono-arylamino group, You may combine with each other to form a ring.
  • these groups may have a substituent, and as a substituent, “substituted aromatic hydrocarbon group” represented by Ar 1 to Ar 8 in the general formulas (1) and (1a), “substituted”
  • substituted aromatic hydrocarbon group represented by Ar 1 to Ar 8 in the general formulas (1) and (1a
  • substituted The same groups as those described with respect to the “substituent” in the “aromatic heterocyclic group” or the “substituted fused polycyclic aromatic group” can be exemplified, and the same can also be exemplified as a possible aspect.
  • aryloxy group in the "substituted or unsubstituted aryloxy group” represented by R 1 to R 8 in the general formula (2) include a phenyloxy group, a biphenylyloxy group and a terphenyl group.
  • Examples include ryloxy, naphthyloxy, anthracenyloxy, phenanthrenyloxy, fluorenyloxy, indenyloxy, pyrenyloxy, perylenyloxy and the like.
  • These groups may form a ring by a single bond, or may be bonded to each other via a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring, and these groups (R 1 in the benzene ring ⁇ R 8) and these groups (R 1 ⁇ R 8) is directly bonded, a substituted or unsubstituted methylene group, an oxygen atom, a linking group such as a sulfur atom or mono-arylamino group, You may combine with each other to form a ring.
  • these groups may have a substituent, and as a substituent, “substituted aromatic hydrocarbon group” represented by Ar 1 to Ar 8 in the general formulas (1) and (1a), “substituted”
  • substituted aromatic hydrocarbon group represented by Ar 1 to Ar 8 in the general formulas (1) and (1a
  • substituted The same groups as those described with respect to the “substituent” in the “aromatic heterocyclic group” or the “substituted fused polycyclic aromatic group” can be exemplified, and the same can also be exemplified as a possible aspect.
  • the aromatic hydrocarbon group the “aromatic heterocyclic group” or the “fused polycyclic aromatic group”, “substituted or non-substituted one represented by Ar 1 to Ar 8 in the general formulas (1) and (1a) "Aromatic hydrocarbon group” in "substituted aromatic hydrocarbon group", "substituted or unsubstituted aromatic heterocyclic group” or “substituted or unsubstituted fused polycyclic aromatic group", "aromatic heterocyclic group” And the same as those described for "fused polycyclic aromatic group".
  • these groups may have a substituent, and as a substituent, “substituted aromatic hydrocarbon group” represented by Ar 1 to Ar 8 in the general formulas (1) and (1a), “substituted”
  • substituted aromatic hydrocarbon group represented by Ar 1 to Ar 8 in the general formulas (1) and (1a
  • substituted The same groups as those described with respect to the “substituent” in the “aromatic heterocyclic group” or the “substituted fused polycyclic aromatic group” can be exemplified, and the same can also be exemplified as a possible aspect.
  • the “disubstituted amino group substituted by a group selected from an aromatic hydrocarbon group, an aromatic heterocyclic group or a fused polycyclic aromatic group” represented by R 1 to R 8 in the general formula (2) is The “aromatic hydrocarbon group”, the “aromatic heterocyclic group” or the “fused polycyclic aromatic group” which these groups (R 1 to R 8 ) have among these groups (R 1 to R 8 )
  • the ring may be formed by a single bond, or may be bonded to each other via a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring, and these groups (R 1 to R 8 ) and a benzene ring to which these groups (R 1 to R 8 ) are directly bonded, and “aromatic hydrocarbon group” that these groups (R 1 to R 8 ) have, “aromatic heterocyclic group” Or a “fused polycyclic aromatic group” while substituted or unsubstituted
  • these groups may have a substituent, and as the substituent, “a linear group having 1 to 6 carbon atoms having a substituent, represented by R 1 to R 8 in the general formula (2) Or “a branched alkyl group”, “a substituted cycloalkyl group having 5 to 10 carbon atoms” or “a substituted linear or branched alkenyl group having 2 to 6 carbon atoms” in “substituted”
  • a linear group having 1 to 6 carbon atoms having a substituent represented by R 1 to R 8 in the general formula (2)
  • a branched alkyl group a substituted cycloalkyl group having 5 to 10 carbon atoms” or “a substituted linear or branched alkenyl group having 2 to 6 carbon atoms” in “substituted”
  • Substituted or unsubstituted aromatic hydrocarbon group “substituted or unsubstituted aromatic heterocyclic group” represented by R 9 and R 10 in the general formula (2), or “substituted or unsubstituted condensed poly
  • Ar 1 to Ar 8 in the general formulas (1) and (1a) can be used.
  • Aromatic hydrocarbon group in “substituted or unsubstituted aromatic hydrocarbon group”, “substituted or unsubstituted aromatic heterocyclic group” or “substituted or unsubstituted fused polycyclic aromatic group” And the same as those described for "aromatic heterocyclic group” or "fused polycyclic aromatic group”. These groups may form a ring by a single bond, or may bond to each other via a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring.
  • these groups may have a substituent, and as a substituent, “substituted aromatic hydrocarbon group” represented by Ar 1 to Ar 8 in the general formulas (1) and (1a), “substituted”
  • substituted aromatic hydrocarbon group represented by Ar 1 to Ar 8 in the general formulas (1) and (1a
  • substituted The same groups as those described with respect to the “substituent” in the “aromatic heterocyclic group” or the “substituted fused polycyclic aromatic group” can be exemplified, and the same can also be exemplified as a possible aspect.
  • Examples of the “aryl group” in the linking group “monoarylamino group” in the general formula (2) include “substituted or unsubstituted aromatics represented by Ar 1 to Ar 8 in the general formulas (1) and (1a) “Aromatic hydrocarbon group”, “aromatic heterocyclic group” or “aromatic hydrocarbon group” in “substituted or unsubstituted aromatic heterocyclic group” or “substituted or unsubstituted fused polycyclic aromatic group” The same as those described for the fused polycyclic aromatic group "can be mentioned.
  • these groups may have a substituent, and as the substituent, “substituted aromatic hydrocarbon group” represented by Ar 1 to Ar 8 in the general formulas (1) and (1a), “substituted aromatic”
  • substituted aromatic hydrocarbon group represented by Ar 1 to Ar 8 in the general formulas (1) and (1a
  • substituted aromatic The same groups as those described with regard to the “substituent” in the “group heterocyclic group” or the “substituted fused polycyclic aromatic group” can be mentioned, and the same can be mentioned as possible modes.
  • the substituted fused polycyclic aromatic divalent group is a “substituted or unsubstituted aromatic hydrocarbon divalent group” represented by A 1 in the general formula (2), “substituted or unsubstituted The same as those described with regard to the divalent group of the aromatic heterocyclic ring of the above or the "divalent group of the substituted or unsubstituted fused polycyclic aromatic group” can be exemplified, and the possible embodiments are also the same. You can raise it.
  • Substituted or unsubstituted aromatic hydrocarbon group “substituted or unsubstituted aromatic heterocyclic group” represented by Ar 10 in the general formula (3), or “substituted or unsubstituted fused polycyclic aromatic group
  • substituted or unsubstituted aromatic hydrocarbon group “substituted or unsubstituted aromatic heterocyclic group” or “substituted or unsubstituted aromatic hydrocarbon group” represented by Ar 9 in the general formula (2)
  • the same groups as those described for the “fused polycyclic aromatic group” can be mentioned, and the same can be mentioned as possible embodiments.
  • C1-C6 linear or branched alkyl group optionally having substituent (s), which may be substituted represented by R 11 to R 18 in the general formula (3), “having a substituent”
  • R 11 to R 18 “having a substituent”
  • substituents As the "optionally substituted cycloalkyl group having 5 to 10 carbon atoms” or the “optionally substituted linear or branched alkenyl group having 2 to 6 carbon atoms”, a compound represented by the general formula (2
  • R 1 to R 8 each represent “a C1-C6 linear or branched alkyl group which may have a substituent,” an “optionally having a substituent Examples similar to those described with regard to a C5-C10 cycloalkyl group or a "C2-C6 linear or branched alkenyl group optionally having substituent (s)” may be mentioned The possible modes are the same. That.
  • a linear or branched alkyloxy group having 1 to 6 carbon atoms which may have a substituent represented by R 11 to R 18 in the general formula (3), or “having a substituent”
  • R 11 to R 18 in the general formula (3)
  • R 1 to R 8 As the optionally substituted cycloalkyloxy group having 5 to 10 carbon atoms, one or more carbon atoms which may have a substituent, represented by R 1 to R 8 in the general formula (2)
  • To 6 straight-chain or branched alkyloxy groups "or" C5-C10 cycloalkyloxy group which may have a substituent (s) may be the same as those described above. The same can be mentioned as possible modes.
  • Substituted or unsubstituted aromatic hydrocarbon group “substituted or unsubstituted aromatic heterocyclic group” represented by R 11 to R 18 in the general formula (3), or “substituted or unsubstituted fused multiple ring”
  • ring aromatic group “substituted or unsubstituted aromatic hydrocarbon group” represented by R 1 to R 8 in the general formula (2), “substituted or unsubstituted aromatic heterocyclic group” or The same groups as those described for the “substituted or unsubstituted fused polycyclic aromatic group” can be mentioned, and the same can be mentioned as possible embodiments.
  • Examples of the “substituted or unsubstituted aryloxy group” represented by R 11 to R 18 in the general formula (3) include “substituted or unsubstituted aryl groups represented by R 1 to R 8 in the general formula (2) The same thing can be mentioned as what was shown regarding "an aryloxy group" of, and the aspect which can take can mention the same thing.
  • Examples of the "aryl group” in the linking group “monoarylamino group” in the general formula (3) include the same as those described for the linking group “monoarylamino group” in the general formula (2). The same can be mentioned as possible embodiments.
  • these groups may have a substituent, and as the substituent, “substituted aromatic hydrocarbon group” represented by Ar 1 to Ar 8 in the general formulas (1) and (1a), “ The same groups as those described with respect to the “substituent” in the “substituted aromatic heterocyclic group” or the “substituted fused polycyclic aromatic group” can be mentioned, and the same can also be mentioned as possible modes.
  • aromatic heterocyclic group in the “substituted or unsubstituted aromatic heterocyclic group” represented by Ar 14 in the general formula (4) include a triazinyl group, a pyridyl group and a pyrimidinyl group, Furyl group, pyrrolyl group, thienyl group, quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group, indolyl group, carbazolyl group, benzoxazolyl group, benzothiazolyl group, quinoxalinyl group, benzoimidazolyl group, pyrazolyl group, dibenzofuranyl group And dibenzothienyl group, naphthyridinyl group, phenanthrolinyl group, acridinyl group, carborinyl group and the like.
  • these groups may have a substituent, and as the substituent, “substituted aromatic hydrocarbon group” represented by Ar 1 to Ar 8 in the general formulas (1) and (1a), “ The same groups as those described with respect to the “substituent” in the “substituted aromatic heterocyclic group” or the “substituted fused polycyclic aromatic group” can be mentioned, and the same can also be mentioned as possible modes.
  • linear or branched alkyl group having 1 to 6 carbon atoms represented by R 19 to R 22 in the general formula (4) include a methyl group, an ethyl group and an n- group.
  • Propyl, i-propyl, n-butyl, 2-methylpropyl, t-butyl, n-pentyl, 3-methylbutyl, tert-pentyl, n-hexyl, iso-hexyl and tert -A hexyl group can be mentioned.
  • Specific examples of the "aromatic hydrocarbon group", “aromatic heterocyclic group” or “fused polycyclic aromatic group” in the polycyclic aromatic group include phenyl group, biphenylyl group, terphenylyl group, tetrakisphenyl group , Styryl group, naphthyl group, anthracenyl group, acenaphthenyl group, phenanthrenyl group, fluorenyl group, indenyl group, pyrenyl group, perylenyl group, fluoranthenyl group, triphenylenyl group, triazinyl group, pyridyl group, pyrimidinyl group, furyl group, pyrrol
  • these groups may have a substituent, and as the substituent, “substituted aromatic hydrocarbon group” represented by Ar 1 to Ar 8 in the general formulas (1) and (1a), “ The same groups as those described with respect to the “substituent” in the “substituted aromatic heterocyclic group” or the “substituted fused polycyclic aromatic group” can be mentioned, and the same can also be mentioned as possible modes.
  • the “substituted aromatic hydrocarbon group”, “substituted aromatic heterocyclic group” or “substituted fused polycyclic aromatic group” represented by Ar 1 to Ar 8 is “substituted” As the “group”, a deuterium atom, a linear or branched alkyl group having 1 to 6 carbon atoms which may have a substituent, and 2 to 6 carbons which may have a substituent may be mentioned.
  • Linear or branched alkenyl group “substituted or unsubstituted aromatic hydrocarbon group” or “substituted or unsubstituted fused polycyclic aromatic group” is preferable, and deuterium atom, phenyl group, biphenylyl group, A naphthyl group and a vinyl group are more preferable. Also preferred is an embodiment in which these groups are bonded to each other via a single bond to form a fused aromatic ring.
  • n1 represents 0 or 1 to 2, but when n1 is 0, it indicates that two diarylaminobenzene rings are directly (single bond) bonded, When n1 is 1, it indicates that two diarylaminobenzene rings are bonded via one phenylene group, and when n1 is 2, two diarylaminobenzene rings are two phenylene groups ( It shows that it couple
  • n1 is preferably 0, that is, two diarylaminobenzene rings are directly bonded (by a single bond).
  • a benzene ring in which Ar 3 or Ar 4 is bonded to an Ar 3 Ar 4 -N group Ar 3 , a diarylamino group consisting of Ar 4 and a nitrogen atom to which they are bonded
  • Ar 3 a diarylamino group consisting of Ar 4 and a nitrogen atom to which they are bonded
  • An embodiment in which the ring is formed by a single bond, and an embodiment in which the ring is formed by bonding through a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom are also preferable.
  • the bonding position in the benzene ring in this case is preferably a position adjacent to the Ar 3 Ar 4 -N group.
  • a 1 in the general formula (2) “substituted or unsubstituted aromatic hydrocarbon divalent group”, “substituted or unsubstituted fused polycyclic aromatic divalent group”, or a single bond is preferable
  • a bivalent group obtained by removing two hydrogen atoms from benzene, biphenyl or naphthalene, or a single bond is more preferable, and a bivalent group obtained by removing two hydrogen atoms from benzene, or a single bond is particularly preferable.
  • a phenyl group, a biphenylyl group, a naphthyl group or a “aromatic heterocyclic group” is preferable, and in the “aromatic heterocyclic group”, a triazinyl group, a quinazolinyl group, a naphtho group is preferable.
  • Pyrimidinyl, benzimidazolyl, pyridopyrimidinyl, naphthyridinyl, pyridyl, quinolyl and isoquinolyl groups are particularly preferred.
  • two adjacent R 1 to R 4 each represent “a C 2 -C 6 linear or branched alkenyl group”, “aromatic hydrocarbon group”, “aromatic heterocyclic group Or “fused polycyclic aromatic group”, in which two adjacent groups (R 1 to R 4 ) are bonded to each other through a single bond to form a benzene ring to which R 1 to R 4 are bonded
  • the aspect which forms a condensed ring is preferable.
  • the “linear or branched alkenyl group having 2 to 6 carbon atoms”, the “aromatic hydrocarbon group”, the “aromatic heterocyclic group” or the “fused polycyclic aromatic group” is vinyl Preferred is a group or a phenyl group, and an embodiment in which a naphthalene ring, a phenanthrene ring or a triphenylene ring is formed together with a benzene ring to which R 1 to R 4 are bonded.
  • any one of R 1 to R 4 is an “aromatic hydrocarbon group”, an “aromatic heterocyclic group” or a “fused polycyclic aromatic group”, and R 1 to R 4 Preferred is an embodiment in which a ring is formed by linking together a benzene ring to which is attached and a linking group such as a substituted or unsubstituted methylene group, an oxygen atom, a sulfur atom or a monoarylamino group.
  • aromatic hydrocarbon group "aromatic heterocyclic group” or “fused polycyclic aromatic group” in this case, a phenyl group, an indenyl group, an indolyl group, a benzofuranyl group and a benzothienyl group are preferable, and R 1 is preferred.
  • the aspect which forms an indolo indole ring is preferable.
  • heterocyclic compounds having a fused ring structure represented by the general formula (2) an embodiment in which R 1 to R 4 combine with each other to form a ring, or R
  • the following general formulas (2a), (2b), (2c), (2d) or (2d) or an embodiment in which the benzene ring to which 1 to R 4 and R 1 to R 4 are bonded is bonded to form a ring.
  • the embodiment represented by (2e) is preferably used.
  • R 5 to R 8 are vinyl groups, and two adjacent vinyl groups are bonded to each other via a single bond to form a condensed ring
  • R 9 and R 10 in the general formula (2) “a C 1-6 linear or branched alkyl group” is preferable, and a methyl group is particularly preferable.
  • substituted or unsubstituted aromatic hydrocarbon divalent group “substituted or unsubstituted fused polycyclic aromatic divalent group”, or a single bond is preferable
  • a bivalent group obtained by removing two hydrogen atoms from benzene, biphenyl or naphthalene, or a single bond is more preferable, and a bivalent group obtained by removing two hydrogen atoms from benzene, or a single bond is particularly preferable.
  • a phenyl group, a biphenylyl group, a naphthyl group or a “aromatic heterocyclic group” is preferable, and in the “aromatic heterocyclic group”, a triazinyl group, a quinazolinyl group, a naphtho group is preferable.
  • Pyrimidinyl, benzimidazolyl, pyridopyrimidinyl, naphthyridinyl, pyridyl, quinolyl and isoquinolyl groups are particularly preferred.
  • two adjacent R 11 to R 14 each represent “a linear or branched alkenyl group having 2 to 6 carbon atoms”, “aromatic hydrocarbon group”, “aromatic heterocyclic group” Or “fused polycyclic aromatic group”, in which two adjacent groups (R 11 to R 14 ) are bonded to each other through a single bond to form a benzene ring to which R 11 to R 14 is bonded
  • the aspect which forms a condensed ring is preferable.
  • the “linear or branched alkenyl group having 2 to 6 carbon atoms”, the “aromatic hydrocarbon group”, the “aromatic heterocyclic group” or the “fused polycyclic aromatic group” is vinyl Preferred is a group or a phenyl group, and an embodiment in which a naphthalene ring, a phenanthrene ring or a triphenylene ring is formed together with a benzene ring to which R 11 to R 14 are bonded.
  • any one of R 11 to R 14 is an “aromatic hydrocarbon group”, an “aromatic heterocyclic group” or a “fused polycyclic aromatic group”, and R 11 to R 14 Preferred is an embodiment in which a ring is formed by linking together a benzene ring to which is attached, and a linking group such as a substituted or unsubstituted methylene group, an oxygen atom, a sulfur atom, or a monoarylamino group.
  • the “aromatic hydrocarbon group”, “aromatic heterocyclic group” or “fused polycyclic aromatic group” is preferably a phenyl group, an indenyl group, an indolyl group, a benzofuranyl group or a benzothienyl group, and R 11 ⁇ fluorene ring with a benzene ring to which R 14 is attached, a carbazole ring, a dibenzofuran ring, a dibenzothiophene ring, indeno indole ring, indeno benzofuran ring, indenobenzothiophene ring, benzo furo indole ring, benzo thieno indole ring, The aspect which forms an indolo indole ring is preferable.
  • X represents a substituted or unsubstituted methylene group, an oxygen atom, a sulfur atom, or a monoarylamino group
  • Ar 10 and R 11 to R 18 have the meanings as shown in the general formula (3).
  • X represents a substituted or unsubstituted methylene group, an oxygen atom, a sulfur atom, or a monoarylamino group
  • Ar 10 and R 11 to R 18 have the meanings as shown in the general formula (3).
  • X represents a substituted or unsubstituted methylene group, an oxygen atom, a sulfur atom, or a monoarylamino group
  • Ar 10 and R 11 to R 18 have the meanings as shown in the general formula (3).
  • X represents a substituted or unsubstituted methylene group, an oxygen atom, a sulfur atom, or a monoarylamino group
  • Ar 10 and R 11 to R 18 have the meanings as shown in the general formula (3).
  • X represents a substituted or unsubstituted methylene group, an oxygen atom, a sulfur atom, or a monoarylamino group
  • Ar 10 and R 11 to R 18 have the meanings as shown in the general formula (3).
  • R 15 to R 18 are vinyl groups, and two adjacent vinyl groups are bonded to each other via a single bond to form a condensed ring
  • any one of R 15 to R 18 is an “aromatic hydrocarbon group”, an “aromatic heterocyclic group” or a “condensed polycyclic aromatic group” is also preferable.
  • R 15 to R 18 is a group selected from a fluorenyl group, a carbazolyl group, a dibenzofuranyl group or a dibenzothienyl group, and R 16 is a fluorenyl group, a carbazolyl group, a dibenzofuranyl group, It is more preferable that R 15 , R 17 and R 18 be a hydrogen atom.
  • a phenyl group, a biphenylyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a pyrenyl group, a fluoranthenyl group and a triphenylenyl group are more preferable.
  • the phenyl group preferably has a substituted or non-substituted fused polycyclic aromatic group as a substituent, and is selected from a naphthyl group, an anthracenyl group, a phenanthrenyl group, a pyrenyl group, a fluoranthenyl group and a triphenylenyl group. It is more preferable to have a substituted substituent.
  • a phenyl group having a substituent is preferable, and as the substituent in this case, an aromatic hydrocarbon group such as phenyl group, biphenylyl group, terphenyl group, naphthyl group, anthracenyl group And fused polycyclic aromatic groups such as acenaphthenyl group, phenanthrenyl group, fluorenyl group, indenyl group, pyrenyl group, perylenyl group, fluoranthenyl group and triphenylenyl group are preferable, and phenyl group, naphthyl group, anthracenyl group, phenanthrenyl group, Pyrenyl group, fluoranthenyl group and triphenylenyl group are more preferable.
  • an aromatic hydrocarbon group such as phenyl group, biphenylyl group, terphenyl group, naphthyl group, anthracenyl group
  • fused polycyclic aromatic groups such as
  • a phenyl group having a substituent is preferable, and as the substituent in this case, an aromatic hydrocarbon group such as phenyl group, biphenylyl group, terphenyl group, naphthyl group, anthracenyl group And fused polycyclic aromatic groups such as acenaphthenyl group, phenanthrenyl group, fluorenyl group, indenyl group, pyrenyl group, perylenyl group, fluoranthenyl group and triphenylenyl group are preferable, and phenyl group, naphthyl group, anthracenyl group, phenanthrenyl group, Pyrenyl group, fluoranthenyl group and triphenylenyl group are more preferable.
  • an aromatic hydrocarbon group such as phenyl group, biphenylyl group, terphenyl group, naphthyl group, anthracenyl group
  • fused polycyclic aromatic groups such as
  • Ar 11 and Ar 12 are not the same.
  • Ar 11 and Ar 12 may be different substituents, or may be different substitution positions.
  • Ar 12 and Ar 13 may be the same group, but there is a possibility that crystallization may be facilitated by improving the symmetry of the whole molecule, and from the viewpoint of thin film stability, Ar 15 And Ar 16 are preferably different groups, and it is assumed that Ar 12 and Ar 13 do not simultaneously become hydrogen atoms.
  • one of Ar 12 and Ar 13 is preferably a hydrogen atom.
  • the bonding position of Ar 14 in the benzene ring is preferably the meta position with respect to the bonding position with the pyrimidine ring from the viewpoint of thin film stability.
  • Examples of the compound having a pyrimidine ring structure represented by the general formula (4) include compounds having a pyrimidine ring structure represented by the following general formula (4a) or general formula (4b) which are different in the binding mode of substituents .
  • the arylamine compound represented by the general formula (1) or (1a), which is suitably used for the organic EL device of the present invention, is used as a constituent material of the hole injection layer or the hole transport layer of the organic EL device. It can be used. It is a compound which has a high mobility of holes and is preferable as a material of a hole injection layer or a hole transport layer. In addition, it is a compound which has high electron blocking performance and is preferable as a material of the second hole transport layer in the case where the hole transport layer has a two-layer structure of a first hole transport layer and a second hole transport layer.
  • the compound having a pyrimidine ring structure which is suitably used for the organic EL device of the present invention and represented by the above general formula (4), can be used as a constituent material of the electron transport layer of the organic EL device.
  • the compound having a pyrimidine ring structure represented by the above general formula (4) is excellent in electron injecting and transporting ability, is further excellent in stability and durability of a thin film, and is a compound preferable as a material of the electron transport layer .
  • the organic EL device of the present invention is a conventional organic EL device because the material for an organic EL device excellent in hole injection / transport performance, thin film stability and durability is combined in consideration of carrier balance.
  • arylamine compounds represented by the above general formula (1) which are suitably used for the organic EL device of the present invention, preferred examples of the compound 1-1 to the compound 1-44 are shown in FIGS. However, it is not limited to these compounds.
  • heterocyclic compounds having a fused ring structure represented by the general formula (2) which are suitably used for the organic EL device of the present invention
  • preferred examples of the compound 2-1 to the compound 2-15 are shown in FIG.
  • the present invention is not limited to these compounds.
  • heterocyclic compounds having the fused ring structure represented by the general formula (3) which are suitably used for the organic EL device of the present invention
  • preferred examples of the compound 3-1 to the compound 3-23 are shown in FIG. , 6 but is not limited to these compounds.
  • the heterocyclic compound having a fused ring structure described above can be synthesized according to a method known per se (see, for example, Patent Document 7).
  • the compound having a pyrimidine ring structure described above can be synthesized according to a method known per se (see, for example, Patent Document 8).
  • Purification of the compounds represented by the general formulas (1) and (1a) is carried out by purification by column chromatography, adsorption purification with silica gel, activated carbon, activated clay or the like, recrystallization with a solvent, crystallization method, etc. , Purification by sublimation purification, etc.
  • Compound identification was performed by NMR analysis. Melting point, glass transition point (Tg) and work function were measured as physical property values. The melting point is an index of vapor deposition, the glass transition point (Tg) is an index of stability of the thin film state, and the work function is an index of hole transportability.
  • the compounds used in the organic EL device of the present invention are purified by column chromatography, adsorption purification with silica gel, activated carbon, activated clay or the like, recrystallization with a solvent, recrystallization with a solvent, etc. and finally sublimation. What was purified by the purification method was used.
  • the melting point and the glass transition point (Tg) were measured using a powder by a high-sensitivity differential scanning calorimeter (DSC3100SA, manufactured by Bruker AXS).
  • the work function was obtained by preparing a thin film of 100 nm on an ITO substrate and using an ionization potential measurement device (PYS-202, manufactured by Sumitomo Heavy Industries, Ltd.).
  • the structure of the organic EL device of the present invention comprises, in order on the substrate, an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer and a cathode, What has a hole blocking layer between electron transport layers is mentioned.
  • a structure which combines a hole injection layer and a hole transport layer a structure which combines an electron injection layer and an electron transport layer It can also be done.
  • the organic EL element of this invention it is also preferable to set it as the structure which 2 layer of a 1st positive hole transport layer and a 2nd positive hole transport layer laminated
  • the second hole transport layer preferably has also a function as an electron blocking layer.
  • an electrode material having a large work function such as ITO or gold is used.
  • a starburst type triphenylamine derivative 4 amounts of various triphenylamines Materials such as a body; porphyrin compounds represented by copper phthalocyanine; acceptor heterocyclic compounds such as hexacyanoazatriphenylene and coated polymer materials can be used. These layers may be formed separately, but may be used as a single layer formed by mixing with other materials, layers formed separately, layers formed by mixing, or layers A stacked structure of a layer formed by mixing a single layer and a layer formed may be employed. These materials can be formed into a thin film by a known method such as a spin coat method or an ink jet method other than the vapor deposition method.
  • materials commonly used in the layer may be P-doped with trisbromophenylaminehexachloroantimony, radialene derivative (for example, see Patent Document 6), or the like.
  • a polymer compound having a structure of a benzidine derivative such as TPD in its partial structure can be used.
  • TPD benzidine
  • NPD N'-diphenyl-N, N'-di ( ⁇ -naphthyl) benzidine
  • NPD N, N ', N'-tetrabiphenylylbenzidine
  • TAPC 1-bis [4- (di-4-tolylamino)
  • Arylamine compounds, arylamine compounds having a structure in which a triphenylamine structure is linked by four single bonds or hetero atoms in the molecule, a variety of triphenylamine trimers, etc. Can be used. These layers may be formed separately, but may be used as a single layer formed by mixing with other materials, layers formed separately, layers formed by mixing, or layers A stacked structure of a layer formed by mixing a single layer and a layer formed may be employed.
  • a coating type polymer material such as poly (3,4-ethylenedioxythiophene) (PEDOT) / poly (styrene sulfonate) (PSS) can be used as the hole injection / transport layer.
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • PSS poly (styrene sulfonate)
  • the second hole transport layer has the above general formulas (1) and (1a).
  • an arylamine compound having a structure in which four triphenylamine structures are linked in a molecule, a single bond or a hetero atom-free divalent group, a triphenylamine structure in a molecule An arylamine compound having a structure in which R 2 is a single bond or a divalent group having no hetero atom, 4, 4 ′, 4 ′ ′-tri (N-carbazolyl) triphenylamine (TCTA), 9, 9 -Bis [4- (carbazol-9-yl) phenyl] fluorene, 1,3-bis (carbazol-9-yl) benzene (mCP), 2,2-bis (4-carbazol-9-ylphenyl) Car
  • These layers may be formed separately, but may be used as a single layer formed by mixing with other materials, layers formed separately, layers formed by mixing, or layers A stacked structure of a layer formed by mixing a single layer and a layer formed may be employed. These materials can be formed into a thin film by a known method such as a spin coat method or an ink jet method other than the vapor deposition method.
  • the light emitting layer of the organic EL device of the present invention includes a heterocyclic compound having a fused ring structure represented by the general formula (2), and a heterocyclic compound having a fused ring structure represented by the general formula (3)
  • various metal complexes such as metal complexes of quinolinol derivatives including Alq 3 , anthracene derivatives, bisstyrylbenzene derivatives, pyrene derivatives, oxazole derivatives, polyparaphenylene vinylene derivatives, and the like can be used.
  • the light emitting layer may be composed of a host material and a dopant material, and as the host material, a heterocyclic compound having a fused ring structure represented by the above general formula (2), a table shown by the above general formula (3)
  • a thiazole derivative, a benzimidazole derivative, a polydialkyl fluorene derivative or the like can be used in addition to the light emitting material.
  • the dopant material quinacridone, coumarin, rubrene, perylene, pyrene and derivatives thereof, benzopyran derivative, indenophenanthrene derivative, rhodamine derivative, aminostyryl derivative and the like can be used.
  • these layers may be formed separately, but may be used as a single layer formed by mixing with other materials, layers formed separately, layers formed by mixing, or layers A stacked structure of a layer formed by mixing a single layer and a layer formed may be employed.
  • the heterocyclic compound having a fused ring structure represented by the general formula (2) or the heterocyclic compound having a fused ring structure represented by the general formula (3) It is preferable to use as a host material.
  • a phosphorescence material as a light emitting material.
  • a phosphorescence light emitter a phosphorescence light emitter of metal complex such as iridium and platinum can be used.
  • a green phosphor such as Ir (ppy) 3
  • a blue phosphor such as FIrpic or FIr 6
  • a red phosphor such as Btp 2 Ir (acac), or the like may be used as the host material in this case.
  • the heterocyclic compound having a fused ring structure represented by the general formula (3), 4 as a hole injecting / transporting host material
  • carbazole derivatives such as 4,4'-di (N-carbazolyl) biphenyl (CBP), TCTA, mCP and the like.
  • CBP 4,4'-di (N-carbazolyl) biphenyl
  • TCTA TCTA
  • mCP mCP
  • P-Bis (triphenylsilyl) benzene (UGH2) or 2,2 ′, 2 ′ ′-(1,3,5-phenylene) -tris (1-phenyl-1H-benzimidazole) as an electron transporting host material (TPBI) etc. can be used, and a high-performance organic EL element can be produced.
  • Non-Patent Document 3 a material that emits delayed fluorescence such as PICCB, such as PIC-TRZ, CC2TA, PXZ-TRZ, and 4CzIPN, as a light-emitting material.
  • These materials can be formed into a thin film by a known method such as a spin coat method or an ink jet method other than the vapor deposition method.
  • a phenanthroline derivative such as vasocuproin (BCP) or a quinolinol derivative such as aluminum (III) bis (2-methyl-8-quinolinate) -4-phenylphenolate (BAlq) as a hole blocking layer in the organic EL device of the present invention
  • BCP vasocuproin
  • BAlq aluminum (III) bis (2-methyl-8-quinolinate) -4-phenylphenolate
  • various rare earth complexes, triazole derivatives, triazine derivatives, oxadiazole derivatives, and other compounds having a hole blocking function can be used. These materials may double as the material of the electron transport layer.
  • These layers may be formed separately, but may be used as a single layer formed by mixing with other materials, layers formed separately, layers formed by mixing, or layers A stacked structure of a layer formed by mixing a single layer and a layer formed may be employed. These materials can be formed into a thin film by a known method such as a spin coat method or an ink jet method other than the vapor deposition method.
  • a compound having a pyrimidine ring structure represented by the above general formula (4) is preferably used. Although these may be formed separately, they may be used as a single layer formed by mixing with other electron transporting materials, or layers formed separately may be formed by mixing. A layered structure of layers formed by mixing layers with each other or with a single layer may be employed. These materials can be formed into a thin film by a known method such as a spin coat method or an ink jet method other than the vapor deposition method.
  • metal complexes of quinolinol derivatives including Alq 3 and BAlq including Alq 3 and BAlq, various metal complexes, and triazoles Derivatives, triazine derivatives, oxadiazole derivatives, pyridine derivatives, pyrimidine derivatives, benzimidazole derivatives, thiadiazole derivatives, anthracene derivatives, carbodiimide derivatives, quinoxaline derivatives, pyridoindole derivatives, phenanthroline derivatives, silole derivatives and the like can be mentioned.
  • alkali metal salts such as lithium fluoride and cesium fluoride
  • alkaline earth metal salts such as magnesium fluoride
  • metal oxides such as aluminum oxide, or ytterbium (Yb)
  • metals such as samarium (Sm), calcium (Ca), strontium (Sr), cesium (Cs) and the like can be used, this can be omitted in the preferred selection of the electron transport layer and the cathode.
  • an electrode material having a low work function such as aluminum or an alloy having a lower work function such as a magnesium silver alloy, a magnesium indium alloy, or an aluminum magnesium alloy is used as an electrode material.
  • the melting point and the glass transition point of the arylamine compound represented by the general formula (1) were measured by a high-sensitivity differential scanning calorimeter (DSC3100SA, manufactured by Bruker AXS). Melting point glass transition point Compound of Example 1 Not observed 125 ° C. Compound of Example 2 Not observed 117 ° C. Compound of Example 3 not observed 114 ° C.
  • the arylamine compound represented by the general formula (1) has a glass transition point of 100 ° C. or more, which indicates that the thin film state is stable.
  • the arylamine compound represented by the general formula (1) exhibits a favorable energy level as compared with the work function 5.4 eV of a general hole transport material such as NPD, TPD, etc. It can be seen that it has a hole transport capacity.
  • the organic EL element is, as shown in FIG. 16, a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, and an electron transport layer on a glass substrate 1 on which an ITO electrode is formed in advance as a transparent anode 2. 6, it manufactured by vapor-depositing in order of the electron injection layer 7 and the cathode (aluminum electrode) 8.
  • FIG. 16 a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, and an electron transport layer on a glass substrate 1 on which an ITO electrode is formed in advance as a transparent anode 2. 6, it manufactured by vapor-depositing in order of the electron injection layer 7 and the cathode (aluminum electrode) 8.
  • the glass substrate 1 on which ITO having a film thickness of 150 nm was formed was subjected to ultrasonic cleaning for 20 minutes in isopropyl alcohol and then dried for 10 minutes on a hot plate heated to 200.degree. Thereafter, UV ozone treatment was carried out for 15 minutes, and then the ITO-attached glass substrate was mounted in a vacuum deposition machine, and the pressure was reduced to 0.001 Pa or less.
  • the compound (1-7) of Example 1 was formed as a hole transport layer 4 so as to have a film thickness of 50 nm.
  • a compound (EMD-1) of the following structural formula and a compound (2-2) of Example 10 were used as the light emitting layer 5 at a deposition rate ratio (EMD-1): (2- 2) Binary vapor deposition was performed at a vapor deposition rate of 5:95 to form a film thickness of 20 nm.
  • Lithium fluoride was formed to a film thickness of 1 nm as the electron injection layer 7 on the electron transport layer 6. Finally, aluminum was deposited to 100 nm to form a cathode 8. The characteristics of the produced organic EL device were measured at room temperature in the air. Table 1 summarizes the measurement results of the light emission characteristics when a direct current voltage is applied to the manufactured organic EL element.
  • Example 8 is the same as Example 8 except that the compound (1-11) of Example 2 is used instead of the compound (1-7) of Example 1 as the material of the hole injection layer 3 and the hole transport layer 4.
  • the organic EL element was produced on condition. The characteristics of the produced organic EL device were measured in the air at normal temperature. Table 1 summarizes the measurement results of the light emission characteristics when a direct current voltage is applied to the manufactured organic EL element.
  • Example 8 is the same as Example 8 except that the compound (1-14) of Example 3 is used instead of the compound (1-7) of Example 1 as the material of the hole injection layer 3 and the hole transport layer 4.
  • the organic EL element was produced on condition. The characteristics of the produced organic EL device were measured in the air at normal temperature. Table 1 summarizes the measurement results of the light emission characteristics when a direct current voltage is applied to the manufactured organic EL element.
  • Example 8 in place of the compound (2-2) of Example 6 as the material of the light emitting layer 5, the compound (3-14) of Example 7 has a deposition rate ratio (EMD-1): (3-14) Binary vapor deposition was performed at a vapor deposition rate of 5:95, and an organic EL device was manufactured under the same conditions except that the film thickness was 20 nm. The characteristics of the produced organic EL device were measured in the air at normal temperature. Table 1 summarizes the measurement results of the light emission characteristics when a direct current voltage is applied to the manufactured organic EL element.
  • EMD-1 deposition rate ratio
  • Example 8 the compound (1-11) of Example 2 is used as a material of the hole injection layer 3 and the hole transport layer 4 instead of the compound (1-7) of Example 1, and a light emitting layer 5
  • Binary vapor deposition was carried out in the above, and an organic EL device was produced under the same conditions except that the film thickness was formed to be 20 nm. The characteristics of the produced organic EL device were measured in the air at normal temperature. Table 1 summarizes the measurement results of the light emission characteristics when a direct current voltage is applied to the manufactured organic EL element.
  • Example 8 the compound (1-14) of Example 3 is used as a material of the hole injection layer 3 and the hole transport layer 4 instead of the compound (1-7) of Example 1, and a light emitting layer 5
  • Binary vapor deposition was carried out in the above, and an organic EL device was produced under the same conditions except that the film thickness was formed to be 20 nm. The characteristics of the produced organic EL device were measured in the air at normal temperature. Table 1 summarizes the measurement results of the light emission characteristics when a direct current voltage is applied to the manufactured organic EL element.
  • Comparative Example 1 For comparison, the compound (HTM-1) of the following structural formula was used in place of the compound (1-7) of Example 1 as the material of the hole injection layer 3 and the hole transport layer 4 in Example 8.
  • the organic EL element was produced on the same conditions except the above. The characteristics of the produced organic EL device were measured at room temperature in the air. Table 1 summarizes the measurement results of the light emission characteristics when a direct current voltage is applied to the manufactured organic EL element.
  • EMD-1 deposition rate ratio
  • Comparative Example 3 For comparison, the compound (HTM-2) of the following structural formula was used in place of the compound (1-7) of Example 1 as the material of the hole injection layer 3 and the hole transport layer 4 in Example 8.
  • the organic EL element was produced on the same conditions except the above. The characteristics of the produced organic EL device were measured at room temperature in the air. Table 1 summarizes the measurement results of the light emission characteristics when a direct current voltage is applied to the manufactured organic EL element.
  • EMD-1 deposition rate ratio
  • the device life was measured using the organic EL devices produced in Examples 8 to 13 and Comparative Examples 1 to 4, and the results are shown in Table 1. Element life, when the emission start time of the emission luminance (initial luminance) was driven with a constant current as 7000cd / m 2, equivalent to 97% when the emission luminance is taken as 100% of 6790cd / m 2 (initial luminance: The time to decay to 97%) was measured.
  • the organic EL elements of Examples 8 to 10 greatly extend the life to 224 to 237 hours as compared with 113 to 154 hours of the organic EL elements of Comparative Examples 1 and 3. I understand that.
  • the life of the organic EL devices of Examples 11 to 13 is greatly extended to 262 to 298 hours as compared with 117 to 173 hours of the organic EL devices of Comparative Examples 2 and 4. I understand that.
  • the organic EL device of the present invention comprises a carrier balance inside an organic EL device by combining an arylamine compound having a specific structure and a heterocyclic compound having a specific fused ring structure (and a compound having a specific anthracene ring structure).
  • a carrier balance that matches the characteristics of the light emitting material, so that it is possible to realize an organic EL device having high luminous efficiency and a long life as compared with the conventional organic EL device. I understand.
  • the organic EL device according to the present invention in which a specific arylamine compound and a compound having a heterocyclic compound having a fused ring structure are combined can improve the luminous efficiency and improve the durability of the organic EL device, for example. , It became possible to expand to home appliances and lighting applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

【課題】本発明の目的は、高発光効率、高耐久性の有機EL素子用の材料として、正孔および電子の注入・輸送性能、電子阻止能力、薄膜状態での安定性、耐久性等に優れた有機EL素子用の各種材料を、それぞれの材料が有する特性が効果的に発現できるように組み合わせることで、(1)発光効率および電力効率が高く、(2)発光開始電圧が低く、(3)実用駆動電圧が低く、(4)特に長寿命である有機EL素子を提供することにある。 【解決手段】少なくとも陽極、正孔輸送層、発光層、電子輸送層及び陰極をこの順に有する有機エレクトロルミネッセンス素子において、前記正孔輸送層が下記一般式(1)で表されるアリールアミン化合物を含有し、前記発光層が下記一般式(2)で表される縮合環構造を有する複素環化合物もしくは下記一般式(3)で表される縮合環構造を有する複素環化合物を含有することを特徴とする有機エレクトロルミネッセンス素子。

Description

有機エレクトロルミネッセンス素子
 本発明は、各種の表示装置に好適な自発光素子である有機エレクトロルミネッセンス素子に関するものであリ、詳しくは特定のアリールアミン化合物と特定のベンゾアゾール環構造を有する化合物を用いた有機エレクトロルミネッセンス素子(以下、有機EL素子と呼ぶことがある。)に関するものである。
 有機EL素子は自己発光性素子であるため、液晶素子にくらべて明るく視認性に優れ、鮮明な表示が可能であることから、活発な研究がなされてきた。
 1987年にイーストマン・コダック社のC.W.Tangらは各種の役割を各材料に分担した積層構造素子を開発することにより有機材料を用いた有機EL素子を実用的なものにした。彼らは電子を輸送することのできる蛍光体と正孔を輸送することのできる有機物とを積層し、両方の電荷を蛍光体の層の中に注入して発光させることにより、10V以下の電圧で1000cd/m以上の高輝度が得られるようになった(例えば、特許文献1および特許文献2参照)。
 現在まで、有機EL素子の実用化のために多くの改良がなされ、積層構造の各種の役割をさらに細分化して、基板上に順次に、陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、陰極を設けた電界発光素子によって高効率と耐久性が達成されるようになってきた(例えば、非特許文献1参照)。
 また、発光効率の更なる向上を目的として三重項励起子の利用が試みられ、燐光発光性化合物の利用が検討されている(例えば、非特許文献2参照)。
 そして、熱活性化遅延蛍光(TADF)による発光を利用する素子も開発されている。2011年に九州大学の安達らは、熱活性化遅延蛍光材料を用いた素子によって5.3%の外部量子効率を実現させた。(例えば、非特許文献3参照)
 発光層は、一般的にホスト材料と称される電荷輸送性の化合物に、蛍光性化合物や燐光発光性化合物または遅延蛍光を放射する材料をドープして作製することもできる。前記非特許文献に記載されているように、有機EL素子における有機材料の選択は、その素子の効率や耐久性など諸特性に大きな影響を与える。(例えば、非特許文献2参照)
 有機EL素子は両電極から注入された電荷が発光層で再結合して発光が得られる。高発光効率を得るには、正孔、電子の両電荷の発光層への効率の良い受け渡しや、発光層に注入される両電荷のバランス、生成した励起子の閉じ込めなどが重要となる。正孔輸送層から発光層への正孔注入性を高め、発光層から正孔輸送層への電子の漏れを防ぐ正孔輸送層の電子阻止性を高めると、発光層内での正孔と電子が再結合する確率が向上し、効率よく励起子を生成させることができる。更にこの発光層内で生成した励起子を輸送層に漏らさず、発光層に閉じ込めることで高発光効率を得ることができる。そのため、正孔輸送材料の果たす役割は重要であり、正孔注入性が高く、正孔の移動度が大きく、電子阻止性が高く、さらには電子に対する耐久性が高い正孔輸送材料が求められている。
 また、素子の寿命に関しては材料の耐熱性やアモルファス性も重要である。耐熱性が低い材料では、素子駆動時に生じる熱により、低い温度でも熱分解が起こり、材料が劣化する。アモルファス性が低い材料では、短い時間でも薄膜の結晶化が起こり、素子が劣化してしまう。そのため使用する材料には耐熱性が高く、アモルファス性が良好な性質が求められる。
 これまで有機EL素子に用いられてきた正孔輸送材料としては、N,N'-ジフェニル-N,N'-ジ(α-ナフチル)ベンジジン(NPD)や種々の芳香族アミン誘導体が知られていた(例えば、特許文献1および特許文献2参照)。NPDは良好な正孔輸送能力を持っているが、耐熱性の指標となるガラス転移点(Tg)が96℃と低く、高温条件下では結晶化による素子特性の低下が起こってしまう(例えば、非特許文献4参照)。また、前記特許文献に記載の芳香族アミン誘導体の中には、正孔の移動度が10-3cm/Vs以上と優れた移動度を有する化合物が知られているが(例えば、特許文献1および特許文献2参照)、電子阻止性が不十分であるため、電子の一部が発光層を通り抜けてしまい、発光効率の向上が期待できないなど、更なる高効率化のため、より電子阻止性が高く、薄膜がより安定で耐熱性の高い材料が求められていた。また、耐久性の高い芳香族アミン誘導体の報告があるが(例えば、特許文献3参照)、電子写真感光体に用いられる電荷輸送材料として用いたもので、有機EL素子として用いた例はなかった。
 耐熱性や正孔注入性などの特性を改良した化合物として、置換カルバゾール構造を有するアリールアミン化合物が提案されているが(例えば、特許文献4および特許文献5参照)、これらの化合物を正孔注入層または正孔輸送層に用いた素子では、耐熱性や発光効率などの改良はされているものの、未だ十分とはいえず、さらなる低駆動電圧化や、さらなる高発光効率化が求められている。
 有機EL素子の素子特性の改善や素子作製の歩留まり向上のために、正孔および電子の注入・輸送性能、薄膜の安定性や耐久性に優れた材料を組み合わせることで、正孔および電子が高効率で再結合できる、発光効率が高く、駆動電圧が低く、長寿命な素子が求められている。
 また、有機EL素子の素子特性を改善させるために、正孔および電子の注入・輸送性能、薄膜の安定性や耐久性に優れた材料を組み合わせることで、キャリアバランスのとれた高効率、低駆動電圧、長寿命な素子が求められている。
特開平8-048656号公報 特許第3194657号公報 特許第4943840号公報 特開2006-151979号公報 国際公開第2008/062636号 国際公開第2014/009310号 特表2014-513064号公報 韓国公開特許10-2013-0060157号公報
応用物理学会第9回講習会予稿集55~61ページ(2001) 応用物理学会第9回講習会予稿集23~31ページ(2001) Appl.Phys.Let.,98,083302(2011) 有機EL討論会第三回例会予稿集13~14ページ(2006)
 本発明の目的は、高発光効率、高耐久性の有機EL素子用の材料として、正孔および電子の注入・輸送性能、電子阻止能力、薄膜状態での安定性、耐久性等に優れた有機EL素子用の各種材料を、それぞれの材料が有する特性が効果的に発現できるように組み合わせることで、(1)発光効率および電力効率が高く、(2)発光開始電圧が低く、(3)実用駆動電圧が低く、(4)特に長寿命である有機EL素子を提供することにある。
 本発明が提供しようとする有機EL素子が具備すべき物理的な特性としては、(1)発光効率および電力効率が高いこと、(2)発光開始電圧が低いこと、(3)実用駆動電圧が低いこと、特に、(4)長寿命であることをあげることができる。
 そこで本発明者らは上記の目的を達成するために、アリールアミン系材料が、正孔の注入・輸送能力、薄膜の安定性および耐久性に優れていること、縮合環構造を有する複素環化合物の発光効率が優れていることに着目した。特定のアリールアミン化合物と特定の構造を有する縮合環構造を有する複素環化合物を選択して、発光層へ成功を効率よく注入・輸送できるようにし、発光層の材料の特性に合ったキャリアバランスが取れるように、正孔輸送材料と発光層の材料を組み合わせた種々の有機EL素子を作製し、素子の特性評価を鋭意行った。また、ピリミジン環構造を有する複素環化合物が電子注入および輸送能力、薄膜の安定性や耐久性に優れていることに着目し、特定のピリミジン構造を有する化合物を選択して、発光層への電子の注入・輸送効率を高め、キャリアバランスがさらに発光層の材料の特性に合うよう、正孔輸送材料、発光層の材料および電子輸送材料を組み合わせた種々の有機EL素子を作製し、素子の特性評価を鋭意行った。その結果、本発明を完成するに至った
 すなわち本発明によれば、以下の有機EL素子が提供される。
 [1]少なくとも陽極、正孔輸送層、発光層、電子輸送層及び陰極をこの順に有する有機エレクトロルミネッセンス素子において、前記正孔輸送層が下記一般式(1)で表されるアリールアミン化合物を含有し、前記発光層が下記一般式(2)で表される縮合環構造を有する複素環化合物もしくは下記一般式(3)で表される縮合環構造を有する複素環化合物を含有することを特徴とする有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000006
   (1)
(式中、Ar~Arは相互に同一でも異なってもよく、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。Ar~Arは相互に同一でも異なってもよく、水素原子、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。n1は0、1または2を表す。ここで、ArとArは、単結合で環を形成してもよく、置換もしくは無置換のメチレン基、酸素原子、または硫黄原子を介して互いに結合して環を形成してもよい。ArまたはArはArAr-N基が結合しているベンゼン環と、単結合で環を形成してもよく、置換もしくは無置換のメチレン基、酸素原子、または硫黄原子を介して互いに結合して環を形成してもよい。)
Figure JPOXMLDOC01-appb-C000007
(2)
(式中、Aは置換もしくは無置換の芳香族炭化水素の2価基、置換もしくは無置換の芳香族複素環の2価基、置換もしくは無置換の縮合多環芳香族の2価基、または単結合を表す。Arは置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。R~Rは相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換の縮合多環芳香族基、置換もしくは無置換のアリールオキシ基、または芳香族炭化水素基、芳香族複素環基もしくは縮合多環芳香族基から選ばれる基によって置換されたジ置換アミノ基を表す。R~Rのそれぞれの基同士が単結合で環を形成してもよく、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよい。R~Rは、R~Rが結合しているベンゼン環と、置換もしくは無置換のメチレン基、酸素原子、硫黄原子、またはモノアリールアミノ基の連結基を介して互いに結合して環を形成してもよい。R~Rは相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換の縮合多環芳香族基、置換もしくは無置換のアリールオキシ基、または芳香族炭化水素基、芳香族複素環基もしくは縮合多環芳香族基から選ばれる基によって置換されたジ置換アミノ基を表す。R~Rのそれぞれの基同士が単結合で環を形成してもよく、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよい。R~Rは、R~Rが結合しているベンゼン環と、置換もしくは無置換のメチレン基、酸素原子、硫黄原子、またはモノアリールアミノ基の連結基を介して互いに結合して環を形成してもよい。RとR10は相互に同一でも異なってもよく、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。RとR10のそれぞれの基同士が単結合で環を形成してもよく、置換もしくは無置換のメチレン基、酸素原子、または硫黄原子を介して互いに結合して環を形成してもよい。)
Figure JPOXMLDOC01-appb-C000008
  (3)
(式中、Aは置換もしくは無置換の芳香族炭化水素の2価基、置換もしくは無置換の芳香族複素環の2価基、置換もしくは無置換の縮合多環芳香族の2価基、または単結合を表す。Ar10は置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。R11~R14は相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換の縮合多環芳香族基、置換もしくは無置換のアリールオキシ基、または芳香族炭化水素基、芳香族複素環基もしくは縮合多環芳香族基から選ばれる基によって置換されたジ置換アミノ基を表す。R11~R14のそれぞれの基同士が単結合で環を形成してもよく、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよい。R11~R14は、R11~R14が結合しているベンゼン環と、置換もしくは無置換のメチレン基、酸素原子、硫黄原子、またはモノアリールアミノ基の連結基を介して互いに結合して環を形成してもよい。R15~R18は相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換の縮合多環芳香族基、置換もしくは無置換のアリールオキシ基、または芳香族炭化水素基、芳香族複素環基もしくは縮合多環芳香族基から選ばれる基によって置換されたジ置換アミノ基を表す。R15~R18のそれぞれの基同士が単結合で環を形成してもよく、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよい。R15~R18は、R15~R18が結合しているベンゼン環と、置換もしくは無置換のメチレン基、酸素原子、硫黄原子、モノアリールアミノ基の連結基を介して互いに結合して環を形成してもよい。)
 [2]前記アリールアミン化合物が下記一般式(1a)で表されることを特徴とする上記[1]記載の有機EL素子。
Figure JPOXMLDOC01-appb-C000009
   (1a)
(式中、Ar~Arは相互に同一でも異なってもよく、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。Ar~Arは相互に同一でも異なってもよく、水素原子、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。n1は0、1または2を表す。ここで、ArとArは、単結合で環を形成してもよく、置換もしくは無置換のメチレン基、酸素原子、または硫黄原子を介して互いに結合して環を形成してもよい。ArまたはArは、ArAr-N基が結合しているベンゼン環と、単結合で環を形成してもよく、置換もしくは無置換のメチレン基、酸素原子、または硫黄原子を介して互いに結合して環を形成してもよい。)
 [3]前記正孔輸送層が第一正孔輸送層および第二正孔輸送層の2層構造であって、該第一正孔輸送層が前記一般式(1)で表されるアリールアミン化合物を含有することを特徴とする、上記[1]または[2]記載の有機エレクトロルミネッセンス素子。
 [4]前記正孔輸送層が第一正孔輸送層および第二正孔輸送層の2層構造であって、該第二正孔輸送層、または前記第一正孔輸送層と発光層との間に配置された積層膜のうちの少なくとも一層に、前記一般式(1)で表されるアリールアミン化合物を含有することを特徴とする、上記[1]または[2]記載の有機エレクトロルミネッセンス素子。
 [5]前記電子輸送層が、下記一般式(4)で表されるピリミジン環構造を有する化合物を含有することを特徴とする、上記[1]~[4]のいずれかに記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000010
   (4)
(式中、Ar11は、置換もしくは無置換の芳香族炭化水素基、または置換もしくは無置換の縮合多環芳香族基を表す。Ar12、Ar13は同一でも異なっていてもよく、水素原子、置換もしくは無置換の芳香族炭化水素基、または置換もしくは無置換の縮合多環芳香族基を表す。Ar14は、置換もしくは無置換の芳香族複素環基を表す。R19~R22は、同一でも異なってもよく水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。ここで、Ar12とAr13は同時に水素原子となることはないものとする。)
 [6]前記発光層が、赤色の発光材料を含有することを特徴とする、上記[1]~[5]のいずれかに記載の有機エレクトロルミネッセンス素子。
 [7]前記発光層が、燐光性の発光材料を含有することを特徴とする、上記[1]~[5]のいずれかに記載の有機エレクトロルミネッセンス素子。
 [8]前記した燐光性の発光材料がイリジウムまたは白金を含む金属錯体である、上記[6]または[7]記載の有機エレクトロルミネッセンス素子。
本発明の有機EL素子は、正孔の注入・輸送の役割を効果的に発現できる特定のアリールアミン化合物を選択し、特定の縮合環構造を有する複素環化合物を選択したことにより、発光層へ正孔を効率よく注入・輸送でき、高発光効率、低駆動電圧、長寿命の有機EL素子を実現することができる。また、特定の縮合環構造を有する複素環化合物の特性に合ったキャリアバランスが取れるように特定の電子輸送材料と組み合わせ、高効率、低駆動電圧であって、特に長寿命の有機EL素子を実現することができる。さらに正孔輸送層を第一正孔輸送層と第二正孔輸送層の2層構造とした場合において、特性の構造を有する二種類のアリールアミン化合物を、キャリアバランスや材料の特性を考慮しながら組み合わせることで、さらなる長寿命の有機EL素子を実現することができる。
本発明によれば、従来の有機EL素子の発光効率および駆動電圧、そして耐久性を改良することができる。
本発明の一般式(1)で表されるアリールアミン化合物である、化合物1-1~化合物1-15を示す図である。 本発明の一般式(1)で表されるアリールアミン化合物である、化合物1-16~化合物1-30を示す図である。 本発明の一般式(1)で表されるアリールアミン化合物である、化合物1-31~化合物1-44を示す図である。 本発明の一般式(2)で表される縮合環構造を有する複素環化合物である、化合物2-1~化合物2-15を示す図である。 本発明の一般式(3)で表される縮合環構造を有する複素環化合物である、化合物3-1~化合物3-15を示す図である。 本発明の一般式(3)で表される縮合環構造を有する複素環化合物である、化合物3-16~化合物3-23を示す図である。 本発明の一般式(4)で表されるピリミジン環化合物である、化合物4-1~化合物4-15を示す図である。 本発明の一般式(4)で表されるピリミジン環化合物である、化合物4-16~化合物4-30を示す図である。 本発明の一般式(4)で表されるピリミジン環化合物である、化合物4-31~化合物4-45を示す図である。 本発明の一般式(4)で表されるピリミジン環化合物である、化合物4-46~化合物4-60を示す図である。 本発明の一般式(4)で表されるピリミジン環化合物である、化合物4-61~化合物4-75を示す図である。 本発明の一般式(4)で表されるピリミジン環化合物である、化合物4-76~化合物4-90を示す図である。 本発明の一般式(4)で表されるピリミジン環化合物である、化合物4-91~化合物4-105を示す図である。 本発明の一般式(4)で表されるピリミジン環化合物である、化合物4-106~化合物4-117を示す図である。 本発明の一般式(4)で表されるピリミジン環化合物である、化合物4-118~化合物4-126を示す図である。 実施例8~13、比較例1~4の有機EL素子構成を示した図である。
 一般式(1)、(1a)中のAr~Arで表される「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」または「置換もしくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」、「芳香族複素環基」または「縮合多環芳香族基」としては、具体的に、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基、ピリジル基、ピリミジニル基、トリアジニル基、フリル基、ピロリル基、チエニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、ナフチリジニル基、フェナントロリニル基、アクリジニル基、およびカルボリニル基などをあげることができる。
 ここで、ArとArは、単結合で環を形成してもよく、置換もしくは無置換のメチレン基、酸素原子、または硫黄原子を介して互いに結合して環を形成してもよい。ArまたはArは、ArAr-N基が結合しているベンゼン環と、単結合で環を形成してもよく、置換もしくは無置換のメチレン基、酸素原子、または硫黄原子を介して互いに結合して環を形成してもよい。
 一般式(1)、(1a)中のAr~Arで表される「置換芳香族炭化水素基」、「置換芳香族複素環基」または「置換縮合多環芳香族基」における「置換基」としては、具体的に、重水素原子、シアノ基、ニトロ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基などの炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基;メチルオキシ基、エチルオキシ基、プロピルオキシ基などの炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基;ビニル基、アリル基などのアルケニル基;フェニルオキシ基、トリルオキシ基などのアリールオキシ基;ベンジルオキシ基、フェネチルオキシ基などのアリールアルキルオキシ基;フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの芳香族炭化水素基もしくは縮合多環芳香族基;ピリジル基、ピリミジニル基、トリアジニル基、チエニル基、フリル基、ピロリル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルボリニル基などの芳香族複素環基;スチリル基、ナフチルビニル基などのアリールビニル基;アセチル基、ベンゾイル基などのアシル基のような基をあげることができ、これらの置換基は、さらに前記例示した置換基が置換していても良い。また、これらの置換基同士が単結合で環を形成していてもよく、置換もしくは無置換のメチレン基、酸素原子、または硫黄原子を介して互いに結合して環を形成していてもよい。
 一般式(2)中のAで表される、「置換もしくは無置換の芳香族炭化水素の2価基」、「置換もしくは無置換の芳香族複素環の2価基」または「置換もしくは無置換の縮合多環芳香族の2価基」における「置換もしくは無置換の芳香族炭化水素」、「置換もしくは無置換の芳香族複素環」または「置換もしくは無置換の縮合多環芳香族」の「芳香族炭化水素」、「芳香族複素環」または「縮合多環芳香族」としては、具体的に、ベンゼン、ビフェニル、ターフェニル、テトラキスフェニル、スチレン、ナフタレン、アントラセン、アセナフタレン、フルオレン、フェナントレン、インダン、ピレン、トリフェニレン、ピリジン、ピリミジン、トリアジン、ピロール、フラン、チオフェン、キノリン、イソキノリン、ベンゾフラン、ベンゾチオフェン、インドリン、カルバゾール、カルボリン、ベンゾオキサゾール、ベンゾチアゾール、キノキサリン、ベンゾイミダゾール、ピラゾール、ジベンゾフラン、ジベンゾチオフェン、ナフチリジン、フェナントロリン、アクリジンなどをあげることができる。
 そして、一般式(2)中のAで表される「置換もしくは無置換の芳香族炭化水素の2価基」、「置換もしくは無置換の芳香族複素環の2価基」または「置換もしくは無置換の縮合多環芳香族の2価基」は、上記「芳香族炭化水素」、「芳香族複素環」または「縮合多環芳香族」から水素原子を2個取り除いてできる2価基を表す。
 また、これらの2価基は置換基を有していてよく、置換基として、一般式(1)、(1a)中のAr~Arで表される「置換芳香族炭化水素基」、「置換芳香族複素環基」または「置換縮合多環芳香族基」における「置換基」に関して示したものと同様のものをあげることができ、とりうる態様も、同様のものをあげることができる。
 一般式(2)中のArで表される「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」または「置換もしくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」、「芳香族複素環基」または「縮合多環芳香族基」としては、一般式(1)中のAr~Arで表される「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」または「置換もしくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」、「芳香族複素環基」または「縮合多環芳香族基」に関して示したものと同様のものをあげることができる。
 また、これらの基は置換基を有していてよく、置換基として、一般式(1)、(1a)中のAr~Arで表される「置換芳香族炭化水素基」、「置換芳香族複素環基」または「置換縮合多環芳香族基」における「置換基」に関して示したものと同様のものをあげることができ、とりうる態様も、同様のものをあげることができる。
 一般式(2)中のR~Rで表される「置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基」、「置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基」または「置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基」における「炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基」、「炭素原子数5ないし10のシクロアルキル基」または「炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基」としては、具体的に、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基、ビニル基、アリル基、イソプロペニル基、2-ブテニル基などをあげることができ、これらの基同士が単結合で環を形成してもよく、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよく、これらの基(R~R)とこれらの基(R~R)が直接結合しているベンゼン環とで、置換もしくは無置換のメチレン基、酸素原子、硫黄原子、またはモノアリールアミノ基などの連結基を介して互いに結合して環を形成してもよい。
 一般式(2)中のR~Rで表される「置換基を有する炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基」、「置換基を有する炭素原子数5ないし10のシクロアルキル基」または「置換基を有する炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基」における「置換基」としては、具体的に、重水素原子、シアノ基、ニトロ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;メチルオキシ基、エチルオキシ基、プロピルオキシ基などの炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基;ビニル基、アリル基などのアルケニル基;フェニルオキシ基、トリルオキシ基などのアリールオキシ基;ベンジルオキシ基、フェネチルオキシ基などのアリールアルキルオキシ基;フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの芳香族炭化水素基もしくは縮合多環芳香族基;ピリジル基、ピリミジニル基、トリアジニル基、チエニル基、フリル基、ピロリル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルボリニル基などの芳香族複素環基;ジフェニルアミノ基、ジナフチルアミノ基などの芳香族炭化水素基もしくは縮合多環芳香族基で置換されたジ置換アミノ基;ジピリジルアミノ基、ジチエニルアミノ基などの芳香族複素環基で置換されたジ置換アミノ基;芳香族炭化水素基、縮合多環芳香族基または芳香族複素環基から選択される置換基で置換されたジ置換アミノ基のような基をあげることができ、これらの置換基はさらに、前記例示した置換基が置換していても良い。また、これらの置換基同士が単結合で環を形成してもよく、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
 一般式(2)中のR~Rで表される「置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基」または「置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基」における「炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基」または「炭素原子数5ないし10のシクロアルキルオキシ基」としては、具体的に、メチルオキシ基、エチルオキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、tert-ブチルオキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基、1-アダマンチルオキシ基、2-アダマンチルオキシ基などをあげることができる。これらの基同士が単結合で環を形成してもよく、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよく、これらの基(R~R)とこれらの基(R~R)が直接結合しているベンゼン環とで、置換もしくは無置換のメチレン基、酸素原子、硫黄原子、またはモノアリールアミノ基などの連結基を介して互いに結合して環を形成してもよい。
 また、これらの基は置換基を有していてよく、置換基として、一般式(2)中のR~Rで表される「置換基を有する炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基」、「置換基を有する炭素原子数5ないし10のシクロアルキル基」または「置換基を有する炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基」における「置換基」に関して示したものと同様のものをあげることができ、とりうる態様も、同様のものをあげることができる。
 一般式(2)中のR~Rで表される「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」または「置換もしくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」、「芳香族複素環基」または「縮合多環芳香族基」としては、一般式(1)、(1a)中のAr~Arで表される「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」または「置換もしくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」、「芳香族複素環基」または「縮合多環芳香族基」に関して示したものと同様のものをあげることができる。これらの基同士が単結合で環を形成してもよく、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよく、これらの基(R~R)とこれらの基(R~R)が直接結合しているベンゼン環とで、置換もしくは無置換のメチレン基、酸素原子、硫黄原子、またはモノアリールアミノ基などの連結基を介して互いに結合して環を形成してもよい。
 また、これらの基は置換基を有していてよく、置換基として、一般式(1)、(1a)中のAr~Arで表される「置換芳香族炭化水素基」、「置換芳香族複素環基」または「置換縮合多環芳香族基」における「置換基」に関して示したものと同様のものをあげることができ、とりうる態様も、同様のものをあげることができる。
 一般式(2)中のR~Rで表される「置換もしくは無置換のアリールオキシ基」における「アリールオキシ基」としては、具体的に、フェニルオキシ基、ビフェニリルオキシ基、ターフェニリルオキシ基、ナフチルオキシ基、アントラセニルオキシ基、フェナントレニルオキシ基、フルオレニルオキシ基、インデニルオキシ基、ピレニルオキシ基、ペリレニルオキシ基などをあげることができる。これらの基同士が単結合で環を形成してもよく、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよく、これらの基(R~R)とこれらの基(R~R)が直接結合しているベンゼン環とで、置換もしくは無置換のメチレン基、酸素原子、硫黄原子、またはモノアリールアミノ基などの連結基を介して互いに結合して環を形成してもよい。
 また、これらの基は置換基を有していてよく、置換基として、一般式(1)、(1a)中のAr~Arで表される「置換芳香族炭化水素基」、「置換芳香族複素環基」または「置換縮合多環芳香族基」における「置換基」に関して示したものと同様のものをあげることができ、とりうる態様も、同様のものをあげることができる。
 一般式(2)中のR~Rで表される「芳香族炭化水素基、芳香族複素環基もしくは縮合多環芳香族基から選ばれる基によって置換されたジ置換アミノ基」における「芳香族炭化水素基」、「芳香族複素環基」または「縮合多環芳香族基」としては、一般式(1)、(1a)中のAr~Arで表される「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」または「置換もしくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」、「芳香族複素環基」または「縮合多環芳香族基」に関して示したものと同様のものをあげることができる。
 また、これらの基は置換基を有していてよく、置換基として、一般式(1)、(1a)中のAr~Arで表される「置換芳香族炭化水素基」、「置換芳香族複素環基」または「置換縮合多環芳香族基」における「置換基」に関して示したものと同様のものをあげることができ、とりうる態様も、同様のものをあげることができる。
 一般式(2)中のR~Rで表される「芳香族炭化水素基、芳香族複素環基もしくは縮合多環芳香族基から選ばれる基によって置換されたジ置換アミノ基」は、これらの基(R~R)同士が、これらの基(R~R)が有する「芳香族炭化水素基」、「芳香族複素環基」または「縮合多環芳香族基」を介しつつ、単結合で環を形成してもよく、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよく、これらの基(R~R)とこれらの基(R~R)が直接結合しているベンゼン環とで、これらの基(R~R)が有する「芳香族炭化水素基」、「芳香族複素環基」または「縮合多環芳香族基」を介しつつ、置換もしくは無置換のメチレン基、酸素原子、硫黄原子、またはモノアリールアミノ基などの連結基を介して互いに結合して環を形成してもよい。
 一般式(2)中のR、R10で表される「置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基」における「炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基」としては、一般式(2)中のR~Rで表される「置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基」における「炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基」に関して示したものと同様のものをあげることができる。これらの基同士が単結合で環を形成してもよく、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよい。
 また、これらの基は置換基を有していてよく、置換基として、一般式(2)中のR~Rで表される「置換基を有する炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基」、「置換基を有する炭素原子数5ないし10のシクロアルキル基」または「置換基を有する炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基」おける「置換基」に関して示したものと同様のものをあげることができ、とりうる態様も、同様のものをあげることができる。
 一般式(2)中のR、R10で表される「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」または「置換もしくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」、「芳香族複素環基」または「縮合多環芳香族基」としては、一般式(1)、(1a)中のAr~Arで表される「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」または「置換もしくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」、「芳香族複素環基」または「縮合多環芳香族基」に関して示したものと同様のものをあげることができる。これらの基同士が単結合で環を形成してもよく、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよい。
 また、これらの基は置換基を有していてよく、置換基として、一般式(1)、(1a)中のAr~Arで表される「置換芳香族炭化水素基」、「置換芳香族複素環基」または「置換縮合多環芳香族基」における「置換基」に関して示したものと同様のものをあげることができ、とりうる態様も、同様のものをあげることができる。
 一般式(2)中の連結基「モノアリールアミノ基」における「アリール基」としては、一般式(1)、(1a)中のAr~Arで表される「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」または「置換もしくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」、「芳香族複素環基」または「縮合多環芳香族基」に関して示したものと同様のものをあげることができる。
 また、これら基は置換基を有していてよく、置換基として、一般式(1)、(1a)中のAr~Arで表される「置換芳香族炭化水素基」、「置換芳香族複素環基」または「置換縮合多環芳香族基」における「置換基」に関して示したものと同様のものをあげることができ、とりうる態様も、同様のものをあげることができる。
 一般式(3)中のAで表される、「置換もしくは無置換の芳香族炭化水素の2価基」、「置換もしくは無置換の芳香族複素環の2価基」または「置換もしくは無置換の縮合多環芳香族の2価基」としては、一般式(2)中のAで表される、「置換もしくは無置換の芳香族炭化水素の2価基」、「置換もしくは無置換の芳香族複素環の2価基」または「置換もしくは無置換の縮合多環芳香族の2価基」に関して示したものと同様のものをあげることができ、とりうる態様も、同様のものをあげることができる。
 一般式(3)中のAr10で表される「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」または「置換もしくは無置換の縮合多環芳香族基」としては、一般式(2)中のArで表される「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」または「置換もしくは無置換の縮合多環芳香族基」に関して示したものと同様のものをあげることができ、とりうる態様も、同様のものをあげることができる。
 一般式(3)中のR11~R18で表される「置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基」、「置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基」または「置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基」としては、一般式(2)中のR~Rで表される「置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基」、「置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基」または「置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基」に関して示したものと同様のものをあげることができ、とりうる態様も、同様のものをあげることができる。
 一般式(3)中のR11~R18で表される「置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基」または「置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基」としては、一般式(2)中のR~Rで表される「置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基」または「置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基」に関して示したものと同様のものをあげることができ、とりうる態様も、同様のものをあげることができる。
 一般式(3)中のR11~R18で表される「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」または「置換もしくは無置換の縮合多環芳香族基」としては、一般式(2)中のR~Rで表される「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」または「置換もしくは無置換の縮合多環芳香族基」に関して示したものと同様のものをあげることができ、とりうる態様も、同様のものをあげることができる。
 一般式(3)中のR11~R18で表される「置換もしくは無置換のアリールオキシ基」としては、一般式(2)中のR~Rで表される「置換もしくは無置換のアリールオキシ基」に関して示したものと同様のものをあげることができ、とりうる態様も、同様のものをあげることができる。
 一般式(3)中のR11~R18で表される「芳香族炭化水素基、芳香族複素環基もしくは縮合多環芳香族基から選ばれる基によって置換されたジ置換アミノ基」としては、一般式(2)中のR~Rで表される「芳香族炭化水素基、芳香族複素環基もしくは縮合多環芳香族基から選ばれる基によって置換されたジ置換アミノ基」に関して示したものと同様のものをあげることができ、とりうる態様も、同様のものをあげることができる。
 一般式(3)中の連結基「モノアリールアミノ基」における「アリール基」としては、一般式(2)中の連結基「モノアリールアミノ基」に関して示したものと同様のものをあげることができ、とりうる態様も、同様のものをあげることができる。
 一般式(4)中のAr11、Ar12、Ar13で表される、「置換もしくは無置換の芳香族炭化水素基」または「置換もしくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」または「縮合多環芳香族基」としては、具体的に、フェニル基、ビフェニリル基、ターフェニリル基、テトラキスフェニル基、スチリル基、ナフチル基、アントラセニル基、アセナフテニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基のような基をあげることができる。
 また、これらの基は置換基を有していてよく、置換基として、前記一般式(1)、(1a)中のAr~Arで表される「置換芳香族炭化水素基」、「置換芳香族複素環基」または「置換縮合多環芳香族基」における「置換基」に関して示したものと同様のものをあげることができ、とりうる態様も、同様のものをあげることができる。
 一般式(4)中のAr14で表される、「置換もしくは無置換の芳香族複素環基」における「芳香族複素環基」としては、具体的に、トリアジニル基、ピリジル基、ピリミジニル基、フリル基、ピロリル基、チエニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、ナフチリジニル基、フェナントロリニル基、アクリジニル基、カルボリニル基のような基をあげることができる。
 また、これらの基は置換基を有していてよく、置換基として、前記一般式(1)、(1a)中のAr~Arで表される「置換芳香族炭化水素基」、「置換芳香族複素環基」または「置換縮合多環芳香族基」における「置換基」に関して示したものと同様のものをあげることができ、とりうる態様も、同様のものをあげることができる。
 一般式(4)中のR19~R22で表される、「炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基」としては、具体的に、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、2-メチルプロピル基、t-ブチル基、n-ペンチル基、3-メチルブチル基、tert-ペンチル基、n-ヘキシル基、iso-ヘキシル基およびtert-ヘキシル基をあげることができる。
 一般式(4)中のR19~R22で表される、「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」または「置換もしくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」、「芳香族複素環基」または「縮合多環芳香族基」としては、具体的に、フェニル基、ビフェニリル基、ターフェニリル基、テトラキスフェニル基、スチリル基、ナフチル基、アントラセニル基、アセナフテニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基、トリアジニル基、ピリジル基、ピリミジニル基、フリル基、ピロリル基、チエニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、ナフチリジニル基、フェナントロリニル基、アクリジニル基、カルボリニル基のような基をあげることができる。
 また、これらの基は置換基を有していてよく、置換基として、前記一般式(1)、(1a)中のAr~Arで表される「置換芳香族炭化水素基」、「置換芳香族複素環基」または「置換縮合多環芳香族基」における「置換基」に関して示したものと同様のものをあげることができ、とりうる態様も、同様のものをあげることができる。
 一般式(1)、(1a)において、Ar~Arで表される「置換芳香族炭化水素基」、「置換芳香族複素環基」または「置換縮合多環芳香族基」における「置換基」としては、重水素原子、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、「置換もしくは無置換の芳香族炭化水素基」または「置換もしくは無置換の縮合多環芳香族基」が好ましく、重水素原子、フェニル基、ビフェニリル基、ナフチル基、ビニル基がより好ましい。また、これらの基同士が単結合を介して互いに結合して縮合芳香環を形成する態様も好ましい。
 一般式(1)、(1a)において、n1は0または1~2を表すが、n1が0の時は、2つのジアリールアミノベンゼン環が直接(単結合で)結合していることを示し、n1が1の時は、2つのジアリールアミノベンゼン環が1個のフェニレン基を介して結合していることを示し、n1が2の時は、2つのジアリールアミノベンゼン環が2個のフェニレン基(ビフェニレン基)を介して結合していることを示す。
 一般式(1)、(1a)において、n1は0であること、すなわち2つのジアリールアミノベンゼン環が直接(単結合で)結合していることが好ましい。
 一般式(1)、(1a)において、ArまたはArがArAr-N基(Ar、Arとそれらが結合する窒素原子からなるジアリールアミノ基)が結合しているベンゼン環と、単結合で環を形成する態様や、置換もしくは無置換のメチレン基、酸素原子、または硫黄原子を介して互いに結合して環を形成する態様も好ましい。この場合のベンゼン環における結合位置としては、ArAr-N基と隣接する位置が好ましい。
 一般式(2)中のAとしては、「置換もしくは無置換の芳香族炭化水素の2価基」、「置換もしくは無置換の縮合多環芳香族の2価基」、または単結合が好ましく、ベンゼン、ビフェニル、もしくはナフタレンから水素原子を2個取り除いてできる2価基、または単結合がより好ましく、ベンゼンから水素原子を2個取り除いてできる2価基、もしく単結合が特に好ましい。
 一般式(2)中のArとしては、フェニル基、ビフェニリル基、ナフチル基、もしくは「芳香族複素環基」が好ましく、「芳香族複素環基」の中では、トリアジニル基、キナゾリニル基、ナフトピリミジニル基、ベンゾイミダゾリル基、ピリドピリミジニル基、ナフチリジニル基、ピリジル基、キノリル基、イソキノリル基が特に好ましい。
 一般式(2)において、R~Rの隣り合うふたつが「炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基」、「芳香族炭化水素基」、「芳香族複素環基」もしくは「縮合多環芳香族基」であって、隣り合うふたつの基(R~R)が単結合を介して互いに結合して、R~Rが結合しているベンゼン環と共に縮合環を形成する態様が好ましい。この場合の「炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基」、「芳香族炭化水素基」、「芳香族複素環基」もしくは「縮合多環芳香族基」としては、ビニル基、フェニル基が好ましく、R~Rが結合しているベンゼン環と共にナフタレン環、フェナントレン環もしくはトリフェニレン環を形成する態様が好ましい。
 一般式(2)において、R~Rのいずれかひとつが「芳香族炭化水素基」、「芳香族複素環基」もしくは「縮合多環芳香族基」であって、R~Rが結合しているベンゼン環と、置換もしくは無置換のメチレン基、酸素原子、硫黄原子、またはモノアリールアミノ基などの連結基を介して互いに結合して環を形成する態様が好ましい。この場合の「芳香族炭化水素基」、「芳香族複素環基」もしくは「縮合多環芳香族基」としては、フェニル基、インデニル基、インドリル基、ベンゾフラニル基、ベンゾチエニル基が好ましく、R~Rが結合しているベンゼン環と共にフルオレン環、カルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環、インデノインドール環、インデノベンゾフラン環、インデノベンゾチオフェン環、ベンゾフロインドール環、ベンゾチエノインドール環、インドロインドール環を形成する態様が好ましい。
 以上のように、一般式(2)で表される縮合環構造を有する複素環化合物の中で、R~Rがこれらの基同士で互いに結合して環を形成する態様、または、R~RとR~Rが結合しているベンゼン環とが、互いに結合して環を形成する態様として、下記一般式(2a)、(2b)、(2c)、(2d)もしくは(2e)で表される態様が好ましく用いられる。
Figure JPOXMLDOC01-appb-C000011
         (2a)
(式中、Xは置換もしくは無置換のメチレン基、酸素原子、硫黄原子、またはモノアリールアミノ基を表し、Ar、R~R、R、R10は、前記一般式(2)で示した通りの意味を表す。)
Figure JPOXMLDOC01-appb-C000012
(2b)  
(式中、Xは置換もしくは無置換のメチレン基、酸素原子、硫黄原子、またはモノアリールアミノ基を表し、Ar、R~R、R、R10は、前記一般式(2)で示した通りの意味を表す。)
Figure JPOXMLDOC01-appb-C000013
(2c)
(式中、Xは置換もしくは無置換のメチレン基、酸素原子、硫黄原子、またはモノアリールアミノ基を表し、Ar、R~R、R、R10は、前記一般式(2)で示した通りの意味を表す。)
Figure JPOXMLDOC01-appb-C000014
(2d)
(式中、Xは置換もしくは無置換のメチレン基、酸素原子、硫黄原子、またはモノアリールアミノ基を表し、Ar、R~R、R、R10は、前記一般式(2)で示した通りの意味を表す。)
Figure JPOXMLDOC01-appb-C000015
(2e)
(式中、Xは置換もしくは無置換のメチレン基、酸素原子、硫黄原子、またはモノアリールアミノ基を表し、Ar、R~R、R、R10は、前記一般式(2)で示した通りの意味を表す。)
 一般式(2)において、R~Rの隣り合うふたつ、もしくはすべてがビニル基であって、隣り合うふたつのビニル基が単結合を介して互いに結合して縮合環を形成する態様、すなわち、R~Rが結合しているベンゼン環と共にナフタレン環、もしくはフェナントレン環を形成する態様も好ましい。
 一般式(2)中のR、R10としては、「炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基」が好ましく、メチル基が特に好ましい。
 一般式(3)中のAとしては、「置換もしくは無置換の芳香族炭化水素の2価基」、「置換もしくは無置換の縮合多環芳香族の2価基」、または単結合が好ましく、ベンゼン、ビフェニル、もしくはナフタレンから水素原子を2個取り除いてできる2価基、または単結合がより好ましく、ベンゼンから水素原子を2個取り除いてできる2価基、または単結合が特に好ましい。
 一般式(3)中のAr10としては、フェニル基、ビフェニリル基、ナフチル基、もしくは「芳香族複素環基」が好ましく、「芳香族複素環基」の中では、トリアジニル基、キナゾリニル基、ナフトピリミジニル基、ベンゾイミダゾリル基、ピリドピリミジニル基、ナフチリジニル基、ピリジル基、キノリル基、イソキノリル基が特に好ましい。
 一般式(3)において、R11~R14の隣り合うふたつが「炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基」、「芳香族炭化水素基」、「芳香族複素環基」もしくは「縮合多環芳香族基」であって、隣り合うふたつの基(R11~R14)が単結合を介して互いに結合して、R11~R14が結合しているベンゼン環と共に縮合環を形成する態様が好ましい。この場合の「炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基」、「芳香族炭化水素基」、「芳香族複素環基」もしくは「縮合多環芳香族基」としては、ビニル基、フェニル基が好ましく、R11~R14が結合しているベンゼン環と共にナフタレン環、フェナントレン環もしくはトリフェニレン環を形成する態様が好ましい。
 一般式(3)において、R11~R14のいずれかひとつが「芳香族炭化水素基」、「芳香族複素環基」もしくは「縮合多環芳香族基」であって、R11~R14が結合しているベンゼン環と、置換もしくは無置換のメチレン基、酸素原子、硫黄原子、またはモノアリールアミノ基などの連結基を介して互いに結合して環を形成する態様が好ましい。この場合の「芳香族炭化水素基」、「芳香族複素環基」もしくは「縮合多環芳香族基」としては、フェニル基、インデニル基、インドリル基、ベンゾフラニル基、ベンゾチエニル基が好ましく、R11~R14が結合しているベンゼン環と共にフルオレン環、カルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環、インデノインドール環、インデノベンゾフラン環、インデノベンゾチオフェン環、ベンゾフロインドール環、ベンゾチエノインドール環、インドロインドール環を形成する態様が好ましい。
 以上のような、R11~R14とR11~R14が結合しているベンゼン環とが、互いに結合して環を形成する態様として、下記一般式(3a-1)、(3a-2)、(3a-3)、(3a-4)もしくは(3b-1)で表される態様が好ましい。
Figure JPOXMLDOC01-appb-C000016
(3a-1)  
(式中、Xは置換もしくは無置換のメチレン基、酸素原子、硫黄原子、またはモノアリールアミノ基を表し、Ar10、R11~R18は、前記一般式(3)で示した通りの意味を表す。)
Figure JPOXMLDOC01-appb-C000017
(3a-2)
(式中、Xは置換もしくは無置換のメチレン基、酸素原子、硫黄原子、またはモノアリールアミノ基を表し、Ar10、R11~R18は、前記一般式(3)で示した通りの意味を表す。)
Figure JPOXMLDOC01-appb-C000018
(3a-3)
(式中、Xは置換もしくは無置換のメチレン基、酸素原子、硫黄原子、またはモノアリールアミノ基を表し、Ar10、R11~R18は、前記一般式(3)で示した通りの意味を表す。)
Figure JPOXMLDOC01-appb-C000019
(3a-4)
(式中、Xは置換もしくは無置換のメチレン基、酸素原子、硫黄原子、またはモノアリールアミノ基を表し、Ar10、R11~R18は、前記一般式(3)で示した通りの意味を表す。)
Figure JPOXMLDOC01-appb-C000020
(3b-1)
(式中、Xは置換もしくは無置換のメチレン基、酸素原子、硫黄原子、またはモノアリールアミノ基を表し、Ar10、R11~R18は、前記一般式(3)で示した通りの意味を表す。)
 一般式(3)において、R15~R18の隣り合うふたつ、もしくはすべてがビニル基であって、隣り合うふたつのビニル基が単結合を介して互いに結合して縮合環を形成する態様、すなわち、R15~R18が結合しているベンゼン環と共にナフタレン環、もしくはフェナントレン環を形成する態様も好ましい。
 一般式(3)において、R15~R18のいずれかひとつが「芳香族炭化水素基」、「芳香族複素環基」もしくは「縮合多環芳香族基」である態様も好ましく、この場合、R15~R18のいずれかひとつが、フルオレニル基、カルバゾリル基、ジベンゾフラニル基、もしくはジベンゾチエニル基から選ばれる基であることが好ましく、R16がフルオレニル基、カルバゾリル基、ジベンゾフラニル基、もしくはジベンゾチエニル基であって、R15、R17およびR18が水素原子であることがより好ましい。
 一般式(4)中のAr11としては、フェニル基、ビフェニリル基、ナフチル基、アントラセニル基、アセナフテニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基が好ましく、フェニル基、ビフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、ピレニル基、フルオランテニル基、トリフェニレニル基がより好ましい。ここで、フェニル基は置換もしくは無置換の縮合多環芳香族基を置換基として有していることが好ましく、ナフチル基、アントラセニル基、フェナントレニル基、ピレニル基、フルオランテニル基、トリフェニレニル基から選ばれる置換基を有していることがより好ましい。
 一般式(4)中のAr12としては、置換基を有するフェニル基が好ましく、この場合の置換基としては、フェニル基、ビフェニリル基、ターフェニル基などの芳香族炭化水素基、ナフチル基、アントラセニル基、アセナフテニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの縮合多環芳香族基が好ましく、フェニル基、ナフチル基、アントラセニル基、フェナントレニル基、ピレニル基、フルオランテニル基、トリフェニレニル基がより好ましい。
 一般式(4)中のAr13としては、置換基を有するフェニル基が好ましく、この場合の置換基としては、フェニル基、ビフェニリル基、ターフェニル基などの芳香族炭化水素基、ナフチル基、アントラセニル基、アセナフテニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの縮合多環芳香族基が好ましく、フェニル基、ナフチル基、アントラセニル基、フェナントレニル基、ピレニル基、フルオランテニル基、トリフェニレニル基がより好ましい。
 一般式(4)において、Ar11とAr12が同一ではないことが、薄膜の安定性の観点から好ましい。ここで、Ar11とAr12が同一ではない場合とは、異なる置換基であってもよいし、あるいは、異なる置換位置であってもよい。
 一般式(4)において、Ar12とAr13は同一の基であってもよいが、分子全体の対称性がよくなることによって結晶化し易くなる恐れがあり、薄膜の安定性の観点から、Ar15とAr16は異なる基であることが好ましく、Ar12とAr13が同時に水素原子とはなることはないものとする。
 一般式(4)において、Ar12とAr13の一方が水素原子であることが好ましい。
 一般式(4)中のAr14としては、トリアジニル基、ピリジル基、ピリミジニル基、ピロリル基、キノリル基、イソキノリル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ナフチリジニル基、フェナントロリニル基、アクリジニル基、カルボリニル基などの含窒素複素環基が好ましく、トリアジニル基、ピリジル基、ピリミジニル基、キノリル基、イソキノリル基、インドリル基、キノキサリニル基、ベンゾイミダゾリル基、ナフチリジニル基、フェナントロリニル基、アクリジニル基がより好ましく、ピリジル基、ピリミジニル基、キノリル基、イソキノリル基、インドリル基、キノキサリニル基、ベンゾイミダゾリル基、フェナントロリニル基、アクリジニル基が特に好ましい。
 一般式(4)において、ベンゼン環におけるAr14の結合位置は、ピリミジン環との結合位置に対し、メタ位であることが、薄膜の安定性の観点から好ましい。
 一般式(4)で表されるピリミジン環構造を有する化合物としては、置換基の結合様式の異なる、下記一般式(4a)、一般式(4b)で表されるピリミジン環構造を有する化合物がある。
Figure JPOXMLDOC01-appb-C000021
   (4a)
(式中、Ar11、Ar12、Ar13、Ar14、R19~R22は、前記一般式(4)で示した通りの意味を表す。)
Figure JPOXMLDOC01-appb-C000022
   (4b)
(式中、Ar11、Ar12、Ar13、Ar14、R19~R22は、前記一般式(4)で示した通りの意味を表す。)
 本発明の有機EL素子に好適に用いられる、前記一般式(1)、一般式(1a)で表されるアリールアミン化合物は、有機EL素子の正孔注入層または正孔輸送層の構成材料として使用することができる。正孔の移動度が高く正孔注入層または正孔輸送層の材料として好ましい化合物である。また、電子阻止性能が高く、正孔輸送層を第一正孔輸送層と第二正孔輸送層の2層構造とした場合の第二正孔輸送層の材料としても好ましい化合物である。
 本発明の有機EL素子に好適に用いられる、前記一般式(2)で表される縮合環構造を有する複素環化合物および前記一般式(3)で表される縮合環構造を有する複素環化合物は、有機EL素子の発光層の構成材料として使用することができる。従来の材料に比べて発光効率に優れ、発光層のホスト材料、特に燐光性の発光材料を含有する発光層のホスト材料として、好ましい化合物である。
 本発明の有機EL素子に好適に用いられる、前記一般式(4)で表される、ピリミジン環構造を有する化合物は、有機EL素子の電子輸送層の構成材料として使用することができる。
 前記一般式(4)で表される、ピリミジン環構造を有する化合物は、電子注入および輸送能力に優れており、さらに薄膜の安定性や耐久性に優れ、電子輸送層の材料として好ましい化合物である。
 本発明の有機EL素子は、正孔の注入・輸送性能、薄膜の安定性や耐久性に優れた有機EL素子用の材料を、キャリアバランスを考慮しながら組み合わせているため、従来の有機EL素子に比べて、陽極から正孔輸送層への正孔輸送効率が向上することによって、低駆動電圧を維持しつつ、発光効率が向上すると共に、有機EL素子の耐久性を向上させることができる。
 低駆動電圧、高発光効率、かつ長寿命の有機EL素子を実現することが可能となった。
 本発明の有機EL素子に好適に用いられる、前記一般式(1)で表されるアリールアミン化合物の中で、好ましい化合物1-1~化合物1-44の具体例を図1~3に示すが、これらの化合物に限定されるものではない。
 本発明の有機EL素子に好適に用いられる、前記一般式(2)で表される縮合環構造を有する複素環化合物の中で、好ましい化合物2-1~化合物2-15の具体例を図4に示すが、これらの化合物に限定されるものではない。
 本発明の有機EL素子に好適に用いられる、前記一般式(3)で表される縮合環構造を有する複素環化合物の中で、好ましい化合物3-1~化合物3-23の具体例を図5,6に示すが、これらの化合物に限定されるものではない。
 尚、上述した縮合環構造を有する複素環化合物は、それ自体公知の方法に準じて合成することができる(例えば、特許文献7参照)。
 本発明の有機EL素子に好適に用いられる、前記一般式(4)で表されるピリミジン環化合物の中で、好ましい化合物4-1~化合物4-126の具体例を図7~14に示すが、これらの化合物に限定されるものではない。
 尚、上述したピリミジン環構造を有する化合物は、それ自体公知の方法に準じて合成することができる(例えば、特許文献8参照)。
 一般式(1)、(1a)で表される化合物の精製はカラムクロマトグラフによる精製、シリカゲル、活性炭、活性白土などによる吸着精製、溶媒による再結晶や晶析法などによって行い、最終的には、昇華精製などによる精製を行った。化合物の同定は、NMR分析によって行った。物性値として、融点、ガラス転移点(Tg)と仕事関数の測定を行った。融点は蒸着性の指標となるものであり、ガラス転移点(Tg)は薄膜状態の安定性の指標となり、仕事関数は正孔輸送性の指標となるものである。
 その他、本発明の有機EL素子に用いられる化合物は、カラムクロマトグラフによる精製、シリカゲル、活性炭、活性白土等による吸着精製、溶媒による再結晶や昌析法などによって精製を行った後、最後に昇華精製法によって精製したものを用いた。
 融点とガラス転移点(Tg)は、粉体を用いて高感度示走査熱量計(ブルカー・エイエックスエス製、DSC3100SA)によって測定した。
 仕事関数は、ITO基板の上に100nmの薄膜を作製して、イオン化ポテンシャル測定装置(住友重機械工業株式会社製、PYS-202)によって求めた。
 本発明の有機EL素子の構造としては、基板上に順次に、陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層及び陰極からなるもの、また、発光層と電子輸送層の間に正孔阻止層を有するものがあげられる。これらの多層構造においては有機層を何層か省略あるいは兼ねることが可能であり、例えば正孔注入層と正孔輸送層を兼ねた構成とすること、電子注入層と電子輸送層を兼ねた構成とすること、などもできる。また、同一の機能を有する有機層を2層以上積層した構成とすることが可能であり、正孔輸送層を2層積層した構成、発光層を2層積層した構成、電子輸送層を2層積層した構成、などもできる。本発明の有機EL素子の構造として、正孔輸送層が第一正孔輸送層と第二正孔輸送層の2層が積層した構成とすることも好ましい。第二正孔輸送層は電子阻止層としての機能も有するものが好ましい。
 本発明の有機EL素子の陽極としては、ITOや金のような仕事関数の大きな電極材料が用いられる。
 本発明の有機EL素子の正孔輸送層としては、前記一般式(1)、(1a)で表されるアリールアミン化合物のほか、スターバースト型のトリフェニルアミン誘導体、種々のトリフェニルアミン4量体などの材料;銅フタロシアニンに代表されるポルフィリン化合物;ヘキサシアノアザトリフェニレンのようなアクセプター性の複素環化合物や塗布型の高分子材料、などを用いることができる。これらは、単独で成膜しても良いが、他の材料とともに混合して成膜した単層として使用しても良く、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としても良い。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 また、正孔注入層あるいは正孔輸送層において、該層に通常使用される材料に対し、さらにトリスブロモフェニルアミンヘキサクロルアンチモン、ラジアレン誘導体(例えば、特許文献6参照)などをPドーピングしたものや、TPDなどのベンジジン誘導体の構造をその部分構造に有する高分子化合物などを用いることができる。
 本発明の有機EL素子の正孔輸送層として、前記一般式(1)、(1a)で表されるアリールアミン化合物のほか、N,N'-ジフェニル-N,N'-ジ(m-トリル)ベンジジン(TPD)、N,N'-ジフェニル-N,N'-ジ(α-ナフチル)ベンジジン(NPD)、N,N,N',N'-テトラビフェニリルベンジジンなどのベンジジン誘導体、1,1-ビス[4-(ジ-4-トリルアミノ)フェニル]シクロヘキサン(TAPC)などの、分子中にトリフェニルアミン構造を2個、単結合またはヘテロ原子を含まない2価基で連結した構造を有するアリールアミン化合物、分子中にトリフェニルアミン構造を4個単結合またはヘテロ原子を含まない2価基で連結した構造を有するアリールアミン化合物、種々のトリフェニルアミン3量体などを用いることができる。これらは、単独で成膜しても良いが、他の材料とともに混合して成膜した単層として使用しても良く、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としても良い。また、正孔の注入・輸送層として、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)/ポリ(スチレンスルフォネート)(PSS)などの塗布型の高分子材料を用いることができる。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 本発明の有機EL素子において正孔輸送層が第一正孔輸送層および第二正孔輸送層の2層が積層した場合における、第二正孔輸送層では前記一般式(1)、(1a)で表されるアリールアミン化合物のほか、分子中にトリフェニルアミン構造を4個、単結合またはヘテロ原子を含まない2価基で連結した構造を有するアリールアミン化合物、分子中にトリフェニルアミン構造を2個、単結合またはヘテロ原子を含まない2価基で連結した構造を有するアリールアミン化合物、4,4',4''-トリ(N-カルバゾリル)トリフェニルアミン(TCTA)、9,9-ビス[4-(カルバゾール-9-イル)フェニル]フルオレン、1,3-ビス(カルバゾール-9-イル)ベンゼン(mCP)、2,2-ビス(4-カルバゾール-9-イルフェニル)アダマンタン(Ad-Cz)などのカルバゾール誘導体、9-[4-(カルバゾール-9-イル)フェニル]-9-[4-(トリフェニルシリル)フェニル]-9H-フルオレンに代表されるトリフェニルシリル基とトリアリールアミン構造を有する化合物などの電子阻止作用を有する化合物を用いることができる。これらは、単独で成膜しても良いが、他の材料とともに混合して成膜した単層として使用しても良く、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としても良い。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 本発明の有機EL素子の発光層としては、前記一般式(2)で表される縮合環構造を有する複素環化合物、前記一般式(3)で表される縮合環構造を有する複素環化合物のほか、Alqをはじめとするキノリノール誘導体の金属錯体などの各種の金属錯体、アントラセン誘導体、ビススチリルベンゼン誘導体、ピレン誘導体、オキサゾール誘導体、ポリパラフェニレンビニレン誘導体などを用いることができる。また、発光層をホスト材料とドーパント材料とで構成しても良く、ホスト材料としては、前記一般式(2)で表される縮合環構造を有する複素環化合物、前記一般式(3)で表される縮合環構造を有する複素環化合物のほか、前記発光材料に加え、チアゾール誘導体、ベンズイミダゾール誘導体、ポリジアルキルフルオレン誘導体などを用いることができる。またドーパント材料としては、キナクリドン、クマリン、ルブレン、ペリレン、ピレン、およびそれらの誘導体、ベンゾピラン誘導体、インデノフェナントレン誘導体、ローダミン誘導体、アミノスチリル誘導体などを用いることができる。これらは、単独で成膜しても良いが、他の材料とともに混合して成膜した単層として使用しても良く、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としても良い。
 本発明の有機EL素子の発光層としては、前記一般式(2)で表される縮合環構造を有する複素環化合物、または前記一般式(3)で表される縮合環構造を有する複素環化合物をホスト材料として用いることが好ましい。
 また、発光材料として燐光発光体を使用することが好ましい。燐光発光体としては、イリジウムや白金などの金属錯体の燐光発光体を使用することができる。Ir(ppy)などの緑色の燐光発光体、FIrpic、FIr6などの青色の燐光発光体、BtpIr(acac)などの赤色の燐光発光体などが用いられ、このときのホスト材料としては前記一般式(2)で表される縮合環構造を有する複素環化合物、前記一般式(3)で表される縮合環構造を有する複素環化合物のほか、正孔注入・輸送性のホスト材料として4,4'-ジ(N-カルバゾリル)ビフェニル(CBP)やTCTA、mCPなどのカルバゾール誘導体などを用いることができる。電子輸送性のホスト材料として、p-ビス(トリフェニルシリル)ベンゼン(UGH2)や2,2',2''-(1,3,5-フェニレン)-トリス(1-フェニル-1H-ベンズイミダゾール)(TPBI)などを用いることができ、高性能の有機EL素子を作製することができる。
 燐光性の発光材料のホスト材料へのドープは濃度消光を避けるため、発光層全体に対して1~30重量パーセントの範囲で、共蒸着によってドープすることが好ましい。
 また、発光材料としてPIC-TRZ、CC2TA、PXZ-TRZ、4CzIPNなどのCDCB誘導体などの遅延蛍光を放射する材料を使用することも可能である。(例えば、非特許文献3参照)
 これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 本発明の有機EL素子における正孔阻止層として、バソクプロイン(BCP)などのフェナントロリン誘導体や、アルミニウム(III)ビス(2-メチル-8-キノリナート)-4-フェニルフェノレート(BAlq)などのキノリノール誘導体の金属錯体の他、各種の希土類錯体、トリアゾール誘導体、トリアジン誘導体、オキサジアゾール誘導体など、正孔阻止作用を有する化合物を用いることができる。これらの材料は電子輸送層の材料を兼ねてもよい。これらは、単独で成膜しても良いが、他の材料とともに混合して成膜した単層として使用しても良く、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としても良い。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 本発明の有機EL素子の電子輸送層として、前記一般式(4)で表されるピリミジン環構造を有する化合物が好ましく用いられる。これらは、単独で成膜しても良いが、他の電子輸送性の材料とともに混合して成膜した単層として使用しても良く、単独で成膜した層同士、混合して成膜した層同士、または単独で成膜した層と混合して成膜した層の積層構造としても良い。これらの材料は蒸着法の他、スピンコート法やインクジェット法などの公知の方法によって薄膜形成を行うことができる。
 前記一般式(4)で表されるピリミジン環構造を有する化合物と混合もしくは同時に使用できる、電子輸送性の材料としては、Alq、BAlqをはじめとするキノリノール誘導体の金属錯体、各種金属錯体、トリアゾール誘導体、トリアジン誘導体、オキサジアゾール誘導体、ピリジン誘導体、ピリミジン誘導体、ベンズイミダゾール誘導体、チアジアゾール誘導体、アントラセン誘導体、カルボジイミド誘導体、キノキサリン誘導体、ピリドインドール誘導体、フェナントロリン誘導体、シロール誘導体などをあげることができる。
 本発明の有機EL素子の電子注入層として、フッ化リチウム、フッ化セシウムなどのアルカリ金属塩、フッ化マグネシウムなどのアルカリ土類金属塩、酸化アルミニウムなどの金属酸化物、あるいはイッテルビウム(Yb)、サマリウム(Sm)、カルシウム(Ca)、ストロンチウム(Sr)、セシウム(Cs)などの金属などを用いることができるが、電子輸送層と陰極の好ましい選択においては、これを省略することができる。
 本発明の有機EL素子の陰極として、アルミニウムのような仕事関数の低い電極材料や、マグネシウム銀合金、マグネシウムインジウム合金、アルミニウムマグネシウム合金のような、より仕事関数の低い合金が電極材料として用いられる。
 以下、本発明の実施の形態について、実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。
<4-{(9,9-ジメチルフルオレン-2-イル)-(ビフェニル-4-イル)アミノ}-4'-(ビフェニル-4-イル-フェニルアミノ)-2-フェニル-ビフェニル(化合物1-7)の合成>
 窒素置換した反応容器に、(9,9-ジメチルフルオレン-2-イル)-(ビフェニル-4-イル)-(6-ブロモビフェニル-3-イル)アミン10.0g、4-{(ビフェニル-4-イル)-フェニルアミノ}フェニルボロン酸7.9g、テトラキストリフェニルホスフィンパラジウム(0)0.60g、炭酸カリウム5.0g、トルエン80ml、エタノール40ml、水30mlを加えて加熱し、100℃で一晩撹拌した。冷却し、分液操作により有機層を採取した後、濃縮し、カラムクロマトグラフ(担体:シリカゲル、溶離液:ジクロロメタン/ヘプタン)によって精製することにより、4-{(9,9-ジメチルフルオレン-2-イル)-(ビフェニル-4-イル)アミノ}-4'-(ビフェニル-4-イル-フェニルアミノ)-2-フェニル-ビフェニル(化合物1-7)の白色粉体8.30g(収率49%)を得た。
 得られた白色粉体についてNMRを使用して構造を同定した。
 H-NMR(CDCl)で以下の48個の水素のシグナルを検出した。
 δ(ppm)=7.72-7.60(2H)、7.59-7.52(2H)、7.51-7.10(35)、7.09-6.90(3H)、1.56(6H)。
Figure JPOXMLDOC01-appb-C000023
   (1-7)
<4-{(9,9-ジメチルフルオレン-2-イル)-(ビフェニル-4-イル)アミノ}-4'-(ジフェニルアミノ)-2-フェニル-ビフェニル(化合物1-11)の合成>
 実施例1において、4-{(ビフェニル-4-イル)-フェニルアミノ}フェニルボロン酸に代えて、4-(ジフェニルアミノ)フェニルボロン酸を用いて同様の条件で反応を行うことによって4-{(9,9-ジメチルフルオレン-2-イル)-(ビフェニル-4-イル)アミノ}-4'-(ジフェニルアミノ)-2-フェニル-ビフェニル(化合物1-11)の白色粉体11.5g(収率75%)を得た。
 得られた白色粉体についてNMRを使用して構造を同定した。
 H-NMR(CDCl)で以下の44個の水素のシグナルを検出した。
 δ(ppm)=7.71-7.64(4H)、7.58-7.56(2H)、7.49-6.94(32)、1.51(6H)。
Figure JPOXMLDOC01-appb-C000024
   (1-11)
<4-{(9,9-ジメチルフルオレン-2-イル)-フェニルアミノ}-4'-(ビフェニル-4-イル-フェニルアミノ)-2-フェニル-ビフェニル(化合物1-14)の合成>
 実施例1において、(9,9-ジメチルフルオレン-2-イル)-(ビフェニル-4-イル)-(6-ブロモビフェニル-3-イル)アミンに代えて、(9,9-ジメチルフルオレン-2-イル)-フェニル-(6-ブロモビフェニル-3-イル)アミンを用い、同様の条件で反応を行うことによって4-{(9,9-ジメチルフルオレン-2-イル)-フェニルアミノ}-4'-(ビフェニル-4-イル-フェニルアミノ)-2-フェニル-ビフェニル(化合物1-14)の白色粉体10.2g(収率69%)を得た。
 得られた白色粉体についてNMRを使用して構造を同定した。
 H-NMR(CDCl)で以下の44個の水素のシグナルを検出した。
 δ(ppm)=7.69-7.59(4H)、7.48-7.42(4H)、7.37-6.98(30)、1.49(6H)。
Figure JPOXMLDOC01-appb-C000025
  (1-14)
 一般式(1)で表されるアリールアミン化合物について、高感度示差走査熱量計(ブルカー・エイエックスエス製、DSC3100SA)によって融点とガラス転移点を測定した。
                融点     ガラス転移点 
実施例1の化合物     観測されず    125℃  
実施例2の化合物     観測されず    117℃  
実施例3の化合物     観測されず    114℃  
 一般式(1)で表されるアリールアミン化合物は100℃以上のガラス転移点を有しており、薄膜状態が安定であることを示すものである。
 一般式(1)で表されるアリールアミン化合物を用いて、ITO基板の上に膜厚100nmの蒸着膜を作製して、イオン化ポテンシャル測定装置(住友重機械工業株式会社製、PYS-202型)で仕事関数を測定した。
                 仕事関数
 実施例1の化合物      5.57eV
 実施例2の化合物      5.62eV
 実施例3の化合物      5.59eV
 一般式(1)で表されるアリールアミン化合物はNPD、TPDなどの一般的な正孔輸送材料がもつ仕事関数5.4eVと比較して、好適なエネルギー準位を示しており、良好な正孔輸送能力を有していることが分かる。
<7,7-ジメチル-12-(4-フェニルベンゾ[h]キナゾリン-2-イル)-7,12-ジヒドロベンゾ[4,5]チエノ[3,2-g]インデノ[1,2-b]インドール(化合物2-2)の合成>
 窒素置換した反応容器に、7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ[3,2-g]インデノ[1,2-b]インドール4.9g、2-クロロ-4-フェニルベンゾ[h]キナゾリン5.7g、トリス(ジベンジリデンアセトン)ジパラジウム0.3g、トリ-tert-ブチルホスホニウムテトラフルオロボレート0.4g、tert-ブトキシナトリウム4.0g、キシレン74mlを加えて加熱し、12時間還流撹拌した。室温まで冷却した後、酢酸エチル、水を加え、分液操作によって有機層を採取した。有機層を濃縮し、カラムクロマトグラフによる精製を行うことによって、7,7-ジメチル-12-(4-フェニルベンゾ[h]キナゾリン-2-イル)-7,12-ジヒドロベンゾ[4,5]チエノ[3,2-g]インデノ[1,2-b]インドール(化合物2-2)の粉体3.2g(収率38%)を得た。
Figure JPOXMLDOC01-appb-C000026
   (2-2)
<12,12-ジメチル-1-(4-フェニルキナゾリン-2-イル)-1,12-ジヒドロインデノ[1',2':4,5]チエノ[2,3-a]カルバゾール(化合物3-14)の合成>
 窒素置換した反応容器に、12,12-ジメチル-1,12-ジヒドロインデノ[1',2':4,5]チエノ[2,3-a]カルバゾール4.9g、2-クロロ-4-フェニルキナゾリン5.7g、トリス(ジベンジリデンアセトン)ジパラジウム0.3g、トリ-tert-ブチルホスホニウムテトラフルオロボレート0.4g、tert-ブトキシナトリウム4.0g、キシレン74mlを加えて加熱し、12時間還流撹拌した。室温まで冷却した後、酢酸エチル、水を加え、分液操作によって有機層を採取した。有機層を濃縮し、カラムクロマトグラフによる精製を行うことによって、12,12-ジメチル-1-(4-フェニルキナゾリン-2-イル)-1,12-ジヒドロインデノ[1',2':4,5]チエノ[2,3-a]カルバゾール(化合物3-14)の粉体6.3g(収率44%)を得た。
Figure JPOXMLDOC01-appb-C000027
   (3-14)
 有機EL素子は、図16に示すように、ガラス基板1上に透明陽極2としてITO電極をあらかじめ形成したものの上に、正孔注入層3、正孔輸送層4、発光層5、電子輸送層6、電子注入層7、陰極(アルミニウム電極)8の順に蒸着して作製した。
 具体的には、膜厚150nmのITOを成膜したガラス基板1をイソプロピルアルコール中にて超音波洗浄を20分間行った後、200℃に加熱したホットプレート上にて10分間乾燥を行った。その後、UVオゾン処理を15分間行った後、このITO付きガラス基板を真空蒸着機内に取り付け、0.001Pa以下まで減圧した。続いて、透明陽極2を覆うように正孔注入層3として、下記構造式の電子アクセプター(Acceptor-1)と実施例1の化合物(1-7)を、蒸着速度比が(Acceptor-1):化合物(1-7)=3:97となる蒸着速度で二元蒸着を行い、膜厚10nmとなるように形成した。この正孔注入層3の上に、正孔輸送層4として実施例1の化合物(1-7)を膜厚50nmとなるように形成した。この正孔輸送層4の上に、発光層5として下記構造式の化合物(EMD-1)と実施例10の化合物(2-2)を、蒸着速度比が(EMD-1):(2-2)=5:95となる蒸着速度で二元蒸着を行い、膜厚20nmとなるように形成した。この発光層5の上に、電子輸送層6として下記構造式のピリジン環構造を有する化合物(4-125)と下記構造式の化合物(ETM-1)を、蒸着速度比がピリジン環構造を有する化合物(4-125):(ETM-1)=50:50となる蒸着速度で二元蒸着を行い、膜厚30nmとなるように形成した。この電子輸送層6の上に、電子注入層7としてフッ化リチウムを膜厚1nmとなるように形成した。最後に、アルミニウムを100nm蒸着して陰極8を形成した。作製した有機EL素子について、大気中、常温で特性測定を行った。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
Figure JPOXMLDOC01-appb-C000028
  (Acceptor-1)
Figure JPOXMLDOC01-appb-C000029
   (1-7)
Figure JPOXMLDOC01-appb-C000030
   (EMD-1)
Figure JPOXMLDOC01-appb-C000031
   (2-2)
Figure JPOXMLDOC01-appb-C000032
   (4-125)
Figure JPOXMLDOC01-appb-C000033
   (ETM-1)
 実施例8において、正孔注入層3及び正孔輸送層4の材料として実施例1の化合物(1-7)に代えて実施例2の化合物(1-11)を用いた以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行なった。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
Figure JPOXMLDOC01-appb-C000034
   (1-11)
 実施例8において、正孔注入層3及び正孔輸送層4の材料として実施例1の化合物(1-7)に代えて実施例3の化合物(1-14)を用いた以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行なった。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
Figure JPOXMLDOC01-appb-C000035
  (1-14)
 実施例8において、発光層5の材料として実施例6の化合物(2-2)に代えて実施例7の化合物(3-14)を蒸着速度比が(EMD-1):(3-14)=5:95となる蒸着速度で二元蒸着を行い、膜厚20nmとなるように形成した以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行なった。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
Figure JPOXMLDOC01-appb-C000036
 (3-14)
 実施例8において、正孔注入層3及び正孔輸送層4の材料として実施例1の化合物(1-7)に代えて実施例2の化合物(1-11)を用いて、かつ発光層5の材料として実施例6の化合物(2-2)に代えて実施例7の化合物(3-14)を蒸着速度比が(EMD-1):(3-14)=5:95となる蒸着速度で二元蒸着を行い、膜厚20nmとなるように形成した以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行なった。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
 実施例8において、正孔注入層3及び正孔輸送層4の材料として実施例1の化合物(1-7)に代えて実施例3の化合物(1-14)を用いて、かつ発光層5の材料として実施例6の化合物(2-2)に代えて実施例7の化合物(3-14)を蒸着速度比が(EMD-1):(3-14)=5:95となる蒸着速度で二元蒸着を行い、膜厚20nmとなるように形成した以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行なった。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
[比較例1]
 比較のために、実施例8において、正孔注入層3及び正孔輸送層4の材料として実施例1の化合物(1-7)に代えて下記構造式の化合物(HTM-1)を用いた以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行った。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
Figure JPOXMLDOC01-appb-C000037
   (HTM-1)
[比較例2]
 比較のために、実施例8において、正孔注入層3及び正孔輸送層4の材料として実施例1の化合物(1-7)に代えて上記構造式の化合物(HTM-1)を用いて、かつ発光層5の材料として実施例6の化合物(2-2)に代えて実施例7の化合物(3-14)を蒸着速度比が(EMD-1):(3-14)=5:95となる蒸着速度で二元蒸着を行い、膜厚20nmとなるように形成した以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行った。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
[比較例3]
 比較のために、実施例8において、正孔注入層3及び正孔輸送層4の材料として実施例1の化合物(1-7)に代えて下記構造式の化合物(HTM-2)を用いた以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行った。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
Figure JPOXMLDOC01-appb-C000038
   (HTM-2)
[比較例4]
 比較のために、実施例8において、正孔注入層3及び正孔輸送層4の材料として実施例1の化合物(1-7)に代えて上記構造式の化合物(HTM-2)を用いて、かつ発光層5の材料として実施例6の化合物(2-2)に代えて実施例7の化合物(3-14)を蒸着速度比が(EMD-1):(3-14)=5:95となる蒸着速度で二元蒸着を行い、膜厚20nmとなるように形成した以外は、同様の条件で有機EL素子を作製した。作製した有機EL素子について、大気中、常温で特性測定を行った。作製した有機EL素子に直流電圧を印加したときの発光特性の測定結果を表1にまとめて示した。
 実施例8~13および比較例1~4で作製した有機EL素子を用いて、素子寿命を測定した結果を表1にまとめて示した。素子寿命は、発光開始時の発光輝度(初期輝度)を7000cd/mとして定電流駆動を行った時、発光輝度が6790cd/m(初期輝度を100%とした時の97%に相当:97%減衰)に減衰するまでの時間として測定した。
Figure JPOXMLDOC01-appb-T000039
 表1に示す様に、発光層の材料が同じ組合せである実施例8~10と比較例1および3との比較において、電流密度10mA/cmの電流を流したときの発光効率は、比較例1および3の有機EL素子の24.58~25.77cd/Aに対し、実施例8~10の有機EL素子では27.20~27.32cd/Aといずれも高効率であった。また、電力効率においても、比較例1および3の有機EL素子の18.09~19.84lm/Wに対し、実施例8~10の有機EL素子では21.62~21.91lm/Wといずれも高効率であった。一方、素子寿命(97%減衰)においては、比較例1および3の有機EL素子の113~154時間に対し、実施例8~10の有機EL素子では224~237時間と大きく長寿命化していることが分かる。
 表1に示す様に、発光層の材料が同じ組合せである実施例11~13と比較例2および4との比較において、電流密度10mA/cmの電流を流したときの発光効率は、比較例2および4の有機EL素子の23.80~25.71cd/Aに対し、実施例11~13の有機EL素子では27.75~28.00cd/Aといずれも高効率であった。また、電力効率においても比較例2および4の有機EL素子の17.53~19.46lm/Wに対し、実施例11~13の有機EL素子では21.67~22.14lm/Wといずれも高効率であった。一方、素子寿命(97%減衰)においては、比較例2および4の有機EL素子の117~173時間に対し、実施例11~13の有機EL素子では262~298時間と大きく長寿命化していることが分かる。
 本発明の有機EL素子は、特定の構造を有するアリールアミン化合物と特定の縮合環構造を有する複素環化合物(および特定のアントラセン環構造を有する化合物)を組み合わせることによって、有機EL素子内部のキャリアバランスを改善し、さらに発光材料の特性に合ったキャリアバランスとなるように組み合わせているので、従来の有機EL素子と比較して、高発光効率であって、かつ長寿命の有機EL素子を実現できることがわかった。
 本発明の、特定のアリールアミン化合物と縮合環構造を有する複素環化合物を有する化合物を組み合わせた有機EL素子は、発光効率が向上するとともに、有機EL素子の耐久性を改善させることができ、例えば、家庭電化製品や照明の用途への展開が可能となった。
1 ガラス基板
2 透明陽極
3 正孔注入層
4 正孔輸送層
5 発光層
6 電子輸送層
7 電子注入層
8 陰極

Claims (8)

  1.  少なくとも陽極、正孔輸送層、発光層、電子輸送層及び陰極をこの順に有する有機エレクトロルミネッセンス素子において、前記正孔輸送層が下記一般式(1)で表されるアリールアミン化合物を含有し、前記発光層が下記一般式(2)で表される縮合環構造を有する複素環化合物もしくは下記一般式(3)で表される縮合環構造を有する複素環化合物を含有することを特徴とする
     有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001
       (1)
    (式中、Ar~Arは相互に同一でも異なってもよく、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。Ar~Arは相互に同一でも異なってもよく、水素原子、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。n1は0、1または2を表す。ここで、ArとArは、単結合で環を形成してもよく、置換もしくは無置換のメチレン基、酸素原子、または硫黄原子を介して互いに結合して環を形成してもよい。ArまたはArはArAr-N基が結合しているベンゼン環と、単結合で環を形成してもよく、置換もしくは無置換のメチレン基、酸素原子、または硫黄原子を介して互いに結合して環を形成してもよい。)
    Figure JPOXMLDOC01-appb-C000002
      (2)
    (式中、Aは置換もしくは無置換の芳香族炭化水素の2価基、置換もしくは無置換の芳香族複素環の2価基、置換もしくは無置換の縮合多環芳香族の2価基、または単結合を表す。Arは置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。R~Rは相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換の縮合多環芳香族基、置換もしくは無置換のアリールオキシ基、または芳香族炭化水素基、芳香族複素環基もしくは縮合多環芳香族基から選ばれる基によって置換されたジ置換アミノ基を表す。R~Rのそれぞれの基同士が単結合で環を形成してもよく、置換もしくは無置換のメチレン基、酸素原子、または硫黄原子を介して互いに結合して環を形成してもよい。R~Rは、R~Rが結合しているベンゼン環と、置換もしくは無置換のメチレン基、酸素原子、硫黄原子、またはモノアリールアミノ基の連結基を介して互いに結合して環を形成してもよい。R~Rは相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換の縮合多環芳香族基、置換もしくは無置換のアリールオキシ基、または芳香族炭化水素基、芳香族複素環基もしくは縮合多環芳香族基から選ばれる基によって置換されたジ置換アミノ基を表す。R~Rのそれぞれの基同士が単結合で環を形成してもよく、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよい。R~Rは、R~Rが結合しているベンゼン環と、置換もしくは無置換のメチレン基、酸素原子、硫黄原子、またはモノアリールアミノ基の連結基を介して互いに結合して環を形成してもよい。RとR10は相互に同一でも異なってもよく、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。RとR10のそれぞれの基同士が単結合で環を形成してもよく、置換もしくは無置換のメチレン基、酸素原子、または硫黄原子を介して互いに結合して環を形成してもよい。)
    Figure JPOXMLDOC01-appb-C000003
      (3)
    (式中、Aは置換もしくは無置換の芳香族炭化水素の2価基、置換もしくは無置換の芳香族複素環の2価基、置換もしくは無置換の縮合多環芳香族の2価基、または単結合を表す。Ar10は置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。R11~R14は相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換の縮合多環芳香族基、置換もしくは無置換のアリールオキシ基、または芳香族炭化水素基、芳香族複素環基もしくは縮合多環芳香族基から選ばれる基によって置換されたジ置換アミノ基を表す。R11~R14のそれぞれの基同士が単結合で環を形成してもよく、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよい。R11~R14は、R11~R14が結合しているベンゼン環と、置換もしくは無置換のメチレン基、酸素原子、硫黄原子、またはモノアリールアミノ基の連結基を介して互いに結合して環を形成してもよい。R15~R18は相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、置換もしくは無置換の縮合多環芳香族基、置換もしくは無置換のアリールオキシ基、または芳香族炭化水素基、芳香族複素環基もしくは縮合多環芳香族基から選ばれる基によって置換されたジ置換アミノ基を表す。R15~R18のそれぞれの基同士が単結合で環を形成してもよく、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよい。R15~R18は、R15~R18が結合しているベンゼン環と、置換もしくは無置換のメチレン基、酸素原子、硫黄原子、またはモノアリールアミノ基の連結基を介して互いに結合して環を形成してもよい。)
  2.  前記アリールアミン化合物が下記一般式(1a)で表されることを特徴とする請求項1記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000004
       (1a)
    (式中、Ar~Arは相互に同一でも異なってもよく、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。Ar~Arは相互に同一でも異なってもよく、水素原子、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。n1は0、1または2を表す。ここで、ArとArは、単結合で環を形成してもよく、置換もしくは無置換のメチレン基、酸素原子、または硫黄原子を介して互いに結合して環を形成してもよい。ArまたはArは、ArAr-N基が結合しているベンゼン環と、単結合で環を形成してもよく、置換もしくは無置換のメチレン基、酸素原子、または硫黄原子を介して互いに結合して環を形成してもよい。)
  3.  前記正孔輸送層が第一正孔輸送層および第二正孔輸送層の2層構造であって、該第一正孔輸送層が前記一般式(1)で表されるアリールアミン化合物を含有することを特徴とする、
     請求項1または2記載の有機エレクトロルミネッセンス素子。
  4.  前記正孔輸送層が第一正孔輸送層および第二正孔輸送層の2層構造であって、該第二正孔輸送層、または前記第一正孔輸送層と発光層との間に配置された積層膜のうちの少なくとも一層に、前記一般式(1)で表されるアリールアミン化合物を含有することを特徴とする、
     請求項1または2記載の有機エレクトロルミネッセンス素子。
  5.  前記電子輸送層が、下記一般式(4)で表されるピリミジン環構造を有する化合物を含有することを特徴とする、
     請求項1~4のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000005
       (4)
    (式中、Ar11は、置換もしくは無置換の芳香族炭化水素基、または置換もしくは無置換の縮合多環芳香族基を表す。Ar12、Ar13は同一でも異なっていてもよく、水素原子、置換もしくは無置換の芳香族炭化水素基、または置換もしくは無置換の縮合多環芳香族基を表す。Ar14は、置換もしくは無置換の芳香族複素環基を表す。R19~R22は、同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または置換もしくは無置換の縮合多環芳香族基を表す。ここで、Ar12とAr13は同時に水素原子となることはないものとする。)
  6.  前記発光層が、赤色の発光材料を含有することを特徴とする、
     請求項1~5のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  7.  前記発光層が、燐光性の発光材料を含有することを特徴とする、
     請求項1~5のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  8.  前記した燐光性の発光材料がイリジウムまたは白金を含む金属錯体である、
     請求項6または7記載の有機エレクトロルミネッセンス素子。
PCT/JP2018/034990 2017-09-25 2018-09-21 有機エレクトロルミネッセンス素子 WO2019059334A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019543724A JP7250683B2 (ja) 2017-09-25 2018-09-21 有機エレクトロルミネッセンス素子
EP18859295.0A EP3690970B1 (en) 2017-09-25 2018-09-21 Organic electroluminescence device
CN201880061993.XA CN111164778B (zh) 2017-09-25 2018-09-21 有机电致发光元件
KR1020207010915A KR102687394B1 (ko) 2017-09-25 2018-09-21 유기 일렉트로 루미네선스 소자
US16/650,717 US11605785B2 (en) 2017-09-25 2018-09-21 Organic electroluminescence device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017183655 2017-09-25
JP2017-183655 2017-09-25

Publications (1)

Publication Number Publication Date
WO2019059334A1 true WO2019059334A1 (ja) 2019-03-28

Family

ID=65810221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034990 WO2019059334A1 (ja) 2017-09-25 2018-09-21 有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (1) US11605785B2 (ja)
EP (1) EP3690970B1 (ja)
JP (1) JP7250683B2 (ja)
KR (1) KR102687394B1 (ja)
CN (1) CN111164778B (ja)
TW (1) TWI790287B (ja)
WO (1) WO2019059334A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110326123A (zh) * 2017-03-28 2019-10-11 保土谷化学工业株式会社 有机电致发光元件
CN114276366A (zh) * 2021-04-20 2022-04-05 北京八亿时空液晶科技股份有限公司 一种吲哚衍生物及其应用
CN114031609A (zh) * 2021-12-14 2022-02-11 北京燕化集联光电技术有限公司 一种含咔唑及喹唑啉类结构化合物及其应用
CN114805386B (zh) * 2022-06-08 2024-02-09 上海钥熠电子科技有限公司 有机化合物、主体材料和有机光电器件

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943840B1 (ja) 1970-12-25 1974-11-25
JPH0848656A (ja) 1994-02-08 1996-02-20 Tdk Corp 有機el素子用化合物および有機el素子
JP3194657B2 (ja) 1993-11-01 2001-07-30 松下電器産業株式会社 電界発光素子
JP2004253298A (ja) * 2003-02-21 2004-09-09 Konica Minolta Holdings Inc 白色発光有機エレクトロルミネッセンス素子
US20050236976A1 (en) * 2003-12-31 2005-10-27 Ritdisplay Corporation Organic electroluminescent device
JP2006151979A (ja) 2004-11-29 2006-06-15 Samsung Sdi Co Ltd フェニルカルバゾール系化合物とその製造方法及び有機電界発光素子
WO2008062636A1 (en) 2006-11-24 2008-05-29 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using the same
KR20130060157A (ko) 2011-11-29 2013-06-07 에스에프씨 주식회사 안트라센 유도체 및 이를 포함하는 유기전계발광소자
WO2014009310A1 (en) 2012-07-09 2014-01-16 Novaled Ag Doped organic semiconductive matrix material
JP2014513064A (ja) 2011-03-08 2014-05-29 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 新規な有機エレクトロルミネッセンス化合物およびそれを用いる有機エレクトロルミネッセンス素子
WO2016111270A1 (ja) * 2015-01-07 2016-07-14 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
WO2017073594A1 (ja) * 2015-10-29 2017-05-04 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
WO2017122813A1 (ja) * 2016-01-14 2017-07-20 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69412567T2 (de) 1993-11-01 1999-02-04 Hodogaya Chemical Co., Ltd., Tokio/Tokyo Aminverbindung und sie enthaltende Elektrolumineszenzvorrichtung
EP0666298A3 (en) 1994-02-08 1995-11-15 Tdk Corp Organic electroluminescent element and compound used therein.
JP4442114B2 (ja) * 2002-05-14 2010-03-31 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及び表示装置
CN1956945B (zh) 2004-05-25 2010-09-22 保土谷化学工业株式会社 对三联苯化合物和使用该化合物的电子照相用感光体
KR102137429B1 (ko) * 2013-07-11 2020-07-24 덕산네오룩스 주식회사 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
JP3194657U (ja) 2014-09-19 2014-12-04 恵美子 青柳 温熱首巻
KR102388728B1 (ko) 2015-03-31 2022-04-21 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
US20180362843A1 (en) * 2015-12-08 2018-12-20 Hodogaya Chemical Co., Ltd. Organic electroluminescent device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943840B1 (ja) 1970-12-25 1974-11-25
JP3194657B2 (ja) 1993-11-01 2001-07-30 松下電器産業株式会社 電界発光素子
JPH0848656A (ja) 1994-02-08 1996-02-20 Tdk Corp 有機el素子用化合物および有機el素子
JP2004253298A (ja) * 2003-02-21 2004-09-09 Konica Minolta Holdings Inc 白色発光有機エレクトロルミネッセンス素子
US20050236976A1 (en) * 2003-12-31 2005-10-27 Ritdisplay Corporation Organic electroluminescent device
JP2006151979A (ja) 2004-11-29 2006-06-15 Samsung Sdi Co Ltd フェニルカルバゾール系化合物とその製造方法及び有機電界発光素子
WO2008062636A1 (en) 2006-11-24 2008-05-29 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using the same
JP2014513064A (ja) 2011-03-08 2014-05-29 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 新規な有機エレクトロルミネッセンス化合物およびそれを用いる有機エレクトロルミネッセンス素子
KR20130060157A (ko) 2011-11-29 2013-06-07 에스에프씨 주식회사 안트라센 유도체 및 이를 포함하는 유기전계발광소자
WO2014009310A1 (en) 2012-07-09 2014-01-16 Novaled Ag Doped organic semiconductive matrix material
WO2016111270A1 (ja) * 2015-01-07 2016-07-14 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
WO2017073594A1 (ja) * 2015-10-29 2017-05-04 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
WO2017122813A1 (ja) * 2016-01-14 2017-07-20 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
APPL.PHYS.LET., vol. 98, 2011
JAPAN OLED FORUM, PROCEEDINGS OF THE THIRD MEETING, 2006, pages 13 - 14
See also references of EP3690970A4
THE JAPAN SOCIETY OF APPLIED PHYSICS, PROCEEDINGS OF THE NINTH WORKSHOP, 2001, pages 23 - 31

Also Published As

Publication number Publication date
EP3690970B1 (en) 2023-04-05
EP3690970A4 (en) 2021-07-07
EP3690970A1 (en) 2020-08-05
TWI790287B (zh) 2023-01-21
US20200287141A1 (en) 2020-09-10
JPWO2019059334A1 (ja) 2020-11-05
JP7250683B2 (ja) 2023-04-03
KR102687394B1 (ko) 2024-07-22
CN111164778B (zh) 2023-04-25
KR20200057731A (ko) 2020-05-26
US11605785B2 (en) 2023-03-14
TW201920604A (zh) 2019-06-01
CN111164778A (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
WO2017138569A1 (ja) 有機エレクトロルミネッセンス素子
WO2017086357A1 (ja) 有機エレクトロルミネッセンス素子
WO2018092561A1 (ja) 有機エレクトロルミネッセンス素子
WO2016017594A1 (ja) 有機エレクトロルミネッセンス素子
WO2017122813A1 (ja) 有機エレクトロルミネッセンス素子
KR102687394B1 (ko) 유기 일렉트로 루미네선스 소자
WO2016111270A1 (ja) 有機エレクトロルミネッセンス素子
JP7217320B2 (ja) 有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
WO2019026728A1 (ja) ベンゾアゾール環構造を有する化合物を含有する有機エレクトロルミネッセンス素子
WO2019054233A1 (ja) 有機エレクトロルミネッセンス素子
JP7394050B2 (ja) ベンゾイミダゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
KR20190128169A (ko) 유기 일렉트로루미네선스 소자
WO2021177022A1 (ja) 有機エレクトロルミネッセンス素子
JP7421494B2 (ja) 有機エレクトロルミネッセンス素子
JP7369714B2 (ja) アザベンゾオキサゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
WO2017099155A1 (ja) 有機エレクトロルミネッセンス素子
JP7065029B2 (ja) アリールジアミン化合物及び有機エレクトロルミネッセンス素子
JP6479770B2 (ja) キノリノトリアゾール誘導体および有機エレクトロルミネッセンス素子
WO2019049965A1 (ja) ピリミジン環構造を有する化合物および有機エレクトロルミネッセンス素子
KR20240151773A (ko) 아릴아민 화합물, 유기 일렉트로루미네선스 소자, 및 전자 기기
KR20240022707A (ko) 아릴아민 화합물, 유기 일렉트로루미네센스 소자 및 전자 기기
WO2019039402A1 (ja) インデノベンゾアゾール環構造を有する化合物および有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859295

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019543724

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207010915

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018859295

Country of ref document: EP

Effective date: 20200428