WO2017099155A1 - 有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2017099155A1
WO2017099155A1 PCT/JP2016/086458 JP2016086458W WO2017099155A1 WO 2017099155 A1 WO2017099155 A1 WO 2017099155A1 JP 2016086458 W JP2016086458 W JP 2016086458W WO 2017099155 A1 WO2017099155 A1 WO 2017099155A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
aromatic
atom
carbon atoms
compound
Prior art date
Application number
PCT/JP2016/086458
Other languages
English (en)
French (fr)
Inventor
秀一 林
直朗 樺澤
剛史 山本
望月 俊二
Original Assignee
保土谷化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 保土谷化学工業株式会社 filed Critical 保土谷化学工業株式会社
Priority to US15/781,986 priority Critical patent/US20180362843A1/en
Priority to CN201680071554.8A priority patent/CN108369994B/zh
Priority to EP16873048.9A priority patent/EP3389106B1/en
Priority to KR1020187019115A priority patent/KR102654994B1/ko
Priority to JP2017555119A priority patent/JP6752226B2/ja
Publication of WO2017099155A1 publication Critical patent/WO2017099155A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/12Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D495/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure

Definitions

  • the present invention relates to an organic electroluminescence element (hereinafter abbreviated as an organic EL element) which is a self-luminous element suitable for various display devices, and more specifically, a specific arylamine compound and a specific indenoindole compound.
  • an organic EL element which is a self-luminous element suitable for various display devices, and more specifically, a specific arylamine compound and a specific indenoindole compound.
  • the present invention relates to an organic EL element using a specific carbazole compound (and a specific anthracene derivative).
  • the organic EL element is a self-luminous element, it is brighter and more visible than a liquid crystal element, and a clear display is possible. Therefore, active research has been done.
  • the light emitting layer can also be produced by doping a charge transporting compound generally called a host material with a fluorescent compound, a phosphorescent compound, or a material that emits delayed fluorescence.
  • a charge transporting compound generally called a host material with a fluorescent compound, a phosphorescent compound, or a material that emits delayed fluorescence.
  • the selection of the organic material in the organic EL element greatly affects various characteristics such as efficiency and durability of the element.
  • the organic EL element In the organic EL element, light injected from both electrodes is recombined in the light emitting layer to obtain light emission. Therefore, in an organic EL device, it is important how efficiently both holes and electrons are transferred to the light emitting layer, and it is necessary to make the device excellent in carrier balance. In addition, the probability of recombination of holes and electrons is improved by improving the hole injection property and blocking the electron injected from the cathode, and further excitons generated in the light emitting layer. By confining, high luminous efficiency can be obtained. Therefore, the role of the hole transport material is important, and there is a demand for a hole transport material that has high hole injectability, high hole mobility, high electron blocking properties, and high durability against electrons. ing.
  • the heat resistance and amorphousness of the material are also important.
  • thermal decomposition occurs even at a low temperature due to heat generated when the element is driven, and the material deteriorates.
  • crystallization of the thin film occurs even in a short time, and the element deteriorates. For this reason, the material used is required to have high heat resistance and good amorphous properties.
  • NPD N, N′-diphenyl-N, N′-di ( ⁇ -naphthyl) benzidine
  • various aromatic amine derivatives have been known as hole transport materials for organic EL devices (Patent Documents). 1 and Patent Document 2).
  • NPD has a good hole transport capability, but its glass transition point (Tg), which is an index of heat resistance, is as low as 96 ° C., and device characteristics are degraded by crystallization under high temperature conditions.
  • Tg glass transition point
  • Patent Document 1 and Patent Document 2 there are compounds having excellent mobility such as hole mobility of 10 ⁇ 3 cm 2 / Vs or more.
  • the amine derivative has insufficient electron blocking properties.
  • Patent Document 3 discloses a highly durable aromatic amine derivative. Such an aromatic amine derivative is used as a charge transport material for an electrophotographic photoreceptor, and is used in an organic EL device. There are no examples used.
  • Patent Document 4 and Patent Document 5 disclose arylamine compounds having a substituted carbazole structure as compounds having improved characteristics such as heat resistance and hole injection properties.
  • devices using such compounds in the hole injection layer or the hole transport layer have improved heat resistance and light emission efficiency, but are still not sufficient, and further lower drive voltage and higher There is a need for higher luminous efficiency.
  • JP-A-8-048656 Japanese Patent No. 3194657 Japanese Patent No. 4943840 JP 2006-151979 A WO2008 / 62636 Special table 2014-513064 gazette WO2011 / 059000 Publication WO2003 / 060956 Korean Open Patent 2013-060157 JP-A-7-126615 JP 2005-108804 A
  • the object of the present invention is to provide various materials for organic EL elements that are excellent in hole injection / transport performance, electron injection / transport performance, electron blocking ability, thin film state stability or durability as materials for organic EL elements.
  • the present inventors have focused on the fact that arylamine-based materials are excellent in hole injection / transport capability, stability in a thin film state, and durability.
  • the hole transport layer formed using such a material was considered to be able to efficiently inject and transport holes to the light emitting layer. Further, attention was paid to the fact that the compound having an indenoindole ring structure and the compound having a carbazole ring structure are excellent in luminous efficiency. Then, such a compound is selected as a material for the light emitting layer, and further, a hole transport material is combined so as to achieve carrier balance in accordance with the characteristics of the material of the light emitting layer, and various organic EL devices are produced, and device characteristics are evaluated. I did it earnestly.
  • the present inventors paid attention to the fact that the compound having an anthracene ring structure is excellent in the electron injection / transport ability, the stability and durability of the thin film, and the materials of the hole transport layer and the light emitting layer described above.
  • the material was combined with a compound having a specific anthracene ring structure as the material for the electron transport layer, so that the efficiency of injecting and transporting electrons to the light emitting layer was improved, and the carrier balance further matched the characteristics of the material of the light emitting layer. And the characteristic evaluation of the element was earnestly performed.
  • the hole transport layer has a two-layer structure of a first hole transport layer and a second hole transport layer, and the second hole transport layer uses the above arylamine-based material with excellent electron blocking properties.
  • two specific types of arylamine compounds are selected as the material for the first hole transport layer so that holes can be efficiently injected and transported to the light emitting layer, that is, a material with a refined carrier balance.
  • Various combinations of organic EL elements were produced by selecting the combinations. And the characteristic evaluation of the element was earnestly performed. As a result, the present invention has been completed.
  • an organic electroluminescence device having at least an anode, a hole transport layer, a light emitting layer, an electron transport layer and a cathode in this order
  • the hole transport layer contains an arylamine compound represented by the following general formula (1)
  • an organic EL device wherein the light emitting layer contains an indenoindole compound represented by the following general formula (2) or a carbazole compound represented by the following general formula (3).
  • Ar 1 to Ar 5 may be the same or different and each represents an aromatic hydrocarbon group, Represents an aromatic heterocyclic group or a condensed polycyclic aromatic group.
  • a 1 represents an aromatic hydrocarbon divalent group, an aromatic heterocyclic divalent group, a condensed polycyclic aromatic divalent group or a single bond
  • Ar 6 represents an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group
  • R 1 to R 8 may be the same or different and are a hydrogen atom; a deuterium atom; A fluorine atom; a chlorine atom; a cyano group; a nitro group; an alkyl group having 1 to 6 carbon atoms; a cycloalkyl group having 5 to 10 carbon atoms; an alkenyl group having 2 to 6 carbon atoms; Alkyloxy group; cycloalkyloxy group having 5 to 10 carbon atoms; aromatic hydrocarbon group; An aromatic heterocyclic group; a condensed polycyclic aromatic group; an aryloxy group; or a disubstituted amino group substituted by a group selected from an aromatic hydrocarbon group, an aromatic heterocyclic group or a
  • R 1 to R 4 may be bonded to each other via a substituted or unsubstituted methylene group, oxygen atom, sulfur atom or monoarylamino group to form a ring, and R 5 to R
  • the other groups of R 5 to R 8 are bonded to the vacancies generated when a part of 8 is eliminated from the benzene ring via a substituted or unsubstituted methylene group, oxygen atom, sulfur atom or monoarylamino group. To form a ring.
  • R 9 and R 10 may be the same or different and each represents an alkyl group having 1 to 6 carbon atoms, an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group, and is a single bond or a substituted group. Alternatively, they may be bonded to each other via an unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring.
  • a 2 represents an aromatic hydrocarbon divalent group, an aromatic heterocyclic divalent group, a condensed polycyclic aromatic divalent group or a single bond
  • Ar 7 represents an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group
  • R 11 to R 18 may be the same or different, and are hydrogen atom; deuterium atom; fluorine atom; chlorine atom; cyano group; nitro group; An alkyl group having 6 to 10 carbon atoms; a cycloalkyl group having 5 to 10 carbon atoms; an alkenyl group having 2 to 6 carbon atoms; an alkyloxy group having 1 to 6 carbon atoms; a cycloalkyloxy group having 5 to 10 carbon atoms; Aromatic hydrocarbon group; aromatic heterocyclic group; condensed polycyclic aromatic group; aryloxy group; or substituted by a group selected from aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group It is di-substitute
  • the electron transport layer contains an anthracene derivative represented by the following general formula (4).
  • a 3 represents an aromatic hydrocarbon divalent group, an aromatic heterocyclic divalent group, a condensed polycyclic aromatic divalent group or a single bond
  • B represents an aromatic heterocyclic group
  • C represents an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group, and when there are two C, the two Cs may be the same or different
  • D may be the same or different and is a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, cyano group, trifluoromethyl group, 1 carbon atom.
  • the anthracene derivative is represented by the following general formula (4a).
  • Ar 8 to Ar 10 may be the same or different and each represents an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group;
  • R 19 to R 25 may be the same or different, and are a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, or a carbon atom number of 1 to An alkyl group having 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkyloxy group having 1 to 6 carbon atoms, a cycloalkyloxy group having 5 to 10 carbon atoms, An aromatic hydrocarbon group, an aromatic heterocyclic group, a condensed polycyclic aromatic group or an aryloxy group, which is bonded to each other via a single bond, a substituted or unsubstituted m
  • X 1 to X 4 may be the same or different and each represents a carbon atom or a nitrogen atom, and only one of X 1 to X 4 is a nitrogen atom, and in this case, the nitrogen atom is R 19 to R 22 Without hydrogen atom or substituent.
  • the anthracene derivative is represented by the following general formula (4b). Where A 3 has the same meaning as described in the general formula (4), Ar 11 to Ar 13 may be the same or different and each represents an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group. 5)
  • the anthracene derivative is represented by the following general formula (4c).
  • Ar 14 to Ar 16 may be the same or different and each represents an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group;
  • R 26 is a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, cyano group, nitro group, alkyl group having 1 to 6 carbon atoms, or 5 to 1 carbon atoms.
  • the hole transport layer has a two-layer structure of a first hole transport layer and a second hole transport layer, and the second hole transport layer is located on the light emitting layer side.
  • an arylamine compound represented by the general formula (1) represented by the general formula (1).
  • the light emitting layer contains a red light emitting material.
  • the light emitting layer contains a phosphorescent light emitting material.
  • the phosphorescent light-emitting material is a metal complex containing iridium or platinum.
  • arylamine compound I has higher hole injection / transport performance and electron blocking performance than conventional hole transport materials. . Furthermore, the thin film state is stable and the heat resistance is also excellent. Therefore, it is suitable as a constituent material for the hole transport layer. It can also be used as a constituent material of a hole injection layer or an electron blocking layer.
  • the indenoindole compound represented by the general formula (2) (hereinafter sometimes referred to as indenoindole compound II) and the carbazole compound represented by the general formula (3) (hereinafter referred to as the indenoindole compound II).
  • carbazole compound III As a constituent material of the light emitting layer, preferably as a host material of the light emitting layer, particularly preferably as a host material of the light emitting layer having a phosphorescent light emitting material. The This is because the indenoindole compound II and the carbazole compound III are superior in luminous efficiency compared to conventional materials.
  • an anthracene derivative represented by the general formula (4) (hereinafter sometimes referred to as anthracene derivative IV) is preferably used as a constituent material of the electron transport layer. This is because the anthracene derivative IV is excellent in electron injection and transport capability, and further excellent in stability and durability in a thin film state.
  • a material having excellent structure such as hole injection / transport performance, electron injection / transport performance, thin film state stability, durability, etc. is selected, and light emission using a material having a specific structure.
  • a hole transport layer using an arylamine compound having a specific structure is combined with the layer.
  • an organic EL element having high light emission efficiency and low driving voltage, excellent durability, and particularly long life is realized.
  • FIG. 1 is a diagram showing the structural formulas of compounds 1-1 to 1-10 that are arylamine compounds I.
  • FIG. 2 is a diagram showing the structural formulas of compounds 1-11 to 1-18 that are arylamine compounds I.
  • FIG. 2 is a diagram showing the structural formulas of compounds 1-19 to 1-28 which are arylamine compounds I.
  • FIG. 3 is a diagram showing the structural formulas of compounds 1-29 to 1-36 which are arylamine compounds I.
  • FIG. 2 is a diagram showing a structural formula of compounds 1-37 to 1-44 which are arylamine compounds I.
  • FIG. 3 is a diagram showing a structural formula of compounds 1-45 to 1-52 which are arylamine compounds I.
  • FIG. 2 is a diagram showing the structural formulas of compounds 1-53 to 1-60, which are arylamine compounds I.
  • FIG. 2 is a diagram showing the structural formulas of compounds 1-61 to 1-68 which are arylamine compounds I.
  • FIG. 2 is a diagram showing the structural formulas of compounds 1-69 to 1-76 which are arylamine compounds I.
  • FIG. 2 is a diagram showing the structural formulas of Compounds 1-77 to 1-84 that are arylamine compounds I.
  • FIG. 3 is a diagram showing the structural formulas of compounds 1-85 to 1-94 which are arylamine compounds I.
  • FIG. 1 is a diagram showing a structural formula of compounds 1-95 to 1-100 that are arylamine compounds I.
  • FIG. 3 is a diagram showing the structural formulas of compounds 2-1 to 2-8 that are indenoindole compounds II.
  • FIG. 3 is a diagram showing the structural formulas of compounds 2-9 to 2-15 which are indenoindole compounds II.
  • FIG. 3 is a diagram showing the structural formulas of compounds 3-1 to 3-8 that are carbazole compounds III.
  • FIG. 3 is a diagram showing the structural formulas of compounds 3-9 to 3-16 that are carbazole compounds III.
  • FIG. 3 is a diagram showing a structural formula of compounds 3-17 to 3-23 which are carbazole compounds III.
  • FIG. 4 is a diagram showing the structural formulas of compounds 4a-1 to 4a-8 which are anthracene derivatives IV.
  • FIG. 4 is a diagram showing a structural formula of compounds 4a-9 to 4a-16 that are anthracene derivatives IV.
  • FIG. 4 is a diagram showing a structural formula of compounds 4a-17 to 4a-20 which are anthracene derivatives IV.
  • FIG. 4 is a diagram showing a structural formula of compounds 4b-1 to 4b-8 that are anthracene derivatives IV.
  • FIG. 4 is a diagram showing a structural formula of compounds 4b-9 to 4b-16 which are anthracene derivatives IV.
  • FIG. 4 is a diagram showing the structural formulas of compounds 4c-1 to 4c-6 that are anthracene derivatives IV.
  • FIG. 4 is a diagram showing the structural formulas of compounds 4c-1 to 4c-6 that are anthracene derivatives IV.
  • FIG. 4 is a diagram showing a structural formula of compounds 4c-7 to 4c-12 which are anthracene derivatives IV.
  • FIG. 4 is a diagram showing a structural formula of compounds 4c-13 to 4c-18 which are anthracene derivatives IV.
  • FIG. 3 is a diagram showing a structural formula of compounds 4c-19 to 4c-24 that are anthracene derivatives IV.
  • FIG. 3 is a diagram showing a structural formula of compounds 4c-25 to 4c-30, which are anthracene derivatives IV.
  • FIG. 3 is a diagram showing the structural formulas of compounds 5-1 to 5-8 that are triarylamine compounds V.
  • FIG. 5 is a diagram showing the structural formulas of compounds 5-9 to 5-16, which are triarylamine compounds V.
  • FIG. 3 is a diagram showing the structural formulas of compounds 5-17 to 5-23 that are triarylamine compounds V. It is a figure which shows structural formula of compounds other than the triarylamine compound V among the triarylamine compounds which have two triarylamine structures.
  • FIG. 3 is a diagram showing the structural formulas of compounds 6-1 to 6-3 that are triarylamine compounds VI.
  • FIG. 6 is a diagram showing the structural formulas of compounds 6-4 to 6-6 that are triarylamine compounds VI.
  • FIG. 6 is a diagram showing the structural formulas of compounds 6-7 to 6-10 that are triarylamine compounds VI.
  • FIG. 6 is a diagram showing the structural formulas of compounds 6-11 to 6-14 that are triarylamine compounds VI.
  • FIG. 6 is a diagram showing the structural formulas of compounds 6-15 to 6-17, which are triarylamine compounds VI.
  • the organic EL device of the present invention has a basic structure in which at least an anode, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode are provided in this order on a substrate.
  • the layer structure of the organic EL element of the present invention can take various forms.
  • a hole injection layer is provided between the anode and the hole transport layer
  • an electron blocking layer is provided between the hole transport layer and the light emitting layer
  • a hole blocking layer is provided between the light emitting layer and the electron transport layer.
  • some organic layers can be omitted or doubled.
  • a structure in which two or more organic layers having the same function are stacked can be used.
  • FIG. 1 shows a layer structure employed in an example described later, that is, a transparent anode 2, a hole injection layer 3, a first hole transport layer 4 a, and a second hole on a glass substrate 1.
  • a layer configuration in which the transport layer 4b, the light emitting layer 5, the electron transport layer 6, the electron injection layer 7 and the cathode 8 are formed in this order is shown.
  • the positive hole transport layer contains the arylamine compound I represented by General formula (1), and also a light emitting layer is General formula (2).
  • the arylamine compound I, the indenoindole compound II, and the carbazole compound III will be described.
  • the arylamine compound I contained in the hole transport layer has a structure represented by the following general formula (1).
  • Ar 1 to Ar 5 may be the same or different and each represents an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group.
  • the condensed polycyclic aromatic group does not have a hetero atom (for example, a nitrogen atom, an oxygen atom, a sulfur atom, etc.) in its skeleton.
  • aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 1 to Ar 5 include phenyl group, biphenylyl group, terphenylyl group, naphthyl group, anthracenyl group, phenanthrenyl.
  • the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 1 to Ar 5 may be unsubstituted or may have a substituent.
  • substituents include the following groups in addition to the deuterium atom, cyano group, and nitro group.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom
  • An alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, n- Propyl group, isopropyl group, n-butyl group, isobutyl group, ter t-butyl group, n-pentyl group, isopentyl group, neopentyl group, an n-hexyl group
  • An alkyloxy group having 1 to 6 carbon atoms such as a methyloxy group, an ethyloxy group, or a propyloxy group
  • An alkenyl group such as a vinyl group, an allyl group
  • An aryloxy group such as a phenyloxy group, a tolyloxy group
  • Arylalkyloxy groups such as benzyloxy group, phenethyl
  • substituents may be unsubstituted, or may be further substituted with the substituents exemplified above. These substituents may exist independently and may not form a ring, but may be bonded to each other through a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring. It may be formed.
  • Ar 1 and Ar 3 are preferably an aromatic hydrocarbon group or a condensed polycyclic aromatic group. Specifically, a phenyl group, a biphenylyl group, a terphenylyl group, a naphthyl group, a phenanthrenyl group, an anthracenyl group or a fluorenyl group is preferable, and a phenyl group or a biphenylyl group is more preferable. These groups may be the same or different, but are preferably the same. Moreover, it is more preferable that it is unsubstituted from a vapor deposition viewpoint.
  • Ar 2 is preferably an aromatic hydrocarbon group or a condensed polycyclic aromatic group.
  • a phenyl group, a biphenylyl group, a terphenylyl group, a naphthyl group, a phenanthrenyl group, an anthracenyl group or a fluorenyl group is more preferable.
  • a phenyl group or a biphenylyl group is particularly preferred.
  • the substituent that the phenyl group may have is preferably a condensed polycyclic aromatic group, more preferably a naphthyl group, a phenanthrenyl group or an anthracenyl group, and particularly preferably a naphthyl group.
  • Ar 4 and Ar 5 may be the same or different, and are preferably an aromatic hydrocarbon group or a condensed polycyclic aromatic group. From the viewpoint of vapor deposition properties, Ar 4 or Ar 5 preferably has 6 to 30 carbon atoms, and more preferably 6 to 25 carbon atoms.
  • a phenyl group a biphenylyl group, a terphenylyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a fluorenyl group, a spirobifluorenyl group, an indenyl group, a pyrenyl group, a perylenyl group, a fluoranthenyl group, or a triphenylenyl group.
  • a phenyl group, a biphenylyl group, a terphenylyl group, a naphthyl group, a phenanthrenyl group, an anthracenyl group, a fluorenyl group, or a spirobifluorenyl group is more preferable.
  • the substituent that the phenyl group may have is preferably a naphthyl group.
  • the substituent that the fluorenyl group may have is preferably a methyl group or a phenyl group.
  • arylamine compounds I Specific examples of preferred arylamine compounds I are shown in FIGS. 2 to 13, but the arylamine compounds I are not limited to these compounds.
  • the arylamine compound I can be synthesized by a known method, and can be produced, for example, by cross coupling such as Suzuki coupling.
  • the purification of the arylamine compound I can be performed by purification by column chromatography, adsorption purification by silica gel, activated carbon, activated clay, etc., recrystallization or crystallization by a solvent, and the like. Finally, purification by sublimation purification or the like may be performed.
  • the compound can be identified by NMR analysis. As physical properties, glass transition point (Tg) and work function can be measured.
  • Glass transition point (Tg) is an indicator of the stability of the thin film state.
  • the glass transition point (Tg) can be measured with a high sensitivity differential scanning calorimeter (made by Bruker AXS, DSC3100SA) using powder.
  • Work function is an indicator of hole transportability.
  • the work function can be obtained by preparing a 100 nm thin film on an ITO substrate and using an ionization potential measuring apparatus (Sumitomo Heavy Industries, Ltd., PYS-202).
  • arylamine compound I for example, indenoindole compound II, carbazole compound III, anthracene derivative IV, triarylamine compound V, triarylamine compound VI and the like described later.
  • the indenoindole compound II contained in the light emitting layer has a structure represented by the following general formula (2).
  • a 1 represents an aromatic hydrocarbon divalent group, an aromatic heterocyclic divalent group, a condensed polycyclic aromatic divalent group or a single bond.
  • the aromatic hydrocarbon divalent group, aromatic heterocyclic divalent group or condensed polycyclic aromatic divalent group is derived from the aromatic hydrocarbon, aromatic heterocyclic ring or condensed polycyclic aromatic group. Represents a divalent group formed by removing two hydrogen atoms.
  • Divalent aromatic hydrocarbon represented by A 1 an aromatic hydrocarbon in the divalent divalent group or condensed polycyclic aromatic aromatic heterocyclic, aromatic heterocyclic ring or condensed polycyclic aromatic Specifically, benzene, biphenyl, terphenyl, tetrakisphenyl, styrene, naphthalene, anthracene, acenaphthalene, fluorene, phenanthrene, indane, pyrene, triphenylene, pyridine, pyrimidine, triazine, pyrrole, furan, thiophene, quinoline, isoquinoline Benzofuran, benzothiophene, indoline, carbazole, carboline, benzoxazole, benzothiazole, quinoxaline, benzimidazole, pyrazole, dibenzofuran, dibenzothiophene, naphthyridine, phenanthroline, acridine, etc
  • Divalent aromatic hydrocarbon groups represented by A 1 divalent divalent group or condensed polycyclic aromatic-aromatic heterocyclic ring may be unsubstituted but may have a substituent.
  • substituents are the substituents that the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 1 to Ar 5 in the general formula (1) may have. The same thing can be mentioned. The aspect which a substituent can take is also the same.
  • Ar 6 represents an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group.
  • aromatic hydrocarbon group aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 6
  • aromatic hydrocarbon group represented by Ar 1 to Ar 5 in the general formula (1) The thing similar to what was shown regarding the aromatic heterocyclic group or condensed polycyclic aromatic group can be mentioned.
  • the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 6 may be unsubstituted or may have a substituent.
  • substituents are the substituents that the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 1 to Ar 5 in the general formula (1) may have. The same thing can be mentioned. The aspect which a substituent can take is also the same.
  • R 1 to R 8 may be the same or different, and are a hydrogen atom; a deuterium atom; a fluorine atom; a chlorine atom; a cyano group; a nitro group; an alkyl group having 1 to 6 carbon atoms; A cycloalkyl group; an alkenyl group having 2 to 6 carbon atoms; an alkyloxy group having 1 to 6 carbon atoms; a cycloalkyloxy group having 5 to 10 carbon atoms; an aromatic hydrocarbon group; an aromatic heterocyclic group; A polycyclic aromatic group; an aryloxy group; or a disubstituted amino group substituted by a group selected from an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group.
  • the alkyl group having 1 to 6 carbon atoms, the alkenyl group having 2 to 6 carbon atoms, and the alkyloxy group having 1 to 6 carbon atoms may be linear or branche
  • R 1 to R 4 may be present independently and do not form a ring.
  • a single bond, a substituted or unsubstituted methylene group And may be bonded to each other via an oxygen atom or a sulfur atom to form a ring.
  • R 5 to R 8 may be independently present and may not form a ring, but may be bonded to each other via a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom.
  • a ring may be formed.
  • R 1 to R 4 are substituted or unsubstituted at vacancies generated by elimination of a part of R 1 to R 4 from the benzene ring. May be linked via a methylene group, an oxygen atom, a sulfur atom or a monoarylamino group to form a ring.
  • other groups of R 5 to R 8 may be substituted or unsubstituted methylene groups, oxygen atoms, sulfur atoms or monoaryls at vacancies resulting from elimination of part of R 5 to R 8 from the benzene ring.
  • a ring may be formed by bonding via an amino group.
  • R 1 to R 8 are disubstituted amino groups
  • the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group in the disubstituted amino group is used for ring formation with the benzene ring.
  • the aryl group of the monoarylamino group includes an aromatic hydrocarbon group represented by Ar 1 to Ar 5 in the general formula (1), and an aromatic complex.
  • the thing similar to what was shown regarding the cyclic group or condensed polycyclic aromatic group can be mentioned.
  • the aryl group in this case may be unsubstituted or may have a substituent.
  • Examples of the substituent are the substituents that the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 1 to Ar 5 in the general formula (1) may have.
  • the same thing can be mentioned.
  • the aspect which a substituent can take is also the same.
  • alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms or the alkenyl group having 2 to 6 carbon atoms represented by R 1 to R 8 include a methyl group, ethyl Group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, etc .; cyclopentyl group, cyclohexyl group, 1-adamantyl group And 2-adamantyl group; vinyl group, allyl group, isopropenyl group, 2-butenyl group and the like.
  • the alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms, or the alkenyl group having 2 to 6 carbon atoms represented by R 1 to R 8 may be unsubstituted but has a substituent. You may do it. Examples of the substituent include the following groups in addition to the deuterium atom, cyano group, and nitro group.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom;
  • An alkyloxy group having 1 to 6 carbon atoms such as a methyloxy group, an ethyloxy group, or a propyloxy group;
  • An alkenyl group such as a vinyl group, an allyl group;
  • An aryloxy group such as a phenyloxy group, a tolyloxy group;
  • Arylalkyloxy groups such as benzyloxy group, phenethyloxy group;
  • Aromatic hydrocarbon group or condensed polycyclic aromatic group such as phenyl group, biphenylyl group, terphenylyl group, naphthyl group, anthracenyl group, Phenanthrenyl group, fluorenyl group, indenyl group, pyrenyl group, Perylenyl group, fluoranthenyl group, trip
  • substituents may be unsubstituted, but the substituents exemplified above may be further substituted. These substituents may exist independently and may not form a ring, but may be bonded to each other through a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring. It may be formed.
  • alkyloxy group having 1 to 6 carbon atoms or the cycloalkyloxy group having 5 to 10 carbon atoms represented by R 1 to R 8 include a methyloxy group, an ethyloxy group, and an n-propyloxy group. , Isopropyloxy group, n-butyloxy group, tert-butyloxy group, n-pentyloxy group, n-hexyloxy group, cyclopentyloxy group, cyclohexyloxy group, cycloheptyloxy group, cyclooctyloxy group, 1-adamantyloxy group And 2-adamantyloxy group.
  • R 1 to R 8 may be unsubstituted or may have a substituent.
  • the substituent may be an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms represented by R 1 to R 8. Mention may be made of those similar to those shown for good substituents. The aspect which a substituent can take is also the same.
  • Examples of the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 1 to R 8 include the aromatic carbon groups represented by Ar 1 to Ar 5 in the general formula (1). The thing similar to what was shown regarding the hydrogen group, the aromatic heterocyclic group, or the condensed polycyclic aromatic group can be mentioned.
  • R 1 to R 8 may be unsubstituted or may have a substituent.
  • substituents are the substituents that the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 1 to Ar 5 in the general formula (1) may have. The same thing can be mentioned. The aspect which a substituent can take is also the same.
  • aryloxy group represented by R 1 to R 8 include a phenyloxy group, a biphenylyloxy group, a terphenylyloxy group, a naphthyloxy group, an anthracenyloxy group, and a phenanthrenyloxy group. Fluorenyloxy group, indenyloxy group, pyrenyloxy group, perylenyloxy group and the like.
  • the aryloxy group represented by R 1 to R 8 may be unsubstituted or may have a substituent.
  • substituents are the substituents that the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 1 to Ar 5 in the general formula (1) may have. The same thing can be mentioned. The aspect which a substituent can take is also the same.
  • the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group which the disubstituted amino group represented by R 1 to R 8 has as a substituent is Ar in the general formula (1). Examples thereof are the same as those shown for the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by 1 to Ar 5 .
  • the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group in the disubstituted amino group represented by R 1 to R 8 may be unsubstituted or may have a substituent.
  • substituents are the substituents that the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 1 to Ar 5 in the general formula (1) may have. The same thing can be mentioned. The aspect which a substituent can take is also the same.
  • R 9 and R 10 may be the same or different and each represents an alkyl group having 1 to 6 carbon atoms, an aromatic hydrocarbon group, an aromatic heterocyclic group, or a condensed polycyclic aromatic group.
  • the alkyl group having 1 to 6 carbon atoms may be linear or branched.
  • These groups may exist independently and do not form a ring, but are bonded to each other via a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring. May be.
  • Examples of the alkyl group having 1 to 6 carbon atoms represented by R 9 and R 10 are the same as those shown for the alkyl group having 1 to 6 carbon atoms represented by R 1 to R 8. be able to.
  • the alkyl group having 1 to 6 carbon atoms represented by R 9 and R 10 may be unsubstituted or may have a substituent.
  • the substituent may be an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms represented by R 1 to R 8. Mention may be made of those similar to those shown for good substituents. The aspect which a substituent can take is also the same.
  • Examples of the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 9 and R 10 include aromatic carbon groups represented by Ar 1 to Ar 5 in the general formula (1). The thing similar to what was shown regarding the hydrogen group, the aromatic heterocyclic group, or the condensed polycyclic aromatic group can be mentioned.
  • R 9 and R 10 may be unsubstituted or may have a substituent.
  • substituents are the substituents that the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 1 to Ar 5 in the general formula (1) may have. The same thing can be mentioned. The aspect which a substituent can take is also the same.
  • a 1 is preferably an aromatic hydrocarbon divalent group, a condensed polycyclic aromatic divalent group or a single bond, and a divalent group or single bond formed by removing two hydrogen atoms from benzene, biphenyl or naphthalene. More preferred is a divalent group or a single bond formed by removing two hydrogen atoms from benzene.
  • Ar 6 is preferably a phenyl group, a biphenylyl group, a naphthyl group or an aromatic heterocyclic group.
  • aromatic heterocyclic group a nitrogen-containing aromatic heterocyclic group is preferable, and a triazinyl group, a quinazolinyl group, a benzoquinazolinyl group, a benzimidazolyl group, a pyridopyrimidinyl group, a naphthyridinyl group, a pyridyl group, a quinolyl group, or an isoquinolyl group.
  • a quinazolinyl group or a benzoquinazolinyl group is particularly preferable, and a benzoquinazolinyl group is most preferable.
  • the quinazolinyl group or benzoquinazolinyl group preferably has a phenyl group as a substituent.
  • any one of R 1 to R 4 is an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group, and R 1 to R In the vacancies generated when a part of 4 is eliminated from the benzene ring, the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group is substituted or unsubstituted methylene group, oxygen atom, sulfur atom
  • a ring is formed by bonding via a linking group such as a monoarylamino group is preferred.
  • the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group is preferably a phenyl group, an indenyl group, an indolyl group, a benzofuranyl group or a benzothienyl group.
  • Rings formed with the benzene ring include fluorene ring, carbazole ring, dibenzofuran ring, dibenzothiophene ring, indenoindole ring, indenobenzofuran ring, indenobenzothiophene ring, benzofuroindole ring, benzothienoindole ring or indolo An indole ring is preferred, and a fluorene ring, dibenzofuran ring or dibenzothiophene ring is more preferred.
  • two adjacent groups among R 1 to R 4 are alkenyl groups having 2 to 6 carbon atoms, aromatic hydrocarbon groups, aromatic heterocyclic groups or
  • a preferred embodiment is a condensed polycyclic aromatic group, and these two groups are bonded to each other via a single bond to form a condensed ring together with the benzene ring to which R 1 to R 4 are bonded.
  • the alkenyl group having 2 to 6 carbon atoms, the aromatic hydrocarbon group, the aromatic heterocyclic group or the condensed polycyclic aromatic group is preferably a vinyl group or a phenyl group.
  • the ring formed by the two groups and the benzene ring to which R 1 to R 4 are bonded is preferably a naphthalene ring, a phenanthrene ring or a triphenylene ring, and more preferably a naphthalene ring or a triphenylene ring.
  • X represents a substituted or unsubstituted methylene group, oxygen atom, sulfur atom or monoarylamino group
  • a 1 , Ar 6 , R 1 to R 10 have the same meanings as described in the general formula (2).
  • the general formula (2a) is in the position to which R 1 is a vacant eliminated, the structure R 2 which is adjacent to R 1 form a condensed ring bonded through a linking group X Show.
  • the general formula (2b) is in the position to which R 3 is a vacant eliminated, the structure R 4 that are adjacent to R 3 form a condensed ring bonded through a linking group X Have.
  • the general formula (2c) has a structure in which R 3 adjacent to R 2 is bonded via a linking group X to form a condensed ring at a position where R 2 is eliminated and vacant. Have.
  • the general formula (2d) shows a structure in which R 3 (vinyl group) and R 4 (vinyl group) are bonded to form a naphthalene ring with a benzene ring to which R 1 to R 4 are bonded. Yes.
  • the general formula (2e) has a structure in which R 3 (phenyl group) and R 4 (phenyl group) are bonded to form a triphenylene ring together with the benzene ring to which R 1 to R 4 are bonded. is doing.
  • R 5 to R 8 an embodiment in which two or all adjacent groups are vinyl groups and the two adjacent vinyl groups are bonded to each other via a single bond to form a condensed ring, that is, R 5 to R
  • An embodiment in which a naphthalene ring or a phenanthrene ring is formed with a benzene ring to which 8 is bonded is preferable.
  • R 5 to R 8 are preferably hydrogen atoms.
  • R 9 and R 10 may be the same or different and are preferably an alkyl group having 1 to 6 carbon atoms, more preferably a methyl group.
  • indenoindole compound II is not limited to these compounds.
  • compounds 2-1 to 2-4, 2-9 and 2-10 correspond to the above general formula (2a)
  • compounds 2-5, 2-6, 2-11 and 2-12 represent the above general formulas
  • compounds 2-7 and 2-8 correspond to general formula (2c) above
  • Compound 2-14 corresponds to the above general formula (2d)
  • compound 2-15 corresponds to the above general formula (2e).
  • the indenoindole compound II can be synthesized according to a known method (see Patent Document 6), and for example, can be synthesized by cross coupling such as Suzuki coupling as in Examples described later.
  • the carbazole compound III contained in the light emitting layer has a structure represented by the following general formula (3).
  • a 2 represents an aromatic hydrocarbon divalent group, an aromatic heterocyclic divalent group, a condensed polycyclic aromatic divalent group or a single bond.
  • the divalent group of the aromatic hydrocarbon represented by A 2 is represented by A 1 in the general formula (2).
  • a 1 is represented by A 2 in the general formula (2).
  • the same thing as what was shown regarding the bivalent group of aromatic hydrocarbon, the bivalent group of aromatic heterocyclic ring, or the condensed polycyclic aromatic divalent group can be mentioned.
  • these divalent groups represented by A 2 may be unsubstituted or may have a substituent.
  • the aromatic hydrocarbon divalent group, aromatic heterocyclic divalent group or condensed polycyclic aromatic divalent group represented by A 1 in the general formula (2) has The thing similar to what was shown regarding the substituent which may be sufficient can be mentioned. The aspect which a substituent can take is also the same.
  • Ar 7 represents an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group.
  • Examples of the aromatic hydrocarbon group, aromatic heterocyclic group, or condensed polycyclic aromatic group represented by Ar 7 include the aromatic hydrocarbon group represented by Ar 6 in the general formula (2), and the aromatic heterocyclic group. The thing similar to what was shown regarding the cyclic group or condensed polycyclic aromatic group can be mentioned.
  • these groups represented by Ar 7 may be unsubstituted but may have a substituent.
  • substituents include those shown for the substituent that the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 6 in the general formula (2) may have. The same can be mentioned. The aspect which a substituent can take is also the same.
  • R 11 to R 18 may be the same or different, and are hydrogen atom; deuterium atom; fluorine atom; chlorine atom; cyano group; nitro group; alkyl group having 1 to 6 carbon atoms; A cycloalkyl group; an alkenyl group having 2 to 6 carbon atoms; an alkyloxy group having 1 to 6 carbon atoms; a cycloalkyloxy group having 5 to 10 carbon atoms; an aromatic hydrocarbon group; an aromatic heterocyclic group; A polycyclic aromatic group; an aryloxy group; or a disubstituted amino group substituted by a group selected from an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group.
  • the alkyl group having 1 to 6 carbon atoms, the alkenyl group having 2 to 6 carbon atoms, and the alkyloxy group having 1 to 6 carbon atoms may be linear or branched.
  • R 11 to R 14 may be independently present to form a ring, but are bonded to each other through a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring. You may do it.
  • R 15 to R 18 may be independently present and do not form a ring, but may be bonded to each other via a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom.
  • a ring may be formed. For example, in the compound 3-12 of FIG. 17, a plurality of substituents (two vinyl groups) are bonded via a single bond to form a naphthalene ring.
  • R 11 to R 14 are substituted or unsubstituted methylene groups, oxygen atoms, sulfur atoms or monoarylamino groups. May be linked to form a ring.
  • other groups of R 15 to R 18 may be substituted or unsubstituted methylene groups, oxygen atoms, sulfur atoms or monoaryls at vacancies resulting from elimination of a part of R 15 to R 18 from the benzene ring.
  • a ring may be formed by bonding via an amino group. For example, in the compound 3-12 in FIG. 17, R 12 is bonded to a vacancy generated by elimination of R 11 from the benzene ring via a sulfur atom to form a ring.
  • Examples of the aryl group in the monoarylamino group that is one of the linking groups include those similar to those shown for the aryl group in the monoarylamino group that is the linking group in the general formula (2).
  • the aryl group in the monoarylamino group may be unsubstituted or may have a substituent.
  • a substituent the thing similar to what was shown regarding the substituent which the aryl group in the monoarylamino group which is a coupling group in the said General formula (2) may have can be mentioned.
  • the aspect which a substituent can take is also the same.
  • R 11 to R 18 may be unsubstituted or may have a substituent.
  • substituents are the substituents that the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 1 to Ar 5 in the general formula (1) may have. The same thing can be mentioned. The aspect which a substituent can take is also the same.
  • a 2 is preferably an aromatic hydrocarbon divalent group, a condensed polycyclic aromatic divalent group or a single bond, and a divalent group or single bond formed by removing two hydrogen atoms from benzene, biphenyl or naphthalene. More preferred is a divalent group or a single bond formed by removing two hydrogen atoms from benzene.
  • Ar 7 is preferably a phenyl group, a biphenylyl group, a naphthyl group or an aromatic heterocyclic group, more preferably a naphthyl group or an aromatic heterocyclic group, and particularly preferably an aromatic heterocyclic group.
  • the aromatic heterocyclic group is preferably a triazinyl group, a quinazolinyl group, a benzoquinazolinyl group, a benzoimidazolyl group, a pyridopyrimidinyl group, a naphthyridinyl group, a pyridyl group, a quinolyl group or an isoquinolyl group, and a quinazolinyl group or a benzoquinazolinyl group.
  • a quinazolinyl group is particularly preferable.
  • the quinazolinyl group or benzoquinazolinyl group preferably has an aromatic hydrocarbon group as a substituent.
  • two adjacent groups out of R 11 to R 14 are an alkenyl group having 2 to 6 carbon atoms, an aromatic hydrocarbon group, an aromatic heterocyclic group, or a condensed polycyclic aromatic group.
  • An embodiment in which a condensed ring is formed with a benzene ring to which R 11 to R 14 are bonded by bonding to each other via a single bond is preferable.
  • the alkenyl group having 2 to 6 carbon atoms, the aromatic hydrocarbon group, the aromatic heterocyclic group or the condensed polycyclic aromatic group is preferably a vinyl group or a phenyl group.
  • the ring formed by the two groups and the benzene ring to which R 11 to R 14 are bonded is preferably a naphthalene ring, a phenanthrene ring or a triphenylene ring.
  • any one of R 11 to R 14 is an aromatic hydrocarbon group, an aromatic heterocyclic group or A condensed polycyclic aromatic group, and in the vacancies generated when a part of R 11 to R 14 is eliminated from the benzene ring, such an aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group,
  • a ring is formed by bonding via a linking group such as a substituted or unsubstituted methylene group, an oxygen atom, a sulfur atom, or a monoarylamino group is also preferred.
  • the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group is preferably a phenyl group, an indenyl group, an indolyl group, a benzofuranyl group or a benzothienyl group.
  • Rings formed with the benzene ring include fluorene ring, carbazole ring, dibenzofuran ring, dibenzothiophene ring, indenoindole ring, indenobenzofuran ring, indenobenzothiophene ring, benzofuroindole ring, benzothienoindole ring or indolo Indole rings are preferred.
  • R 15 to R 18 and the remaining R 11 to R 14 that do not contribute to ring formation may be the same or different, and are preferably hydrogen or deuterium.
  • X represents a substituted or unsubstituted methylene group, oxygen atom, sulfur atom or monoarylamino group
  • a 2 , Ar 7 , R 11 to R 18 have the same meanings as described in the general formula (3).
  • R 12 adjacent to R 11 is located at a position where R 11 is eliminated and vacant.
  • a structure in which a condensed ring is formed by bonding through a linking group X is shown.
  • the general formula (3a-2) is also the same as in the general formula (3a-1), a position R 11 is a vacant eliminated, two methyl as R 12 (substituents adjacent to the R 11
  • a structure in which an indenyl group having a group is bonded via a linking group X to form a condensed ring is shown.
  • a structure in which a condensed ring is formed by bonding through a linking group X is shown.
  • the general formula (3b-1) is a position where R 11 is a vacant eliminated, R 12 (N-phenyl-substituted indolyl group) is bonded through a linking group X which is adjacent to R 11 Shows the structure forming a condensed ring.
  • two or all adjacent groups are vinyl groups, and the two adjacent vinyl groups are bonded to each other through a single bond to form a condensed ring, that is, R 15 to R 18.
  • any one of R 15 to R 18 is an aromatic hydrocarbon group, an aromatic heterocyclic group, or a condensed polycyclic aromatic group, particularly an aromatic hydrocarbon group. It is preferable that any one of R 15 to R 18 is a fluorenyl group, a carbazolyl group, a dibenzofuranyl group or a dibenzothienyl group, and R 16 is a fluorenyl group, a carbazolyl group, a dibenzofuranyl group or a dibenzothienyl group.
  • R 15 , R 17 and R 18 are more preferably hydrogen atoms
  • R 16 is preferably a carbazolyl group
  • R 15 , R 17 and R 18 are particularly preferably hydrogen atoms.
  • carbazole compound III is shown in FIGS. 16 to 18, but carbazole compound III is not limited to these compounds.
  • compounds 3-1 to 3-6, 3-8 to 3-10, 3-12 and 3-15 correspond to the above general formula (3a-1)
  • compound 3-14 includes the above general formula ( 3a-2)
  • compound 3-7 corresponds to the above general formula (3a-3)
  • compound 3-11 corresponds to the above general formula (3a-4)
  • compound 3-13 corresponds to the above general formula This corresponds to (3b-1).
  • the carbazole compound III can be synthesized according to a known method (see Patent Document 6).
  • the condition that the arylamine compound I is contained in the hole transport layer and the indenoindole compound II or the carbazole compound III is contained in the light emitting layer is satisfied.
  • each layer can take various modes. Hereinafter, each layer will be described in detail with reference to FIG.
  • an anode 2 is provided on a substrate 1.
  • an electrode material having a large work function such as ITO or gold is used.
  • a hole injection layer 3 can be provided between the anode 2 and the hole transport layer 4 as necessary.
  • a known material may be used for the hole injection layer 3.
  • Known materials include, for example, materials such as starburst type triphenylamine derivatives and various triphenylamine tetramers; porphyrin compounds represented by copper phthalocyanine; acceptor heterocyclic compounds such as hexacyanoazatriphenylene A coating type polymer material; and the like can be used.
  • an arylamine compound I is preferably used for the hole injection layer 3.
  • the triarylamine compound V represented by the general formula (5) described later or the triarylamine compound VI represented by the general formula (6) is also preferably used.
  • these (tri) arylamine compounds are used for the hole injection layer 3, the composition of the hole injection layer 3 and the composition of the hole transport layer 4 described later are different.
  • a high molecular compound having a structure can be used.
  • the hole injection layer 3 can be obtained.
  • each layer described below can be obtained by forming a thin film by a known method such as an evaporation method, a spin coating method, or an ink jet method.
  • a hole transport layer 4 is provided on the anode 2 (or hole injection layer 3).
  • the arylamine compound I represented by the general formula (1) is used for the hole transport layer 4.
  • Examples of the hole transporting material that can be mixed with or simultaneously used with the arylamine compound I include the following.
  • Benzidine derivatives such as N, N′-diphenyl-N, N′-di (m-tolyl) benzidine (TPD), N, N′-diphenyl-N, N′-di ( ⁇ -naphthyl) benzidine (NPD), N, N, N ′, N′-tetrabiphenylylbenzidine and the like;
  • TPD N, N′-diphenyl-N, N′-di (m-tolyl) benzidine
  • NPD N′-diphenyl-N, N′-di ( ⁇ -naphthyl) benzidine
  • NPD N, N ′, N′-tetrabiphenylylbenzidine and the like
  • a triarylamine compound having 2 to 6 triarylamine structures the triarylamine structure having a structure in which the triarylamine structure
  • TAPC 1,1-bis [4- (di-4-tolylamino) phenyl] cyclohexane
  • a triarylamine compound V represented by the following general formula (5) A triarylamine compound VI represented by the following general formula (6);
  • Various triphenylamine trimers, etc . a triarylamine compound having 2 to 6 triarylamine structures, wherein the triarylamine structures are linked by a single bond or a divalent group not containing a hetero atom.
  • a triarylamine compound having the above structure (hereinafter sometimes abbreviated as a triarylamine compound having 2 to 6 triarylamine structures) is preferred.
  • a triarylamine compound having two triarylamine structures the triarylamine structure having a structure in which the triarylamine structure is linked by a single bond or a divalent group containing no hetero atom (hereinafter referred to as triarylamine compound).
  • a triarylamine compound having four triarylamine structures wherein the triarylamine structure contains a single bond or a heteroatom.
  • a triarylamine compound having a structure linked with no divalent group hereinafter sometimes abbreviated as a triarylamine compound having four triarylamine structures is more preferable.
  • a material that is usually used for the hole transport layer is further doped with trisbromophenylamine hexachloroantimony, a radicalene derivative (see WO2014 / 009310) or the like, or a structure of a benzidine derivative such as TPD.
  • a high molecular compound having a structure can be used.
  • These materials may be used alone for film formation, or may be mixed with other materials for film formation.
  • Each organic layer described below can be similarly formed.
  • the hole transport layer 4 has a structure in which layers formed independently are stacked, a structure in which layers formed by mixing are stacked, or a structure in which layers formed by mixing with a layer formed independently are stacked. You may have. Each organic layer described below can have a similar structure.
  • the hole transport layer 4 includes a first hole transport layer 4a located on the anode 2 side and a second hole transport layer 4b located on the light emitting layer 5 side. It preferably has a two-layer structure.
  • the first hole transport layer 4a is provided between the anode 2 (or hole injection layer 3) and the second hole transport layer 4b.
  • the first hole transport layer 4a can contain the above-described hole transport material.
  • triarylamine compounds having 2 to 6 triarylamine structures are preferably used.
  • a triarylamine compound having two triarylamine structures or a triarylamine compound having four triarylamine structures is more preferably used.
  • triarylamine compound having two triarylamine structures for example, as shown in 5′-1 and 5′-2 in FIG. 32, two benzene rings in the triarylamine structure are connected via a single bond.
  • a bonded mode that is, a mode having a carbazole ring structure is also included.
  • a triarylamine compound V represented by the following general formula (5) is preferable. This is because, in addition to the hole transportability, the film has excellent thin film stability and heat resistance, and is easy to synthesize.
  • a triarylamine compound VI represented by the following general formula (6) is preferable. This is because, in addition to the hole transportability, the film has excellent thin film stability and heat resistance, and is easy to synthesize.
  • a triarylamine compound V or a triarylamine compound VI having such a specific structure is combined with a second hole transport layer 4b containing an arylamine compound I described later.
  • holes can be injected and transported to the light emitting layer 5 more efficiently, and the carrier balance is further refined.
  • the luminous efficiency is further improved, the driving voltage is further lowered, and the durability is further improved.
  • an organic EL element having excellent durability can be realized.
  • Triarylamine compound V represented by the general formula (5);
  • R 27 to R 32 may be the same or different, and may be a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, an alkyl group having 1 to 6 carbon atoms, or a cycloalkyl group having 5 to 10 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms, the alkenyl group having 2 to 6 carbon atoms, and the alkyloxy group having 1 to 6 carbon atoms may be linear or branched.
  • alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms or the alkenyl group having 2 to 6 carbon atoms represented by R 27 to R 32 include a methyl group, ethyl Group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, cyclopentyl group, cyclohexyl group, 1-adamantyl group, Examples thereof include a 2-adamantyl group, a vinyl group, an allyl group, an isopropenyl group, and a 2-butenyl group.
  • the alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms or the alkenyl group having 2 to 6 carbon atoms represented by R 27 to R 32 may be unsubstituted but has a substituent. You may do it. Examples of the substituent include the following groups in addition to the deuterium atom, cyano group, and nitro group.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom;
  • An alkyloxy group having 1 to 6 carbon atoms such as a methyloxy group, an ethyloxy group, or a propyloxy group;
  • An alkenyl group such as a vinyl group, an allyl group;
  • An aryloxy group such as a phenyloxy group, a tolyloxy group;
  • Arylalkyloxy groups such as benzyloxy group, phenethyloxy group;
  • Aromatic hydrocarbon group or condensed polycyclic aromatic group such as phenyl group, biphenylyl group, terphenylyl group, naphthyl group, anthracenyl group, Phenanthrenyl group, fluorenyl group, indenyl group, pyrenyl group, Perylenyl group, fluoranthenyl group, trip
  • substituents may be unsubstituted, or may be further substituted with the substituents exemplified above. These substituents may exist independently and may not form a ring, but may be bonded to each other through a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring. It may be formed.
  • alkyloxy group having 1 to 6 carbon atoms or the cycloalkyloxy group having 5 to 10 carbon atoms represented by R 27 to R 32 include a methyloxy group, an ethyloxy group, and an n-propyloxy group. , Isopropyloxy group, n-butyloxy group, tert-butyloxy group, n-pentyloxy group, n-hexyloxy group, cyclopentyloxy group, cyclohexyloxy group, cycloheptyloxy group, cyclooctyloxy group, 1-adamantyloxy group And 2-adamantyloxy group.
  • R 27 to R 32 may be unsubstituted or may have a substituent.
  • substituents are the same as those described for R 27 to R 32 for an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms. Things can be mentioned. The aspect which a substituent can take is also the same.
  • the aromatic hydrocarbon group, aromatic heterocyclic group, condensed polycyclic aromatic group or aryloxy group represented by R 27 to R 32 is represented by R 1 to R 8 in the general formula (2).
  • Examples of the aromatic hydrocarbon group, aromatic heterocyclic group, condensed polycyclic aromatic group, and aryloxy group are the same as those described above.
  • R 27 to R 32 may be unsubstituted or may have a substituent.
  • the fragrance represented by Ar 1 to Ar 5 in the general formula (1) The thing similar to what was shown regarding the substituent which an aromatic hydrocarbon group, an aromatic heterocyclic group, or a condensed polycyclic aromatic group may have can be mentioned. The aspect which a substituent can take is also the same.
  • r 27 to r 32 represent the number of groups R 27 to R 32 bonded to the aromatic ring.
  • r 27 , r 28 , r 31 and r 32 each represents an integer of 0 to 5.
  • r 29 and r 30 each represents an integer of 0 to 4. The case where r 27 to r 32 are 0 means that R 27 to R 32 are not present on the aromatic ring, that is, the benzene ring is not substituted with a group represented by R 27 to R 32.
  • a plurality of R 27 to R 32 are present in the same benzene ring.
  • a plurality of bonded groups may be the same or different. Further, they may be present independently of each other to form a ring, but may be bonded to each other via a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring. .
  • substituents two vinyl groups
  • L 1 is a bridging group that connects two triarylamine structures.
  • L 1 represents a divalent group or a single bond represented by the following structural formulas (B) to (G).
  • n1 represents an integer of 1 to 4.
  • R 27 to R 32 may be the same or different, and may be a deuterium atom, a chlorine atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an aromatic hydrocarbon group, or an aromatic complex.
  • a cyclic group or a condensed polycyclic aromatic group is preferable, and a deuterium atom, a chlorine atom, a phenyl group, a biphenylyl group, a naphthyl group, a pyridyl group, or a vinyl group is more preferable, and a deuterium atom, a phenyl group, a biphenylyl group, a naphthyl group, or A vinyl group is particularly preferred.
  • these groups are bonded to each other through a single bond to form a condensed aromatic ring, such as compounds 5-13 and 5-14 in FIG.
  • Most preferred is a deuterium atom, a phenyl group or a biphenylyl group.
  • r 27 to r 32 may be the same or different and are preferably an integer of 0 to 3, more preferably an integer of 0 to 2.
  • L 1 is preferably a divalent group or a single bond represented by the structural formulas (C) to (F), more preferably a divalent group or a single bond represented by the structural formula (B). preferable.
  • N1 in the structural formula (B) is preferably an integer of 1 to 3, more preferably 2 or 3.
  • the triarylamine compound V preferably has symmetry.
  • triarylamine compounds V are shown in FIGS. 29 to 31, but the triarylamine compound V is not limited to these compounds.
  • D represents a deuterium atom.
  • triarylamine compounds having two triarylamine structures preferably used in the present invention described above preferred specific examples of compounds other than the triarylamine compound V are shown in FIG.
  • the two triarylamine compounds are not limited to these compounds.
  • Triarylamine compound V can be synthesized according to a method known per se (see Patent Documents 1, 10 to 11).
  • R 33 to R 44 may be the same or different, and may be a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, an alkyl group having 1 to 6 carbon atoms, or a cycloalkyl group having 5 to 10 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms, the alkenyl group having 2 to 6 carbon atoms, and the alkyloxy group having 1 to 6 carbon atoms may be linear or branched.
  • Examples of the alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms, or the alkenyl group having 2 to 6 carbon atoms represented by R 33 to R 44 include those in the general formula (5). Examples of the alkyl group having 1 to 6 carbon atoms, the cycloalkyl group having 5 to 10 carbon atoms, or the alkenyl group having 2 to 6 carbon atoms represented by R 27 to R 32 may be mentioned. Can do.
  • R 33 to R 44 may be unsubstituted or may have a substituent.
  • substituents include an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or a group having 2 to 6 carbon atoms represented by R 27 to R 32 in the general formula (5).
  • the thing similar to what was shown regarding the substituent which an alkenyl group may have can be mentioned.
  • the aspect which a substituent can take is also the same.
  • the alkyloxy group having 1 to 6 carbon atoms or the cycloalkyloxy group having 5 to 10 carbon atoms represented by R 33 to R 44 is represented by R 27 to R 32 in the general formula (5). Examples of the alkyloxy group having 1 to 6 carbon atoms or the cycloalkyloxy group having 5 to 10 carbon atoms can be given.
  • R 33 to R 44 may be unsubstituted or may have a substituent.
  • substituents include an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or a group having 2 to 6 carbon atoms represented by R 27 to R 32 in the general formula (5).
  • the thing similar to what was shown regarding the substituent which an alkenyl group may have can be mentioned.
  • the aspect which a substituent can take is also the same.
  • the aromatic hydrocarbon group, aromatic heterocyclic group, condensed polycyclic aromatic group or aryloxy group represented by R 33 to R 44 is represented by R 1 to R 8 in the general formula (2).
  • Examples of the aromatic hydrocarbon group, aromatic heterocyclic group, condensed polycyclic aromatic group, and aryloxy group are the same as those described above.
  • R 33 to R 44 may be unsubstituted or may have a substituent.
  • substituents are the substituents that the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 1 to Ar 5 in the general formula (1) may have. The same thing can be mentioned. The aspect which a substituent can take is also the same.
  • r 33 to r 44 represent the number of groups R 33 to R 44 bonded to the aromatic ring.
  • r 33 , r 34 , r 37 , r 40 , r 43 and r 44 each represents an integer of 0 to 5.
  • r 35 , r 36 , r 38 , r 39 , r 41 and r 42 each represents an integer of 0 to 4.
  • the case where r 33 to r 44 are 0 means that R 33 to R 44 are not present on the aromatic ring, that is, the aromatic ring is not substituted with a group represented by R 33 to R 44. Represents.
  • a plurality of R 33 to R 44 are bonded to the same benzene ring.
  • a plurality of bonded groups may be the same or different. Further, they may be present independently of each other to form a ring, but may be bonded to each other via a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring. .
  • substituents two vinyl groups
  • L 2 to L 4 are bridging groups that connect two triarylamine structures.
  • L 2 to L 4 may be the same or different and each represents a divalent group or a single bond represented by the following structural formulas (B ′) to (G).
  • n2 represents an integer of 1 to 3.
  • the divalent groups represented by the structural formulas (B ′) to (G) may be unsubstituted or substituted with deuterium.
  • R 33 to R 44 may be the same or different, and are a deuterium atom, a chlorine atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an aromatic hydrocarbon group, or a condensed polycyclic ring.
  • Aromatic groups are preferred, deuterium atoms, chlorine atoms, tert-butyl groups, phenyl groups, biphenylyl groups, naphthyl groups or vinyl groups are more preferred, and deuterium atoms, phenyl groups, biphenylyl groups, naphthyl groups or vinyl groups are particularly preferred. preferable.
  • these groups are bonded to each other through a single bond to form a condensed aromatic ring as in compound 6-8 in FIG.
  • Most preferred is a deuterium atom, a phenyl group or a biphenylyl group.
  • r 33 to r 44 may be the same or different and are preferably an integer of 0 to 3, more preferably an integer of 0 to 2.
  • L 2 to L 4 may be the same or different, and are preferably a divalent group or a single bond represented by the structural formula (B ′) or (D), and a divalent group represented by the structural formula (B ′). Or a single bond is more preferable.
  • N2 in the structural formula (B ′) is preferably 1 or 2, and more preferably 1.
  • triarylamine compound VI is not limited to these compounds.
  • D represents a deuterium atom.
  • the triarylamine compound VI can be synthesized according to a method known per se (see Patent Documents 1, 10 to 11).
  • the second hole transport layer 4b is provided on the first hole transport layer 4a.
  • the composition of the second hole transport layer 4b is different from the composition of the first hole transport layer 4a.
  • the aforementioned known hole transport material may be used, but the arylamine compound I is preferably used. This is because the electron blocking performance is high.
  • An electron blocking layer (not shown) can be provided between the hole transport layer 4 and the light emitting layer 5.
  • the arylamine compound I is preferably used, and for example, known compounds having the electron blocking action exemplified below can be used.
  • Carbazole compounds such as 4,4 ′, 4 ′′ -tri (N-carbazolyl) triphenylamine (TCTA), 9,9-bis [4- (carbazol-9-yl) phenyl] fluorene, 1,3-bis (carbazol-9-yl) benzene (mCP), 2,2-bis (4-carbazol-9-ylphenyl) adamantane (Ad-Cz);
  • a triarylamine compound having a triphenylsilyl group and a triarylamine structure such as 9- [4- (carbazol-9-yl) phenyl] -9- [4- (triphenylsilyl) phenyl] -9H-fluorene;
  • the composition of the electron blocking layer is different from the composition of the hole transport layer 4 (in the case of two layers, the second hole transport layer 4b).
  • the light emitting layer 5 is formed on the hole transport layer 4 (or the electron blocking layer).
  • the light emitting layer 5 contains the indenoindole compound II or the carbazole compound III.
  • a known light emitting material may be used in combination for the light emitting layer 5.
  • various metal complexes such as metal complexes of quinolinol derivatives such as Alq 3 , anthracene derivatives, bisstyrylbenzene derivatives, pyrene derivatives, oxazole derivatives, polyparaphenylene vinylene derivatives, and the like can be used.
  • a red light emitting material can be preferably used.
  • the host material the indenoindole compound II or the carbazole compound III is preferably used.
  • the light-emitting material, thiazole derivative, benzimidazole derivative, polydialkylfluorene derivative, or the like can be used.
  • the dopant material quinacridone, coumarin, rubrene, perylene, pyrene, and derivatives thereof; benzopyran derivatives; indenophenanthrene derivatives; rhodamine derivatives; aminostyryl derivatives, and the like can be used.
  • a phosphorescent material as the light emitting material.
  • a phosphorescent emitter a phosphorescent emitter of a metal complex such as iridium or platinum can be used.
  • green phosphorescent emitters such as Ir (ppy) 3 ; blue phosphorescent emitters such as FIrpic and FIr6; red phosphorescent emitters such as Btp 2 Ir (acac); and the like are used. Of these, red phosphorescent emitters are preferred.
  • the indenoindole compound II or the carbazole compound III is preferably used.
  • the following hole injecting / transporting host materials can be used.
  • Carbazole compounds such as 4,4′-di (N-carbazolyl) biphenyl (CBP), TCTA, mCP, etc .; Further, for example, the following electron transporting host material can be used.
  • the doping of the phosphorescent light emitting material into the host material is preferably carried out by co-evaporation in the range of 1 to 30 weight percent with respect to the entire light emitting layer in order to avoid concentration quenching.
  • a material that emits delayed fluorescence such as a CDCB derivative such as PIC-TRZ, CC2TA, PXZ-TRZ, 4CzIPN, etc., as the light emitting material.
  • a hole blocking layer (not shown) can be provided on the light emitting layer 5.
  • a known compound having a hole blocking action can be used for the hole blocking layer.
  • Known compounds having a hole blocking action include phenanthroline derivatives such as bathocuproin (BCP); metals of quinolinol derivatives such as aluminum (III) bis (2-methyl-8-quinolinato) -4-phenylphenolate (BAlq) Various rare earth complexes; triazole derivatives; triazine derivatives; oxadiazole derivatives; These materials may also serve as the material for the electron transport layer 6.
  • the electron transport layer 6 is formed on the light emitting layer 5 (or hole blocking layer). It is preferable to use an anthracene derivative IV represented by the following general formula (4) for the electron transport layer 6.
  • Anthracene derivative IV has the following three aspects, for example.
  • a 3 represents an aromatic hydrocarbon divalent group, an aromatic heterocyclic divalent group, a condensed polycyclic aromatic divalent group or a single bond.
  • the aromatic hydrocarbon divalent group, aromatic heterocyclic divalent group or condensed polycyclic aromatic divalent group represented by A 3 is the aromatic represented by A 1 in the general formula (2). Examples thereof include the same groups as those described for the divalent group of the aromatic hydrocarbon, the divalent group of the aromatic heterocyclic ring, or the divalent group of the condensed polycyclic aromatic group.
  • These divalent groups represented by A 3 may be unsubstituted or may have a substituent.
  • substituents are the substituents that the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 1 to Ar 5 in the general formula (1) may have. The same thing can be mentioned. The aspect which a substituent can take is also the same.
  • B represents an aromatic heterocyclic group. Specifically, pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, thienyl group, quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group, indolyl group, carbazolyl group, benzoxazolyl group, benzothiazolyl group, quinoxalinyl group, Examples thereof include a benzimidazolyl group, a pyrazolyl group, a dibenzofuranyl group, a dibenzothienyl group, and a carbolinyl group.
  • the aromatic heterocyclic group represented by B may be unsubstituted or may have a substituent.
  • substituent include the following groups in addition to the deuterium atom, cyano group, and nitro group.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, an iodine atom;
  • An alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, n- Propyl group, isopropyl group, n-butyl group, isobutyl group, ter t-butyl group, n-pentyl group, isopentyl group, neopentyl group, an n-hexyl group;
  • substituents may be unsubstituted, or may be further substituted with the substituents exemplified above. These substituents may exist independently and may not form a ring, but may be bonded to each other through a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring. It may be formed.
  • C represents an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group.
  • the two Cs may be the same or different.
  • the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by C includes an aromatic hydrocarbon group represented by Ar 1 to Ar 5 in the general formula (1), aromatic The thing similar to what was shown regarding the aromatic heterocyclic group or condensed polycyclic aromatic group can be mentioned.
  • These groups represented by C may be unsubstituted or may have a substituent.
  • substituents are the substituents that the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 1 to Ar 5 in the general formula (1) may have. The same thing can be mentioned. The aspect which a substituent can take is also the same.
  • D may be the same or different, and may be a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, an alkyl group having 1 to 6 carbon atoms, an aromatic hydrocarbon group, an aromatic complex. Represents a cyclic group or a condensed polycyclic aromatic group.
  • the alkyl group having 1 to 6 carbon atoms may be linear or branched.
  • alkyl group having 1 to 6 carbon atoms represented by D include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n- A pentyl group, isopentyl group, neopentyl group, n-hexyl group and the like can be mentioned.
  • the alkyl group having 1 to 6 carbon atoms represented by D may be unsubstituted or may have a substituent.
  • substituents are the substituents that the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 1 to Ar 5 in the general formula (1) may have. The same thing can be mentioned. The aspect which a substituent can take is also the same.
  • aromatic hydrocarbon group aromatic heterocyclic group or condensed polycyclic aromatic group represented by D
  • aromatic hydrocarbon group represented by Ar 1 to Ar 5 in the general formula (1) aromatic The thing similar to what was shown regarding the aromatic heterocyclic group or condensed polycyclic aromatic group can be mentioned.
  • These groups represented by D may be unsubstituted or may have a substituent.
  • substituents are the substituents that the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 1 to Ar 5 in the general formula (1) may have. The same thing can be mentioned. The aspect which a substituent can take is also the same.
  • p, q With respect to p and q, p represents 7 or 8 and q represents 1 or 2 under the condition that the sum of p and q is 9.
  • the groups D bonded to the anthracene ring may be present independently of each other to form a ring, but may be bonded to each other via a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom. It may combine to form a ring.
  • the two groups C bonded to the anthracene ring may be independently present and do not form a ring, but may be a single bond, a substituted or unsubstituted methylene group, an oxygen atom Alternatively, they may be bonded to each other via a sulfur atom to form a ring.
  • Ar 8 to Ar 16 may be the same or different and each represents an aromatic hydrocarbon group, an aromatic heterocyclic group or a condensed polycyclic aromatic group.
  • the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 8 to Ar 16 is an aromatic carbon group represented by Ar 1 to Ar 5 in the general formula (1).
  • the thing similar to what was shown regarding the hydrogen group, the aromatic heterocyclic group, or the condensed polycyclic aromatic group can be mentioned.
  • These groups represented by Ar 8 to Ar 16 may be unsubstituted or may have a substituent.
  • substituents are the substituents that the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 1 to Ar 5 in the general formula (1) may have. The same thing can be mentioned. The aspect which a substituent can take is also the same.
  • R 19 to: R 26 : R 19 to R 26 may be the same or different, and are a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, an alkyl group having 1 to 6 carbon atoms, or an alkyl group having 5 to 10 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms, the alkenyl group having 2 to 6 carbon atoms, and the alkyloxy group having 1 to 6 carbon atoms may be linear or branched.
  • R 19 to R 25 may be independently present to form a ring, but are bonded to each other via a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring. You may do it.
  • the cycloalkyloxy group having 5 to 10 carbon atoms includes an alkyl group having 1 to 6 carbon atoms represented by R 1 to R 8 in the general formula (2), and a cycloalkyloxy group having 5 to 10 carbon atoms.
  • Examples thereof include the same groups as mentioned for the alkyl group, the alkenyl group having 2 to 6 carbon atoms, the alkyloxy group having 1 to 6 carbon atoms, or the cycloalkyloxy group having 5 to 10 carbon atoms.
  • R 19 to R 26 may be unsubstituted or may have a substituent.
  • substituents include an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or a group having 2 to 6 carbon atoms represented by R 1 to R 8 in the general formula (2).
  • the thing similar to what was shown regarding the substituent which an alkenyl group may have can be mentioned.
  • the aspect which a substituent can take is also the same.
  • the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by R 19 to R 26 includes an aromatic carbon group represented by Ar 1 to Ar 5 in the general formula (1). Examples thereof include the same groups as those described for the hydrogen group, aromatic heterocyclic group or condensed polycyclic aromatic group.
  • R 19 to R 26 may be unsubstituted or may have a substituent.
  • substituents are the substituents that the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 1 to Ar 5 in the general formula (1) may have. The same thing can be mentioned. The aspect which a substituent can take is also the same.
  • Examples of the aryloxy group represented by R 19 to R 26 include the same groups as those shown for the aryloxy group represented by R 1 to R 8 in the general formula (2).
  • R 19 to R 26 may be unsubstituted or may have a substituent.
  • substituents are the substituents that the aromatic hydrocarbon group, aromatic heterocyclic group or condensed polycyclic aromatic group represented by Ar 1 to Ar 5 in the general formula (1) may have. The same thing can be mentioned. The aspect which a substituent can take is also the same.
  • X 1 to X 4 each represent a carbon atom or a nitrogen atom, and only one of X 1 to X 4 is a nitrogen atom.
  • the nitrogen atom does not have a hydrogen atom or substituent of R 19 to R 22 . That is, when X 1 is a nitrogen atom, R 19 is present, when X 2 is a nitrogen atom, R 20 is present, when X 3 is a nitrogen atom, R 21 is present, and when X 4 is a nitrogen atom, R 22 is not present.
  • the anthracene derivative IV is preferably represented by the general formula (4a), (4b) or (4c).
  • the anthracene derivative IV represented by the general formula (4a) is more preferably represented by the following general formula (4a ′).
  • Ar 8 to Ar 10 , R 19 , R 20 and R 22 to R 25 have the same meanings as described in the general formula (4).
  • a 3 is preferably a single bond, an aromatic hydrocarbon divalent group or a condensed polycyclic aromatic divalent group, and two hydrogen atoms are removed from benzene, biphenyl, terphenyl, naphthalene, anthracene, fluorene or phenanthrene.
  • a divalent group or a single bond formed by removal of two hydrogen atoms from benzene, biphenyl, naphthalene, fluorene or phenanthrene is particularly preferable.
  • aromatic hydrocarbon divalent groups are particularly preferred.
  • B is preferably a nitrogen-containing aromatic heterocyclic group, and is pyridyl group, pyrimidinyl group, pyrrolyl group, quinolyl group, isoquinolyl group, indolyl group, carbazolyl group, benzoxazolyl group, benzothiazolyl group, quinoxalinyl group, benzoimidazolyl group, A pyrazolyl group or a carbolinyl group is more preferable, and a pyridyl group, a pyrimidinyl group, a quinolyl group, an isoquinolyl group, an indolyl group, a benzimidazolyl group, a pyrazolyl group or a carbolinyl group is particularly preferable.
  • C is preferably an aromatic hydrocarbon group or a condensed polycyclic aromatic group, more preferably a phenyl group, a biphenylyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group or a fluorenyl group.
  • the two Cs may be the same or different.
  • D may be the same or different, but a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, cyano group, trifluoromethyl group or alkyl group having 1 to 6 carbon atoms is preferable, and a hydrogen atom is more preferable.
  • Ar 8 is preferably an aromatic hydrocarbon group or a condensed polycyclic aromatic group, more preferably a phenyl group, a biphenylyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group or a fluorenyl group, and particularly preferably a phenyl group.
  • Ar 9 and Ar 10 may be the same or different and are preferably an aromatic hydrocarbon group or a condensed polycyclic aromatic group, more preferably a phenyl group, a biphenylyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group or a fluorenyl group, A phenyl group is particularly preferred.
  • Ar 11 and Ar 12 may be the same or different, and are preferably an aromatic hydrocarbon group or a condensed polycyclic aromatic group, more preferably a phenyl group, a biphenylyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group or a fluorenyl group, A phenyl group, a naphthyl group or an anthracenyl group is particularly preferred.
  • Ar 13 is preferably an aromatic hydrocarbon group or a condensed polycyclic aromatic group, more preferably a phenyl group, a biphenylyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group or a fluorenyl group, and particularly preferably a phenyl group.
  • Ar 14 is preferably an aromatic hydrocarbon group, a condensed polycyclic aromatic group, a pyridyl group, a quinolyl group, an isoquinolyl group or a carbonyl group, and includes a phenyl group, a biphenylyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a fluorenyl group, A pyridyl group, a quinolyl group, an isoquinolyl group or a carbonyl group is more preferable, and a phenyl group, a naphthyl group or an anthracenyl group is particularly preferable.
  • Ar 15 and Ar 16 may be the same or different and are preferably an aromatic hydrocarbon group, a condensed polycyclic aromatic group, a pyridyl group, a quinolyl group, an isoquinolyl group or a carbonyl group, more preferably a phenyl group, a biphenylyl group or a naphthyl group.
  • Anthracenyl group, phenanthrenyl group, fluorenyl group, pyridyl group, quinolyl group, isoquinolyl group or carbonyl group is more preferable, and a phenyl group, naphthyl group, phenanthrenyl group, pyridyl group or carbonyl group is particularly preferable.
  • the substituent is preferably an aromatic hydrocarbon group, a condensed polycyclic aromatic group or an aromatic heterocyclic group, and preferably a phenyl group, a naphthyl group, a phenanthrenyl group or a pyridyl group.
  • R 19 to R 22 may be the same or different and are preferably a hydrogen atom, deuterium atom, aromatic hydrocarbon group or aromatic heterocyclic group, and preferably a hydrogen atom, deuterium atom, phenyl group or pyridyl group.
  • R 23 to R 25 are preferably hydrogen atoms.
  • R 26 is preferably a hydrogen atom.
  • X 3 is preferably a nitrogen atom.
  • anthracene derivative IV can be synthesized according to a method known per se (see Patent Documents 7 to 9).
  • a known electron transport material may be used as long as the effects of the present invention are not impaired.
  • Known electron transport materials include various metal complexes such as metal complexes of quinolinol derivatives including Alq 3 and BAlq; triazole derivatives; triazine derivatives; oxadiazole derivatives; pyridine derivatives; pyrimidine derivatives; A thiadiazole derivative, a benzotriazole derivative, a carbodiimide derivative, a quinoxaline derivative, a pyridoindole derivative, a phenanthroline derivative, a silole derivative, and the like can be used.
  • Electrode 7 As the electron injection layer 7, alkali metal salts such as lithium fluoride and cesium fluoride; alkaline earth metal salts such as magnesium fluoride; metal oxides such as aluminum oxide; This can be omitted in the preferred selection of cathode and cathode.
  • alkali metal salts such as lithium fluoride and cesium fluoride
  • alkaline earth metal salts such as magnesium fluoride
  • metal oxides such as aluminum oxide
  • an electrode material having a low work function such as aluminum, or an alloy having a lower work function such as a magnesium silver alloy, a magnesium indium alloy, or an aluminum magnesium alloy is used as the electrode material.
  • the reaction was heated and stirred at 72 ° C. for 1 day.
  • the stirred reaction solution was cooled to room temperature, and an organic layer was collected by a liquid separation operation.
  • Adsorption purification using silica gel was performed, followed by adsorption purification using activated carbon. Recrystallization with THF and acetone was performed. As a result, 4.0 g (yield 40%) of white powder of Compound 1-9 was obtained.
  • the glass transition point of the compound obtained in each synthesis example was determined using a high-sensitivity differential scanning calorimeter (manufactured by Bruker AXS, DSC3100SA). Glass transition temperature (°C) Compound 1-9 of Example 1 110 Compound 1-10 of Example 2 124 Compound 1-13 of Example 3 121 Compound 1-39 of Example 4 121 Compound 1-40 of Example 5 131 Compound 1-49 of Example 6 121 Compound 1-50 of Example 7 133 Compound 1-69 of Example 8 121 Compound 1-75 of Example 9 135 Compound 1-81 of Example 10 140 Compound 1-90 159 of Example 11
  • the arylamine compound I represented by the general formula (1) has a glass transition point of 100 ° C. or higher and was found to be stable in a thin film state.
  • a deposited film having a thickness of 100 nm was prepared on an ITO substrate, and the work function was measured by an ionization potential measuring device (PYS-202, manufactured by Sumitomo Heavy Industries, Ltd.). did.
  • the organic EL element has a hole injection layer 3, a first hole transport layer 4 a, and a second hole transport on a glass substrate 1 on which an ITO electrode is previously formed as a transparent anode 2.
  • the layer 4b, the light emitting layer 5, the electron transport layer 6, the electron injection layer 7, and the cathode (aluminum electrode) 8 were deposited in this order.
  • the glass substrate 1 on which ITO having a thickness of 150 nm was formed was ultrasonically cleaned in isopropyl alcohol for 20 minutes, and then dried on a hot plate heated to 200 ° C. for 10 minutes. Then, after performing UV ozone treatment for 15 minutes, this glass substrate with ITO was attached in a vacuum evaporation machine, and pressure was reduced to 0.001 Pa or less. Subsequently, HIM-1 having the following structural formula was deposited so as to cover the transparent anode 2 to form a hole injection layer 3 having a thickness of 5 nm.
  • a triarylamine compound 5-1 was deposited on the hole injection layer 3 in a molecule having the following structural formula to form a first hole transport layer 4a having a thickness of 60 nm.
  • the compound 1-69 of Synthesis Example 8 was deposited on the first hole transport layer 4a to form a second hole transport layer 4b having a thickness of 5 nm.
  • Binary evaporation was performed to form a light emitting layer 5 having a thickness of 20 nm.
  • An electron transport layer 6 having a thickness of 30 nm was formed.
  • Lithium fluoride was evaporated on the electron transport layer 6 to form an electron injection layer 7 having a thickness of 1 nm.
  • aluminum was deposited to a thickness of 100 nm to form the cathode 8.
  • the organic EL device was manufactured under the same conditions except that the compound 1-75 of the synthesis example 9 was used instead of the compound 1-69 of the synthesis example 8 as the material of the second hole transport layer 4b. Produced.
  • the organic EL device was manufactured under the same conditions except that the compound 1-75 of the synthesis example 9 was used instead of the compound 1-69 of the synthesis example 8 as the material of the second hole transport layer 4b. Produced.
  • the organic EL device was manufactured under the same conditions except that the compound 1-81 of the synthesis example 10 was used instead of the compound 1-69 of the synthesis example 8 as the material of the second hole transport layer 4b. Produced.
  • the organic EL device was manufactured under the same conditions except that the compound 1-81 of the synthesis example 10 was used instead of the compound 1-69 of the synthesis example 8 as the material of the second hole transport layer 4b. Produced.
  • the organic EL device was manufactured under the same conditions except that the compound 1-90 of the synthesis example 11 was used instead of the compound 1-69 of the synthesis example 8 as the material of the second hole transport layer 4b. Produced.
  • the organic EL device was manufactured under the same conditions except that the compound 1-90 of the synthesis example 11 was used instead of the compound 1-69 of the synthesis example 8 as the material of the second hole transport layer 4b. Produced.
  • the device lifetime was measured using the organic EL devices prepared in Device Examples 1 to 8 and Device Comparative Examples 1 to 4. Specifically, corresponding emission start time of the emission luminance (initial luminance) when driven with a constant current as 7000cd / m 2, 97% when the emission luminance is taken as 100% of 6790cd / m 2 (initial brightness : 97% attenuation). The results are shown in Table 1.
  • the luminous efficiency when a current with a current density of 10 mA / cm 2 was passed was 20.34 to 26.01 cd / A in Device Comparative Examples 1 to 4, whereas it was 26.11 in Device Examples 1 to 8. All were high efficiency, up to 28.82 cd / A.
  • the power efficiency was 16.86 to 18.82 lm / W in the device comparative examples 1 to 4, whereas the device examples 1 to 8 were 20.01 to 24.12 lm / W, both of which were highly efficient. there were.
  • the device life was 32 to 61 hours in the device comparative examples 1 to 4, whereas in the device examples 1 to 8, the life was greatly increased to 110 to 385 hours.
  • the arylamine compound I represented by the general formula (1) and the indenoindole compound II represented by the general formula (2) or the carbazole compound represented by the general formula (3) In the organic EL element used, the carrier balance inside the element is improved and a material that matches the characteristics of the luminescent material is used. Therefore, the organic EL element of the present invention is different from the known organic EL element. In comparison, an organic EL element with high luminous efficiency, low driving voltage, and long life could be realized.
  • the organic EL device of the present invention can obtain high light emission efficiency and power efficiency, can reduce the practical driving voltage, and can improve the durability. Therefore, for example, it can be applied to household appliances and lighting applications.

Abstract

本発明によれば、少なくとも陽極、正孔輸送層、発光層、電子輸送層及び陰極をこの順に有する有機EL素子において、前記正孔輸送層が下記一般式(1)で表されるアリールアミン化合物を含有し、前記発光層が下記一般式(2)で表されるジヒドロインデノインドール誘導体または下記一般式(3)で表されるカルバゾール誘導体を含有することを特徴とする有機EL素子が提供される。本発明の有機EL素子は、高効率、低駆動電圧であって、特に長寿命である。

Description

有機エレクトロルミネッセンス素子
 本発明は、各種の表示装置に好適な自発光素子である有機エレクトロルミネッセンス素子(以下、有機EL素子と略称する)に関するものであリ、詳しくは特定のアリールアミン化合物および特定のインデノインドール化合物または特定のカルバゾール化合物(および特定のアントラセン誘導体)を用いた有機EL素子に関する。
 有機EL素子は自己発光性素子であるため、液晶素子にくらべて明るく視認性に優れ、鮮明な表示が可能である。そのため、活発な研究がなされてきた。
 1987年にイーストマン・コダック社のC.W.Tangらは各種の役割を各材料に分担した積層構造素子を開発し、有機材料を用いた有機EL素子を実用的なものにした。有機EL素子は、電子を輸送することのできる蛍光体と正孔を輸送することのできる有機物とを積層して形成される。これにより、両方の電荷を蛍光体の層の中に注入して発光させ、10V以下の電圧で1000cd/m以上の高輝度が得られるようになった(特許文献1および特許文献2参照)。
 現在まで、有機EL素子の実用化のために多くの改良がなされている。例えば、積層構造の各種の役割をさらに細分化して、基板上に順次に、陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層および陰極を設けた電界発光素子がある。かかる電界発光素子によって高効率と耐久性が達成されるようになってきた。
 また、発光効率の更なる向上を目的として三重項励起子の利用が試みられ、燐光発光性化合物の利用が検討されている。更に、熱活性化遅延蛍光(TADF)による発光を利用する素子も開発されている。2011年に九州大学の安達らは、熱活性化遅延蛍光材料を用いた素子によって5.3%の外部量子効率を実現させた。
 発光層は、一般的にホスト材料と称される電荷輸送性の化合物に、蛍光性化合物、燐光発光性化合物または遅延蛍光を放射する材料をドープして作製することもできる。有機EL素子における有機材料の選択は、その素子の効率や耐久性など諸特性に大きな影響を与える。
 有機EL素子では、両電極から注入された電荷が発光層で再結合して発光が得られる。そのため、有機EL素子では、正孔、電子の両電荷を如何に効率良く発光層に受け渡すかが重要であり、キャリアバランスに優れた素子とする必要がある。また、正孔注入性を高め、陰極から注入された電子をブロックする電子阻止性を高めることによって、正孔と電子が再結合する確率を向上させ、更には発光層内で生成した励起子を閉じ込めることによって、高発光効率を得ることができる。そのため、正孔輸送材料の果たす役割は重要であり、正孔注入性が高く、正孔の移動度が大きく、電子阻止性が高く、さらには電子に対する耐久性が高い正孔輸送材料が求められている。
 また、素子寿命の観点からは、材料の耐熱性やアモルファス性も重要である。耐熱性が低い材料では、素子駆動時に生じる熱により、低温でも熱分解が起こり、材料が劣化する。アモルファス性が低い材料では、短時間でも薄膜の結晶化が起こり、素子が劣化する。そのため使用する材料には耐熱性が高く、アモルファス性が良好な性質が求められる。
 これまで有機EL素子の正孔輸送材料としては、N,N’-ジフェニル-N,N’-ジ(α-ナフチル)ベンジジン(NPD)や種々の芳香族アミン誘導体が知られていた(特許文献1及び特許文献2参照)。NPDは良好な正孔輸送能力を持っているが、耐熱性の指標となるガラス転移点(Tg)が96℃と低く、高温条件下では結晶化による素子特性の低下が起こる。また、特許文献1および特許文献2に記載の芳香族アミン誘導体の中には、正孔の移動度が10-3cm/Vs以上と優れた移動度を有する化合物があるが、かかる芳香族アミン誘導体は、電子阻止性が不十分である。そのため、かかる芳香族アミン誘導体を用いて形成された有機EL素子では、電子の一部が発光層を通り抜け、発光効率の向上が期待できない。従って、更なる高効率化のため、より電子阻止性が高く、薄膜がより安定で耐熱性の高い材料が求められていた。また、特許文献3には、耐久性の高い芳香族アミン誘導体が開示されているが、かかる芳香族アミン誘導体は、電子写真感光体の電荷輸送材料として使用されたものであり、有機EL素子に使用された例はない。
 耐熱性や正孔注入性などの特性を改良した化合物として、特許文献4および特許文献5には、置換カルバゾール構造を有するアリールアミン化合物が開示されている。しかしながら、かかる化合物を正孔注入層または正孔輸送層に用いた素子では、耐熱性や発光効率などの改良はされているものの、未だ十分とはいえず、さらなる低駆動電圧化や、さらなる高発光効率化が求められている。
 このように、有機EL素子の素子特性の改善や素子作製の歩留まり向上のために、正孔の注入・輸送性能、電子の注入・輸送性能、薄膜状態の安定性または耐久性に優れた材料を組み合わせ、発光効率が高く、駆動電圧が低く、長寿命な素子を実現することが求められている。
特開平8-048656号公報 特許第3194657号公報 特許第4943840号公報 特開2006-151979号公報 WO2008/62636号公報 特表2014-513064号公報 WO2011/059000号公報 WO2003/060956号公報 韓国公開特許2013-060157号公報 特開平7-126615号公報 特開2005-108804号公報
 本発明の目的は、有機EL素子用の材料として、正孔の注入・輸送性能、電子の注入・輸送性能、電子阻止能力、薄膜状態の安定性または耐久性に優れた有機EL素子用の各種材料を、それぞれの材料が有する特性が効果的に発現できるように組み合わせることで、(1)発光効率および電力効率が高く、(2)実用駆動電圧が低く、特に(3)長寿命である有機EL素子を提供することである。
 本発明者らは、上記の目的を達成するために、アリールアミン系材料が正孔の注入・輸送能力、薄膜状態の安定性および耐久性に優れていることに着目した。そして、かかる材料を用いて形成された正孔輸送層は、発光層へ正孔を効率良く注入・輸送できると考えた。また、インデノインドール環構造を有する化合物およびカルバゾール環構造を有する化合物が、発光効率に優れていることに着目した。そして、かかる化合物を発光層の材料として選択し、更に、発光層の材料の特性に合わせてキャリアバランスがとれるように正孔輸送材料を組み合わせ、種々の有機EL素子を作製し、素子の特性評価を鋭意行なった。
 また、本発明者らは、アントラセン環構造を有する化合物が電子の注入・輸送能力、薄膜の安定性および耐久性に優れていることに着目し、上記の正孔輸送層の材料および発光層の材料に、電子輸送層の材料として、特定のアントラセン環構造を有する化合物を組み合わせ、発光層への電子の注入・輸送効率を高め、キャリアバランスがさらに発光層の材料の特性に合うようした。そして、素子の特性評価を鋭意行なった。
 さらにまた、正孔輸送層を第一正孔輸送層と第二正孔輸送層の2層構造とし、第二正孔輸送層には、電子阻止性に優れた上記アリールアミン系の材料を使用し、また、発光層へ正孔を効率良く注入・輸送できるように、第一正孔輸送層の材料として特定の2種類のアリールアミン化合物を選択し、即ち、キャリアバランスの精緻化された材料の組合せを選択して、種々の有機EL素子を作製した。そして、素子の特性評価を鋭意行なった。その結果、本発明を完成するに至った。
 すなわち本発明によれば、
1)少なくとも陽極、正孔輸送層、発光層、電子輸送層及び陰極をこの順に有する有機エレクトロルミネッセンス素子において、
 前記正孔輸送層が、下記一般式(1)で表されるアリールアミン化合物を含有し、
 前記発光層が、下記一般式(2)で表されるインデノインドール化合物または下記一般式(3)で表されるカルバゾール化合物を含有することを特徴とする有機EL素子が提供される。
Figure JPOXMLDOC01-appb-C000008
  式中、
   Ar~Arは、同一でも異なってもよく、芳香族炭化水素基、
  芳香族複素環基または縮合多環芳香族基を表す。
Figure JPOXMLDOC01-appb-C000009
  式中、
   Aは、芳香族炭化水素の2価基、芳香族複素環の2価基、縮合多
  環芳香族の2価基または単結合を表し、
   Arは、芳香族炭化水素基、芳香族複素環基または縮合多環芳香
  族基を表し、
   R~Rは、同一でも異なってもよく、水素原子;重水素原子;
  フッ素原子;塩素原子;シアノ基;ニトロ基;炭素原子数1~6の
  アルキル基;炭素原子数5~10のシクロアルキル基;炭素原子数
  2~6のアルケニル基;炭素原子数1~6のアルキルオキシ基;炭
  素原子数5~10のシクロアルキルオキシ基;芳香族炭化水素基;
  芳香族複素環基;縮合多環芳香族基;アリールオキシ基;または芳
  香族炭化水素基、芳香族複素環基もしくは縮合多環芳香族基から選
  ばれる基によって置換されたジ置換アミノ基;を表し、R~R
  、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄
  原子を介して互いに結合して環を形成してもよく、R~Rは、単
  結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子
  を介して互いに結合して環を形成してもよく、さらに、R~R
  一部がベンゼン環から脱離して生じた空位に、R~Rの他の基が
  、置換もしくは無置換のメチレン基、酸素原子、硫黄原子またはモ
  ノアリールアミノ基を介して結合して環を形成してもよく、R~R
  の一部がベンゼン環から脱離して生じた空位に、R~Rの他の
  基が、置換もしくは無置換のメチレン基、酸素原子、硫黄原子また
  はモノアリールアミノ基を介して結合して環を形成してもよい。
   RとR10は、同一でも異なってもよく、炭素原子数1~6のア
  ルキル基、芳香族炭化水素基、芳香族複素環基または縮合多環芳香
  族基を表し、単結合、置換もしくは無置換のメチレン基、酸素原子
  または硫黄原子を介して互いに結合して環を形成してもよい。
Figure JPOXMLDOC01-appb-C000010
  式中、
   Aは、芳香族炭化水素の2価基、芳香族複素環の2価基、縮合多
  環芳香族の2価基または単結合を表し、
   Arは、芳香族炭化水素基、芳香族複素環基または縮合多環芳香
  族基を表し、
   R11~R18は、同一でも異なってもよく、水素原子;重水素原
  子;フッ素原子;塩素原子;シアノ基;ニトロ基;炭素原子数1~
  6のアルキル基;炭素原子数5~10のシクロアルキル基;炭素原
  子数2~6のアルケニル基;炭素原子数1~6のアルキルオキシ基
  ;炭素原子数5~10のシクロアルキルオキシ基;芳香族炭化水素
  基;芳香族複素環基;縮合多環芳香族基;アリールオキシ基;また
  は芳香族炭化水素基、芳香族複素環基もしくは縮合多環芳香族基か
  ら選ばれる基によって置換されたジ置換アミノ基;を表し、R11
  R14は、単結合、置換もしくは無置換のメチレン基、酸素原子また
  は硫黄原子を介して互いに結合して環を形成してもよく、R15~R
  18は、単結合、置換もしくは無置換のメチレン基、酸素原子または
  硫黄原子を介して互いに結合して環を形成してもよく、さらに、R
  ~R14の一部がベンゼン環から脱離して生じた空位に、R11~R
  14の他の基が、置換もしくは無置換のメチレン基、酸素原子、硫黄
  原子またはモノアリールアミノ基を介して結合して環を形成しても
  よく、R15~R18の一部がベンゼン環から脱離して生じた空位に
  、R15~R18の他の基が、置換もしくは無置換のメチレン基、酸
  素原子、硫黄原子またはモノアリールアミノ基を介して結合して環
  を形成してもよい。
 本発明の有機EL素子の好適な態様は以下の通りである。
2)前記電子輸送層が、下記一般式(4)で表されるアントラセン誘導体を含有する。
Figure JPOXMLDOC01-appb-C000011
  式中、
   Aは、芳香族炭化水素の2価基、芳香族複素環の2価基、縮合多
  環芳香族の2価基または単結合を表し、
   Bは、芳香族複素環基を表し、
   Cは、芳香族炭化水素基、芳香族複素環基又は縮合多環芳香族基
  を表し、Cが2つあるとき、2つのCは同一でも異なってもよく、
   Dは、同一でも異なってもよく、水素原子、重水素原子、フッ素
  原子、塩素原子、シアノ基、トリフルオロメチル基、炭素原子数1
  ~6のアルキル基、芳香族炭化水素基、芳香族複素環基または縮合
  多環芳香族基を表し、
   pとqの和が9であるという条件の下、pは7または8を表し、
  qは1または2を表す。
3)前記アントラセン誘導体が、下記一般式(4a)で表される。
Figure JPOXMLDOC01-appb-C000012
  式中、
   Aは、前記一般式(4)に記載した通りの意味であり、
   Ar~Ar10は、同一でも異なってもよく、芳香族炭化水素基
  、芳香族複素環基または縮合多環芳香族基を表し、
   R19~R25は、同一でも異なってもよく、水素原子、重水素原
  子、フッ素原子、塩素原子、シアノ基、ニトロ基、炭素原子数1~
  6のアルキル基、炭素原子数5~10のシクロアルキル基、炭素原
  子数2~6のアルケニル基、炭素原子数1~6のアルキルオキシ基
  、炭素原子数5~10のシクロアルキルオキシ基、芳香族炭化水素
  基、芳香族複素環基、縮合多環芳香族基またはアリールオキシ基を
  表し、単結合、置換もしくは無置換のメチレン基、酸素原子または
  硫黄原子を介して互いに結合して環を形成してもよく、
   X~Xは、同一でも異なってもよく、炭素原子または窒素原子
  を表し、X~Xのいずれか1つのみが窒素原子であり、この場合
  の窒素原子はR19~R22の水素原子もしくは置換基を有さないも
  のとする。
4)前記アントラセン誘導体が、下記一般式(4b)で表される。
Figure JPOXMLDOC01-appb-C000013
 式中、
   Aは、前記一般式(4)に記載した通りの意味であり、
   Ar11~Ar13は、同一でも異なってもよく、芳香族炭化水素
  基、芳香族複素環基または縮合多環芳香族基を表す。
5)前記アントラセン誘導体が、下記一般式(4c)で表される。
Figure JPOXMLDOC01-appb-C000014
  式中、
   Aは、前記一般式(4)に記載した通りの意味であり、
   Ar14~Ar16は、同一でも異なってもよく、芳香族炭化水素
  基、芳香族複素環基または縮合多環芳香族基を表し、
   R26は、水素原子、重水素原子、フッ素原子、塩素原子、シアノ
  基、ニトロ基、炭素原子数1~6のアルキル基、炭素原子数5~1
  0のシクロアルキル基、炭素原子数2~6のアルケニル基、炭素原
  子数1~6のアルキルオキシ基、炭素原子数5~10のシクロアル
  キルオキシ基、芳香族炭化水素基、芳香族複素環基、縮合多環芳香
  族基またはアリールオキシ基を表す。
6)前記正孔輸送層が、第一正孔輸送層および第二正孔輸送層の2層構造を有しており、、該第二正孔輸送層が、前記発光層側に位置しており且つ前記一般式(1)で表されるアリールアミン化合物を含有する。
7)前記発光層が、赤色の発光材料を含有する。
8)前記発光層が、燐光性の発光材料を含有する。
9)前記燐光性の発光材料が、イリジウム又は白金を含む金属錯体である。
 前記一般式(1)で表されるアリールアミン化合物(以下、アリールアミン化合物Iと呼ぶことがある。)は、従来の正孔輸送材料より、正孔の注入・輸送性能および電子阻止性が高い。さらに、薄膜状態が安定であり、耐熱性にも優れている。そのため、正孔輸送層の構成材料として好適である。また、正孔注入層又は電子阻止層の構成材料としても使用することができる。
 また、本発明では、前記一般式(2)で表されるインデノインドール化合物(以下、インデノインドール化合物IIと呼ぶことがある。)および前記一般式(3)で表されるカルバゾール化合物(以下、カルバゾール化合物IIIと呼ぶことがある。)が発光層の構成材料として、好適には発光層のホスト材料として、特に好適には燐光性の発光材料を有する発光層のホスト材料として好適に使用される。インデノインドール化合物II及びカルバゾール化合物IIIは、従来の材料に比べて発光効率に優れているからである。
 更に、本発明では、前記一般式(4)で表されるアントラセン誘導体(以下、アントラセン誘導体IVと呼ぶことがある。)が電子輸送層の構成材料として好適に使用される。アントラセン誘導体IVは、電子の注入および輸送能力に優れており、さらに薄膜状態の安定性や耐久性に優れているからである。
 上述のように、本発明では、正孔の注入・輸送性能、電子の注入・輸送性能、薄膜状態の安定性、耐久性等に優れた材料を選択し、特定の構造の材料を使用した発光層に対し、キャリアバランスを考慮し、特定の構造を有するアリールアミン化合物を使用した正孔輸送層を組み合わせている。これにより、本発明の有機EL素子では、従来の有機EL素子に比べて、正孔輸送層から発光層へ正孔を効率良く輸送することができる。また、好適な態様としては、かかる構造の有機EL素子において、更に、特定の構造を有するアントラセン誘導体を使用した電子輸送層を設けるという態様がある。これにより、電子輸送層から発光層への電子輸送効率も向上する。
 このように、本発明では、高発光効率、低駆動電圧であって、耐久性に優れ、特に長寿命の有機EL素子を実現している。
素子実施例および素子比較例における有機EL素子の構成を示す図である。 アリールアミン化合物Iである化合物1-1~1-10の構造式を示す図である。 アリールアミン化合物Iである化合物1-11~1-18の構造式を示す図である。 アリールアミン化合物Iである化合物1-19~1-28の構造式を示す図である。 アリールアミン化合物Iである化合物1-29~1-36の構造式を示す図である。 アリールアミン化合物Iである化合物1-37~1-44の構造式を示す図である。 アリールアミン化合物Iである化合物1-45~1-52の構造式を示す図である。 アリールアミン化合物Iである化合物1-53~1-60の構造式を示す図である。 アリールアミン化合物Iである化合物1-61~1-68の構造式を示す図である。 アリールアミン化合物Iである化合物1-69~1-76の構造式を示す図である。 アリールアミン化合物Iである化合物1-77~1-84の構造式を示す図である。 アリールアミン化合物Iである化合物1-85~1-94の構造式を示す図である。 アリールアミン化合物Iである化合物1-95~1-100の構造式を示す図である。 インデノインドール化合物IIである化合物2-1~2-8の構造式を示す図である。 インデノインドール化合物IIである化合物2-9~2-15の構造式を示す図である。 カルバゾール化合物IIIである化合物3-1~3-8の構造式を示す図である。 カルバゾール化合物IIIである化合物3-9~3-16の構造式を示す図である。 カルバゾール化合物IIIである化合物3-17~3-23の構造式を示す図である。 アントラセン誘導体IVである化合物4a-1~4a-8の構造式を示す図である。 アントラセン誘導体IVである化合物4a-9~4a-16の構造式を示す図である。 アントラセン誘導体IVである化合物4a-17~4a-20の構造式を示す図である。 アントラセン誘導体IVである化合物4b-1~4b-8の構造式を示す図である。 アントラセン誘導体IVである化合物4b-9~4b-16の構造式を示す図である。 アントラセン誘導体IVである化合物4c-1~4c-6の構造式を示す図である。 アントラセン誘導体IVである化合物4c-7~4c-12の構造式を示す図である。 アントラセン誘導体IVである化合物4c-13~4c-18の構造式を示す図である。 アントラセン誘導体IVである化合物4c-19~4c-24の構造式を示す図である。 アントラセン誘導体IVである化合物4c-25~4c-30の構造式を示す図である。 トリアリールアミン化合物Vである化合物5-1~5-8の構造式を示す図である。 トリアリールアミン化合物Vである化合物5-9~5-16の構造式を示す図である。 トリアリールアミン化合物Vである化合物5-17~5-23の構造式を示す図である。 トリアリールアミン構造を2個有するトリアリールアミン化合物のうち、トリアリールアミン化合物V以外の化合物の構造式を示す図である。 トリアリールアミン化合物VIである化合物6-1~6-3の構造式を示す図である。 トリアリールアミン化合物VIである化合物6-4~6-6の構造式を示す図である。 トリアリールアミン化合物VIである化合物6-7~6-10の構造式を示す図である。 トリアリールアミン化合物VIである化合物6-11~6-14の構造式を示す図である。 トリアリールアミン化合物VIである化合物6-15~6-17の構造式を示す図である。
 本発明の有機EL素子は、基板上に少なくとも陽極、正孔輸送層、発光層、電子輸送層および陰極がこの順に設けられた基本構造を有している。
 このような基本構造を有している限り、本発明の有機EL素子の層構造は種々の態様を採ることができる。例えば、陽極と正孔輸送層の間に正孔注入層を設けること、正孔輸送層と発光層の間に電子阻止層を設けること、発光層と電子輸送層の間に正孔阻止層を設けること、電子輸送層と陰極の間に電子注入層を設けることなどが可能である。更に、有機層を何層か省略あるいは兼ねることが可能である。例えば正孔注入層と正孔輸送層を兼ねた構成とすること、電子注入層と電子輸送層を兼ねた構成とすることなどが可能である。また、同一の機能を有する有機層を2層以上積層した構成とすることが可能である。例えば、正孔輸送層を2層積層した構成、発光層を2層積層した構成、電子輸送層を2層積層した構成などが可能である。図1には、後述する実施例で採用された層構成が示されており、即ち、ガラス基板1上に透明陽極2、正孔注入層3、第一正孔輸送層4a、第二正孔輸送層4b、発光層5、電子輸送層6、電子注入層7および陰極8がこの順に形成された層構成が示されている。
 各層の詳細な説明は後述するが、本発明では、正孔輸送層が、一般式(1)で表されるアリールアミン化合物Iを含有しており、更に、発光層が、一般式(2)で表されるインデノインドール化合物IIまたは一般式(3)で表されるカルバゾール化合物IIIを含有している点に重要な特徴を有する。以下、アリールアミン化合物I、インデノインドール化合物IIおよびカルバゾール化合物IIIについて説明する。
<アリールアミン化合物I>
 正孔輸送層に含有されているアリールアミン化合物Iは、下記一般式(1)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000015
(Ar~Ar
 Ar~Arは、同一でも異なってもよく、芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基を表す。本願明細書において、縮合多環芳香族基は、その骨格にヘテロ原子(例えば窒素原子、酸素原子、硫黄原子など)を有していない。
 Ar~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、具体的に、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、スピロビフルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基、ピリジル基、ピリミジニル基、トリアジニル基、フリル基、ピロリル基、チエニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、ナフチリジニル基、フェナントロリニル基、アクリジニル基、カルボリニル基、キナゾリニル基、ベンゾキナゾリニル基、ピリドピリミジニル基などを挙げることができる。
 Ar~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基は、無置換でもよいが置換基を有していてもよい。置換基としては、重水素原子、シアノ基、ニトロ基の他に、例えば以下の基を挙げることができる。
  ハロゲン原子、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子;
  炭素原子数1~6のアルキル基、例えばメチル基、エチル基、n-
 プロピル基、イソプロピル基、n-ブチル基、イソブチル基、ter
 t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、
 n-ヘキシル基;
  炭素原子数1~6のアルキルオキシ基、例えばメチルオキシ基、エ
 チルオキシ基、プロピルオキシ基;
  アルケニル基、例えばビニル基、アリル基;
  アリールオキシ基、例えばフェニルオキシ基、トリルオキシ基;
  アリールアルキルオキシ基、例えばベンジルオキシ基、フェネチル
 オキシ基;
  芳香族炭化水素基または縮合多環芳香族基、例えばフェニル基、ビ
 フェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、
 フェナントレニル基、フルオレニル基、スピロビフルオレニル基、イ
 ンデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリ
 フェニレニル基;
  芳香族複素環基、例えばピリジル基、ピリミジニル基、トリアジニ
 ル基、チエニル基、フリル基、ピロリル基、キノリル基、イソキノリ
 ル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバ
 ゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリ
 ニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基
 、ジベンゾチエニル基、カルボリニル基;
  アリールビニル基、例えばスチリル基、ナフチルビニル基;
  アシル基、例えばアセチル基、ベンゾイル基;
尚、炭素原子数1~6のアルキル基、炭素原子数1~6のアルキルオキシ基およびアルケニル基は、直鎖状でも分岐状でもよい。これらの置換基は、無置換でもよいが、さらに前記例示した置換基で置換されていても良い。また、これらの置換基は、独立して存在し、環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
(好適な態様)
 以下、アリールアミン化合物Iの好適な態様を説明する。かかる好適な態様の説明において、置換/無置換の指定がない基は、置換基を有していても無置換でもよい。
 Ar、Arは、芳香族炭化水素基または縮合多環芳香族基が好ましい。具体的には、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、フェナントレニル基、アントラセニル基またはフルオレニル基が好ましく、フェニル基またはビフェニリル基がより好ましい。これらの基は、同一でも異なってもよいが、同一であることが好ましい。また、蒸着性の観点から、無置換であることがより好ましい。
 Arとしては、芳香族炭化水素基または縮合多環芳香族基が好ましい。フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、フェナントレニル基、アントラセニル基またはフルオレニル基がより好ましい。フェニル基またはビフェニリル基が特に好ましい。ここで、フェニル基が有していてもよい置換基としては、縮合多環芳香族基が好ましく、ナフチル基、フェナントレニル基またはアントラセニル基がより好ましく、ナフチル基が特に好ましい。
 Ar、Arは、同一でも異なってもよく、芳香族炭化水素基または縮合多環芳香族基が好ましい。蒸着性の観点から、ArまたはArの炭素数は6~30であることが好ましく、6~25であることがより好ましい。具体的には、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、スピロビフルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基またはトリフェニレニル基が好ましく、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、フェナントレニル基、アントラセニル基、フルオレニル基またはスピロビフルオレニル基がより好ましい。ここで、フェニル基が有していてもよい置換基としては、ナフチル基が好ましい。フルオレニル基が有してもよい置換基としては、メチル基又はフェニル基が好ましい。
 アリールアミン化合物Iの好適な具体例を図2~図13に示すが、アリールアミン化合物Iはこれらの化合物に限定されるものではない。
 アリールアミン化合物Iは、公知の方法により合成することができ、例えば鈴木カップリング等のクロスカップリングにより製造することができる。
 アリールアミン化合物Iの精製は、カラムクロマトグラフによる精製、シリカゲル、活性炭、活性白土などによる吸着精製、溶媒による再結晶や晶析法などによって行うことができる。最終的には、昇華精製などによる精製を行ってもよい。化合物の同定は、NMR分析によって行うことができる。物性値として、ガラス転移点(Tg)と仕事関数の測定を行うことができる。
 ガラス転移点(Tg)は薄膜状態の安定性の指標となる。ガラス転移点(Tg)は、粉体を用いて高感度示差走査熱量計(ブルカー・エイエックスエス製、DSC3100SA)により測定することができる。
 仕事関数は正孔輸送性の指標となる。仕事関数は、ITO基板の上に100nmの薄膜を作製して、イオン化ポテンシャル測定装置(住友重機械工業株式会社、PYS-202)によって求めることができる。
 アリールアミン化合物I以外の本発明の有機EL素子に用いられる化合物(例えば後述するインデノインドール化合物II、カルバゾール化合物III、アントラセン誘導体IV、トリアリールアミン化合物V、トリアリールアミン化合物VIなど)についても、合成後、同様の方法により精製および各種測定をすることができる。
<インデノインドール化合物II>
 発光層に含有されるインデノインドール化合物IIは、下記一般式(2)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000016
(A
 Aは、芳香族炭化水素の2価基、芳香族複素環の2価基、縮合多環芳香族の2価基または単結合を表す。
 本明細書において、芳香族炭化水素の2価基、芳香族複素環の2価基または縮合多環芳香族の2価基は、芳香族炭化水素、芳香族複素環または縮合多環芳香族から水素原子を2個取り除いてできる2価基を表す。
 Aで表される芳香族炭化水素の2価基、芳香族複素環の2価基または縮合多環芳香族の2価基における芳香族炭化水素、芳香族複素環または縮合多環芳香族としては、具体的に、ベンゼン、ビフェニル、ターフェニル、テトラキスフェニル、スチレン、ナフタレン、アントラセン、アセナフタレン、フルオレン、フェナントレン、インダン、ピレン、トリフェニレン、ピリジン、ピリミジン、トリアジン、ピロール、フラン、チオフェン、キノリン、イソキノリン、ベンゾフラン、ベンゾチオフェン、インドリン、カルバゾール、カルボリン、ベンゾオキサゾール、ベンゾチアゾール、キノキサリン、ベンゾイミダゾール、ピラゾール、ジベンゾフラン、ジベンゾチオフェン、ナフチリジン、フェナントロリン、アクリジンなどを挙げることができる。
 Aで表される芳香族炭化水素基の2価基、芳香族複素環の2価基または縮合多環芳香族の2価基は、無置換でもよいが置換基を有していてよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基に関して示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
(Ar
 Arは、芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基を表す。
 Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基に関して示したものと同様のものを挙げることができる。
 Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基は、無置換でもよいが置換基を有していてよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基に関して示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
(R~R
 R~Rは、同一でも異なってもよく、水素原子;重水素原子;フッ素原子;塩素原子;シアノ基;ニトロ基;炭素原子数1~6のアルキル基;炭素原子数5~10のシクロアルキル基;炭素原子数2~6のアルケニル基;炭素原子数1~6のアルキルオキシ基;炭素原子数5~10のシクロアルキルオキシ基;芳香族炭化水素基;芳香族複素環基;縮合多環芳香族基;アリールオキシ基;または芳香族炭化水素基、芳香族複素環基もしくは縮合多環芳香族基から選ばれる基によって置換されたジ置換アミノ基;を表す。炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基および炭素原子数1~6のアルキルオキシ基は、直鎖状でも分岐状でもよい。
 R~Rは、独立して存在して環を形成していなくてもよいが、例えば図15の化合物2-14や2-15のように、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。同様に、R~Rは、独立して存在して環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。尚、R~Rがジ置換アミノ基である場合、環形成には、ジ置換アミノ基中の芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が寄与する。
 また、例えば図14に示されている化合物のように、R~Rの一部がベンゼン環から脱離して生じた空位に、R~Rの他の基が、置換もしくは無置換のメチレン基、酸素原子、硫黄原子またはモノアリールアミノ基を介して結合して環を形成してもよい。同様に、R~Rの一部がベンゼン環から脱離して生じた空位に、R~Rの他の基が、置換もしくは無置換のメチレン基、酸素原子、硫黄原子またはモノアリールアミノ基を介して結合して環を形成してもよい。尚、R~Rがジ置換アミノ基である場合、ベンゼン環との環形成には、ジ置換アミノ基中の芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が寄与する。
 連結基の一つであるモノアリールアミノ基に関し、モノアリールアミノ基が有するアリール基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基に関して示したものと同様のものを挙げることができる。この場合のアリール基は、無置換でもよいが置換基を有していてよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基に関して示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
 R~Rで表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基としては、具体的に、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基など;シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基など;ビニル基、アリル基、イソプロペニル基、2-ブテニル基など;を挙げることができる。
 R~Rで表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基は、無置換でもよいが置換基を有していてもよい。置換基としては、重水素原子、シアノ基、ニトロ基の他に、例えば以下の基を挙げることができる。
  ハロゲン原子、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子;
  炭素原子数1~6のアルキルオキシ基、例えばメチルオキシ基、エ
 チルオキシ基、プロピルオキシ基;
  アルケニル基、例えばビニル基、アリル基;
  アリールオキシ基、例えばフェニルオキシ基、トリルオキシ基;
  アリールアルキルオキシ基、例えばベンジルオキシ基、フェネチル
 オキシ基;
  芳香族炭化水素基または縮合多環芳香族基、例えばフェニル基、ビ
 フェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、
 フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、
 ペリレニル基、フルオランテニル基、トリフェニレニル基;
  芳香族複素環基、例えばピリジル基、ピリミジニル基、トリアジニ
 ル基、チエニル基、フリル基、ピロリル基、キノリル基、イソキノリ
 ル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバ
 ゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリ
 ニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基
 、ジベンゾチエニル基、カルボリニル基;
  芳香族炭化水素基または縮合多環芳香族基で置換されたジ置換アミ
 ノ基、例えばジフェニルアミノ基、ジナフチルアミノ基;
  芳香族複素環基で置換されたジ置換アミノ基、例えばジピリジルア
 ミノ基、ジチエニルアミノ基;
  芳香族炭化水素基、縮合多環芳香族基または芳香族複素環基から選
 択される置換基で置換されたジ置換アミノ基;
尚、炭素原子数1~6のアルキルオキシ基およびアルケニル基は、直鎖状でも分枝状でもよい。これらの置換基は、無置換でもよいが、さらに前記例示した置換基が置換されていても良い。また、これらの置換基は、独立して存在し、環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
 R~Rで表される炭素原子数1~6のアルキルオキシ基または炭素原子数5~10のシクロアルキルオキシ基としては、具体的に、メチルオキシ基、エチルオキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、tert-ブチルオキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基、1-アダマンチルオキシ基、2-アダマンチルオキシ基などを挙げることができる。
 R~Rで表されるこれらの基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記R~Rで表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基又は炭素原子数2~6のアルケニル基が有してもよい置換基に関して示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
 R~Rで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基に関して示したものと同様のものを挙げることができる。
 R~Rで表されるこれらの基は、無置換でもよいが置換基を有していてよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基に関して示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
 R~Rで表されるアリールオキシ基としては、具体的に、フェニルオキシ基、ビフェニリルオキシ基、ターフェニリルオキシ基、ナフチルオキシ基、アントラセニルオキシ基、フェナントレニルオキシ基、フルオレニルオキシ基、インデニルオキシ基、ピレニルオキシ基、ペリレニルオキシ基などを挙げることができる。
 R~Rで表されるアリールオキシ基は、無置換でもよいが置換基を有していてよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基に関して示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
 R~Rで表されるされたジ置換アミノ基が置換基として有する芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基に関して示したものと同様のものを挙げることができる。
 R~Rで表されるジ置換アミノ基における芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基は、無置換でもよいが置換基を有していてよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基に関して示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
(R、R10
 R、R10は、同一でも異なってもよく、炭素原子数1~6のアルキル基、芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基を表す。炭素原子数1~6のアルキル基は、直鎖状でも分岐状でもよい。
 これらの基は、独立して存在して環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
 R、R10で表される炭素原子数1~6のアルキル基としては、前記R~Rで表される炭素原子数1~6のアルキル基に関して示したものと同様のものを挙げることができる。
 R、R10で表される炭素原子数1~6のアルキル基は、無置換でもよいが置換基を有していてよい。置換基としては、前記R~Rで表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基が有してもよい置換基に関して示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
 R、R10で表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基に関して示したものと同様のものを挙げることができる。
 R、R10で表されるこれらの基は、無置換でもよいが置換基を有していてよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基に関して示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
(好適な態様)
 以下、インデノインドール化合物IIの好適な態様を説明する。かかる好適な態様の説明において、置換/無置換の指定がない基は、置換基を有していても無置換でもよい。
 Aとしては、芳香族炭化水素の2価基、縮合多環芳香族の2価基または単結合が好ましく、ベンゼン、ビフェニルもしくはナフタレンから水素原子を2個取り除いてできる2価基または単結合がより好ましく、ベンゼンから水素原子を2個取り除いてできる2価基または単結合が特に好ましい。
 Arとしては、フェニル基、ビフェニリル基、ナフチル基または芳香族複素環基が好ましい。芳香族複素環基としては、含窒素芳香族複素環基が好ましく、トリアジニル基、キナゾリニル基、ベンゾキナゾリニル基、ベンゾイミダゾリル基、ピリドピリミジニル基、ナフチリジニル基、ピリジル基、キノリル基またはイソキノリル基がより好ましく、キナゾリニル基またはベンゾキナゾリニル基が特に好ましく、ベンゾキナゾリニル基が最も好ましい。キナゾリニル基またはベンゾキナゾリニル基は、置換基としてフェニル基を有することが好ましい。
 例えば下記式(2a)~(2c)のように、R~Rのうちいずれか一つが芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基であり、R~Rの一部がベンゼン環から脱離して生じた空位に、かかる芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が、置換もしくは無置換のメチレン基、酸素原子、硫黄原子、モノアリールアミノ基などの連結基を介して結合して環を形成する態様が好ましい。この場合の芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、フェニル基、インデニル基、インドリル基、ベンゾフラニル基またはベンゾチエニル基が好ましい。ベンゼン環と共に形成する環としては、フルオレン環、カルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環、インデノインドール環、インデノベンゾフラン環、インデノベンゾチオフェン環、ベンゾフロインドール環、ベンゾチエノインドール環またはインドロインドール環が好ましく、フルオレン環、ジベンゾフラン環またはジベンゾチオフェン環がより好ましい。
 また、例えば下記式(2d)~(2e)のように、R~Rのうち隣接する2基が炭素原子数2~6のアルケニル基、芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基であり、かかる2基が、単結合を介して互いに結合することにより、R~Rが結合しているベンゼン環と共に縮合環を形成する態様も好ましい。この場合の炭素原子数2~6のアルケニル基、芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、ビニル基またはフェニル基が好ましい。かかる2基とR~Rが結合しているベンゼン環とで形成する環としては、ナフタレン環、フェナントレン環またはトリフェニレン環が好ましく、ナフタレン環またはトリフェニレン環がより好ましい。
 R~Rの一部がベンゼン環から脱離して生じた空位に、R~Rの他の基が連結基を介して結合して環を形成する態様としては、下記一般式(2a)、(2b)または(2c)で表される態様が好ましく、下記一般式(2a)で表される態様が特に好ましい。また、R~Rのうちの隣接する2基が互いに結合して環を形成する態様としては、下記一般式(2d)または(2e)で表される態様が好ましい。
Figure JPOXMLDOC01-appb-C000017
  式中、
   Xは、置換もしくは無置換のメチレン基、酸素原子、硫黄原子ま
  たはモノアリールアミノ基を表し、
   A、Ar、R~R10は、前記一般式(2)に記載した通りの
  意味である。
 上記一般式(2a)は、Rが脱離して空位となっている位置に、Rと隣接しているRが連結基Xを介して結合して縮合環を形成している構造を示している。
 上記一般式(2b)は、Rが脱離して空位となっている位置に、Rと隣接しているRが連結基Xを介して結合して縮合環を形成している構造を有している。
 上記一般式(2c)は、Rが脱離して空位となっている位置に、Rと隣接しているRが連結基Xを介して結合して縮合環を形成している構造を有している。
 上記一般式(2d)は、R(ビニル基)とR(ビニル基)とが結合し、R~Rが結合しているベンゼン環とともにナフタレン環を形成している構造を示している。
 上記一般式(2e)は、R(フェニル基)とR(フェニル基)とが結合して、R~Rが結合しているベンゼン環とともにトリフェニレン環を形成している構造を有している。
 R~Rに関しては、隣接する2基または全てがビニル基であって、隣接する2つのビニル基が単結合を介して互いに結合して縮合環を形成する態様、すなわち、R~Rが結合しているベンゼン環と共にナフタレン環またはフェナントレン環を形成する態様が好ましい。あるいは、R~Rは、水素原子が好ましい。
 R、R10は、同一でも異なってもよく、炭素原子数1~6のアルキル基が好ましく、メチル基がより好ましい。
 インデノインドール化合物IIの好適な具体例を図14および図15に示すが、インデノインドール化合物IIはこれらの化合物に限定されるものではない。具体例において、化合物2-1~2-4、2-9および2-10は上記一般式(2a)に該当し、化合物2-5、2-6、2-11および2-12は上記一般式(2b)に該当し、化合物2-7および2-8は上記一般式(2c)に該当する。また、化合物2-14は上記一般式(2d)に該当し、化合物2-15は上記一般式(2e)に該当する。
 インデノインドール化合物IIは、公知の方法に準じて合成することができ(特許文献6参照)、例えば後述の実施例のように、鈴木カップリング等のクロスカップリングにより合成することができる。
<カルバゾール化合物III>
 発光層に含有されるカルバゾール化合物IIIは、下記一般式(3)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000018
(A
 Aは、芳香族炭化水素の2価基、芳香族複素環の2価基、縮合多環芳香族の2価基または単結合を表す。
 Aで表される芳香族炭化水素の2価基、芳香族複素環の2価基または縮合多環芳香族の2価基としては、前記一般式(2)中のAで表される芳香族炭化水素の2価基、芳香族複素環の2価基または縮合多環芳香族の2価基に関して示したものと同様のものを挙げることができる。
 また、Aで表されるこれらの2価基は、無置換でもよいが置換基を有していてよい。置換基としては、前記一般式(2)中のAで表される、芳香族炭化水素の2価基、芳香族複素環の2価基または縮合多環芳香族の2価基が有してもよい置換基に関して示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
(Ar
 Arは芳香族炭化水素基、芳香族複素環基又は縮合多環芳香族基を表す。
 Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、前記一般式(2)中のArで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基に関して示したものと同様のものを挙げることができる。
 また、Arで表されるこれらの基は、無置換でもよいが置換基を有していてよい。置換基としては、前記一般式(2)中のArで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基に関して示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
(R11~R18
 R11~R18は、同一でも異なってもよく、水素原子;重水素原子;フッ素原子;塩素原子;シアノ基;ニトロ基;炭素原子数1~6のアルキル基;炭素原子数5~10のシクロアルキル基;炭素原子数2~6のアルケニル基;炭素原子数1~6のアルキルオキシ基;炭素原子数5~10のシクロアルキルオキシ基;芳香族炭化水素基;芳香族複素環基;縮合多環芳香族基;アリールオキシ基;または芳香族炭化水素基、芳香族複素環基もしくは縮合多環芳香族基から選ばれる基によって置換されたジ置換アミノ基;を表す。炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基および炭素原子数1~6のアルキルオキシ基は、直鎖状でも分岐状でもよい。
 R11~R14は、独立して存在して環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。同様に、R15~R18は、独立して存在して環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。例えば図17の化合物3-12では、複数の置換基(2つのビニル基)が単結合を介して結合してナフタレン環を形成している。
 R11~R14の一部がベンゼン環から脱離して生じた空位に、R11~R14の他の基が、置換もしくは無置換のメチレン基、酸素原子、硫黄原子またはモノアリールアミノ基を介して結合して環を形成してもよい。同様に、R15~R18の一部がベンゼン環から脱離して生じた空位に、R15~R18の他の基が、置換もしくは無置換のメチレン基、酸素原子、硫黄原子またはモノアリールアミノ基を介して結合して環を形成してもよい。例えば図17の化合物3-12では、R11がベンゼン環から脱離して生じた空位に、硫黄原子を介してR12が結合して環を形成している。
 連結基の一つであるモノアリールアミノ基におけるアリール基としては、前記一般式(2)中の連結基であるモノアリールアミノ基におけるアリール基に関して示したものと同様のものを挙げることができる。モノアリールアミノ基におけるアリール基は、無置換でもよいが置換基を有していてよい。置換基としては、前記一般式(2)中の連結基であるモノアリールアミノ基におけるアリール基が有してもよい置換基に関して示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
 R11~R18で表される炭素原子数1~6のアルキル基;炭素原子数5~10のシクロアルキル基;炭素原子数2~6のアルケニル基;炭素原子数1~6のアルキルオキシ基;炭素原子数5~10のシクロアルキルオキシ基;芳香族炭化水素基;芳香族複素環基;縮合多環芳香族基;アリールオキシ基;または芳香族炭化水素基、芳香族複素環基もしくは縮合多環芳香族基から選ばれる基によって置換されたジ置換アミノ基;としては、前記一般式(2)中のR~Rで表される炭素原子数1~6のアルキル基;炭素原子数5~10のシクロアルキル基;炭素原子数2~6のアルケニル基;炭素原子数1~6のアルキルオキシ基;炭素原子数5~10のシクロアルキルオキシ基;芳香族炭化水素基;芳香族複素環基;縮合多環芳香族基;アリールオキシ基;または芳香族炭化水素基、芳香族複素環基もしくは縮合多環芳香族基から選ばれる基によって置換されたジ置換アミノ基;に関して示したものと同様のものを挙げることができる。
 R11~R18で表されるこれらの基は、無置換でもよいが置換基を有していてよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基に関して示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
(好適な態様)
 以下、カルバゾール化合物IIIの好適な態様を説明する。かかる好適な態様の説明において、置換/無置換の指定がない基は、置換基を有していても無置換でもよい。
 Aとしては、芳香族炭化水素の2価基、縮合多環芳香族の2価基または単結合が好ましく、ベンゼン、ビフェニルもしくはナフタレンから水素原子を2個取り除いてできる2価基または単結合がより好ましく、ベンゼンから水素原子を2個取り除いてできる2価基または単結合が特に好ましい。
 Arとしては、フェニル基、ビフェニリル基、ナフチル基または芳香族複素環基が好ましく、ナフチル基または芳香族複素環基がより好ましく、芳香族複素環基が特に好ましい。芳香族複素環基としては、トリアジニル基、キナゾリニル基、ベンゾキナゾリニル基、ベンゾイミダゾリル基、ピリドピリミジニル基、ナフチリジニル基、ピリジル基、キノリル基またはイソキノリル基が好ましく、キナゾリニル基またはベンゾキナゾリニル基がより好ましく、キナゾリニル基が特に好ましい。キナゾリニル基またはベンゾキナゾリニル基は置換基として芳香族炭化水素基を有することが好ましい。
 R11~R18に関しては、R11~R14のうち隣接する2基が、炭素原子数2~6のアルケニル基、芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基であって、単結合を介して互いに結合することにより、R11~R14が結合しているベンゼン環と共に縮合環を形成する態様が好ましい。この場合の炭素原子数2~6のアルケニル基、芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、ビニル基またはフェニル基が好ましい。かかる2基とR11~R14が結合しているベンゼン環とで形成する環としては、ナフタレン環、フェナントレン環またはトリフェニレン環が好ましい。
 また、例えば下記一般式(3a-1)~(3a-4)および(3b-1)のように、R11~R14のうちいずれか1つが芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基であり、R11~R14の一部がベンゼン環から脱離して生じた空位に、かかる芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が、置換もしくは無置換のメチレン基、酸素原子、硫黄原子、モノアリールアミノ基などの連結基を介して結合して環を形成する態様も好ましい。この場合の芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、フェニル基、インデニル基、インドリル基、ベンゾフラニル基またはベンゾチエニル基が好ましい。ベンゼン環と共に形成する環としては、フルオレン環、カルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環、インデノインドール環、インデノベンゾフラン環、インデノベンゾチオフェン環、ベンゾフロインドール環、ベンゾチエノインドール環またはインドロインドール環が好ましい。
 この場合、R15~R18および環形成に寄与しない残りのR11~R14は、同一でも異なってもよく、水素又は重水素であることが好ましい。
 R11~R14の一部がベンゼン環から脱離して生じた空位に、R11~R14の他の基が連結基を介して結合して環を形成する態様としては、下記一般式(3a-1)~(3a-4)および(3b-1)で表される態様が好ましい。
Figure JPOXMLDOC01-appb-C000019
  式中、
   Xは、置換もしくは無置換のメチレン基、酸素原子、硫黄原子ま
  たはモノアリールアミノ基を表し、
   A、Ar、R11~R18は、前記一般式(3)に記載した通り
  の意味である。
 上記一般式(3a-1)は、R11が脱離して空位となっている位置に、R11と隣接しているR12(置換基として2つのメチル基を有しているインデニル基)が連結基Xを介して結合して縮合環を形成している構造を示している。
 上記一般式(3a-2)も、一般式(3a-1)と同様、R11が脱離して空位となっている位置に、R11と隣接しているR12(置換基として2つのメチル基を有しているインデニル基)が連結基Xを介して結合して縮合環を形成している構造を示している。
 上記一般式(3a-3)はR14が脱離して空位となっている位置に、R14と隣接しているR13(置換基として2つのメチル基を有しているインデニル基)が連結基Xを介して結合して縮合環を形成している構造を示している。
 上記一般式(3a-4)は、R11が脱離して空位となっている位置に、R11と隣接しているR12(置換基として2つのフェニル基を有しているインデニル基)が連結基Xを介して結合して縮合環を形成している構造を示している。
 上記一般式(3b-1)は、R11が脱離して空位となっている位置に、R11と隣接しているR12(N-フェニル置換インドリル基)が連結基Xを介して結合して縮合環を形成している構造を示している。
 R15~R18に関しては、隣接する2基または全てがビニル基であり、隣接する2つのビニル基が単結合を介して互いに結合して縮合環を形成する態様、すなわち、R15~R18が結合しているベンゼン環と共にナフタレン環またはフェナントレン環を形成する態様が好ましい。
 また、R15~R18のいずれか1つが芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基、特に芳香族炭化水素基である態様も好ましい。R15~R18のいずれか1つが、フルオレニル基、カルバゾリル基、ジベンゾフラニル基またはジベンゾチエニル基であることが好ましく、R16がフルオレニル基、カルバゾリル基、ジベンゾフラニル基またはジベンゾチエニル基であって、R15、R17およびR18が水素原子であることがより好ましく、R16がカルバゾリル基であって、R15、R17およびR18が水素原子であることが特に好ましい。
 カルバゾール化合物IIIの好適な具体例を図16~図18に示すが、カルバゾール化合物IIIはこれらの化合物に限定されるものではない。具体例において、化合物3-1~3-6、3-8~3-10、3-12および3-15は上記一般式(3a-1)に該当し、化合物3-14は上記一般式(3a-2)に該当し、化合物3-7は上記一般式(3a-3)に該当し、化合物3-11は上記一般式(3a-4)に該当し、化合物3-13は上記一般式(3b-1)に該当する。
 カルバゾール化合物IIIは、公知の方法に準じて合成することができる(特許文献6参照)。
 本発明の有機EL素子においては、上記アリールアミン化合物Iが正孔輸送層に含まれており、且つ、上記インデノインドール化合物IIまたはカルバゾール化合物IIIが発光層に含まれているという条件を満たしている限り、各層は種々の態様を採ることができる。以下、図1を参照して、各層について詳細に説明する。
<陽極2>
 本発明の有機EL素子では、基板1の上に陽極2が設けられている。陽極2には、ITOや金のような仕事関数の大きな電極材料が用いられる。
<正孔注入層3>
 陽極2と正孔輸送層4との間には、必要に応じて正孔注入層3を設けることができる。正孔注入層3には、公知の材料を使用してよい。
 公知の材料としては、例えば、スターバースト型のトリフェニルアミン誘導体、種々のトリフェニルアミン4量体などの材料;銅フタロシアニンに代表されるポルフィリン化合物;ヘキサシアノアザトリフェニレンのようなアクセプター性の複素環化合物;塗布型の高分子材料;などを用いることができる。
 正孔注入層3には、アリールアミン化合物Iが好ましく用いられる。また、後述する一般式(5)で表されるトリアリールアミン化合物Vまたは一般式(6)で表されるトリアリールアミン化合物VIも好適に使用される。尚、正孔注入層3にこれらの(トリ)アリールアミン化合物を使用する場合、正孔注入層3の組成と後述の正孔輸送層4の組成は、異なっている。
 また、正孔注入層に通常使用される材料に対し、さらにトリスブロモフェニルアミンヘキサクロルアンチモン、ラジアレン誘導体(WO2014/009310参照)などをPドーピングしたものや、TPDなどのベンジジン誘導体の構造をその部分構造に有する高分子化合物などを用いることができる。
 これらの材料を用いて、蒸着法、スピンコート法、インクジェット法などの公知の方法により薄膜形成を行うと、正孔注入層3を得ることができる。以下に述べる各層も同様に、蒸着法、スピンコート法、インクジェット法などの公知の方法により薄膜形成を行うことで得ることができる。
<正孔輸送層4>
 陽極2(または正孔注入層3)の上には、正孔輸送層4が設けられる。本発明では、正孔輸送層4には、前記一般式(1)で表されるアリールアミン化合物Iを使用する。
 アリールアミン化合物Iと混合もしくは同時に使用できる、正孔輸送性の材料としては、以下のものを挙げることができる。
  ベンジジン誘導体、例えば
   N,N’-ジフェニル-N,N’-ジ(m-トリル)ベンジジン
  (TPD)、
   N,N’-ジフェニル-N,N’-ジ(α-ナフチル)ベンジジ
  ン(NPD)、
   N,N,N’,N’-テトラビフェニリルベンジジンなど;
  トリアリールアミン構造を2~6個有するトリアリールアミン化合
  物であって、該トリアリールアミン構造が、単結合またはヘテロ原
  子を含まない2価基で連結した構造を有するトリアリールアミン化
  合物、例えば
   1,1-ビス[4-(ジ-4-トリルアミノ)フェニル]シクロ
  ヘキサン(TAPC)、
   後述の一般式(5)で表されるトリアリールアミン化合物V、
   後述の一般式(6)で表されるトリアリールアミン化合物VIなど;
  種々のトリフェニルアミン3量体など;
 上記の正孔輸送性の材料のうちでは、トリアリールアミン構造を2~6個有するトリアリールアミン化合物であって、該トリアリールアミン構造が、単結合またはヘテロ原子を含まない2価基で連結した構造を有するトリアリールアミン化合物(以下、トリアリールアミン構造を2~6個有するトリアリールアミン化合物と略称することがある。)が好ましい。更に、トリアリールアミン構造を2個有するトリアリールアミン化合物であって、該トリアリールアミン構造が、単結合またはヘテロ原子を含まない2価基で連結した構造を有するトリアリールアミン化合物(以下、トリアリールアミン構造を2個有するトリアリールアミン化合物と略称することがある。)またはトリアリールアミン構造を4個有するトリアリールアミン化合物であって、該トリアリールアミン構造が、単結合またはヘテロ原子を含まない2価基で連結した構造を有するトリアリールアミン化合物(以下、トリアリールアミン構造を4個有するトリアリールアミン化合物と略称することがある。)がより好ましい。
 また、正孔輸送層に通常使用される材料に対し、さらにトリスブロモフェニルアミンヘキサクロルアンチモン、ラジアレン誘導体(WO2014/009310参照)などをPドーピングしたものや、TPDなどのベンジジン誘導体の構造をその部分構造に有する高分子化合物などを用いることができる。
 これらの材料は、単独で成膜に供してもよいが、他の材料とともに混合して成膜に供してもよい。以下に述べる各有機層でも、同様に成膜することができる。
 正孔輸送層4は、単独で成膜した層同士を積層した構造、混合して成膜した層同士を積層した構造または単独で成膜した層と混合して成膜した層を積層した構造を有してもよい。以下に述べる各有機層も同様の構造とすることができる。
 本発明において正孔輸送層4は、図1に示されているように、陽極2側に位置する第一正孔輸送層4aと発光層5側に位置する第二正孔輸送層4bとの二層構造を有していることが好適である。
(第一正孔輸送層4a)
 第一正孔輸送層4aは、上記の陽極2(または正孔注入層3)と第二正孔輸送層4bとの間に設けられるものである。本発明では、第一正孔輸送層4aに、前述の正孔輸送性の材料を含有させることができる。
 前述の正孔輸送性の材料のうち、トリアリールアミン構造を2~6個有するトリアリールアミン化合物が好適に用いられる。トリアリールアミン構造を2個有するトリアリールアミン化合物またはトリアリールアミン構造を4個有するトリアリールアミン化合物がより好適に用いられる。
 尚、トリアリールアミン構造を2個有するトリアリールアミン化合物には、例えば図32の5´-1および5´-2のように、トリアリールアミン構造中の2つのベンゼン環が単結合を介して結合している態様、即ち、カルバゾール環構造を有する態様も含まれるものとする。
 トリアリールアミン構造を2個有するトリアリールアミン化合物としては、後述の一般式(5)で表されるトリアリールアミン化合物Vが好ましい。正孔輸送性に加え、薄膜安定性や耐熱性に優れており、更に合成が容易だからである。
 また、トリアリールアミン構造を4個有するトリアリールアミン化合物としては、後述の一般式(6)で表されるトリアリールアミン化合物VIが好ましい。正孔輸送性に加え、薄膜安定性や耐熱性に優れており、更に合成が容易だからである。
 第一正孔輸送層4aの材料として、このような特定の構造を有するトリアリールアミン化合物Vやトリアリールアミン化合物VIを、後述のアリールアミン化合物Iを含む第二正孔輸送層4bと組み合わせることにより、発光層5へ正孔をより効率良く注入・輸送でき、キャリアバランスがより精緻化される。その結果、さらに発光効率が向上するとともに、駆動電圧がより低下して、耐久性がより向上する。特に耐久性に優れた有機EL素子を実現することができる。
一般式(5)で表されるトリアリールアミン化合物V;
Figure JPOXMLDOC01-appb-C000020
27~R32
 R27~R32は、同一でも異なってもよく、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基、炭素原子数2~6のアルケニル基、炭素原子数1~6のアルキルオキシ基、炭素原子数5~10のシクロアルキルオキシ基、芳香族炭化水素基、芳香族複素環基、縮合多環芳香族基またはアリールオキシ基を表す。炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基および炭素原子数1~6のアルキルオキシ基は、直鎖状でも分岐状でもよい。
 R27~R32で表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基としては、具体的に、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基、ビニル基、アリル基、イソプロペニル基、2-ブテニル基などを挙げることができる。
 R27~R32で表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基は、無置換でもよいが置換基を有していてもよい。置換基としては、重水素原子、シアノ基、ニトロ基の他に、例えば以下の基を挙げることができる。
  ハロゲン原子、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子;
  炭素原子数1~6のアルキルオキシ基、例えばメチルオキシ基、エ
 チルオキシ基、プロピルオキシ基;
  アルケニル基、例えばビニル基、アリル基;
  アリールオキシ基、例えばフェニルオキシ基、トリルオキシ基;
  アリールアルキルオキシ基、例えばベンジルオキシ基、フェネチル
 オキシ基;
  芳香族炭化水素基または縮合多環芳香族基、例えばフェニル基、ビ
 フェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、
 フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、
 ペリレニル基、フルオランテニル基、トリフェニレニル基;
  芳香族複素環基、例えばピリジル基、ピリミジニル基、トリアジニ
 ル基、チエニル基、フリル基、ピロリル基、キノリル基、イソキノリ
 ル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバ
 ゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリ
 ニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基
 、ジベンゾチエニル基、カルボリニル基;
尚、炭素原子数1~6のアルキルオキシ基およびアルケニル基は、直鎖状でも分枝状でもよい。これらの置換基は、無置換でもよいが、さらに前記例示した置換基で置換されていても良い。また、これらの置換基は、独立して存在し、環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
 R27~R32で表される炭素原子数1~6のアルキルオキシ基または炭素原子数5~10のシクロアルキルオキシ基としては、具体的に、メチルオキシ基、エチルオキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、tert-ブチルオキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基、1-アダマンチルオキシ基、2-アダマンチルオキシ基などを挙げることができる。
 R27~R32で表されるこれらの基は、無置換でもよいが置換基を有していてもよい。置換基としては、R27~R32表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基に関して示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
 R27~R32で表される芳香族炭化水素基、芳香族複素環基、縮合多環芳香族基またはアリールオキシ基としては、前記一般式(2)中のR~Rで表される芳香族炭化水素基、芳香族複素環基、縮合多環芳香族基またはアリールオキシ基に関して示したものと同様のものを挙げることができる。
 R27~R32で表されるこれらの基は、無置換でもよいが置換基を有していてよく、置換基として、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基に関して示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
27~r32
 r27~r32は、芳香環に結合している基R27~R32の数を示す。r27、r28、r31およびr32は、それぞれ0~5の整数を表す。r29およびr30は、それぞれ0~4の整数を表す。r27~r32が0である場合とは、芳香族環上にR27~R32が存在しないこと、すなわち、R27~R32で表される基でベンゼン環が置換されていないことを表す。
 r27、r28、r31、r32が2~5の整数である場合、または、r29、r30が2~4の整数である場合、同一のベンゼン環にR27~R32が複数個結合している。この場合、複数結合している基は、同一でも異なってもよい。また、互いに独立して存在して環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよい。例えば図30の化合物5-13および5-14では、複数の置換基(2つのビニル基)が単結合を介して結合してナフタレン環を形成している。

 Lは、2つのトリアリールアミン構造を結合する橋絡基である。Lは、下記構造式(B)~(G)で示される2価基または単結合を表す。
Figure JPOXMLDOC01-appb-C000021
前記構造式(B)において、n1は1~4の整数を表す。
好適な態様:
 以下、トリアリールアミン化合物Vの好適な態様を説明する。かかる好適な態様の説明において、置換/無置換の指定がない基は、置換基を有していても無置換でもよい。
 R27~R32は、同一でも異なってもよく、重水素原子、塩素原子、炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基、芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が好ましく、重水素原子、塩素原子、フェニル基、ビフェニリル基、ナフチル基、ピリジル基またはビニル基がより好ましく、重水素原子、フェニル基、ビフェニリル基、ナフチル基またはビニル基が特に好ましい。例えば図30の化合物5-13および5-14のように、これらの基が単結合を介して互いに結合して縮合芳香環を形成する態様も好ましい。重水素原子、フェニル基またはビフェニリル基が最も好ましい。
 r27~r32は、同一でも異なってもよく、0~3の整数であることが好ましく、0~2の整数であることがより好ましい。
 Lとしては、前記構造式(C)~(F)で示される2価基または単結合が好ましく、前記構造式(B)で示される2価基または単結合がより好ましく、単結合が特に好ましい。
 前記構造式(B)におけるn1としては、1~3の整数が好ましく、2または3がより好ましい。
 また、トリアリールアミン化合物Vは対称性を持つことが好ましい。
 トリアリールアミン化合物Vの好適な具体例を図29~図31に示すが、トリアリールアミン化合物Vはこれらの化合物に限定されるものではない。Dは重水素原子を表す。
 前述した、本発明に好適に用いられるトリアリールアミン構造を2個有するトリアリールアミン化合物のうち、トリアリールアミン化合物V以外の化合物の好適な具体例を図32に示すが、トリアリールアミン構造を2個有するトリアリールアミン化合物はこれらの化合物に限定されるものではない。
 トリアリールアミン化合物Vは、それ自体公知の方法に準じて合成することができる(特許文献1、10~11参照)。
一般式(6)で表されるトリアリールアミン化合物VI;
Figure JPOXMLDOC01-appb-C000022
33~R44
 R33~R44は、同一でも異なってもよく、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基、炭素原子数2~6のアルケニル基、炭素原子数1~6のアルキルオキシ基、炭素原子数5~10のシクロアルキルオキシ基、芳香族炭化水素基、芳香族複素環基、縮合多環芳香族基またはアリールオキシ基を表す。炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基および炭素原子数1~6のアルキルオキシ基は、直鎖状でも分岐状でもよい。
 R33~R44で表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基としては、前記一般式(5)中のR27~R32で表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基に関して示したものと同様のものを挙げることができる。
 R33~R44で表されるこれらの基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(5)中のR27~R32で表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基又は炭素原子数2~6のアルケニル基が有してもよい置換基に関して示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
 R33~R44で表される炭素原子数1~6のアルキルオキシ基または炭素原子数5~10のシクロアルキルオキシ基としては、前記一般式(5)中のR27~R32で表される炭素原子数1~6のアルキルオキシ基または炭素原子数5~10のシクロアルキルオキシ基に関して示したものと同様のものを挙げることができる。
 R33~R44で表されるこれらの基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(5)中のR27~R32で表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基又は炭素原子数2~6のアルケニル基が有してもよい置換基に関して示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
 R33~R44で表される芳香族炭化水素基、芳香族複素環基、縮合多環芳香族基またはアリールオキシ基としては、前記一般式(2)中のR~Rで表される芳香族炭化水素基、芳香族複素環基、縮合多環芳香族基またはアリールオキシ基に関して示したものと同様のものを挙げることができる。
 R33~R44で表されるこれらの基は、無置換でもよいが置換基を有していてよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基に関して示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
33~r44
 r33~r44は、芳香族環に結合している基R33~R44の数を示す。r33、r34、r37、r40、r43およびr44は、0~5の整数を表す。r35、r36、r38、r39、r41およびr42は、0~4の整数を表す。r33~r44が0である場合とは、芳香族環上にR33~R44が存在しないこと、即ち、R33~R44で表される基で芳香族環が置換されていないことを表す。
 r33、r34、r37、r40、r43、r44が2~5の整数である場合、または、r35、r36、r38、r39、r41、r42が2~4の整数である場合、同一のベンゼン環にR33~R44が複数個結合している。この場合、複数個結合している基は、同一でも異なってもよい。また、互いに独立して存在して環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよい。例えば図34の化合物6-8及び図35の化合物6-12では、複数の置換基(2つのビニル基)が単結合を介して結合してナフタレン環を形成している。
~L
 L~Lは、2つのトリアリールアミン構造を結合する橋絡基である。L~Lは、同一でも異なってもよく、下記構造式(B’)~(G)で示される2価基または単結合を表す。
Figure JPOXMLDOC01-appb-C000023
前記構造式(B’)において、n2は1~3の整数を表す。前記構造式(B’)~(G)で示される2価基は無置換でもよいが、重水素で置換されていてもよい。
好適な態様:
 以下、トリアリールアミン化合物VIの好適な態様を説明する。かかる好適な態様の説明において、置換/無置換の指定がない基は、置換基を有していても無置換でもよい。
 R33~R44は、同一でも異なってもよく、重水素原子、塩素原子、炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基、芳香族炭化水素基または縮合多環芳香族基が好ましく、重水素原子、塩素原子、tert-ブチル基、フェニル基、ビフェニリル基、ナフチル基またはビニル基がより好ましく、重水素原子、フェニル基、ビフェニリル基、ナフチル基またはビニル基が特に好ましい。図34の化合物6-8のように、これらの基が単結合を介して互いに結合して縮合芳香環を形成する場合も好ましい。重水素原子、フェニル基またはビフェニリル基が最も好ましい。
 r33~r44は、同一でも異なってもよく、0~3の整数であることが好ましく、0~2の整数であることがより好ましい。
 L~Lは、同一でも異なってもよく、前記構造式(B’)もしくは(D)で示される2価基または単結合が好ましく、前記構造式(B’)で示される2価基または単結合がより好ましい。
 前記構造式(B’)におけるn2としては、1または2が好ましく、1がより好ましい。
 トリアリールアミン化合物VIの好適な具体例を図33~図37に示すが、トリアリールアミン化合物VIはこれらの化合物に限定されるものではない。Dは重水素原子を表す。
 トリアリールアミン化合物VIは、それ自体公知の方法に準じて合成することができる(特許文献1、10~11参照)。
(第二正孔輸送層4b)
 正孔輸送層を第一正孔輸送層4aと第二正孔輸送層4bの2層構造とする態様においては、第一正孔輸送層4aの上に第二正孔輸送層4bが設けられる。第二正孔輸送層4bの組成は、第一正孔輸送層4aの組成と異なっている。第二正孔輸送層4bには、前述の公知の正孔輸送性の材料を使用してもよいが、前記アリールアミン化合物Iを用いることが好ましい。電子阻止性能が高いからである。
<電子阻止層>
 正孔輸送層4と発光層5の間に電子阻止層(図示せず)を設けることができる。電子阻止層には、前記アリールアミン化合物Iが好ましく用いられる他、例えば以下に例示される公知の電子阻止作用を有する化合物を用いることができる。
  カルバゾール化合物、例えば
   4,4’,4’’-トリ(N-カルバゾリル)トリフェニルアミ
  ン(TCTA)、
   9,9-ビス[4-(カルバゾール-9-イル)フェニル]フル
  オレン、
   1,3-ビス(カルバゾール-9-イル)ベンゼン(mCP)、
   2,2-ビス(4-カルバゾール-9-イルフェニル)アダマン
  タン(Ad-Cz);
  トリフェニルシリル基とトリアリールアミン構造を有するトリアリ
 ールアミン化合物、例えば
   9-[4-(カルバゾール-9-イル)フェニル]-9-[4-(ト
  リフェニルシリル)フェニル]-9H-フルオレン;
 尚、電子阻止層を設ける場合、電子阻止層の組成と正孔輸送層4(2層の場合は、第二正孔輸送層4b)の組成は異なっている。
<発光層5>
 発光層5は、正孔輸送層4(あるいは電子阻止層)の上に形成される。発光層5は前記インデノインドール化合物IIまたは前記カルバゾール化合物IIIを含んでいる。
 発光層5には、公知の発光材料を併用してもよい。公知の発光材料としては、Alqをはじめとするキノリノール誘導体の金属錯体などの各種の金属錯体、アントラセン誘導体、ビススチリルベンゼン誘導体、ピレン誘導体、オキサゾール誘導体、ポリパラフェニレンビニレン誘導体などを用いることができる。発光層5では、赤色の発光材料を好適に使用することができる。
 また、発光層5をホスト材料とドーパント材料とで構成しても良い。
 ホスト材料としては、前記インデノインドール化合物IIまたは前記カルバゾール化合物IIIが好ましく用いられるが、それ以外に、前記発光材料、チアゾール誘導体、ベンズイミダゾール誘導体、ポリジアルキルフルオレン誘導体などを用いることができる。
 ドーパント材料としては、キナクリドン、クマリン、ルブレン、ペリレン、ピレン、およびそれらの誘導体;ベンゾピラン誘導体;インデノフェナントレン誘導体;ローダミン誘導体;アミノスチリル誘導体などを用いることができる。
 また、発光材料として燐光発光体を使用することが好ましい。燐光発光体としては、イリジウムや白金などの金属錯体の燐光発光体を使用することができる。具体的には、Ir(ppy)などの緑色の燐光発光体;FIrpic、FIr6などの青色の燐光発光体;BtpIr(acac)などの赤色の燐光発光体;などが用いられる。このうち赤色の燐光発光体が好ましい。
 このときのホスト材料としては、前記インデノインドール化合物IIまたは前記カルバゾール化合物IIIが好ましく用いられるが、それ以外に、例えば以下の正孔注入・輸送性のホスト材料を用いることができる。
  カルバゾール化合物、例えば4,4’-ジ(N-カルバゾリル)ビ
 フェニル(CBP)、TCTA、mCPなど;
 また、例えば以下の電子輸送性のホスト材料を用いることができる。
  p-ビス(トリフェニルシリル)ベンゼン(UGH2)、
  2,2’,2’’-(1,3,5-フェニレン)-トリス(1-フ
 ェニル-1H-ベンズイミダゾール)(TPBI)など;
このようなホスト材料を用いると、高性能の有機EL素子を作製することができる。
 燐光性の発光材料のホスト材料へのドープは濃度消光を避けるため、発光層全体に対して1~30重量パーセントの範囲で、共蒸着によって行うことが好ましい。
 また、発光材料としてPIC-TRZ、CC2TA、PXZ-TRZ、4CzIPNなどのCDCB誘導体などの遅延蛍光を放射する材料を使用することも可能である。
<正孔阻止層>
 発光層5の上には、正孔阻止層(図示せず)を設けることができる。正孔阻止層には、公知の正孔阻止作用を有する化合物を用いることができる。公知の正孔阻止作用を有する化合物としては、バソクプロイン(BCP)などのフェナントロリン誘導体;アルミニウム(III)ビス(2-メチル-8-キノリナート)-4-フェニルフェノレート(BAlq)などのキノリノール誘導体の金属錯体;各種の希土類錯体;トリアゾール誘導体;トリアジン誘導体;オキサジアゾール誘導体;などを挙げることができる。これらの材料は電子輸送層6の材料を兼ねてもよい。
<電子輸送層6>
 電子輸送層6は、前記発光層5(あるいは正孔阻止層)の上に形成される。電子輸送層6には、下記一般式(4)で表されるアントラセン誘導体IVを用いることが好ましい。
アントラセン誘導体IV;
Figure JPOXMLDOC01-appb-C000024
 アントラセン誘導体IVには、例えば以下の3態様がある。
Figure JPOXMLDOC01-appb-C000025

 Aは、芳香族炭化水素の2価基、芳香族複素環の2価基、縮合多環芳香族の2価基または単結合を表す。
 Aで表される芳香族炭化水素の2価基、芳香族複素環の2価基または縮合多環芳香族の2価基は、前記一般式(2)中のAで表される芳香族炭化水素の2価基、芳香族複素環の2価基または縮合多環芳香族の2価基に関して示したものと同様の基を挙げることができる。
 Aで表されるこれらの2価基は、無置換でもよいが置換基を有していてよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基に関して示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
B:
 Bは、芳香族複素環基を表す。具体的に、ピリジル基、ピリミジニル基、フリル基、ピロリル基、チエニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルボリニル基などを挙げることができる。
 Bで表される芳香族複素環基は、無置換でもよいが置換基を有していてもよい。置換基としては、重水素原子、シアノ基、ニトロ基の他に、例えば以下の基を挙げることができる。
  ハロゲン原子、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子;
  炭素原子数1~6のアルキル基、例えばメチル基、エチル基、n-
 プロピル基、イソプロピル基、n-ブチル基、イソブチル基、ter
 t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、
 n-ヘキシル基;
  炭素原子数5~10のシクロアルキル基、例えばシクロペンチル基
 、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基;
  炭素原子数1~6のアルキルオキシ基、例えばメチルオキシ基、エ
 チルオキシ基、プロピルオキシ基;
  炭素原子数5~10のシクロアルキルオキシ基、例えばシクロペン
 チルオキシ基、シクロヘキシルオキシ基、1-アダマンチルオキシ基
 、2-アダマンチルオキシ基;
  アルケニル基、例えばビニル基、アリル基;
  アリールオキシ基、例えばフェニルオキシ基、トリルオキシ基;
  アリールアルキルオキシ基、例えばベンジルオキシ基、フェネチル
 オキシ基;
  芳香族炭化水素基または縮合多環芳香族基、例えばフェニル基、ビ
 フェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、
 フェナントレニル基、フルオレニル基、スピロビフルオレニル基、イ
 ンデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリ
 フェニレニル基;
  芳香族複素環基、例えばピリジル基、フリル基、チエニル基、ピロ
 リル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチ
 エニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、
 ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピ
 ラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルボリニ
 ル基;
  アリールオキシ基、例えばフェニルオキシ基、ビフェニリルオキシ
 基、ナフチルオキシ基、アントラセニルオキシ基、フェナントレニル
 オキシ基;
  アリールビニル基、例えばスチリル基、ナフチルビニル基;
  アシル基、例えばアセチル基、ベンゾイル基;
尚、炭素原子数1~6のアルキル基、炭素原子数1~6のアルキルオキシ基およびアルケニル基は、直鎖状でも分岐状でもよい。これらの置換基は、無置換でもよいが、さらに前記例示した置換基で置換されていても良い。また、これらの置換基は、独立して存在し、環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
C:
 Cは、芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基を表す。基Cが2つあるとき(q=2のとき)、2つのCは、同一でも異なってもよい。
 Cで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基に関して示したものと同様のものを挙げることができる。
 Cで表されるこれらの基は、無置換でもよいが置換基を有していてよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基に関して示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
D:
 Dは、同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、炭素原子数1~6のアルキル基、芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基を表す。炭素原子数1~6のアルキル基は、直鎖状でも分岐状でもよい。
 Dで表される炭素原子数1~6のアルキル基としては、具体的に、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基などを挙げることができる。
 Dで表される炭素原子数1~6のアルキル基は、無置換でもよいが置換基を有していてもよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基に関して示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
 Dで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基に関して示したものと同様のものを挙げることができる。
 Dで表されるこれらの基は、無置換でもよいが置換基を有していてよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基に関して示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
p、q:
 pおよびqに関し、pとqの和が9であるという条件の下、pは7または8を表し、qは1または2を表す。
 アントラセン環に複数結合している基Dは、互いに独立して存在して環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
 qが2である場合、アントラセン環に結合している2つの基Cは、独立して存在して環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
Ar~Ar16
 Ar~Ar16は、同一でも異なってもよく、芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基を表す。
 Ar~Ar16で表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基に関して示したものと同様のものを挙げることができる。
 Ar~Ar16で表されるこれらの基は、無置換でもよいが置換基を有していてよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基に関して示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
19~:R26
 R19~R26は、同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基、炭素原子数2~6のアルケニル基、炭素原子数1~6のアルキルオキシ基、炭素原子数5~10のシクロアルキルオキシ基、芳香族炭化水素基、芳香族複素環基、縮合多環芳香族基またはアリールオキシ基を表す。炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基および炭素原子数1~6のアルキルオキシ基は、直鎖状でも分岐状でもよい。
 R19~R25は、独立して存在して環を形成していなくてもよいが、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
 R19~R26で表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基、炭素原子数2~6のアルケニル基、炭素原子数1~6のアルキルオキシ基または炭素原子数5~10のシクロアルキルオキシ基としては、前記一般式(2)中のR~Rで表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基、炭素原子数2~6のアルケニル基、炭素原子数1~6のアルキルオキシ基または炭素原子数5~10のシクロアルキルオキシ基に関して示したものと同様の基を挙げることができる。
 R19~R26で表されるこれらの基は、無置換でもよいが置換基を有していてよい。置換基としては、前記一般式(2)中のR~Rで表される炭素原子数1~6のアルキル基、炭素原子数5~10のシクロアルキル基または炭素原子数2~6のアルケニル基が有してもよい置換基に関して示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
 R19~R26で表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基に関して示したものと同様の基を挙げることができる。
 R19~R26で表されるこれらの基は、無置換でもよいが置換基を有していてよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基に関して示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
 R19~R26で表されるアリールオキシ基としては、前記一般式(2)中のR~Rで表されるアリールオキシ基に関して示したものと同様の基を挙げることができる。
 R19~R26で表されるこれらの基は、無置換でもよいが置換基を有していてよい。置換基としては、前記一般式(1)中のAr~Arで表される芳香族炭化水素基、芳香族複素環基または縮合多環芳香族基が有してもよい置換基に関して示したものと同様のものを挙げることができる。置換基がとりうる態様も同様である。
~X
 X~Xは、それぞれ、炭素原子または窒素原子を表し、X~Xのいずれか1つのみが窒素原子である。この場合の窒素原子はR19~R22の水素原子または置換基を有さない。すなわち、Xが窒素原子である場合はR19が、Xが窒素原子である場合はR20が、Xが窒素原子である場合はR21が、Xが窒素原子である場合はR22が存在しない。
好適な態様:
 以下、アントラセン誘導体IVの好適な態様を説明する。かかる好適な態様の説明において、置換/無置換の指定がない基は、置換基を有していても無置換でもよい。
 アントラセン誘導体IVは、上記一般式(4a)、(4b)または(4c)で表されることが好ましい。
 一般式(4a)で表されるアントラセン誘導体IVは、下記一般式(4a’)で表されることがより好ましい。
Figure JPOXMLDOC01-appb-C000026
  式中、
   Ar~Ar10、R19、R20およびR22~R25は、前記一般
  式(4)に記載した通りの意味である。
 Aとしては、単結合、芳香族炭化水素の2価基または縮合多環芳香族の2価基が好ましく、ベンゼン、ビフェニル、ターフェニル、ナフタレン、アントラセン、フルオレンもしくはフェナントレンから水素原子を2個取り除いてできる2価基または単結合がより好ましく、ベンゼン、ビフェニル、ナフタレン、フルオレンもしくはフェナントレンから水素原子を2個取り除いてできる2価基または単結合が特に好ましい。一般式(4b)および(4c)においては、芳香族炭化水素の2価基が特に好ましい。
 Bとしては、含窒素芳香族複素環基が好ましく、ピリジル基、ピリミジニル基、ピロリル基、キノリル基、イソキノリル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基またはカルボリニル基がより好ましく、ピリジル基、ピリミジニル基、キノリル基、イソキノリル基、インドリル基、ベンゾイミダゾリル基、ピラゾリル基またはカルボリニル基が特に好ましい。
 Cは、芳香族炭化水素基または縮合多環芳香族基が好ましく、フェニル基、ビフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基またはフルオレニル基がより好ましい。Cが2つある時、2つのCは、同一でも異なってもよい。
 Dは、同一でも異なってもよいが、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基または炭素原子数1~6のアルキル基が好ましく、水素原子がより好ましい。
 Arとしては、芳香族炭化水素基または縮合多環芳香族基が好ましく、フェニル基、ビフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基またはフルオレニル基がより好ましく、フェニル基が特に好ましい。
 Ar、Ar10は、同一でも異なってもよく、芳香族炭化水素基または縮合多環芳香族基が好ましく、フェニル基、ビフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基またはフルオレニル基がより好ましく、フェニル基が特に好ましい。
 Ar11、Ar12は、同一でも異なってもよく、芳香族炭化水素基または縮合多環芳香族基が好ましく、フェニル基、ビフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基またはフルオレニル基がより好ましく、フェニル基、ナフチル基またはアントラセニル基が特に好ましい。
 Ar13としては、芳香族炭化水素基または縮合多環芳香族基が好ましく、フェニル基、ビフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基又はフルオレニル基がより好ましく、フェニル基が特に好ましい。
 Ar14としては、芳香族炭化水素基、縮合多環芳香族基、ピリジル基、キノリル基、イソキノリル基またはカルボニリル基が好ましく、フェニル基、ビフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、ピリジル基、キノリル基、イソキノリル基またはカルボニリル基がより好ましく、フェニル基、ナフチル基またはアントラセニル基が特に好ましい。
 Ar15、Ar16は、同一でも異なってもよく、芳香族炭化水素基、縮合多環芳香族基、ピリジル基、キノリル基、イソキノリル基またはカルボニリル基がより好ましく、フェニル基、ビフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、ピリジル基、キノリル基、イソキノリル基またはカルボニリル基がより好ましく、フェニル基、ナフチル基、フェナントレニル基、ピリジル基またはカルボニリル基が特に好ましい。これらの基が置換基を有する場合、置換基としては、芳香族炭化水素基、縮合多環芳香族基または芳香族複素環基が好ましく、フェニル基、ナフチル基、フェナントレニル基またはピリジル基が好ましい。
 R19~R22は、同一でも異なってもよく、水素原子、重水素原子、芳香族炭化水素基または芳香族複素環基が好ましく、水素原子、重水素原子、フェニル基またはピリジル基が好ましい。
 R23~R25は、水素原子であることが好ましい。
 R26としては、水素原子が好ましい。
 X~Xの内、Xが窒素原子であることが好ましい。
 アントラセン誘導体IVの中で、好ましい化合物の具体例を図19~図28に示すが、アントラセン誘導体IVはこれらの化合物に限定されるものではない。
 尚、上述したアントラセン誘導体IVは、それ自体公知の方法に準じて合成することができる(特許文献7~9参照)。
 電子輸送層6では、本発明の効果を損なわない限りにおいて、公知の電子輸送性の材料を使用してもよい。公知の電子輸送性の材料としては、Alq、BAlqをはじめとするキノリノール誘導体の金属錯体などの各種金属錯体;トリアゾール誘導体;トリアジン誘導体;オキサジアゾール誘導体;ピリジン誘導体;ピリミジン誘導体;ベンズイミダゾール誘導体;チアジアゾール誘導体;ベンゾトリアゾール誘導体;カルボジイミド誘導体;キノキサリン誘導体;ピリドインドール誘導体;フェナントロリン誘導体;シロール誘導体;などを用いることができる。
<電子注入層7>
 電子注入層7としては、フッ化リチウム、フッ化セシウムなどのアルカリ金属塩;フッ化マグネシウムなどのアルカリ土類金属塩;酸化アルミニウムなどの金属酸化物;などを用いることができるが、電子輸送層と陰極の好ましい選択においては、これを省略することができる。
<陰極8>
 陰極8としては、アルミニウムのような仕事関数の低い電極材料や、マグネシウム銀合金、マグネシウムインジウム合金、アルミニウムマグネシウム合金のような、より仕事関数の低い合金が電極材料として用いられる。
 以下、本発明の実施の形態について、実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。
<合成例1:化合物1-9>
ビス(ビフェニル-4-イル)-(1,1’:2’,1’’:3’,1’’’-クォーターフェニル)-5’-アミンの合成;
 窒素置換した反応容器に、
   ビス(ビフェニル-4-イル)アミン    23.5g、
   5’-ブロモ-1,1’:3’,1’’ターフェニル
                        23.8g、
   t-ブトキシナトリウム          9.2gおよび
   トルエン                 240mL
を加え、30分間超音波を照射しながら窒素ガスを通気し、混合液を得た。混合液に、
   酢酸パラジウム              0.33gおよび
   t-ブチルホスフィンの50%(w/v)トルエン溶液
                        1.0mL
を加えて加熱し、85℃で4時間撹拌した。撹拌後の反応液からろ過により不溶物を除いた後、濃縮を行った。残渣にアセトンを加え、固体を分散洗浄し、固体をろ過によって採取した。その結果、ビス(ビフェニル-4-イル)-(1,1’:3’,1’’-ターフェニル)-5’-アミンの白色粉体34.0g(収率85%)を得た。
 窒素置換した反応容器に、得られたビス(ビフェニル-4-イル)-(1,1’:3’,1’’-ターフェニル)-5’-アミン15.0gおよびジクロロメタン300mLを加え、氷浴にて冷却して混合液を得た。混合液にN-ブロモスクシンイミド2.9gをゆっくり加え、2時間後にさらに2.0g添加して反応液とした。反応液を3時間10℃以下で撹拌した後、室温まで昇温し、2日間撹拌した。撹拌後の反応液に水を加え、さらにメタノールを加えて固体を析出させた。析出した固体をろ過により採取した。得られた固体を加熱下でトルエンに溶解し、シリカゲルによる吸着精製を行った。ろ液を濃縮し、メタノールを加えることにより、析出した固体をろ過によって採した。その結果、ビス(ビフェニル-4-イル)-(2’-ブロモ-1,1’:3’,1’’-ターフェニル)-5’-アミンの白色固体16.0g(収率93%)を得た。
 窒素置換した反応容器に
   ビス(ビフェニル-4-イル)-(2’-ブロモ-1,1’:3
  ’,1’’-ターフェニル)-5’-アミン 10.0g、
   トルエン                80mL、
   エタノール               40mLおよび
   フェニルボロン酸            2.3g
を加え、続いて、予め炭酸カリウム3.0gを水30mLに溶解した水溶液を加え、30分間超音波を照射しながら窒素ガスを通気し、混合液を得た。混合液にテトラキストリフェニルホスフィンパラジウム0.37gを加えて反応液を得た。反応液を加熱し、72℃で1日間撹拌した。撹拌後の反応液を室温まで冷却し、分液操作によって有機層を採取した。シリカゲルを用いた吸着精製、続いて、活性炭を用いた吸着精製を行った。THFおよびアセトンによる再結晶を行った。その結果、化合物1-9の白色粉体4.0g(収率40%)を得た。
Figure JPOXMLDOC01-appb-C000027
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR(CDCl)で以下の35個の水素のシグナルを検出した。
δ(ppm)=7.56-7.65(6H)
       7.27-7.49(12H)
       7.00-7.15(13H)
       6.87-6.90(4H)
<合成例2:化合物1-10>
ビス(ビフェニル-4-イル)-(1,1’:2’,1’’:4’’,1’’’:3’,1’’’’-キンクフェニル)-5’-アミンの合成;
 合成例1において、
   フェニルボロン酸
に代えて、
   4-ビフェニルボロン酸
を用いて同様の条件で反応を行った。その結果、化合物1-10の白色粉体13.2g(収率74%)を得た。
Figure JPOXMLDOC01-appb-C000028
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR(CDCl)で以下の39個の水素のシグナルを検出した。
δ(ppm)=7.54-7.65(8H)
       7.27-7.49(17H)
       7.09-7.16(10H)
       6.93-6.95(4H)
<合成例3:化合物1-13>
ビス(ビフェニル-4-イル)-4’’-(1-ナフタレニル)-(1,1’:2’,1’’:3’,1’’’-クォーターフェニル)-4’-アミンの合成;
 合成例1において、
   フェニルボロン酸
に代えて、
   4-(1-ナフタレニル)フェニルボロン酸
を用いて同様の条件で反応を行った。その結果、化合物1-13の白色粉体8.7g(収率73%)を得た。
Figure JPOXMLDOC01-appb-C000029
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR(CDCl)で以下の41個の水素のシグナルを検出した。
δ(ppm)=7.82-7.92(2H)
       7.59-7.70(8H)
       7.12-7.53(27H)
       6.99-7.02(4H)
<合成例4:化合物1-39>
ビス[4-(1-ナフタレニル)フェニル]-(1,1’:2’,1’’:3’,1’’’-クォーターフェニル)-5’-アミンの合成;
 合成例1において、
   ビス(ビフェニル-4-イル)アミン
に代えて、
   ビス[4-(1-ナフタレニル)フェニル]アミン
を用いて同様の条件で反応を行った。その結果、化合物1-39の白色粉体4.3g(収率43%)を得た。
Figure JPOXMLDOC01-appb-C000030
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR(CDCl)で以下の39個の水素のシグナルを検出した。
δ(ppm)=8.09-8.11(2H)
       7.88-7.96(4H)
       7.41-7.60(17H)
       7.02-7.21(12H)
       6.89-6.93(4H)
<合成例5:化合物1-40>
ビス[4-(1-ナフタレニル)フェニル]-(1,1’:2’,1’’:4’’,1’’’:3’,1’’’’-キンクフェニル)-5’-アミンの合成;
 合成例4において、
   フェニルボロン酸
に代えて
   4-ビフェニルボロン酸
を用いて同様の条件で反応を行った。その結果、化合物1-40の白色粉体9.9g(収率82%)を得た。
Figure JPOXMLDOC01-appb-C000031
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR(CDCl)で以下の43個の水素のシグナルを検出した。
δ(ppm)=8.09-8.11(2H)
       7.88-7.96(4H)
       7.14-7.60(35H)
       6.95-6.98(2H)
<合成例6:化合物1-49>
ビス[4-(2-ナフタレニル)フェニル]-(1,1’:2’,1’’:3’,1’’’-クォーターフェニル)-5’-アミンの合成;
 合成例1において、
   ビス(ビフェニル-4-イル)アミン
に代えて、
   ビス[4-(2-ナフタレニル)フェニル]アミン
を用いて同様の条件で反応を行った。その結果、化合物1-49の白色粉体4.4g(収率44%)を得た。
Figure JPOXMLDOC01-appb-C000032
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR(CDCl)で以下の39個の水素のシグナルを検出した。
δ(ppm)=8.08(2H)
       7.71-7.96(12H)
       7.32-7.56(9H)
       6.89-7.17(16H)
<合成例7:化合物1-50>
ビス[4-(2-ナフタレニル)フェニル]-(1,1’:2’,1’’:4’’,1’’’:3’,1’’’’-キンクフェニル)-5’-アミンの合成;
 合成例6において、
   フェニルボロン酸
に代えて
   4-ビフェニルボロン酸
を用いて同様の条件で反応を行った。その結果、化合物1-50の白色粉体8.5g(収率70%)を得た。
Figure JPOXMLDOC01-appb-C000033
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR(CDCl)で以下の43個の水素のシグナルを検出した。
δ(ppm)=8.09(2H)
       7.71-7.96(11H)
       7.31-7.57(16H)
       7.11-7.16(10H)
       6.94-6.97(4H)
<合成例8:化合物1-69>
(ビフェニル-4-イル)-(2’-フェニル-1,1’:3’,1’’-ターフェニル-5’-イル)-(9,9-ジメチルフルオレン-2-イル)アミンの合成;
 合成例1において、
  ビス(ビフェニル-4-イル)アミン
に代えて、
  (ビフェニル-4-イル)-9,9-ジメチルフルオレン-2-アミン
を用いて同様の条件で反応を行った。その結果、化合物1-69の白色粉体11.2g(収率64%)を得た。
Figure JPOXMLDOC01-appb-C000034
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR(CDCl)で以下の39個の水素のシグナルを検出した。
δ(ppm)=7.53-7.69(5H)
       7.21-7.48(14H)
       6.96-7.12(12H)
       6.81-6.90(2H)
       1.51(6H)
<合成例9:化合物1-75>
ビス[9,9-ジメチルフルオレン-2-イル]-(1,1’:2’,1’’:3’,1’’’-クォーターフェニル)-5’-アミンの合成;
 合成例1において、
   ビス(ビフェニル-4-イル)アミン
に代えて、
   ビス(9,9-ジメチルフルオレン-2-イル)アミン
を用いて同様の条件で反応を行った。その結果、化合物1-75の白色粉体7.7g(収率77%)を得た。
Figure JPOXMLDOC01-appb-C000035
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR(CDCl)で以下の43個の水素のシグナルを検出した。
δ(ppm)=7.68-7.72(4H)
       7.28-7.47(12H)
       6.90-7.13(15H)
       1.53(12H)
<合成例10:化合物1-81>
(ビフェニル-4-イル)-(9,9-ジフェニルフルオレン-2-イル)-(1,1’:2’,1’’:3’,1’’’-クォーターフェニル)-5’-アミンの合成;
 合成例1において、
   ビス(ビフェニル-4-イル)アミン
に代えて、
   (ビフェニル-4-イル)-(9,9-ジフェニルフルオレン-
  2-イル)アミン
を用いて同様の条件で反応を行った。その結果、化合物1-81の白色粉体7.3g(収率56%)を得た。
Figure JPOXMLDOC01-appb-C000036
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR(CDCl)で以下の43個の水素のシグナルを検出した。
δ(ppm)=7.70-7.75(2H)
       7.61-7.64(2H)
       7.15-7.54(28H)
       6.97-7.02(7H)
       6.85-6.87(4H)
<合成例11:化合物1-90>
(ビフェニル-4-イル)-(1,1’:2’,1’’:4’’,1’’’:3’,1’’’’-キンクフェニル)-5’-イル-9,9-スピロビ[9H-フルオレン]-2-アミンの合成;
 合成例1において、
   ビス(ビフェニル-4-イル)アミン
に代えて、
   (ビフェニル-4-イル)-9,9-スピロビ[9H-フルオレ
  ン]-2-アミン
を用い、
   フェニルボロン酸
に代えて、
   4-ビフェニルボロン酸
を用いて同様の条件で反応を行った。その結果、化合物1-90の白色粉体10.8g(収率99%)を得た。
Figure JPOXMLDOC01-appb-C000037
 得られた白色粉体についてNMRを使用して構造を同定した。H-NMR(CDCl)で以下の45個の水素のシグナルを検出した。
δ(ppm)=7.77-7.87(4H)
       7.06-7.62(30H)
       6.81-6.92(9H)
       6.70-6.73(2H)
 高感度示差走査熱量計(ブルカー・エイエックスエス製、DSC3100SA)によって、各合成例で得られた化合物のガラス転移点を求めた。
                     ガラス転移点(℃)
  実施例1の化合物1-9         110
  実施例2の化合物1-10        124
  実施例3の化合物1-13        121
  実施例4の化合物1-39        121
  実施例5の化合物1-40        131
  実施例6の化合物1-49        121
  実施例7の化合物1-50        133
  実施例8の化合物1-69        121
  実施例9の化合物1-75        135
  実施例10の化合物1-81       140
  実施例11の化合物1-90       159
 一般式(1)で表されるアリールアミン化合物Iは100℃以上のガラス転移点を有しており、薄膜状態が安定であることが分かった。
 各合成例で得られた化合物を用いて、ITO基板の上に膜厚100nmの蒸着膜を作製して、イオン化ポテンシャル測定装置(住友重機械工業株式会社製、PYS-202)によって仕事関数を測定した。
                 仕事関数(eV)
  合成例1の化合物1-9      5.71
  合成例2の化合物1-10     5.72
  合成例3の化合物1-13     5.73
  合成例4の化合物1-39     5.75
  合成例5の化合物1-40     5.75
  合成例6の化合物1-49     5.69
  合成例7の化合物1-50     5.69
  合成例8の化合物1-69     5.62
  合成例9の化合物1-75     5.58
  合成例10の化合物1-81    5.69
  合成例11の化合物1-90    5.66
 一般式(1)で表されるアリールアミン化合物IはNPD、TPDなどの一般的な正孔輸送材料がもつ仕事関数5.4eVと比較して、好適なエネルギー準位を示しており、良好な正孔輸送能力を有していることが分かった。
<合成例12:化合物2-1>
7,7-ジメチル-12-(4-フェニルキナゾリン-2-イル)-7,12-ジヒドロベンゾ[4,5]チエノ[3,2-g]インデノ[1,2-b]インドールの合成;
 窒素置換した反応容器に、
   7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ[3
   ,2-g]インデノ[1,2-b]インドール 4.9g、
   2-クロロ-4-フェニルキナゾリン     5.7g、
   トリス(ジベンジリデンアセトン)ジパラジウム
                         0.3g、
   トリ-tert-ブチルホスホニウムテトラフルオロボレート
                         0.4g、
   tert-ブトキシナトリウム        4.0gおよび
   キシレン                  74mL
を加えて加熱し、12時間還流撹拌して反応液を得た。反応液を室温まで冷却した後、酢酸エチルおよび水を加え、分液操作によって有機層を採取した。採取した有機層を濃縮し粗製物を得た。粗製物をカラムクロマトグラフにより精製した。その結果、化合物2-1の粉体3.0g(収率38%)を得た。
Figure JPOXMLDOC01-appb-C000038
<合成例13:化合物2-2>
7,7-ジメチル-12-(4-フェニルベンゾ[h]キナゾリン-2-イル)-7,12-ジヒドロベンゾ[4,5]チエノ[3,2-g]インデノ[1,2-b]インドールの合成;
 合成例12において、
   2-クロロ-4-フェニルキナゾリン
に代えて、
   2-クロロ-4-フェニルベンゾ[h]キナゾリン
を用い、同様の条件で反応を行った。その結果、化合物2-2の粉体3.2g(収率38%)を得た。
Figure JPOXMLDOC01-appb-C000039
<合成例14:化合物2-3>
12-(4,7-ジフェニルキナゾリン-2-イル)-7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ[3,2-g]インデノ[1,2-b]インドールの合成;
 合成例12において、
   2-クロロ-4-フェニルキナゾリン
に代えて、
   2-クロロ-4,7-ジフェニルキナゾリン
を用い、同様の条件で反応を行った。その結果、化合物2-3の粉体3.3g(収率38%)を得た。
Figure JPOXMLDOC01-appb-C000040
<合成例15:化合物2-4>
12-(4,6-ジフェニルキナゾリン-2-イル)-7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ[3,2-g]インデノ[1,2-b]インドールの合成;
 合成例12において、
   2-クロロ-4-フェニルキナゾリン
に代えて、
   2-クロロ-4,6-ジフェニルキナゾリン
を用い、同様の条件で反応を行った。その結果、化合物2-4の粉体3.3g(収率38%)を得た。
Figure JPOXMLDOC01-appb-C000041
<合成例16:化合物2-5>
13,13-ジメチル-8-(4-フェニルキナゾリン-2-イル)-8,13-ジヒドロベンゾ[4,5]チエノ[3,2-e]インデノ[1,2-b]インドールの合成;
 合成例12において、
   7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ
  [3,2-g]インデノ[1,2-b]インドール
に代えて、
   13,13-ジメチル-8,13-ジヒドロベンゾ[4,5]チ
  エノ[3,2-e]インデノ[1,2-b]インドール
を用い、同様の条件で反応を行った。その結果、化合物2-5の粉体3.0g(収率38%)を得た。
Figure JPOXMLDOC01-appb-C000042
<合成例17:化合物2-6>
8-(4,6-ジフェニルキナゾリン-2-イル)-13,13-ジメチル-8,13-ジヒドロベンゾ[4,5]チエノ[3,2-e]インデノ[1,2-b]インドールの合成;
 合成例16において、
   2-クロロ-4-フェニルキナゾリン
に代えて、
   2-クロロ-4,6-ジフェニルキナゾリン
を用い、同様の条件で反応を行った。その結果、化合物2-6の粉体3.3g(収率38%)を得た。
Figure JPOXMLDOC01-appb-C000043
<合成例18:化合物2-7>
7,7,13,13-テトラメチル-5-(4-フェニルキナゾリン-2-イル)-7,13-ジヒドロ-5H-ジインデノ[1,2-b:1’,2’-f]インドールの合成;
 合成例12において、
   7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ
  [3,2-g]インデノ[1,2-b]インドール
に代えて、
   7,7,13,13-テトラメチル-7,13-ジヒドロ-5H
  -ジインデノ[1,2-b:1’,2’-f]インドール
を用い、同様の条件で反応を行った。その結果、化合物2-7の粉体3.0g(収率38%)を得た。
Figure JPOXMLDOC01-appb-C000044
<合成例19:化合物2-8>
7,7,13,13-テトラメチル-5-[3-(4-フェニルキナゾリン-2-イル)フェニル]-7,13-ジヒドロ-5H-ジインデノ[1,2-b:1’,2’-f]インドールの合成;
 合成例18において、
   2-クロロ-4-フェニルキナゾリン
に代えて、
   2-(3-ブロモフェニル)-4-フェニルキナゾリン
を用い、同様の条件で反応を行った。その結果、化合物2-8の粉体3.4g(収率38%)を得た。
Figure JPOXMLDOC01-appb-C000045
<合成例20:化合物2-9>
7,7-ジメチル-12-(4-フェニルベンゾ[h]キナゾリン-2-イル)-7,12-ジヒドロベンゾフロ[3,2-g]インデノ[1,2-b]インドールの合成;
 合成例13において、
   7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ
  [3,2-g]インデノ[1,2-b]インドール
に代えて、
   7,7-ジメチル-7,12-ジヒドロベンゾフロ[3,2-g
  ]インデノ[1,2-b]インドール
を用い、同様の条件で反応を行った。その結果、化合物2-9の粉体3.0g(収率38%)を得た。
Figure JPOXMLDOC01-appb-C000046
<合成例21:化合物2-10>
12-(4,6-ジフェニルベンゾ[h]キナゾリン-2-イル)-7,7-ジメチル-7,12-ジヒドロベンゾフロ[3,2-g]インデノ[1,2-b]インドールの合成;
 合成例20において、
   2-クロロ-4-フェニルベンゾ[h]キナゾリン
に代えて、
   2-クロロ-4,6-ジフェニルベンゾ[h]キナゾリン
を用い、同様の条件で反応を行った。その結果、化合物2-10の粉体3.5g(収率38%)を得た。
Figure JPOXMLDOC01-appb-C000047
<合成例22:化合物2-11>
13,13-ジメチル-8-(4-フェニルキナゾリン-2-イル)-8,13-ジヒドロベンゾフロ[3,2-e]インデノ[1,2-b]インドールの合成;
 合成例12において、
   7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ
  [3,2-g]インデノ[1,2-b]インドール
に代えて、
   13,13-ジメチル-8,13-ジヒドロベンゾフロ[3,2
  -e]インデノ[1,2-b]インドール
を用い、同様の条件で反応を行った。その結果、化合物2-11の粉体3.0g(収率38%)を得た。
Figure JPOXMLDOC01-appb-C000048
<合成例23:化合物2-12>
13,13-ジメチル-8-(4,6-ジフェニルキナゾリン-2-イル)-8,13-ジヒドロベンゾフロ[3,2-e]インデノ[1,2-b]インドールの合成;
 合成例22において、
   2-クロロ-4-フェニルキナゾリン
に代えて、
   2-クロロ-4,6-ジフェニルキナゾリン
を用い、同様の条件で反応を行った。その結果、化合物2-12の粉体3.2g(収率38%)を得た。
Figure JPOXMLDOC01-appb-C000049
<合成例24:化合物3-1>
13-(4,6-ジフェニルキナゾリン-2-イル)-7,7-ジメチル-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾールの合成;
 合成例23において、
   13,13-ジメチル-8,13-ジヒドロベンゾフロ[3,2
  -e]インデノ[1,2-b]インドール
に代えて、
   7,7-ジメチル-7,13-ジヒドロインデノ[2’,1’:
  4,5]チエノ[2,3-a]カルバゾール
を用い、同様の条件で反応を行った。その結果、化合物3-1の粉体7.0g(収率38%)を得た。
Figure JPOXMLDOC01-appb-C000050
<合成例25:化合物3-2>
13-[4-(ビフェニル-4-イル)キナゾリン-2-イル]-7,7-ジメチル-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾールの合成;
 合成例24において、
   2-クロロ-4,6-ジフェニルキナゾリン
に代えて、
   4-(ビフェニル-4-イル)-2-クロロキナゾリン
を用い、同様の条件で反応を行った。その結果、化合物3-2の粉体6.7g(収率37%)を得た。
Figure JPOXMLDOC01-appb-C000051
<合成例26:化合物3-3>
7,7-ジメチル-13-[4-(フェニル-d)キナゾリン-2-イル]-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾールの合成;
 合成例24において、
   2-クロロ-4,6-ジフェニルキナゾリン
に代えて、
   2-クロロ-4-(フェニル-d)キナゾリン
を用い、同様の条件で反応を行った。その結果、化合物3-3の粉体8.4g(収率32%)を得た。
Figure JPOXMLDOC01-appb-C000052
<合成例27:化合物3-4>
7,7-ジメチル-13-[4-(4-フェニルキナゾリン-2-イル)フェニル]-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾールの合成;
 合成例24において、
   2-クロロ-4,6-ジフェニルキナゾリン
に代えて、
   2-(4-ブロモフェニル)-4-フェニルキナゾリン
を用い、同様の条件で反応を行った。その結果、化合物3-4の粉体5.2g(収率28%)を得た。
Figure JPOXMLDOC01-appb-C000053
<合成例28:化合物3-5>
7,7-ジメチル-13-[3-(4-フェニルキナゾリン-2-イル)フェニル]-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾールの合成;
 合成例24において、
   2-クロロ-4,6-ジフェニルキナゾリン
に代えて、
   2-(3-ブロモフェニル)-4-フェニルキナゾリン
を用い、同様の条件で反応を行った。その結果、化合物3-5の粉体8.4g(収率32%)を得た。
Figure JPOXMLDOC01-appb-C000054
<合成例29:化合物3-6>
7,7-ジメチル-13-(4-フェニルベンゾ[h]キナゾリン-2-イル)-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾールの合成;
 合成例24において、
   2-クロロ-4,6-ジフェニルキナゾリン
に代えて、
   2-クロロ-4-フェニルベンゾ[h]キナゾリン
を用い、同様の条件で反応を行った。その結果、化合物3-6の粉体8.4g(収率32%)を得た。
Figure JPOXMLDOC01-appb-C000055
<合成例30:化合物3-7>
8,8-ジメチル-5-(4-フェニルベンゾ[h]キナゾリン-2-イル)-5,8-ジヒドロインデノ[2’,1’:4,5]チエノ[3,2-c]カルバゾールの合成;
 合成例29において、
   7,7-ジメチル-7,13-ジヒドロインデノ[2’,1’:
  4,5]チエノ[2,3-a]カルバゾール
に代えて、
   8,8-ジメチル-5,8-ジヒドロインデノ[2’,1’:4
  ,5]チエノ[3,2-c]カルバゾール
を用い、同様の条件で反応を行った。その結果、化合物3-7の粉体9.3g(収率35%)を得た。
Figure JPOXMLDOC01-appb-C000056
<合成例31:化合物3-8>
7,7-ジメチル-13-(4-フェニルキナゾリン-2-イル)-7,13-ジヒドロインデノ[2’,1’:4,5]フロ[2,3-a]カルバゾールの合成;
 合成例12において、
   7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ
  [3,2-g]インデノ[1,2-b]インドール
に代えて、
   7,7-ジメチル-7,13-ジヒドロインデノ[2’,1’:
  4,5]フロ[2,3-a]カルバゾール
を用い、同様の条件で反応を行った。その結果、化合物3-8の粉体6.2g(収率32%)を得た。
Figure JPOXMLDOC01-appb-C000057
<合成例32:化合物3-9>
7,7-ジメチル-13-(4-フェニルベンゾ[h]キナゾリン-2-イル)-7,13-ジヒドロインデノ[2’,1’:4,5]フロ[2,3-a]カルバゾールの合成;
 合成例31において、
   2-クロロ-4-フェニルキナゾリン
に代えて、
   2-クロロ-4-フェニルベンゾ[h]キナゾリン
を用い、同様の条件で反応を行った。その結果、化合物3-9の粉体8.6g(収率30%)を得た。
Figure JPOXMLDOC01-appb-C000058
<合成例33:化合物3-10>
13-(4,6-ジフェニルキナゾリン-2-イル)-7,7-ジメチル-7,13-ジヒドロインデノ[2’,1’:4,5]フロ[2,3-a]カルバゾールの合成;
 合成例31において、
   2-クロロ-4-フェニルキナゾリン
に代えて、
   2-クロロ-4,6-ジフェニルキナゾリン
を用い、同様の条件で反応を行った。その結果、化合物3-10の粉体7.2g(収率29%)を得た。
Figure JPOXMLDOC01-appb-C000059
<合成例34:化合物3-11>
7,7-ジフェニル-13-(4-フェニルキナゾリン-2-イル)-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾールの合成;
 合成例12において、
   7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ
  [3,2-g]インデノ[1,2-b]インドール
に代えて、
   7,7-ジフェニル-7,13-ジヒドロインデノ[2’,1’
  :4,5]チエノ[2,3-a]カルバゾール
を用い、同様の条件で反応を行った。その結果、化合物3-11の粉体6.7g(収率37%)を得た。
Figure JPOXMLDOC01-appb-C000060
<合成例35:化合物3-12>
9,9-ジメチル-15-(4-フェニルキナゾリン-2-イル)-9,15-ジヒドロベンゾ[a]インデノ[2’,1’:4,5]チエノ[3,2-i]カルバゾールの合成;
 合成例12において、
   7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ
  [3,2-g]インデノ[1,2-b]インドール
に代えて、
   9,9-ジメチル-9,15-ジヒドロベンゾ[a]インデノ[
  2’,1’:4,5]チエノ[3,2-i]カルバゾール
を用い、同様の条件で反応を行った。その結果、化合物3-12の粉体4.8g(収率42%)を得た。
Figure JPOXMLDOC01-appb-C000061
<合成例36:化合物3-13>
7-フェニル-13-(4-フェニルキナゾリン-2-イル)-7,13-ジヒドロインドロ[2’,3’:4,5]チエノ[2,3-a]カルバゾールの合成;
 合成例12において、
   7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ
  [3,2-g]インデノ[1,2-b]インドール
に代えて、
   7-フェニル-7,13-ジヒドロインドロ[2’,3’:4,
  5]チエノ[2,3-a]カルバゾール
を用い、同様の条件で反応を行った。その結果、化合物3-13の粉体4.3g(収率43%)を得た。
Figure JPOXMLDOC01-appb-C000062
<合成例37:化合物3-14>
12,12-ジメチル-1-(4-フェニルキナゾリン-2-イル)-1,12-ジヒドロインデノ[1’,2’:4,5]チエノ[2,3-a]カルバゾールの合成;
 合成例12において、
   7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ
  [3,2-g]インデノ[1,2-b]インドール
に代えて、
   12,12-ジメチル-1,12-ジヒドロインデノ[1’,2
  ’:4,5]チエノ[2,3-a]カルバゾール
を用い、同様の条件で反応を行った。その結果、化合物3-14の粉体6.3g(収率44%)を得た。
Figure JPOXMLDOC01-appb-C000063
<合成例38:化合物3-15>
7,7-ジメチル-13-(ナフタレン-2-イル)-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾールの合成;
 合成例24において、
   2-クロロ-4,6-ジフェニルキナゾリン
に代えて、
   2-ブロモナフタレン
を用い、同様の条件で反応を行った。その結果、化合物3-15の粉体5.4g(収率47%)を得た。
Figure JPOXMLDOC01-appb-C000064
<素子実施例1>
 有機EL素子は、図1に示すように、ガラス基板1上に透明陽極2としてITO電極をあらかじめ形成したものの上に、正孔注入層3、第一正孔輸送層4a、第二正孔輸送層4b、発光層5、電子輸送層6、電子注入層7、陰極(アルミニウム電極)8の順に蒸着して作製した。
 具体的には、膜厚150nmのITOを成膜したガラス基板1をイソプロピルアルコール中にて20分間超音波洗浄した後、200℃に加熱したホットプレート上にて10分間乾燥を行った。その後、UVオゾン処理を15分間行った後、このITO付きガラス基板を真空蒸着機内に取り付け、0.001Pa以下まで減圧した。
 続いて、透明陽極2を覆うように下記構造式のHIM-1を蒸着し、膜厚5nmの正孔注入層3を形成した。
Figure JPOXMLDOC01-appb-C000065
 正孔注入層3の上に下記構造式の分子中にトリアリールアミン化合物5-1を蒸着し、膜厚60nmの第一正孔輸送層4aを形成した。
Figure JPOXMLDOC01-appb-C000066
 第一正孔輸送層4aの上に合成例8の化合物1-69を蒸着し、膜厚5nmの第二正孔輸送層4bを形成した。
Figure JPOXMLDOC01-appb-C000067
 第二正孔輸送層4bの上に下記構造式の化合物EMD-1と合成例13の化合物2-2を、蒸着速度比がEMD-1:化合物2-2=5:95となる蒸着速度で二元蒸着し、膜厚20nmの発光層5を形成した。
Figure JPOXMLDOC01-appb-C000068
 発光層5の上に下記構造式のアントラセン誘導体4a-1と下記構造式のETM-1を、蒸着速度比が誘導体4a-1:ETM-1=50:50となる蒸着速度で二元蒸着し、膜厚30nmの電子輸送層6を形成した。
Figure JPOXMLDOC01-appb-C000069
 電子輸送層6の上にフッ化リチウムを蒸着し、膜厚1nmの電子注入層7を形成した。
 最後に、アルミニウムを100nm蒸着して陰極8を形成した。
<素子実施例2>
 素子実施例1において、発光層5の材料として合成例13の化合物2-2に代えて下記構造式のカルバゾール化合物3-16を用い、蒸着速度比がEMD-1:化合物3-16=5:95となる蒸着速度で二元蒸着を行った点以外は、同様の条件で有機EL素子を作製した。
Figure JPOXMLDOC01-appb-C000070
<素子実施3>
 素子実施例1において、第二正孔輸送層4bの材料として合成例8の化合物1-69に代えて合成例9の化合物1-75を用いた点以外は、同様の条件で有機EL素子を作製した。
Figure JPOXMLDOC01-appb-C000071
<素子実施例4>
 素子実施例2において、第二正孔輸送層4bの材料として合成例8の化合物1-69に代えて合成例9の化合物1-75を用いた点以外は、同様の条件で有機EL素子を作製した。
<素子実施例5>
 素子実施例1において、第二正孔輸送層4bの材料として合成例8の化合物1-69に代えて合成例10の化合物1-81を用いた点以外は、同様の条件で有機EL素子を作製した。
Figure JPOXMLDOC01-appb-C000072
<素子実施例6>
 素子実施例2において、第二正孔輸送層4bの材料として合成例8の化合物1-69に代えて合成例10の化合物1-81を用いた点以外は、同様の条件で有機EL素子を作製した。
<素子実施例7>
 素子実施例1において、第二正孔輸送層4bの材料として合成例8の化合物1-69に代えて合成例11の化合物1-90を用いた点以外は、同様の条件で有機EL素子を作製した。
Figure JPOXMLDOC01-appb-C000073
<素子実施例8>
 素子実施例2において、第二正孔輸送層4bの材料として合成例8の化合物1-69に代えて合成例11の化合物1-90を用いた点以外は、同様の条件で有機EL素子を作製した。
<素子比較例1>
 素子実施例1において、第一正孔輸送層4aの材料として化合物5-1に代えて下記構造式の化合物5’-2を用い、且つ、第二正孔輸送層4bの材料として合成例8の化合物1-69に代えて下記構造式の化合物5’-2を用いた点以外は、同様の条件で有機EL素子を作製した。この場合、第一正孔輸送層4aと第二正孔輸送層4bは、一体の正孔輸送層4(膜厚65nm)として機能する。
Figure JPOXMLDOC01-appb-C000074
<素子比較例2>
 素子実施例2において、第一正孔輸送層4aの材料として化合物5-1に代えて化合物5’-2を用い且つ、第二正孔輸送層4bの材料として合成例8の化合物1-69に代えて化合物5’-2を用いた点以外は、同様の条件で有機EL素子を作製した。この場合、第一正孔輸送層4aと第二正孔輸送層4bは、一体の正孔輸送層4(膜厚65nm)として機能する。
<素子比較例3>
 素子実施例1において、第二正孔輸送層4bの材料として合成例8の化合物1-69に代えて下記構造式の化合物HTM-1を用いた点以外は同様の条件で有機EL素子を作製した。
Figure JPOXMLDOC01-appb-C000075
<素子比較例4>
 素子実施例2において、第二正孔輸送層4bの材料として合成例8の化合物1-69に代えて化合物HTM-1を用いた点以外は同様の条件で有機EL素子を作製した。
 素子実施例1~8および素子比較例1~4で作製した有機EL素子について、大気中、常温で直流電圧を印加したときの発光特性を測定した。測定結果を表1に示した。
 素子実施例1~8および素子比較例1~4で作製した有機EL素子を用いて、素子寿命を測定した。具体的には、発光開始時の発光輝度(初期輝度)を7000cd/mとして定電流駆動を行った時、発光輝度が6790cd/m(初期輝度を100%とした時の97%に相当:97%減衰)に減衰するまでの時間を測定した。結果を表1に示した。
Figure JPOXMLDOC01-appb-T000076
 電流密度10mA/cmの電流を流したときの発光効率は、素子比較例1~4で20.34~26.01cd/Aであったのに対し、素子実施例1~8では26.11~28.82cd/Aといずれも高効率であった。
 電力効率についても、素子比較例1~4で16.86~18.82lm/Wであったのに対し、素子実施例1~8では20.01~24.12lm/Wといずれも高効率であった。
 素子寿命については、素子比較例1~4で32~61時間であったのに対し、素子実施例1~8では110~385時間と大きく長寿命化した。
 以上の結果から明らかなように、一般式(1)で表されるアリールアミン化合物Iおよび一般式(2)で表されるインデノインドール化合物IIまたは一般式(3)で表されるカルバゾール化合物を用いた有機EL素子では、素子内部でのキャリアバランスが改善されており、しかも、発光材料の特性に合った材料を使用しているので、本発明の有機EL素子は、既知の有機EL素子と比較して、高発光効率、低駆動電圧、長寿命の有機EL素子を実現することができた。
 上述の通り、本発明の有機EL素子は、高い発光効率および電力効率を得ることができると共に、実用駆動電圧を低下することができ、耐久性を改善させることができる。そのため、例えば、家庭電化製品や照明の用途への展開が可能である。
 1 ガラス基板、2 透明陽極、3 正孔注入層、4 正孔輸送層、
4a 第一正孔輸送層、4b 第二正孔輸送層、5 発光層、6 電子輸送層、7 電子注入層、8 陰極。

Claims (9)

  1.  少なくとも陽極、正孔輸送層、発光層、電子輸送層及び陰極をこの順に有する有機エレクトロルミネッセンス素子において、
     前記正孔輸送層が、下記一般式(1)で表されるアリールアミン化合物を含有し、
     前記発光層が、下記一般式(2)で表されるインデノインドール化合物または下記一般式(3)で表されるカルバゾール化合物を含有することを特徴とする有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001
      式中、
       Ar~Arは、同一でも異なってもよく、芳香族
      炭化水素基、芳香族複素環基または縮合多環芳香族基を
      表す。
    Figure JPOXMLDOC01-appb-C000002
      式中、
       Aは、芳香族炭化水素の2価基、芳香族複素環の2
      価基、縮合多環芳香族の2価基または単結合を表し、
       Arは、芳香族炭化水素基、芳香族複素環基または
      縮合多環芳香族基を表し、
       R~Rは、同一でも異なってもよく、水素原子;
      重水素原子;フッ素原子;塩素原子;シアノ基;ニトロ
      基;炭素原子数1~6のアルキル基;炭素原子数5~1
      0のシクロアルキル基;炭素原子数2~6のアルケニル
      基;炭素原子数1~6のアルキルオキシ基;炭素原子数
      5~10のシクロアルキルオキシ基;芳香族炭化水素基
      ;芳香族複素環基;縮合多環芳香族基;アリールオキシ
      基;または芳香族炭化水素基、芳香族複素環基もしくは
      縮合多環芳香族基から選ばれる基によって置換されたジ
      置換アミノ基;を表し、R~Rは、単結合、置換も
      しくは無置換のメチレン基、酸素原子または硫黄原子を
      介して互いに結合して環を形成してもよく、R~R
      は、単結合、置換もしくは無置換のメチレン基、酸素原
      子または硫黄原子を介して互いに結合して環を形成して
      もよく、さらに、R~Rの一部がベンゼン環から脱
      離して生じた空位に、R~Rの他の基が、置換もし
      くは無置換のメチレン基、酸素原子、硫黄原子またはモ
      ノアリールアミノ基を介して結合して環を形成してもよ
      く、R~Rの一部がベンゼン環から脱離して生じた
      空位に、R~Rの他の基が、置換もしくは無置換の
      メチレン基、酸素原子、硫黄原子またはモノアリールア
      ミノ基を介して結合して環を形成してもよい。
       RとR10は、同一でも異なってもよく、炭素原子数
      1~6のアルキル基、芳香族炭化水素基、芳香族複素環
      基または縮合多環芳香族基を表し、単結合、置換もしく
      は無置換のメチレン基、酸素原子または硫黄原子を介し
      て互いに結合して環を形成してもよい。
    Figure JPOXMLDOC01-appb-C000003
      式中、
       Aは、芳香族炭化水素の2価基、芳香族複素環の2
      価基、縮合多環芳香族の2価基または単結合を表し、
       Arは、芳香族炭化水素基、芳香族複素環基または
      縮合多環芳香族基を表し、
       R11~R18は、同一でも異なってもよく、水素原子
      ;重水素原子;フッ素原子;塩素原子;シアノ基;ニト
      ロ基;炭素原子数1~6のアルキル基;炭素原子数5~
      10のシクロアルキル基;炭素原子数2~6のアルケニ
      ル基;炭素原子数1~6のアルキルオキシ基;炭素原子
      数5~10のシクロアルキルオキシ基;芳香族炭化水素
      基;芳香族複素環基;縮合多環芳香族基;アリールオキ
      シ基;または芳香族炭化水素基、芳香族複素環基もしく
      は縮合多環芳香族基から選ばれる基によって置換された
      ジ置換アミノ基;を表し、R11~R14は、単結合、置
      換もしくは無置換のメチレン基、酸素原子または硫黄原
      子を介して互いに結合して環を形成してもよく、R15
      ~R18は、単結合、置換もしくは無置換のメチレン基
      、酸素原子または硫黄原子を介して互いに結合して環を
      形成してもよく、さらに、R11~R14の一部がベンゼ
      ン環から脱離して生じた空位に、R11~R14の他の基
      が、置換もしくは無置換のメチレン基、酸素原子、硫黄
      原子またはモノアリールアミノ基を介して結合して環を
      形成してもよく、R15~R18の一部がベンゼン環から
      脱離して生じた空位に、R15~R18の他の基が、置換
      もしくは無置換のメチレン基、酸素原子、硫黄原子また
      はモノアリールアミノ基を介して結合して環を形成して
      もよい。
  2.  前記電子輸送層が、下記一般式(4)で表されるアントラセン誘導体を含有する、請求項1記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000004
      式中、
       Aは、芳香族炭化水素の2価基、芳香族複素環の2
      価基、縮合多環芳香族の2価基または単結合を表し、
       Bは、芳香族複素環基を表し、
       Cは、芳香族炭化水素基、芳香族複素環基または縮合
      多環芳香族基を表し、Cが2つあるとき、2つのCは同
      一でも異なってもよく、
       Dは、同一でも異なってもよく、水素原子、重水素原
      子、フッ素原子、塩素原子、シアノ基、トリフルオロメ
      チル基、炭素原子数1~6のアルキル基、芳香族炭化水
      素基、芳香族複素環基または縮合多環芳香族基を表し、
       pとqの和が9であるという条件の下、pは7または
      8を表し、qは1または2を表す。
  3.  前記アントラセン誘導体が、下記一般式(4a)で表される、請求項2記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000005
      式中、
       Aは、前記一般式(4)に記載した通りの意味であり、
       Ar~Ar10は、同一でも異なってもよく、芳香族
      炭化水素基、芳香族複素環基または縮合多環芳香族基を
      表し、
       R19~R25は、同一でも異なってもよく、水素原子
      、重水素原子、フッ素原子、塩素原子、シアノ基、ニト
      ロ基、炭素原子数1~6のアルキル基、炭素原子数5~
      10のシクロアルキル基、炭素原子数2~6のアルケニ
      ル基、炭素原子数1~6のアルキルオキシ基、炭素原子
      数5~10のシクロアルキルオキシ基、芳香族炭化水素
      基、芳香族複素環基、縮合多環芳香族基またはアリール
      オキシ基を表し、単結合、置換もしくは無置換のメチレ
      ン基、酸素原子または硫黄原子を介して互いに結合して
      環を形成してもよく、
       X~Xは、同一でも異なってもよく、炭素原子ま
      たは窒素原子を表し、X~Xのいずれか1つのみが
      窒素原子であり、この場合の窒素原子はR19~R22
      水素原子もしくは置換基を有さないものとする。
  4.  前記アントラセン誘導体が、下記一般式(4b)で表される、請求項2記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000006
      式中、
       Aは、前記一般式(4)に記載した通りの意味であり、
       Ar11~Ar13は、同一でも異なってもよく、芳香
      族炭化水素基、芳香族複素環基または縮合多環芳香族基
      を表す。
  5.  前記アントラセン誘導体が、下記一般式(4c)で表される、請求項2記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000007
      式中、
       Aは、前記一般式(4)に記載した通りの意味であり、
       Ar14~Ar16は、同一でも異なってもよく、芳香
      族炭化水素基、芳香族複素環基または縮合多環芳香族基
      を表し、
       R26は、水素原子、重水素原子、フッ素原子、塩素
      原子、シアノ基、ニトロ基、炭素原子数1~6のアルキ
      ル基、炭素原子数5~10のシクロアルキル基、炭素原
      子数2~6のアルケニル基、炭素原子数1~6のアルキ
      ルオキシ基、炭素原子数5~10のシクロアルキルオキ
      シ基、芳香族炭化水素基、芳香族複素環基、縮合多環芳
      香族基またはアリールオキシ基を表す。
  6.  前記正孔輸送層が、第一正孔輸送層および第二正孔輸送層の2層構造を有しており、該第二正孔輸送層が、前記発光層側に位置しており、且つ、前記一般式(1)で表されるアリールアミン化合物を含有する、請求項1記載の有機エレクトロルミネッセンス素子。
  7.  前記発光層が、赤色の発光材料を含有する、請求項1記載の有機エレクトロルミネッセンス素子。
  8.  前記発光層が、燐光性の発光材料を含有する、請求項1記載の有機エレクトロルミネッセンス素子。
  9.  前記燐光性の発光材料が、イリジウムまたは白金を含む金属錯体である、請求項8記載の有機エレクトロルミネッセンス素子。
PCT/JP2016/086458 2015-12-08 2016-12-07 有機エレクトロルミネッセンス素子 WO2017099155A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/781,986 US20180362843A1 (en) 2015-12-08 2016-12-07 Organic electroluminescent device
CN201680071554.8A CN108369994B (zh) 2015-12-08 2016-12-07 有机电致发光元件
EP16873048.9A EP3389106B1 (en) 2015-12-08 2016-12-07 Organic electroluminescent element
KR1020187019115A KR102654994B1 (ko) 2015-12-08 2016-12-07 유기 전계발광 소자
JP2017555119A JP6752226B2 (ja) 2015-12-08 2016-12-07 有機エレクトロルミネッセンス素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-239202 2015-12-08
JP2015239202 2015-12-08

Publications (1)

Publication Number Publication Date
WO2017099155A1 true WO2017099155A1 (ja) 2017-06-15

Family

ID=59013252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086458 WO2017099155A1 (ja) 2015-12-08 2016-12-07 有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (1) US20180362843A1 (ja)
EP (1) EP3389106B1 (ja)
JP (1) JP6752226B2 (ja)
KR (1) KR102654994B1 (ja)
CN (1) CN108369994B (ja)
TW (1) TWI707941B (ja)
WO (1) WO2017099155A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111844A1 (ja) * 2017-12-05 2019-06-13 保土谷化学工業株式会社 アリールアミン化合物および有機エレクトロルミネッセンス素子
CN111164778A (zh) * 2017-09-25 2020-05-15 保土谷化学工业株式会社 有机电致发光元件

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117677263A (zh) * 2017-03-28 2024-03-08 保土谷化学工业株式会社 有机电致发光元件

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126615A (ja) 1993-11-01 1995-05-16 Matsushita Electric Ind Co Ltd 電界発光素子
JPH0848656A (ja) 1994-02-08 1996-02-20 Tdk Corp 有機el素子用化合物および有機el素子
WO2003060956A2 (en) 2002-01-18 2003-07-24 Lg Chem, Ltd. New material for transporting electrons and organic electroluminescent display using the same
JP2005108804A (ja) 2003-05-27 2005-04-21 Denso Corp 有機el素子およびその製造方法
JP2006151979A (ja) 2004-11-29 2006-06-15 Samsung Sdi Co Ltd フェニルカルバゾール系化合物とその製造方法及び有機電界発光素子
WO2008062636A1 (en) 2006-11-24 2008-05-29 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using the same
WO2011059000A1 (ja) 2009-11-12 2011-05-19 保土谷化学工業株式会社 置換されたアントラセン環構造とピリドインドール環構造を有する化合物および有機エレクトロルミネッセンス素子
JP4943840B2 (ja) 2004-05-25 2012-05-30 保土谷化学工業株式会社 p−ターフェニル化合物および該化合物を用いた電子写真用感光体
KR20130060157A (ko) 2011-11-29 2013-06-07 에스에프씨 주식회사 안트라센 유도체 및 이를 포함하는 유기전계발광소자
WO2014009310A1 (en) 2012-07-09 2014-01-16 Novaled Ag Doped organic semiconductive matrix material
JP2014513064A (ja) 2011-03-08 2014-05-29 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 新規な有機エレクトロルミネッセンス化合物およびそれを用いる有機エレクトロルミネッセンス素子
WO2014129201A1 (ja) * 2013-02-22 2014-08-28 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
KR20150042386A (ko) * 2013-10-11 2015-04-21 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기전계발광소자
KR20150111106A (ko) * 2014-03-25 2015-10-05 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기전계발광소자
JP2016076566A (ja) * 2014-10-06 2016-05-12 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
JP2016100364A (ja) * 2014-11-18 2016-05-30 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943840B1 (ja) 1970-12-25 1974-11-25
EP2791105B1 (de) * 2011-12-12 2020-03-18 Merck Patent GmbH Verbindungen für elektronische vorrichtungen
KR20130114785A (ko) * 2012-04-10 2013-10-21 롬엔드하스전자재료코리아유한회사 신규한 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
CN103887436B (zh) * 2012-12-21 2016-12-28 厦门天马微电子有限公司 一种有机发光二极管
JP6502334B2 (ja) * 2013-10-08 2019-04-17 メルク パテント ゲーエムベーハー 電子素子のための材料
KR102195338B1 (ko) * 2013-12-13 2020-12-24 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기전계발광소자
US10424742B2 (en) * 2014-08-20 2019-09-24 Hodogaya Chemical Co., Ltd. Organic electroluminescent device
JP3194657U (ja) 2014-09-19 2014-12-04 恵美子 青柳 温熱首巻
CN104557875A (zh) * 2015-01-21 2015-04-29 石家庄诚志永华显示材料有限公司 茚并吲哚环状化合物与在有机发光二极管中的应用

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126615A (ja) 1993-11-01 1995-05-16 Matsushita Electric Ind Co Ltd 電界発光素子
JP3194657B2 (ja) 1993-11-01 2001-07-30 松下電器産業株式会社 電界発光素子
JPH0848656A (ja) 1994-02-08 1996-02-20 Tdk Corp 有機el素子用化合物および有機el素子
WO2003060956A2 (en) 2002-01-18 2003-07-24 Lg Chem, Ltd. New material for transporting electrons and organic electroluminescent display using the same
JP2005108804A (ja) 2003-05-27 2005-04-21 Denso Corp 有機el素子およびその製造方法
JP4943840B2 (ja) 2004-05-25 2012-05-30 保土谷化学工業株式会社 p−ターフェニル化合物および該化合物を用いた電子写真用感光体
JP2006151979A (ja) 2004-11-29 2006-06-15 Samsung Sdi Co Ltd フェニルカルバゾール系化合物とその製造方法及び有機電界発光素子
WO2008062636A1 (en) 2006-11-24 2008-05-29 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using the same
WO2011059000A1 (ja) 2009-11-12 2011-05-19 保土谷化学工業株式会社 置換されたアントラセン環構造とピリドインドール環構造を有する化合物および有機エレクトロルミネッセンス素子
JP2014513064A (ja) 2011-03-08 2014-05-29 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 新規な有機エレクトロルミネッセンス化合物およびそれを用いる有機エレクトロルミネッセンス素子
KR20130060157A (ko) 2011-11-29 2013-06-07 에스에프씨 주식회사 안트라센 유도체 및 이를 포함하는 유기전계발광소자
WO2014009310A1 (en) 2012-07-09 2014-01-16 Novaled Ag Doped organic semiconductive matrix material
WO2014129201A1 (ja) * 2013-02-22 2014-08-28 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
KR20150042386A (ko) * 2013-10-11 2015-04-21 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기전계발광소자
KR20150111106A (ko) * 2014-03-25 2015-10-05 에스에프씨 주식회사 유기발광 화합물 및 이를 포함하는 유기전계발광소자
JP2016076566A (ja) * 2014-10-06 2016-05-12 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
JP2016100364A (ja) * 2014-11-18 2016-05-30 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3389106A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111164778A (zh) * 2017-09-25 2020-05-15 保土谷化学工业株式会社 有机电致发光元件
US20200287141A1 (en) * 2017-09-25 2020-09-10 Hodogaya Chemical Co., Ltd. Organic electroluminescence device
US11605785B2 (en) * 2017-09-25 2023-03-14 Hodogaya Chemical Co., Ltd. Organic electroluminescence device
CN111164778B (zh) * 2017-09-25 2023-04-25 保土谷化学工业株式会社 有机电致发光元件
WO2019111844A1 (ja) * 2017-12-05 2019-06-13 保土谷化学工業株式会社 アリールアミン化合物および有機エレクトロルミネッセンス素子
CN111433930A (zh) * 2017-12-05 2020-07-17 保土谷化学工业株式会社 芳基胺化合物及有机电致发光元件
KR20200096506A (ko) 2017-12-05 2020-08-12 호도가야 가가쿠 고교 가부시키가이샤 아릴아민 화합물 및 유기 일렉트로루미네선스 소자
JPWO2019111844A1 (ja) * 2017-12-05 2021-01-14 保土谷化学工業株式会社 アリールアミン化合物および有機エレクトロルミネッセンス素子
JP7163311B2 (ja) 2017-12-05 2022-10-31 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
CN111433930B (zh) * 2017-12-05 2023-06-06 保土谷化学工业株式会社 芳基胺化合物及有机电致发光元件

Also Published As

Publication number Publication date
JP6752226B2 (ja) 2020-09-09
EP3389106A1 (en) 2018-10-17
KR102654994B1 (ko) 2024-04-04
EP3389106A4 (en) 2019-08-14
US20180362843A1 (en) 2018-12-20
KR20180091871A (ko) 2018-08-16
TW201728741A (zh) 2017-08-16
CN108369994A (zh) 2018-08-03
CN108369994B (zh) 2020-05-19
EP3389106B1 (en) 2021-12-01
TWI707941B (zh) 2020-10-21
JPWO2017099155A1 (ja) 2018-09-27

Similar Documents

Publication Publication Date Title
KR102493763B1 (ko) 유기 일렉트로루미네선스 소자
JP5850835B2 (ja) アクリダン環構造を有する化合物および有機エレクトロルミネッセンス素子
JP7406486B2 (ja) トリアリールアミン構造を有する化合物および有機エレクトロルミネッセンス素子
JP6755806B2 (ja) 有機エレクトロルミネッセンス素子
KR102319951B1 (ko) 유기 전계발광 소자
JP5875743B1 (ja) 有機エレクトロルミネッセンス素子
JP6731352B2 (ja) 有機エレクトロルミネッセンス素子
WO2017138569A1 (ja) 有機エレクトロルミネッセンス素子
WO2017086357A1 (ja) 有機エレクトロルミネッセンス素子
JP7018895B2 (ja) 有機エレクトロルミネッセンス素子
JPWO2019059334A1 (ja) 有機エレクトロルミネッセンス素子
JP6752226B2 (ja) 有機エレクトロルミネッセンス素子
JP5525665B1 (ja) アクリダン環構造を有する化合物および有機エレクトロルミネッセンス素子
KR20230042440A (ko) 유기 일렉트로루미네선스 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16873048

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017555119

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187019115

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187019115

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2016873048

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016873048

Country of ref document: EP

Effective date: 20180709