WO2016121561A1 - 有機エレクトロルミネッセンス素子、及び、有機エレクトロルミネッセンスパネル - Google Patents

有機エレクトロルミネッセンス素子、及び、有機エレクトロルミネッセンスパネル Download PDF

Info

Publication number
WO2016121561A1
WO2016121561A1 PCT/JP2016/051345 JP2016051345W WO2016121561A1 WO 2016121561 A1 WO2016121561 A1 WO 2016121561A1 JP 2016051345 W JP2016051345 W JP 2016051345W WO 2016121561 A1 WO2016121561 A1 WO 2016121561A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
light emitting
emitting dopant
emitting
Prior art date
Application number
PCT/JP2016/051345
Other languages
English (en)
French (fr)
Inventor
和樹 松永
菊池 克浩
内田 秀樹
将紀 小原
井上 智
英士 小池
優人 塚本
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US15/545,809 priority Critical patent/US10305056B2/en
Publication of WO2016121561A1 publication Critical patent/WO2016121561A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • H10K50/131OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit with spacer layers between the electroluminescent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes

Definitions

  • the present invention relates to an organic electroluminescence element (hereinafter also referred to as “organic EL element”) and an organic electroluminescence panel (hereinafter also referred to as “organic EL panel”). More specifically, the present invention relates to an organic EL element having a configuration suitable for emitting light of a plurality of colors, and an organic EL panel including the organic EL element.
  • organic EL element organic electroluminescence element
  • organic EL panel organic electroluminescence panel
  • organic EL panel including an organic electroluminescence element utilizing electroluminescence of an organic material.
  • the organic EL element emits light by recombining holes injected from the anode and electrons injected from the cathode in a light emitting layer disposed between both electrodes.
  • the organic EL panel When used as a display panel of a thin display device, the organic EL panel has an advantage over a liquid crystal display device in terms of high contrast, low power consumption, and the like.
  • organic EL panels are also expected to be used for applications such as lighting.
  • an organic EL element structure capable of generating white light In order to be used in applications such as a display device, the organic EL panel needs to be able to generate light of various colors, and an organic EL element structure capable of generating white light is strongly desired.
  • various proposals have been made regarding an organic EL element structure capable of generating white light.
  • an element structure called a tandem method in which a plurality of organic EL elements are stacked in the vertical direction and driven by a single power source is known.
  • As the tandem method one in which each organic EL element emits a primary color is generally used, but one in which a plurality of organic EL elements that emit white light are stacked is also known (see, for example, Patent Document 1).
  • Patent Document 2 an element structure in which a plurality of light emitting layers are stacked adjacent to each other (see, for example, Patent Document 2), or an element in which two or more light emitting dopant materials having different emission peak wavelengths are contained in a single light emitting layer A structure (see, for example, Patent Document 3) is known.
  • FIG. 5 is a schematic cross-sectional view showing an example of an organic EL panel having a conventional tandem structure.
  • the organic EL element 220A provided on the substrate 210 includes, in order from the substrate 210 side, the anode 221, the first hole injection layer 222, the blue light emitting layer 228B, The electron injection layer 230, the intermediate layer 234, the second hole injection layer 222, the yellow light emitting layer 228Y, the second electron injection layer 230, and the cathode 231 are stacked.
  • a hole transport layer may be provided between the first hole injection layer 222 and the blue light-emitting layer 228B and between the second hole injection layer 222 and the yellow light-emitting layer 228Y.
  • An electron transport layer may be provided between the light emitting layer 228B and the first electron injection layer 230 and between the yellow light emitting layer 228Y and the second electron injection layer 230, respectively.
  • the organic EL element 220A having the tandem structure as described above since the light emission positions are completely separated above and below the intermediate layer 234, it is easy to balance the carriers of electrons and holes. It is difficult to select a material suitable for H.234. For this reason, there are problems such as high driving voltage and low luminous efficiency due to carrier loss in the intermediate layer. Further, compared to the element structure shown in FIG. 6 to be described later, there is a problem that productivity is low because the number of layers is two to three times.
  • FIG. 6 is a schematic cross-sectional view illustrating an example of an organic EL panel having a structure in which conventional light emitting layers of a plurality of colors are stacked.
  • the organic EL element 220B provided on the substrate 210 includes an anode 221, a hole injection layer 222, a blue light emitting layer 228B, a red light emitting layer 228R, a green color in this order from the substrate 210 side.
  • the light emitting layer 228G, the electron injection layer 230, and the cathode 231 are stacked.
  • a hole transport layer may be provided between the hole injection layer 222 and the blue light-emitting layer 228B, and an electron transport layer may be provided between the green light-emitting layer 228G and the electron injection layer 230.
  • the light emitting materials of the respective colors are efficiently emitted in all three layers of the blue light emitting layer 228B, the red light emitting layer 228R, and the green light emitting layer 228G. This is difficult and has a problem of low luminous efficiency.
  • This invention is made
  • a mixed light-emitting layer containing both a light-emitting host material and a light-emitting dopant material and a substantially light-emitting layer By laminating two or more light-emitting dopant layers made of only a dopant material, and further arranging a block layer between the two or more light-emitting dopant layers, the structure of the carrier recombination region is optimized, and light emission We found that efficiency can be improved.
  • one embodiment of the present invention is an organic electroluminescence element having an anode, a hole transport layer, a light-emitting unit, an electron transport layer, and a cathode in order, and the light-emitting unit includes a first light-emitting dopant.
  • the first light-emitting dopant layer is substantially composed only of the second light-emitting dopant material, and the second light-emitting dopant layer is substantially composed only of the third light-emitting dopant material, and the first block layer is formed.
  • Another embodiment of the present invention may be an organic electroluminescence panel having a substrate and the organic electroluminescence element disposed on the substrate.
  • a mixed light-emitting layer containing both a light-emitting host material and a light-emitting dopant material and two or more light-emitting dopant layers that are substantially composed only of the light-emitting dopant material are stacked, By disposing a block layer between the above light emitting dopant layers, it is possible to make it difficult for a barrier of carriers to occur at the interface between each layer, compared to a configuration in which a plurality of mixed light emitting layers are stacked.
  • the light emitting dopant material therein can be made to emit light efficiently.
  • the light emitting dopant layer can be formed by depositing only the light emitting dopant material by short-time vapor deposition or the like. Therefore, the organic EL device of the present invention has high productivity as compared with a conventional configuration in which a plurality of mixed light emitting layers are stacked.
  • the organic EL panel of the present invention includes an organic EL element that achieves both high luminous efficiency and high productivity, it achieves excellent productivity, low power consumption and high luminance display devices, lighting devices, and the like. It can be done.
  • FIG. 1 is a schematic cross-sectional view showing an organic EL element of Example 1.
  • FIG. 3 is a schematic cross-sectional view showing an organic EL element of Example 2.
  • FIG. 6 is a schematic cross-sectional view showing an organic EL element of Example 3.
  • FIG. 10 is a schematic cross-sectional view showing an organic EL element of Example 5.
  • FIG. It is a cross-sectional schematic diagram which shows an example of the organic EL panel which has the conventional tandem structure. It is a cross-sectional schematic diagram which shows an example of the organic electroluminescent panel which has the structure which laminated
  • organic electroluminescence is also referred to as “organic EL”.
  • organic EL organic electroluminescence
  • the organic EL element is generally also called an organic light emitting diode (OLED: Organic Light Emitting Diode).
  • the organic EL panel of Example 1 includes an organic EL element having an anode, a hole injection layer, a hole transport layer, a light emitting unit, an electron transport layer, an electron injection layer, and a cathode in this order from the substrate side.
  • the light emitting unit has a structure in which a first light emitting dopant layer, a first block layer, a second light emitting dopant layer, a second block layer, and a mixed light emitting layer are laminated in order from the hole transport layer side. is there.
  • light-emitting dopant layer when referring to both the first light-emitting dopant layer and the second light-emitting dopant layer, it is simply referred to as “light-emitting dopant layer” and refers to both the first block layer and the second block layer. Is simply described as “block layer”. When referring to both electrons and holes, it is described as “carrier”.
  • FIG. 1 is a schematic cross-sectional view showing an organic EL panel of Example 1.
  • the organic EL element 120A provided on the substrate 110 includes, in order from the substrate 110 side, the anode 121, the hole injection layer 122, the hole transport layer 123, and the first light emission.
  • the first light-emitting dopant layer 124, the first block layer 125, the second light-emitting dopant layer 126, the second block layer 127, and the mixed light-emitting layer 128 constitute a light-emitting unit 140A.
  • shaded arrows represent the movement of electrons (e ⁇ )
  • the white arrows represent the movement of holes (h + ).
  • the substrate 110 a glass substrate, a plastic substrate, or the like can be used.
  • a bendable plastic substrate is used as the substrate 110, a flexible organic EL panel can be obtained.
  • the substrate 110 is provided with a thin film transistor. The drive of the organic EL element 120A is controlled by electrically connecting the thin film transistor to the anode 121.
  • indium tin oxide ITO: Indium Tin Oxide
  • the thickness of the anode 121 was 50 nm.
  • hole injection layer 122 dipyrazino [2,3-f: 2 ', 3'-h] quinoxaline-2,3,6,7,10,11-hexacarbonitrile (HAT-CN) was used.
  • material of the hole injection layer 122 the same hole injection material as that used in a normal organic EL element can be used.
  • the thickness of the hole injection layer 122 was 10 nm.
  • hole transport layer 123 4,4′-bis [N- (1-naphthyl) -N-phenyl-amino] -biphenyl ( ⁇ -NPD) was used.
  • ⁇ -NPD 4,4′-bis [N- (1-naphthyl) -N-phenyl-amino] -biphenyl
  • the thickness of the hole transport layer 123 was 20 nm.
  • the first light emitting dopant layer 124 is substantially made of only the light emitting dopant material (second light emitting dopant material). That is, the concentration of the second light-emitting dopant material in the first light-emitting dopant layer 124 is 100% by weight or substantially 100% by weight.
  • the concentration of the light-emitting dopant material in the light-emitting dopant layer being substantially 100% by weight means that no material that affects the characteristics of the light-emitting dopant layer is contained other than the light-emitting dopant material.
  • a small amount of impurities other than the above may be contained, but it is preferable not to contain 3% by weight or more of the light emitting host material.
  • the second light-emitting dopant material contained in the first light-emitting dopant layer 124 either a fluorescent dopant material or a phosphorescent dopant material can be used.
  • a fluorescent dopant material or a phosphorescent dopant material
  • bis (3,5-difluoro-2- (2-pyridyl) phenyl- (2-carboxypyridyl) iridium) (III) (FIrpic) was used as the second light-emitting dopant material.
  • the light-emitting dopant material contained in the first light-emitting dopant layer 124 may be one type or two or more types, but is preferably one type.
  • the energy gap (band gap) of the second light-emitting dopant material was 2.9 eV. The energy gap of each material can be determined by measuring the absorption spectrum of each material.
  • the first light emitting dopant layer 124 is formed in an island shape. That is, there is a portion where the hole transport layer 123 and the first block layer 125 are in direct contact.
  • the light emitting dopant layer can be formed in an island shape only by shortening the deposition time. Specifically, when an extremely thin film having a maximum film thickness of 1 nm or less is formed by vapor deposition, the formed film becomes an island shape.
  • the thickness (maximum film thickness) of the thickest portion of the first light-emitting dopant layer 124 was 0.2 nm.
  • a preferable lower limit of the maximum film thickness of the first light-emitting dopant layer 124 is 0.1 nm, a preferable upper limit is 1 nm, and a more preferable upper limit is 0.5 nm.
  • the first light emitting dopant layer 124 can be formed by depositing a second light emitting dopant material.
  • the concentration of the second light-emitting dopant material is set to 100% by weight or substantially 100% by weight and is formed in an island shape, whereby (1) concentration quenching occurs and the light emission efficiency is increased. It is possible to prevent the decrease, (2) the carrier transport is inhibited, the drive voltage is increased, and the light emission efficiency is decreased.
  • the first block layer 125 contains a second light emitting host material.
  • a second luminescent host material 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) having an electron transporting property was used.
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • the light-emitting host material contained in the first block layer 125 may be one type or two or more types, but preferably one type.
  • the thickness of the first block layer 125 was 3 nm.
  • a preferable lower limit of the thickness of the first block layer 125 is 1 nm, and a preferable upper limit is 5 nm.
  • the thickness of the block layer is increased, hole transport is completely blocked, but when the thickness is extremely thin, the hole transmittance can be changed depending on the thickness of the block layer.
  • the thickness of the first block layer 125 By setting the thickness of the first block layer 125 to 1 nm or more and 5 nm or less, the distribution of carriers in the first light-emitting dopant layer 124 and the second light-emitting dopant layer 126 is adjusted and contained in both layers.
  • the light emitting dopant material can emit light efficiently.
  • the second light emitting host material constituting the first block layer 125 includes the second light emitting dopant material contained in the first light emitting dopant layer 124 and the third light emitting dopant layer 126 contained in the second light emitting dopant layer 126. It is preferable that the energy gap is larger than that of the light emitting dopant material. Thereby, it can prevent that the energy of a 2nd light emission dopant material and a 3rd light emission dopant material transfers to a 2nd light emission host material, and can prevent the fall of luminous efficiency.
  • the second light emitting host material preferably has a larger energy gap of 0.1 eV or more than the second light emitting dopant material and the third light emitting dopant material. The energy gap of the second light emitting host material was 3.5 eV.
  • the first block layer 125 is disposed between the first light emitting dopant layer 124 and a second light emitting dopant layer 126 described later. Since the light-emitting dopant layer is substantially composed only of the light-emitting dopant material, when the first block layer 125 is not provided between the light-emitting dopant layers, the light-emitting dopant material included in the first light-emitting dopant layer 124, The light-emitting dopant material included in the light-emitting dopant layer 126 may be deactivated by contact.
  • the second light emitting dopant layer 126 is substantially made of only the light emitting dopant material (third light emitting dopant material). That is, the concentration of the third light-emitting dopant material in the second light-emitting dopant layer 126 is 100% by weight or substantially 100% by weight.
  • the third light-emitting dopant material contained in the second light-emitting dopant layer 126 either a fluorescent dopant material or a phosphorescent dopant material can be used.
  • a fluorescent dopant material or a phosphorescent dopant material can be used as the third light-emitting dopant material.
  • tris (2-phenylpyridinate) iridium (III) [Ir (ppy) 3] was used as the third light-emitting dopant material.
  • the light-emitting dopant material contained in the second light-emitting dopant layer 126 may be one type or two or more types, but is preferably one type.
  • the energy gap of the third light emitting dopant material was 2.6 eV.
  • the third light-emitting dopant material contained in the second light-emitting dopant layer 126 may be the same type as the second light-emitting dopant material contained in the first light-emitting dopant layer 124, but the second light-emitting dopant layer 126 is used.
  • the third light-emitting dopant material contained in the first light-emitting dopant layer 124 and the second light-emitting dopant material contained in the first light-emitting dopant layer 124 are preferably different types.
  • the second light emitting dopant layer 126 is formed in an island shape. That is, there is a portion where the first block layer 125 and the second block layer 127 are in direct contact.
  • the thickness (maximum film thickness) of the thickest portion of the second light emitting dopant layer 126 was 0.2 nm.
  • a preferable lower limit of the maximum film thickness of the second light-emitting dopant layer 126 is 0.1 nm, a preferable upper limit is 1 nm, and a more preferable upper limit is 0.5 nm.
  • the second light emitting dopant layer 126 can be formed by depositing a third light emitting dopant material.
  • the second block layer 127 contains a third light emitting host material.
  • the third light-emitting host material BCP having electron transport properties was used.
  • the light-emitting host material contained in the second block layer 127 may be one type or two or more types, but preferably one type.
  • the third light emitting host material may be the same material as the second light emitting host material or may be a different material.
  • the thickness of the second block layer 127 was 2 nm.
  • a preferable lower limit of the thickness of the second block layer 127 is 1 nm, a preferable upper limit is 5 nm, and a more preferable upper limit is 3 nm.
  • the third light-emitting host material constituting the second block layer 127 includes the third light-emitting dopant material constituting the second light-emitting dopant layer 126 and the first light emission contained in the mixed light-emitting layer 128 described later. It is preferable that the energy gap is larger than any of the dopant materials. Thereby, it can prevent that the energy of a 3rd light emission dopant material and a 1st light emission dopant material moves to a 3rd light emission host material, and can prevent the luminous efficiency fall.
  • the third light emitting host material preferably has an energy gap larger by 0.1 eV or more than both the third light emitting dopant material and the first light emitting dopant material. The energy gap of the third light emitting host material was 3.5 eV.
  • the mixed light emitting layer 128 is a layer containing at least one kind of light emitting host material (first light emitting host material) and at least one kind of light emitting dopant material (first light emitting dopant material).
  • Example 1 2,2 ′, 2 ′′-(1,3,5-Benzenetriyl) -tris (1-phenyl-1-H-benzimidazole) (TPBi) having an electron transport property as the first light-emitting host material And a mixture layer containing tris (1-phenylisoquinoline) iridium (III) [Ir (piq) 3] as the first light-emitting dopant material was used.
  • the energy gap of the material was 3.5 eV, and the energy gap of the first light-emitting dopant material was 2.0 eV, the first light-emitting host material comprising a second light-emitting host material constituting the block layer and The same material as the third light emitting host material may be used, or a different material may be used.
  • Flip may be a material.
  • the weight ratio of the first light-emitting host material and the first light-emitting dopant material in the mixed light-emitting layer 128 was 0.9: 0.1.
  • the weight ratio of the first light-emitting host material and the first light-emitting dopant material is preferably 0.99: 0.01 to 0.7: 0.3.
  • the first light-emitting dopant material either a fluorescent dopant material or a phosphorescent dopant material can be used.
  • the thickness of the mixed light emitting layer 128 was 15 nm.
  • a preferable lower limit of the thickness of the mixed light emitting layer 128 is 10 nm, a preferable upper limit is 40 nm, and a more preferable upper limit is 30 nm.
  • the mixed light emitting layer 128 can be formed by co-evaporating a first light emitting host material and a first light emitting dopant material.
  • the light emitting dopant materials contained in the first light emitting dopant layer 124, the second light emitting dopant layer 126, and the mixed light emitting layer 128 are preferably selected so that each layer can emit light of three different primary colors. , Can be any combination.
  • the first light-emitting dopant layer 124 emits blue light
  • the second light-emitting dopant layer 126 emits green light
  • the mixed light-emitting layer 128 emits red light.
  • a third light emitting dopant layer and a third block layer may be further disposed between the mixed light emitting layer 128 and the second block layer 127.
  • the mixed light emitting layer 128 and the three light emitting dopant layers can emit light of four different colors.
  • Example 1 As indicated by the shaded arrows in FIG. 1, in Example 1, electrons move from the cathode 131 toward the anode 121. The electrons spread throughout the mixed light emitting layer 128 and become high density on the hole injection layer 122 side of the mixed light emitting layer 128.
  • the mixed light-emitting layer 128, the second light-emitting dopant layer 126, and the first light-emitting dopant layer 124 are separated by the first block layer 125 and the second block layer 127. Carrier recombination occurs, and the first light-emitting dopant layer 124, the second light-emitting dopant layer 126, and the mixed light-emitting layer 128 emit light.
  • buthophenanthroline (Bphen) was used as a material for the electron transport layer 129.
  • the same electron transport material as that used in a normal organic EL element can be used as a material for the electron transport layer 129.
  • the thickness of the electron transport layer 129 was 30 nm.
  • lithium fluoride LiF
  • the same electron injection material as that used in a normal organic EL element can be used.
  • the thickness of the electron injection layer 130 was 1 nm.
  • the cathode 131 a layer containing Ag and magnesium (Mg) was used.
  • the content ratio of Ag and Mg was 0.9: 0.1 on a weight basis.
  • the material of the cathode 131 it is preferable to use a material having optical transparency and conductivity.
  • ITO or Indium Zinc Oxide (IZO) may be used instead of the above materials.
  • the thickness of the cathode 131 was 20 nm.
  • the organic EL element 120A may be a bottom emission type or a top emission type.
  • a reflective electrode is further provided between the substrate 110 and the anode 121.
  • an electrode having light reflectivity can be used.
  • a silver (Ag) layer, an aluminum (Al) layer, or an indium (In) layer may be used.
  • the thickness of the reflective electrode can be set to 100 nm, for example.
  • the cathode 131 is preferably made of a light transmissive and conductive material.
  • ITO or IZO may be used.
  • the organic EL element 120A is a top emission type, the organic EL element 120A emits light from the cathode 131 side.
  • the light emitting unit 140A has the following characteristics.
  • a light-emitting dopant layer formed by co-evaporation of a light-emitting host material and a light-emitting dopant material is only one layer, and a light-emitting dopant layer consisting essentially of a light-emitting dopant material instead of stacking a plurality of mixed light-emitting layers (The first light-emitting dopant layer 124 and the second light-emitting dopant layer 126) are provided.
  • a first block layer 125 is disposed between the first light-emitting dopant layer 124 and the second light-emitting dopant layer 126.
  • a second block layer 127 is disposed between the second light emitting dopant layer 126 and the mixed light emitting layer 128.
  • the first light-emitting dopant layer 124 and the second light-emitting dopant layer 126 are island-shaped ultrathin films.
  • the first block layer 125 and the second block layer 127 are ultrathin films.
  • the first block layer 125, the second block layer 127, and the mixed light emitting layer 128 contain an electron transporting host material.
  • the light emitting unit 140A of Example 1 Due to the above characteristics, in the light emitting unit 140A of Example 1, electrons spread throughout the light emitting unit 140A, and particularly in the region where the first light emitting dopant layer 124 and the second light emitting dopant layer 126 are provided. It can exist at high density. On the other hand, the provision of the first block layer 125 and the second block layer 127 prevents the holes from being localized in any of the layers in the light emitting unit 140A. Is controlled by the film thickness of the first block layer 125 and the second block layer 127. Therefore, in the light emitting unit 140A of Example 1, carriers can be recombined in each of the first light emitting dopant layer 124, the second light emitting dopant layer 126, and the mixed light emitting layer 128.
  • a device capable of white display can be realized with a simple structure in which a plurality of light emitting layers and an intermediate layer therebetween are not provided.
  • Example 1 relates to an organic EL panel having a light-emitting unit in which a second block layer is disposed between a mixed light-emitting layer and a second light-emitting dopant layer, but the second block layer is not disposed. It is also possible.
  • Example 2 has the same configuration as that of the organic EL panel of Example 1 except that the second block layer is not provided.
  • FIG. 2 is a schematic cross-sectional view showing the organic EL panel of Example 2.
  • the organic EL element 120B provided on the substrate 110 includes, in order from the substrate 110 side, the anode 121, the hole injection layer 122, the hole transport layer 123, and the first light emission.
  • the dopant layer 124, the first block layer 125, the second light emitting dopant layer 126, the mixed light emitting layer 128, the electron transport layer 129, the electron injection layer 130, and the cathode 131 are stacked.
  • the first light emitting dopant layer 124, the first block layer 125, the second light emitting dopant layer 126, and the mixed light emitting layer 128 constitute a light emitting unit 140B.
  • the first light-emitting dopant layer 124 emits blue light
  • the second light-emitting dopant layer 126 emits red light
  • the mixed light-emitting layer 128 emits green light.
  • the second light-emitting dopant layer 126 and the mixed light-emitting layer 128 are adjacent to each other.
  • shaded arrows indicate the movement of electrons (e ⁇ )
  • white arrows indicate the movement of holes (h + ).
  • the third light emitting dopant material and the mixed light emitting layer included in the second light emitting dopant layer 126 are used.
  • the contact probability with the first light-emitting dopant material included in 128 is not high. Therefore, even if the second block layer 127 is not disposed between the second light-emitting dopant layer 126 and the mixed light-emitting layer 128, each layer can emit light.
  • the first light-emitting dopant material constituting the mixed light-emitting layer 128 has a larger energy gap than the third light-emitting dopant material constituting the second light-emitting dopant layer 126. Therefore, the light emitting dopant layer 126 can emit light by energy transfer from the mixed light emitting layer 128 to the second light emitting dopant layer 126.
  • the first light emitting dopant material preferably has an energy gap of 0.1 eV or more larger than that of the third light emitting dopant material.
  • the largest energy gap is a light emitting dopant material that emits blue light
  • the next is a light emitting dopant material that emits green light
  • the smallest energy gap is light emission that emits red light. It is a dopant material. Therefore, when a light emitting dopant material that emits green light is used as the first light emitting dopant material constituting the mixed light emitting layer 128, the third light emitting dopant material constituting the adjacent second light emitting dopant layer 126 is more It is preferable to use a light-emitting dopant material that emits red light with a small energy gap.
  • the second light emitting dopant layer 126 part of the energy excited in the mixed light emitting layer 128 moves to the second light emitting dopant layer 126, and green and red light can be emitted.
  • the light emitting dopant material that emits red light is used for the mixed light emitting layer 128 and the light emitting dopant material that emits green light is used for the second light emitting dopant layer 126
  • the second light emitting dopant from the mixed light emitting layer 128 is used. Even if the light emitting dopant material emitting green light is excited without energy transfer to the layer 126, the energy is transferred to the light emitting dopant material emitting red light, so that green light emission cannot be obtained.
  • the mixed light emitting layer 128 contains TPBi having an electron transporting property as a first light emitting host material, and contains Ir (ppy) 3 as a first light emitting dopant material.
  • the weight ratio of the first light-emitting host material and the first light-emitting dopant material in the mixed light-emitting layer 128 was 0.9: 0.1.
  • the energy gap of the first light emitting host material was 3.5 eV, and the energy gap of the first light emitting dopant material was 2.6 eV.
  • the thickness of the mixed light emitting layer 128 was 20 nm.
  • the second light-emitting dopant layer 126 includes Ir (piq) 3 as the third light-emitting dopant material.
  • the energy gap of the third light emitting dopant material was 2.0 eV.
  • the thickness (maximum film thickness) of the thickest portion of the second light emitting dopant layer 126 was 0.2 nm.
  • Example 2 carrier recombination occurs at the interface between the mixed light-emitting layer 128 and the second light-emitting dopant layer 126 and the first light-emitting dopant layer 124, and three kinds of light-emitting dopant materials included in the three layers are formed.
  • a device capable of white display that can efficiently emit all light can be realized.
  • Example 3 In Example 1, the mixed light emitting layer 128 was positioned on the electron transport layer 129 side of the organic EL element. However, in the present invention, the mixed light emitting layer 128 is positioned on the hole transport layer 123 side of the organic EL element. Good.
  • Example 3 has the same configuration as that of the organic EL panel of Example 1 except that the position of the mixed light-emitting layer 128 is different and the light-emitting host material has a hole transporting property.
  • FIG. 3 is a schematic cross-sectional view showing the organic EL panel of Example 3.
  • the organic EL element 120C provided on the substrate 110 includes an anode 121, a hole injection layer 122, a hole transport layer 123, and a mixed light emitting layer 128 in order from the substrate 110 side.
  • a second block layer 127, a second light-emitting dopant layer 126, a first block layer 125, a first light-emitting dopant layer 124, an electron transport layer 129, an electron injection layer 130, and a cathode 131 are stacked.
  • the mixed light emitting layer 128, the second block layer 127, the second light emitting dopant layer 126, the first block layer 125, and the first light emitting dopant layer 124 constitute a light emitting unit 140C.
  • the mixed light emitting layer 128 emits red light
  • the second light emitting dopant layer 126 emits green color
  • the first light emitting dopant layer 124 emits blue light.
  • the shaded arrows represent the movement of electrons (e ⁇ )
  • the white arrows represent the movement of holes (h + ).
  • the mixed light-emitting layer 128 contains 4,4 ′, 4 ′′ -tris (carbazol-9-yl) -triphenylamine (TCTA) having hole transportability as the first light-emitting host material.
  • TCTA carboxybisulfate
  • the mixed light emitting layer 128 is located between the electron transport layer 129 and the second light emitting dopant layer 126, that is, the mixed light emitting layer 128 is the electron transport layer 129 of the organic EL element.
  • the first light-emitting host material contained in the mixed light-emitting layer 128 is preferably electron-transporting, whereas the mixed light-emitting layer 128 has holes as in Example 3.
  • the mixed light-emitting layer 128 When located between the transport layer 123 and the second light-emitting dopant layer 126, that is, when the mixed light-emitting layer 128 is located on the hole transport layer 123 side of the organic EL element, the mixed light-emitting layer 128 is contained.
  • Do One light-emitting host material preferably has a hole-transport property, and the first light-emitting host material contained in the mixed light-emitting layer 128 uses a light-emitting host material having the same transport property as an adjacent carrier transport layer.
  • the carrier transported from the carrier transport layer can be supplied to the entire light emitting unit without hindering.
  • the mixed light-emitting layer 128 contains TCTA having a hole transporting property as the first light-emitting host material and Ir (piq) 3 as the first light-emitting dopant material.
  • the weight ratio of the first light-emitting host material and the first light-emitting dopant material in the mixed light-emitting layer 128 was 0.9: 0.1.
  • the energy gap of the first light emitting host material was 3.3 eV, and the energy gap of the first light emitting dopant material was 2.0 eV.
  • the thickness of the mixed light emitting layer 128 was 10 nm.
  • Example 3 1,3-bis (N-carbazol-9-yl) benzene (mCP) having a hole transporting property was used as the second light-emitting host material contained in the first block layer 125. .
  • the energy gap of the second light emitting host material was 3.5 eV.
  • the thickness of the first block layer 125 was 2 nm.
  • Example 3 as the third light-emitting host material contained in the second block layer 127 , polyvinyl carbazole (PVK) having a hole transporting property was used.
  • the energy gap of the third light emitting host material was 3.6 eV.
  • the thickness of the second block layer 127 was 2 nm.
  • Example 3 the distribution of electrons can be controlled by adjusting the film thickness of the first block layer 125 and the second block layer 127. Therefore, also in Example 3, similarly to Example 1, the distribution of carriers is appropriately controlled, and carriers are recombined in the first light-emitting dopant layer 124, the second light-emitting dopant layer 126, and the mixed light-emitting layer 128. be able to. Therefore, it is possible to realize a device capable of white display that can efficiently emit all three kinds of light-emitting dopant materials included in the three layers.
  • Example 1 As the first light emitting host material, a material having an electron transporting property was used in Example 1, and a material having a hole transporting property was used in Example 3, but the transport capable of supplying carriers to the entire light emitting unit was used. What is necessary is just to have.
  • the amount of carrier movement can be adjusted by using a bipolar host material or by co-evaporating a hole transporting host material and an electron transporting host material to form the mixed light emitting layer 128.
  • Example 4 In Example 1, a light-emitting host material having an electron transporting property was used for the first block layer 125 and the second block layer 127, but a light-emitting host material having a hole transporting property may be used.
  • Example 4 has the same configuration as the organic EL panel of Example 1 except that the light-emitting host materials of the first block layer 125 and the second block layer 127 are hole transporting.
  • Example 4 TCTA having a hole transporting property was used as the second light emitting host material contained in the first block layer 125.
  • the energy gap of the second light emitting host material was 3.3 eV.
  • Example 4 m-CP having a hole transporting property was used as the third light-emitting host material contained in the second block layer 127.
  • the energy gap of the third light emitting host material was 3.5 eV.
  • the light-emitting host materials contained in the mixed light-emitting layer 128, the first block layer 125, and the second block layer 127 are not necessarily required to have the same carrier transport property, and each layer has a different carrier transport property. It may contain.
  • Example 4 similarly to Example 1, carrier recombination occurs in the first light-emitting dopant layer 124, the second light-emitting dopant layer 126, and the mixed light-emitting layer 128, and three types of light emission included in the three layers.
  • a device capable of displaying white that can efficiently emit all of the dopant material can be realized.
  • Example 5 In Example 5, an electron blocking layer having a hole transporting property is inserted between the hole transporting layer 123 and the light emitting unit, and a hole having an electron transporting property is interposed between the electron transporting layer 129 and the light emitting unit.
  • the organic EL panel has the same configuration as that of Example 1 except that a block layer is inserted.
  • FIG. 4 is a schematic cross-sectional view showing the organic EL panel of Example 5.
  • the organic EL element 120D provided on the substrate 110 includes an anode 121, a hole injection layer 122, a hole transport layer 123, and an electron blocking layer 132 in order from the substrate 110 side.
  • First light-emitting dopant layer 124, first block layer 125, second light-emitting dopant layer 126, second block layer 127, mixed light-emitting layer 128, hole blocking layer 133, electron transport layer 129, electron injection layer 130 and the cathode 131 are laminated.
  • the first light emitting dopant layer 124, the first block layer 125, the second light emitting dopant layer 126, the second block layer 127, and the mixed light emitting layer 128 constitute a light emitting unit 140D.
  • the shaded arrows represent the movement of electrons (e ⁇ )
  • the white arrows represent the movement of holes (h + ).
  • the electron blocking layer 132 has a hole transport property.
  • the electron blocking layer 132 preferably contains a light emitting host material having a hole transporting property.
  • As the light-emitting host material contained in the electron blocking layer 132 TCTA having a hole transporting property was used.
  • the light-emitting host material contained in the electron blocking layer 132 may be one type or two or more types, but preferably one type.
  • the light emitting host material contained in the electron blocking layer 132 may be the same material as the light emitting host material contained in the first block layer 125 and / or the second block layer 127, or may be a different material. .
  • the thickness of the electron blocking layer 132 was 20 nm.
  • a preferable lower limit of the thickness of the electron blocking layer 132 is 10 nm, a preferable upper limit is 40 nm, and a more preferable upper limit is 30 nm.
  • the electron blocking layer 132 By inserting the electron blocking layer 132 between the hole transport layer 123 and the light emitting unit 140D, the electrons moving from the cathode 131 to the anode 121 side are prevented from flowing into the hole transport layer 123, and the light emission efficiency is further improved. Can be high.
  • the hole blocking layer 133 has an electron transport property.
  • the hole blocking layer 133 preferably contains a light emitting host material having an electron transporting property.
  • As the light emitting host material contained in the hole blocking layer 133 tris (2,4,6-trimethyl-3- (pyridin-3-yl) phenyl) borane (3TPYMB) having an electron transporting property was used.
  • the light-emitting host material contained in the hole blocking layer 133 may be one type or two or more types, but preferably one type.
  • the light emitting host material contained in the hole blocking layer 133 may be the same material as the light emitting host material contained in the first block layer 125 and / or the second block layer 127 or may be a different material. Good.
  • the thickness of the hole blocking layer 133 was 20 nm.
  • a preferable lower limit of the thickness of the hole blocking layer 133 is 10 nm, a preferable upper limit is 40 nm, and a more preferable upper limit is 30 nm.
  • the holes moving from the anode 121 to the cathode 131 side are prevented from flowing into the electron transport layer 129, and the light emission efficiency is further improved. Can be high.
  • Example 5 since more carriers can be confined in the light emitting unit 140D, carrier recombination occurs in the first light emitting dopant layer 124, the second light emitting dopant layer 126, and the mixed light emitting layer 128 more efficiently.
  • a device capable of white display capable of efficiently emitting all three types of light-emitting dopant materials included in the three layers can be realized. Note that it is possible to increase the luminous efficiency by arranging either one of the electron blocking layer 132 and the hole blocking layer 133, and it is possible to further increase the luminous efficiency by arranging both.
  • a configuration in which the second block layer 127 of Example 2 is not provided may be applied to the organic EL panels of Examples 3 to 5.
  • One embodiment of the present invention is an organic electroluminescence element having an anode, a hole transport layer, a light-emitting unit, an electron transport layer, and a cathode in order, and the light-emitting unit includes a first light-emitting dopant layer, The first block layer, the second light emitting dopant layer, and the mixed light emitting layer in order, the mixed light emitting layer containing the first light emitting host material and the first light emitting dopant material, One light-emitting dopant layer is substantially composed only of the second light-emitting dopant material, the second light-emitting dopant layer is substantially composed only of the third light-emitting dopant material, and the first block layer is The organic electroluminescent element containing a 2nd light emission host material may be sufficient.
  • the above aspect it is possible to make it difficult for a barrier of carriers to be generated at the interface between each layer, and to efficiently emit light from the light emitting dopant material in the mixed light emitting layer and the light emitting dopant layer. be able to. Further, by interposing the first block layer between the first light-emitting dopant layer and the second light-emitting dopant layer, the carriers are confined in each light-emitting dopant layer without leakage, and the light-emitting dopant materials are brought into contact with each other. Therefore, high luminous efficiency can be obtained.
  • the thickness of the first light-emitting dopant layer and the second light-emitting dopant layer may be 1 nm or less.
  • the light emitting dopant layer can be formed in an island shape, and carriers can be expanded throughout the light emitting unit to emit light efficiently.
  • the thickness of the first block layer may be 5 nm or less.
  • the mixed light emitting layer may be located between the electron transport layer and the second light emitting dopant layer, and the first light emitting host material may be electron transportable. Thereby, the electrons transported from the electron transport layer can be supplied to the entire light emitting unit without being inhibited.
  • the mixed light emitting layer may be located between the hole transport layer and the second light emitting dopant layer, and the first light emitting host material may be hole transportable. Accordingly, the holes transported from the hole transport layer can be supplied to the entire light emitting unit without being inhibited.
  • the light emitting unit further includes a second block layer between the mixed light emitting layer and the second light emitting dopant layer, and the second block layer contains a third light emitting host material. You may contain. Thereby, when the mixed light-emitting layer is located on the electron transport layer side, carriers can be confined in the second light-emitting dopant layer and the mixed light-emitting layer without leakage, and the light emission efficiency can be further increased.
  • the thickness of the second block layer may be 5 nm or less.
  • the first light-emitting dopant material may have a larger energy gap than the third light-emitting dopant material. Accordingly, the second light emitting dopant layer can emit light by energy transfer from the mixed light emitting layer to the second light emitting dopant layer.
  • an electron blocking layer having a hole transporting property may be provided between the hole transport layer and the light emitting unit. As a result, electrons can be prevented from flowing into the hole transport layer, and the luminous efficiency can be further increased.
  • a hole blocking layer having an electron transporting property may be provided between the electron transport layer and the light emitting unit. As a result, holes can be prevented from flowing into the electron transport layer, and the luminous efficiency can be further increased.
  • the second light emitting host material may have a larger energy gap than the second light emitting dopant material and the third light emitting dopant material.
  • Another embodiment of the present invention may be an organic electroluminescence panel having a substrate and the organic electroluminescence element disposed on the substrate.
  • 100A, 100B, 100C, 100D, 200A, 200B Organic EL panel 110, 210: Substrate 120A, 120B, 120C, 120D, 220A, 220B: Organic EL element 121, 221: Anode 122, 222: Hole injection layer 123: Hole transport layer 124: first light-emitting dopant layer 125: first block layer 126: second light-emitting dopant layer 127: second block layer 128: mixed light-emitting layer 129: electron transport layer 130, 230: electron injection Layers 131, 231: Cathode 132: Electron blocking layer 133: Hole blocking layers 140A, 140B, 140C, 140D: Light emitting unit 228B: Blue light emitting layer 228G: Green light emitting layer 228R: Red light emitting layer 228Y: Yellow light emitting layer 234: Intermediate layer

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本発明は、発光効率及び生産性が高い有機EL素子と、上記有機EL素子を備える有機ELパネルとを提供する。 本発明の有機エレクトロルミネッセンス素子は、陽極と、正孔輸送層と、発光ユニットと、電子輸送層と、陰極とを順に有する有機エレクトロルミネッセンス素子であって、上記発光ユニットは、第一の発光ドーパント層と、第一のブロック層と、第二の発光ドーパント層と、混合発光層とを順に有し、上記混合発光層は、第一の発光ホスト材料及び第一の発光ドーパント材料を含有し、上記第一の発光ドーパント層は、実質的に第二の発光ドーパント材料のみからなり、上記第二の発光ドーパント層は、実質的に第三の発光ドーパント材料のみからなり、上記第一のブロック層は、第二の発光ホスト材料を含有するものである。

Description

有機エレクトロルミネッセンス素子、及び、有機エレクトロルミネッセンスパネル
本発明は、有機エレクトロルミネッセンス素子(以下、「有機EL素子」とも言う。)、及び、有機エレクトロルミネッセンスパネル(以下、「有機ELパネル」とも言う。)に関する。より詳しくは、複数の色の光を発するのに適した構成を有する有機EL素子、及び、上記有機EL素子を備える有機ELパネルに関するものである。
近年、有機材料の電界発光を利用した有機エレクトロルミネッセンス素子を備える有機ELパネルが注目されている。有機EL素子は、陽極から注入された正孔と陰極から注入された電子とを両電極間に配置された発光層内で再結合させることによって発光する。有機ELパネルは、薄型表示装置の表示パネルとして用いたときに、高コントラスト、低消費電力等の点で液晶表示装置に対する優位性がある。また、有機ELパネルは、表示装置以外にも照明等の用途への展開も期待されている。
表示装置等の用途で利用するためには、有機ELパネルは様々な色の光を発生できることが必要であり、白色光を発生できる有機EL素子構造が強く望まれている。従来、白色光を発生できる有機EL素子構造に関して、様々な提案がされている。例えば、複数の有機EL素子を鉛直方向に積層し、単一の電源で駆動するタンデム方式と呼ばれる素子構造が知られている。タンデム方式としては、各有機EL素子が原色を発光するものが一般的であるが、白色光を発光する複数の有機EL素子を積層したものも知られている(例えば、特許文献1参照)。
その他に、複数色の発光層を互いに隣接させて積層する素子構造(例えば、特許文献2参照)や、発光ピーク波長が異なる2種以上の発光ドーパント材料を単一の発光層中に含有させる素子構造(例えば、特許文献3参照)が知られている。
特表2008-511100号公報 特表2009-532825号公報 特開2011-228569号公報
図5は、従来のタンデム構造を有する有機ELパネルの一例を示す断面模式図である。図5に示した有機ELパネル200Aにおいて、基板210上に設けられた有機EL素子220Aは、基板210側から順に、陽極221、第一の正孔注入層222、青色発光層228B、第一の電子注入層230、中間層234、第二の正孔注入層222、黄色発光層228Y、第二の電子注入層230、及び、陰極231が積層された構造を有する。第一の正孔注入層222と青色発光層228Bとの間、及び、第二の正孔注入層222と黄色発光層228Yとの間にはそれぞれ正孔輸送層が設けられてもよく、青色発光層228Bと第一の電子注入層230との間、及び、黄色発光層228Yと第二の電子注入層230との間にはそれぞれ電子輸送層が設けられてもよい。
上述したようなタンデム構造の有機EL素子220Aでは、中間層234の上下で発光位置が完全に分離されるため、電子及び正孔のキャリアバランスを取りやすいが、正孔と電子を受け渡す中間層234に適した材料の選択が難しい。このため、駆動電圧が高い、中間層でのキャリア損失により発光効率が低下する等の課題があった。また、後述する図6に示した素子構造に比べて、層の数が2~3倍必要になるため、生産性が低いという課題もあった。
図6は、従来の複数色の発光層を積層した構造を有する有機ELパネルの一例を示す断面模式図である。図6に示した有機ELパネル200Bにおいて、基板210上に設けられた有機EL素子220Bは、基板210側から順に、陽極221、正孔注入層222、青色発光層228B、赤色発光層228R、緑色発光層228G、電子注入層230、及び、陰極231が積層された構造を有する。正孔注入層222と青色発光層228Bとの間には正孔輸送層が設けられてもよく、緑色発光層228Gと電子注入層230との間には電子輸送層が設けられてもよい。
図6に示した有機EL素子220Bでは、発光位置を制御することによって、青色発光層228B、赤色発光層228R及び緑色発光層228Gの3層全てにおいて、それぞれの色の発光材料を効率よく発光させることは難しく、発光効率が低いという課題があった。
また、2種以上の発光ドーパント材料を単一の発光層中に含有させる素子構造においても、複数種の発光ドーパント材料を共蒸着する必要があるため、発光ドーパント材料同士の相互作用によって失活しやすく、発光効率が低下してしまうという課題があった。
本発明は、上記現状に鑑みてなされたものであり、発光効率及び生産性が高い有機EL素子と、上記有機EL素子を備える有機ELパネルとを提供することを目的とするものである。
本発明者らは、比較的単純な構造によって発光効率の高い有機EL素子を実現する方法について種々検討した結果、発光ホスト材料及び発光ドーパント材料の両方を含有する混合発光層と、実質的に発光ドーパント材料のみからなる二以上の発光ドーパント層とを積層し、更に、上記二以上の発光ドーパント層の間にブロック層を配置することで、キャリアの再結合領域の構成が最適なものとなり、発光効率を向上できることを見出した。特に、上記二以上の発光ドーパント層間にブロック層を介在させることで、各発光ドーパント層にキャリアを漏れなく閉じ込め、かつ、発光ドーパント材料同士の接触を防ぐことができることを見出した。これにより、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明の一態様は、陽極と、正孔輸送層と、発光ユニットと、電子輸送層と、陰極とを順に有する有機エレクトロルミネッセンス素子であって、上記発光ユニットは、第一の発光ドーパント層と、第一のブロック層と、第二の発光ドーパント層と、混合発光層とを順に有し、上記混合発光層は、第一の発光ホスト材料及び第一の発光ドーパント材料を含有し、上記第一の発光ドーパント層は、実質的に第二の発光ドーパント材料のみからなり、上記第二の発光ドーパント層は、実質的に第三の発光ドーパント材料のみからなり、上記第一のブロック層は、第二の発光ホスト材料を含有する有機エレクトロルミネッセンス素子であってもよい。
本発明の別の一態様は、基板と、上記基板上に配置された上記有機エレクトロルミネッセンス素子とを有する有機エレクトロルミネッセンスパネルであってもよい。
本発明の有機EL素子によれば、発光ホスト材料及び発光ドーパント材料の両方を含有する混合発光層と、実質的に発光ドーパント材料のみからなる二以上の発光ドーパント層とを積層し、更に上記二以上の発光ドーパント層の間にブロック層を配置することにより、混合発光層を複数積層する構成よりも、各層間の界面でキャリアの障壁を生じにくくすることができ、混合発光層及び発光ドーパント層中の発光ドーパント材料を効率良く発光させることができる。また、上記二以上の発光ドーパント層間にブロック層を介在させることによって、各発光ドーパント層にキャリアを漏れなく閉じ込め、かつ、発光ドーパント材料同士の接触を防ぐことができるため、高い発光効率を得ることができる。
更に、上記発光ドーパント層は、発光ドーパント材料のみを短時間の蒸着等によって成膜することによって形成できる。したがって、本発明の有機EL素子は、混合発光層を複数積層するような従来構成と比べて生産性も高いものである。
また、本発明の有機ELパネルは、高い発光効率と生産性を両立した有機EL素子を備えるものであることから、生産性に優れ、低消費電力及び高輝度の表示装置、照明装置等を実現できるものである。
実施例1の有機EL素子を示す断面模式図である。 実施例2の有機EL素子を示す断面模式図である。 実施例3の有機EL素子を示す断面模式図である。 実施例5の有機EL素子を示す断面模式図である。 従来のタンデム構造を有する有機ELパネルの一例を示す断面模式図である。 従来の複数色の発光層を積層した構造を有する有機ELパネルの一例を示す断面模式図である。
本明細書中、有機エレクトロルミネッセンスは、「有機EL」とも表記する。また、有機EL素子は、一般に、有機発光ダイオード(OLED:Organic Light Emitting Diode)とも呼ばれるものである。
以下に実施例を掲げ、本発明について図面を参照して更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。また、各実施例の構成は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよいし、変更されてもよい。
[実施例1]
実施例1の有機ELパネルは、基板側から順に、陽極、正孔注入層、正孔輸送層、発光ユニット、電子輸送層、電子注入層及び陰極を有する有機EL素子を備えるものである。発光ユニットは、正孔輸送層側から順に、第一の発光ドーパント層、第一のブロック層、第二の発光ドーパント層、第二のブロック層及び混合発光層が積層された構造を有するものである。本明細書では、第一の発光ドーパント層及び第二の発光ドーパント層の両方を指す場合は単に「発光ドーパント層」と記載し、第一のブロック層及び第二のブロック層の両方を指す場合は単に「ブロック層」と記載する。また、電子及び正孔の両方を指す場合は「キャリア」と記載する。
図1は、実施例1の有機ELパネルを示す断面模式図である。図1に示された有機ELパネル100Aにおいて、基板110上に設けられた有機EL素子120Aは、基板110側から順に、陽極121、正孔注入層122、正孔輸送層123、第一の発光ドーパント層124、第一のブロック層125、第二の発光ドーパント層126、第二のブロック層127、混合発光層128、電子輸送層129、電子注入層130、及び、陰極131が積層された構造を有する。第一の発光ドーパント層124、第一のブロック層125、第二の発光ドーパント層126、第二のブロック層127及び混合発光層128は、発光ユニット140Aを構成する。図1中、網掛けの矢印は電子(e)の動きを表し、白抜きの矢印は正孔(h)の動きを表す。
基板110としては、ガラス基板、プラスチック基板等を用いることができる。基板110として、折り曲げ可能なプラスチック基板を用いると、フレキシブルな有機ELパネルを得ることができる。図1には図示していないが、基板110には薄膜トランジスタが設けられている。薄膜トランジスタを陽極121に電気的に接続することにより、有機EL素子120Aの駆動を制御している。
陽極121の材料としては、インジウム錫酸化物(ITO:Indium Tin Oxide)を用いた。陽極121の厚さは50nmとした。
正孔注入層122としては、ジピラジノ[2,3-f:2’,3’-h]キノキサリン-2,3,6,7,10,11-ヘキサカルボニトリル(HAT-CN)を用いた。正孔注入層122の材料としては、通常の有機EL素子で用いられるのと同様の正孔注入材料を用いることができる。正孔注入層122の厚さは10nmとした。
正孔輸送層123の材料としては、4,4’-ビス[N-(1-ナフチル)-N-フェニル-アミノ]-ビフェニル(α-NPD)を用いた。正孔輸送層123の材料としては、通常の有機EL素子で用いられるのと同様の正孔輸送材料を用いることができる。正孔輸送層123の厚さは20nmとした。
第一の発光ドーパント層124は、実質的に発光ドーパント材料(第二の発光ドーパント材料)のみからなる。すなわち、第一の発光ドーパント層124における第二の発光ドーパント材料の濃度は100重量%又は実質的に100重量%である。ここで、発光ドーパント層における発光ドーパント材料の濃度が実質的に100重量%であるとは、発光ドーパント材料以外に発光ドーパント層の特性に影響を及ぼす材料を含有しないことを意味し、発光ドーパント材料以外の微量の不純物を含有してもよいが、発光ホスト材料を3重量%以上含有しないことが好ましい。
第一の発光ドーパント層124が含有する第二の発光ドーパント材料としては、蛍光ドーパント材料又は燐光ドーパント材料のどちらでも用いることができる。実施例1では、第二の発光ドーパント材料として、ビス(3,5-ジフルオロ-2-(2-ピリジル)フェニル-(2-カルボキシピリジル)イリジウム)(III)(FIrpic)を用いた。第一の発光ドーパント層124が含有する発光ドーパント材料は、1種類であっても、2種類以上であってもよいが、1種類であることが好ましい。第二の発光ドーパント材料のエネルギーギャップ(バンドギャップ)は、2.9eVであった。各材料のエネルギーギャップは、各材料の吸収スペクトルを測定することにより求めることができる。
また、第一の発光ドーパント層124は、島状に形成されている。すなわち、正孔輸送層123と第一のブロック層125とが直に接する部分がある。発光ドーパント層は、蒸着時間を短くするだけで島状に形成することができる。具体的には、最大膜厚が1nm以下の極薄膜を蒸着によって形成すると、形成された膜は島状になる。第一の発光ドーパント層124の最も厚い部分の厚さ(最大膜厚)は0.2nmとした。第一の発光ドーパント層124の最大膜厚の好ましい下限は、0.1nmであり、好ましい上限は、1nmであり、より好ましい上限は、0.5nmである。
第一の発光ドーパント層124は、第二の発光ドーパント材料を蒸着することによって形成できる。
第一の発光ドーパント層124において、第二の発光ドーパント材料の濃度を100重量%又は実質的に100重量%とし、かつ島状に形成することによって、(1)濃度消光が起き、発光効率が低下すること、(2)キャリア輸送が阻害され、駆動電圧が上昇し、かつ発光効率が低下すること、等を防止することができる。
第一のブロック層125は、第二の発光ホスト材料を含有する。第二の発光ホスト材料としては、電子輸送性を有する2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP)を用いた。第一のブロック層125が含有する発光ホスト材料は、1種類であっても、2種類以上であってもよいが、1種類であることが好ましい。
第一のブロック層125の厚さは3nmとした。第一のブロック層125の厚さの好ましい下限は1nmであり、好ましい上限は5nmである。ブロック層の膜厚を厚くすると、完全に正孔の輸送を遮断するが、極薄膜にすると、ブロック層の厚さによって正孔の透過率を変化させることができる。第一のブロック層125の厚さを1nm以上、5nm以下とすることで、第一の発光ドーパント層124及び第二の発光ドーパント層126でのキャリアの分布を調整し、両層に含有される発光ドーパント材料を効率よく発光させることができる。
第一のブロック層125を構成する第二の発光ホスト材料は、第一の発光ドーパント層124に含有される第二の発光ドーパント材料、及び、第二の発光ドーパント層126に含有される第三の発光ドーパント材料よりも、エネルギーギャップが大きいことが好ましい。これにより、第二の発光ドーパント材料及び第三の発光ドーパント材料のエネルギーが第二の発光ホスト材料へ移動することを防止し、発光効率の低下を防止することができる。第二の発光ホスト材料は、第二の発光ドーパント材料及び第三の発光ドーパント材料りも、エネルギーギャップが0.1eV以上大きいことが好ましい。第二の発光ホスト材料のエネルギーギャップは、3.5eVであった。
第一のブロック層125は、第一の発光ドーパント層124と後述する第二の発光ドーパント層126との間に配置される。発光ドーパント層は実質的に発光ドーパント材料のみからなるため、発光ドーパント層間に第一のブロック層125を設けない場合には、第一の発光ドーパント層124に含まれる発光ドーパント材料と、第二の発光ドーパント層126に含まれる発光ドーパント材料とが接触して失活することがある。
第二の発光ドーパント層126は、実質的に発光ドーパント材料(第三の発光ドーパント材料)のみからなる。すなわち、第二の発光ドーパント層126における第三の発光ドーパント材料の濃度は100重量%又は実質的に100重量%である。
第二の発光ドーパント層126が含有する第三の発光ドーパント材料としては、蛍光ドーパント材料又は燐光ドーパント材料のどちらでも用いることができる。実施例1では、第三の発光ドーパント材料として、トリス(2-フェニルピリジナート)イリジウム(III)[Ir(ppy)3]を用いた。第二の発光ドーパント層126が含有する発光ドーパント材料は、1種類であっても、2種類以上であってもよいが、1種類であることが好ましい。第三の発光ドーパント材料のエネルギーギャップは、2.6eVであった。
第二の発光ドーパント層126が含有する第三の発光ドーパント材料は、第一の発光ドーパント層124が含有する第二の発光ドーパント材料と同じ種類のものでもよいが、第二の発光ドーパント層126が含有する第三の発光ドーパント材料と第一の発光ドーパント層124が含有する第二の発光ドーパント材料とは異なる種類のものであることが好ましい。
第二の発光ドーパント層126は、島状に形成されている。すなわち、第一のブロック層125と第二のブロック層127とが直に接する部分がある。第二の発光ドーパント層126の最も厚い部分の厚さ(最大膜厚)は0.2nmとした。第二の発光ドーパント層126の最大膜厚の好ましい下限は、0.1nmであり、好ましい上限は、1nmであり、より好ましい上限は、0.5nmである。
第二の発光ドーパント層126は、第三の発光ドーパント材料を蒸着することによって形成できる。
第二のブロック層127は、第三の発光ホスト材料を含有する。第三の発光ホスト材料としては、電子輸送性を有するBCPを用いた。第二のブロック層127が含有する発光ホスト材料は、1種類であっても、2種類以上であってもよいが、1種類であることが好ましい。第三の発光ホスト材料は、第二の発光ホスト材料と同じ材料を用いてもよいし、異なる材料を用いてもよい。
第二のブロック層127の厚さは2nmとした。第二のブロック層127の厚さの好ましい下限は1nmであり、好ましい上限は5nmであり、より好ましい上限は3nmである。第二のブロック層127の厚さを1nm以上、5nm以下とすることで、正孔の透過率を変化させ、第二の発光ドーパント層126及び混合発光層128でのキャリアの分布を調整し、両層に含有される発光ドーパント材料を効率よく発光させることができる。
第二のブロック層127を構成する第三の発光ホスト材料は、第二の発光ドーパント層126を構成する第三の発光ドーパント材料、及び、後述する混合発光層128に含有される第一の発光ドーパント材料のいずれよりも、エネルギーギャップが大きいことが好ましい。これにより、第三の発光ドーパント材料、及び、第一の発光ドーパント材料のエネルギーが第三の発光ホスト材料へ移動することを防止し、発光効率の低下を防止することができる。第三の発光ホスト材料は、第三の発光ドーパント材料、及び、第一の発光ドーパント材料のいずれよりも、エネルギーギャップが0.1eV以上大きいことが好ましい。第三の発光ホスト材料のエネルギーギャップは、3.5eVであった。
混合発光層128は、少なくとも1種類の発光ホスト材料(第一の発光ホスト材料)及び少なくとも1種類の発光ドーパント材料(第一の発光ドーパント材料)を含有する層である。
実施例1では、第一の発光ホスト材料として電子輸送性を有する2,2’,2”-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole)(TPBi)を含有し、第一の発光ドーパント材料としてトリス(1-フェニルイソキノリン)イリジウム(III)[Ir(piq)3]を含有する混合物層を用いた。混合発光層128が含有する第一の発光ホスト材料のエネルギーギャップは、3.5eVであり、第一の発光ドーパント材料のエネルギーギャップは、2.0eVであった。第一の発光ホスト材料は、ブロック層を構成する第二の発光ホスト材料及び/又は第三の発光ホスト材料と同じ材料を用いてもよいし、異なる材料を用いてもよい。また、全ての発光ホスト材料が同じ材料であってもよい。
混合発光層128中の第一の発光ホスト材料と第一の発光ドーパント材料との重量比は0.9:0.1とした。第一の発光ホスト材料と第一の発光ドーパント材料との重量比は、0.99:0.01~0.7:0.3であることが好ましい。
第一の発光ドーパント材料としては、蛍光ドーパント材料又は燐光ドーパント材料のどちらでも用いることができる。
混合発光層128の厚さは15nmとした。混合発光層128の厚さの好ましい下限は10nmであり、好ましい上限は40nmであり、より好ましい上限は30nmである。
混合発光層128は、第一の発光ホスト材料及び第一の発光ドーパント材料を共蒸着することによって形成できる。
なお、第一の発光ドーパント層124、第二の発光ドーパント層126及び混合発光層128が含有する発光ドーパント材料は、各々の層が3原色の異なる色を発光できるように選択されることが好ましく、任意の組み合わせとすることができる。実施例1では、第一の発光ドーパント層124が青色を、第二の発光ドーパント層126が緑色を、混合発光層128が赤色を発光する。
混合発光層128と第二のブロック層127との間に、更に第三の発光ドーパント層、及び、第三のブロック層を配置してもよい。第三の発光ドーパント層を設ける場合、混合発光層128と三つの発光ドーパント層で4色の異なる光を発光させることも可能である。
図1の網掛けの矢印で示すように、実施例1では、陰極131から陽極121に向かって電子が移動する。電子は混合発光層128全体に広がり、混合発光層128の正孔注入層122側で高密度となる。電子が高密度となる領域に、第一の発光ドーパント層124及び第二の発光ドーパント層126を設けることで、効率よく発光させることができる。実施例1では、第一のブロック層125及び第二のブロック層127により、混合発光層128、第二の発光ドーパント層126及び第一の発光ドーパント層124が隔てられているため、各層中でキャリアの再結合が起こり、第一の発光ドーパント層124、第二の発光ドーパント層126及び混合発光層128が発光する。
電子輸送層129の材料としては、バトフェナントロリン(Bphen:Bathophenanthroline)を用いた。電子輸送層129の材料としては、通常の有機EL素子で用いられるのと同様の電子輸送材料を用いることができる。電子輸送層129の厚さは30nmとした。
電子注入層130の材料としては、フッ化リチウム(LiF)を用いた。電子注入層130の材料としては、通常の有機EL素子で用いられるのと同様の電子注入材料を用いることができる。電子注入層130の厚さは1nmとした。
陰極131としては、Ag及びマグネシウム(Mg)を含有する層を用いた。AgとMgの含有比率は、重量基準で、0.9:0.1とした。陰極131の材料としては、光透過性及び導電性を有する材料を用いることが好ましく、上記のものに代えて、例えば、ITO、インジウム亜鉛酸化物(IZO:Indium Zinc Oxide)を用いてもよい。陰極131の厚さは20nmとした。
なお、有機EL素子120Aは、ボトム・エミッション型であっても、トップ・エミッション型であってもよい。
有機EL素子120Aがトップ・エミッション型である場合、基板110と陽極121との間に、更に反射電極を有することが好ましい。反射電極としては、光反射性を有する電極を用いることができ、例えば、銀(Ag)、アルミニウム(Al)層、インジウム(In)層を用いてもよい。反射電極の厚さは、例えば、100nmとすることができる。
また、陰極131は、光透過性及び導電性を有する材料を用いることが好ましく、例えば、ITO又はIZOを用いてもよい。有機EL素子120Aがトップ・エミッション型である場合、有機EL素子120Aは、陰極131側から光を出射する。
本実施例では、発光ユニット140Aが以下の特徴を有している。
・発光ホスト材料と発光ドーパント材料とを共蒸着して形成される混合発光層128は1層だけとし、複数の混合発光層を積層する代わりに、実質的に発光ドーパント材料のみからなる発光ドーパント層(第一の発光ドーパント層124及び第二の発光ドーパント層126)を設けている。
・第一の発光ドーパント層124及び第二の発光ドーパント層126との間に、第一のブロック層125を配置している。更に、第二の発光ドーパント層126と混合発光層128との間に、第二のブロック層127を配置している。
・第一の発光ドーパント層124及び第二の発光ドーパント層126は、島状の極薄膜である。
・第一のブロック層125及び第二のブロック層127は、極薄膜である。
・第一のブロック層125、第二のブロック層127及び混合発光層128は、電子輸送性ホスト材料を含有している。
上記特徴を有することから、実施例1の発光ユニット140Aでは、電子が発光ユニット140A内の全体に広がり、特に、第一の発光ドーパント層124及び第二の発光ドーパント層126が設けられた領域に高密度で存在させることができる。一方、正孔は、第一のブロック層125及び第二のブロック層127が設けられることによって、発光ユニット140A内のいずれかの層に局在化することが防止されており、正孔の分布は、第一のブロック層125及び第二のブロック層127の膜厚によって制御されている。したがって、実施例1の発光ユニット140Aでは、第一の発光ドーパント層124、第二の発光ドーパント層126及び混合発光層128の各層でキャリアを再結合させることができる。その結果、各色ごとに発光点を確保し、効率よく3色の発光を得ることができる。したがって、複数の発光層、及び、それらの間の中間層を設けない簡単な構造によって、白色表示可能なデバイスを実現できる。
[実施例2]
実施例1は、混合発光層と第二の発光ドーパント層との間に第二のブロック層が配置された発光ユニットを有する有機ELパネルに関するものであったが、第二のブロック層を配置しないことも可能である。実施例2は、第二のブロック層を有さないこと以外は、実施例1の有機ELパネルと同様の構成を有する。
図2は、実施例2の有機ELパネルを示す断面模式図である。図2に示された有機ELパネル100Bにおいて、基板110上に設けられた有機EL素子120Bは、基板110側から順に、陽極121、正孔注入層122、正孔輸送層123、第一の発光ドーパント層124、第一のブロック層125、第二の発光ドーパント層126、混合発光層128、電子輸送層129、電子注入層130、及び、陰極131が積層された構造を有する。第一の発光ドーパント層124、第一のブロック層125、第二の発光ドーパント層126及び混合発光層128は、発光ユニット140Bを構成する。実施例2では、第一の発光ドーパント層124が青色を、第二の発光ドーパント層126が赤色を、混合発光層128が緑色を発光する。実施例2では、第二の発光ドーパント層126と混合発光層128とが隣接している。図2中、網掛けの矢印は電子(e)の動きを表し、白抜きの矢印は正孔(h)の動きを表す。
混合発光層128と第二の発光ドーパント層126とが接したとしても、発光ドーパント層同士が接する場合とは異なり、第二の発光ドーパント層126に含まれる第三の発光ドーパント材料と混合発光層128に含まれる第一の発光ドーパント材料との接触確率は高くはない。そのため、第二の発光ドーパント層126と混合発光層128との間に第二のブロック層127を配置しなくても、各層を発光させることができる。
混合発光層128を構成する第一の発光ドーパント材料は、第二の発光ドーパント層126を構成する第三の発光ドーパント材料よりもエネルギーギャップが大きい。そのため、混合発光層128から第二の発光ドーパント層126へのエネルギー移動によって、発光ドーパント層126を発光させることができる。第一の発光ドーパント材料は、第三の発光ドーパント材料よりもエネルギーギャップが0.1eV以上大きいことが好ましい。
発光波長の関係から、エネルギーギャップが最も大きいのは、青色を発光させる発光ドーパント材料であり、その次が緑色を発光させる発光ドーパント材料であり、最もエネルギーギャップが小さいのは、赤色を発光させる発光ドーパント材料である。そのため、混合発光層128を構成する第一の発光ドーパント材として緑色を発光する発光ドーパント材料を用いた場合、隣接する第二の発光ドーパント層126を構成する第三の発光ドーパント材料には、よりエネルギーギャップの小さい赤色を発光させる発光ドーパント材料を用いることが好ましい。これにより、混合発光層128で励起したエネルギーの一部が第二の発光ドーパント層126に移動し、緑色と赤色を発光させることができる。仮に、混合発光層128に赤色を発光する発光ドーパント材料を用い、第二の発光ドーパント層126に、緑色を発光する発光ドーパント材料を用いた場合には、混合発光層128から第二の発光ドーパント層126へのエネルギー移動がなく、緑色を発光する発光ドーパント材料が励起したとしても、赤色を発光する発光ドーパント材料へエネルギーが移動してしまうため、緑色の発光が得られない。
実施例2において、混合発光層128は、第一の発光ホスト材料として電子輸送性を有するTPBiを含有し、第一の発光ドーパント材料としてIr(ppy)3を含有する。混合発光層128中の第一の発光ホスト材料と第一の発光ドーパント材料との重量比は0.9:0.1とした。第一の発光ホスト材料のエネルギーギャップは、3.5eVであり、第一の発光ドーパント材料のエネルギーギャップは、2.6eVであった。混合発光層128の厚さは20nmとした。
実施例2において、第二の発光ドーパント層126は、第三の発光ドーパント材料としてIr(piq)3を含む。第三の発光ドーパント材料のエネルギーギャップは、2.0eVであった。第二の発光ドーパント層126の最も厚い部分の厚さ(最大膜厚)は0.2nmとした。
実施例2では、混合発光層128と第二の発光ドーパント層126との界面、及び、第一の発光ドーパント層124でキャリアの再結合が起こり、3層に含まれる3種類の発光ドーパント材料の全てを効率良く発光させることができる白色表示可能なデバイスを実現できる。
[実施例3]
実施例1では、混合発光層128が、有機EL素子の電子輸送層129側に位置したが、本発明において、混合発光層128は、有機EL素子の正孔輸送層123側に位置してもよい。実施例3は、混合発光層128の位置が異なること、発光ホスト材料が正孔輸送性であること以外は、実施例1の有機ELパネルと同様の構成を有する。
図3は、実施例3の有機ELパネルを示す断面模式図である。図3に示された有機ELパネル100Cにおいて、基板110上に設けられた有機EL素子120Cは、基板110側から順に、陽極121、正孔注入層122、正孔輸送層123、混合発光層128、第二のブロック層127、第二の発光ドーパント層126、第一のブロック層125、第一の発光ドーパント層124、電子輸送層129、電子注入層130、及び、陰極131が積層された構造を有する。混合発光層128、第二のブロック層127、第二の発光ドーパント層126、第一のブロック層125及び第一の発光ドーパント層124は、発光ユニット140Cを構成する。実施例3では、混合発光層128が赤色を、第二の発光ドーパント層126が緑色を、第一の発光ドーパント層124が青色を発光する。図3中、網掛けの矢印は電子(e)の動きを表し、白抜きの矢印は正孔(h)の動きを表す。
実施例3において、混合発光層128は、第一の発光ホスト材料として正孔輸送性を有する4,4’,4”-トリス(カルバゾール-9-イル)-トリフェニルアミン(TCTA)を含有する。実施例1のように、混合発光層128が、電子輸送層129と第二の発光ドーパント層126との間に位置する場合、すなわち、混合発光層128が、有機EL素子の電子輸送層129側に位置する場合には、混合発光層128が含有する第一の発光ホスト材料は、電子輸送性であることが好ましい。一方で、実施例3のように、混合発光層128が、正孔輸送層123と第二の発光ドーパント層126との間に位置する場合、すなわち、混合発光層128が、有機EL素子の正孔輸送層123側に位置する場合には、混合発光層128が含有する第一の発光ホスト材料は、正孔輸送性であることが好ましい。混合発光層128が含有する第一の発光ホスト材料として、隣接するキャリア輸送層と同じ輸送性を有する発光ホスト材料を用いることで、キャリア輸送層から輸送されたキャリアを阻害することなく発光ユニット全体に供給することができる。
実施例3において、混合発光層128は、第一の発光ホスト材料として正孔輸送性を有するTCTAを含有し、第一の発光ドーパント材料としてIr(piq)3を含有する。混合発光層128中の第一の発光ホスト材料と第一の発光ドーパント材料との重量比は0.9:0.1とした。第一の発光ホスト材料のエネルギーギャップは、3.3eVであり、第一の発光ドーパント材料のエネルギーギャップは、2.0eVであった。混合発光層128の厚さは10nmとした。
実施例3において、第一のブロック層125が含有する第二の発光ホスト材料としては、正孔輸送性を有する1,3-bis(N-carbazol-9-yl)benzene(mCP)を用いた。第二の発光ホスト材料のエネルギーギャップは、3.5eVであった。第一のブロック層125の厚さは2nmとした。
実施例3において、第二のブロック層127が含有する第三の発光ホスト材料としては、正孔輸送性を有するポリビニルカルバゾール(PVK)を用いた。第三の発光ホスト材料のエネルギーギャップは、3.6eVであった。第二のブロック層127の厚さは2nmとした。
実施例3では、第一のブロック層125及び第二のブロック層127の膜厚調整により電子の分布を制御することができる。したがって、実施例3においても、実施例1と同様に、キャリアの分布を適切に制御し、第一の発光ドーパント層124、第二の発光ドーパント層126及び混合発光層128でキャリアを再結合させることができる。よって、3層に含まれる3種類の発光ドーパント材料の全てを効率良く発光させることができる白色表示可能なデバイスを実現できる。
なお、第一の発光ホスト材料は、実施例1では電子輸送性を有する材料が用いられ、実施例3では正孔輸送性を有する材料が用いられたが、発光ユニット全体にキャリアを供給できる輸送性を有するものであればよい。例えば、バイポーラ性ホスト材料を用いること、正孔輸送性ホスト材料と電子輸送性ホスト材料を共蒸着させて混合発光層128を形成することで、キャリアの移動量を調整することができる。
[実施例4]
実施例1では、第一のブロック層125及び第二のブロック層127に電子輸送性を有する発光ホスト材料を用いたが、正孔輸送性を有する発光ホスト材料を用いてもよい。実施例4は、第一のブロック層125及び第二のブロック層127の発光ホスト材料が正孔輸送性であること以外は、実施例1の有機ELパネルと同様の構成を有する。
実施例4において、第一のブロック層125が含有する第二の発光ホスト材料としては、正孔輸送性を有するTCTAを用いた。第二の発光ホスト材料のエネルギーギャップは、3.3eVであった。
実施例4において、第二のブロック層127が含有する第三の発光ホスト材料としては、正孔輸送性を有するm-CPを用いた。第三の発光ホスト材料のエネルギーギャップは、3.5eVであった。
混合発光層128、第一のブロック層125及び第二のブロック層127が含有する発光ホスト材料は、必ずしも同じキャリア輸送性を有する必要はなく、それぞれの層が異なるキャリア輸送性を有する発光ホスト材料を含有してもよい。
実施例4においても、実施例1と同様に、第一の発光ドーパント層124、第二の発光ドーパント層126及び混合発光層128でキャリアの再結合が起こり、3層に含まれる3種類の発光ドーパント材料の全てを効率良く発光させることができる白色表示可能なデバイスを実現できる。
[実施例5]
実施例5は、正孔輸送層123と発光ユニットとの間に、正孔輸送性を有する電子ブロック層を挿入し、電子輸送層129と発光ユニットとの間に、電子輸送性を有する正孔ブロック層を挿入したこと以外は、実施例1の有機ELパネルと同様の構成を有する。
図4は、実施例5の有機ELパネルを示す断面模式図である。図4に示された有機ELパネル100Dにおいて、基板110上に設けられた有機EL素子120Dは、基板110側から順に、陽極121、正孔注入層122、正孔輸送層123、電子ブロック層132、第一の発光ドーパント層124、第一のブロック層125、第二の発光ドーパント層126、第二のブロック層127、混合発光層128、正孔ブロック層133、電子輸送層129、電子注入層130、及び、陰極131が積層された構造を有する。第一の発光ドーパント層124、第一のブロック層125、第二の発光ドーパント層126、第二のブロック層127及び混合発光層128は、発光ユニット140Dを構成する。図4中、網掛けの矢印は電子(e)の動きを表し、白抜きの矢印は正孔(h)の動きを表す。
電子ブロック層132は、正孔輸送性を有する。電子ブロック層132は、正孔輸送性を有する発光ホスト材料を含有することが好ましい。電子ブロック層132が含有する発光ホスト材料としては、正孔輸送性を有するTCTAを用いた。電子ブロック層132が含有する発光ホスト材料は、1種類であっても、2種類以上であってもよいが、1種類であることが好ましい。電子ブロック層132が含有する発光ホスト材料は、第一のブロック層125及び/又は第二のブロック層127が含有する発光ホスト材料と同じ材料を用いてもよいし、異なる材料を用いてもよい。
電子ブロック層132の厚さは20nmとした。電子ブロック層132の厚さの好ましい下限は10nmであり、好ましい上限は40nmであり、より好ましい上限は30nmである。
正孔輸送層123と発光ユニット140Dとの間に電子ブロック層132を挿入することで、陰極131から陽極121側に移動する電子が正孔輸送層123へ流れ込むことを抑制し、より発光効率を高くすることができる。
正孔ブロック層133は、電子輸送性を有する。正孔ブロック層133は、電子輸送性を有する発光ホスト材料を含有することが好ましい。正孔ブロック層133が含有する発光ホスト材料としては、電子輸送性を有するトリス(2,4,6-トリメチル-3-(ピリジン-3-イル)フェニル)ボラン(3TPYMB)を用いた。正孔ブロック層133が含有する発光ホスト材料は、1種類であっても、2種類以上であってもよいが、1種類であることが好ましい。正孔ブロック層133が含有する発光ホスト材料は、第一のブロック層125及び/又は第二のブロック層127が含有する発光ホスト材料と同じ材料を用いてもよいし、異なる材料を用いてもよい。
正孔ブロック層133の厚さは20nmとした。正孔ブロック層133の厚さの好ましい下限は10nmであり、好ましい上限は40nmであり、より好ましい上限は30nmである。
電子輸送層129と発光ユニット140Dとの間に正孔ブロック層133を挿入することで、陽極121から陰極131側に移動する正孔が電子輸送層129へ流れ込むことを抑制し、より発光効率を高くすることができる。
実施例5では、より多くのキャリアを発光ユニット140Dに閉じ込めることができるため、より効率よく第一の発光ドーパント層124、第二の発光ドーパント層126及び混合発光層128でキャリアの再結合が起こり、3層に含まれる3種類の発光ドーパント材料の全てを効率良く発光させることができる白色表示可能なデバイスを実現できる。なお、電子ブロック層132及び正孔ブロック層133のいずれか一方を配置することでも、発光効率を高めることができ、両方配置することで、より発光効率を高めることができる。
なお、実施例3~5の有機ELパネルに対して、実施例2の第二のブロック層127を設けない構成を適用することもできる。
[付記]
なお、本発明の各実施例に記載されている技術特徴はお互いに組合せして新しい本発明の実施態様を形成することができる。
本発明の一態様は、陽極と、正孔輸送層と、発光ユニットと、電子輸送層と、陰極とを順に有する有機エレクトロルミネッセンス素子であって、上記発光ユニットは、第一の発光ドーパント層と、第一のブロック層と、第二の発光ドーパント層と、混合発光層とを順に有し、上記混合発光層は、第一の発光ホスト材料及び第一の発光ドーパント材料を含有し、上記第一の発光ドーパント層は、実質的に第二の発光ドーパント材料のみからなり、上記第二の発光ドーパント層は、実質的に第三の発光ドーパント材料のみからなり、上記第一のブロック層は、第二の発光ホスト材料を含有する有機エレクトロルミネッセンス素子であってもよい。上記態様によれば、混合発光層を複数積層する構成よりも、各層間の界面でキャリアの障壁を生じにくくすることができ、混合発光層及び発光ドーパント層中の発光ドーパント材料を効率良く発光させることができる。また、第一の発光ドーパント層と第二の発光ドーパント層との間に第一のブロック層を介在させることによって、各発光ドーパント層にキャリアを漏れなく閉じ込め、かつ、発光ドーパント材料同士の接触を防ぐことができるため、高い発光効率を得ることができる。
上記態様において、上記第一の発光ドーパント層及び上記第二の発光ドーパント層の厚さは、1nm以下であってもよい。これによって、発光ドーパント層を島状に形成することができ、発光ユニット内の全体にキャリアを拡げ、効率良く発光させることができる。
上記態様において、上記第一のブロック層の厚さは、5nm以下であってもよい。これによって、第一のブロック層におけるキャリアの透過率を充分に確保することができ、第一の発光ドーパント層及び第二の発光ドーパント層のキャリアの分布を適切なものとし、両層に含有される発光ドーパント材料を効率よく発光させることができる。
上記態様において、上記混合発光層は、上記電子輸送層と上記第二の発光ドーパント層との間に位置し、上記第一の発光ホスト材料は、電子輸送性であってもよい。これによって、電子輸送層から輸送された電子を阻害することなく発光ユニット全体に供給することができる。
上記態様において、上記混合発光層は、上記正孔輸送層と上記第二の発光ドーパント層との間に位置し、上記第一の発光ホスト材料は、正孔輸送性であってもよい。これによって、正孔輸送層から輸送された正孔を阻害することなく発光ユニット全体に供給することができる。
上記態様において、上記発光ユニットは、上記混合発光層と上記第二の発光ドーパント層との間に、更に第二のブロック層を含み、上記第二のブロック層は、第三の発光ホスト材料を含有してもよい。これによって、混合発光層が電子輸送層側に位置する場合に、第二の発光ドーパント層及び混合発光層にキャリアを漏れなく閉じ込めることができ、発光効率をより高くすることができる。
上記態様において、上記第二のブロック層の厚さは、5nm以下であってもよい。これによって、第二のブロック層におけるキャリアの透過率を充分に確保することができ、混合発光層及び第二の発光ドーパント層のキャリアの分布を適切なものとし、両層に含有される発光ドーパント材料を効率よく発光させることができる。
上記態様において、上記第一の発光ドーパント材料は、上記第三の発光ドーパント材料よりもエネルギーギャップが大きくてもよい。これによって、混合発光層から第二の発光ドーパント層へのエネルギー移動によって、第二の発光ドーパント層を発光させることができる。
上記態様において、上記正孔輸送層と上記発光ユニットとの間に、正孔輸送性を有する電子ブロック層を有してもよい。これによって、電子が正孔輸送層へ流れ込むことを抑制し、より発光効率を高くすることができる。
上記態様において、上記電子輸送層と上記発光ユニットとの間に、電子輸送性を有する正孔ブロック層を有してもよい。これによって、正孔が電子輸送層へ流れ込むことを抑制し、より発光効率を高くすることができる。
上記態様において、上記第二の発光ホスト材料は、上記第二の発光ドーパント材料及び上記第三の発光ドーパント材料よりも、エネルギーギャップが大きくてもよい。これによって、第二の発光ドーパント材料及び第三の発光ドーパント材料のエネルギーが第二の発光ホスト材料へ移動することを防止し、発光効率の低下を防止することができる。
本発明の別の一態様は、基板と、上記基板上に配置された上記有機エレクトロルミネッセンス素子とを有する有機エレクトロルミネッセンスパネルであってもよい。
100A、100B、100C、100D、200A、200B:有機ELパネル
110、210:基板
120A、120B、120C、120D、220A、220B:有機EL素子
121、221:陽極
122、222:正孔注入層
123:正孔輸送層
124:第一の発光ドーパント層
125:第一のブロック層
126:第二の発光ドーパント層
127:第二のブロック層
128:混合発光層
129:電子輸送層
130、230:電子注入層
131、231:陰極
132:電子ブロック層
133:正孔ブロック層
140A、140B、140C、140D:発光ユニット
228B:青色発光層
228G:緑色発光層
228R:赤色発光層
228Y:黄色発光層
234:中間層

Claims (12)

  1. 陽極と、
    正孔輸送層と、
    発光ユニットと、
    電子輸送層と、
    陰極とを順に有する有機エレクトロルミネッセンス素子であって、
    前記発光ユニットは、第一の発光ドーパント層と、第一のブロック層と、第二の発光ドーパント層と、混合発光層とを順に有し、
    前記混合発光層は、第一の発光ホスト材料及び第一の発光ドーパント材料を含有し、
    前記第一の発光ドーパント層は、実質的に第二の発光ドーパント材料のみからなり、
    前記第二の発光ドーパント層は、実質的に第三の発光ドーパント材料のみからなり、
    前記第一のブロック層は、第二の発光ホスト材料を含有することを特徴とする有機エレクトロルミネッセンス素子。
  2. 前記第一の発光ドーパント層及び前記第二の発光ドーパント層の厚さは、1nm以下であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
  3. 前記第一のブロック層の厚さは、5nm以下であることを特徴とする請求項1又は2に記載の有機エレクトロルミネッセンス素子。
  4. 前記混合発光層は、前記電子輸送層と前記第二の発光ドーパント層との間に位置し、
    前記第一の発光ホスト材料は、電子輸送性であることを特徴とする請求項1~3のいずれかに記載の有機エレクトロルミネッセンス素子。
  5. 前記混合発光層は、前記正孔輸送層と前記第二の発光ドーパント層との間に位置し、
    前記第一の発光ホスト材料は、正孔輸送性であることを特徴とする請求項1~3のいずれかに記載の有機エレクトロルミネッセンス素子。
  6. 前記発光ユニットは、前記混合発光層と前記第二の発光ドーパント層との間に、更に第二のブロック層を含み、前記第二のブロック層は、第三の発光ホスト材料を含有することを特徴とする請求項1~5のいずれかに記載の有機エレクトロルミネッセンス素子。
  7. 前記第二のブロック層の厚さは、5nm以下であることを特徴とする請求項6に記載の有機エレクトロルミネッセンス素子。
  8. 前記第一の発光ドーパント材料は、前記第三の発光ドーパント材料よりも、エネルギーギャップが大きいことを特徴とする請求項1~5のいずれかに記載の有機エレクトロルミネッセンス素子。
  9. 前記正孔輸送層と前記発光ユニットとの間に、正孔輸送性を有する電子ブロック層を有することを特徴とする請求項1~8のいずれかに記載の有機エレクトロルミネッセンス素子。
  10. 前記電子輸送層と前記発光ユニットとの間に、電子輸送性を有する正孔ブロック層を有することを特徴とする請求項1~9のいずれかに記載の有機エレクトロルミネッセンス素子。
  11. 前記第二の発光ホスト材料は、前記第二の発光ドーパント材料及び前記第三の発光ドーパント材料よりも、エネルギーギャップが大きいことを特徴とする請求項1~10のいずれかに記載の有機エレクトロルミネッセンス素子。
  12. 基板と、前記基板上に配置された請求項1~11のいずれかに記載の有機エレクトロルミネッセンス素子とを有することを特徴とする有機エレクトロルミネッセンスパネル。
PCT/JP2016/051345 2015-01-26 2016-01-19 有機エレクトロルミネッセンス素子、及び、有機エレクトロルミネッセンスパネル WO2016121561A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/545,809 US10305056B2 (en) 2015-01-26 2016-01-19 Organic electroluminescent element and organic electroluminescent panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-012563 2015-01-26
JP2015012563 2015-01-26

Publications (1)

Publication Number Publication Date
WO2016121561A1 true WO2016121561A1 (ja) 2016-08-04

Family

ID=56543179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051345 WO2016121561A1 (ja) 2015-01-26 2016-01-19 有機エレクトロルミネッセンス素子、及び、有機エレクトロルミネッセンスパネル

Country Status (2)

Country Link
US (1) US10305056B2 (ja)
WO (1) WO2016121561A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180323393A1 (en) * 2017-05-03 2018-11-08 Wuhan China Star Optoelectronics Technology Co., Ltd. Organic light-emitting display apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040856A (ja) * 2003-10-24 2006-02-09 Pentax Corp 白色有機エレクトロルミネセンス素子
WO2007111192A1 (ja) * 2006-03-24 2007-10-04 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、及び有機エレクトロルミネッセンスディスプレイ
JP2007287691A (ja) * 2006-04-13 2007-11-01 Lg Electronics Inc 有機el素子及びその製造方法
JP2009043684A (ja) * 2007-08-10 2009-02-26 Toyota Industries Corp 白色発光有機el(エレクトロルミネッセンス)素子及びその色度調整方法
JP2009301858A (ja) * 2008-06-12 2009-12-24 Seiko Epson Corp 発光素子、表示装置および電子機器
JP2013065428A (ja) * 2011-09-16 2013-04-11 Toshiba Corp 有機電界発光素子、表示装置および照明装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050039674A (ko) 2003-10-24 2005-04-29 펜탁스 가부시키가이샤 백색 유기 전자 발광 소자
US7622200B2 (en) * 2004-05-21 2009-11-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting element
US7273663B2 (en) 2004-08-20 2007-09-25 Eastman Kodak Company White OLED having multiple white electroluminescence units
TWI313292B (en) * 2005-11-25 2009-08-11 Chi Mei Optoelectronics Corp Light-emitting element and iridium complex
US7332860B2 (en) 2006-03-30 2008-02-19 Eastman Kodak Company Efficient white-light OLED display with filters
TW200915918A (en) * 2007-07-07 2009-04-01 Idemitsu Kosan Co Organic EL device
CN101665485B (zh) * 2008-09-01 2013-07-31 株式会社半导体能源研究所 三唑衍生物以及使用三唑衍生物的发光元件、发光装置、电子装置及照明设备
TWI458694B (zh) * 2009-01-19 2014-11-01 Nippon Steel & Sumikin Chem Co Organic light field components
JP5649327B2 (ja) 2010-04-22 2015-01-07 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子
JP2012015337A (ja) * 2010-06-30 2012-01-19 Fujifilm Corp 有機電界発光素子用材料、有機電界発光素子、及び有機電界発光素子の製造方法
KR102059328B1 (ko) * 2011-09-09 2020-02-20 이데미쓰 고산 가부시키가이샤 유기 전계발광 소자
DE102013112000A1 (de) * 2012-11-08 2014-05-08 Lg Display Co., Ltd. Organische Lichtemitteranzeigevorrichtung
KR102079254B1 (ko) * 2013-06-24 2020-02-20 삼성디스플레이 주식회사 유기 발광 소자

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040856A (ja) * 2003-10-24 2006-02-09 Pentax Corp 白色有機エレクトロルミネセンス素子
WO2007111192A1 (ja) * 2006-03-24 2007-10-04 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、及び有機エレクトロルミネッセンスディスプレイ
JP2007287691A (ja) * 2006-04-13 2007-11-01 Lg Electronics Inc 有機el素子及びその製造方法
JP2009043684A (ja) * 2007-08-10 2009-02-26 Toyota Industries Corp 白色発光有機el(エレクトロルミネッセンス)素子及びその色度調整方法
JP2009301858A (ja) * 2008-06-12 2009-12-24 Seiko Epson Corp 発光素子、表示装置および電子機器
JP2013065428A (ja) * 2011-09-16 2013-04-11 Toshiba Corp 有機電界発光素子、表示装置および照明装置

Also Published As

Publication number Publication date
US20180019424A1 (en) 2018-01-18
US10305056B2 (en) 2019-05-28

Similar Documents

Publication Publication Date Title
Jou et al. Efficient very-high color rendering index organic light-emitting diode
US9130186B2 (en) Organic light emitting diode
JP6294460B2 (ja) 有機エレクトロルミネッセンス素子、及び、有機エレクトロルミネッセンスパネル
US9130185B2 (en) Organic light emitting diode
KR102165234B1 (ko) 백색 유기 발광 소자
US8941102B2 (en) Organic electroluminescent element
KR102089329B1 (ko) 유기 발광 표시 장치
KR102149685B1 (ko) 유기 발광 소자
KR20110063818A (ko) 백색 인광성 유기 발광 디바이스
TW201428962A (zh) 有機發光顯示裝置及其製造方法
JP2013065428A (ja) 有機電界発光素子、表示装置および照明装置
US8941103B2 (en) Organic electroluminescent element
US20140008629A1 (en) Organic electroluminescent element
KR101941084B1 (ko) 유기전계발광소자
US20210083218A1 (en) Light emitting device and display device
KR101259532B1 (ko) 2종의 유기층을 이용하는 백색 유기 발광 다이오드 및 이의 제조 방법
WO2015163265A1 (ja) 有機エレクトロルミネッセンス素子、及び、有機エレクトロルミネッセンスパネル
WO2016121561A1 (ja) 有機エレクトロルミネッセンス素子、及び、有機エレクトロルミネッセンスパネル
TW201316583A (zh) 白光有機發光二極體構造
KR102230940B1 (ko) 백색 유기 발광 소자
KR102492274B1 (ko) 백색 유기 발광 소자
JP6078701B1 (ja) 白色発光有機elパネル及びその製造方法
KR20210031675A (ko) 백색 유기 발광 소자
KR20100031059A (ko) 하이브리드 백색 유기 전계 발광 소자 및 그의 제조 방법
D'Andrade White PHOLED for lighting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743165

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15545809

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16743165

Country of ref document: EP

Kind code of ref document: A1