WO2013033963A1 - 一种高光通透性天线 - Google Patents

一种高光通透性天线 Download PDF

Info

Publication number
WO2013033963A1
WO2013033963A1 PCT/CN2011/084761 CN2011084761W WO2013033963A1 WO 2013033963 A1 WO2013033963 A1 WO 2013033963A1 CN 2011084761 W CN2011084761 W CN 2011084761W WO 2013033963 A1 WO2013033963 A1 WO 2013033963A1
Authority
WO
WIPO (PCT)
Prior art keywords
light transmission
transmission antenna
antenna according
conductive
micro
Prior art date
Application number
PCT/CN2011/084761
Other languages
English (en)
French (fr)
Inventor
祝辰
Original Assignee
数伦计算机技术(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 数伦计算机技术(上海)有限公司 filed Critical 数伦计算机技术(上海)有限公司
Priority to US14/358,505 priority Critical patent/US9343813B2/en
Publication of WO2013033963A1 publication Critical patent/WO2013033963A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Definitions

  • the antenna as a transmitting device has gradually entered various technical fields, such as mobile phones, satellite receiving, electronic tags and radio frequency cards.
  • various technical fields such as mobile phones, satellite receiving, electronic tags and radio frequency cards.
  • antennas that meet the communication needs without affecting the aesthetics of the products have become a technological development. Therefore, transparent antennas have gradually entered people's field of vision.
  • a transparent antenna composed of a conductive film of a mesh structure has appeared on the surface of various communication devices (refer to the Chinese invention patent application 200680017569.2).
  • the contour of each mesh is composed of a very thin strip of substantially equal width, and the width of the ultra-fine strip is below 30 ⁇ m, which allows the light transmittance to reach 70%.
  • the film and the transparent substrate in the above transparent antenna are two separate portions, and the film is mounted on the surface of the transparent substrate to increase the thickness of the antenna.
  • the film is on the outside of the transparent substrate, and in order to prevent the pattern damage of the antenna, it is additionally required to be additionally fixedly mounted, and a transparent protective film is preferably formed on the surface thereof.
  • a high-light permeable antenna comprising a transparent substrate and a conductive material, wherein a surface of the transparent substrate is formed with micro-nano-scale trenches, the conductive material being located within the micro-nano-scale trench.
  • an electrode is formed on a surface of the conductive material, and the electrode is formed on a micro-nano-scale groove containing the conductive material.
  • the transparent substrate is formed by uniformly adhering another one or more transparent materials to the surface of a transparent material.
  • the micro-nano-level trenches are in a network shape that is connected to each other.
  • the conductive network is a planar or three-dimensional circuit formed of the conductive material.
  • the three-dimensional circuit may be formed by laminating a plurality of planar circuits formed of the conductive material by attaching to one or more transparent materials.
  • the density of the conductive network at the antenna terminal is increased, and a metal layer is plated on the surface to increase conductivity and improve soldering characteristics.
  • the transparent substrate has a perforation, and the silver paste is sintered in the perforation, so that the conductive networks located on the opposite surfaces are electrically connected to each other.
  • the viscosity of the first adhesive layer is weaker than the bonding strength of the conductive material to the transparent substrate.
  • the terminal of the conductive network is connected to an antenna connector, and is connected to the transceiver circuit through the antenna connector.
  • the antenna can also be fed into the RF electrical signal by capacitive coupling.
  • the present invention is a high light transmission wire prepared using micro-nano processing technology. Since the trench is micro-nano wide, the conductive material can be made not limited to a transparent conductive material, such as a nano silver paste. In addition, the high-light-permeable antenna obtained by the micro-nano processing technology, the transparent substrate and the conductive material are integrally formed, the thickness of the transparent antenna is reduced, and it is not easy to cause damage like an open-air line.
  • Embodiment 2 is a schematic view showing the internal structure of Embodiment 1 of a high light transmittance antenna
  • Embodiment 3 is a schematic view showing the internal structure of Embodiment 2 of a high light transmission antenna
  • Figure 6 is a cross-sectional view of an electronic tag fabricated using the present high light transmission antenna. The label in the figure shows:
  • 1 transparent substrate
  • 2 micro-nano-scale trench
  • 3 conductive material
  • the invention relates to a high-light transmittance antenna, comprising a transparent substrate 1 and a conductive material 3, wherein a surface of the transparent substrate 1 is formed with a micro-nano-scale trench 2, and the conductive material 3 is located within the micro-nano-scale trench 2 .
  • the transparent substrate 1 can be a transparent material.
  • Fig. 1 is a schematic view showing the structure of a transparent substrate having micro-nano-scale grooves formed on its surface.
  • Commonly used transparent materials that can be used in the practice of the present invention include plastics, composites, polyethylene, polycarbonate, polymethyl methacrylate, glass, plexiglass, and the like.
  • the transparent substrate 1 can be formed by uniformly attaching one or more transparent materials to the surface of a transparent material.
  • the transparent material 4 when it is not embossable, it can be made into an embossable transparent substrate 1 by coating the surface of the first transparent material 4 with the second transparent material 5.
  • the transparent substrate 1 has a structure as shown in Fig. 3.
  • the transparent material 5 located in the upper layer may be a transparent glue.
  • Commonly used transparent adhesives which can be used in the practice of the present invention include UV curable adhesives, cured amines or other clear adhesive materials, one of which may be used, or a mixture of several clear adhesives.
  • the micro-nano-sized grooves 2 can be formed by an imprint or etching process.
  • the micro-nano-scale trenches 2 are distributed in a network on the surface of the transparent substrate 1, which are interlaced and located within a certain area.
  • the shape of this region is preferably the shape of the conductive portion of the antenna.
  • two mutually symmetric groove network patterns are formed on the surface of the transparent substrate 1 by an imprint or etching process, as shown in the figure.
  • the triangular area is the area where the conductive part of the antenna is located.
  • the conductive material 3 can be poured into the micro-nano-sized trench 2 by printing or soaking, and sintered to form Conductive network 6.
  • the conductive material 3 may be a nano silver paste or other conductive material. Referring to the internal structure diagrams shown in FIG. 2 and FIG. 3, in the micro-nano-scale trenches 2 on the surface of the transparent substrate 1, nano-silver paste is filled through the printing and immersion to form a high-gloss light integrally formed with the transparent substrate. Transmissive antenna.
  • the conductive network 6 can be a planar or stereo circuit.
  • a planar or three-dimensional circuit composed of a conductive material 3 is formed on the surface of the transparent substrate 1, and signal receiving and radiation support can be provided by electrical connection with an external device.
  • the conductive network 6 may be located on one surface of the transparent substrate 1, or may be located on opposite surfaces of the transparent substrate 1, respectively.
  • the conductive network 6 on the opposite surfaces of the transparent substrate 1 can be sintered by penetrating the substrate and injecting silver paste into the perforations so that the conductive networks on the two surfaces are electrically connected to each other.
  • the perforations can be formed as a plurality of minute vias.
  • the electrode can be electrically connected to the end of the external circuit to avoid concentration of current in the antenna.
  • copper or aluminum plating may be performed on the micro-nano-sized trench 2 containing the conductive material 3 to form an electrode.
  • Conductive growth or secondary silver plating may also be performed on the micro-nano-scale trenches 2 containing the conductive material 3 to form electrodes.
  • the electrode 7 is formed by copper plating, thereby realizing the antenna and More preferably, the contact between the electrodes is increased in density at the antenna end of the antenna, and a metal layer is plated on the surface thereof to increase the electrical conductivity and improve the soldering characteristics, and then the electrode is formed.
  • Figure 5 is a partial cross-sectional view of the electrode portion of Figure 4, in which a conductive material 3 is present in the micro-nano-scale trenches on the surface of the transparent substrate 1, and an electrode 7 is formed on the surface of the conductive material 3 by copper plating. And the chip 8 can be embedded in the concave portion of the transparent substrate. Information exchange between the antenna and the chip 8 can be achieved by an electrical connection between the chip 8 and the electrode 7.
  • a typical application example is the electronic tag shown in FIG. In this embodiment, a conductive paste is dropped on the surface of the electrode 7, and the electrode of the chip 8 is attached to the electrode 7. On, the electronic tag is formed.
  • a layer of transparent glue 9 may be attached to the surface of the chip 8 and the micro-nano-sized trench 2 to encapsulate it.
  • a first adhesive layer is first formed from the weakly viscous transparent adhesive 10, and then a conductive network 6 is formed on the first adhesive layer.
  • the viscosity of the first adhesive layer is weaker than the bonding strength of the conductive material 3 to the transparent substrate 1.
  • a second adhesive layer may be applied to the exposed side of the conductive network 6, the adhesion of the second adhesive layer being higher than the adhesion of the conductive network 6 to the transparent material or the adhesion of the conductive network 6 to the first adhesive layer.
  • the conductive material can be made not limited to a transparent conductive material, such as a nano silver paste. Since the conductive material is extremely fine, the influence on the light transmittance can be reduced, and when the light passes through the transparent substrate 1, the diffraction is approximately performed under the action of the conductive material 3, thereby improving the light transmittance.
  • the high-light-passing antenna obtained by the micro-nano processing technology is formed by integrally forming a transparent substrate and a conductive material, thereby reducing the thickness of the antenna and causing damage such as an open-air line.
  • the high-light transparent antenna can be applied to a patch antenna, a level flying dipole antenna and a reflective antenna, so that the antenna can be directly attached to the display screen or the surface of the object to be light-transmitted, thereby realizing the design of the high-light transparent antenna.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Details Of Aerials (AREA)

Abstract

一种高光通透性天线,包括透明基材和导电材料,在透明基材的表面形成有微纳米级沟槽,导电材料位于微纳米级沟槽之内。该高光通透性天线使用微纳加工技术制备,可使导电材料对天线的光线透过率的影响减至最低。由于沟槽呈微纳米级宽,可以使导电材料不局限于透明导电材料,例如可以使用纳米银浆。此外,利用微纳加工技术,可以获得透明基材与导电材料一体成型的高光通透性天线,减少了天线的厚度,且不易造成天线的变形与损伤。

Description

一种高光通透性天线
技术领域
本发明涉及一种透明天线, 尤其涉及一种含有透明基材和导电材料的高光 通透性天线。
背景技术
随着无线通讯技术的日益发展, 作为发射器件的天线也逐渐进入各种技术 领域, 如广泛应用于手机、 卫星接收、 电子标签和射频卡等产品。 随着各种通 讯设备体积的不断减小, 使得既可满足通讯需求, 又不影响产品美观的天线成 为技术发展的需要。 因此, 透明天线逐渐走入了人们的视野。
现有的透明天线多是将透明导电材料做成天线所需的形状粘贴于透明绝缘 材料上形成的。例如专利号为 ZL 200510025416.X的透明天线,可以将透明导电 材料做成各种图案的天线, 安装在透明基材的表面。 然而, 这种技术为了产品 的美观和不影响光线的透过率, 使得用于透明天线的导电材料局限于透明导电 材料。 由于现有的透明导电材料的导电性能远远比不上金属, 因此这种透明天 线的效率不高、 性能较差。
为了克服天线自身宽度对光线透过率的影响, 在各种通讯设备的表面还出 现了一种由网眼结构的导电性薄膜构成的透明天线 (具体参考中国发明专利申 请 200680017569.2)。 其中各网眼的轮廓由大致等宽的极细带状体构成, 极细带 状体的宽度在 30μ m之下, 可使光线透过率达到 70%之上。 但上述透明天线中 的薄膜与透明基材为两个分离的部分, 薄膜在透明基材表面安装, 增加了天线 的厚度。 此外, 薄膜处于透明基材的外部, 为了防止天线的图形损伤, 还需要 对其做额外的固定安装, 并最好在其表面形成透明保护膜。
发明内容
本发明所要解决的技术问题在于提供一种可以克服导电材料自身宽度对光 线透过率影响, 而且与透明基材一体成型的高光通透性天线。
为实现上述的发明目的, 本发明采用下述的技术方案:
一种高光通透性天线, 包括透明基材和导电材料, 其中所述透明基材的表 面形成有微纳米级沟槽, 所述导电材料位于所述微纳米级沟槽之内。
其中较优地, 在所述导电材料的表面形成有电极, 所述电极在含有所述导 电材料的微纳米级沟槽上形成。
其中较优地, 所述透明基材通过在一种透明材料表面均匀附着另外一种或 多种透明材料形成。
其中较优地, 所述微纳米级沟槽呈相互交错连通的网络状。
其中较优地, 所述交错连通网络为蜂巢状网络。
其中较优地, 在所述微纳米级沟槽内, 由所述导电材料形成所述高光通透 性天线的导电网络。
其中较优地, 所述导电网络是由所述导电材料形成的平面或立体电路。 其中较优地, 所述立体电路可以由多层所述导电材料形成的平面电路通过 附着在一种或多种透明材料后重叠而成。
其中较优地, 在天线终端的导电网络密度增大, 并在表面镀金属层以增加 导电性能和改善焊接特性。
其中较优地, 所述导电网络的表面镀有金属层, 以增加导电性能或改善焊 接特性。其中更为优选地, 在所述导电材料表面先镀一层金属, 以增加导电性和 与焊接特性的改善; 然后再形成所述电极。
其中较优地, 所述导电网络分别位于所述透明基材相对的两个表面。
其中较优地, 所述透明基材具有穿孔, 所述穿孔中注入银浆烧结, 使位于 相对的两个表面的导电网络互相导通。
其中较优地, 所述微纳米级沟槽内, 首先有选择性地 (或全部)形成第一粘胶 层, 然后在第一粘胶层上形成所述导电网络, 所述第一粘胶层可以部分覆盖所 述微纳米级沟槽网络也可以全部覆盖所述微纳米级沟槽网络。
其中较优地, 该第一粘胶层的粘度弱于所述导电材料与所述透明基材的结 合强度。
其中较优地, 在所述导电网络的外露面施加第二粘胶层, 该第二粘胶层的 粘性高于所述导电网络与所述透明材料的附和力或所述导电网络与所述第一粘 胶层的附和力。
其中较优地, 所述导电网络的终端连接一天线连接器, 通过天线连接器接 入收发电路。
所述导电网络的终端也可以直接连接一芯片, 所述芯片嵌入所述透明基材 预设的内凹部分。
天线也可以通过电容偶合方式馈入射频电信号。
其中较优地, 所述导电材料是纳米银浆。
本发明是一种使用微纳加工技术制备的高光通透性电线。 由于沟槽呈微纳 米级宽, 可以使导电材料不局限于透明导电材料, 如可以使用纳米银浆。 此外, 利用微纳加工技术获得的高光通透性天线, 透明基材与导电材料一体成型, 减 少了透明天线的厚度, 且不易造成如外露天线一样的损伤。
附图说明
图 1为表面形成有微纳米级沟槽的透明基材;
图 2为高光通透性天线的实施例 1的内部结构示意图;
图 3为高光通透性天线的实施例 2的内部结构示意图;
图 4为双极型高光通透性天线的立体图;
图 5为图 4所示的高光通透性天线的局部剖视图;
图 6为利用本高光通透性天线制作的电子标签的剖视图。 图中标号说明:
1: 透明基材; 2: 微纳米级沟槽; 3 : 导电材料;
4: 第一透明材料; 5 : 第二透明材料; 6: 导电网络;
7: 电极; 8: 芯片; 9: 透明胶; 10: 弱粘性透明胶。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步的详细说明。
本发明涉及一种高光通透性天线, 包括透明基材 1和导电材料 3, 其中, 透 明基材 1的表面形成有微纳米级沟槽 2, 导电材料 3位于微纳米级沟槽 2之内。
透明基材 1可以是一种透明材料。 图 1是表面形成有微纳米级沟槽的透明 基材的结构示意图。 可用于实施本发明的常用透明材料包括塑料、 复合材料、 聚乙烯、 聚碳酸酯、 聚甲基丙烯酸甲酯、 玻璃、 有机玻璃等。
透明基材 1 可以通过在一种透明材料表面均匀地附着另外一种或多种透明 材料形成。 尤其, 当透明材料 4不可压印加工时, 可以通过在第一透明材料 4 的表面涂覆第二透明材料 5来使其变成可压印加工的透明基材 1。 SP , 透明基材 1具有如图 3所示的结构。优选地, 位于上层的透明材料 5可以是透明胶。可用 于实施本发明的常用透明胶包括紫外光固化胶、 固化胺或其他透明胶材料, 可 以使用其中的一种, 也可以是几种透明胶的混合。
在透明基材 1的表面, 可通过压印或蚀刻工艺形成微纳米级沟槽 2。该微纳 米级沟槽 2呈网络状分布在透明基材 1 的表面, 其相互交错连通, 位于一定的 区域范围内。 该区域的形状优选为天线导电部分的形状。 如图 4所示, 该实施 例中的双极型高光通透性天线中, 在透明基材 1 的表面通过压印或蚀刻工艺形 成了两个互相对称的沟槽网络图案, 图中所示三角形区域即为天线导电部分所 在的区域。
在微纳米级沟槽 2内可以通过括印或浸泡灌入导电材料 3,并对其烧结形成 导电网络 6。 该导电材料 3可以是纳米银浆, 也可以是其他导电材料。 参考图 2 和图 3所示的内部结构示意图, 在透明基材 1表面的微纳米级沟槽 2内, 通过 括印和浸泡灌入纳米银浆, 形成了与透明基材一体成型的高光通透性天线。
此外, 导电网络 6可以是一种平面或立体电路。 在透明基材 1 的表面形成 由导电材料 3所构成的平面或立体电路, 可通过与外接设备之间的电连接, 为 其提供信号接收与辐射支持。
导电网络 6可以位于透明基材 1 的一个表面, 也可以分别位于透明基材 1 相对的两个表面。分别处于透明基材 1相对的两个表面的导电网络 6, 可以通过 打穿基材, 并在穿孔中注入银浆烧结, 使得位于两个表面的导电网络互相导通。 该穿孔可以为多个微小的过孔形成。
为了减小天线与外接电路之间的电损耗, 可在天线靠近外接电路的末端电 性连接电极, 从而避免天线中电流的集中。 较优地, 可在含有导电材料 3 的微 纳米级沟槽 2上, 进行镀铜或镀铝, 形成电极。 也可以在含有导电材料 3的微 纳米级沟槽 2上, 进行导电生长或者二次灌银, 形成电极。 如图 4所示的双极 型高光通透性天线中, 在两个导电网络 6 的中间区域, 即两个三角形天线与外 接设备连接的区域, 通过镀铜形成电极 7, 从而实现了天线与电极之间的接触连 更为优选地, 在天线终端的导电网络 6密度增大, 并在其表面镀金属层, 以增加导电性能和改善焊接特性, 然后再形成所述电极。
图 5是图 4中电极部分的局部剖视图, 其中在透明基材 1表面的微纳米级 沟槽中有导电材料 3, 在导电材料 3的表面通过镀铜形成了电极 7。 并且在透明 基材预设的内凹部分, 可以嵌入芯片 8。 通过芯片 8与电极 7之间的电性连接, 可以实现天线与芯片 8之间的信息交换。 典型的应用实例有图 6所示的电子标 签。 在该实施例中, 在电极 7的表面滴导电胶, 并将芯片 8的电极贴在电极 7 上, 即形成电子标签。 此外, 可在芯片 8和微纳米级沟糟 2的表面附着一层透 明胶 9, 对其进行封装。将图 6中的电子标签附着于物品之上, 即可利用电子标 签与外部设备交换信息, 完成物品的识别。
在微纳米级沟槽 2中, 首先由弱粘性透明胶 10形成第一粘胶层, 然后在第 一粘胶层上形成导电网络 6。 该第一粘胶层的粘度弱于导电材料 3与透明基材 1 的结合强度。另外, 可以在导电网络 6的外露面施加第二粘胶层, 该第二粘胶层 的粘性高于导电网络 6与透明材料的附和力或导电网络 6与第一粘胶层的附和 力。 这样, 在该天线粘于其他物体表面后, 如果强行移除会毁坏导电网络。
本发明所提供的高光通透性天线中, 由于沟槽呈微纳米级宽, 可以使导电 材料不局限于透明导电材料, 如可以使用纳米银浆。 因为导电材料极细, 对光 线透过率的影响可以得到降低, 光线在穿过透明基材 1时, 在导电材料 3的作 用下, 近似于发生衍射, 从而提高了光线的透过率。
此外, 利用微纳加工技术获得的高光通透性天线, 由于透明基材与导电材 料一体成型, 减少了天线的厚度, 且不易造成如外露天线一样的损伤。 该高光 通透性天线可应用于贴片天线、 平飞双极天线和反射天线, 从而使天线可以直 接附属于显示屏或需要透光的物体表面, 实现了高光通透性天线的设计目的。
上面对本发明所提供的一种高光通透性天线进行了详细的说明。 对本领域 的一般技术人员而言, 在不背离本发明实质精神的前提下对它所做的任何显而 易见的改动, 都将构成对本发明专利权的侵犯, 将承担相应的法律责任。

Claims

1. 一种高光通透性天线, 包括透明基材和导电材料, 其特征在于: 所述透 明基材的表面形成有微纳米级沟槽, 所述导电材料位于所述微纳米级沟槽之内。
2. 如权利要求 1所述的高光通透性天线, 其特征在于: 在所述导电材料的 表面形成有电极, 所述电极在含有所述导电材料的微纳米级沟槽上形成。
3. 如权利要求 1所述的高光通透性天线, 其特征在于: 所述透明基材通过 在一种透明材料表面均匀附着另外一种或多种透明材料形成。
4. 如权利要求 1所述的高光通透性天线, 其特征在于: 所述微纳米级沟槽 呈相互交错连通的网络状。
5. 如权利要求 4所述的高光通透性天线, 其特征在于: 所述交错连通网络 为蜂巢状网络。
6. 如权利要求 5所述的高光通透性天线, 其特征在于: 在所述微纳米级沟 槽内, 由所述导电材料形成所述高光通透性天线的导电网络。
7. 如权利要求 6所述的高光通透性天线, 其特征在于: 所述导电网络是由 所述导电材料形成的平面或立体电路。
8. 如权利要求 7所述的高光通透性天线, 其特征在于: 所述立体电路由多 层所述导电材料形成的平面电路通过附着在一种或多种透明材料后重叠而成。
9. 如权利要求 6所述的高光通透性天线, 其特征在于: 在天线终端的导电 网络密度增大。
10. 如权利要求 6所述的高光通透性天线, 其特征在于: 所述导电网络的表 面镀有金属层。
11. 如权利要求 6所述的高光通透性天线, 其特征在于: 所述微纳米级沟槽 内, 首先形成第一粘胶层, 然后在所述第一粘胶层上形成所述导电网络。
12. 如权利要求 11所述的高光通透性天线, 其特征在于: 所述第一粘胶层 的粘度弱于所述导电材料与所述透明基材的结合强度。
13. 如权利要求 11所述的高光通透性天线, 其特征在于: 在所述导电网络 的外露面施加第二粘胶层, 该第二粘胶层的粘性高于所述导电网络与所述透明 材料的附和力或所述导电网络与所述第一粘胶层的附和力。
14. 如权利要求 6所述的高光通透性天线, 其特征在于: 所述导电网络分别 位于所述透明基材相对的两个表面的凹槽内。
15. 如权利要求 14所述的高光通透性天线, 其特征在于: 所述透明基材具 有穿孔, 所述穿孔中注入银浆烧结, 使位于相对的两个表面的导电网络互相导 通。
16. 如权利要求 6所述的高光通透性天线, 其特征在于: 所述导电网络的终 端连接一天线连接器, 通过天线连接器接入收发电路。
17. 如权利要求 6所述的高光通透性天线, 其特征在于: 所述导电网络的终 端连接一芯片, 所述芯片嵌入所述透明基材预设的内凹部分。
18. 如权利要求 6所述的高光通透性天线, 其特征在于: 天线也可以通过电 容偶合方式馈入射频电信号。
19. 如权利要求 1〜18中任意一项所述的高光通透性天线, 其特征在于: 所 述导电材料是纳米银浆。
PCT/CN2011/084761 2011-09-06 2011-12-27 一种高光通透性天线 WO2013033963A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/358,505 US9343813B2 (en) 2011-09-06 2011-12-27 Antenna with high light transmittance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110262137.0A CN102983391B (zh) 2011-09-06 2011-09-06 一种高光通透性天线
CN201110262137.0 2011-09-06

Publications (1)

Publication Number Publication Date
WO2013033963A1 true WO2013033963A1 (zh) 2013-03-14

Family

ID=47831472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084761 WO2013033963A1 (zh) 2011-09-06 2011-12-27 一种高光通透性天线

Country Status (3)

Country Link
US (1) US9343813B2 (zh)
CN (1) CN102983391B (zh)
WO (1) WO2013033963A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10401548B2 (en) * 2015-09-24 2019-09-03 Intel Corporation Integrated antenna with display uniformity
FR3065119B1 (fr) 2017-04-10 2020-06-26 Ingenico Group Antenne configuree pour etre conformee a une surface transparente, dispositif d'affichage et dispositif de paiement electronique correspondants
CN107464995A (zh) * 2017-08-01 2017-12-12 全普光电科技(上海)有限公司 一种薄膜天线及其制备方法
CN110753463B (zh) * 2018-07-22 2022-07-12 宏达国际电子股份有限公司 电子装置机壳及电子装置
CN109786930A (zh) * 2019-03-11 2019-05-21 拂记企业股份有限公司 5g天线及其制备工艺
US11165171B2 (en) 2019-06-12 2021-11-02 3M Innovative Properties Company Transparent antenna stack and assembly
WO2024116855A1 (ja) * 2022-11-30 2024-06-06 Tdk株式会社 配線体、表示装置、及びアンテナ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1948142A (zh) * 2005-10-12 2007-04-18 王洋 碳纳米管阵列其制备方法及在制备天线阵列中的应用
CN102148429A (zh) * 2010-02-06 2011-08-10 清华大学 纳米光学天线阵列的制造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859399B (zh) * 2003-05-01 2015-05-13 兄弟工业株式会社 无线识别标签制作装置
KR101025054B1 (ko) 2005-04-01 2011-03-25 니폰샤신인사츠가부시키가이샤 디스플레이용 투명 안테나 및 안테나 부착 디스플레이용투광성 부재 및 안테나 부착 하우징용 부품
CN1677744A (zh) * 2005-04-26 2005-10-05 上海中策工贸有限公司 透明天线
US20110250402A1 (en) 2008-06-02 2011-10-13 Applied Biosystems, Llc Localization of near-field resonances in bowtie antennae: influence of adhesion layers
WO2009149125A2 (en) 2008-06-02 2009-12-10 Life Technologies Corporation Localization of near-field resonances in bowtie antennae: influence of adhesion layers
CN102131958B (zh) * 2008-06-30 2013-12-25 3M创新有限公司 形成微结构的方法
CN201576301U (zh) * 2009-11-06 2010-09-08 恒隆科技股份有限公司 移除失效型无线射频辨识电子标签结构
US8558722B2 (en) * 2009-12-10 2013-10-15 Industrial Technology Research Institute Touch apparatus, transparent scan electrode structure, and manufacturing method thereof
KR101051448B1 (ko) * 2010-10-26 2011-07-22 한국기계연구원 인쇄기반 금속 배선을 이용한 투명전극 제조 방법 및 그 투명전극

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1948142A (zh) * 2005-10-12 2007-04-18 王洋 碳纳米管阵列其制备方法及在制备天线阵列中的应用
CN102148429A (zh) * 2010-02-06 2011-08-10 清华大学 纳米光学天线阵列的制造方法

Also Published As

Publication number Publication date
CN102983391B (zh) 2016-09-07
US9343813B2 (en) 2016-05-17
CN102983391A (zh) 2013-03-20
US20140327598A1 (en) 2014-11-06

Similar Documents

Publication Publication Date Title
WO2013033963A1 (zh) 一种高光通透性天线
CN106030618B (zh) 无线通信装置及其制造方法、以及带rfic元件贴片及其制作方法
US20220201838A1 (en) Wiring board and method for manufacturing wiring board
JP2005109505A (ja) 回路基板製造方法及びその回路基板を有するスマートラベル
CN208141425U (zh) 部件内置器件及rfid标签
US20130033406A1 (en) Antenna and method for manufacturing same
US20130033407A1 (en) Antenna and method for manufacturing same
KR20150133249A (ko) 플렉시블 인쇄 회로 제조 방법, 상기 방법에 의해 획득된 플렉시블 인쇄 회로, 및 그러한 플렉시블 인쇄 회로를 포함하는 칩 카드 모듈
CN113067141B (zh) 一种薄膜天线、显示模组及显示装置
KR20080064728A (ko) Ic칩 실장용 접속체, 안테나 회로, ic인렛, ic태그및 정전용량 조정방법
US20130038497A1 (en) Antenna and method for manufacturing same
KR20120105237A (ko) 루프 안테나, 그에 적합한 루프 안테나 제조 방법 그리고 알에프아이디 카드 제조 방법
JP2013513156A (ja) Rfidタグ内蔵型インレイ、これを含むカード、及びrfidタグ内蔵型インレイの製造方法
JP2022507119A (ja) チップカード用電子モジュール
KR102159372B1 (ko) 안테나를 구비한 무선 통신 장치
KR20210057707A (ko) 투명 안테나 및 그 제조 방법
KR102159374B1 (ko) 안테나 패키지의 제조 방법
JP2016504647A (ja) チップカードモジュール用のコネクタを製造する方法、この方法によって得られるチップカードコネクタ、及びそのようなコネクタを含むチップカードモジュール
CN210840537U (zh) 屏蔽膜
CN102945503A (zh) 一种高频rfid易碎电子标签及其制造工艺
CN108021970B (zh) 一种透明隐形rfid标签材料及制备方法
CN203338796U (zh) 透明导电膜
CN208538860U (zh) 一种埋入式光感模组
KR101971108B1 (ko) 안테나 모듈 및 이의 제조 방법
KR102159370B1 (ko) 안테나 패키지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14358505

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11872080

Country of ref document: EP

Kind code of ref document: A1