WO2013031897A1 - 食品検査システム - Google Patents

食品検査システム Download PDF

Info

Publication number
WO2013031897A1
WO2013031897A1 PCT/JP2012/072016 JP2012072016W WO2013031897A1 WO 2013031897 A1 WO2013031897 A1 WO 2013031897A1 JP 2012072016 W JP2012072016 W JP 2012072016W WO 2013031897 A1 WO2013031897 A1 WO 2013031897A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
unit
food
conveyor
detector
Prior art date
Application number
PCT/JP2012/072016
Other languages
English (en)
French (fr)
Inventor
剛 石倉
繁 安部
勝人 伊藤
亮一 齊藤
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Publication of WO2013031897A1 publication Critical patent/WO2013031897A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food

Definitions

  • This invention relates to a food inspection system for performing a radioactivity inspection of food.
  • radioactivity concentration of all foods is to be measured, an apparatus capable of continuously and automatically inspecting the food contained in the packing box or the storage bag is required in view of the distribution form. There is no prior art regarding an apparatus that can continuously and automatically inspect such foods for contamination by radioactive substances.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-249692; name of invention “article carry-out monitor”
  • This prior art is to inspect for the presence of radioactive material (radioactive contamination) of materials (for example, pipes and scaffolds) transported from a management area of a radioactive material handling facility such as a nuclear power plant to an uncontrolled area. is there.
  • the prior art item export monitor monitors items (for example, pipes and scaffolds) to be inspected from the management area of radioactive material handling facilities such as nuclear power plants. In other words, it is for a single item.
  • the prior art article carry-out monitor was not designed with high speed inspection in mind.
  • foods are inspected in large quantities and at high speed with the box or bag containing a large number of foods, such as a carrot bag or an onion box, in the packaged state. . Therefore, an unprecedented new inspection logic is required.
  • an object of the present invention is to provide a food inspection system capable of performing high-speed inspection on a large number of inspection objects without sacrificing detection accuracy. There is.
  • the present invention provides A food inspection system for performing a radioactivity test on food contained in a packing box or a storage bag, An input unit for inputting data including the weight, height, depth, and width of the inspection target; A monitor unit for monitoring the inspection object by a detector; A central processing unit that calculates the radiation counting rate and the radioactive concentration of the radioactive substance based on the detection signal from the detector of the monitor unit; Preliminarily store the detection efficiency of the detector related to the basic model to be inspected and the detection efficiency correction formula obtained by simulation calculation using the basic model to be inspected and using variables such as weight, height, depth and width.
  • the food inspection system is characterized by functioning as a means for calculating the radioactivity concentration of the inspection object.
  • this invention is equipped with the conveyance conveyor which carries in a test
  • the central processing unit is In the high-speed inspection mode, the conveyance conveyor is controlled to be conveyed at high speed, and when the radioactivity concentration in the monitor unit is lower than the measurement lower limit value, the inspection object is determined to be safe, In the precise inspection mode, the conveyor is controlled so as to be conveyed at a low speed, and the radioactivity concentration is measured based on the detection signal from the monitor unit.
  • the conveyor includes a carry-in conveyor for carrying the inspection object into the monitor unit and a carry-out conveyor for carrying the inspection object out of the monitor unit, and the carry-in conveyor and the carry-out conveyor convey the conveyor at the same speed.
  • the inspection object conveyed from the carry-in conveyor may be conveyed to the carry-out conveyor with the monitor unit interposed therebetween.
  • the present invention includes a notification unit that issues a warning about contamination with radioactive substances, and the central processing unit issues a warning to the notification unit when the radioactivity concentration is higher than the measurement lower limit value in the high-speed inspection mode. Further, in the close inspection mode, when the radioactivity concentration exceeds a predetermined value, it is controlled to issue an alarm to the notification unit.
  • the monitor unit comprises: An upper detector that is arranged on the upper side with respect to the conveyance path to be inspected, detects radiation from a radioactive substance, and outputs a detection signal; A lower detector that is arranged on the lower side with respect to the conveyance path to be inspected, detects radiation from a radioactive substance, and outputs a detection signal; Built-in and inspected from the upper and lower sides of the inspection target.
  • the monitor unit includes an elevating mechanism that elevates and lowers the upper detector, and an elevating drive unit that is connected to the central processing unit and drives the elevating mechanism,
  • the central processing unit controls the elevation drive unit so that the optimal position is between the upper detector and the inspection target according to the height of the inspection target input from the input unit.
  • the monitor unit includes an SCA (single channel analyzer) that discriminates a signal having a wave height level within a predetermined range, and counts while reducing the background.
  • SCA single channel analyzer
  • Radioactive iodine ranges from 325 keV to 395 keV with a peak at 131 I of 364 keV,
  • the range is 545 keV to 725 keV with peaks at 605 keV of 134 Cs and 662 keV of 137 Cs.
  • FIG. 6A is a detailed view of a monitor unit
  • FIG. 6A is a side view
  • FIG. 6B is a plan view of an inspection object.
  • the food inspection system 1 performs a radioactivity inspection of an inspection object 2 that is food stored in a packing box or a storage bag.
  • a central processing unit 60, a notification unit 70, and a storage unit 80 are further provided, and various controls and arithmetic processes are performed by the central processing unit 60.
  • the food inspection system 1 includes a monitor unit 30 having two upper and lower detectors while moving an inspection object 2 that is a packing box or a storage bag in which food is stored, using a carry-in conveyor 10 and a carry-out conveyor 20.
  • the straw carry-in conveyor 10 further includes a carry-in belt main body 11 and a carry-in conveyor drive unit 12.
  • the carry-in belt conveyor body 11 conveys the inspection object 2 by a belt.
  • the carry-in conveyor drive unit 12 drives the belt of the carry-in belt conveyor body 11 to rotate.
  • the carry-in conveyor drive unit 12 is connected to the central processing unit 60, and the central processing unit 60 transmits a rotation control command to the carry-in conveyor drive unit 12 to control the conveyor speed.
  • the eaves conveyor 20 further includes an unloading belt conveyor body 21 and an unloading conveyor drive unit 22.
  • the carry-out belt conveyor main body 21 conveys the inspection object 2 by a belt.
  • the carry-out conveyor drive unit 22 drives the belt of the carry-out belt conveyor body 21 to rotate.
  • the carry-out conveyor drive unit 22 is connected to the central processing unit 60 as shown in FIG. 3, and the central processing unit 60 transmits a rotation control command to the carry-out conveyor drive unit 22 to control the conveyor speed.
  • the carry-in conveyor 10 and the carry-out conveyor 20 convey the inspection object 2 in the same direction at the same speed in one conveyance direction (arrow a direction).
  • the carry-in conveyor 10 and the carry-out conveyor 20 as described above constitute the transfer conveyor of the present invention.
  • the monitor unit 30 is located in the center of the food inspection system 1 and is disposed between the carry-in conveyor 10 and the carry-out conveyor 20.
  • the inspection object 2 is conveyed from the carry-in conveyor 10 to the monitor unit 30 ⁇ the carry-out conveyor 20.
  • the monitor unit 30 includes an upper monitor unit 31, a lower monitor unit 32, an upstream sensor 33, and a downstream sensor 34, and is connected to a central processing unit 60.
  • the upper monitor unit 31 further includes an upper detector 311, an amplifier 312, SCAs 313a, 313b, and 313c, an MCA 314, an elevating mechanism 315, and an elevating drive unit 316 as shown in FIG.
  • the upper detector 311 is a cylindrical body having a diameter of 50.8 mm and a height of 50.8 mm (diameter: 2 inches ⁇ 2 inches).
  • the upper detector 311 includes a NaI (Tl) scintillator and a photomultiplier tube.
  • the NaI (Tl) scintillator is made of sodium iodide (NaI) crystals containing a small amount of thallium (Tl) and reacts with ⁇ rays to generate scintillation light proportional to the energy of ⁇ rays.
  • a phenomenon in which ⁇ rays emit light by flashing when passing through a substance is called scintillation, and a substance that emits light is called a scintillator.
  • the upper detector 311 is connected to a high voltage generation circuit (not shown), and a high voltage of 500 V to 2000 V is supplied to the electrodes of the upper detector 311.
  • a high voltage generation circuit not shown
  • the NaI (Tl) scintillator of the upper detector 311 emits scintillation light
  • the photomultiplier tube outputs one pulse of the output voltage pulse, which is input to the amplifier 312.
  • the pulse peak value is proportional to the energy of ⁇ rays.
  • the field of view outside the measurement target is covered with lead so as to reduce the detection of the background, thereby reducing the background count rate.
  • the temperature processing of the count is performed by the central processing unit 60 by measuring the temperature in the vicinity of the detector with a temperature sensor (not shown).
  • the amplifier 312 improves the S / N of the detection signal, which is a voltage pulse signal, using a calculus filter, and further amplifies the detected signal to a wave height that can be used by the subsequent SCAs 313a, 313b, 313c and the MCA 314.
  • Single channel analyzers (hereinafter referred to as SCA) 313a, 313b, and 313c are types of comparators, and output logic pulses only when a peak value pulse in the range of a set upper and lower limit voltage is input from the amplifier 312. To do. In response to one analog pulse input, one logic pulse is output.
  • the SCA 313a has a range of 325 keV to 395 keV having a peak at 131 364 keV in order to detect radioactive iodine.
  • the SCA 313b detects radioactive cesium in the range of 545 keV to 725 keV having a peak at 605 keV of 134 Cs and 662 keV of 137 Cs. In this way, a specific range of pulses can be detected independently.
  • the SCA 313c may set a range so as to detect other nuclides. SCA can be increased or decreased as needed.
  • the central processing unit 60 includes counter means for counting the converted logic pulses output from the SCAs 313a, 313b, and 313c.
  • the counter means is configured to measure a count value per unit time, that is, a count rate, by setting a predetermined time in advance and measuring the count value of the logic pulse during the predetermined time.
  • the multi-channel analyzer (Multi-Channel Analyzer, hereinafter referred to as MCA) 314 can measure in various measurement modes. For example, the spectrum distribution as shown in FIG. 5 can be displayed on the screen of the display unit 52 of the input / output unit 50 via the central processing unit 60.
  • MCA Multi-Channel Analyzer
  • the lifting mechanism 315 is connected to the upper detector 311 as shown in FIG. 4 and FIG. 6A, and as shown in FIG. 6, a mechanical device that lifts and lowers the upper detector 311 in the vertical direction (arrow b direction). It is.
  • the detection efficiency (described later) of the detector changes. Therefore, according to the height of the inspection object 2, the detector 311 Adjust the distance so that the distance to the tip is optimal.
  • the elevating drive unit 316 has a function of transmitting the elevating and lowering driving force to the elevating mechanism 315.
  • the elevating drive unit 316 includes a motor and a motor driver and is controlled by the central processing unit 60. Is done.
  • the upper detector 311 performs detection at the center inspection point 2c in the front-rear direction of the inspection object 2 as shown in FIG.
  • the upper monitor unit 31 is like this.
  • the lower monitor unit 32 includes a lower detector 321, an amplifier 322, SCAs 323a, 323b, 323c, and an MCA 324, and rollers 325 and 326 as shown in FIG. ing.
  • the lower detector 321 Since the lower surface of the inspection object 2 always passes through the same plane, the lower detector 321 is fixed, and the distance from the lower surface of the inspection object 2 to the tip of the detector 321 is constant. Note that the inspection object 2 is supported from below by rollers 325 and 326 so that the lower surface of the inspection object 2 is at a constant height even in the vicinity of the lower detector 321. In the lower monitor unit 32, the radiation emitted from the lower surface of the inspection object 2 is counted. The rest has the same function as the upper detector 311 described above, and a duplicate description is omitted.
  • the amplifier 322, SCA 323a, 323b, 323c, and MCA 324 have the same functions as the amplifier 312, SCA 313a, 313b, 313c, and MCA 314 of the upper monitor unit 31, respectively. To do.
  • the upper detector 311 performs counting for the radiation passing through the upper surface of the inspection object 2
  • the lower detector 321 performs counting for the radiation passing through the lower surface of the inspection object 2. Then, the counts from the front end to the end of the inspection object 2 in the transport direction are summed up and down, and the following calculation is performed based on the count rate calculated using the total count.
  • the lower detector 321 detects radiation at the center inspection point 2c in the front-rear direction of the inspection object 2, as shown in FIG.
  • the upstream sensor 33 is an infrared sensor or the like, for example, and detects the inspection target tip 2a (the end point of the broken line on the right side of FIG. 6A) of the inspection target 2 to start measurement.
  • the downstream sensor 34 is, for example, an infrared sensor, and detects the inspection target rear end 2b of the inspection target 2 (the end point of the one-dot chain line portion on the left side of FIG. 6A) and ends the measurement.
  • the apparatus main body 40 houses a central processing unit 60 such as a CPU board, SCA 313a, 313b, 313c, MCA 314, lift drive unit 316, SCA 323a, 323b, 323c, MCA 324, notification unit 70, storage unit 80, and the like. It is a housing.
  • a central processing unit 60 such as a CPU board, SCA 313a, 313b, 313c, MCA 314, lift drive unit 316, SCA 323a, 323b, 323c, MCA 324, notification unit 70, storage unit 80, and the like. It is a housing.
  • the input / output unit 50 is specifically a touch panel, and integrally includes an input unit 51 and a display unit 52 as shown in FIG.
  • the input unit 51 is for operating and inputting inspection object data for the inspection object 2. Specifically, data on the shape and weight of the inspection object 2 is input, and four pieces of data (weight, height, depth, width) are input.
  • the display unit 52 displays the determination result, the radioactivity concentration, the MCA spectrum, and the like. As shown in FIG. 5, the MCA spectrum represents the counting rate for each energy, and the nuclide can be confirmed.
  • the central processing unit 60 is a so-called CPU or board type computer and has a function of performing various calculations and controls. The calculation of the radioactivity concentration will be described later.
  • the notification unit 70 outputs a sound such as a buzzer or a speaker, and is attached to the inside of the apparatus main body 40.
  • a buzzer sound is generated by a control signal from the central processing unit 60, or a warning is issued by sound.
  • the operator recognizes by notification that the test object 2 has a radioactivity concentration exceeding the standard.
  • reporting part 70 is not limited only to an audio
  • the storage unit 80 is connected to the central processing unit 60 as shown in FIG.
  • a hard disk drive or memory For example, a hard disk drive or memory.
  • the inspection target data described above and various data described later are registered.
  • radioactive contamination inspections There are two types of radioactive contamination inspections: a high-speed inspection mode and a fine inspection mode.
  • the inspection accuracy is low but the inspection speed is fast (the inspection time is short).
  • the inspection speed is slow (the inspection time is long). It is used properly according to the usage.
  • the processing capacity is about 200 boxes / hour (conveyor speed 5 cm / sec), and food with a depth of 60 cm is measured in 12 seconds. Inspect at high speed. It is possible to determine the presence or absence of radioactivity at the lower limit of measurement.
  • radioactivity concentration is determined at a lower measurement lower limit than in high-speed inspection, and nuclide can be confirmed by the energy spectrum of ⁇ rays.
  • the close inspection is also applied to the re-measurement of food that exceeds the judgment value in the high-speed inspection.
  • the radioactivity concentration is the radioactivity per unit weight of food containing radionuclides and is expressed by the following equation.
  • the counting rate is affected by the background counting rate. Therefore, the net count rate is calculated by subtracting the background count rate from the count rate, and the radioactivity concentration is calculated from the net count rate.
  • the radioactivity concentration considering this point is calculated by the following equation.
  • Q is the radioactivity concentration [Bq / kg].
  • C fg is a count value [count] obtained by the detector detecting ⁇ rays from the inspection object. Note that fg is Foreground. Since C fg includes a count from the background, subtraction correction is required.
  • T s is the measurement time [sec] of the inspection object.
  • C bg is a count value [count] obtained by the detector detecting ⁇ rays from natural radioactivity around the device. Note that bg is bakground. T bg is the background measurement time [sec].
  • S is the detection efficiency [cps / Bq]. It is a signal pulse count rate for detecting and outputting ⁇ rays per radioactivity of 1 Bq.
  • 1Bq is a radioactivity value at which one radioisotope decays per second.
  • the detection efficiency is defined by the distance from the radioactivity to the detector, the solid angle defined by the radioactivity and the size and distance of the detector, the rate at which the detector reacts with ⁇ rays, and the like.
  • M is the weight [kg] of the food to be inspected.
  • C fg [count] / T s [sec] represents the count rate [s ⁇ 1 ] of the detection target measurement value.
  • the background count rate [s ⁇ 1 ] is represented by C bg [count] / T bg [sec].
  • the net count rate is represented by (C fg [count] / T s [sec] ⁇ C bg [count] / T bg [sec]).
  • the net count rate is obtained by subtracting the background count rate from the count rate of the crest value in a certain energy range, and this net count rate is converted into the radioactivity concentration.
  • the detection sensitivity is improved so that the inspection object can be detected while being conveyed at high speed. This improvement in detection sensitivity is considered.
  • the detection sensitivity is expressed by the following equation.
  • Y is the radioactivity detection sensitivity [Bq]
  • Nb is the background count rate
  • Tb is the background measurement time
  • Ts is the measurement time
  • K is the calibration constant [Bq / cps].
  • a numerical value collected by brackets ⁇ represents a limit count rate (a lower limit value for making a significant difference with respect to the background count rate).
  • the low detection sensitivity Y of radioactivity means that the lower radioactivity can be measured and that the performance is high. Conversely, a high detection sensitivity Y means that only higher radioactivity can be measured, indicating that the performance is low. A lower detection sensitivity Y is better.
  • the detection sensitivity Y of the sensor is increased.
  • the detection sensitivity of the sensor decreases.
  • the conveyance speed is increased to reduce the measurement time T, and the detection sensitivity is increased.
  • the measurement time T is increased in the close inspection, and the detection sensitivity is lowered.
  • the trend of detection sensitivity is as follows.
  • T s is the measured time of the sample (s)
  • T b is the background measurement time (s)
  • n b is the background count rate (cps).
  • the background count rate is reduced to improve detection sensitivity.
  • the detection sensitivity becomes lower (lower radioactivity can be measured) and the performance is improved. Therefore, in order to reduce the background count rate, only the periphery of the peak of radioactivity emitted from the measurement object 2 is measured.
  • radioactive iodine 131 I
  • a 364 keV ⁇ -ray is selected as a peak, a measurement range is limited before and after the peak, and a count is integrated and measured in a certain energy range. Don't measure others. This reduces the background count rate and improves detection sensitivity. Specifically, it is as follows.
  • radioactive iodine 131 I
  • ⁇ -ray at 364 keV is the peak, and the measurement range is from 325 keV to 395 keV.
  • radioactive cesium 134 Cs and 137 Cs
  • ⁇ ke rays of 605 keV of 134 Cs and 662 keV of 137 Cs are peaks, and the measurement range is 545 keV to 725 keV.
  • the object to be inspected is food stored in a packing box or a storage bag.
  • a packing box or a storage bag For example, an onion packing box and a burdock packing box have different sizes and weights.
  • the detection efficiency also changes.
  • the detection efficiency of the detector also depends on the attenuation effect (internal shielding effect) due to the shielding of ⁇ rays inside the inspection object. Since the background count rate changes due to the internal shielding effect of the food, the change in the background count rate at the time of measurement is corrected by the size and weight of the food.
  • the outer periphery of the upper detector 311 and the lower detector 312 is covered with lead.
  • the detection efficiency of the detector also depends on the attenuation effect (external shielding effect) due to the shielding of ⁇ rays that reach the detector from the outside by lead.
  • the calculation of the detection efficiency is a different value for each of, for example, the onion packaging box and the burdock packaging box as described above.
  • a combination of a three-dimensional shape measurement laser system and a mass meter, the size and weight of the measurement object are measured each time, and the detection efficiency is calculated by Monte Carlo calculation each time. We were measuring.
  • a correction expression that is an approximate expression of the detection efficiency of the detector in consideration of the entire inspection target is generated in advance and registered in the storage unit 80.
  • This correction formula is to correct by substituting the four parameters (weight, height, depth, width) of the basic model.
  • This correction formula will be examined.
  • This is an internal shielding effect of the basic model, but the distribution of radioactive material in the basic model is assumed to be uniform without being unevenly distributed, and the internal shielding effect is assumed to be water having the same density as the food to be measured. By assuming water, the measurement of the shape and weight is omitted, and the measuring device is omitted, thereby simplifying the system. Furthermore, it eliminates the Monte Carlo calculation of the detection efficiency that has been performed each time, and facilitates the connection. Note that the change in the internal shielding effect is included in a correction formula described later.
  • the detection efficiency [s ⁇ 1 / Bq] for the size (height and width, depth) and weight of the food to be measured is calculated by the MCNP code (Monte Carlo calculation code), which is a Monte Carlo simulation code of radiation. . This is a specific example of the simulation of the present invention.
  • the MCNP code is as follows.
  • A The position and size of a source that generates ⁇ rays, a detector that detects ⁇ rays, and other structural materials are defined in three dimensions.
  • B Gamma rays are generated from the radiation source by random numbers. The traveling direction of ⁇ rays is determined in three dimensions using random numbers.
  • C When a gamma ray collides with a structure (detector) in the traveling direction, a random number is used to determine whether the reaction occurs or slips through, and how much signal is generated when the reaction occurs is simulated.
  • This correction formula is a formula for correcting the detection efficiency calculated for each basic model with four parameters (weight, height, depth, width).
  • weight, height, depth, width There are various types of sizes and weights of inspection objects.
  • the solid angle and distance to the detector vary depending on the size of the inspection object, and the internal shielding effect against gamma rays generated from the inside of the food varies depending on the weight. For this reason, the detection efficiency corresponding to the size and mass of the inspection object is required when calculating the radioactivity concentration from the measured value. Therefore, the detection efficiency [cps / Bq] for the food box of each size and mass of the measurement range is obtained by approximate expression calculation.
  • a correction formula for correction by four parameters (weight, height, depth, width) is obtained.
  • This correction formula is a formula that also takes into account changes in the shielding effect.
  • the correction formula in this embodiment is calculated using the correction formula shown in the following table by dividing the weight range into five levels of weight for a certain basic model packaging box. This eliminates the need for simulation calculations and enables high-speed measurement for any food box.
  • Table 2 shows calibration constants (K in Equations 3 and 4) calculated from the conversion constants calculated from such a correction formula.
  • the central processing unit 60 reads the optimum correction formula for the weight from the storage unit 80.
  • FIG. 7 to FIG. 10 show correction formulas when the main is weight category 5 (23 to 30 kg) as an example
  • FIG. 7 is a correction formula for length approximated by a quadratic function
  • FIG. 9 shows a height correction formula approximated by a linear function
  • FIG. 10 shows a weight correction formula approximated by a linear function.
  • the conversion constant is calculated based on the length, height, width, and weight by such a correction formula. It is possible to deal with various types of packing boxes or storage bags by determining a basic model corresponding to various types of packing boxes or storage bags and registering correction equations for a number of basic models.
  • the shape and weight measurement can be omitted, and the device can have a simple structure, which eliminates the trouble of performing a Monte Carlo calculation for each detection effect as in the prior art. make it easier.
  • the food inspection system is a high-speed and inexpensive device.
  • leaf vegetables etc. can measure about 90 Bq / kg as the lower limit of measurement for 131 I in the close inspection mode (measured for 120 seconds), and leaf vegetables for radioactive cesium. Can be measured at a measurement lower limit of about 100 Bq / kg. In high-speed inspection mode (12-second measurement), leaf vegetables and the like can measure about 230 Bq / kg as a measurement lower limit for 131 I, and leaf vegetables and the like can measure about 260 Bq as a measurement lower limit for radioactive cesium. / Kg can be measured.
  • the rice bag is an inspection object in which 5 kg, 10 kg, 20 kg, and 30 kg of rice are packed.
  • the specific values of detection sensitivity in this case are as shown in the following table.
  • 90 Bq / kg can be measured with a 30 kg rice bag for 131 I in high-speed inspection mode (12-second measurement), and 90 Bq / kg can be measured with a 30 kg rice bag for radioactive cesium. It is. Furthermore, in a fine inspection mode (120 seconds measurement), a 30 kg rice bag can measure 40 Bq / kg against 131 I, and a 30 kg rice bag can measure 40 Bq / kg using leafy vegetables against radioactive cesium. is there.
  • the background count rate is measured (step S1).
  • the background count rate is always measured when the food inspection system 1 is activated, and is measured at least once a day.
  • the central processing unit 60 performs detection in a state where there is no inspection target to measure the background count rate, and the central processing unit 60 stores the background count rate in the storage unit 80. When the food inspection system 1 is moved, the background count rate is measured again after restarting.
  • inspection object data is input (step S2). Since the detection efficiency varies depending on the dimensions of the packaging box and the weight of the food, the inspection target data about the dimensions (height, depth, and width) of the packaging box and the weight of the food are input.
  • the central processing unit 60 stores the inspection target data in the storage unit 80.
  • the dimensions and weight are re-input.
  • the central processing unit 60 also obtains the apparent density (weight / volume) of the measurement object 2 and stores it in the storage unit 80.
  • the upper detector height is set (step S3). Since the detection efficiency changes when the distance between the food and the detector changes, the height is adjusted.
  • the distance between the food and the detector is the same distance in the top and bottom (for example, 2 cm).
  • the central processing unit 60 accesses the database constructed in the storage unit 80 from the height of the inspection target data, reads the height of the upper detector 311 corresponding to the height of the inspection target 2, and controls the elevation drive unit 316. Then, the lifting mechanism 315 is mechanically driven, and the height of the upper detector is adjusted to such a distance that the detection efficiency is optimal.
  • the conveyor drive is started (step S4).
  • the central processing unit 60 drives the carry-in conveyor drive unit 12 and the carry-out conveyor drive unit 22 as shown in FIG.
  • the carry-in conveyor 11 and the carry-out conveyor 21 move the belt in the direction of arrow a.
  • the belt moves so that the conveyance speed becomes high.
  • the inspection object 2 is placed on the conveyor (step S5).
  • the inspection object 2 is conveyed to the monitor unit 30.
  • step S6 the central processing unit 60 starts high-speed inspection.
  • the central processing unit 60 automatically starts the high-speed inspection when the detection signal for detecting the inspection target tip 2a of the packing box that is the inspection target 2 is input from the upstream sensor 33.
  • the central processing unit 60 performs high-speed inspection (step S7).
  • ⁇ rays emitted from the inspection object are counted, and the central processing unit 60 counts the detection signal detected by the upper detector 311 via the amplifier 312, SCA 313 a, 313 b, and 313 c.
  • the detection signal detected by the lower detector 321 is counted via the amplifier 322, SCA 323a, 323b, and 323c.
  • the central processing unit 60 ends the high-speed inspection (step S8).
  • the inspection object rear end 2b of the packaging box that is the inspection object 2 is detected and the measurement is automatically stopped.
  • the central processing unit 60 calculates the radioactivity concentration and the measurement lower limit value (step S9). That is, the count rate C fg [count] obtained by detecting the ⁇ -rays from the inspection object 2 by the upper detector 311 and the lower detector 321 over the measurement time T s [sec] of the inspection object 2 is counted. (C fg [count] / T s [sec]) is calculated, and the net count rate is calculated by subtracting the background count rate C bg [count] / T bg [sec] registered in advance in step S1. Is calculated. The conversion constant is calculated by substituting the length, height, width, and weight into the correction formula, and the detection efficiency is calculated. Then, the radioactivity concentration is calculated by the above equation 2 using the inspection object weight. Further, the detection sensitivity (that is, the measurement lower limit value) that can be detected is calculated by the above equations (3) and (4).
  • the central processing unit 60 checks whether the radioactivity concentration exceeds the measurement lower limit value (step S10). If the radioactivity concentration does not exceed the lower limit of measurement, it is determined that there is little radiation from the radioactive material. In this case, the measurement for this inspection object is finished as it is. For example, in Table 3, it is possible to measure from about 230 Bq / kg or higher as a detection limit for 131 I in the high-speed inspection mode (12-second measurement), and as a detection limit for radioactive cesium with leaf vegetables or the like. Although it is said that measurement is possible from about 260 Bq / kg or more, in other words, when the radioactive concentration of 230 Bq / kg or more is not radiated, the detector itself in the high-speed inspection mode cannot be physically detected.
  • the radioactive material to be inspected is small and is not contaminated by radioactivity.
  • the measurement lower limit value which is the detection limit of the detector, is used as a determination criterion, it can be determined that there is radioactive contamination with high accuracy.
  • the central processing unit 60 displays the input / output unit 50 in yellow, and detects the notification unit ( Buzzer 70 is sounded. And it shifts to a close inspection mode. At this time, the conveyance speed is in the precise inspection mode, and the conveyor is operated at a low speed. The transition to the close inspection mode may be performed automatically or may be performed manually through the input unit 51.
  • the inspection object 2 is placed on the conveyor (step S12).
  • the inspection object 2 is conveyed to the monitor unit 30 at a low speed.
  • the central processing unit 60 starts a close inspection (step S13).
  • the central processing unit 60 automatically starts the precise inspection.
  • the central processing unit 60 performs a detailed inspection (step S14). In this fine inspection, gamma rays emitted from the inspection object are counted, and the central processing unit 60 counts the detection signal detected by the upper detector 311 via the amplifier 312, SCA 313 a, 313 b, and 313 c. Further, the detection signal is obtained by the MCA 314 to generate graph data representing the spectral characteristics. Similarly, the detection signal detected by the lower detector 321 is counted via the amplifier 322, SCA 323a, 323b, and 323c. Further, the detection signal is obtained by the MCA 324, and graph data representing the spectrum characteristics is generated.
  • the central processing unit 60 ends the close inspection (step S15).
  • the inspection object rear end 2b of the packaging box that is the inspection object 2 is detected and the measurement is automatically stopped.
  • the central processing unit 60 measures the radioactivity concentration (step S16). That is, a value obtained by summing up and down the inspection target is used, and a count value C fg [count] obtained by detecting a ⁇ -ray from the inspection target over the measurement time T s [sec] of the inspection target. To calculate the count rate (C fg [count] / T s [sec]) and subtract the pre-registered background count rate C bg [count] / T bg [sec] to get the net count Calculate the rate. Then, the detection efficiency of the detector / S [s ⁇ 1 / Bq] is also calculated by the correction formula.
  • the central processing unit 60 determines whether or not the radioactivity concentration exceeds the reference (step S17). If it is determined at each detection limit in consideration of the total error, it is determined that the standard based on the Food Sanitation Law is satisfied if it is below the standard (radiocesium 400 Bq / kg, radioiodine 131 I1600 Bq / kg). Whether radioactive cesium or radioactive iodine is present can be confirmed by the presence or absence of a peak of the spectrum represented on the display unit 52. Thereby, it is determined whether or not the standard is satisfied after considering whether radioactive cesium or radioactive iodine.
  • the central processing unit 60 determines that the radioactive concentration of radioactive cesium is below the standard (400 Bq / kg), or the radioactive concentration of radioactive iodine is below the standard (1600 Bq / kg). The test is terminated with a high probability that it is within the reference value.
  • the central processing unit 60 determines that the radioactive concentration of radioactive cesium exceeds the standard (400 Bq / kg), or determines that the radioactive concentration of radioactive iodine exceeds the standard (1600 Bq / kg). If the concentration exceeds the reference, radiation from the radioactive substance is detected (step S18), the input / output unit 50 is displayed in yellow, and the notification unit (buzzer) 70 is sounded. Further, the central processing unit 60 calculates the radioactivity concentration and further displays the spectrum on the display unit 52.
  • step S11 to step S12 in FIG. 11 whether to perform a detailed inspection after completion of the high-speed inspection for all inspection objects 2 or immediately when a significant value is not detected in the high-speed inspection. This is a flow that can be selected.
  • the food inspection system 1 of the present invention it is possible to connect to another personal computer via a LAN and operate remotely from the personal computer, and keep the distance between the substance to be measured and the person operating the device. be able to.
  • the detection efficiency [s ⁇ 1 / Bq] has been described as being calculated using the MCNP code (Monte Carlo calculation code) that is a Monte Carlo simulation code of radiation.
  • the present invention is not limited to the MCNP code, and various methods such as EGS5, MVP2, and MCNP5 can be employed.
  • the inspection object may be placed in one place and monitored by moving the monitor unit.
  • the food inspection system of the present invention has the following features, it is particularly suitable for high-speed food radioactivity inspection.
  • (1) Ease of inspection Measurement without changing the pre-treatment is possible. This contributes to smooth food distribution. Further, it is unnecessary to unpack for inspection, avoiding disposal, etc., and suppressing unnecessary cost increase. In addition, all the inspection objects can be inspected, which contributes to the improvement of reliability.
  • High detection sensitivity was realized by arranging two NaI (T1) detectors having a diameter of 2 inches and a height of 2 inches.
  • T1 detectors having a diameter of 2 inches and a height of 2 inches.
  • B The background count rate was reduced and the sensitivity was increased by SCA measurement (measurement using a time difference wave height converter).
  • nuclide identification that is, radioiodine ( 131 I) and radiocesium ( 134 Cs, 137 Cs) were discriminated and measured.
  • the present invention it is possible to realize a food inspection system that contributes to food safety and security, such as enabling radioactivity inspection of food in a package that was not assumed in the past, and avoiding reputational damage.
  • the food inspection system of the present invention can be used to ensure food safety by being used by persons involved in food distribution, such as consumers, producers, marketers, large consumers such as restaurants, and retail stores.

Abstract

 多量の検査対象に対し、検出精度を犠牲にすることなく高速の検査を行うようにした食品検査システムを提供する。 重さ、高さ、奥行き及び幅からなるデータを用いてシミュレーションにより検出器の検出効率を算出し、重さ、高さ、奥行き及び幅からなるデータを補正式に代入して検出器の検出効率を補正し、この検出効率およびモニタ部が測定した計数から得た計数率を用い、放射能濃度[Bq/kg]=計数率[S-1]/検出効率[S-1/Bq]/検査対象の重さ[kg]により検査対象の放射能濃度を算出する食品検査システムとした。

Description

食品検査システム
 この発明は、食品の放射能検査を行うための食品検査システムに関する。
 近年、食品が放射性物質(放射性ヨウ素や放射性セシウム)で汚染され、食品の安全・安心が脅かされる事象が発生した。そこで、食品が放射性物質で汚染されているか否かを検査できるようにしたいという要望があった。これにより、食品の信頼性が高まり、生産者が安心して食品を出荷でき、また、消費者が安心して食品を購入できる。
 そして、このような安全・安心な食品が流通する食品流通市場を確立するためには、全ての食品の放射能濃度測定を行うことが必要である。
 従来の食品の放射能濃度測定は、一般的に抜き取り検査により行われ、全ての食品の放射能濃度測定は行われていなかった。この理由は、食品の放射能濃度測定において、前処理を行って精密に測定していたためである。前処理は検査対象となる食品から採取したサンプルを細かく粉砕する処理である。したがって、放射能濃度測定は多大な労力と時間を要するものであり、全ての食品の放射能濃度測定は容易ではなかった。また、前処理では食品が粉砕されるため、市場に流通する全ての食品に対して放射能濃度測定を行うことはできなかった。
 仮に全ての食品の放射能濃度を測定するならば、流通形態に鑑み、梱包箱または収納袋に収められた食品を連続的に自動で検査できる装置が必要となる。このような食品を対象として放射性物質による汚染の有無を連続的に自動で検査可能とする装置についての従来技術は見当たらない。
 しかしながら、敢えて技術的構成の近接する従来技術を開示するならば、例えば、特許文献1(特開2008-249692号公報、発明の名称「物品搬出モニタ」)に記載の発明を挙げることができる。この従来技術は、原子力発電所など放射性物質取扱施設の管理区域から非管理区域に搬出される物(例えばパイプや足場など)の放射性物質による汚染(放射能汚染)の有無を検査するというものである。
特開2008-249692号公報
 全ての食品に対する自動的な放射能濃度測定のため、従来技術の物品搬出モニタにより食品を検査させることが考えられる。しかしながら、以下の理由により単純に適用できないという問題があった。
(1)検査対象が多い
 従来技術の物品搬出モニタは、原子力発電所など放射性物質取扱施設の管理区域から非管理区域に搬出される物(例えばパイプや足場など)を検査対象としてモニタリングするというものであって、いわば一品物を対象としている。また、従来技術の物品搬出モニタは、特に高速に検査することを念頭に置いたものではなかった。しかしながら、食品については、流通形態を鑑みると、荷姿のまま、例えば、にんじん一袋とか、たまねぎ一箱というように多数の食品を内蔵する箱や袋を検査対象として大量かつ高速に検査を行う。したがって、いままでにない新しい検査ロジックが必要となっていた。
(2)検出精度の維持とコスト抑制との両立
 食品が梱包された箱などが検査対象の場合、検出面積が広くなる。したがって、正確な検出には多数の検出器を必要とするが、コストが増大するという問題点があった。特許文献1でも多数のセンサを配置するものであり、コストの点で単純に食品検査用の装置への適用ができないものであった。検出精度を維持しつつも検出器を少なくして安価にし、普及を図りたいという社会的要請があった。
 そこで、本発明は上記の問題に鑑みてなされたものであり、その目的は、多量の検査対象に対し、検出精度を犠牲にすることなく高速の検査を行うようにした食品検査システムを提供することにある。
 そこで、本発明は、
 梱包箱または収納袋に収められた食品を検査対象として放射能検査を行う食品検査システムであって、
 検査対象についての重さ、高さ、奥行き及び幅からなるデータを入力する入力部と、
 検査対象のモニタリングを検出器により行うモニタ部と、
 モニタ部の検出器からの検出信号に基づいて放射性物質による放射線の計数率および放射能濃度の算出を行う中央処理部と、
 検査対象の基本モデルに関する検出器の検出効率と、検査対象の基本モデルを用い、重さ、高さ、奥行き及び幅を変数とするシミュレーション計算にて取得した検出効率の補正式とを予め記憶しておく記憶部と、
 演算結果を出力する出力部と、を備え、
 中央処理部は、入力された検査対象の重さ、高さ、奥行き及び幅からなるデータを前記補正式に代入して検出器の検出効率を決定し、
 この補正された検出効率および計数率を用い、
 放射能濃度[Bq/kg]=計数率[S-1]/検出効率[S-1/Bq]/検査対象の重さ[kg]
 により検査対象の放射能濃度を算出する手段として機能することを特徴とする食品検査システムとした。
 そして、本発明は、検査対象をモニタ部内へ搬入しモニタ部外へ搬出する搬送コンベアを備え、
 前記中央処理部は、
 高速検査モードでは搬送コンベアを高速で搬送するように制御するとともにモニタ部での放射能濃度が測定下限値よりも低いときは検査対象を安全と判定し、
 精密検査モードでは搬送コンベアを低速で搬送するように制御するとともにモニタ部からの検出信号に基づいて放射能濃度の測定を行うようにする。
 そして、好ましくは、前記搬送コンベアは、検査対象をモニタ部へ搬入する搬入コンベアと、検査対象をモニタ部から搬出する搬出コンベアと、を備え、搬入コンベアおよび搬出コンベアは同じ速度でコンベア搬送を行い、搬入コンベアから搬送される検査対象を、モニタ部を挟んで搬出コンベアへ搬送するようにすると良い。
 また、本発明は、放射性物質による汚染についての警報を発する報知部を備え、中央処理部は、高速検査モードでは放射能濃度が測定下限値よりも高いときに報知部に対して警報を発するように制御し、また、精密検査モードでは放射能濃度が所定値を超えるときに報知部に対して警報を発するように制御するようにした。
 また、本発明は、前記モニタ部が、
 検査対象の搬送経路に対して上側に配置され、放射性物質からの放射線を検出して検出信号を出力する上側検出器と、
 検査対象の搬送経路に対して下側に配置され、放射性物質からの放射線を検出して検出信号を出力する下側検出器と、
 を内蔵し、検査対象の上下両面から検査するようにした。
 そして、好ましくは、前記モニタ部が、前記上側検出器を昇降する昇降機構、および、前記中央処理部に接続されるとともにこの昇降機構を駆動する昇降駆動部を備えるものであり、
 前記中央処理部は、前記入力部から入力された検査対象の高さに応じて前記上側検出器と検査対象との間が最適位置となるように昇降駆動部を制御する。
 また、本発明は、前記モニタ部が、所定範囲の波高レベルの信号を弁別するSCA(シングルチャンネルアナライザ)を備え、バックグラウンドを低減して計数するようにした。
 そして、この所定範囲とは、
 放射性ヨウ素については131Iの364keVをピークとする325keV~395keVを範囲とし、
 放射性セシウムについては134Csの605keVと137Csの662keVをピークとする545keV~725keVを範囲とする。
 本発明によれば、多量の検査対象に対し、検出精度を犠牲にすることなく高速の検査を行うようにした食品検査システムを提供することができる。
本発明を実施するための形態に係る食品検査システムの正面図である。 本発明を実施するための形態に係る食品検査システムの平面図である。 本発明を実施するための形態に係る食品検査システムの回路ブロック図である。 上側モニタ部および下側モニタ部の説明図である。 γ線エネルギースペクトルを示す図である。 モニタ部の詳細図であり、図6(a)は側面図、図6(b)は検査対象の平面図である。 長さの補正を説明する特性図である。 幅の補正を説明する特性図である。 高さの補正を説明する特性図である。 重さの補正を説明する特性図である。 検査のフローを説明するフローチャートである。
 続いて、本発明を実施するための形態に係る食品検査システムについて、図を参照しつつ説明する。食品検査システム1は、図1の正面図および図2の平面図に示すように、梱包箱または収納袋に収められた食品である検査対象2の放射能検査を行うものであり、搬入コンベア10、搬出コンベア20、モニタ部30、装置本体40、入出力部50を備える。また、図3で示すように中央処理部60、報知部70、記憶部80をさらに備え、中央処理部60により各種の制御や演算処理がなされる。
 食品検査システム1は、食品が納められた梱包箱もしくは収納袋である検査対象2を搬入コンベア10および搬出コンベア20により移動させながら、上下2個の検出器を有するモニタ部30で、検査対象2の食品からの放射能の検査を行う。詳しくは放射線の計数および放射能濃度の測定を行うこととなる。さらに、エネルギー弁別により、放射性ヨウ素(131I)と放射性セシウム(134Csや137Cs)とを弁別しつつ放射能濃度を測定し、放射能濃度が基準を超える場合に表示及び音により注意を促しつつ放射能汚染について報知する。
  搬入コンベア10は、図1に示すように、さらに搬入ベルトコンベア本体11、搬入コンベア駆動部12を備えている。搬入ベルトコンベア本体11はベルトにより検査対象2を搬送する。搬入コンベア駆動部12は搬入ベルトコンベア本体11のベルトを回転駆動させる。搬入コンベア駆動部12は、図3でも示すように中央処理部60に接続されており、中央処理部60が搬入コンベア駆動部12へ回転制御指令を送信し、コンベア速度の制御がなされる。
  搬出コンベア20は、図1に示すように、さらに搬出ベルトコンベア本体21、搬出コンベア駆動部22を備えている。搬出ベルトコンベア本体21はベルトにより検査対象2を搬送する。搬出コンベア駆動部22は搬出ベルトコンベア本体21のベルトを回転駆動させる。搬出コンベア駆動部22は、図3でも示すように中央処理部60に接続されており、中央処理部60が搬出コンベア駆動部22へ回転制御指令を送信し、コンベア速度の制御がなされる。
 これら搬入コンベア10および搬出コンベア20は、一の搬送方向(矢印a方向)に同じ速度で同じ方向に検査対象2を搬送する。これらのような搬入コンベア10および搬出コンベア20は、本発明の搬送コンベアを構成する。
 モニタ部30は、食品検査システム1の中央にあって、搬入コンベア10および搬出コンベア20の間に配置されている。検査対象2は搬入コンベア10→モニタ部30→搬出コンベア20と搬送されていく。このようなモニタ部30は、図3で示すように、上側モニタ部31、下側モニタ部32、上流側センサ33、下流側センサ34を備え、中央処理部60に接続されている。
 そして、上側モニタ部31は、さらに図4で示すように、上側検出器311、アンプ312、SCA313a,313b,313c、MCA314、昇降機構315、昇降駆動部316を備えている。
 上側検出器311は、直径50.8mm×高さ50.8mm(直径2インチ×2インチ)の円柱体である。上側検出器311は、NaI(Tl)シンチレータと、光電子増倍管とを備える。NaI(Tl)シンチレータは、微量のタリウム(Tl)を含むヨウ化ナトリウム(NaI)の結晶からなり、γ線と反応してγ線のエネルギーに比例するシンチレーション光を発生する。γ線が物質内を通過するときに閃光により発光する現象を、シンチレーションといい、発光する物質をシンチレータという。
 また、上側検出器311には図示しないが高電圧発生回路が接続されており、上側検出器311の電極に対して500V~2000Vの高電圧が供給されている。
 上側検出器311へγ線が入射すると上側検出器311のNaI(Tl)シンチレータがシンチレーション光を放出し、光電子増倍管は出力電圧パルスを1パルス出力し、アンプ312へ入力される。なお、パルス波高値はγ線のエネルギーに比例する。
 なお、この上側検出器311では、バックグラウンドの検出を低減するように測定対象外の視野を鉛で覆っており、バックグラウンド計数率を低減させている。また、図示しない温度センサにて検出器直近の温度測定をすることにより中央処理部60にて計数の温度補償を行うようにしている。
 アンプ312は、電圧パルス信号である検出信号を微積分フィルターでS/N改善し、さらに後段のSCA313a,313b,313cやMCA314で利用できる波高となるまで増幅する。
 シングルチャネルアナライザ(Single Channel Analyzer、以下SCAという)313a,313b,313cは、コンパレータの一種であり、設定した上下限電圧の範囲の波高値パルスがアンプ312から入力された場合のみ、ロジックパルスを出力する。アナログパルス1パルスの入力に対して、ロジックパルス1パルスを出力する。
 この上下限電圧であるが、例えば、SCA313aは、放射性ヨウ素を検出するため、131Iの364keVをピークとする325keV~395keVを範囲とする。また、SCA313bは、放射性セシウムを検出するため、134Csの605keVと137Csの662keVをピークとする545keV~725keVを範囲とする。このようにして特定範囲のパルスを独立して検出できるようにしている。なお、SCA313cは、他の核種を検出するように範囲を設定すれば良い。SCAは必要に応じて数を増減できる。
 中央処理部60は、SCA313a,313b,313cから出力された、変換されたロジックパルスを計数するカウンタ手段を備える。カウンタ手段では、所定の時間を予めセットしておき、この所定時間中のロジックパルスの計数値を測定することによって、単位時間あたりの計数値すなわち計数率を測定可能に構成してある。
 マルチチャネルアナライザ(Multi Channel Analyzer,以下MCAと呼ぶ)314は、様々な測定モードで測定可能である。例えば、中央処理部60を介して入出力部50の表示部52の画面に図5のようなスペクトル分布を表示できるようになる。
  昇降機構315は、図4,図6(a)で示すように上側検出器311が連結されており、図6で示すように上側検出器311を上下方向(矢印b方向)に昇降する機械装置である。検査対象2の上面から検出器311の先端までの距離が変わると、検出器の検出効率(後述)が変わるため、検査対象2の高さに合わせて、検査対象2の上面から検出器311の先端までの距離が最適となるように一定に調整する。
 昇降駆動部316は、図4で示すように、昇降機構315に昇降する駆動力を伝達する機能を有しており、例えば、モータおよびモータドライバを有するものであり、中央処理部60により駆動制御される。
 このような上側モニタ部31では上側検出器311は、図6(b)で示すように、検査対象2の前後方向の中央の検査点2cで検出を行う。
 上側モニタ部31はこのようなものである。
 下側モニタ部32は、図4で示すように、下側検出器321、アンプ322、SCA323a,323b,323c、MCA324を備え、また、図6(a)で示すようにローラ325,326を備えている。
 検査対象2の下面は常に同じ平面を通過するため、下側検出器321は固定されており、検査対象2の下面から検出器321の先端までの距離を一定としている。なお、ローラ325,326により検査対象2を下側から支持しており、下側検出器321の付近でも検査対象2の下面が一定高さにあるようにしている。下側モニタ部32では、検査対象2の下面から放射される放射線の計数などを行う。後は、上記した上側検出器311と同じ機能を有するものであり、重複する説明を省略する。
 そして、アンプ322、SCA323a,323b,323c、MCA324は、上側モニタ部31のアンプ312、SCA313a,313b,313c、MCA314とそれぞれ同じ機能を有するものであり、同じ名称を付するとともに重複する説明を省略する。
 このように上側検出器311により検査対象2の上面を通過する放射線についての計数が、また、下側検出器321により検査対象2の下面を通過する放射線についての計数が、それぞれ行われる。そして、搬送方向で検査対象2の先端から終端までの計数を上下で合算し、この合計の計数を用いて算出した計数率に基づいて以下の演算が行われる。
 このような下側モニタ部32では下側検出器321は、図6(b)で示すように、検査対象2の前後方向の中央の検査点2cで放射線の検出を行う。
 上流側センサ33は、例えば赤外線センサ等であり、検査対象2の検査対象先端2a(図6(a)の右側の破線部の端点)を検知して測定を開始させる。
 下流側センサ34は、例えば赤外線センサ等であり、検査対象2の検査対象後端2b(図6(a)の左側の一点鎖線部の端点)を検知して測定を終了させる。
 装置本体40は、例えばCPUボードなどである中央処理部60、SCA313a,313b,313c、MCA314、昇降駆動部316、SCA323a,323b,323c、MCA324、報知部70、記憶部80等を収容している筐体である。
 入出力部50は、具体的にはタッチパネルであって、図3で示すように、入力部51と表示部52とを一体に備える。
 入力部51は、検査対象2についての検査対象データを操作入力するためのものである。具体的には検査対象2についての形状と重さについてのデータを入力するものであり、4個のデータ(重さ、高さ、奥行き、幅)を入力する。
 表示部52は、判定結果及び放射能濃度、MCAスペクトル等を表示する。MCAスペクトルは、図5に示すようにエネルギー別の計数率を表しており、核種の確認を可能とする。
 中央処理部60は、いわゆるCPUやボード型のコンピュータであって各種演算や制御を行う機能を有している。なお、放射能濃度の算出等については後述する。
 報知部70は、ブザーやスピーカなどの音声出力を行うものであり、装置本体40の内部に取り付けられている。中央処理部60からの制御信号によりブザー音を発したり、音声により警告を発する。オペレータは基準を超える放射能濃度を検査対象2が有することを報知により認識する。なお、報知部70は音声のみに限定するものではなく、例えば、周知の回転灯を用いて視覚による報知を加えても良い。
 記憶部80は、図3で示すように中央処理部60に接続されている。例えばハードディスクドライブやメモリである。先に述べた検査対象データや後述する各種のデータを登録する。
 続いて放射能汚染の検査の手法について説明する。放射能汚染の検査では、高速検査モードと精密検査モードとの二種類がある。高速検査モードでは検査精度は低いが検査速度が速い(検査時間が短い)モードであり、また、精密検査モードでは検査精度は高いが検査速度が遅い(検査時間が長い)モードであり、目的に応じて使い分けている。
 この放射能汚染の検査では日本の食品衛生法第6条第2項にもとづく(暫定)規制値を満たすか否かを判定している。(暫定)規制値は次表のようになる。
Figure JPOXMLDOC01-appb-T000001
 検出された放射能濃度がこの基準((暫定)規制値)を下回るときに安全と判定される。なお、上記の基準は本件国際出願の優先権主張の基礎となる特許出願が行われた時点(2011年8月31日当時)の基準である。将来基準が変更された場合には、その変更された基準で判定すれば良く、判定用の数値を設定変更することにより対処できる。
 また、コーデックス、EU、アメリカによる規制値は次表のようになる。
Figure JPOXMLDOC01-appb-T000002
 これら規制値を満たす必要がある検査では上記のコーデックス、EU、アメリカの規制値に基づいて検査を行う。したがって、中央処理部60に接続された記憶部80に登録されている規制値を変更すれば、それぞれの規制値に応じた検査が可能である。
 高速検査では高速で効率良く測定(判定値以下であるか否かを判定)し、処理能力は約200箱/時間(コンベア速度5cm/sec)であり、奥行き60cmの食品を12秒で測定し、高速で検査を行う。測定下限値で放射能の有無の判定を可能とする。
 また、精密検査では低速ではあるが精度良く測定(放射能濃度測定)し、処理能力は約20箱/時間(コンベア速度0.5cm/sec)であり、奥行き60cmの食品を120秒かけて測定し、精度良く検査を行う。精密検査では、高速検査に比べてより低い測定下限値で放射能濃度の判定を可能とし、γ線のエネルギースペクトルにより核種の確認を可能とする。精密検査は高速検査で判定値を超過した食品の再測定等にも適用する。
 続いて、梱包箱または収納袋に収められた食品である検査対象についての高速検査および精密検査の検査原理について説明する。ここで高速検査および精密検査で用いる放射能濃度の算出原理について説明する。放射能濃度とは、放射性核種を含む食品の単位重さ当たりの放射能のことであり、次式で表される。
Figure JPOXMLDOC01-appb-M000003
 ここで、計数率は、バックグラウンド計数率に影響される。そこで計数率からバックグラウンド計数率を引くことで正味計数率を算出し、正味計数率から放射能濃度を算出している。この点を考慮した放射能濃度は次式により算出される。
Figure JPOXMLDOC01-appb-M000004
 Qは放射能濃度[Bq/kg]である。
 Cfgは検査対象からのγ線を検出器が検出して得た計数値[カウント]である。なお、fgはForegroundである。Cfgの中にはバックグラウンドからの計数も含まれるため減算補正する必要がある。
 Tは検査対象の測定時間[sec]である。
 Cbgは装置周囲の自然放射能からのγ線を検出器が検出して得た計数値[カウント]である。なお、bgはBackgroundである。
 Tbgはバックグラウンドの測定時間[sec]である。
 Sは検出効率[cps/Bq]である。放射能1Bq当たりのγ線を検出して出力する信号パルス計数率である。1Bqは1秒間に放射性同位元素が1崩壊する放射能値である。検出効率は放射能から検出器までの距離及び放射能の大きさと検出器の大きさと距離で規定される立体角、検出器がγ線と反応する割合等で規定される。
 Mは検査対象のうちの食品の重さ[kg]である。
 Cfg[カウント]/T[sec]で検出対象測定値の計数率[s-1]を表す。
 Cbg[カウント]/Tbg[sec]でバックグラウンド計数率[s-1]を表す。
 (Cfg[カウント]/T[sec]-Cbg[カウント]/Tbg[sec])で正味計数率を表す。
 上記数2では、一定のエネルギー範囲の波高値の計数率からバックグラウンド計数率を引いて正味計数率を求め、この正味計数率を放射能濃度に換算している。ここで、検査対象を高速搬送すると放射線を検出しにくくなるため、検査対象を高速搬送しながら検出できるようにするため、検出感度の改善を図る。この検出感度の改善について考察する。まず、検出感度は次式により表される。
Figure JPOXMLDOC01-appb-M000005
 ここにYは放射能の検出感度[Bq]、Nbはバックグラウンド計数率、Tbはバックグラウンド測定時間、Tsは測定時間、Kは校正定数[Bq/cps]である。また、大括弧{}によりまとめられた数値は限界計数率(バックグラウンド計数率に対して有意な差を出すための下限値)を表す。
 ここで放射能の検出感度Yが低いということはより低い放射能が測定できるということであり性能が高いことを表す。また、逆に検出感度Yが高いということはより高い放射能しか測定できないということであり性能が低いことを表す。検出感度Yは低いほうが良いこととなる。
 このうち搬送速度が速くなれば測定時間Tは少なくなるため、センサの検出感度Yは高くなる。一方、搬送速度が遅くなれば測定時間Tは多くなるため、センサの検出感度は低くなる。本形態では高速検査では搬送速度を早くして測定時間Tを少なくしており、検出感度が高くなる。この場合は他の要因により検出感度を低くできればより高速の検査が可能となる。また、本形態では精密検査では測定時間Tを多くしており、検出感度が低くなる。検出感度の傾向はこのようになる。
 なお、コーデックス、EU、アメリカでは上記の数3に代えてσによる方法(kaiserの理論k=3)に従うものである。この3σによる方法では次式に従う。
Figure JPOXMLDOC01-appb-M000006
 ここに、Tは試料の測定時間(s)であり、Tはバックグラウンド計測時間(s)であり、nはバックグラウンド計数率(cps)である。このように数3,数4の何れを使用するかは、適用する基準、つまり、日本の食品衛生法第6条第2項、コーデックス、EU、アメリカの規制値により相違する。これら何れの規制値、感度判定式を用いても本発明の実施は可能である。
 具体的な検出感度の改善の工夫としてバックグラウンド計数率を低減させ、検出感度を改善する。
 例えば上記した、数3,数4において、バックグラウンド計数率Nb,nbを下げると、より低い検出感度(より低い放射能が測定できる)となり性能が向上する。
 そこで、バックグラウンド計数率を小さくするために、測定対象2から発する放射能のピークの周囲のみを測定する。この点について図を参照しつつ説明する。例えば、図5で示すように、放射性ヨウ素(131I)について、364keVのγ線をピークと選定するとともに、ピークの前後で測定範囲を限定し、一定のエネルギー範囲で計数を積算して測定し、他は測定しないようにする。これにより、バックグラウンド計数率を低減させ、検出感度を改善する。具体的には、以下のようになる。
 放射性ヨウ素(131I)については、364keVのγ線をピークとし、325keV~395keVを測定範囲とする。
 放射性セシウム(134Csと137Cs)については、134Csの605keVと137Csの662keVのγ線をピークとし、545keV~725keVを測定範囲とする。このようにバックグラウンド計数率の低減により、検出感度が改善され、高速検査および精密検査において検出能力を向上させている。
 続いて検出効率の向上について検討する。まず、検出効率について説明する。
 検査対象は梱包箱または収納袋に収められた食品であるが、例えばタマネギ用の梱包箱やゴボウ用の梱包箱はそれぞれ大きさや重さが異なる。検査対象である梱包箱または収納袋の大きさや重さが変化すると検出効率も変化する。このように検査対象の大きさ及び重さが変化するとき、検査対象に対して検出効率[Bq/S-1]を変える必要がある。
 また、検出器の検出効率は、検査対象内部でのγ線の遮蔽による減衰効果(内部遮蔽効果)にも依存する。食品の内部遮蔽効果によりバックグラウンド計数率は変化するため、食品の大きさ及び重量により測定時のバックグラウンド計数率の変化を補正している。
 なお、先に述べたように上側検出器311や下側検出器312の外周を鉛で覆っている。検出器の検出効率は、外部から検出器へ到達するγ線を鉛が遮蔽することによる減衰効果(外部遮蔽効果)にも依存する。
 続いて検出効率の変化について説明する。検出効率の計算は、上記したような例えばタマネギ用の梱包箱やゴボウ用の梱包箱ではそれぞれ別途異なる値である。食品検査に係るものではないが、従来技術では、3次元形状測定レーザーシステムと質量計を組み合わせて、測定対象の大きさと重さを、毎回実測し、検出効率をその都度モンテカルロ計算により算出し、測定を行っていた。
 これは、原子力発電所など放射性物質取扱施設の管理区域から非管理区域に搬出される物品(例えばパイプや足場など)を検査対象として放射性物質による汚染(放射能汚染)の有無を検査するという場合には、時間に余裕があり、上記の測定方法でも特に問題は生じていなかった。しかしながら、食品の大量の検査において、形状及び重さの測定をその都度行うことは時間的に容易ではない。
 そこで、検出効率の計算の簡略化を行う。検査対象全体を考慮した検出器の検出効率の近似式である補正式が予め生成され、記憶部80に登録されている。この補正式は基本モデルの4個のパラメータ(重さ・高さ・奥行き・幅)を代入して補正するというものである。この補正式について検討する。基本モデルの内部遮蔽効果であるが、基本モデルにおける放射性物質の分布は偏在することなく均一と仮定し、内部遮蔽効果は測定対象である食品と同じ密度の水であるものと仮定して行う。水と仮定することで形状及び重さの測定を省略するようにして計測装置を省いてシステムを簡便にする。さらに、その都度行っていた検出効率のモンテカルロ計算も省き、取り合いを容易にする。なお、内部遮蔽効果の変化は後述する補正式の中に含められている。 
 このような仮定を行った上で、それぞれの基本モデルについての標準の検出効率を予め算出しておく。測定対象となる食品の大きさ(高さ及び幅、奥行き)及び重さに対する検出効率[s-1/Bq]は、放射線のモンテカルロシミュレーションコードである、MCNPコード(モンテカルロ計算コード)で計算される。これは本発明のシミュレーションの一具体例である。MCNPコードは以下の通りである。
 まず、線源(=放射能を含んだ食品)から発生するγ線をシミュレーションし、検出器にどの程度の割合で反応し、どのような大きさの信号を発生するかを、モンテカルロ法でシミュレーションする。具体的には以下の手順でシミュレーションする。
(イ)3次元で、γ線を発生する線源、γ線を検出する検出器、その他構造材の位置・大きさを規定する。
(ロ)乱数により、線源からγ線を発生させる。乱数によりγ線の進行方向を3次元で決める。
(ハ)γ線が進行方向の構造体(検出器)と衝突した場合、反応を起こすかすり抜けるかを乱数で決め、反応した場合どの程度の信号を発生するかをシミュレーションする。
 このMCNPコードにより、検出器の反応数/γ線発生本数=検出効率として、検出効率を算出する。このような検出効率が基本モデル別に予め算出されている。
 続いて、検査対象全体を考慮した検出器の検出効率の近似式である補正式について説明する。この補正式は、基本モデル別に算出されている検出効率を4個のパラメータ(重さ・高さ・奥行き・幅)により補正する式である。検査対象の大きさ及び重さは様々な種類がある。検査対象の大きさにより検出器に対する立体角と距離が変わり、重さにより食品内部から発生するγ線に対する内部遮蔽効果が変わる。このため、検査対象の大きさ及び質量に該当する検出効率が、測定値から放射能濃度を算出する際に必要となる。そこで、測定範囲の各々の大きさ及び質量の食品箱に対する検出効率[cps/Bq]を、近似式計算により求めている。
 そしてこの標準の検出効率の計算結果を用い、4個のパラメータ(重さ・高さ・奥行き・幅)により補正する補正式を求める。標準である基本モデルの検出効率から近似式で重さ及び高さ、奥行き、幅で補正し、測定対象の検出効率の逆数に相当する校正定数である換算定数[Bq/S-1](=1/検出効率[S-1/Bq])を簡便に算出する。この補正式は、遮蔽効果の変化も考慮された式となっている。
 このような近似式が記憶部80に登録されている。本形態での補正式は、ある基本モデルの梱包箱に対し、重さの範囲を5段階の重量に分けて、次表の補正式で算出を行っている。これにより、シミュレーション計算を不要とし、任意の食品箱に対して、高速に測定が可能となる。このような補正式から算出された換算定数により算出される校正定数(数3,数4のK)を表2に記載する。
Figure JPOXMLDOC01-appb-T000007
 中央処理部60は、重さに対する最適な補正式を記憶部80から読み出す。図7~図10は、特に一例として主さが重量区分5(23~30kg)の場合の補正式を示しており、図7は二次関数で近似された長さの補正式、図8は二次関数で近似された幅の補正式、図9は一次関数で近似された高さの補正式、図10は一次関数で近似された重さの補正式である。このような補正式により長さ、高さ、幅、重さにより換算定数が算出されることとなる。なお、各種の梱包箱または収納袋に対応させて基本モデルを決定し、多数の基本モデル別の補正式を登録することで、各種の梱包箱または収納袋に対応できる。このように簡便な検出効率の近似式の採用により、形状及び重さの測定を省き装置を簡便な構造とし、従来技術のようなその都度の検出効果のモンテカルロ計算をする手間を省き、取り扱いを容易にする。その結果、食品検査システムを高速で、安価な装置としている。
 続いて測定の具体例を挙げて説明する。ここでは箱(60×40×32cm)に10Kgの野菜を梱包した検査対象であるものとして説明する。この場合の検出感度の具体値は次表のようになる。
Figure JPOXMLDOC01-appb-T000008
 この方法では、表4に示す通り、精密検査モード(120秒測定)で131Iに対して葉菜等は、測定下限として約90Bq/kgの測定が可能であり、放射性セシウムに対して葉菜等は、測定下限として約100Bq/kgの測定が可能である。
 また、高速検査モード(12秒測定)で131Iに対して葉菜等は、測定下限として約230Bq/kgの測定が可能であり、放射性セシウムに対して葉菜等は、測定下限として約260Bq/kgの測定が可能である。
 続いて測定の他の具体例を挙げて説明する。ここでは米袋に5Kg,10Kg,20kg、30kgの米を梱包した検査対象であるものとして説明する。この場合の検出感度の具体値は次表のようになる。
Figure JPOXMLDOC01-appb-T000009
 この表5に示す通り、高速検査モード(12秒測定)で131Iに対して30kgの米袋で90Bq/kgの測定が可能で、放射性セシウムに対して30kgの米袋で90Bq/kgの測定が可能である。
 また、精密検査モード(120秒測定)で131Iに対して30kgの米袋で40Bq/kgの測定が可能で、放射性セシウムに対して30kgの米袋は葉菜等で40Bq/kgの測定が可能である。
 続いてこのような食品検査システムにおける測定について図11で示すフローチャートに基づいて説明する。
 まず、バックグラウンド計数率を測定する(ステップS1)。食品検査システム1を起動する時に必ずバックグラウンド計数率を測定するものであり、少なくとも1日1回は測定する。中央処理部60は、検査対象がない状態で検出を行ってバックグラウンド計数率を測定し、中央処理部60がこのバックグラウンド計数率を記憶部80に記憶させる。なお、食品検査システム1を移動する時は再起動の上で改めてバックグラウンド計数率を測定する。
 続いて検査対象データを入力する(ステップS2)。梱包箱の寸法及び食品の重量により検出効率が変わるため、梱包箱の寸法(高さ、奥行き及び幅)および食品の重さについての検査対象データを入力する。オペレータが入出力部50の入力部51を操作して検査対象データを入力すると、中央処理部60はこの検査対象データを記憶部80に記憶させる。なお、異なる検査対象を検査する場合には、寸法及び重量を再入力することとなる。中央処理部60は、測定対象2の見かけの密度(重さ/体積)も求めて記憶部80に記憶させる。
 続いて、上側検出器高さの設定を行う(ステップS3)。食品~検出器間の距離が変わると検出効率が変わるため、高さを調整する。食品~検出器間の隙間の距離は上下で同じ距離(例えば2cm)である。中央処理部60は、検査対象データの高さから記憶部80に構築されたデータベースにアクセスし、検査対象2の高さに対応する上側検出器311の高さを読み出し、昇降駆動部316を制御して昇降機構315を機械駆動し、検出効率が最適となるような距離に上側検出器高さを調整する。
   続いて、コンベア駆動を開始(ステップS4)する。オペレータが入出力部50を操作して、コンベアを駆動するように操作すると、図3で示すように、中央処理部60は、搬入コンベア駆動部12および搬出コンベア駆動部22を駆動させ、図1,図2で示すように、搬入コンベア11および搬出コンベア21が矢印a方向にベルトを移動させる。ここで、最初は高速検査を行うため、搬送速度が高速となるようにベルトが移動する。
 続いて、検査対象2をコンベア上に載置する(ステップS5)。オペレータが、検査対象データが入力済みの検査対象2を、搬入コンベア11のベルトに上に配置すると、モニタ部30へ検査対象2が搬送されていく。
 最初は高速検査を行う。まず、中央処理部60は、高速検査を開始する(ステップS6)。中央処理部60は、上流側センサ33から検査対象2である梱包箱の検査対象先端2aを検知する検出信号が入力されると、高速検査を自動開始する。
 中央処理部60は、高速検査を行う(ステップS7)。この高速検査では、検査対象から発するγ線の計数を行うものであり、中央処理部60は、上側検出器311で検出した検出信号をアンプ312、SCA313a、313b、313cを介して計数を行う。また、同様に下側検出器321で検出した検出信号をアンプ322、SCA323a、323b、323cを介して計数を行う。
 続いて中央処理部60は、高速検査を終了する(ステップS8)。検査対象2である梱包箱の検査対象後端2bを検知して測定を自動停止する。
 続いて、中央処理部60は、放射能濃度および測定下限値を算出する(ステップS9)。すなわち検査対象2の測定時間T[sec]にわたり検査対象2からのγ線を上側検出器311および下側検出器321が検出して得た計数値Cfg[カウント]を計数して計数率(Cfg[カウント]/T[sec])を算出し、ステップS1で行って予め登録しておいたバックグラウンド計数率Cbg[カウント]/Tbg[sec]を引くことで正味計数率を算出する。補正式に長さ、高さ、幅、重さを代入して換算定数が算出され、検出効率が算出されることとなる。そして、検査対象重さを用いて上記の数2により放射能濃度が算出される。また、上記の数3,数4により検出可能な検出感度(つまり測定下限値)が算出される。
 中央処理部60は、放射能濃度が測定下限値を上回るかの確認を行う(ステップS10)。放射能濃度が測定下限値を上回らない場合には、放射性物質からの放射が少ないと判定する。この場合、このままこの検査対象に対する測定は終了する。例えば、表3では高速検査モード(12秒測定)で131Iに対して葉菜等は検出限界として約230Bq/kg以上から測定が可能であり、放射性セシウムに対して葉菜等で検出限界として約260Bq/kg以上から測定が可能であるとされているが、換言すれば、230Bq/kg以上の放射能濃度が放射されていないときは高速検査モードでの検出器自体が物理的に検出不能となって高速検査モードでは検出されないことになり、このときは、検査対象の放射性物質は少なく、放射能に汚染されていないと判定される。このように検出器の検出限界である測定下限値を判定基準とすれば、高確度で放射能汚染が有ると判定できる。
 一方、中央処理部60は、放射能濃度が測定下限値を上回るような場合には、放射性物質からの放射が検出されたとして(ステップS11)、入出力部50を黄色表示し、報知部(ブザー)70を鳴動させる。そして、精密検査モードへ移行する。この際、搬送速度は精密検査モードであってコンベアの低速運転が行われる。なお、精密検査モードへの移行は自動的に移行するようにしたり、または、入力部51を通じて手動で移行させても良い。
 続いて、検査対象2をコンベア上に載置する(ステップS12)。オペレータが、高速検査で放射性物質の付着が疑われた検査対象2を再度搬入コンベア11のベルト上に載置すると、モニタ部30へ検査対象2が低速で搬送されていく。
 ここでは精密検査を行う。まず、中央処理部60は、精密検査を開始する(ステップS13)。中央処理部60は、上流側センサ33から検査対象2である梱包箱の検査対象先端2aを検知する検出信号が入力されると、精密検査を自動開始する。
 中央処理部60は、精密検査を行う(ステップS14)。この精密検査では、検査対象から発するガンマ線の計数を行うものであり、中央処理部60は、上側検出器311で検出した検出信号をアンプ312、SCA313a、313b、313cを介して計数を行う。また、MCA314により検出信号を得てスペクトル特性を表すグラフデータを生成する。同様に、下側検出器321で検出した検出信号をアンプ322、SCA323a、323b、323cを介して計数を行う。また、MCA324により検出信号を得てスペクトル特性を表すグラフデータを生成する。
 続いて中央処理部60は、精密検査を終了する(ステップS15)。検査対象2である梱包箱の検査対象後端2bを検知して測定を自動停止する。
 続いて、中央処理部60は、放射能濃度を測定する(ステップS16)。すなわち検査対象に対して上下で合算した値を用いるものであり、検査対象の測定時間T[sec]にわたり検査対象からのγ線を検出器が検出して得た計数値Cfg[カウント]を計数して計数率(Cfg[カウント]/T[sec])を算出し、予め登録しておいたバックグラウンド計数率Cbg[カウント]/Tbg[sec]を引くことで正味計数率を算出する。そして補正式により検出器の検出効率/S[s-1/Bq]も算出する。最終的に放射能濃度は、上記数2、すなわち、Q[Bq/kg]=(Cfg[カウント]/T[sec]-Cbg[カウント]/Tbg[sec])/S[s-1/Bq]/M[kg]から算出される。
 中央処理部60は、放射能濃度が基準を超えるか否かを判定する(ステップS17)。合計誤差を考慮して各々の検出限界で判定すると、基準(放射性セシウム400Bq/kg、放射性ヨウ素131I1600Bq/kg)以下であるならば、食品衛生法にもとづく基準を満たすと判定される。なお、放射性セシウムか放射性ヨウ素かは表示部52に表されるスペクトルのピークの有無により確認できる。これにより、放射性セシウムか放射性ヨウ素かを考慮した上で基準を満たすか否かが判定される。
 中央処理部60は、放射性セシウムの放射能濃度は基準(400Bq/kg)以下であると判断した、または、放射性ヨウ素の放射能濃度は基準(1600Bq/kg)以下であると判断したときに、高い確率で基準値以内であると判定し検査を終了する。
 一方、中央処理部60は、放射性セシウムの放射能濃度は基準(400Bq/kg)を超えると判定した、または、放射性ヨウ素の放射能濃度は基準(1600Bq/kg)を超えると判定し、放射能濃度が基準を超えるような場合には、放射性物質からの放射が検出されたとして(ステップS18)、入出力部50を黄色表示し、報知部(ブザー)70を鳴動させる。また、中央処理部60は、放射能濃度を算出し、さらに表示部52にスペクトル表示を行う。
 なお、高速検査を検査対象全てについて行い、基準を超える場合には黄表示点灯およびブザー鳴動が行われるのみとし、この検査対象に印を付けて特定箇所に載置しておき、高速検査終了後に精密検査を一括して行うようにしても良い。図11のステップS11からステップS12までの波線による矢印については、全ての検査対象2についての高速検査終了後に精密検査を行うか、または、高速検査で有意な値が検出されないときに直ちに行うかを選択できるフローである。
 なお、本発明の食品検査システム1では、さらに他のパーソナルコンピュータとLANで接続し、パーソナルコンピュータにより遠隔から操作することが可能であり、測定対象の物質と装置を操作する人との距離をおくことができる。
 以上、本発明の食品検査システムについて説明した。なお、先の説明では本発明のシミュレーションの一具体例として、検出効率[s-1/Bq]を放射線のモンテカルロシミュレーションコードであるMCNPコード(モンテカルロ計算コード)で計算するものとして説明した。しかしながら、MCNPコードに限定する趣旨ではなく、例えばEGS5,MVP2,MCNP5など各種方法を採用できる。
 また、本発明では搬送部が検査対象を搬送するものであるとして説明した。しかしながら、検査対象を一カ所に載置し、モニタ部を移動させてモニタリングするようにしても良い。
 本発明の食品検査システムは以下の特長を有するため、特に高速での食品の放射能検査に適している。
(1)検査の容易性
 前処理無しで、荷姿のままでの測定を可能とした。
 このため円滑な食品流通に寄与する。また、検査のための荷ほどきをする必要もなくして廃棄などを回避し、無用なコスト増大を抑制している。また、全ての検査対象に対する検査を可能とし、信頼性の向上に寄与する。
(2)迅速処理の実現
(a)高感度の検出器及び測定方式により短時間測定を可能とした。
(b)コンベア方式により連続測定を可能とした(コンベア速度:5cm/sec,0.5cm/sec等)。
(3)高い検出感度
(a)直径2インチ×高さ2インチのNaI(T1)検出器を上下2本配置することにより高感度化を実現した。
(b)SCA測定(時間差波高変換器による測定)により、バックグラウンド計数率を低減させ高感度化を行った。
(4)高い精度測定
(a)測定物の寸法及び重量が変わると検出効率が変化するため、MCNP計算による検出効率データベースを寸法及び重量別に準備し、さらに補正式を用いて寸法及び重量に応じて補正を行うことで、最適な検出効率による測定を可能とした。
(b)測定物と検出器の距離が一定となるように自動調整し測定精度を保持した。
(5)核種の確認
 MCA(Multi Channel Analyzer)によるγ線のエネルギースペクトル表示により核種の確認を可能とした。
 これにより、核種の識別、つまり放射性ヨウ素(131I)と放射性セシウム(134Cs,137Cs)を弁別して測定可能とした。
 これら効果が相乗的に相俟って高速で検出能力を高めた食品検査システムを実現している。
 この発明によれば、従来では想定していなかった荷姿での食品の放射能検査を可能とし、風評被害を回避するなど食の安全・安心に寄与する食品検査システムを実現することができる。
 本発明の食品検査システムは、食品流通に係る者、例えば消費者、生産者、市場関係者、レストランなどの大口消費者、小売店舗などが用いることで、食品の安全確保に適用できる。
1:食品検査システム
10:搬入コンベア
11:搬入ベルトコンベア本体
12:搬入コンベア駆動部
20:搬出コンベア
21:搬出ベルトコンベア本体
22:搬出コンベア駆動部
30:モニタ部
31:上側モニタ部
311:上側検出器
312:アンプ
313a,313b,313c:SCA
314:MCA
315:昇降機構
316:昇降駆動部
32:下側モニタ部
321:上側検出器
322:アンプ
323a,323b,323c:SCA
324:MCA
325:ローラ
326:ローラ
33:上流側センサ
34:下流側センサ
40:装置本体
50:入出力部
51:入力部
52:表示部
60:中央処理部
70:報知部
80:記憶部
 
2:検査対象
2a:検査対象先端
2b:検査対象後端
2c:検査点

Claims (8)

  1.  梱包箱または収納袋に収められた食品を検査対象として放射能検査を行う食品検査システムであって、
     検査対象についての重さ、高さ、奥行き及び幅からなるデータを入力する入力部と、
     検査対象のモニタリングを検出器により行うモニタ部と、
     モニタ部の検出器からの検出信号に基づいて放射性物質による放射線の計数率および放射能濃度の算出を行う中央処理部と、
     検査対象の基本モデルに関する検出器の検出効率と、検査対象の基本モデルを用い、重さ、高さ、奥行き及び幅を変数とするシミュレーション計算にて取得した検出効率の補正式とを予め記憶しておく記憶部と、
     演算結果を出力する出力部と、を備え、
     中央処理部は、入力された検査対象の重さ、高さ、奥行き及び幅からなるデータを前記補正式に代入して検出器の検出効率を決定し、
     この補正された検出効率および計数率を用い、
     放射能濃度[Bq/kg]=計数率[S-1]/検出効率[S-1/Bq]/検査対象の重さ[kg]
     により検査対象の放射能濃度を算出する手段として機能することを特徴とする食品検査システム。
  2.  請求項1に記載の食品検査システムにおいて、
     検査対象をモニタ部内へ搬入しモニタ部外へ搬出する搬送コンベアを備え、
     前記中央処理部は、
     高速検査モードでは搬送コンベアを高速で搬送するように制御するとともにモニタ部での放射能濃度が測定下限値よりも低いときは検査対象を安全と判定し、
     精密検査モードでは搬送コンベアを低速で搬送するように制御するとともにモニタ部からの検出信号に基づいて放射能濃度の測定を行うことを特徴とする食品検査システム。
  3.  請求項2に記載の食品検査システムにおいて、
     前記搬送コンベアは、検査対象をモニタ部へ搬入する搬入コンベアと、検査対象をモニタ部から搬出する搬出コンベアと、を備え、搬入コンベアおよび搬出コンベアは同じ速度でコンベア搬送を行い、搬入コンベアから搬送される検査対象を、モニタ部を挟んで搬出コンベアへ搬送することを特徴とする食品検査システム。
  4.  請求項2に記載の食品検査システムにおいて、
     放射性物質による汚染についての警報を発する報知部を備え、中央処理部は、高速検査モードでは放射能濃度が測定下限値よりも高いときに報知部に対して警報を発するように制御し、また、精密検査モードでは放射能濃度が所定値を超えるときに報知部に対して警報を発するように制御することを特徴とする食品検査システム。
  5.  請求項2に記載の食品検査システムにおいて、
     前記モニタ部は、
     検査対象の搬送経路に対して上側に配置され、放射性物質からの放射線を検出して検出信号を出力する上側検出器と、
     検査対象の搬送経路に対して下側に配置され、放射性物質からの放射線を検出して検出信号を出力する下側検出器と、
     を内蔵し、検査対象の上下両面から検査することを特徴とする食品検査システム。
  6.  請求項5に記載の食品検査システムにおいて、
     前記モニタ部は、前記上側検出器を昇降する昇降機構、および、前記中央処理部に接続されるとともにこの昇降機構を駆動する昇降駆動部を備えるものであり、
     前記中央処理部は、前記入力部から入力された検査対象の高さに応じて前記上側検出器と検査対象との間が最適位置となるように昇降駆動部を制御することを特徴とする食品検査システム。
  7.  請求項1~請求項6の何れか一項に記載の食品検査システムにおいて、
     前記モニタ部は、所定範囲の波高レベルの信号を弁別するSCA(シングルチャンネルアナライザ)を備え、バックグラウンドを低減して計数することを特徴とする食品検査システム。
  8.  請求項7に記載の食品検査システムにおいて、
     この所定範囲とは、
     放射性ヨウ素については131Iの364keVをピークとする325keV~395keVを範囲とし、
     放射性セシウムについては134Csの605keVと137Csの662keVをピークとする545keV~725keVを範囲とすることを特徴とする食品検査システム。
PCT/JP2012/072016 2011-08-31 2012-08-30 食品検査システム WO2013031897A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-188801 2011-08-31
JP2011188801 2011-08-31

Publications (1)

Publication Number Publication Date
WO2013031897A1 true WO2013031897A1 (ja) 2013-03-07

Family

ID=47756375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072016 WO2013031897A1 (ja) 2011-08-31 2012-08-30 食品検査システム

Country Status (1)

Country Link
WO (1) WO2013031897A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173991A (ja) * 2013-03-08 2014-09-22 Tohoku Univ 魚の比放射能検査システム
JP2014215284A (ja) * 2013-04-30 2014-11-17 セイコー・イージーアンドジー株式会社 サーバ装置および放射能測定システム
JP2015031675A (ja) * 2013-08-07 2015-02-16 三菱電機株式会社 放射能分析装置および放射能分析方法
JP2015049128A (ja) * 2013-08-30 2015-03-16 国立大学法人東北大学 非破壊放射能測定装置、およびその放射能測定方法
JP2015121505A (ja) * 2013-12-25 2015-07-02 三菱重工業株式会社 放射能測定装置および方法
JP2016114499A (ja) * 2014-12-16 2016-06-23 東京電力ホールディングス株式会社 放射性物質汚染区域における点状線源強度を求める方法
US11313978B2 (en) 2018-06-22 2022-04-26 Soletanche Freyssinet S.A.S. Device for detecting a contaminant on a scaffolding pole

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0285790A (ja) * 1988-09-22 1990-03-27 Fuji Electric Co Ltd 物品汚染検査装置
JPH0348791A (ja) * 1989-07-18 1991-03-01 Aloka Co Ltd 食品中β放射性核種含有量測定装置
JPH0622932U (ja) * 1992-08-24 1994-03-25 建設ゴム株式会社 放射能検出器内蔵はかり
JPH07128451A (ja) * 1990-12-11 1995-05-19 France Etat 物体の放射能汚染を測定する装置
JPH10227865A (ja) * 1997-02-13 1998-08-25 Toshiba Corp 放射性表面汚染モニタ装置
WO2000054071A1 (fr) * 1999-03-09 2000-09-14 Central Research Institute Of Electric Power Industry Procede et dispositif de mesure de radioactivite, de concentration radioactive et de concentration superficielle de radioactivite
JP2005049137A (ja) * 2003-07-30 2005-02-24 Toshiba Corp 放射能検査装置
JP2005140706A (ja) * 2003-11-07 2005-06-02 Mitsubishi Heavy Ind Ltd 放射能測定方法及び放射能測定用プログラム、並びに放射能測定装置
JP2005195459A (ja) * 2004-01-07 2005-07-21 Toshiba Corp 物品搬出モニタ装置
JP2007024795A (ja) * 2005-07-20 2007-02-01 Horiba Ltd 形態計測装置
JP2008111794A (ja) * 2006-10-31 2008-05-15 Mitsubishi Heavy Ind Ltd 放射能評価方法および検出限界評価方法
JP2008111793A (ja) * 2006-10-31 2008-05-15 Mitsubishi Heavy Ind Ltd 放射能換算係数決定方法および検出限界決定方法
JP2008249692A (ja) * 2007-03-08 2008-10-16 Fuji Electric Systems Co Ltd 物品搬出モニタ

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0285790A (ja) * 1988-09-22 1990-03-27 Fuji Electric Co Ltd 物品汚染検査装置
JPH0348791A (ja) * 1989-07-18 1991-03-01 Aloka Co Ltd 食品中β放射性核種含有量測定装置
JPH07128451A (ja) * 1990-12-11 1995-05-19 France Etat 物体の放射能汚染を測定する装置
JPH0622932U (ja) * 1992-08-24 1994-03-25 建設ゴム株式会社 放射能検出器内蔵はかり
JPH10227865A (ja) * 1997-02-13 1998-08-25 Toshiba Corp 放射性表面汚染モニタ装置
WO2000054071A1 (fr) * 1999-03-09 2000-09-14 Central Research Institute Of Electric Power Industry Procede et dispositif de mesure de radioactivite, de concentration radioactive et de concentration superficielle de radioactivite
JP2005049137A (ja) * 2003-07-30 2005-02-24 Toshiba Corp 放射能検査装置
JP2005140706A (ja) * 2003-11-07 2005-06-02 Mitsubishi Heavy Ind Ltd 放射能測定方法及び放射能測定用プログラム、並びに放射能測定装置
JP2005195459A (ja) * 2004-01-07 2005-07-21 Toshiba Corp 物品搬出モニタ装置
JP2007024795A (ja) * 2005-07-20 2007-02-01 Horiba Ltd 形態計測装置
JP2008111794A (ja) * 2006-10-31 2008-05-15 Mitsubishi Heavy Ind Ltd 放射能評価方法および検出限界評価方法
JP2008111793A (ja) * 2006-10-31 2008-05-15 Mitsubishi Heavy Ind Ltd 放射能換算係数決定方法および検出限界決定方法
JP2008249692A (ja) * 2007-03-08 2008-10-16 Fuji Electric Systems Co Ltd 物品搬出モニタ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173991A (ja) * 2013-03-08 2014-09-22 Tohoku Univ 魚の比放射能検査システム
JP2014215284A (ja) * 2013-04-30 2014-11-17 セイコー・イージーアンドジー株式会社 サーバ装置および放射能測定システム
JP2015031675A (ja) * 2013-08-07 2015-02-16 三菱電機株式会社 放射能分析装置および放射能分析方法
JP2015049128A (ja) * 2013-08-30 2015-03-16 国立大学法人東北大学 非破壊放射能測定装置、およびその放射能測定方法
JP2015121505A (ja) * 2013-12-25 2015-07-02 三菱重工業株式会社 放射能測定装置および方法
JP2016114499A (ja) * 2014-12-16 2016-06-23 東京電力ホールディングス株式会社 放射性物質汚染区域における点状線源強度を求める方法
US11313978B2 (en) 2018-06-22 2022-04-26 Soletanche Freyssinet S.A.S. Device for detecting a contaminant on a scaffolding pole

Similar Documents

Publication Publication Date Title
WO2013031897A1 (ja) 食品検査システム
EP1994430B1 (en) Correction of a radioactivity measurement using particles from atmospheric source
JPH055076B2 (ja)
KR101431709B1 (ko) 측정대상 방사능핵종을 선택측정하는 이동식 방사능핵종 측정기
JP2013072814A (ja) 放射線検査装置
KR20170143036A (ko) 이동식 방사능 오염물질 전수검사 시스템 및 방법
KR20160121140A (ko) 방사능 오염을 연속적으로 검사할 수 있는 방사능 검사 시스템 및 검사방법
US5416330A (en) Radiation monitoring system for containers, livestock, and foodstuff
KR102313781B1 (ko) 대규모 방사성 폐기물의 방사능 측정 및 분류 시스템
KR101975787B1 (ko) 방사성 핵종을 검출하는 방법, 이를 이용한 방사성 핵종 검출공정, 및 이를 위한 방사선 검출장치
US9958553B2 (en) Radiation survey process
US10884140B2 (en) Radiation survey process
JP2002503342A (ja) 物体中のプルトニウムとウラニウムとの相対比率を測定する方法及び装置
JPS6215443A (ja) 放射性廃棄物の特性測定装置
JP2013152121A (ja) 食品用の簡易型高感度放射能測定装置及び該装置を用いた測定方法
JP2002236194A (ja) 燃焼度評価方法および装置
Xu et al. Measurement of talc in flour by the 14 MeV neutron activation analysis method
JP6971748B2 (ja) 放射能測定装置
KR101962360B1 (ko) 방사성 핵종을 검출하는 방법, 이를 이용한 방사성 핵종 검출공정, 및 이를 위한 방사선 검출장치
JPH04194772A (ja) 放射能測定装置
RU2586383C1 (ru) Устройство для спектрометрии нейтронов
JP6139391B2 (ja) 放射能検査装置及び方法
JP6136777B2 (ja) 非破壊放射能測定装置、およびその放射能測定方法
JPH10185843A (ja) 水素含有量モニタ
JP6478754B2 (ja) 放射能測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP