WO2013031821A1 - 形質転換植物細胞を用いたタンパク質製造方法 - Google Patents

形質転換植物細胞を用いたタンパク質製造方法 Download PDF

Info

Publication number
WO2013031821A1
WO2013031821A1 PCT/JP2012/071815 JP2012071815W WO2013031821A1 WO 2013031821 A1 WO2013031821 A1 WO 2013031821A1 JP 2012071815 W JP2012071815 W JP 2012071815W WO 2013031821 A1 WO2013031821 A1 WO 2013031821A1
Authority
WO
WIPO (PCT)
Prior art keywords
utr
stress
mrna
day
culture
Prior art date
Application number
PCT/JP2012/071815
Other languages
English (en)
French (fr)
Inventor
加藤 晃
清貴 上田
錬也 大河原
寿啓 矢村
Original Assignee
国立大学法人奈良先端科学技術大学院大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人奈良先端科学技術大学院大学 filed Critical 国立大学法人奈良先端科学技術大学院大学
Priority to CA2847113A priority Critical patent/CA2847113C/en
Priority to JP2013531352A priority patent/JP6037339B2/ja
Priority to US14/240,581 priority patent/US20140315248A1/en
Publication of WO2013031821A1 publication Critical patent/WO2013031821A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8237Externally regulated expression systems
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8237Externally regulated expression systems
    • C12N15/8238Externally regulated expression systems chemically inducible, e.g. tetracycline
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon

Definitions

  • the present invention relates to a method for producing a protein using transformed plant cells. More specifically, the present invention relates to a method for producing a protein using a plant cell transformed with a recombinant gene encoding a specific 5 'untranslated region (5' UTR).
  • a method for producing useful proteins using microorganisms, animal cells, or plant cells is widely known.
  • a target protein can be produced by introducing a gene encoding a target protein into a microorganism, animal or plant cell to obtain a transformant and culturing the transformant.
  • the present invention avoids the suppression of translation of mRNA in plant cultured cells under stress caused by insufficient conditions necessary for growth (growth requirement deficiency stress; for example, nutritional starvation stress or hypoxia stress), and efficiently produces plants. It is an object to produce proteins by culturing cells.
  • the present invention includes, for example, a method for avoiding translational suppression due to growth requirement deficiency stress and a method for producing a protein described in the following section.
  • Item 1. (A) or (b) encoded by the mRNA comprising the step of culturing plant cells transformed with a recombinant DNA molecule encoding 5'UTR-containing mRNA under stress that is deficient in growth requirements
  • a method for avoiding that a protein is translationally suppressed by stress that is deficient in growth requirements.
  • (A) 5'UTR consisting of the base sequence of SEQ ID NO: 1, 2, 3, 4, 5 or 6 (B) 5′UTR in which one or several bases are substituted, deleted, or added in the 5′UTR base sequence of (a), and avoids translational suppression due to growth requirement deficiency stress
  • Item 2. The method according to Item 1, wherein the growth requirement deficiency stress is at least one stress selected from the group consisting of nutrient starvation stress and hypoxic stress.
  • Item 3. The method according to Item 1 or 2, wherein the plant cell is an Arabidopsis cultured cell or a tobacco cultured cell.
  • (A) or (b) encoded by the mRNA comprising the step of culturing plant cells transformed with a recombinant DNA molecule encoding 5'UTR-containing mRNA under stress that is deficient in growth requirements
  • a method for producing a protein by avoiding that the protein is translationally suppressed by stress that is deficient in growth requirements A method for producing a protein by avoiding that the protein is translationally suppressed by stress that is deficient in growth requirements.
  • (A) 5'UTR consisting of the base sequence of SEQ ID NO: 1, 2, 3, 4, 5 or 6
  • Item 4 wherein the growth requirement deficiency stress is at least one stress selected from the group consisting of nutrient starvation stress and hypoxic stress.
  • Item 6. The method according to Item 4 or 5, wherein the plant cell is an Arabidopsis cultured cell or a tobacco cultured cell.
  • Term A RNA consisting of the base sequence of SEQ ID NO: 2, 3, 5 or 6.
  • Term B A DNA encoding the RNA according to Item A.
  • Term C A recombinant DNA having a region encoding the RNA according to Item A.
  • a plant cell transformed by introducing a gene encoding a protein when a plant cell transformed by introducing a gene encoding a protein is cultured to produce the protein, it is under stress that is deficient in growth requirements such as nutrient starvation stress and hypoxic stress.
  • stress such as nutrient starvation stress and hypoxic stress.
  • the target protein since the translation efficiency from mRNA to protein does not decrease, the target protein can be produced efficiently.
  • the growth curve (A) and polysome analysis result (B) in the Arabidopsis thaliana T87 wild type strain are shown.
  • A After the passage, the fresh weight (Fresh weight g / mL) of the cultured cells contained in 1 mL of the culture solution was measured every other day until the 9th day. The average and standard deviation of three measurements are shown.
  • B The cell extract prepared from the collected cells was fractionated by sucrose density gradient centrifugation (15-60%), and then the absorbance profile at 254 nm was recorded. (The results of day 0, day 1, day 3, day 5 and day 8 are shown.) Polysome fractions and non-polysome fractions are shown in the figure. The settling direction is from right to left.
  • ⁇ PR is an index indicating a change in PR value between the first day and the eighth day (that is, a change in translation state).
  • cultivation first period (1st day) and the latter period (8th day) is shown. From the change in the polysome formation state, it can be seen that the translational state changed due to the growth requirement deficiency stress.
  • RNA extracted from each fraction was subjected to quantitative RT-PCR analysis in an equal volume, and the mRNA of the endogenous gene present in each fraction was quantified.
  • the vertical axis represents the amount of each mRNA present in each fraction as a percentage of the total fraction.
  • the schematic diagram of the binary vector produced for transformed Arabidopsis thaliana cell manufacture is shown.
  • the result of behavioral analysis of GUS mRNA in At3g47610 transformed cultured cells is shown.
  • RNA extracted from each fraction was subjected to quantitative RT-PCR analysis in an equal volume, and GUS mRNA added with 5 'UTR of act2, At3g47610, At1g77120 and At3g47610 present in each fraction was quantified. The vertical axis represents the amount of each mRNA present in each fraction as a percentage of the total fraction. The result of the behavioral analysis of GUS mRNA in At1g77120 transformed cultured cells is shown.
  • RNA extracted from each fraction was subjected to quantitative RT-PCR analysis in an equal volume, and GUS mRNA added with 5 'UTR of act2, At3g47610, At1g77120 and At1g77120 present in each fraction was quantified. The vertical axis represents the amount of each mRNA present in each fraction as a percentage of the total fraction.
  • the schematic diagram of the binary vector produced for transformed Arabidopsis thaliana cell manufacture is shown.
  • the vertical axis represents the amount of each mRNA present in each fraction as a percentage of the total fraction.
  • T-actin is a tobacco actin gene.
  • the results of behavioral analysis of HRP C1a mRNA in cultured cells transformed with At1g77120 are shown.
  • RNA extracted from each fraction was subjected to quantitative RT-PCR analysis in an equal volume, and HRP C1a mRNA added with 5 'UTR of T-actin and At1g77120 present in each fraction was quantified.
  • the vertical axis represents the amount of each mRNA present in each fraction as a percentage of the total fraction.
  • the results of behavioral analysis of HRP C1a mRNA in cultured cells transformed with At1g55330 are shown.
  • A After the passage, the fresh weight (Fresh weight g / mL) of the cultured cells contained in 1 mL of the culture solution was measured every other day until the 9th day. The average and standard deviation of three measurements are shown.
  • RNA extracted from each fraction was subjected to quantitative RT-PCR analysis in an equal volume, and HRP C1a RNA added with 5 'UTR of T-actin and At1g55330 in each fraction was quantified. The vertical axis represents the amount of each mRNA present in each fraction as a percentage of the total fraction.
  • DNA represents deoxyribonucleic acid
  • RNA represents ribonucleic acid
  • mRNA messenger RNA
  • the method of the present invention comprises the step of culturing plant cells transformed with a recombinant DNA molecule encoding 5'UTR mRNA having the following (a) or (b) under stress that is deficient in growth requirements.
  • SEQ ID NOs: 1 to 6 are as follows. The base sequences of these SEQ ID NOs were obtained from Arabidopsis genes. The gene name from which the 5 ′ UTR was obtained is shown in parentheses immediately after each SEQ ID NO.
  • SEQ ID NO: 1 (derived from At1g77120) UACAUCACAAUCACACAAAACUAACAAAAGAUCAAAAGCAAGUUCUUCACUGUUGAUA
  • SEQ ID NO: 2 (derived from At1g06760) CUUCACAAUCCUCAUAAUCACUUUCGAAAUUACAUUUACGCUUUCUUGCAAUCAAAUUUUCCGAUCUUAAGUUCAGAAGACG
  • 5 ′ UTR consisting of the nucleotide sequence of SEQ ID NO: 1, 2, 3, 4, 5 or 6, in the nucleotide sequence of SEQ ID NO: 1 to 6, one or several bases are substituted, deleted, or A 5′UTR that is added and avoids translational suppression due to stress that is deficient in growth requirements is also useful in the present invention.
  • the number of bases to be substituted, deleted or added is preferably 1 to 10 (1, 2, 3, 4, 5, 6, 7, 8, 9 or 10) bases, more preferably 1 to 5 bases, Preferably it is 1, 2 or 3 bases.
  • substitution, deletion, or addition means that at least one base modification consisting of substitution, deletion, and addition is made in one sequence.
  • the number of bases to be substituted, deleted, or added is the total number of bases that have been substituted, deleted, or added (the number converted to minimize the total number of bases that have been replaced, deleted, or added). ).
  • the recombinant DNA molecule of the present invention is a DNA molecule that has been recombined to encode mRNA having the specific 5 'UTR sequence. It may also be a DNA molecule that expresses mRNA having a specific 5 'UTR sequence.
  • the recombinant DNA molecule of the present invention is a DNA molecule produced by artificially changing the base sequence of at least the portion corresponding to 5 'UTR.
  • the recombinant DNA molecule is preferably a DNA construct.
  • a DNA construct in which a promoter sequence is included upstream of the portion encoding mRNA is preferable.
  • an expression vector containing a base sequence encoding mRNA can be exemplified.
  • the expression vector is a DNA construct in which a DNA molecule encoding the mRNA is incorporated into a cloning vector.
  • Known cloning vectors can be used.
  • plasmid vectors particularly Ti-plasmid is preferred
  • cosmid vectors virus vectors and the like
  • a known promoter sequence can be used.
  • the CaMV35S promoter which is a cauliflower mosaic virus-derived promoter can be exemplified.
  • various known methods are known for artificially changing the base sequence of a DNA molecule, and can be appropriately selected and used. For example, by cleaving a DNA molecule with an appropriate restriction enzyme and then ligating a new DNA fragment to the cleavage site, or by designing a primer pair that is not completely complementary to the target gene and performing PCR, Alternatively, the base sequence of the DNA molecule can be modified by using a combination of such techniques.
  • the recombinant DNA molecule of the present invention may be any DNA molecule that has been recombined so as to encode mRNA having the specific 5′UTR sequence, and the types of proteins (including peptides) encoded by the DNA molecule are: There is no particular limitation. Preferred examples of proteins (including peptides) include proteins having pharmacological activity. Specifically, specific molecules such as enzymes, transcription factors, cytokines, membrane-bound proteins, various peptide hormones (eg, insulin, growth hormone, somatostatin), vaccines and antibodies (Fab, F (ab ') 2 etc.) And the like, and the like.
  • the recombinant DNA molecule of the present invention comprises a DNA molecule encoding such a protein and a reporter gene such as GFP or luciferase, and a tag peptide sequence such as a His tag or a FLAG (registered trademark) tag. It may be a DNA molecule or an artificially designed chimeric gene.
  • telomere sequence information can be obtained from a database such as a sequence database GenBank operated by NCBI (National Center for Biotechnology Information), for example. Based on the sequence information, DNA molecules can be produced from various organisms by conventional methods such as PCR. Further, known genes are sold in the form of, for example, a cDNA library from each sales company, and can be purchased and used.
  • Such a mRNA can be expressed in the plant cell (transformed plant cell) by introducing such a recombinant DNA molecule encoding the mRNA having the 5 'UTR into the plant cell.
  • a recombinant DNA molecule encoding the mRNA having the 5 'UTR into the plant cell.
  • how the introduced recombinant DNA molecule exists in the cell is not particularly limited. For example, it may be one that autonomously replicates independently of chromosomal DNA (such as a plasmid) or may be integrated into the chromosome.
  • the kind of plant cell is not particularly limited. Examples include dicotyledonous cells, and more specifically, Arabidopsis derived cells, tobacco derived cells, soybean derived cells, chrysanthemum derived cells, lettuce derived cells, and the like. Preferably, they are Arabidopsis cultured cells or tobacco cultured cells.
  • the method for introducing the recombinant DNA molecule into the plant cell is not particularly limited, and a known method can be appropriately selected and used.
  • a known method can be appropriately selected and used.
  • an electroporation method, a particle gun method, a method using a Ti plasmid (for example, a binary vector method, a leaf disk method) and the like can be exemplified.
  • the transformed plant cell of the present invention is transformed by introducing the above recombinant DNA molecule. More specifically, in the transformed plant cell of the present invention, the mRNA is transcribed from the recombinant DNA molecule of the present invention, and the protein is translated from the mRNA. As described above, the recombinant DNA molecule of the present invention encodes a specific 5 'UTR sequence, and can avoid (reduce) translational suppression due to growth requirement deficiency stress. In the specification, “avoiding translational suppression” includes not only the meaning of eliminating translational suppression at all, but also the meaning of reducing translational suppression.
  • the culture of the transformed plant cell can be performed by a known method capable of culturing a wild-type plant cell before transformation.
  • the plant cell to be used is a cultured cell of Arabidopsis thaliana
  • it can be cultured by a known culture method of Arabidopsis cultured cell.
  • the plant cell to be used is a tobacco cultured cell
  • it is cultured by a known method of culturing tobacco tobacco. be able to. .
  • the growth requirement deficiency stress is a stress caused by a lack of conditions necessary for growth.
  • it is a stress caused by a lack of components necessary for culture, and may be rephrased as a culture necessary component deficiency stress.
  • stress caused by consumption of nutrients and oxygen in the medium examples are nutritional starvation stress and hypoxic stress.
  • the growth requirement deficiency stress is preferably at least one stress selected from the group consisting of nutrient starvation stress (eg, sucrose starvation stress) and hypoxic stress.
  • whether or not translation is suppressed is determined by whether or not the amount of mRNA present in the polysome fraction is reduced. That is, it can be determined that translation is suppressed when the amount of mRNA present in the polysome fraction is decreased. And, when the mRNA whose translation is suppressed is modified to have the 5'UTR of (a) or (b) above, even when the amount of mRNA present in the polysome fraction has decreased, If the amount of mRNA present in the polysome fraction is not reduced or is reduced, it can be determined that translational suppression has been avoided.
  • the polysome fraction means that the cell extract (mRNA and ribosome binding is maintained) is separated by sucrose density gradient centrifugation, and the centrifuged density gradient solution is divided into multiple fractions in equal volumes. A fraction containing a large amount of polysomes when fractionated. In general, mRNA molecules with high translation efficiency are bound to a larger number of ribosomes per molecule, and thus are distributed in a polysome fraction with a higher sedimentation rate. In the density gradient solution after ultracentrifugation, polysomes are contained in a fraction having a higher sucrose density.
  • sucrose density gradient solution prepared with buffer (50 mM Tris-HCl, pH 8.5, 25 mM KCl, and 10 mM MgCl 2 ), 55,000 rpm, 50 min, 4
  • buffer 50 mM Tris-HCl, pH 8.5, 25 mM KCl, and 10 mM MgCl 2
  • Plant cultured cells The following plant cultured cells were used for the following studies.
  • Arabidopsis thaliana T87 Arabidopsis thaliana T87 (Axelos et al., 1992) used was distributed by Genebank Laboratory Plant Development Bank, RIKEN. Cultivation was performed at 22 ° C, 18 hours light period / 6 hours dark period, stirring speed 120 rpm (SLK-3-FS, Nippon Medical Instruments Co., Ltd.), and 95 mL of modified LS medium (Nagata, 1992) 300 Used in a mL Erlenmeyer flask. Every week, 4 mL of cells that reached the stationary phase were transplanted to 95 mL of a new medium and subcultured.
  • Tobacco BY-2 Tobacco cultured cells (Nicotiana tabacum L. cv. Bright Yellow 2) are cultured under conditions of 27 ° C, 24 hours dark period, stirring speed 130 rpm (BR-3000, Taitec, Saitama, Japan), 95 mL modified LS The medium was used in a 300 mL Erlenmeyer flask. Every week, 4 mL of cells that reached the stationary phase were transplanted to 95 mL of a new medium and subcultured.
  • the solid medium used for callus passage is the same as in liquid culture except that 0.3% gellan gum is added before sterilization. Callus were passaged in a petri dish with a diameter of 90 mm at 25 ° C in the dark (MIR-553, Sanyo Medicasystems, Osaka).
  • the medium was removed by suction filtration, the cells were frozen in liquid nitrogen and stored at ⁇ 80 ° C.
  • the cells were washed with 100 ⁇ mL of a new modified LS medium after suction filtration, subjected to suction filtration again, frozen in liquid nitrogen, and stored at ⁇ 80 ° C.
  • KCl 25 mM MgCl 2 , 2 mM EGTA, 100 ⁇ g / mL heparin, 2% polyoxyethylene 10-tridecyl ether [PTE], and 1% sodium deoxycholate [DOC]) were added and suspended gently.
  • a micropipette 40 ⁇ L Calibrrated Pipet; Drummond
  • a peristaltic pump Minipuls 3; Gilson
  • the absorbance at 254 nm was recorded using Monitor UV-1 (GE Healthcare).
  • RNA for microarray analysis When the sucrose density gradient solution after ultracentrifugation is fractionated into 8 fractions in equal volumes, the polysome fraction mixed with the 1-3th fraction (bottom number 1) is mixed with the 1-8th fraction. Polysome RNA and total RNA were extracted from the obtained total fractions, respectively. Each fraction was collected in a tube to which 8M guanidine hydrochloride had been added in advance to a final concentration of 5.5M. At this time, spike mix A contained in Two-Color RNA Spike-In Kit (Agilent Technologies) was added to the polysome fraction, and spike mix B was added to the total fraction.
  • Two-Color RNA Spike-In Kit Agilent Technologies
  • RNA spike-in is added at the same time as the sucrose density gradient centrifuge is collected, it undergoes subsequent processes such as RNA purification, labeling, and hybridization (described later). Therefore, by performing correction using the signal value of the spot corresponding to RNA spike-in, it is possible to estimate the actual RNA ratio (polysome RNA vs.
  • RNA quality was assayed by on-chip electrophoresis using an Agilent Bioanalyzer 2100 (Agilent Technologies).
  • sucrose density gradient centrifuge Approximately 650 ⁇ L each of sucrose density gradient solution was pre-added with 5 ng guanidine hydrochloride to a cap structure, 5 ng of in vitro synthesized Renilla luciferase (r-luc) mRNA with poly A sequence and a final concentration of 5.1 M Collected in 8 tubes. The synthetic r-luc mRNA was used for correction when calculating the abundance ratio of each target mRNA in each fraction by quantitative RT-PCR. 100% ethanol equivalent to the mixed solution was added to each tube, and after cooling at ⁇ 20 ° C. overnight, centrifugation was performed (12,000 ⁇ g, 45 min, 4 ° C.).
  • r-luc Renilla luciferase
  • RNA of all fractions was dissolved in 30 ⁇ L of RNase-free water. The quality of the purified RNA was assayed by 1.5% denaturing gel electrophoresis.
  • RNA solutions purified from 8 fractions obtained by fractionating each sucrose density gradient solution after ultracentrifugation in equal volumes were used for reverse transcription.
  • Transcription First Strand cDNA Synthesis Kit (Roche) was used according to the attached protocol.
  • the reaction system was 13 ⁇ L (using oligo dT primer).
  • the PCR reaction was performed in a 10 ⁇ L reaction system using a gene-specific primer set and LightCycler 480 SYBR Green I Master (Roche Applied Science) using 2 ⁇ L of a 40-fold diluted reverse transcription reaction solution as a template.
  • the sequence of the primer set used in the actual study is shown below.
  • RNA fluorescence-labeled with cyanine3 (Cy3) and cyanine5 (Cy5) was prepared from the same sucrose density gradient-derived polysome RNA and total RNA, respectively.
  • Agilent oligoarray (Arabidopsis 3 oligo microarray 44K; Agilent Technologies) And subjected to a competitive hybridization experiment.
  • the Arabidopsis 3 oligo microarray has 44,000 spot-printed 60-mer oligo DNAs selected from nucleotide sequences such as transcripts derived from Arabidopsis thaliana and the aforementioned RNA spike-in.
  • RNA amplification and fluorescent labeling were used for RNA amplification and fluorescent labeling.
  • reverse transcription was performed using 500 ng of polysome RNA and total RNA as a template, and an oligo dT primer containing a T7 promoter sequence as a linker sequence and MMLV-RT.
  • T7 RNA polymerase in vitro transcription reaction was used to synthesize cRNA incorporating CTP labeled with Cy3 (polysome RNA) or Cy5 (total RNA).
  • the synthesized cRNA was purified using RNeasy kit (Quiagen).
  • Feature extraction software (Agilent Technologies) was used to extract and normalize data from the scanned images. Based on flags set according to the feature extraction software setting criteria, spots with saturated signal values (glsSaturated, rlsSaturated) for Cy3 or Cy5, spots with uneven signal within the spot (glsFeatNonUnifOL, rlsFeatNonUnifOL), Spots that are outliers (glsFeatPopnOL, rlsFeatPopnOL) and spots that have no signal and background (glsPosAndSignif, rlsPosAndSignif) (glsWellAboveBG, rlsWellAboveBG) were excluded from the subsequent analysis.
  • spots with saturated signal values glsSaturated, rlsSaturated for Cy3 or Cy5
  • spots with uneven signal within the spot glsFeatNonUnifOL, rlsFeatNonUnifOL
  • Spots that are outliers
  • Poly 1d Cy3 signal value in microarray data derived from the fraction of cells on day 1 after passage
  • Total 1d Cy5 signal value in microarray data from all fractions of cells on day 1 after passage
  • Poly 8d passage Cy3 signal value in microarray data derived from the polysome fraction of cells on day 8 after passage
  • Total 8d Cy5 signal value in microarray data derived from all fractions of cells on day 8 after passage
  • the Polysome ratio (ratio of the polysome RNA to the total RNA) was determined for each spot.
  • PR 1d Poly 1d / Total 1d
  • PR 8d Poly 8d / Total 8d
  • an index ( ⁇ PR) for evaluating the change in the translational state with the passage of time from the first day to the eighth day after passage was calculated.
  • ⁇ PR PR 8d -PR 1d
  • Each spot on the Arabidopsis 3oligo microarray is given a gene name or systematic name (e.g. AGI code [The Arabidopsis Genome Initiative gene code]). Basically, one spot corresponds to one gene name (systematic name), but there are also several gene names (systematic name) corresponding to multiple spots. Polysome'ratio was calculated for genes with AGI code that satisfies the above data processing criteria in both the first day cells after passage and the microarray data derived from day 8 cells. . All the above calculations were performed using Microsoft Excel.
  • AGI code The Arabidopsis Genome Initiative gene code
  • ⁇ Fluc activity measurement> The cultured cells of each culture day were precipitated by centrifugation (9,100 ⁇ g, 1 min, 22 ° C.), the medium was removed with an aspirator, frozen in liquid nitrogen, and stored at ⁇ 80 ° C. 300 ⁇ L of Passive Lysis buffer (Promega, USA) was added to the collected cells, and the cells were disrupted with Handy Sonic (TOMY SEIKO, Tokyo). The disrupted cells were centrifuged again (20,400 ⁇ g, 5 min, 4 ° C.), and 200 ⁇ L of the supernatant was collected. Thereafter, the operation was basically performed according to the protocol of Dual-Luciferase Reporter Assay System (Promega).
  • the supernatant was diluted 10,000 times, 20 ⁇ L of the diluted solution was mixed with 100 ⁇ L of the substrate solution and reacted, and a luminometer (Lumat LB 9501, Berhold, Germany) was used according to the attached protocol. Fluc activity was calculated as relative light unit (RLU) / mg protein. The quantification of the total protein amount was according to the Bradford method (Bradford, 1976). Specifically, 10 ⁇ L of diluted protein solution was added to 990 ⁇ L of protein quantification reagent and measured using SPECTRAFLUOR (TECAN, Switzerland), and the protein concentration was determined from a calibration curve prepared using BSA of a known concentration. Fluc means firefly luciferase.
  • Polysome analysis was performed using Arabidopsis thaliana T87 wild type strains of each culture day. Polysome analysis is widely used as a technique for analyzing the translational state of cells because mRNA present in a cell extract can be fractionated according to the number of ribosome binding by sucrose density gradient centrifugation. Thereby, the translational state change with the passage of culture days was investigated.
  • FIG. 1A A growth curve (FIG. 1A) was prepared by measuring the fresh weight of the cells.
  • cells cultured for 0 day (immediately after passage) to 9 days were collected every 24 hours, and the cell extract prepared from each cell was fractionated by sucrose density gradient centrifugation (15-60%).
  • sucrose density gradient centrifugation 15-60%.
  • the polysome fraction with active translation decreases and the non-polysome fraction with inactive translation increases.
  • FIG. 1B the non-polysome fraction occupies most of the cells on the 8th day in the late stage of culture, and the polysome fraction is very small. Hypoxia and nutrient starvation stress due to consumption of oxygen and nutrients (growth requirement deficiency stress) It was confirmed that this caused significant translational suppression.
  • Polysome ratios (PR 1d and PR 8d , respectively) were calculated as an index indicating the translational state (polysome formation state) of individual mRNA in the cell. Histograms of PR values on day 1 and day 8 of culture were created (FIG. 3A), and changes in translational state under growth requirement deficiency stress were verified. In cells on day 1 of culture, PR 1d of most mRNA species was 40-60%. On the other hand, in the case of the cells on the 8th day in which the growth requirement deficiency stress is present, the PR 8d histogram is broadened, and the PR value decreased in most mRNA species.
  • the cell extract of the first day of culture (first culture period) and the eighth day of culture (late culture period) was fractionated by sucrose density gradient centrifugation (15-60%).
  • the polysome fraction with active translation decreased and the non-polysome fraction with inactive translation increased. It was shown from an absorbance profile at 254 nm as an index (FIG. 5A).
  • the distribution of sucrose density gradient fractions of the mRNAs of the above six genes whose translation is not suppressed from the microarray results was analyzed by quantitative RT-PCR. From this, it was confirmed that translation was not suppressed and maintained (FIG. 5B).
  • HSP-T represents an HSP terminator
  • Binary vectors ("At1g77120 5'UTR :: Fluc” and "Fluc” and 5'UTR linked to the reporter Fluc gene of At1g77120 whose translation was not suppressed under the growth requirement deficiency stress and At3g47610 whose translation was suppressed At3g47610 5′UTR :: Fluc ”) was prepared according to the method described in WO2011 / 021666 and introduced into Arabidopsis thaliana cultured cells T87 to prepare stable transformed cultured cells. Using the transformed plant cells, polysome / quantitative RT-PCR analysis was performed to analyze changes in behavior of Fluc mRNA added with different 5 ′ UTRs and endogenous mRNA under growth requirement deficiency stress.
  • Fluc mRNA linked to the 5 'UTR of At3g47610 whose translation is suppressed in the later stage of culture, remains in the polysome fraction on the 4th day of culture, as in the case of endogenous At3g47610, but on the 9th day, it is a non-polysome. It became clear that translation shifted to the fraction (FIG. 10B).
  • Fluc mRNA linked to the 5 'UTR of At1g77120 which maintains translation in the late phase of culture, remains in the polysome fraction on day 9 of culture, as is the case with endogenous At1g77120, and translation is maintained. This was confirmed (FIG. 11B).
  • Fluc protein accumulation amount in each culture day In addition, in order to investigate whether the Fluc gene linked to 5'UTR that maintains translation is actually translated in the later stage of culture, analysis of changes in the accumulation amount of Fluc protein as a translation product did.
  • the Fluc activity was measured in cells cultured on days 4 to 9 of At1g77120-5′UTR :: Fluc in which translation was maintained in the later stage of culture and At3g47610-5′UTR :: Fluc in which the translation was suppressed.
  • the At3g47610-5'UTR Fluc transformed cultured cells in which translation was suppressed showed a gradual increase from the 4th to the 8th day, but the 9th day showed a decrease from the 8th day (FIG. 12). ).
  • At1g77120 5'UTR Fluc transformed cultured cells that maintained translation showed a high increase rate until the 9th day, and on the 9th day, the amount of Fluc protein accumulated more than 3 times on the 4th day. (FIG. 12).
  • a growth curve (FIG. 14A) was created by measuring the fresh weight of the cells during culture.
  • the cells on the first day of culture (early culture) and the eighth day (late phase of culture) were collected and analyzed in the same manner as above.
  • the polysome fraction decreased and the non-polysome fraction increased on the eighth day of culture (FIG. 14B).
  • T-actin tobacco actin
  • HPP C1a added with 5 'UTR of the gene At3g47610 (Fig. 5B) whose translation was suppressed in the late Arabidopsis culture was also confirmed to be suppressed in tobacco cultured cells on the 8th day of culture as in Arabidopsis. (FIG. 14C).
  • a growth curve (FIG. 15A) was created by measuring the fresh weight of the cells during culture.
  • the cells on the first day of culture (early culture) and the eighth day (late phase of culture) were collected and analyzed in the same manner as above.
  • the polysome fraction decreased and the non-polysome fraction increased on the eighth day of culture (FIG. 15B).
  • T-actin tobacco actin
  • a growth curve (FIG. 16A) was prepared by measuring the fresh weight of the cells during culture.
  • the cells on the first day of culture (first culture period) and the eighth day (second stage of culture) were collected and analyzed in the same manner as described above.
  • the polysome fraction decreased and the non-polysome fraction increased on the eighth day of culture (FIG. 16B).
  • T-actin tobacco actin

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本発明は、特に生育に本来必要な条件が不足して生じるストレス(例えば栄養飢餓ストレスや低酸素ストレス)下における植物培養細胞のmRNAの翻訳抑制を回避し、効率よく植物細胞を培養してタンパク質生産を行うことを目的とする。 本発明により、以下の(a)又は(b)の5'UTRを有するmRNAをコードする組換えDNA分子により形質転換された植物細胞を生育必要条件欠乏ストレス下で培養する工程を含む、前記mRNAにコードされるタンパク質が、生育必要条件欠乏ストレスにより翻訳抑制されるのを回避する方法等が提供される。 (a)配列番号1、2、3、4、5又は6の塩基配列からなる5'UTR (b)(a)の5'UTRの塩基配列において、1又は数個の塩基が置換、欠失、又は付加され、かつ、生育必要条件欠乏ストレスによる翻訳抑制を回避する5'UTR。

Description

形質転換植物細胞を用いたタンパク質製造方法
 本発明は、形質転換植物細胞を用いたタンパク質製造方法に関する。より詳細には、本発明は、特定の5’非翻訳領域(5’UTR)をコードする組換え遺伝子により形質転換された、植物細胞を用いたタンパク質製造方法に関する。
 微生物、動物細胞、又は植物細胞を用いて、有用タンパク質を製造する方法が広く知られている。微生物や動物又は植物細胞に目的タンパク質をコードする遺伝子を導入して形質転換体を得、当該形質転換体を培養することにより、目的タンパク質を産生させることができる。
 しかし、微生物や細胞を培養する場合、環境ストレスにより培養効率やタンパク質への翻訳効率が低下してしまうことがある。最近の研究により、ストレスによる翻訳状態の変化と5’UTRの関連性が示唆されている。当該関連性を検討することにより、翻訳制御を規定する5'UTRの重要領域及び配列を同定したという報告がある(特許文献1)。但し、当該報告は、温度ストレス又は浸透圧ストレス(塩ストレス)といった、“生育において不必要な条件が加わるというストレス”に対して翻訳抑制を回避することが記載されるのみであり、栄養飢餓ストレスなどの“生育において本来必要な条件が不足するというストレス”と翻訳抑制との関連については示されていない。
 植物培養細胞を用いて有用タンパク質を生産しようとする場合、通常、環境ストレス(例えば温度ストレスや塩ストレス)を加えることはせず、培養条件はできるだけ最適化する。また、特に、生育に本来必要な条件が不足してストレスがかかると(以下、当該ストレスを「生育必要条件欠乏ストレス」ともいう)と、生産を意図した有用タンパク質の生産量は減少してしまうのが通常である。これは、mRNAの翻訳が抑制され、タンパク質生産の効率が落ちてしまうことが一因と考えられる。そこで、効率よく植物細胞を培養してタンパク質生産を行うためには、このような翻訳抑制を回避し、タンパク質生産効率を保つことが重要となる。
WO2011/021666号
 本発明は、特に生育に本来必要な条件が不足して生じるストレス(生育必要条件欠乏ストレス;例えば栄養飢餓ストレスや低酸素ストレス)下における植物培養細胞のmRNAの翻訳抑制を回避し、効率よく植物細胞を培養してタンパク質生産を行うことを課題とする。
 本発明者は、上記課題を解決するために鋭意研究を重ねた結果、特定の配列の5’UTRを有するmRNAが生育必要条件欠乏ストレス下においても翻訳が抑制されないことを見出し、更に検討を重ねて本発明を完成するに至った。
 すなわち、本発明は例えば以下の項に記載の、生育必要条件欠乏ストレスによる翻訳抑制を回避する方法、及びタンパク質を製造する方法、を包含する。
項1.
以下の(a)又は(b)の5’UTRを有するmRNAをコードする組換えDNA分子により形質転換された植物細胞を生育必要条件欠乏ストレス下で培養する工程を含む、前記mRNAにコードされるタンパク質が、生育必要条件欠乏ストレスにより翻訳抑制されるのを回避する方法。
(a)配列番号1、2、3、4、5又は6の塩基配列からなる5’UTR
(b)(a)の5’UTRの塩基配列において、1又は数個の塩基が置換、欠失、又は付加され、かつ、生育必要条件欠乏ストレスによる翻訳抑制を回避する5’UTR
項2.
生育必要条件欠乏ストレスが、栄養飢餓ストレス及び低酸素ストレスからなる群より選択される少なくとも1種のストレスである、項1に記載の方法。
項3.
前記植物細胞が、シロイヌナズナ培養細胞又はタバコ培養細胞である、項1又は2に記載の方法。
項4.
以下の(a)又は(b)の5’UTRを有するmRNAをコードする組換えDNA分子により形質転換された植物細胞を生育必要条件欠乏ストレス下で培養する工程を含む、前記mRNAにコードされるタンパク質が、生育必要条件欠乏ストレスにより翻訳抑制されるのを回避して、前記タンパク質を製造する方法。
(a)配列番号1、2、3、4、5又は6の塩基配列からなる5’UTR
(b)(a)の5’UTRの塩基配列において、1又は数個の塩基が置換、欠失、又は付加され、かつ、生育必要条件欠乏ストレスによる翻訳抑制を回避する5’UTR
項5.
生育必要条件欠乏ストレスが、栄養飢餓ストレス及び低酸素ストレスからなる群より選択される少なくとも1種のストレスである、項4に記載の方法。
項6.
前記植物細胞が、シロイヌナズナ培養細胞又はタバコ培養細胞である、項4又は5に記載の方法。
項A.
配列番号2、3、5又は6の塩基配列からなるRNA。
項B.
項Aに記載のRNAをコードするDNA。
項C.
項Aに記載のRNAをコードする領域を有する組換えDNA。
 本発明によれば、タンパク質をコードする遺伝子を導入して形質転換させた植物細胞を培養して該タンパク質を産生する場合において、栄養飢餓ストレスや低酸素ストレスといった生育必要条件欠乏ストレス下であっても、mRNAからタンパク質への翻訳効率が低下しないため、目的タンパク質を効率よく産生することができる。
シロイヌナズナT87野生株における増殖曲線(A)及びポリソーム解析結果(B)を示す。(A):継代後、培養液1 mLあたりに含まれる培養細胞の新鮮重量(Fresh weight g/ mL)を1日おきに9日目まで測定した。3回測定の平均と標準偏差を示す。(B):回収した細胞から調製した細胞抽出液をショ糖密度勾配遠心法(15-60%)により分画した後、254 nmの吸光プロファイルを記録した。(0日目、1日目、3日目、5日目、8日目の結果を示す。)ポリソーム画分及び非ポリソーム画分を図中に示した。沈降方向は右から左である。 ポリソーム/マイクロアレイ解析の概要を示す。培養1日目と8日目の細胞から調製した細胞抽出液をショ糖密度勾配遠心(15-60%)により分画した後、RNAの分布を見積もるために254 nmの吸光プロファイルを記録した。密度勾配液を等容量ずつ8つの画分に分画し、1-3番目の画分混合液からpolysome RNAを、全8画分からtotal RNAを抽出・精製し、それぞれのRNAを鋳型にCy3あるいはCy5で蛍光標識したcRNAを調製後、マイクロアレイハイブリダイゼーション実験に供した。個々のmRNA種の、total RNAに対するpolysome RNAの比(Polysome ratio:PR)を1日目(PR1d)および8日目(PR8d)について算出した。ΔPRは1日目と8日目でのPR値の変化(即ち、翻訳状態の変化)を示す指標である。 培養前期(1日目)及び後期(8日目)におけるポリソーム形成状態のゲノムワイド解析の結果を示す。ポリソーム形成状態の変化から、生育必要条件欠乏ストレスによる翻訳状態が変化したことがわかる。(A):培養1日目および8日目におけるPR値のヒストグラムを示す。縦軸は遺伝子数を示す。(B):翻訳状態変化を示す指標であるΔPRのヒストグラムを17077種のmRNAについて示した。縦軸は遺伝子数を表す。翻訳が維持されるmRNA(ΔPR>0)も少ないながら存在していることがわかる。 ポリソーム/定量RT-PCR解析の概要を示す。培養1日目と8日目の細胞から調製した細胞抽出液をショ糖密度勾配遠心(15-60%)により分画した後、RNAの分布を見積もるために254 nmの吸光プロファイルを記録した。密度勾配液を等容量ずつ8つの画分に分画し、各画分からmRNAを精製し、定量RT-PCRを行った。定量RT-PCRにより各画分に存在する内在遺伝子(At1g77120、At1g06760、At4g10710、At4g14560、At5g09590、At1g55330、At3g47610、act2)の挙動変化を解析した。なお、act2はアクチン遺伝子である。 シロイヌナズナにおける内在遺伝子のポリソーム/定量RT-PCR解析結果を示す。(A):培養1日目と8日目の細胞から調製した細胞抽出液をショ糖密度勾配遠心(15-60%)により分画した後、RNAの分布を見積もるために254 nmの吸光プロファイルを記録した。 シロイヌナズナにおける内在遺伝子のポリソーム/定量RT-PCR解析結果を示す。(B):各画分から抽出したRNAを等容量ずつ定量RT-PCR解析に供し、それぞれの画分に存在する内在遺伝子のmRNAを定量した。縦軸は各画分に存在するそれぞれのmRNA量を全画分に対する割合で表記している。 形質転換シロイヌナズナ細胞製造のために作製したバイナリーベクターの模式図を示す。 At3g47610形質転換培養細胞におけるGUS mRNAの挙動解析の結果を示す。(A):培養1日目と8日目の細胞から調製した細胞抽出液をショ糖密度勾配遠心(15-60%)により分画した後、RNAの分布を見積もるために254 nmの吸光プロファイルを記録した。(B):各画分から抽出したRNAを等容量ずつ定量RT-PCR解析に供し、それぞれの画分に存在するact2、At3g47610、At1g77120およびAt3g47610の5’UTRを付加したGUS mRNAを定量した。縦軸は各画分に存在するそれぞれのmRNA量を全画分に対する割合で表記している。 At1g77120形質転換培養細胞におけるGUS mRNAの挙動解析の結果を示す。(A):培養1日目と8日目の細胞から調製した細胞抽出液をショ糖密度勾配遠心(15-60%)により分画した後、RNAの分布を見積もるために254 nmの吸光プロファイルを記録した。(B):各画分から抽出したRNAを等容量ずつ定量RT-PCR解析に供し、それぞれの画分に存在するact2、At3g47610、At1g77120およびAt1g77120の5’UTRを付加したGUS mRNAを定量した。縦軸は各画分に存在するそれぞれのmRNA量を全画分に対する割合で表記している。 形質転換シロイヌナズナ細胞製造のために作製したバイナリーベクターの模式図を示す。 At3g47610形質転換培養細胞におけるFluc mRNAの挙動解析の結果を示す。(A):培養1日目、4日目、9日目の細胞からそれぞれ調製した細胞抽出液をショ糖密度勾配遠心(15-60%)により分画した後、RNAの分布を見積もるために254 nmの吸光プロファイルを記録した。(B):各画分から抽出したRNAを等容量ずつ定量RT-PCR解析に供し、それぞれの画分に存在するact2、At3g47610、At1g77120及びAt3g47610の5’UTRを連結したFluc mRNAを定量した。縦軸は各画分に存在するそれぞれのmRNA量を全画分に対する割合で表記している。 At1g77120形質転換培養細胞におけるFluc mRNAの挙動解析の結果を示す。(A):培養1日目、4日目、9日目の細胞からそれぞれ調製した細胞抽出液をショ糖密度勾配遠心(15-60%)により分画した後、RNAの分布を見積もるために254 nmの吸光プロファイルを記録した。(B):各画分から抽出したRNAを等容量ずつ定量RT-PCR解析に供し、それぞれの画分に存在するact2、At3g47610、At1g77120及びAt1g77120の5’UTRを連結したFluc mRNAを定量した。縦軸は各画分に存在するそれぞれのmRNA量を全画分に対する割合で表記している。 5’UTRがFlucタンパク質の蓄積量に及ぼす影響を調べた結果を示す。継代後、4~9日間培養した細胞をそれぞれ回収した。回収した細胞から粗タンパク質溶液を調製し、総タンパク質量当たりのFluc活性を測定した。各形質転換培養細胞の4日目の細胞における活性値を100としたときの、それぞれの相対Fluc活性値(%)を示した。活性測定はそれぞれ5回行い、最高値及び最低値を除いた3回分のFluc活性値の平均値、及び標準偏差を算出した。 形質転換タバコ細胞製造のために作製したバイナリーベクターの模式図を示す。 At3g47610形質転換培養細胞におけるHRP C1a mRNAの挙動解析結果を示す。(A):継代後、培養液1 mLあたりに含まれる培養細胞の新鮮重量(Fresh weight g/ mL)を1日おきに9日目まで測定した。3回測定の平均と標準偏差を示す。(B):培養1日目と8日目の細胞から調製した細胞抽出液をショ糖密度勾配遠心(15-60%)により分画した後、RNAの分布を見積もるために254 nmの吸光プロファイルを記録した。(C):各画分から抽出したRNAを等容量ずつ定量RT-PCR解析に供し、それぞれの画分に存在するT-actinおよびAt3g47610の5’UTRを付加したHRP C1a mRNAを定量した。縦軸は各画分に存在するそれぞれのmRNA量を全画分に対する割合で表記している。なお、T-actinはタバコアクチン遺伝子である。 At1g77120形質転換培養細胞におけるHRP C1a mRNAの挙動解析結果を示す。(A):継代後、培養液1 mLあたりに含まれる培養細胞の新鮮重量(Fresh weight g/ mL)を1日おきに9日目まで測定した。3回測定の平均と標準偏差を示す。(B):培養1日目と8日目の細胞から調製した細胞抽出液をショ糖密度勾配遠心(15-60%)により分画した後、RNAの分布を見積もるために254 nmの吸光プロファイルを記録した。(C):各画分から抽出したRNAを等容量ずつ定量RT-PCR解析に供し、それぞれの画分に存在するT-actinおよびAt1g77120の5’UTRを付加したHRP C1a mRNAを定量した。縦軸は各画分に存在するそれぞれのmRNA量を全画分に対する割合で表記している。 At1g55330形質転換培養細胞におけるHRP C1a mRNAの挙動解析結果を示す。(A):継代後、培養液1 mLあたりに含まれる培養細胞の新鮮重量(Fresh weight g/ mL)を1日おきに9日目まで測定した。3回測定の平均と標準偏差を示す。(B):培養1日目と8日目の細胞から調製した細胞抽出液をショ糖密度勾配遠心(15-60%)により分画した後、RNAの分布を見積もるために254 nmの吸光プロファイルを記録した。(C):各画分から抽出したRNAを等容量ずつ定量RT-PCR解析に供し、それぞれの画分に存在するT-actinおよびAt1g55330の5’UTRを付加したHRP C1a mRNAを定量した。縦軸は各画分に存在するそれぞれのmRNA量を全画分に対する割合で表記している。
 以下、本発明について、さらに詳細に説明する。なお、本明細書におけるアミノ酸、ペプチド、塩基配列、核酸などの略号による表示は、IUPAC、IUBの規定、「塩基配列又はアミノ酸配列を含む明細書などの作成のためのガイドライン」(特許庁編)及び当該分野における慣用記号に従うものとする。また、DNAはデオキシリボ核酸を表し、RNAはリボ核酸を表し、mRNAはメッセンジャーRNAを表す。
 また、遺伝子操作等の分子生物学的操作については、適宜公知の方法を用いることができる。例えば、特に断りのない限り、Molecular Cloning: A Laboratory Manual 3rd Edition(Cold Spring Harbor Laboratory Press)等に記載の方法に従って行うことができる。
 本発明の方法は、以下の(a)又は(b)の5’UTRを有するmRNAをコードする組換えDNA分子により形質転換された植物細胞を生育必要条件欠乏ストレス下で培養する工程を含む。
(a)配列番号1、2、3、4、5又は6の塩基配列からなる5’UTR
(b)(a)の5’UTRの塩基配列において、1又は数個の塩基が置換され、かつ、生育必要条件欠乏ストレスによる翻訳抑制を回避する5’UTR。
 mRNAが配列番号1、2、3、4、5又は6の塩基配列からなる5’UTRを有することにより、生育必要条件欠乏ストレスによる翻訳回避が可能となる。
 配列番号1~6の塩基配列は、それぞれ下記の通りである。なお、これらの配列番号の塩基配列はシロイヌナズナの遺伝子から得られたものである。各配列番号の直後に括弧書きで、その5’UTRが得られた遺伝子名を示す。
配列番号1(At1g77120由来)
UACAUCACAAUCACACAAAACUAACAAAAGAUCAAAAGCAAGUUCUUCACUGUUGAUA
配列番号2(At1g06760由来)
CUUCACAAUCCUCAUAAUCACUUUCGAAAUUACAUUUACGCUUUCUUGCAAUCAAAUUUUCCGAUCUUAAGUUCAGAAGACG
配列番号3(At4g10710由来)
GGUAGAAAAACCAUUCUUUGGUAACUUUCGCUUACUCUCUCCCCAUUCUCUCUCGAAGAGAGCCUCGCCGGAGUUUGUUUUUCUUCUUGUUUCGCGGCCAAAACCGCCUUUGUGUAAAGCUACCUUGUUAUUUUCCUCCGUUAACCAUCUGGUAUAGGUUGCUGCUGGACUCUUUAG
配列番号4(At4g14560由来)
ACACAAGCAUUUUCAAGGAUAUCAAAUCACAAUCCCAAGAAGAGCAAUAACAAGAGAAGAAGAAGUAGUUCAAGAAUUAAGGAAGAGAGCUUCUCCGUUAAAGUAUAGUGAGAGAAU
配列番号5(At5g09590由来)
CCGUCGUCGAUGUCGAGAAUUAUCACCAUCUAGAAUCUUCCCUCAACCUCUAGAAAACAACUUUCGUAUCCUUCAAAAACCCUAAACCCUAGCUUUUGCACAGACGCAAUUUCAUCGCAUCAUUUUGCAAUUUUCCUUUACUGAUCUGUCACCACCUCUUGAAUUUCGAAACC
配列番号6(At1g55330由来)
AUCAUCACAACACAAAUCAAAACAAGAAUAACAAAAUCUUUCUCUUAUAAAUUCUUAUUUCAAGACAUCAAAGGAGAAUUA
 また、配列番号1、2、3、4、5又は6の塩基配列からなる5’UTRの他に、配列番号1~6の塩基配列において、1又は数個の塩基が置換、欠失、又は付加され、かつ、生育必要条件欠乏ストレスによる翻訳抑制を回避する5’UTRも、本発明に有用である。
 置換、欠失、又は付加される塩基数は、好ましくは1~10(1、2、3、4、5、6、7、8、9又は10)塩基、より好ましくは1~5塩基、さらに好ましくは1、2、又は3塩基である。なお、「置換、欠失、又は付加され」るとは、1の配列において、置換、欠失及び付加からなる少なくとも1種の塩基の改変がなされるという意味である。また、前記の置換、欠失、又は付加される塩基数は、置換、欠失及び付加された塩基数の合計数(置換、欠失及び付加された塩基の合計が最小となるよう換算した数)を示す。
 より詳細に説明すると、本発明の組換えDNA分子は、上記特定の5’UTR配列を有するmRNAをコードするように組み換えられたDNA分子である。特定の5’UTR配列を有するmRNAを発現するDNA分子であるともいってもよい。本発明の組換えDNA分子は、人工的に少なくとも5’UTRに相当する部分の塩基配列を変化させて製造したDNA分子である。
 特に制限されないが、当該組換えDNA分子は、DNA構築物であることが好ましい。例えば、mRNAを発現しやすくするため、プロモーター配列がmRNAをコードする部分の上流に含まれたDNA構築物が好ましい。具体的には、mRNAをコードする塩基配列を含む発現ベクター等が例示できる。当該発現ベクターは、クローニングベクターに上記mRNAをコードするDNA分子を組み込んだDNA構築物である。クローニングベクターとしては公知のものを用いることできる。例えばプラスミドベクター(特にTi-プラスミドが好ましい)、コスミドベクター、ウイルスベクター等が例示できる。また、ベクターが有するプロモーター配列も公知のものを用いることができる。例えばカリフラワーモザイクウイルス由来プロモーターであるCaMV35Sプロモーターが例示できる。
 なお、DNA分子の塩基配列を人工的に変化させる方法は、様々な公知の方法が知られており、適宜選択して使用することができる。例えば、適切な制限酵素によりDNA分子を切断した後新たなDNA断片を当該切断部へ連結させることにより、又は、目的遺伝子と完全に相補的ではないプライマー対を設計してPCRを行うことにより、あるいはこのような手法を組み合わせて用いることによって、DNA分子の塩基配列を改変することができる。
 本発明の組換えDNA分子は、上記特定の5’UTR配列を有するmRNAをコードするように組み換えられたDNA分子であればよく、当該DNA分子にコードされるタンパク質(ペプチドを含む)の種類は特に限定されない。タンパク質(ペプチドを含む)としては、薬理活性を有するタンパク質が好ましく例示できる。具体的には、例えば、酵素、転写因子、サイトカイン、膜結合タンパク質、各種ペプチドホルモン(例えば、インスリン、成長ホルモン、ソマトスタチン)、ワクチンや抗体(FabやF(ab')2等、分子を特異的に認識する断片も含む)などの医療用タンパク質、等が挙げられる。また、本発明の組換えDNA分子は、このようなタンパク質をコードするDNA分子に、GFPやルシフェラーゼ等のレポーター遺伝子、HisタグやFLAG(登録商標)タグ等のタグペプチドの配列が連結されてなるDNA分子や、人工的に設計されたキメラ遺伝子であってもよい。
 組換えDNA分子の原料は公知のものを用いることができる。公知のDNA分子を原料とする場合は、その塩基配列情報は、例えばNCBI(National Center for Biotechnology Information)が運営する配列データベースGenBank等のデータベースから入手することができる。当該配列情報を基に、例えばPCR等の常法により各種生物からDNA分子を製造できる。また、各販社から例えばcDNAライブラリー等の形態で既知遺伝子が販売されており、これを購入して用いることもできる。
 このような、上記5’UTRを有するmRNAをコードする組換えDNA分子を植物細胞へ導入することで、当該植物細胞(形質転換植物細胞)において当該mRNAを発現させることができる。なお、当該mRNAが発現するのであれば、導入した組換えDNA分子が細胞内でどのように存在しているかは特に制限されない。例えば、染色体のDNAとは独立して自律的に複製を行うもの(プラスミドなど)であってもよいし、染色体に組み込まれていてもよい。
 植物細胞の種類は特に制限されない。例えば双子葉植物由来細胞が挙げられ、より具体的には、シロイヌナズナ由来細胞、タバコ由来細胞、ダイズ由来細胞、キク由来細胞、レタス由来細胞等が例示できる。好ましくは、シロイヌナズナ培養細胞、又はタバコ培養細胞である。
 また、組換えDNA分子を植物細胞へ導入する方法は特に制限されず、公知の方法を適宜選択して用いることができる。例えば、エレクトロポレーション法、パーティクルガン法、Tiプラスミドを用いた方法(例えばバイナリーベクター法、リーフディスク法)等が例示できる。
 なお、ベクターが宿主に組み込まれたか否かの確認は、PCR法、サザンハイブリダイゼーション法、ノーザンハイブリダイゼーション法等の公知の方法により行うことができる。
 本発明の形質転換植物細胞は、上記組換えDNA分子が導入されることにより形質転換されている。より詳細には、本発明の形質転換植物細胞では、本発明の組換えDNA分子から前記mRNAが転写され、当該mRNAからタンパク質が翻訳される。上述の通り、本発明の組換えDNA分子は特定の5’UTR配列をコードしており、生育必要条件欠乏ストレスによる翻訳抑制を回避(低減)できる。明細書において「翻訳抑制を回避する」とは、全く翻訳抑制を無くすという意味だけではなく、翻訳抑制を低減するという意味を包含する。
 当該形質転換植物細胞の培養は、形質転換する前の野生型の植物細胞を培養可能な公知の方法により行うことができる。例えば、用いる植物細胞がシロイヌナズナ培養細胞の場合は、公知のシロイヌナズナ培養細胞の培養方法により培養することができ、用いる植物細胞がタバコ培養細胞の場合は、公知のタバコ培養細胞の培養方法により培養することができる。。
 生育必要条件欠乏ストレスとは、上述の通り、生育に本来必要な条件が不足して生じるストレスのことである。特に植物細胞の場合、培養に必要な成分が欠乏することにより生じるストレスであり、培養必要成分欠乏ストレスと言い換えてもよい。具体的には、例えば培地中の栄養分や酸素が消費されることで起こるストレスである。栄養飢餓ストレスや低酸素ストレスが例示される。特に制限されないが、生育必要条件欠乏ストレスとしては、栄養飢餓ストレス(例えばショ糖飢餓ストレス)及び低酸素ストレスからなる群より選択される少なくとも1種のストレスが好ましい。
 本発明において、翻訳が抑制されているか否かは、ポリソーム画分に存在するmRNA量が減少しているか否かで判断する。つまり、ポリソーム画分に存在するmRNA量が減少した場合、翻訳が抑制されていると判断できる。そして、翻訳が抑制されるmRNAについて、上記(a)又は(b)の5’UTRを有するように改変した場合に、ポリソーム画分に存在するmRNA量が減少していた時期になっても、ポリソーム画分に存在するmRNA量が減少しないか減少してもその減少幅が抑えられている場合に、翻訳抑制が回避されたと判断できる。
 なお、ポリソーム画分とは、細胞抽出液(mRNAとリボソームの結合は維持されている)をショ糖密度勾配遠心法により分離し、遠心後の当該密度勾配液を等容量ずつ複数の画分に分画した際、ポリソームを多く含有する画分のことをいう。一般に、翻訳効率の高いmRNA分子は、一分子あたり、より多くのリボソームと結合しているので沈降速度のより大きなポリソーム画分に分布する。超遠心後の密度勾配液において、ショ糖密度のより高い画分にポリソームは多く含まれる。より具体的には、buffer (50 mM Tris-HCl, pH8.5, 25 mM KCl, 及び10 mM MgCl2)により調製した15-60%ショ糖密度勾配液を用いて55,000 rpm, 50 min, 4℃の条件で超遠心し、等容量ずつ8画分に分画した際の、ショ糖密度の高い方(遠心チューブの底)から1~3画分目がポリソーム画分である。
 以下、本発明を具体的に説明するが、本発明は下記の例に限定されるものではない。まず実験に用いた材料及び手法について詳述し、その次に具体的な実験内容及び結果を記載する。
<植物培養細胞>
 以下の検討には、次の植物培養細胞を用いた。
〔シロイヌナズナT87〕
 シロイヌナズナ培養細胞(Arabidopsis thaliana T87)(Axelos et al., 1992)は理化学研究所ジーンバンク室植物開発銀行より分与していただいたものを使用した。培養は22℃、18時間明期/6時間暗期、攪拌速度120 rpm(SLK-3-FS, 日本医化器械製作所)の条件で行い、95 mLの改変LS培地 (Nagata, 1992) を300 mL容の三角フラスコに入れ使用した。一週間ごとに定常期に達した細胞4 mLを新しい培地95 mLに移植し継代培養を行った。なお、後述する安定形質転換培養細胞の作出に使用した培養細胞は、定常期に達した細胞2 mLを植え継ぎ、3-4日間培養した細胞を使用した。
〔タバコBY-2〕
 タバコ培養細胞(Nicotiana tabacum L. cv. Bright Yellow 2)の培養は27℃、24時間暗期、攪拌速度130 rpm (BR-3000, Taitec, Saitama,  Japan) の条件で行い、95 mLの改変LS培地を300 mL容の三角フラスコに入れ使用した。一週間ごとに定常期に達した細胞4 mLを新しい培地95 mLに移植し継代培養を行った。また、カルスの継代に用いた固形培地は滅菌前に0.3%のゲランガムを加えること以外は液体培養と同様である。カルスは90 mm径のシャーレで25℃、暗期で継代した(MIR-553, Sanyo Medicasystems, Osaka)。
 なお、培養細胞を回収する際は、吸引濾過により培地を除き、細胞を液体窒素中で凍結させ、-80℃にて保存した。また、タバコBY2を回収する際には吸引濾過後に新たな改変LS培地100 mLで細胞を洗浄し、再度吸引濾過を行い液体窒素中で凍結させ-80℃にて保存した。 
<ショ糖密度勾配遠心法を用いたポリソーム解析>
 ショ糖密度勾配遠心を利用したポリソーム分画は、Daviesらの方法に準じて行った(Davies, E., and Abe, S. (1995). Methods Cell Biol. 50, 209-222.)。通常培養細胞もしくはストレス下で培養した細胞約300 mgを乳棒と乳鉢を用いて液体窒素中で細かく破砕した後、破砕粉末に1.5 mLのbuffer U (200 mM Tris-HCl, pH8.5, 50 mM KCl, 25 mM MgCl2, 2 mM EGTA, 100 μg/mL heparin, 2% polyoxyethylene 10-tridecyl ether [PTE], and 1% sodium deoxycholate [DOC])を加え、緩やかに懸濁した。遠心(15,000 × g, 10 min, 4℃) により細胞残渣を除いた後に、buffer B (50 mM Tris-HCl, pH8.5, 25 mM KCl, and 10 mM MgCl2)により調製した15-60%ショ糖密度勾配液4.6 mL上に上清を重層し、超遠心を行った(SW55Ti rotor, 55,000 rpm, 50 min, 4℃, brake-off)(Beckman Coulter)。ペリスタポンプ(Minipuls 3; Gilson)に連結したマイクロピペット(40 μLCalibrated Pipet; Drummond)をショ糖密度勾配の上部から挿入し、下部からショ糖密度勾配液を約1 mL/minの速さで吸引すると同時に、Monitor UV-1(GE Healthcare)を用いて254 nmの吸光度を記録した。
<マイクロアレイ解析用RNAの抽出>
 超遠心後のショ糖密度勾配液を等容量ずつ8つの画分に分画した場合の、1-3番目の画分(底側が1番)を混合したポリソーム画分と1-8番目を混合したトータル画分から、それぞれpolysome RNA、total RNAを抽出した。それぞれの画分は終濃度5.5 Mになるように8Mグアニジン塩酸塩を予め加えたチューブに回収した。この時、Two-Color RNA Spike-In Kit(Agilent Technologies)に含まれる spike mix A をポリソーム画分に、spike mix B をトータル画分にそれぞれ加えた。それぞれの spike mix には、in vitro合成されたポリA配列をもつ10種類の転写産物が、200倍のダイナミックレンジでかつ既知の量比で混合されている。また、それらの転写産物に対応するスポットが本研究で使用した Agilent oligoarray (Arabidopsis 3 oligo microarray 44K; Agilent Technologies)に存在する。RNA spike-inはショ糖密度勾配遠心液を回収すると同時に加えているため、その後のRNA精製やラベリング、ハイブリダイゼーション(後述)などの過程を経ることになる。従って、RNA spike-inに対応するスポットのシグナル値を用いた補正を行うことにより、ショ糖密度勾配における実際のRNA比率(polysome RNA vs. total RNA)を試算することが可能となる(Melamed and Arava, 2007)。ショ糖溶液及びグアニジン塩酸塩の混合液に対し等量の100%エタノールを加え、-20℃にて一晩冷却した後、遠心操作(20,000 ×g, 45 min, 4℃)を行った。得られたペレットを85%エタノールにて一度洗浄した後、RNeasy kit (Qiagen)に含まれるbuffer RLTにてペレットを溶解し、以降は付属のプロトコールに従いRNeasy kit (Qiagen)を用いてRNA精製を行った。その後、更にLiCl沈殿、エタノール沈殿による精製を行った。RNAの品質は、Agilent Bioanalyzer 2100(Agilent Technologies)を用いたオンチップ電気泳動法により検定した。 
<ショ糖密度勾配遠心液からのRNA精製>
 ショ糖密度勾配溶液約650μLずつをキャップ構造、ポリA配列を有するin vitro合成Renilla luciferase(r-luc)mRNA 5 ngおよび終濃度5.1 Mになるように8 M グアニジン塩酸塩を予め加えておいたチューブ8本に回収した。合成r-luc mRNAは定量RT-PCR法により目的mRNAの各画分における存在比を算出する際の補正に用いた。各チューブへ混合液と等量の100%エタノールを加え、-20℃にて一晩冷却した後、遠心操作を行った (12,000 × g, 45 min, 4℃) 。得られたペレットは85%エタノールにて一度洗浄した後、乾燥させた。その後のRNA精製にはRNeasy Mini Kit(Qiagen)を付属のプロトコールに従い用いた(DNaseI処理をオプションとして行った)。全ての画分のRNAをそれぞれ30μLのRNase-free waterで溶解した。精製したRNAの品質は1.5%変性ゲル電気泳動にて検定した。 
<定量RT-PCR>
 超遠心後のショ糖密度勾配液を等容量ずつ分画した8つの画分からそれぞれ精製したRNA溶液を等容量ずつ用いて逆転写反応を行った。逆転写反応にはTranscription First Strand cDNA Synthesis Kit(Roche)を付属のプロトコールに従って用いた。反応系は13μLとした(oligo dT プライマー使用)。PCR反応は40倍希釈した逆転写反応溶液2μLを鋳型に、遺伝子特異的プライマーセット及びLightCycler 480 SYBR Green I Master(Roche Applied Science)を用いて、10μLの反応系で行った。実際の検討に用いたプライマーセットの配列を下に示す。 
[定量RT-PCRに使用したプライマーセットの配列 (5’ to 3’)]
Act2(At3g18780)
TCCCATTGTTTTGTAGCTCTGA
AAAGAAATTATAGGGAACAAAAGGAA
At3g47610
TGCCAAGGAATATCTCGACAA
CTGAACTGGCTGCTACATGG
At1g77120
GAGTATTCGTTGCATCATCACC
CAAAGTGAACATCATCTGCGA
At1g06760
TGCTGCAACTAAGAGGAAAGC
CCTTGGCTGGTCTAGCCTTA
At4g10710
TTTTCCTCCGTTAACCATCTG
TCCGAGAGTCTGCCATCTAAA
At4g14560
AACAACAAGCGCAAGAACAA
CGATTTGTGTTTTTGCAGGA
At5g09590
AGCTTTTCCAGAGCCTTTAGC
CCCAAATCAATACCAATGACATC
At1g55330
ACGGCTGCTACCGTTGAA
GGTACAAACATGGCAGCATC
GUS
CTGATAGCGCGTGACAAAAA
CGGTTCGTTGGCAATACTC
Fluc
TGAGTACTTCGAAATGTCCGTTC
GTATTCAGCCCATATCGTTTCAT
T-actin
TGGCATCATACATTTTACAACGA
AGGTGCTTCAGTGAGTAGTACAGG
HRP C1a
GGGAGGTCCTTCTTGGAGAG
GCAAGATCCAGAAATGCTTGT
Rluc
GGATTCTTTTCCAATGCTATTGTT
AAGACCTTTTACTTTGACAAATTCAGT 
 プライマーの設計にはUniversal ProbeLibrary Assay Design Center/ProbeFinder(Roche Applied Science)を、SYBR Green Iの蛍光強度の経時測定にはLightCycler 480 System(Roche Applied Science)を、データ解析にはLightCycler Data Analysis Software(Roche Applied Science)のsecond derivative maximum methodを用いた。各画分のRNA回収効率、RT-PCR反応効率の違いを補正するために、各画分における目的遺伝子の結果は、ショ糖密度勾配液の回収時に加えた補正用のr-luc mRNAの結果で補正した。PCR産物が単一であることは融解曲線分析もしくはアガロースゲル電気泳動により確認した。シグナルがゲノム由来でないことは、逆転写反応を行っていないRNA溶液を鋳型にしたPCR反応においてシグナルが検出されないことにより確認した。 
<マイクロアレイハイブリダイゼーション>
 同一のショ糖密度勾配由来のpolysome RNA及びtotal RNAから、それぞれcyanine3 (Cy3)、cyanine5 (Cy5)で蛍光標識したcomplementary RNA (cRNA)を調整し、Agilent oligoarray (Arabidopsis 3 oligo microarray 44K;Agilent Technologies)を用いた競合ハイブリダイゼーション実験に供した。Arabidopsis 3 oligo microarrayには、シロイヌナズナ由来の転写産物や前述のRNA spike-inなどの塩基配列から選択された、60 merのオリゴDNAが44000スポットプリントされている。RNAの増幅及び蛍光標識には、Low RNA Input Fluorescent Liner Amplification Kit (Agilent Technologies)を使用した。まず、500 ngのpolysome RNA及びtotal RNAを鋳型に、リンカー配列としてT7プロモーター配列を含むオリゴdTプライマー及びMMLV-RTを用いた逆転写反応を行った。合成されたcDNAを鋳型に、T7 RNA polymerase in vitro転写反応により、Cy3 (polysome RNA)あるいはCy5 (total RNA)で標識されたCTPを取り込んだcRNAを合成した。合成されたcRNAの精製はRNeasy kit(Quiagen)を用いて行った。polysomeRNAおよびtotal RNA由来のcRNAをそれぞれ750 ngずつ混合し、65℃/17時間のハイブリダイゼーション反応に供した。スライドを洗浄した後、Agilent Technologies Microarray Scanner (Agilent Technologies)を用いてスキャニングを行い、Cy3及びCy5のシグナルを検出した。 
<マイクロアレイデータ解析>
 スキャニング画像からデータの抽出及び正規化には、Feature extraction software (Agilent Technologies)を用いて行った。Feature extraction software の設定基準に従って立てられたフラグを基に、Cy3、Cy5いずれかについてシグナル値が飽和しているスポット(glsSaturated, rlsSaturated)、スポット内のシグナルが不均一なスポット (glsFeatNonUnifOL, rlsFeatNonUnifOL)、複数スポットされている遺伝子についてはずれ値であるスポット(glsFeatPopnOL, rlsFeatPopnOL)、シグナルとバックグラウンドに優位さがないスポット(glsPosAndSignif, rlsPosAndSignif) (glsWellAboveBG, rlsWellAboveBG)を、以降の解析から除いた。正規化には、RNA spike-inに対応するスポットを基に行う方法もしくは Feature extraction software (Agilent technologies) における標準的な正規化方法である Liner&LOWESS法(Locally Weighted Liner Regression) を用いた。解析対象として残ったスポットに関して、解析を行った。解析に使用した略語の説明を以下に示す。
  Poly1d: 継代後1日目の細胞のpolysome画分由来のマイクロアレイデータにおけるCy3シグナル値
  Total1d: 継代後1日目の細胞の全画分由来のマイクロアレイデータにおけるCy5シグナル値
  Poly8d: 継代後8日目の細胞のpolysome画分由来のマイクロアレイデータにおけるCy3シグナル値
  Total8d: 継代後8日目の細胞の全画分由来のマイクロアレイデータにおけるCy5シグナル値 
 翻訳状態を評価するための指標として、Polysome ratio (polysome RNAのtotal RNAに対する割合)を各スポットについて求めた。
Polysome ratio (1日目の細胞)
PR1d=Poly1d/Total1d
Polysome ratio (8日目の細胞)
PR8d=Poly8d/Total8d 
 継代後1日目から8日目への時間経過による翻訳状態の変化を評価するための指標(ΔPR)の算出を各スポットについて行った。
 ΔPR=PR8d-PR1d 
 Arabidopsis 3 oligo microarrayの各スポットには、gene nameあるいはsystematic name (e.g. AGI code [The Arabidopsis Genome Initiative gene code])が付与されている。基本的に一つのgene name (systematic name)には一つのスポットが対応しているが、複数のスポットが対応しているgene name (systematic name)もいくつか存在する。継代後1日目の細胞及び8日目の細胞由来のマイクロアレイデータのいずれにおいても上記データ処理の基準を満たしたgene name (systematic name)の内、AGI code を有するものについてPolysome ratioを算出した。なお上記計算はすべてMicrosoft Excelを使用して行った。 
<Fluc活性測定>
 各培養日数の培養細胞を遠心操作(9,100 × g, 1 min, 22℃)により沈殿させ、アスピレーターで培地を除去後、液体窒素中で凍結し、-80℃にて保存した。回収した細胞に300 μLのPassive Lysis buffer(Promega, USA)を加え、Handy Sonic(TOMY SEIKO, Tokyo)によって細胞を破砕した。破砕した細胞を再度遠心(20,400 × g, 5 min, 4℃)し、200 μLの上清を回収した。その後は、基本的にDual-Luciferase Reporter Assay System(Promega)のプロトコールに従って操作した。上清を10000倍に希釈し、希釈溶液20 μLを100 μLの基質溶液と混合し反応させた後、ルミノメーター(Lumat LB 9501, Berhold, Germany)を付属のプロトコールに従って使用した。Fluc活性はrelative light unit(RLU)/mg proteinとして算出した。総タンパク質量の定量はBradford法(Bradford, 1976)に従った。具体的には、希釈したタンパク質溶液10 μLをタンパク質定量試薬990 μLに加えSPECTRAFLUOR(TECAN, Switzerland)を用いて測定し、既知濃度のBSAを用いて作成した検量線からタンパク質濃度を決定した。
 なお、Flucは、ホタルルシフェラーゼを意味する。
植物培養細胞内在遺伝子のタンパク質翻訳状況の経時変化
 各培養日数のシロイヌナズナT87野生株を用いてポリソーム解析を行った。ポリソーム解析は、ショ糖密度勾配遠心により細胞抽出液中に存在するmRNAをリボソームの結合数に応じて分画できることから、細胞内の翻訳状態を解析する手法として広く利用されている。これにより培養日数の経過による翻訳状態変化を調べた。
 細胞の新鮮重量を測定することで増殖曲線(図1A)を作成した。また、24時間毎に0日(継代直後)~9日間培養した細胞を回収し、それぞれの細胞から調製した細胞抽出液をショ糖密度勾配遠心(15-60%)により分画した。培養前期にあたる1日目では非ポリソーム画分はほとんど存在せず、大部分がポリソーム画分であり活発に翻訳がなされていることがわかった。一方、培養日数の経過に従って翻訳が活発であるポリソーム画分が減少すると共に、翻訳が不活発な非ポリソーム画分が増大していることが、RNA量の指標である254 nmの吸光度プロファイルからわかった(図1B)。特に、培養後期の8日目の細胞では非ポリソーム画分が大部分を占め、ポリソーム画分は非常に小さく、酸素や栄養を消費したことにより低酸素や栄養飢餓ストレス(生育必要条件欠乏ストレス)が生じ、これによる著しい翻訳抑制を起こしていることが確認できた。 
ポリソーム/マイクロアレイ解析
 培養1日目と8日目の細胞を用いて、ショ糖密度勾配遠心によりmRNAをリボソームの結合数に応じて分画し、それぞれの画分から調製したmRNAを用いて、DNAマイクロアレイ解析を行うことにより生育必要条件欠乏ストレス下における個別遺伝子の翻訳状態をゲノムワイドに解析した。ポリソーム/マイクロアレイ解析の概要を図2に示す。
 細胞内の個々のmRNAの翻訳状態(ポリソーム形成状態)を示す指標としてPolysome ratio(それぞれPR1d、PR8d)を算出した。培養1日目と8日目のPR値のヒストグラムを作成し (図3A)、生育必要条件欠乏ストレスにおける翻訳状態変化を検証した。培養1日目の細胞では大部分のmRNA種のPR1dは40~60%であった。一方で、生育必要条件欠乏ストレスが存在する8日目の細胞の場合、PR8dのヒストグラムの幅が広がりを示しており、大部分のmRNA種においてPR値が減少した。この結果は生育必要条件欠乏ストレスにより各mRNAのポリソーム画分に存在する割合が減少していることを示しており、254 nmの吸光度プロファイルが示す全体的な傾向(図1B)と一致した。また、培養1日目から8日目への移行に伴う個々のmRNA種のPR値の変化を、ΔPR値として算出した結果からも(図3B)、大部分のmRNA種が負の値を示し(中央値-0.23)、ポリソーム形成が生育必要条件欠乏ストレスにより阻害されていることが明らかとなった。一方で、細胞全体として翻訳抑制が生じる中、ポリソーム形成が阻害されない、即ち翻訳が維持されるmRNAも少ないながら存在していることが明らかとなった(図3B)。 
ポリソーム/定量RT-PCR解析による内在性mRNAの挙動解析
 マイクロアレイ解析より、生育必要条件欠乏ストレス下でも翻訳が維持されることが示唆された遺伝子のうち、At1g77120、At1g06760、At4g10710、At4g14560、At5g09590、及びAt1g55330の挙動解析を、ポリソーム/定量RT-PCR解析によって行った。また、生育必要条件欠乏ストレスにより翻訳が抑制されると示唆された遺伝子act2及びAt3g47610についても、同様に解析した。当該ポリソーム/定量RT-PCR解析の概要を図4に示す。
 培養1日目(培養前期)及び培養8日目(培養後期)の細胞抽出液を、ショ糖密度勾配遠心(15-60%)により分画した。培養8日目では培養1日目の細胞のポリソームプロファイルと比較して翻訳が活発であるポリソーム画分が減少すると共に翻訳が不活発な非ポリソーム画分が増大していることが、RNA量の指標である254 nmの吸光度プロファイルから示された(図5A)。さらに、マイクロアレイの結果から翻訳が抑制されない上記6種の遺伝子のmRNAについてショ糖密度勾配液画分における分布を定量RT-PCRにより解析したところ、培養8日目においても大部分が1-3番目のポリソーム画分にとどまっていることから、翻訳が抑制されず、維持されていることが確認できた(図5B)。一方で、翻訳が抑制されるハウスキーピング遺伝子Actin2(act2)やAt3g47610のmRNAは、培養1日目では大部分が1-3番目のポリソーム画分に存在し活発に翻訳されているが、培養8日目においては大部分が4-7番目の非ポリソーム画分に移行していることから、著しい翻訳抑制を起こしていることが確認された(図5B)。
ポリソーム/定量RT-PCR解析によるGUS mRNAの挙動解析
 上記解析により、生育必要条件欠乏ストレス下において翻訳が抑制されなかったAt1g77120、及び翻訳が抑制されたAt3g47610、のそれぞれの5’UTRをレポーターGUS遺伝子と連結したバイナリーベクター(「At1g77120 5’UTR::GUS」及び「At3g47610 5’UTR::GUS」)をWO2011/021666号に記載の方法に準じて作製し、シロイヌナズナ培養細胞T87に導入して安定形質転換培養細胞を作製した。当該形質転換植物細胞を用いて、ポリソーム/定量RT-PCR解析を行うことで、異なる5’UTRを付加したGUS mRNAと内在性mRNAの生育必要条件欠乏ストレス下における挙動変化を解析した。解析は上記と同様にして行った。なお、作製したバイナリーベクターの模式図を図6に示す。図6におけるHSP-TはHSPターミネーターを示す。
 「At3g47610 5’UTR::GUS」により形質転換した培養細胞(At3g47610 5’UTR::GUS形質転換培養細胞)についてポリソーム解析を行った結果、培養8日目ではポリソーム画分が減少し、非ポリソーム画分が増大することが確認された(図7A)。また、定量RT-PCRにより個別mRNAについて解析を行ったところ、act2やAt1g77120のmRNAはそれぞれ野生株(図5B)と類似した挙動を示した。また、培養後期において翻訳が抑制された遺伝子At3g47610のmRNAも野生株(図5B)と同様に培養8日目には大部分が非ポリソーム画分に移行しており、翻訳が抑制されていた(図7B)。さらに、At3g47610の5’UTRを付加したGUS mRNAも同様に翻訳が抑制されることが確認された(図7B)。
 一方、「At1g77120 5’UTR::GUS」により形質転換した培養細胞(At1g77120 5’UTR::GUS形質転換培養細胞)についてポリソーム解析を行った結果、培養8日目ではポリソーム画分の減少と非ポリソーム画分の増大することが確認された(図8A)。また、定量RT-PCRではact2やAt3g47610のmRNAはそれぞれ野生株(図5B)と類似した挙動を示した(図8B)。培養後期において翻訳が抑制されなかった遺伝子At1g77120(図5B)mRNA及びAt1g77120の5’UTRを付加したGUS mRNAは、培養8日目においても大部分がポリソーム画分にとどまっており、翻訳が抑制されないことが確認された(図8B)。
ポリソーム/定量RT-PCR解析によるFluc mRNAの挙動解析
 培養後期において翻訳が維持及び抑制される遺伝子の5’UTRを連結したGUS mRNAは培養後期において、その内在遺伝子と同様の挙動をとることが明らかとなった。次に、この発現システムがGUS遺伝子とは異なるFluc遺伝子においても機能するかを調べた。生育必要条件欠乏ストレス下において翻訳が抑制されなかったAt1g77120、及び翻訳が抑制されたAt3g47610、のそれぞれの5’UTRをレポーターFluc遺伝子と連結したバイナリーベクター(「At1g77120 5’UTR::Fluc」及び「At3g47610 5’UTR::Fluc」)をWO2011/021666号に記載の方法に準じて作製し、シロイヌナズナ培養細胞T87に導入して安定形質転換培養細胞を作製した。当該形質転換植物細胞を用いて、ポリソーム/定量RT-PCR解析を行うことで、異なる5’UTRを付加したFluc mRNAと内在性mRNAの生育必要条件欠乏ストレス下における挙動変化を解析した。解析は上記と同様にして行い、実験には、培養1日目(培養前期)、4日目(培養中期)、9日目(培養後期)の細胞を用いた。なお、作製したバイナリーベクターの模式図を図9に示す。図9におけるHSP-TはHSPターミネーターを示す。
 「At3g47610 5’UTR::Fluc」により形質転換した培養細胞(At3g47610 5’UTR::Fluc形質転換培養細胞)についてポリソーム解析を行った結果、培養4日目、9日目と培養経過に従ったポリソーム画分の減少と非ポリソーム画分の増大が確認された(図10A)。定量RT-PCRでは、翻訳が維持されるAt1g77120は培養4日目、9日目においてもポリソーム画分にとどまることが確認された。一方で、翻訳が抑制されるact2、At3g47610に関しても培養4日目ではまだポリソーム画分にとどまるが、9日目では非ポリソーム画分に移行することが確認された(図10B)。さらに、培養後期において翻訳が抑制されるAt3g47610の5’UTRを連結したFluc mRNAにおいても、内在性At3g47610と同様に培養4日目ではポリソーム画分にとどまっているが、9日目には非ポリソーム画分に移行し、翻訳が抑制されることが明らかとなった(図10B)。
 一方、「At1g77120 5’UTR::Fluc」により形質転換した培養細胞(At1g77120 5’UTR::Fluc形質転換培養細胞)についてポリソーム解析を行った結果、培養9日目でポリソーム画分の減少と非ポリソーム画分の増大が確認された(図11A)。培養4日目に関しては、1日目と比較してポリソーム画分の減少はわずかだが、非ポリソーム画分の増大が確認できることから、ポリソーム画分と非ポリソーム画分の比を考えると、図10 のAt3g47610 5’UTR::Fluc形質転換培養細胞と同程度の翻訳抑制が生じていると思われた。定量RT-PCRでは、培養後期において翻訳が維持されるAt1g77120の5’UTRを連結したFluc mRNAは内在性At1g77120と同様に培養9日目においてもポリソーム画分にとどまっており、翻訳が維持されることが確認された(図11B)。
各培養日数におけるFlucタンパク質蓄積量
 さらに、翻訳を維持する5’UTRを連結したFluc遺伝子が、実際に培養後期において翻訳されているかを調べるために、翻訳産物であるFlucタンパク質の蓄積量変化を解析した。
 培養後期において翻訳が維持されるAt1g77120 5’UTR::Fluc及び抑制されるAt3g47610 5’UTR::Fluc形質転換培養細胞の培養4~9日目の細胞におけるFluc活性を測定した。その結果、翻訳が抑制されるAt3g47610 5’UTR::Fluc形質転換培養細胞では4~8日目にかけて緩やかな増加が認められるが、9日目では8日目からの減少を示した(図12)。一方で、翻訳が維持されるAt1g77120 5’UTR::Fluc形質転換培養細胞では9日目まで高い増加率を示し、9日目には4日目の3倍以上のFlucタンパク質蓄積量となった(図12)。
 以上の結果から、生育必要条件欠乏ストレス下において翻訳が抑制される遺伝子の5’UTRを導入遺伝子に付加した場合、その内在遺伝子と同様に生育必要条件欠乏ストレス下において翻訳が抑制されること、及び、生育必要条件欠乏ストレス下において翻訳が抑制されない遺伝子の5’UTRを導入遺伝子に付加した場合、生育必要条件欠乏ストレス下において翻訳が抑制されることなく活発に行われること、が明らかになった。 
ポリソーム/定量RT-PCR解析によるHRP C1a mRNAの挙動解析
 上記の検討では、シロイヌナズナ由来の5’UTRを連結したレポーター遺伝子をシロイヌナズナ培養細胞に導入し、ポリソーム/定量RT-PCR解析により5’UTRの翻訳維持能力を評価した。その結果、培養後期において翻訳が抑制されない遺伝子の5’UTRを利用することで導入遺伝子を効率的に翻訳させることができることが明らかとなった。
 そこで次に、他の植物培養細胞であるタバコ培養細胞BY-2を用いた場合も同様の結果が得られるか検討した。生育必要条件欠乏ストレス下において翻訳が抑制されなかったAt1g77120及びAt1g55330並びに翻訳が抑制されたAt3g47610の5’UTRをモデル遺伝子である西洋ワサビペルオキシダーゼC1a遺伝子(Horse Radish peroxidase C1a; HRP C1a)と連結したバイナリーベクターをWO2011/021666号に記載の方法に準じて作製し(「At1g77120 5’UTR:: HRP C1a」、「At1g55330 5’UTR:: HRP C1a」及び「At3g47610 5’UTR:: HRP C1a」)、それぞれタバコ培養細胞BY-2に導入した安定形質転換培養細胞を作製し、ポリソーム/定量RT-PCR解析を上記と同様にして行った。なお、作製したバイナリーベクターの模式図を図13に示す。図13におけるHSP-TはHSPターミネーターを示す。
〔At3g47610 5’UTR::HRP C1aタバコ形質転換培養細胞〕
 培養時に細胞の新鮮重量を測定することで増殖曲線(図14A)を作成した。また、培養1日目(培養前期)及び8日目の細胞(培養後期)を回収し、上記と同様の解析を行った。その結果、培養8日目ではポリソーム画分が減少し、非ポリソーム画分が増大することが確認された(図14B)。定量RT-PCRにより個別mRNAについての挙動を解析したところ、タバコactin(T-actin) mRNAはシロイヌナズナのact2と同様に培養8日目では翻訳が抑制されることが確認された。また、シロイヌナズナ培養後期において翻訳が抑制された遺伝子At3g47610(図5B)の5’UTRを付加したHPP C1aもシロイヌナズナ同様にタバコ培養細胞でも培養8日目には翻訳が抑制されることが確認された(図14C)。 
〔At1g77120 5’UTR::HRP C1aタバコ形質転換培養細胞〕
 培養時に細胞の新鮮重量を測定することで増殖曲線(図15A)を作成した。また、培養1日目(培養前期)及び8日目の細胞(培養後期)を回収し、上記と同様の解析を行った。その結果、培養8日目ではポリソーム画分が減少し、非ポリソーム画分が増大することが確認された(図15B)。定量RT-PCRにより個別mRNAについての挙動を解析したところ、培養8日目ではタバコactin(T-actin) mRNAが非ポリソーム画分へ移行することが確認された。一方で、シロイヌナズナ培養後期において翻訳が抑制されなったAt1g77120の5’UTRを付加したHRP C1a mRNAは培養8日目においても大部分がポリソーム画分にとどまっており、翻訳が抑制されないことが確認された(図15C)。
〔At1g55330 5’UTR::HRP C1aタバコ形質転換培養細胞〕
 培養時に細胞の新鮮重量を測定することで増殖曲線(図16A)を作成した。また、培養1日目(培養前期)及び8日目の細胞(培養後期)を回収し、上記と同様の解析を行った。その結果、培養8日目ではポリソーム画分が減少し、非ポリソーム画分が増大することが確認された(図16B)。定量RT-PCRにより個別mRNAについての挙動を解析したところ、培養8日目ではタバコactin(T-actin) mRNAが非ポリソーム画分へ移行することが確認された。一方で、シロイヌナズナ培養後期において翻訳が抑制されなかったAt1g55330の5’UTRを付加したHRP C1a mRNAは培養8日目においても大部分がポリソーム画分にとどまっており、翻訳が抑制されないことが確認された(図16C)。この結果は、シロイヌナズナにおける結果と類似しており、シロイヌナズナから単離した、生育必要条件欠乏ストレス下において翻訳維持能力を持つ5’UTRは、他の植物(例えばタバコ)においても効果を発揮できることが示された。

Claims (5)

  1. 以下の(a)又は(b)の5’UTRを有するmRNAをコードする組換えDNA分子により形質転換された植物細胞を生育必要条件欠乏ストレス下で培養する工程を含む、前記mRNAにコードされるタンパク質が、生育必要条件欠乏ストレスにより翻訳抑制されるのを回避する方法。
    (a)配列番号1、2、3、4、5又は6の塩基配列からなる5’UTR
    (b)(a)の5’UTRの塩基配列において、1又は数個の塩基が置換、欠失、又は付加され、かつ、生育必要条件欠乏ストレスによる翻訳抑制を回避する5’UTR
  2. 生育必要条件欠乏ストレスが、栄養飢餓ストレス及び低酸素ストレスからなる群より選択される少なくとも1種のストレスである、請求項1に記載の方法。
  3. 前記植物細胞が、シロイヌナズナ培養細胞又はタバコ培養細胞である、請求項1又は2に記載の方法。
  4. 以下の(a)又は(b)の5’UTRを有するmRNAをコードする組換えDNA分子により形質転換された植物細胞を生育必要条件欠乏ストレス下で培養する工程を含む、前記mRNAにコードされるタンパク質が、生育必要条件欠乏ストレスにより翻訳抑制されるのを回避して、前記タンパク質を製造する方法。
    (a)配列番号1、2、3、4、5又は6の塩基配列からなる5’UTR
    (b)(a)の5’UTRの塩基配列において、1又は数個の塩基が置換、欠失、又は付加され、かつ、生育必要条件欠乏ストレスによる翻訳抑制を回避する5’UTR
  5. 配列番号2、3、5又は6の塩基配列からなるRNAをコードする領域を有する組換えDNA。
PCT/JP2012/071815 2011-09-02 2012-08-29 形質転換植物細胞を用いたタンパク質製造方法 WO2013031821A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA2847113A CA2847113C (en) 2011-09-02 2012-08-29 Protein production method using transformed plant cells
JP2013531352A JP6037339B2 (ja) 2011-09-02 2012-08-29 形質転換植物細胞を用いたタンパク質製造方法
US14/240,581 US20140315248A1 (en) 2011-09-02 2012-08-29 Protein production method using transformed plant cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011191180 2011-09-02
JP2011-191180 2011-09-02

Publications (1)

Publication Number Publication Date
WO2013031821A1 true WO2013031821A1 (ja) 2013-03-07

Family

ID=47756301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071815 WO2013031821A1 (ja) 2011-09-02 2012-08-29 形質転換植物細胞を用いたタンパク質製造方法

Country Status (4)

Country Link
US (1) US20140315248A1 (ja)
JP (1) JP6037339B2 (ja)
CA (1) CA2847113C (ja)
WO (1) WO2013031821A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175132A1 (ja) * 2015-04-30 2016-11-03 国立大学法人 奈良先端科学技術大学院大学 植物において組み換えタンパク質の高発現を可能にする5'utrをコードするdna分子

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021666A1 (ja) * 2009-08-19 2011-02-24 国立大学法人奈良先端科学技術大学院大学 環境ストレス下の翻訳抑制を回避する5'utrをコードする組換えdna分子

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021321A1 (en) * 1996-11-12 1998-05-22 Qbi Enterprises Ltd. Method for identifying translationally regulated genes
WO1998037189A1 (en) * 1997-02-25 1998-08-27 Qbi Enterprises Ltd. Ires sequences with high translational efficiency and expression vectors containing the sequence
WO2011021666A1 (ja) * 2009-08-19 2011-02-24 国立大学法人奈良先端科学技術大学院大学 環境ストレス下の翻訳抑制を回避する5'utrをコードする組換えdna分子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060150283A1 (en) * 2004-02-13 2006-07-06 Nickolai Alexandrov Sequence-determined DNA fragments and corresponding polypeptides encoded thereby
JP2013503640A (ja) * 2009-09-04 2013-02-04 シンジェンタ パーティシペーションズ アクチェンゲゼルシャフト 植物におけるポリペプチドの発現を増加させるための翻訳エンハンサー要素のスタッキング

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021321A1 (en) * 1996-11-12 1998-05-22 Qbi Enterprises Ltd. Method for identifying translationally regulated genes
WO1998037189A1 (en) * 1997-02-25 1998-08-27 Qbi Enterprises Ltd. Ires sequences with high translational efficiency and expression vectors containing the sequence
WO2011021666A1 (ja) * 2009-08-19 2011-02-24 国立大学法人奈良先端科学技術大学院大学 環境ストレス下の翻訳抑制を回避する5'utrをコードする組換えdna分子

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Arabidopsis thaliana At1g06760/F4H5_14 mRNA, complete cds.", AY050452, NATIONAL CENTER FOR BIOTECHNOLOGY INFORMATION, 20 August 2001 (2001-08-20), Retrieved from the Internet <URL:http://www.ncbi.nlm.nih.gov/nuccore/AY050452> [retrieved on 20120914] *
"Arabidopsis thaliana clone 38378 mRNA, complete sequence.", AY087780, NATIONAL CENTER FOR BIOTECHNOLOGY INFORMATION, 27 January 2006 (2006-01-27), Retrieved from the Internet <URL:http://www.ncbi.nlm.nih.gov/nuccore/AY087780> [retrieved on 20120914] *
"AU237926 RAFL16 Arabidopsis thaliana cDNA clone RAFL16-67-M01 5-, mRNA sequence.", AU237926, NATIONAL CENTER FOR BIOTECHNOLOGY INFORMATION, 7 August 2006 (2006-08-07), Retrieved from the Internet <URL:http://www.ncbi.nlm.nih.gov/nucest/AU237926> [retrieved on 20120914] *
"SAIL_302_G07.vl SAIL Collection Arabidopsis thaliana genomic clone SAIL 302 G07.vl, genomic survey sequence.", CL479140, NATIONAL CENTER FOR BIOTECHNOLOGY INFORMATION, 1 April 2004 (2004-04-01), Retrieved from the Internet <URL:http://www.ncbi.nlm.nih.gov/nucgss/CL479140> [retrieved on 20120914] *
AKIRA KATO ET AL.: "5'UTR wa Stress Kankyoka ni Okeru Hon'yaku Jotai o Kettei suru Juyo na Yoin de aru", JAPANESE SOCIETY FOR PLANT CELL AND MOLECULAR BIOLOGY TAIKAI SYMPOSIUM KOEN YOSHISHU, vol. 28, 2010, pages 137 *
MATSUURA H. ET AL.: "Genome-Wide Analyses of Early Translational Responses to Elevated Temperature and High Salinity in Arabidopsis thaliana.", PLANT AND CELL PHYSIOLOGY, vol. 51, no. 3, 2010, pages 448 - 462 *
MATSUURA H. ET AL.: "Preferential translation mediated by Hsp81-3 5'-UTR during heat shock involves ribosome entry at the 5'-end rather than an internal site in Arabidopsis suspension cells", JOURNAL OF BIOSCIENCE AND BIOENGINEERING, vol. 105, no. 1, 2008, pages 39 - 47, XP022494313, doi:10.1263/jbb.105.39 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175132A1 (ja) * 2015-04-30 2016-11-03 国立大学法人 奈良先端科学技術大学院大学 植物において組み換えタンパク質の高発現を可能にする5'utrをコードするdna分子

Also Published As

Publication number Publication date
CA2847113C (en) 2017-06-13
JPWO2013031821A1 (ja) 2015-03-23
JP6037339B2 (ja) 2016-12-07
CA2847113A1 (en) 2013-03-07
US20140315248A1 (en) 2014-10-23

Similar Documents

Publication Publication Date Title
US20210230578A1 (en) Removal of dna fragments in mrna production process
McMahon et al. TRIBE: hijacking an RNA-editing enzyme to identify cell-specific targets of RNA-binding proteins
JP5735927B2 (ja) タンパク質生産の増強のためのmRNAの一次構造の再操作
JP6125493B2 (ja) 転写終結配列
KR20190059966A (ko) S. 피오게네스 cas9 돌연변이 유전자 및 이에 의해 암호화되는 폴리펩티드
JP2022548062A (ja) 亢進したdna産生を有する修飾型細菌レトロエレメント
EP3487998B1 (en) Compositions and methods for identifying rna binding polypeptide targets
JP6607616B2 (ja) 植物において組み換えタンパク質の高発現を可能にする5’utrをコードするdna分子
JP5769173B2 (ja) 環境ストレス下の翻訳抑制を回避する5’utrをコードする組換えdna分子
JP2010246532A (ja) コウジ酸の産生に必須の遺伝子を利用してコウジ酸の産生量を向上する方法
Chou et al. Synthetic versions of firefly luciferase and Renilla luciferase reporter genes that resist transgene silencing in sugarcane
JP6037339B2 (ja) 形質転換植物細胞を用いたタンパク質製造方法
EP3574099B1 (en) Promoter construct for cell-free protein synthesis
US10550409B2 (en) Drimenol synthases III
Niu et al. MdMYB88/124 modulates apple tree microRNA biogenesis through post-transcription processing and/or transcription pathway
Ueda et al. Efficient transgene expression by alleviation of translational repression in plant cells
CN108486098B (zh) 一种用SLFN13从总RNA中纯化总mRNA的方法
EP3225686B1 (en) Novel homing endonuclease derived from arabidopsis thaliana
JP7220604B2 (ja) イチイ由来のプロモーター及びその用途
WO2024051855A1 (zh) 一种核酸构建物以及在ivtt体系中的应用
JP7290338B2 (ja) 単子葉植物において組み換えタンパク質の高発現を可能にする5’utrをコードするdna分子
WO2023029600A1 (zh) poly(A)尾巴非A修饰在促进mRNA翻译中的应用
CN117143905A (zh) 梨转录因子PbrbZIP15与PbrXylA1基因启动子互作在调控果实可溶性糖积累中的应用
JP2018113952A (ja) タンパク質セット、タンパク質、遺伝子セット、遺伝子、発現ベクター、形質転換体、及びボトリオコッセンの合成方法
Xue et al. SI Appendix

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828439

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013531352

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14240581

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2847113

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828439

Country of ref document: EP

Kind code of ref document: A1