US20210230578A1 - Removal of dna fragments in mrna production process - Google Patents

Removal of dna fragments in mrna production process Download PDF

Info

Publication number
US20210230578A1
US20210230578A1 US17/113,940 US202017113940A US2021230578A1 US 20210230578 A1 US20210230578 A1 US 20210230578A1 US 202017113940 A US202017113940 A US 202017113940A US 2021230578 A1 US2021230578 A1 US 2021230578A1
Authority
US
United States
Prior art keywords
rna transcript
dna
dna template
ppm
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/113,940
Inventor
William Joseph ISSA
Yuxun Wang
Stephane Bancel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ModernaTx Inc
Original Assignee
ModernaTx Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ModernaTx Inc filed Critical ModernaTx Inc
Priority to US17/113,940 priority Critical patent/US20210230578A1/en
Assigned to MODERNATX, INC. reassignment MODERNATX, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: MODERNA THERAPEUTICS, INC.
Assigned to MODERNATX, INC. reassignment MODERNATX, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BANCEL, STEPHANE, ISSA, WILLIAM JOSEPH, WANG, YUXUN
Publication of US20210230578A1 publication Critical patent/US20210230578A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • C12N15/101Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers by chromatography, e.g. electrophoresis, ion-exchange, reverse phase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay

Definitions

  • the invention relates to methods for the removal of DNA from a sample during the mRNA production process.
  • RNA polymerase does not synthesize mRNA de novo, therefore a DNA template that contains a T7 promoter sequence upstream of the protein coding sequence and a poly A tail downstream of the coding sequence is necessary for an in vitro transcription (IVT) reaction to be performed. Following the enzymatic synthesis of mRNA, it is important to remove the DNA template.
  • the DNA template used in the mRNA manufacturing process must be removed to ensure the efficacy of therapeutics and safety, because residual DNA in drug products may induce activation of the innate response and has the potential to be oncogenic in patient populations. Regulatory guidelines may also require the quantification, control, and removal of the DNA template in RNA products. Currently available or reported methods do not address this deficiency.
  • the present invention provides methods for removing a DNA template from a sample comprising said DNA template and an RNA transcript.
  • the method involves obtaining the sample and subjecting it to a procedure that removes the DNA from the sample and produces a product comprising the RNA transcript.
  • the method may be DNase treatment, or the removal of labeled DNA.
  • the RNA transcript is the product of in vitro transcription using a non-amplified DNA template.
  • the RNA transcript is a full length RNA transcript.
  • the RNA transcript can be between 400 and 10,000 nucleotides in length, or between 700 and 3,000 nucleotides in length.
  • the RNA transcript comprises chemically modified mRNA nucleotides.
  • DNase treatment is one method of removing a DNA template from a sample, in an embodiment.
  • DNase I can be added to the sample.
  • 10 units, 2 units, 1 unit, 0.5 units, or 0.05 units of DNase I are added for each ⁇ g of DNA template in the sample.
  • the DNase I is incubated with the sample at 37° Celsius for one hour.
  • the digested DNA template is separated from the RNA transcript after DNase treatment.
  • the separating step may involve centrifugation, ultrafiltration, precipitation, liquid chromatography, gel electrophoresis, or use of a vacuum column.
  • an in vitro transcription reaction product is treated with DNase
  • a portion of the product is contacted with a nuclease (for example, nuclease P1) under conditions that promote nucleotide digestion to obtain a digested product.
  • a nuclease for example, nuclease P1
  • the digested product is analyzed by liquid chromatography-tandem mass spectrometry, and the presence or absence of residual deoxynucleotides is detected in the digested product based on the liquid chromatography-tandem mass spectrometry analysis.
  • the total abundance of deoxynucleotides in the mass spectrometry analysis is either ⁇ 500 ppm, ⁇ 300 ppm, ⁇ 250 ppm, ⁇ 100 ppm, ⁇ 50 ppm, ⁇ 25 ppm, ⁇ 10 ppm, ⁇ 5 ppm, ⁇ 1 ppm, or ⁇ 0.2 ppm.
  • the DNase is attached to a solid support, for example a solid phase resin, controlled pore glass, polystyrene, polystyrene divinyl benzene, cellulose, polyacrylamide, silica, polymethacrylate, or a dextran based polymer.
  • a solid support for example a solid phase resin, controlled pore glass, polystyrene, polystyrene divinyl benzene, cellulose, polyacrylamide, silica, polymethacrylate, or a dextran based polymer.
  • Removing labeled DNA is another method of removing a DNA template from a sample.
  • the DNA template includes a label
  • the DNA removal procedure includes removal of labeled DNA from a sample by contacting the sample with a solid support configured to bind the label.
  • the solid support could be, for example, a streptavidin resin, a N-hydroxysuccinimide-activated resin, an epoxide resin, an aldehyde resin, cyanine 3-NHS ester, or cyanine 5-NHS ester.
  • the DNA template is a plasmid.
  • the plasmid may be coupled to the label either before or after the plasmid has been linearized by a restriction enzyme.
  • the DNA template is a PCR product.
  • the DNA template is produced by amplifying a DNA molecule where a primer used in the amplifying is coupled to the label.
  • the primer is chemically synthesized.
  • the label is coupled to the 5′-end of the DNA template.
  • the label is a reactive group, such as a biotin, an amine, or a thiol.
  • the biotin is coupled to the DNA template by an alkylation reaction.
  • the DNA template is produced by amplifying a DNA molecule where the label is coupled to the DNA molecule by a DNA polymerase.
  • the label comprises modified nucleotides, such as ⁇ -aminoallyl pyrimidine NTPS or N-6-aminohexyl cytidine NTPs.
  • the modified nucleotides comprise nucleotide analogs coupled to an intrinsic linker.
  • FIG. 1 illustrates a schematic of a primary nucleotide construct, in accordance with an embodiment of the invention.
  • RNA impurities RNA impurities
  • HPLC high performance liquid chromatography
  • anion exchange HPLC capillary electrophoresis
  • CE capillary electrophoresis
  • Sanger sequencing ion pair reverse phase HPLC
  • electrospray ionization a variety of techniques, including high performance liquid chromatography (HPLC), anion exchange HPLC, capillary electrophoresis (CE), Sanger sequencing, ion pair reverse phase HPLC, and electrospray ionization.
  • substituents of compounds of the present disclosure are disclosed in groups or in ranges. It is specifically intended that the present disclosure include each and every individual subcombination of the members of such groups and ranges.
  • C1-6 alkyl is specifically intended to individually disclose methyl, ethyl, C3 alkyl, C4 alkyl, C5 alkyl, and C6 alkyl.
  • association means that the moieties are physically associated or connected with one another, either directly or via one or more additional moieties that serves as a linking agent, to form a structure that is sufficiently stable so that the moieties remain physically associated under the conditions in which the structure is used, e.g., physiological conditions.
  • An “association” need not be strictly through direct covalent chemical bonding. It may also suggest ionic or hydrogen bonding or a hybridization based connectivity sufficiently stable such that the “associated” entities remain physically associated.
  • Amino represents —N(R N1 ) 2 , wherein each R N1 is, independently, H, OH, NO 2 , N(R N2 ) 2 , SO 2 OR N2 , SO 2 R N2 , SOR N2 , an N-protecting group, alkyl, alkenyl, alkynyl, alkoxy, aryl, alkaryl, cycloalkyl, alkcycloalkyl, carboxyalkyl, sulfoalkyl, heterocyclyl (e.g., heteroaryl), or alkheterocyclyl (e.g., alkheteroaryl), wherein each of these recited R N1 groups can be optionally substituted, as defined herein for each group; or two R N1 combine to form a heterocyclyl or an N-protecting group, and wherein each R N2 is, independently, H, alkyl, or aryl.
  • amino groups of the invention can be an unsubstituted amino (i.e., —NH 2 ) or a substituted amino (i.e., —N(R N1 ) 2 ).
  • amino is —NH 2 or —NHR N1 , wherein R N1 is, independently, OH, NO 2 , NH 2 , NR N2 2 , SO 2 OR N2 , SO 2 R N2 , SOR N2 , alkyl, carboxyalkyl, sulfoalkyl, or aryl, and each R N2 can be H, C 1-20 alkyl (e.g., C 1-6 alkyl), or C 6-10 aryl.
  • Label refers to one or more markers, signals, or moieties which are attached, incorporated or associated with another entity that is readily detected by methods known in the art including radiography, fluorescence, chemiluminescence, enzymatic activity, absorbance and the like. Detectable labels include radioisotopes, fluorophores, chromophores, enzymes, dyes, metal ions, ligands such as biotin, avidin, streptavidin and haptens, quantum dots, and the like. Detectable labels may be located at any position in the peptides or proteins disclosed herein. They may be within the amino acids, the peptides, or proteins, or located at the N- or C-termini.
  • DNA template refers to a polynucleotide template for RNA polymerase.
  • a DNA template includes the sequence for a gene of interest operably linked to a RNA polymerase promoter sequence.
  • Digest means to break apart into smaller pieces or components. When referring to polypeptides or proteins, digestion results in the production of peptides. When referring to mRNA, digestion results in the production of oligonucleotide fragments.
  • embodiments of the invention are “engineered” when they are designed to have a feature or property, whether structural or chemical, that varies from a starting point, wild type or native molecule.
  • expression of a nucleic acid sequence refers to one or more of the following events: (1) production of an RNA template from a DNA sequence (e.g., by transcription); (2) processing of an RNA transcript (e.g., by splicing, editing, 5′ cap formation, and/or 3′ end processing); (3) translation of an RNA into a polypeptide or protein; and (4) post-translational modification of a polypeptide or protein.
  • fragment refers to a portion.
  • fragments of proteins may comprise polypeptides obtained by digesting full-length protein isolated from cultured cells.
  • Gene of interest refers to a polynucleotide which encodes a polypeptide or protein of interest.
  • the gene of interest refers to a deoxyribonucleic acid, e.g., a gene of interest in a DNA template which can be transcribed to an RNA transcript, or a ribonucleic acid, e.g., a gene of interest in an RNA transcript which can be translated to produce the encoded polypeptide of interest in vitro, in vivo, in situ or ex vivo.
  • a polypeptide of interest includes but is not limited to, biologics, antibodies, vaccines, therapeutic proteins or peptides, etc.
  • in vitro refers to events that occur in an artificial environment, e.g., in a test tube or reaction vessel, in cell culture, in a Petri dish, etc., rather than within an organism (e.g., animal, plant, or microbe).
  • an artificial environment e.g., in a test tube or reaction vessel, in cell culture, in a Petri dish, etc., rather than within an organism (e.g., animal, plant, or microbe).
  • in vivo refers to events that occur within an organism (e.g., animal, plant, or microbe or cell or tissue thereof).
  • Isolated refers to a substance or entity that has been separated from at least some of the components with which it was associated (whether in nature or in an experimental setting). Isolated substances may have varying levels of purity in reference to the substances from which they have been associated. Isolated substances and/or entities may be separated from at least about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, or more of the other components with which they were initially associated.
  • isolated agents are more than about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or more than about 99% pure.
  • a substance is “pure” if it is substantially free of other components.
  • Substantially isolated By “substantially isolated” it is meant that the compound is substantially separated from the environment in which it was formed or detected. Partial separation can include, for example, a composition enriched in the compound of the present disclosure. Substantial separation can include compositions containing at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 97%, or at least about 99% by weight of the compound of the present disclosure, or salt thereof. Methods for isolating compounds and their salts are routine in the art.
  • Modified refers to a changed state or structure of a molecule of the invention. Molecules may be modified in many ways including chemically, structurally, and functionally.
  • the mRNA molecules of the present invention are modified by the introduction of non-natural nucleosides and/or nucleotides, e.g., as it relates to the natural ribonucleotides A, U, G, and C.
  • Noncanonical nucleotides such as the cap structures are not considered “modified” although they differ from the chemical structure of the A, C, G, U ribonucleotides.
  • Open reading frame As used herein, “open reading frame” or “ORF” refers to a sequence which does not contain a stop codon in a given reading frame.
  • operably linked refers to a functional connection between two or more molecules, constructs, transcripts, entities, moieties or the like.
  • a gene of interest operably linked to an RNA polymerase promoter allows transcription of the gene of interest.
  • Peptide As used herein, “peptide” is less than or equal to 50 amino acids long, e.g., about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 amino acids long.
  • Poly A tail refers to a chain of adenine nucleotides. The term can refer to poly A tail that is to be added to an RNA transcript, or can refer to the poly A tail that already exists at the 3′ end of an RNA transcript. As described in more detail below, a poly A tail is typically 5-300 nucleotides in length.
  • purify means to make substantially pure or clear from unwanted components, material defilement, admixture or imperfection.
  • RNA transcript refers to a ribonucleic acid produced by an in vitro transcription reaction using a DNA template and an RNA polymerase. As described in more detail below, an RNA transcript typically includes the coding sequence for a gene of interest and a poly A tail. RNA transcript includes an mRNA. The RNA transcript can include modifications, e.g., modified nucleotides. As used herein, the term RNA transcript includes and is interchangeable with mRNA, modified mRNA “mmRNA” or modified mRNA, and primary construct.
  • Signal Sequences refers to a sequence which can direct the transport or localization of a protein.
  • Similarity refers to the overall relatedness between polymeric molecules, e.g. between polynucleotide molecules (e.g. DNA molecules and/or RNA molecules) and/or between polypeptide molecules. Calculation of percent similarity of polymeric molecules to one another can be performed in the same manner as a calculation of percent identity, except that calculation of percent similarity takes into account conservative substitutions as is understood in the art.
  • Stable refers to a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and preferably capable of formulation into an efficacious therapeutic agent.
  • subject refers to any organism to which a composition in accordance with the invention may be administered, e.g., for experimental, diagnostic, prophylactic, and/or therapeutic purposes.
  • Typical subjects include animals (e.g., mammals such as mice, rats, rabbits, non-human primates, and humans) and/or plants.
  • the term “substantially” refers to the qualitative condition of exhibiting total or near-total extent or degree of a characteristic or property of interest.
  • One of ordinary skill in the biological arts will understand that biological and chemical phenomena rarely, if ever, go to completion and/or proceed to completeness or achieve or avoid an absolute result.
  • the term “substantially” is therefore used herein to capture the potential lack of completeness inherent in many biological and chemical phenomena.
  • Synthetic means produced, prepared, and/or manufactured by the hand of man. Synthesis of polynucleotides or polypeptides or other molecules of the present invention may be chemical or enzymatic.
  • transcription factor refers to a DNA-binding protein that regulates transcription of DNA into RNA, for example, by activation or repression of transcription. Some transcription factors effect regulation of transcription alone, while others act in concert with other proteins. Some transcription factor can both activate and repress transcription under certain conditions. In general, transcription factors bind a specific target sequence or sequences highly similar to a specific consensus sequence in a regulatory region of a target gene. Transcription factors may regulate transcription of a target gene alone or in a complex with other molecules.
  • Unmodified refers to any substance, compound or molecule prior to being changed in any way. Unmodified may, but does not always, refer to the wild type or native form of a biomolecule. Molecules may undergo a series of modifications whereby each modified molecule may serve as the “unmodified” starting molecule for a subsequent modification.
  • articles such as “a,” “an,” and “the” may mean one or more than one unless indicated to the contrary or otherwise evident from the context. Claims or descriptions that include “or” between one or more members of a group are considered satisfied if one, more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process unless indicated to the contrary or otherwise evident from the context.
  • the invention includes embodiments in which exactly one member of the group is present in, employed in, or otherwise relevant to a given product or process.
  • the invention includes embodiments in which more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process.
  • any particular embodiment of the present invention that falls within the prior art may be explicitly excluded from any one or more of the claims. Since such embodiments are deemed to be known to one of ordinary skill in the art, they may be excluded even if the exclusion is not set forth explicitly herein. Any particular embodiment of the compositions of the invention (e.g., any nucleic acid or protein encoded thereby; any method of production; any method of use; etc.) can be excluded from any one or more claims, for any reason, whether or not related to the existence of prior art.
  • nucleic acid molecules specifically polynucleotides, primary constructs and/or mRNA which encode one or more polypeptides of interest.
  • nucleic acid in its broadest sense, includes any compound and/or substance that comprise a polymer of nucleotides. These polymers are often referred to as polynucleotides.
  • nucleic acids or polynucleotides of the invention include, but are not limited to, ribonucleic acids (RNAs), deoxyribonucleic acids (DNAs), threose nucleic acids (TNAs), glycol nucleic acids (GNAs), peptide nucleic acids (PNAs), locked nucleic acids (LNAs, including LNA having a ⁇ -D-ribo configuration, ⁇ -LNA having an ⁇ -L-ribo configuration (a diastereomer of LNA), 2′-amino-LNA having a 2′-amino functionalization, and 2′-amino- ⁇ -LNA having a 2′-amino functionalization) or hybrids thereof.
  • RNAs ribonucleic acids
  • DNAs deoxyribonucleic acids
  • TAAs threose nucleic acids
  • GNAs glycol nucleic acids
  • PNAs peptide nucleic acids
  • LNAs locked nu
  • the nucleic acid molecule is a messenger RNA (mRNA).
  • mRNA messenger RNA
  • the term “messenger RNA” (mRNA) refers to any polynucleotide which encodes a polypeptide of interest and which is capable of being translated to produce the encoded polypeptide of interest in vitro, in vivo, in situ or ex vivo.
  • the basic components of an mRNA molecule include at least a coding region, a 5′UTR, a 3′UTR, a 5′ cap and a poly-A tail.
  • the present invention expands the scope of functionality of traditional mRNA molecules by providing polynucleotides or primary RNA constructs which maintain a modular organization, but which comprise one or more structural and/or chemical modifications or alterations which impart useful properties to the polynucleotide including, in some embodiments, the lack of a substantial induction of the innate immune response of a cell into which the polynucleotide is introduced.
  • modified mRNA molecules of the present invention are termed “mmRNA.”
  • a “structural” feature or modification is one in which two or more linked nucleotides are inserted, deleted, duplicated, inverted or randomized in a polynucleotide, primary construct or mmRNA without significant chemical modification to the nucleotides themselves. Because chemical bonds will necessarily be broken and reformed to effect a structural modification, structural modifications are of a chemical nature and hence are chemical modifications. However, structural modifications will result in a different sequence of nucleotides. For example, the polynucleotide “ATCG” may be chemically modified to “AT-5meC-G”. The same polynucleotide may be structurally modified from “ATCG” to “ATCCCG”. Here, the dinucleotide “CC” has been inserted, resulting in a structural modification to the polynucleotide.
  • FIG. 1 shows a representative polynucleotide primary construct 100 of the present invention.
  • the term “primary construct” or “primary mRNA construct” refers to a polynucleotide transcript which encodes one or more polypeptides of interest and which retains sufficient structural and/or chemical features to allow the polypeptide of interest encoded therein to be translated.
  • Primary constructs may be polynucleotides of the invention. When structurally or chemically modified, the primary construct may be referred to as an mmRNA (“modified mRNA”). Modified RNA, e.g., RNA transcripts, e.g., mRNA, are disclosed in the following which is incorporated by reference for all purposes: U.S. patent application Ser. No. 13/791,922, “Modified Polynucleotides for the Production of Biologics and Proteins Associated with Human Disease”, filed Mar. 9, 2013.
  • the primary construct 100 here contains a first region of linked nucleotides 102 that is flanked by a first flanking region 104 and a second flaking region 106 .
  • the “first region” may be referred to as a “coding region” or “region encoding” or simply the “first region.”
  • This first region may include, but is not limited to, the encoded polypeptide of interest.
  • the polypeptide of interest may comprise at its 5′ terminus one or more signal sequences encoded by a signal sequence region 103 .
  • the flanking region 104 may comprise a region of linked nucleotides comprising one or more complete or incomplete 5′ UTRs sequences.
  • the flanking region 104 may also comprise a 5′ terminal cap 108 .
  • the second flanking region 106 may comprise a region of linked nucleotides comprising one or more complete or incomplete 3′ UTRs.
  • the flanking region 106 may also comprise a 3′ tailing sequence 110 .
  • first operational region 105 Bridging the 5′ terminus of the first region 102 and the first flanking region 104 is a first operational region 105 .
  • this operational region comprises a Start codon.
  • the operational region may alternatively comprise any translation initiation sequence or signal including a Start codon.
  • this operational region comprises a Stop codon.
  • the operational region may alternatively comprise any translation initiation sequence or signal including a Stop codon. According to the present invention, multiple serial stop codons may also be used.
  • the shortest length of the first region of the primary construct of the present invention can be the length of a nucleic acid sequence that is sufficient to encode for a dipeptide, a tripeptide, a tetrapeptide, a pentapeptide, a hexapeptide, a heptapeptide, an octapeptide, a nonapeptide, or a decapeptide.
  • the length may be sufficient to encode a peptide of 2-30 amino acids, e.g. 5-30, 10-30, 2-25, 5-25, 10-25, or 10-20 amino acids.
  • the length may be sufficient to encode for a peptide of at least 11, 12, 13, 14, 15, 17, 20, 25 or 30 amino acids, or a peptide that is no longer than 40 amino acids, e.g. no longer than 35, 30, 25, 20, 17, 15, 14, 13, 12, 11 or 10 amino acids.
  • the length of the first region encoding the polypeptide of interest of the present invention is greater than about 30 nucleotides in length (e.g., at least or greater than about 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1,000, 1,100, 1,200, 1,300, 1,400, 1,500, 1,600, 1,700, 1,800, 1,900, 2,000, 2,500, and 3,000, 4,000, 5,000, 6,000, 7,000, 8,000, 9,000, 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 70,000, 80,000, 90,000 or up to and including 100,000 nucleotides).
  • the “first region” may be referred to as a “coding region” or “region encoding” or simply the “first region.”
  • the polynucleotide, primary construct, or mmRNA includes from about 30 to about 100,000 nucleotides (e.g., from 100-10,000, from 600-10,000, from 700-3,000, from 30 to 50, from 30 to 100, from 30 to 250, from 30 to 500, from 30 to 1,000, from 30 to 1,500, from 30 to 3,000, from 30 to 5,000, from 30 to 7,000, from 30 to 10,000, from 30 to 25,000, from 30 to 50,000, from 30 to 70,000, from 100 to 250, from 100 to 500, from 100 to 1,000, from 100 to 1,500, from 100 to 3,000, from 100 to 5,000, from 100 to 7,000, from 100 to 10,000, from 100 to 25,000, from 100 to 50,000, from 100 to 70,000, from 100 to 100,000, from 500 to 1,000, from 500 to 1,500, from 500 to 2,000, from 500 to 3,000, from 500 to 5,000, from 500 to 7,000, from 500 to 10,000, from 500 to 25,000, from 500 to 50,000, from 500 to 70,000, from 500 to 100,000
  • the first and second flanking regions may range independently from 15-1,000 nucleotides in length (e.g., greater than 30, 40, 45, 50, 55, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, and 900 nucleotides or at least 30, 40, 45, 50, 55, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, and 1,000 nucleotides).
  • 15-1,000 nucleotides in length e.g., greater than 30, 40, 45, 50, 55, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, and 1,000 nucleotides.
  • the tailing sequence may range from absent to 500 nucleotides in length (e.g., at least 60, 70, 80, 90, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, or 500 nucleotides).
  • the length may be determined in units of or as a function of polyA Binding Protein binding.
  • the polyA tail is long enough to bind at least 4 monomers of PolyA Binding Protein.
  • PolyA Binding Protein monomers bind to stretches of approximately 38 nucleotides. As such, it has been observed that polyA tails of about 80 nucleotides and 160 nucleotides are functional.
  • the capping region may comprise a single cap or a series of nucleotides forming the cap.
  • the capping region may be from 1 to 10, e.g. 2-9, 3-8, 4-7, 1-5, 5-10, or at least 2, or 10 or fewer nucleotides in length.
  • the cap is absent.
  • the first and second operational regions may range from 3 to 40, e.g., 5-30, 10-20, 15, or at least 4, or 30 or fewer nucleotides in length and may comprise, in addition to a Start and/or Stop codon, one or more signal and/or restriction sequences.
  • UTRs Untranslated Regions
  • Untranslated regions (UTRs) of a gene are transcribed but not translated.
  • the 5′UTR starts at the transcription start site and continues to the start codon but does not include the start codon; whereas, the 3′UTR starts immediately following the stop codon and continues until the transcriptional termination signal.
  • the regulatory features of a UTR can be incorporated into the polynucleotides, primary constructs and/or mmRNA (“modified mRNA”) of the present invention to enhance the stability of the molecule.
  • modified mRNA modified mmRNA
  • the specific features can also be incorporated to ensure controlled down-regulation of the transcript in case they are misdirected to undesired sites.
  • Natural 5′UTRs bear features which play roles in for translation initiation. They harbor signatures like Kozak sequences which are commonly known to be involved in the process by which the ribosome initiates translation of many genes. Kozak sequences have the consensus CCR(A/G)CCAUGG, where R is a purine (adenine or guanine) three bases upstream of the start codon (AUG), which is followed by another ‘G’. 5′UTR also have been known to form secondary structures which are involved in elongation factor binding.
  • mRNA such as albumin, serum amyloid A, Apolipoprotein A/B/E, transferrin, alpha fetoprotein, erythropoietin, or Factor VIII
  • tissue-specific mRNA to improve expression in that tissue is possible for muscle (MyoD, Myosin, Myoglobin, Myogenin, Herculin), for endothelial cells (Tie-1, CD36), for myeloid cells (C/EBP, AML1, G-CSF, GM-CSF, CD11b, MSR, Fr-1, i-NOS), for leukocytes (CD45, CD18), for adipose tissue (CD36, GLUT4, ACRP30, adiponectin) and for lung epithelial cells (SP-A/B/C/D).
  • non-UTR sequences may be incorporated into the 5′ (or 3′ UTR) UTRs.
  • introns or portions of introns sequences may be incorporated into the flanking regions of the polynucleotides, primary constructs or mmRNA of the invention. Incorporation of intronic sequences may increase protein production as well as mRNA levels.
  • 3′ UTRs are known to have stretches of Adenosines and Uridines embedded in them. These AU rich signatures are particularly prevalent in genes with high rates of turnover. Based on their sequence features and functional properties, the AU rich elements (AREs) can be separated into three classes (Chen et al, 1995): Class I AREs contain several dispersed copies of an AUUUA motif within U-rich regions. C-Myc and MyoD contain class I AREs. Class II AREs possess two or more overlapping UUAUUUA(U/A)(U/A) nonamers. Molecules containing this type of AREs include GM-CSF and TNF- ⁇ . Class III ARES are less well defined.
  • AREs 3′ UTR AU rich elements
  • Introduction, removal or modification of 3′ UTR AU rich elements can be used to modulate the stability of polynucleotides, primary constructs or mmRNA of the invention.
  • AREs can be identified and removed or mutated to increase the intracellular stability and thus increase translation and production of the resultant protein.
  • Transfection experiments can be conducted in relevant cell lines, using polynucleotides, primary constructs or mmRNA of the invention and protein production can be assayed at various time points post-transfection.
  • cells can be transfected with different ARE-engineering molecules and by using an ELISA kit to the relevant protein and assaying protein produced at 6 hour, 12 hour, 24 hour, 48 hour, and 7 days post-transfection.
  • the 5′ cap structure of an mRNA is involved in nuclear export, increasing mRNA stability and binds the mRNA Cap Binding Protein (CBP), which is responsible for mRNA stability in the cell and translation competency through the association of CBP with poly(A) binding protein to form the mature cyclic mRNA species.
  • CBP mRNA Cap Binding Protein
  • the cap further assists the removal of 5′ proximal introns removal during mRNA splicing.
  • Endogenous mRNA molecules may be 5′-end capped generating a 5′-ppp-5′-triphosphate linkage between a terminal guanosine cap residue and the 5′-terminal transcribed sense nucleotide of the mRNA molecule.
  • This 5′-guanylate cap may then be methylated to generate an N7-methyl-guanylate residue.
  • the ribose sugars of the terminal and/or anteterminal transcribed nucleotides of the 5′ end of the mRNA may optionally also be 2′-O-methylated.
  • 5′-decapping through hydrolysis and cleavage of the guanylate cap structure may target a nucleic acid molecule, such as an mRNA molecule, for degradation.
  • Modifications to the polynucleotides, primary constructs, and mmRNA of the present invention may generate a non-hydrolyzable cap structure preventing decapping and thus increasing mRNA half-life. Because cap structure hydrolysis requires cleavage of 5′-ppp-5′ phosphorodiester linkages, modified nucleotides may be used during the capping reaction. For example, a Vaccinia Capping Enzyme from New England Biolabs (Ipswich, Mass.) may be used with ⁇ -thio-guanosine nucleotides according to the manufacturer's instructions to create a phosphorothioate linkage in the 5′-ppp-5′ cap. Additional modified guanosine nucleotides may be used such as ⁇ -methyl-phosphonate and seleno-phosphate nucleotides.
  • Additional modifications include, but are not limited to, 2′-O-methylation of the ribose sugars of 5′-terminal and/or 5′-anteterminal nucleotides of the mRNA (as mentioned above) on the 2′-hydroxyl group of the sugar ring.
  • Multiple distinct 5′-cap structures can be used to generate the 5′-cap of a nucleic acid molecule, such as an mRNA molecule.
  • Cap analogs which herein are also referred to as synthetic cap analogs, chemical caps, chemical cap analogs, or structural or functional cap analogs, differ from natural (i.e. endogenous, wild-type or physiological) 5′-caps in their chemical structure, while retaining cap function. Cap analogs may be chemically (i.e. non-enzymatically) or enzymatically synthesized and/or linked to a nucleic acid molecule.
  • the Anti-Reverse Cap Analog (ARCA) cap contains two guanines linked by a 5′-5′-triphosphate group, wherein one guanine contains an N7 methyl group as well as a 3′-O-methyl group (i.e., N7,3′-O-dimethyl-guanosine-5′-triphosphate-5′-guanosine (m 7 G-3′mppp-G; which may equivaliently be designated 3′ O-Me-m7G(5′)ppp(5′)G).
  • the 3′-O atom of the other, unmodified, guanine becomes linked to the 5′-terminal nucleotide of the capped nucleic acid molecule (e.g. an mRNA or mmRNA).
  • the N7- and 3′-O-methlyated guanine provides the terminal moiety of the capped nucleic acid molecule (e.g. mRNA or mmRNA).
  • mCAP is similar to ARCA but has a 2′-O-methyl group on guanosine (i.e., N7,2′-O-dimethyl-guanosine-5′-triphosphate-5′-guanosine, m 7 Gm-ppp-G).
  • cap analogs allow for the concomitant capping of a nucleic acid molecule in an in vitro transcription reaction, up to 20% of transcripts can remain uncapped. This, as well as the structural differences of a cap analog from an endogenous 5′-cap structures of nucleic acids produced by the endogenous, cellular transcription machinery, may lead to reduced translational competency and reduced cellular stability.
  • Polynucleotides, primary constructs and mmRNA of the invention may also be capped post-transcriptionally, using enzymes, in order to generate more authentic 5′-cap structures.
  • the phrase “more authentic” refers to a feature that closely mirrors or mimics, either structurally or functionally, an endogenous or wild type feature. That is, a “more authentic” feature is better representative of an endogenous, wild-type, natural or physiological cellular function and/or structure as compared to synthetic features or analogs, etc., of the prior art, or which outperforms the corresponding endogenous, wild-type, natural or physiological feature in one or more respects.
  • Non-limiting examples of more authentic 5′cap structures of the present invention are those which, among other things, have enhanced binding of cap binding proteins, increased half life, reduced susceptibility to 5′ endonucleases and/or reduced 5′decapping, as compared to synthetic 5′cap structures known in the art (or to a wild-type, natural or physiological 5′cap structure).
  • recombinant Vaccinia Virus Capping Enzyme and recombinant 2′-O-methyltransferase enzyme can create a canonical 5′-5′-triphosphate linkage between the 5′-terminal nucleotide of an mRNA and a guanine cap nucleotide wherein the cap guanine contains an N7 methylation and the 5′-terminal nucleotide of the mRNA contains a 2′-O-methyl.
  • Cap1 structure is termed the Cap1 structure.
  • Cap structures include, but are not limited to, 7mG(5′)ppp(5′)N,pN2p (cap 0), 7mG(5′)ppp(5′)NlmpNp (cap 1), and 7mG(5′)-ppp(5′)N1mpN2mp (cap 2).
  • polynucleotides, primary constructs or mmRNA may be capped post-transcriptionally, and because this process is more efficient, nearly 100% of the polynucleotides, primary constructs or mmRNA may be capped. This is in contrast to ⁇ 80% when a cap analog is linked to an mRNA in the course of an in vitro transcription reaction.
  • 5′ terminal caps may include endogenous caps or cap analogs.
  • a 5′ terminal cap may comprise a guanine analog.
  • Useful guanine analogs include, but are not limited to, inosine, N1-methyl-guanosine, 2′fluoro-guanosine, 7-deaza-guanosine, 8-oxo-guanosine, 2-amino-guanosine, LNA-guanosine, and 2-azido-guanosine.
  • a long chain of adenine nucleotides may be added to a polynucleotide such as an mRNA molecules in order to increase stability.
  • a polynucleotide such as an mRNA molecules
  • the 3′ end of the transcript may be cleaved to free a 3′ hydroxyl.
  • poly-A polymerase adds a chain of adenine nucleotides to the RNA.
  • the process called polyadenylation, adds a poly-A tail that can be between, for example, approximately 100 and 250 residues long.
  • the length of a poly-A tail of the present invention is greater than 30 nucleotides in length.
  • the poly-A tail is greater than 35 nucleotides in length (e.g., at least or greater than about 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1,000, 1,100, 1,200, 1,300, 1,400, 1,500, 1,600, 1,700, 1,800, 1,900, 2,000, 2,500, and 3,000 nucleotides).
  • the polynucleotide, primary construct, or mmRNA includes from about 30 to about 3,000 nucleotides (e.g., from 30 to 50, from 30 to 100, from 30 to 250, from 30 to 500, from 30 to 750, from 30 to 1,000, from 30 to 1,500, from 30 to 2,000, from 30 to 2,500, from 50 to 100, from 50 to 250, from 50 to 500, from 50 to 750, from 50 to 1,000, from 50 to 1,500, from 50 to 2,000, from 50 to 2,500, from 50 to 3,000, from 100 to 500, from 100 to 750, from 100 to 1,000, from 100 to 1,500, from 100 to 2,000, from 100 to 2,500, from 100 to 3,000, from 500 to 750, from 500 to 1,000, from 500 to 1,500, from 500 to 2,000, from 500 to 2,500, from 500 to 3,000, from 1,000 to 1,500, from 1,000 to 2,000, from 1,000 to 2,500, from 1,000 to 3,000, from 1,500 to 2,000, from 1,500 to 2,500, from 1,500 to 2,500,
  • the poly-A tail is designed relative to the length of the overall polynucleotides, primary constructs or mmRNA. This design may be based on the length of the coding region, the length of a particular feature or region (such as the first or flanking regions), or based on the length of the ultimate product expressed from the polynucleotides, primary constructs or mmRNA.
  • the poly-A tail may be 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100% greater in length than the polynucleotides, primary constructs or mmRNA or feature thereof.
  • the poly-A tail may also be designed as a fraction of polynucleotides, primary constructs or mmRNA to which it belongs.
  • the poly-A tail may be 10, 20, 30, 40, 50, 60, 70, 80, or 90% or more of the total length of the construct or the total length of the construct minus the poly-A tail.
  • engineered binding sites and conjugation of polynucleotides, primary constructs or mmRNA for Poly-A binding protein may enhance expression.
  • multiple distinct polynucleotides, primary constructs or mmRNA may be linked together to the PABP (Poly-A binding protein) through the 3′-end using modified nucleotides at the 3′-terminus of the poly-A tail.
  • Transfection experiments can be conducted in relevant cell lines at and protein production can be assayed by ELISA at 12 hr, 24 hr, 48 hr, 72 hr and day 7 post-transfection.
  • the polynucleotide primary constructs of the present invention are designed to include a polyA-G quartet.
  • the G-quartet is a cyclic hydrogen bonded array of four guanine nucleotides that can be formed by G-rich sequences in both DNA and RNA.
  • the G-quartet is incorporated at the end of the poly-A tail.
  • the resultant mmRNA construct is assayed for stability, protein production and other parameters including half-life at various time points. It has been discovered that the polyA-G quartet results in protein production equivalent to at least 75% of that seen using a poly-A tail of 120 nucleotides alone.
  • modify refers to modification with respect to A, G, U or C ribonucleotides. Generally, herein, these terms are not intended to refer to the ribonucleotide modifications in naturally occurring 5′-terminal mRNA cap moieties.
  • modification refers to a modification as compared to the canonical set of 20 amino acids, moiety
  • the modifications may be various distinct modifications.
  • the coding region, the flanking regions and/or the terminal regions may contain one, two, or more (optionally different) nucleoside or nucleotide modifications.
  • a modified polynucleotide, primary construct, or mmRNA introduced to a cell may exhibit reduced degradation in the cell, as compared to an unmodified polynucleotide, primary construct, or mmRNA.
  • the polynucleotides, primary constructs, and mmRNA can include any useful modification, such as to the sugar, the nucleobase, or the internucleoside linkage (e.g. to a linking phosphate/to a phosphodiester linkage/to the phosphodiester backbone).
  • One or more atoms of a pyrimidine nucleobase may be replaced or substituted with optionally substituted amino, optionally substituted thiol, optionally substituted alkyl (e.g., methyl or ethyl), or halo (e.g., chloro or fluoro).
  • modifications e.g., one or more modifications
  • RNAs ribonucleic acids
  • DNAs deoxyribonucleic acids
  • TAAs threose nucleic acids
  • GNAs glycol nucleic acids
  • PNAs peptide nucleic acids
  • LNAs locked nucleic acids
  • the polynucleotides, primary constructs, and mmRNA of the invention do not substantially induce an innate immune response of a cell into which the mRNA is introduced.
  • an induced innate immune response include 1) increased expression of pro-inflammatory cytokines, 2) activation of intracellular PRRs (RIG-I, MDAS, etc, and/or 3) termination or reduction in protein translation.
  • the invention provides a modified nucleic acid molecule containing a degradation domain, which is capable of being acted on in a directed manner within a cell.
  • the present disclosure provides polynucleotides comprising a nucleoside or nucleotide that can disrupt the binding of a major groove interacting, e.g. binding, partner with the polynucleotide (e.g., where the modified nucleotide has decreased binding affinity to major groove interacting partner, as compared to an unmodified nucleotide).
  • the polynucleotides, primary constructs, and mmRNA can optionally include other agents (e.g., RNAi-inducing agents, RNAi agents, siRNAs, shRNAs, miRNAs, antisense RNAs, ribozymes, catalytic DNA, tRNA, RNAs that induce triple helix formation, aptamers, vectors, etc.).
  • the polynucleotides, primary constructs, or mmRNA may include one or more messenger RNAs (mRNAs) and one or more modified nucleoside or nucleotides (e.g., mmRNA molecules).
  • Polynucleotides, primary constructs or mmRNA for use in accordance with the invention may be prepared according to any available technique including, but not limited to chemical synthesis, enzymatic synthesis, which is generally termed in vitro transcription (IVT) or enzymatic or chemical cleavage of a longer precursor, etc.
  • IVT in vitro transcription
  • Methods of synthesizing RNAs are known in the art (see, e.g., Gait, M. J. (ed.) Oligonucleotide synthesis: a practical approach , Oxford [Oxfordshire], Washington, D.C.: IRL Press, 1984; and Herdewijn, P. (ed.) Oligonucleotide synthesis: methods and applications , Methods in Molecular Biology, v. 288 (Clifton, N.J.) Totowa, N.J.: Humana Press, 2005; both of which are incorporated herein by reference).
  • the process of design and synthesis of the primary constructs of the invention generally includes the steps of gene construction, mRNA production (either with or without modifications) and purification.
  • a target polynucleotide sequence encoding the polypeptide of interest is first selected for incorporation into a vector which will be amplified to produce a cDNA template.
  • the target polynucleotide sequence and/or any flanking sequences may be codon optimized.
  • the cDNA template is then used to produce mRNA through in vitro transcription (IVT). After production, the mRNA may undergo purification and clean-up processes.
  • the vector containing the primary construct is then amplified and the plasmid isolated and purified using methods known in the art such as, but not limited to, a maxi prep using the Invitrogen PURELINKTM HiPure Maxiprep Kit (Carlsbad, Calif.).
  • the plasmid may then be linearized using methods known in the art such as, but not limited to, the use of restriction enzymes and buffers.
  • the linearization reaction may be purified using methods including, for example Invitrogen's PURELINKTM PCR Micro Kit (Carlsbad, Calif.), and HPLC based purification methods such as, but not limited to, strong anion exchange HPLC, weak anion exchange HPLC, reverse phase HPLC (RP-HPLC), and hydrophobic interaction HPLC (HIC-HPLC) and Invitrogen's standard PURELINKTM PCR Kit (Carlsbad, Calif.).
  • the purification method may be modified depending on the size of the linearization reaction which was conducted.
  • the linearized plasmid is then used to generate cDNA for in vitro transcription (IVT) reactions.
  • the process of mRNA or mmRNA production may include, but is not limited to, in vitro transcription, cDNA template removal and RNA clean-up, and mRNA capping and/or tailing reactions.
  • the cDNA produced in the previous step may be transcribed using an in vitro transcription (IVT) system.
  • the system typically comprises a transcription buffer, nucleotide triphosphates (NTPs), an RNase inhibitor and a polymerase.
  • NTPs may be manufactured in house, may be selected from a supplier, or may be synthesized as described herein.
  • the NTPs may be selected from, but are not limited to, those described herein including natural and unnatural (modified) NTPs.
  • the polymerase may be selected from, but is not limited to, T7 RNA polymerase, T3 RNA polymerase and mutant polymerases such as, but not limited to, polymerases able to incorporate modified nucleic acids.
  • RNA polymerases or variants may be used in the design of the primary constructs of the present invention.
  • RNA polymerases may be modified by inserting or deleting amino acids of the RNA polymerase sequence.
  • the RNA polymerase may be modified to exhibit an increased ability to incorporate a 2′-modified nucleotide triphosphate compared to an unmodified RNA polymerase (see International Publication WO2008078180 and U.S. Pat. No. 8,101,385; herein incorporated by reference in their entireties).
  • Variants may be obtained by evolving an RNA polymerase, optimizing the RNA polymerase amino acid and/or nucleic acid sequence and/or by using other methods known in the art.
  • T7 RNA polymerase variants may be evolved using the continuous directed evolution system set out by Esvelt et al.
  • T7 RNA polymerase may encode at least one mutation such as, but not limited to, lysine at position 93 substituted for threonine (K93T), I4M, A7T, E63V, V64D, A65E, D66Y, T76N, C125R, S128R, A136T, N165S, G175R, H176L, Y178H, F182L, L196F, G198V, D208Y, E222K, S228A, Q239R, T243N, G259D, M267I, G210C, H300R, D351A, A354S, E356D, L360P, A383V, Y385C, D388Y, S397R, M401T, N410S, K450R, P451T, G452V, E484A, H5
  • T7 RNA polymerase variants may encode at least mutation as described in U.S. Pub. Nos. 20100120024 and 20070117112; herein incorporated by reference in their entireties.
  • Variants of RNA polymerase may also include, but are not limited to, substitutional variants, conservative amino acid substitution, insertional variants, deletional variants and/or covalent derivatives.
  • the primary construct may be designed to be recognized by the wild type or variant RNA polymerases. In doing so, the primary construct may be modified to contain sites or regions of sequence changes from the wild type or parent primary construct.
  • the primary construct may be designed to include at least one substitution and/or insertion upstream of an RNA polymerase binding or recognition site, downstream of the RNA polymerase binding or recognition site, upstream of the TATA box sequence, downstream of the TATA box sequence of the primary construct but upstream of the coding region of the primary construct, within the 5′UTR, before the 5′UTR and/or after the 5′UTR.
  • the 5′UTR of the primary construct may be replaced by the insertion of at least one region and/or string of nucleotides of the same base.
  • the region and/or string of nucleotides may include, but is not limited to, at least 3, at least 4, at least 5, at least 6, at least 7 or at least 8 nucleotides and the nucleotides may be natural and/or unnatural.
  • the group of nucleotides may include 5-8 adenine, cytosine, thymine, a string of any of the other nucleotides disclosed herein and/or combinations thereof.
  • the 5′UTR of the primary construct may be replaced by the insertion of at least two regions and/or strings of nucleotides of two different bases such as, but not limited to, adenine, cytosine, thymine, any of the other nucleotides disclosed herein and/or combinations thereof.
  • the 5′UTR may be replaced by inserting 5-8 adenine bases followed by the insertion of 5-8 cytosine bases.
  • the 5′UTR may be replaced by inserting 5-8 cytosine bases followed by the insertion of 5-8 adenine bases.
  • the primary construct may include at least one substitution and/or insertion downstream of the transcription start site which may be recognized by an RNA polymerase.
  • at least one substitution and/or insertion may occur downstream the transcription start site by substituting at least one nucleic acid in the region just downstream of the transcription start site (such as, but not limited to, +1 to +6). Changes to region of nucleotides just downstream of the transcription start site may affect initiation rates, increase apparent nucleotide triphosphate (NTP) reaction constant values, and increase the dissociation of short transcripts from the transcription complex curing initial transcription (Brieba et al, Biochemistry (2002) 41: 5144-5149; herein incorporated by reference in its entirety).
  • the modification, substitution and/or insertion of at least one nucleic acid may cause a silent mutation of the nucleic acid sequence or may cause a mutation in the amino acid sequence.
  • the primary construct may include the substitution of at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12 or at least 13 guanine bases downstream of the transcription start site.
  • the primary construct may include the substitution of at least 1, at least 2, at least 3, at least 4, at least 5 or at least 6 guanine bases in the region just downstream of the transcription start site.
  • the guanine bases may be substituted by at least 1, at least 2, at least 3 or at least 4 adenine nucleotides.
  • the guanine bases may be substituted by at least 1, at least 2, at least 3 or at least 4 cytosine bases.
  • the guanine bases in the region are GGGAGA the guanine bases may be substituted by at least 1, at least 2, at least 3 or at least 4 thymine, and/or any of the nucleotides described herein.
  • the primary construct may include at least one substitution and/or insertion upstream of the start codon.
  • the start codon is the first codon of the protein coding region whereas the transcription start site is the site where transcription begins.
  • the primary construct may include, but is not limited to, at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7 or at least 8 substitutions and/or insertions of nucleotide bases.
  • the nucleotide bases may be inserted or substituted at 1, at least 1, at least 2, at least 3, at least 4 or at least 5 locations upstream of the start codon.
  • the nucleotides inserted and/or substituted may be the same base (e.g., all A or all C or all T or all G), two different bases (e.g., A and C, A and T, or C and T), three different bases (e.g., A, C and T or A, C and T) or at least four different bases.
  • the guanine base upstream of the coding region in the primary construct may be substituted with adenine, cytosine, thymine, or any of the nucleotides described herein.
  • the substitution of guanine bases in the primary construct may be designed so as to leave one guanine base in the region downstream of the transcription start site and before the start codon (see Esvelt et al. Nature (2011) 472(7344):499-503; herein incorporated by reference in its entirety).
  • at least 5 nucleotides may be inserted at 1 location downstream of the transcription start site but upstream of the start codon and the at least 5 nucleotides may be the same base type.
  • the primary construct or mmRNA may also undergo capping and/or tailing reactions.
  • a capping reaction may be performed by methods known in the art to add a 5′ cap to the 5′ end of the primary construct. Methods for capping include, but are not limited to, using a Vaccinia Capping enzyme (New England Biolabs, Ipswich, Mass.).
  • a poly-A tailing reaction may be performed by methods known in the art, such as, but not limited to, 2′ O-methyltransferase and by methods as described herein. If the primary construct generated from cDNA does not include a poly-T, it may be beneficial to perform the poly-A-tailing reaction before the primary construct is cleaned.
  • Primary construct or mmRNA purification may include, but is not limited to, mRNA or mmRNA clean-up, quality assurance and quality control.
  • mRNA or mmRNA clean-up may be performed by methods known in the arts such as, but not limited to, AGENCOURT® beads (Beckman Coulter Genomics, Danvers, Mass.), poly-T beads, LNATM oligo-T capture probes (EXIQON® Inc, Vedbaek, Denmark) or HPLC based purification methods such as, but not limited to, strong anion exchange HPLC, weak anion exchange HPLC, reverse phase HPLC (RP-HPLC), and hydrophobic interaction HPLC (HIC-HPLC).
  • AGENCOURT® beads Beckman Coulter Genomics, Danvers, Mass.
  • poly-T beads poly-T beads
  • LNATM oligo-T capture probes EXIQON® Inc, Vedbaek, Denmark
  • HPLC based purification methods such as, but not limited to, strong anion exchange
  • purified when used in relation to a polynucleotide such as a “purified mRNA or mmRNA” refers to one that is separated from at least one contaminant.
  • a “contaminant” is any substance which makes another unfit, impure or inferior.
  • a purified polynucleotide e.g., DNA and RNA
  • a quality assurance and/or quality control check may be conducted using methods such as, but not limited to, gel electrophoresis, UV absorbance, or analytical HPLC.
  • the mRNA or mmRNA may be sequenced by methods including, but not limited to reverse-transcriptase-PCR.
  • the mRNA or mmRNA may be quantified using methods such as, but not limited to, ultraviolet visible spectroscopy (UV/Vis).
  • UV/Vis ultraviolet visible spectroscopy
  • a non-limiting example of a UV/Vis spectrometer is a NANODROP® spectrometer (ThermoFisher, Waltham, Mass.).
  • the quantified mRNA or mmRNA may be analyzed in order to determine if the mRNA or mmRNA may be of proper size, check that no degradation of the mRNA or mmRNA has occurred.
  • Degradation of the mRNA and/or mmRNA may be checked by methods such as, but not limited to, agarose gel electrophoresis, HPLC based purification methods such as, but not limited to, strong anion exchange HPLC, weak anion exchange HPLC, reverse phase HPLC (RP-HPLC), and hydrophobic interaction HPLC (HIC-HPLC), liquid chromatography-mass spectrometry (LCMS), capillary electrophoresis (CE) and capillary gel electrophoresis (CGE).
  • HPLC based purification methods such as, but not limited to, strong anion exchange HPLC, weak anion exchange HPLC, reverse phase HPLC (RP-HPLC), and hydrophobic interaction HPLC (HIC-HPLC), liquid chromatography-mass spectrometry (LCMS), capillary electrophoresis (CE) and capillary gel electrophoresis (CGE).
  • DNase I digestion uses the enzymatic substrate specificity to selectively cleave DNA molecules but leave RNA molecules intact and organic solvent extraction is based on the differential partitioning of DNA and RNA into organic and aqueous phases.
  • DNase I is an endonuclease that cleaves DNA by breaking phosphodiester bonds and produces smaller DNA fragments and/or di-, tri- and oligonucleotides which are subsequently removed by size-based separation methods.
  • DNase I digestion efficiency and DNase I itself requires to be inactivated or removed in the subsequent process.
  • Quantitative PCR is often applied to measure the residual DNA but it only detects the DNA molecules that contain both qPCR primers thus does not measure all other smaller DNA molecules that are partially digested.
  • LC/MS/MS liquid chromatography-tandem mass spectrometry
  • RNA clean-up may also include a purification method such as, but not limited to, AGENCOURT® CLEANSE® system from Beckman Coulter (Danvers, Mass.), HPLC based purification methods such as, but not limited to, strong anion exchange HPLC, weak anion exchange HPLC, reverse phase HPLC (RP-HPLC), and hydrophobic interaction HPLC (HIC-HPLC).
  • AGENCOURT® CLEANSE® system from Beckman Coulter (Danvers, Mass.
  • HPLC based purification methods such as, but not limited to, strong anion exchange HPLC, weak anion exchange HPLC, reverse phase HPLC (RP-HPLC), and hydrophobic interaction HPLC (HIC-HPLC).
  • RNA transcript is separated from the digested DNA template by a separation method.
  • the separation method could be centrifugation, ultrafiltration, a precipitation, liquid chromatography, gel electrophoresis, or use of a vacuum column.
  • a portion of the digested in vitro transcription product can be incubated with a second nuclease (for example, nuclease P1) for further analysis by liquid chromatography-tandem mass spectrometry (LC/MS/MS), where the presence or absence of residual deoxynucleotides in the digested product is detected.
  • a second nuclease for example, nuclease P1
  • LC/MS/MS liquid chromatography-tandem mass spectrometry
  • the total abundance of deoxynucleotides present in the RNA sample via the mass spectrometry analysis can be, for example, ⁇ 500 ppm, ⁇ 300 ppm, ⁇ 250 ppm, ⁇ 100 ppm, ⁇ 50 ppm, ⁇ 25 ppm, ⁇ 10 ppm, ⁇ 5 ppm, ⁇ 1 ppm, or ⁇ 0.2 ppm.
  • the DNase could be attached to a solid support, such as a solid phase resin, controlled pore glass, polystyrene, polystyrene divinyl benzene, cellulose, polyacrylamide, silica, polymethacrylate, or dextran based polymers.
  • a solid support such as a solid phase resin, controlled pore glass, polystyrene, polystyrene divinyl benzene, cellulose, polyacrylamide, silica, polymethacrylate, or dextran based polymers.
  • the in vitro transcription reaction product can be contacted with the solid support to digest the DNA template.
  • the DNA template is coupled to a label, so that the labeled DNA can later be separated from the RNA transcript in an in vitro transcription reaction product by running the product on a solid support that presents a ligand or functional group configured to bind the label.
  • the DNA template is a plasmid is coupled to the label either before or after the plasmid has been linearized, where the plasmid has been linearized with a restriction enzyme.
  • the DNA template is a PCR product.
  • one or more of the PCR primers is labeled, so that during the PCR amplification, the label will become coupled to the DNA template amplicon.
  • the PCR primers are chemically synthesized.
  • the label is coupled to the 5′-end of the DNA template.
  • the label can be a reactive group, such as a biotin, an amine, or a thiol. Biotin could be coupled to the DNA template by an alkylation reaction, whereas the amine could be coupled by heat activation or light activation.
  • the DNA template is a PCR product, where the label is coupled to the DNA template by a DNA polymerase.
  • the label can be made up of modified nucleotides, so the DNA template could be made of these modified nucleotide labels.
  • the modified nucleotides could be 5′ aminoallyl pyrimidine NTPs, or N-6-aminohexyl cytidine NTPs.
  • the modified nucleotides could comprise nucleotide analogs coupled to an intrinsic linker.
  • the reaction product containing the labeled DNA template can be run on a solid support, where the solid support is configured to bind the label.
  • a biotinylated DNA template will bind a streptavidin resin
  • an amine labeled DNA template will bind a N-hydroxysuccinimide-activated resin
  • a DNA labeled with modified nucleotide aminoallyl-dUTP will be removed by reactive forms of cyanine 3 or cyanine 5-NHS esters (for example, using the Illustra CyScribe GFX Purification Kit from GE Healthcare).
  • epoxide or aldehyde resins may be used.
  • cDNA is produced to provide a DNA template for in vitro transcription.
  • NEB DH5-alpha Competent E. coli are used in one example. Transformations are performed according to NEB instructions using 100 ng of plasmid. The protocol is as follows:
  • a single colony is then used to inoculate 5 ml of LB growth media using the appropriate antibiotic and then allowed to grow (250 RPM, 37° C.) for 5 hours. This is then used to inoculate a 200 ml culture medium and allowed to grow overnight under the same conditions.
  • a maxi prep is performed using the Invitrogen PURELINKTM HiPure Maxiprep Kit (Carlsbad, Calif.), following the manufacturer's instructions, which are as follows: thaw a tube of NEB 5-alpha Competent E. coli cells on ice for 10 minutes. Add 1-5 ⁇ l containing 1 pg-100 ng of plasmid DNA to the cell mixture. Carefully flick the tube 4-5 times to mix cells and DNA. Do not vortex. Place the mixture on ice for 30 minutes. Do not mix. Heat shock at 42° C. for 30 seconds. Do not mix. Place on ice for 5 minutes. Do not mix. Pipette 950 ⁇ l of room temperature SOC into the mixture. Place at 37° C. for 60 minutes. Shake vigorously (250 rpm) or rotate. Warm selection plates to 37° C. Mix the cells thoroughly by flicking the tube and inverting.
  • the plasmid is first linearized using a restriction enzyme such as XbaI.
  • a typical restriction digest with XbaI will comprise the following: Plasmid 1.0 ⁇ g; 10 ⁇ Buffer 1.0 ⁇ l; XbaI 1.5 ⁇ l; dH20 up to 10 ⁇ l; incubated at 37° C. for 1 hr. If performing at lab scale ( ⁇ 5 ⁇ g), the reaction is cleaned up using Invitrogen's PURELINKTM PCR Micro Kit (Carlsbad, Calif.) per manufacturer's instructions.
  • PCR procedures for the preparation of cDNA are performed using 2 ⁇ KAPA HIFITM HotStart ReadyMix by Kapa Biosystems (Woburn, Mass.). This system includes 2 ⁇ KAPA ReadyMix12.5 ⁇ l; Forward Primer (10 uM) 0.75 ⁇ l; Reverse Primer (10 uM) 0.75 ⁇ l; Template cDNA 100 ng; and dH20 diluted to 25.0 ⁇ l.
  • the reaction conditions are at 95° C. for 5 min. and 25 cycles of 98° C. for 20 sec, then 58° C. for 15 sec, then 72° C. for 45 sec, then 72° C. for 5 min. then 4° C. to termination.
  • the reverse primer of the instant invention incorporates a poly-T120 for a poly-A120 in the mRNA.
  • Other reverse primers with longer or shorter poly(T) tracts can be used to adjust the length of the poly(A) tail in the mRNA.
  • the reaction is cleaned up using Invitrogen's PURELINKTM PCR Micro Kit (Carlsbad, Calif.) per manufacturer's instructions (up to 5 ⁇ g). Larger reactions will require a cleanup using a product with a larger capacity. Following the cleanup, the cDNA is quantified using the NANODROPTM and analyzed by agarose gel electrophoresis to confirm the cDNA is the expected size. The cDNA is then submitted for sequencing analysis before proceeding to the in vitro transcription reaction.
  • mRNAs according to the invention may be made using standard laboratory methods and materials.
  • the open reading frame (ORF) of the gene of interest may be flanked by a 5′ untranslated region (UTR), which may contain a strong Kozak translational initiation signal and/or an alpha-globin 3′ UTR which may include an oligo(dT) sequence for templated addition of a poly-A tail.
  • the mRNAs may be modified to reduce the cellular innate immune response.
  • the modifications to reduce the cellular response may include pseudouridine ( ⁇ ) and 5-methyl-cytidine (5meC, 5mc or m5C).
  • the ORF may also include various upstream or downstream additions (such as, but not limited to, ⁇ -globin, tags, etc.) may be ordered from an optimization service such as, but limited to, DNA2.0 (Menlo Park, Calif.) and may contain multiple cloning sites which may have XbaI recognition. Upon receipt of the construct, it may be reconstituted and transformed into chemically competent E. coli.
  • various upstream or downstream additions such as, but not limited to, ⁇ -globin, tags, etc.
  • DNA2.0 Manton, Calif.
  • the in vitro transcription reaction can generate mRNA containing modified nucleotides or modified RNA.
  • the input nucleotide triphosphate (NTP) mix is made in-house using natural and un-natural NTPs.
  • a typical in vitro transcription reaction includes the following:
  • Template cDNA 1.0 ⁇ g 2 10 ⁇ transcription buffer (400 mM Tris-HCl 2.0 ⁇ l pH 8.0, 190 mM MgCl 2 , 50 mM DTT, 10 mM Spermidine) 3 Custom NTPs (25 mM each) 7.2 ⁇ l 4 RNase Inhibitor 20 U 5 T7 RNA polymerase 3000 U 6 dH 2 0 Up to 20.0 ⁇ l. and 7 Incubation at 37° C. for 3 hr-5 hrs.
  • the crude IVT mix may be stored at 4° C. overnight for cleanup the next day. 1 U of RNase-free DNase is then used to digest the original template. After 15 minutes of incubation at 37° C., the mRNA is purified using Ambion's MEGACLEARTM Kit (Austin, Tex.) following the manufacturer's instructions. This kit can purify up to 500 ⁇ g of RNA. Following the cleanup, the RNA is quantified using the NanoDrop and analyzed by agarose gel electrophoresis to confirm the RNA is the proper size and that no degradation of the RNA has occurred.
  • the DNA template was removed to isolate the RNA transcript.
  • RNA transcript was removed to isolate the RNA transcript.
  • Several different methods have been used to remove the DNA, including incubation with DNase enzyme.
  • DNase I For each ⁇ g of DNA template (either a PCR product or a linearized plasmid), 2 Units of DNase I enzyme were added to the in vitro transcription product. Upon completion of the in vitro transcription reaction, the entire sample was incubated for 1 hour at 37° C. Next, the digested DNA fragments or single deoxynucleotides were removed from the sample by ultrafiltration through centrifugation, leaving the isolated RNA transcript. Quantitation of the residual deoxynucleotides was performed by liquid chromatography-tandem mass spectrometry analysis.
  • DNase I solid phase resin Alternatively, the in vitro transcription reaction product is applied to a solid phase resin containing immobilized DNase I. This preferred method is used because no enzyme contamination is added to the in vitro transcription mix. Columns containing immobile DNase I on a resin is purchased from Boca Scientific, Inc. (Boca Raton, Fla.). The in vitro transcription reaction product is added to the resin, and the RNA transcript is recovered from the resin.
  • labeled DNA transcripts are used to remove DNA from an in vitro transcription product to isolate the RNA transcript.
  • the DNA template is synthesized to contain one a label (tag) to be used in post IVT removal of DNA.
  • the proposed solid phase-based removal methods are effective for both linearized plasmid DNA or PCR amplified DNA.
  • the labels/tags are selected based on their reactive chemical properties such that the labeled DNA is bound to proper solid resin that has high specific affinity for the chemical label/tag.
  • Plasmid DNA as template if the DNA template is a plasmid, the plasmid may be labeled before or after linearization of the plasmid with a restriction enzyme.
  • the LabelIT® TrackerTM Intracellular Nucleic Acid Localization Kit (Minis Bio, LLC) is used to couple a biotin molecule to the DNA template plasmid via DNA alkylation.
  • the labeling reaction targets random sites on the DNA template, whereby each biotin molecule is covalently attached to one DNA template plasmid molecule.
  • This non-destructive labeling reaction has produced mRNA functional in gene expression assay according to a statement of the manufacturer.
  • a sufficient number of DNA template plasmid molecules are labeled at sites that are not involved in transcription, such that the DNA is effectively labeled without interfering with the in vitro transcription reaction.
  • the plasmid DNA can be labeled with an amine.
  • PHOTOPROBE® Vector Laboratories, Inc.
  • the labeling reaction is initiated by heat or light exposure (365 nm). Again, the labeling reaction targets random sites on the DNA template, but a sufficient number of DNA template plasmid molecules are amino-labeled at sites that are not involved in transcription, so the DNA is labeled without interfering with the in vitro transcription reaction.
  • PCR amplified DNA as template Another method of labeling the DNA template includes labeling the DNA during PCR.
  • the primers for use in the PCR are chemically synthesized, and a biotin, amine, thiol, or other label is added to the end of one or more of the primers.
  • a large batch of labeled primers is manufactured and used in a PCR that amplifies the DNA template.
  • the DNA template has been amplified and is coupled to the label.
  • a labeled plasmid as discussed above can be used as a DNA template to produced labeled amplified DNA template molecules.
  • modified nucleotides such as 5-aminoallyl pyrimidine NTPs or N-6-aminohexyl cytidine NTPs are used to label the DNA template.
  • the ideal ration of one modified nucleotide per DNA molecule is achievable by titration of the concentration of modified nucleotide to that of natural nucleotides.
  • the degree of incorporation is not critical as any DNA containing more than 1 target affinity ligand will also be captured. Likewise, the impact of labeling on transcription remains to be determined.
  • DNA polymerase amplifies the DNA template using the modified nucleotides, so that after completion of PCR, the amplified DNA template contains modified nucleotides.
  • a PCR reaction is performed to produce cDNA fragments first, then apply plasmid labeling technique to PCR amplified DNA with biotin using the method described above (Mirus LabelIT® TrackerTM Intracellular Nucleic Acid Localization KitA).
  • PCR amplified DNA template produced by any of the aforementioned methods can now be used in an in vitro transcription reaction to produce an RNA transcript.
  • RNA transcript sample After in vitro transcription produces an RNA transcript sample from a DNA template, the DNA is removed from the sample by contacting the sample with a resin designed to bind the label.
  • a resin designed to bind the label For example, if the DNA template is labeled with biotin, a streptavidin resin is used. If the DNA is labeled with nucleotide analog aminoallyl-dUTP, reactive forms of cyanine 3 or cyanine 5-NHS esters are used (for example, Illustra CyScribe GFX Purification Kit, GE Healthcare). If the DNA template is labeled with an amine, an NHS activated resin is used. In many cases, experimental evidence is required to identify the optimal tag. Post-in vitro transcription purification methods are developed individually for each label. However, these are standard interactions widely used in industrial applications. The labeled DNA is retained on the resin, and the isolated RNA transcript is recovered.
  • the labeled DNA will be retained on resin and mRNA should be conveniently recovered in the flow-through for downstream processes. Again, the efficiency of cDNA removal will be assayed by LC/MS/MS analysis.
  • the new methods are superior to previous practice in that no DNase I enzyme is required, and the purification/DNA removal process is done by a single step column. It can be conveniently scaled up for larger batches. The mRNA should be recovered with high yield and not suffer additional loss as in other purification or partitioning methods. If labeled cDNA is removed without enzyme digestion, there are no concerns of secondary contamination of smaller DNA fragments or oligonucleotides.
  • RNA transcript sample After removal of the DNA (either by DNase digestion or removal of labeled DNA), the RNA transcript sample is subjected to a total nuclease digestion using nuclease P1.
  • nuclease P1 the presence of any deoxythymidine (dT), deoxyadenine (dA), deoxycytidine (dC), and deoxyguanosine (dG) are detected and their levels quantified by LC-MS/MS.
  • the sample is subjected to liquid chromatography-tandem mass spectrometry analysis to detect the presence of individual residual deoxynucleotides (impurities).

Abstract

The present invention describes methods of removing DNA from an RNA transcript during the mRNA production process. The method embodies procedures for obtaining an in vitro transcription product, and removing any DNA from the product. The DNA can be removed by adding either free DNase or a resin containing immobilized DNase to the product, and recovering the RNA transcript. Alternatively, the DNA template used in the in vitro transcription reaction is labeled. After transcription, the product is applied to a resin that is configured to bind the label, and the RNA transcript is recovered. To detect whether any residual impurities are left in the RNA transcript product, the product is subjected to nuclease digestion and subsequently to liquid chromatography-tandem mass spectrometry analysis to quantitate any residual DNA. The present invention demonstrates efficient and effective methods of isolating an RNA transcript from an in vitro transcription product.

Description

    BACKGROUND OF THE INVENTION Field of the Invention
  • The invention relates to methods for the removal of DNA from a sample during the mRNA production process.
  • Description of the Related Art
  • RNA polymerase does not synthesize mRNA de novo, therefore a DNA template that contains a T7 promoter sequence upstream of the protein coding sequence and a poly A tail downstream of the coding sequence is necessary for an in vitro transcription (IVT) reaction to be performed. Following the enzymatic synthesis of mRNA, it is important to remove the DNA template.
  • The DNA template used in the mRNA manufacturing process must be removed to ensure the efficacy of therapeutics and safety, because residual DNA in drug products may induce activation of the innate response and has the potential to be oncogenic in patient populations. Regulatory guidelines may also require the quantification, control, and removal of the DNA template in RNA products. Currently available or reported methods do not address this deficiency.
  • SUMMARY OF THE INVENTION
  • The present invention provides methods for removing a DNA template from a sample comprising said DNA template and an RNA transcript. In one embodiment, the method involves obtaining the sample and subjecting it to a procedure that removes the DNA from the sample and produces a product comprising the RNA transcript. For example, the method may be DNase treatment, or the removal of labeled DNA. In another embodiment, the RNA transcript is the product of in vitro transcription using a non-amplified DNA template. In a separate embodiment, the RNA transcript is a full length RNA transcript. For example, the RNA transcript can be between 400 and 10,000 nucleotides in length, or between 700 and 3,000 nucleotides in length. In a further embodiment, the RNA transcript comprises chemically modified mRNA nucleotides.
  • DNase treatment is one method of removing a DNA template from a sample, in an embodiment. For example, DNase I can be added to the sample. In some embodiments, 10 units, 2 units, 1 unit, 0.5 units, or 0.05 units of DNase I are added for each μg of DNA template in the sample. In an embodiment, the DNase I is incubated with the sample at 37° Celsius for one hour. In another embodiment, the digested DNA template is separated from the RNA transcript after DNase treatment. In a further embodiment, the separating step may involve centrifugation, ultrafiltration, precipitation, liquid chromatography, gel electrophoresis, or use of a vacuum column.
  • In another embodiment, after an in vitro transcription reaction product is treated with DNase, a portion of the product is contacted with a nuclease (for example, nuclease P1) under conditions that promote nucleotide digestion to obtain a digested product. Next, the digested product is analyzed by liquid chromatography-tandem mass spectrometry, and the presence or absence of residual deoxynucleotides is detected in the digested product based on the liquid chromatography-tandem mass spectrometry analysis. In some examples, the total abundance of deoxynucleotides in the mass spectrometry analysis is either <500 ppm, <300 ppm, <250 ppm, <100 ppm, <50 ppm, <25 ppm, <10 ppm, <5 ppm, <1 ppm, or <0.2 ppm.
  • In an embodiment, the DNase is attached to a solid support, for example a solid phase resin, controlled pore glass, polystyrene, polystyrene divinyl benzene, cellulose, polyacrylamide, silica, polymethacrylate, or a dextran based polymer.
  • Removing labeled DNA is another method of removing a DNA template from a sample. In one embodiment, the DNA template includes a label, and the DNA removal procedure includes removal of labeled DNA from a sample by contacting the sample with a solid support configured to bind the label. The solid support could be, for example, a streptavidin resin, a N-hydroxysuccinimide-activated resin, an epoxide resin, an aldehyde resin, cyanine 3-NHS ester, or cyanine 5-NHS ester. In some embodiments, the DNA template is a plasmid. In further embodiments, the plasmid may be coupled to the label either before or after the plasmid has been linearized by a restriction enzyme. In other embodiments, the DNA template is a PCR product. In one example, the DNA template is produced by amplifying a DNA molecule where a primer used in the amplifying is coupled to the label. In a further example, the primer is chemically synthesized. In a further example, the label is coupled to the 5′-end of the DNA template. In some embodiments, the label is a reactive group, such as a biotin, an amine, or a thiol. In further embodiments, the biotin is coupled to the DNA template by an alkylation reaction.
  • In another embodiment, the DNA template is produced by amplifying a DNA molecule where the label is coupled to the DNA molecule by a DNA polymerase. In one embodiment, the label comprises modified nucleotides, such as κ-aminoallyl pyrimidine NTPS or N-6-aminohexyl cytidine NTPs. In a further embodiment, the modified nucleotides comprise nucleotide analogs coupled to an intrinsic linker.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, and accompanying drawing, where:
  • FIG. 1 illustrates a schematic of a primary nucleotide construct, in accordance with an embodiment of the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Briefly, and as described in more detail below, described herein are methods for characterizing large mRNA transcripts using procedures such as oligonucleotide mapping, reverse transcriptase sequencing, charge distribution analysis, and detection of RNA impurities. Analyses of these procedures are performed using a variety of techniques, including high performance liquid chromatography (HPLC), anion exchange HPLC, capillary electrophoresis (CE), Sanger sequencing, ion pair reverse phase HPLC, and electrospray ionization.
  • Definitions
  • Terms used in the claims and specification are defined as set forth below unless otherwise specified.
  • At various places in the present specification, substituents of compounds of the present disclosure are disclosed in groups or in ranges. It is specifically intended that the present disclosure include each and every individual subcombination of the members of such groups and ranges. For example, the term “C1-6 alkyl” is specifically intended to individually disclose methyl, ethyl, C3 alkyl, C4 alkyl, C5 alkyl, and C6 alkyl.
  • About: As used herein, the term “about” means +/−10% of the recited value.
  • Approximately: As used herein, the term “approximately” or “about,” as applied to one or more values of interest, refers to a value that is similar to a stated reference value. In certain embodiments, the term “approximately” or “about” refers to a range of values that fall within 25%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or less in either direction (greater than or less than) of the stated reference value unless otherwise stated or otherwise evident from the context (except where such number would exceed 100% of a possible value).
  • Associated with: As used herein, the terms “associated with,” “conjugated,” “linked,” “attached,” “coupled,” and “tethered,” when used with respect to two or more moieties, means that the moieties are physically associated or connected with one another, either directly or via one or more additional moieties that serves as a linking agent, to form a structure that is sufficiently stable so that the moieties remain physically associated under the conditions in which the structure is used, e.g., physiological conditions. An “association” need not be strictly through direct covalent chemical bonding. It may also suggest ionic or hydrogen bonding or a hybridization based connectivity sufficiently stable such that the “associated” entities remain physically associated.
  • Amino: the term “amino,” as used herein, represents —N(RN1)2, wherein each RN1 is, independently, H, OH, NO2, N(RN2)2, SO2ORN2, SO2RN2, SORN2, an N-protecting group, alkyl, alkenyl, alkynyl, alkoxy, aryl, alkaryl, cycloalkyl, alkcycloalkyl, carboxyalkyl, sulfoalkyl, heterocyclyl (e.g., heteroaryl), or alkheterocyclyl (e.g., alkheteroaryl), wherein each of these recited RN1 groups can be optionally substituted, as defined herein for each group; or two RN1 combine to form a heterocyclyl or an N-protecting group, and wherein each RN2 is, independently, H, alkyl, or aryl. The amino groups of the invention can be an unsubstituted amino (i.e., —NH2) or a substituted amino (i.e., —N(RN1)2). In a preferred embodiment, amino is —NH2 or —NHRN1, wherein RN1 is, independently, OH, NO2, NH2, NRN2 2, SO2ORN2, SO2RN2, SORN2, alkyl, carboxyalkyl, sulfoalkyl, or aryl, and each RN2 can be H, C1-20 alkyl (e.g., C1-6 alkyl), or C6-10 aryl.
  • Label: As used herein, “label” refers to one or more markers, signals, or moieties which are attached, incorporated or associated with another entity that is readily detected by methods known in the art including radiography, fluorescence, chemiluminescence, enzymatic activity, absorbance and the like. Detectable labels include radioisotopes, fluorophores, chromophores, enzymes, dyes, metal ions, ligands such as biotin, avidin, streptavidin and haptens, quantum dots, and the like. Detectable labels may be located at any position in the peptides or proteins disclosed herein. They may be within the amino acids, the peptides, or proteins, or located at the N- or C-termini.
  • DNA template: As used herein, a DNA template refers to a polynucleotide template for RNA polymerase. Typically a DNA template includes the sequence for a gene of interest operably linked to a RNA polymerase promoter sequence.
  • Digest: As used herein, the term “digest” means to break apart into smaller pieces or components. When referring to polypeptides or proteins, digestion results in the production of peptides. When referring to mRNA, digestion results in the production of oligonucleotide fragments.
  • Engineered: As used herein, embodiments of the invention are “engineered” when they are designed to have a feature or property, whether structural or chemical, that varies from a starting point, wild type or native molecule.
  • Expression: As used herein, “expression” of a nucleic acid sequence refers to one or more of the following events: (1) production of an RNA template from a DNA sequence (e.g., by transcription); (2) processing of an RNA transcript (e.g., by splicing, editing, 5′ cap formation, and/or 3′ end processing); (3) translation of an RNA into a polypeptide or protein; and (4) post-translational modification of a polypeptide or protein.
  • Fragment: A “fragment,” as used herein, refers to a portion. For example, fragments of proteins may comprise polypeptides obtained by digesting full-length protein isolated from cultured cells.
  • Gene of interest: As used herein, “gene of interest” refers to a polynucleotide which encodes a polypeptide or protein of interest. Depending on the context, the gene of interest refers to a deoxyribonucleic acid, e.g., a gene of interest in a DNA template which can be transcribed to an RNA transcript, or a ribonucleic acid, e.g., a gene of interest in an RNA transcript which can be translated to produce the encoded polypeptide of interest in vitro, in vivo, in situ or ex vivo. As described in more detail below, a polypeptide of interest includes but is not limited to, biologics, antibodies, vaccines, therapeutic proteins or peptides, etc.
  • In vitro: As used herein, the term “in vitro” refers to events that occur in an artificial environment, e.g., in a test tube or reaction vessel, in cell culture, in a Petri dish, etc., rather than within an organism (e.g., animal, plant, or microbe).
  • In vivo: As used herein, the term “in vivo” refers to events that occur within an organism (e.g., animal, plant, or microbe or cell or tissue thereof).
  • Isolated: As used herein, the term “isolated” refers to a substance or entity that has been separated from at least some of the components with which it was associated (whether in nature or in an experimental setting). Isolated substances may have varying levels of purity in reference to the substances from which they have been associated. Isolated substances and/or entities may be separated from at least about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, or more of the other components with which they were initially associated. In some embodiments, isolated agents are more than about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or more than about 99% pure. As used herein, a substance is “pure” if it is substantially free of other components.
  • Substantially isolated: By “substantially isolated” it is meant that the compound is substantially separated from the environment in which it was formed or detected. Partial separation can include, for example, a composition enriched in the compound of the present disclosure. Substantial separation can include compositions containing at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 97%, or at least about 99% by weight of the compound of the present disclosure, or salt thereof. Methods for isolating compounds and their salts are routine in the art.
  • Modified: As used herein “modified” refers to a changed state or structure of a molecule of the invention. Molecules may be modified in many ways including chemically, structurally, and functionally. In one embodiment, the mRNA molecules of the present invention are modified by the introduction of non-natural nucleosides and/or nucleotides, e.g., as it relates to the natural ribonucleotides A, U, G, and C. Noncanonical nucleotides such as the cap structures are not considered “modified” although they differ from the chemical structure of the A, C, G, U ribonucleotides.
  • Open reading frame: As used herein, “open reading frame” or “ORF” refers to a sequence which does not contain a stop codon in a given reading frame.
  • Operably linked: As used herein, the phrase “operably linked” refers to a functional connection between two or more molecules, constructs, transcripts, entities, moieties or the like. For example, a gene of interest operably linked to an RNA polymerase promoter allows transcription of the gene of interest.
  • Peptide: As used herein, “peptide” is less than or equal to 50 amino acids long, e.g., about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 amino acids long.
  • Poly A tail: As used herein, “poly A tail” refers to a chain of adenine nucleotides. The term can refer to poly A tail that is to be added to an RNA transcript, or can refer to the poly A tail that already exists at the 3′ end of an RNA transcript. As described in more detail below, a poly A tail is typically 5-300 nucleotides in length.
  • Purified: As used herein, “purify,” “purified,” “purification” means to make substantially pure or clear from unwanted components, material defilement, admixture or imperfection.
  • RNA transcript: As used herein, an “RNA transcript” refers to a ribonucleic acid produced by an in vitro transcription reaction using a DNA template and an RNA polymerase. As described in more detail below, an RNA transcript typically includes the coding sequence for a gene of interest and a poly A tail. RNA transcript includes an mRNA. The RNA transcript can include modifications, e.g., modified nucleotides. As used herein, the term RNA transcript includes and is interchangeable with mRNA, modified mRNA “mmRNA” or modified mRNA, and primary construct.
  • Signal Sequences: As used herein, the phrase “signal sequences” refers to a sequence which can direct the transport or localization of a protein.
  • Similarity: As used herein, the term “similarity” refers to the overall relatedness between polymeric molecules, e.g. between polynucleotide molecules (e.g. DNA molecules and/or RNA molecules) and/or between polypeptide molecules. Calculation of percent similarity of polymeric molecules to one another can be performed in the same manner as a calculation of percent identity, except that calculation of percent similarity takes into account conservative substitutions as is understood in the art.
  • Stable: As used herein “stable” refers to a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and preferably capable of formulation into an efficacious therapeutic agent.
  • Subject: As used herein, the term “subject” or “patient” refers to any organism to which a composition in accordance with the invention may be administered, e.g., for experimental, diagnostic, prophylactic, and/or therapeutic purposes. Typical subjects include animals (e.g., mammals such as mice, rats, rabbits, non-human primates, and humans) and/or plants.
  • Substantially: As used herein, the term “substantially” refers to the qualitative condition of exhibiting total or near-total extent or degree of a characteristic or property of interest. One of ordinary skill in the biological arts will understand that biological and chemical phenomena rarely, if ever, go to completion and/or proceed to completeness or achieve or avoid an absolute result. The term “substantially” is therefore used herein to capture the potential lack of completeness inherent in many biological and chemical phenomena.
  • Synthetic: The term “synthetic” means produced, prepared, and/or manufactured by the hand of man. Synthesis of polynucleotides or polypeptides or other molecules of the present invention may be chemical or enzymatic.
  • Transcription factor: As used herein, the term “transcription factor” refers to a DNA-binding protein that regulates transcription of DNA into RNA, for example, by activation or repression of transcription. Some transcription factors effect regulation of transcription alone, while others act in concert with other proteins. Some transcription factor can both activate and repress transcription under certain conditions. In general, transcription factors bind a specific target sequence or sequences highly similar to a specific consensus sequence in a regulatory region of a target gene. Transcription factors may regulate transcription of a target gene alone or in a complex with other molecules.
  • Unmodified: As used herein, “unmodified” refers to any substance, compound or molecule prior to being changed in any way. Unmodified may, but does not always, refer to the wild type or native form of a biomolecule. Molecules may undergo a series of modifications whereby each modified molecule may serve as the “unmodified” starting molecule for a subsequent modification.
  • Equivalents and Scope
  • Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments in accordance with the invention described herein. The scope of the present invention is not intended to be limited to the above Description, but rather is as set forth in the appended claims.
  • In the claims, articles such as “a,” “an,” and “the” may mean one or more than one unless indicated to the contrary or otherwise evident from the context. Claims or descriptions that include “or” between one or more members of a group are considered satisfied if one, more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process unless indicated to the contrary or otherwise evident from the context. The invention includes embodiments in which exactly one member of the group is present in, employed in, or otherwise relevant to a given product or process. The invention includes embodiments in which more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process.
  • It is also noted that the term “comprising” is intended to be open and permits but does not require the inclusion of additional elements or steps. When the term “comprising” is used herein, the term “consisting of” is thus also encompassed and disclosed.
  • Where ranges are given, endpoints are included. Furthermore, it is to be understood that unless otherwise indicated or otherwise evident from the context and understanding of one of ordinary skill in the art, values that are expressed as ranges can assume any specific value or subrange within the stated ranges in different embodiments of the invention, to the tenth of the unit of the lower limit of the range, unless the context clearly dictates otherwise.
  • In addition, it is to be understood that any particular embodiment of the present invention that falls within the prior art may be explicitly excluded from any one or more of the claims. Since such embodiments are deemed to be known to one of ordinary skill in the art, they may be excluded even if the exclusion is not set forth explicitly herein. Any particular embodiment of the compositions of the invention (e.g., any nucleic acid or protein encoded thereby; any method of production; any method of use; etc.) can be excluded from any one or more claims, for any reason, whether or not related to the existence of prior art.
  • All cited sources, for example, references, publications, databases, database entries, and art cited herein, are incorporated into this application by reference, even if not expressly stated in the citation. In case of conflicting statements of a cited source and the instant application, the statement in the instant application shall control.
  • Compositions of the Invention
  • The present invention provides nucleic acid molecules, specifically polynucleotides, primary constructs and/or mRNA which encode one or more polypeptides of interest. The term “nucleic acid,” in its broadest sense, includes any compound and/or substance that comprise a polymer of nucleotides. These polymers are often referred to as polynucleotides. Exemplary nucleic acids or polynucleotides of the invention include, but are not limited to, ribonucleic acids (RNAs), deoxyribonucleic acids (DNAs), threose nucleic acids (TNAs), glycol nucleic acids (GNAs), peptide nucleic acids (PNAs), locked nucleic acids (LNAs, including LNA having a β-D-ribo configuration, α-LNA having an α-L-ribo configuration (a diastereomer of LNA), 2′-amino-LNA having a 2′-amino functionalization, and 2′-amino-α-LNA having a 2′-amino functionalization) or hybrids thereof.
  • In preferred embodiments, the nucleic acid molecule is a messenger RNA (mRNA). As used herein, the term “messenger RNA” (mRNA) refers to any polynucleotide which encodes a polypeptide of interest and which is capable of being translated to produce the encoded polypeptide of interest in vitro, in vivo, in situ or ex vivo.
  • Traditionally, the basic components of an mRNA molecule include at least a coding region, a 5′UTR, a 3′UTR, a 5′ cap and a poly-A tail. Building on this wild type modular structure, the present invention expands the scope of functionality of traditional mRNA molecules by providing polynucleotides or primary RNA constructs which maintain a modular organization, but which comprise one or more structural and/or chemical modifications or alterations which impart useful properties to the polynucleotide including, in some embodiments, the lack of a substantial induction of the innate immune response of a cell into which the polynucleotide is introduced. As such, modified mRNA molecules of the present invention are termed “mmRNA.” As used herein, a “structural” feature or modification is one in which two or more linked nucleotides are inserted, deleted, duplicated, inverted or randomized in a polynucleotide, primary construct or mmRNA without significant chemical modification to the nucleotides themselves. Because chemical bonds will necessarily be broken and reformed to effect a structural modification, structural modifications are of a chemical nature and hence are chemical modifications. However, structural modifications will result in a different sequence of nucleotides. For example, the polynucleotide “ATCG” may be chemically modified to “AT-5meC-G”. The same polynucleotide may be structurally modified from “ATCG” to “ATCCCG”. Here, the dinucleotide “CC” has been inserted, resulting in a structural modification to the polynucleotide.
  • mRNA Architecture
  • FIG. 1 shows a representative polynucleotide primary construct 100 of the present invention. As used herein, the term “primary construct” or “primary mRNA construct” refers to a polynucleotide transcript which encodes one or more polypeptides of interest and which retains sufficient structural and/or chemical features to allow the polypeptide of interest encoded therein to be translated. Primary constructs may be polynucleotides of the invention. When structurally or chemically modified, the primary construct may be referred to as an mmRNA (“modified mRNA”). Modified RNA, e.g., RNA transcripts, e.g., mRNA, are disclosed in the following which is incorporated by reference for all purposes: U.S. patent application Ser. No. 13/791,922, “Modified Polynucleotides for the Production of Biologics and Proteins Associated with Human Disease”, filed Mar. 9, 2013.
  • Returning to FIG. 1, the primary construct 100 here contains a first region of linked nucleotides 102 that is flanked by a first flanking region 104 and a second flaking region 106. As used herein, the “first region” may be referred to as a “coding region” or “region encoding” or simply the “first region.” This first region may include, but is not limited to, the encoded polypeptide of interest. The polypeptide of interest may comprise at its 5′ terminus one or more signal sequences encoded by a signal sequence region 103. The flanking region 104 may comprise a region of linked nucleotides comprising one or more complete or incomplete 5′ UTRs sequences. The flanking region 104 may also comprise a 5′ terminal cap 108. The second flanking region 106 may comprise a region of linked nucleotides comprising one or more complete or incomplete 3′ UTRs. The flanking region 106 may also comprise a 3′ tailing sequence 110.
  • Bridging the 5′ terminus of the first region 102 and the first flanking region 104 is a first operational region 105. Traditionally this operational region comprises a Start codon. The operational region may alternatively comprise any translation initiation sequence or signal including a Start codon.
  • Bridging the 3′ terminus of the first region 102 and the second flanking region 106 is a second operational region 107. Traditionally this operational region comprises a Stop codon. The operational region may alternatively comprise any translation initiation sequence or signal including a Stop codon. According to the present invention, multiple serial stop codons may also be used.
  • Generally, the shortest length of the first region of the primary construct of the present invention can be the length of a nucleic acid sequence that is sufficient to encode for a dipeptide, a tripeptide, a tetrapeptide, a pentapeptide, a hexapeptide, a heptapeptide, an octapeptide, a nonapeptide, or a decapeptide. In another embodiment, the length may be sufficient to encode a peptide of 2-30 amino acids, e.g. 5-30, 10-30, 2-25, 5-25, 10-25, or 10-20 amino acids. The length may be sufficient to encode for a peptide of at least 11, 12, 13, 14, 15, 17, 20, 25 or 30 amino acids, or a peptide that is no longer than 40 amino acids, e.g. no longer than 35, 30, 25, 20, 17, 15, 14, 13, 12, 11 or 10 amino acids. Examples of dipeptides that the polynucleotide sequences can encode or include, but are not limited to, carnosine and anserine.
  • Generally, the length of the first region encoding the polypeptide of interest of the present invention is greater than about 30 nucleotides in length (e.g., at least or greater than about 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1,000, 1,100, 1,200, 1,300, 1,400, 1,500, 1,600, 1,700, 1,800, 1,900, 2,000, 2,500, and 3,000, 4,000, 5,000, 6,000, 7,000, 8,000, 9,000, 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 70,000, 80,000, 90,000 or up to and including 100,000 nucleotides). As used herein, the “first region” may be referred to as a “coding region” or “region encoding” or simply the “first region.”
  • In some embodiments, the polynucleotide, primary construct, or mmRNA includes from about 30 to about 100,000 nucleotides (e.g., from 100-10,000, from 600-10,000, from 700-3,000, from 30 to 50, from 30 to 100, from 30 to 250, from 30 to 500, from 30 to 1,000, from 30 to 1,500, from 30 to 3,000, from 30 to 5,000, from 30 to 7,000, from 30 to 10,000, from 30 to 25,000, from 30 to 50,000, from 30 to 70,000, from 100 to 250, from 100 to 500, from 100 to 1,000, from 100 to 1,500, from 100 to 3,000, from 100 to 5,000, from 100 to 7,000, from 100 to 10,000, from 100 to 25,000, from 100 to 50,000, from 100 to 70,000, from 100 to 100,000, from 500 to 1,000, from 500 to 1,500, from 500 to 2,000, from 500 to 3,000, from 500 to 5,000, from 500 to 7,000, from 500 to 10,000, from 500 to 25,000, from 500 to 50,000, from 500 to 70,000, from 500 to 100,000, from 1,000 to 1,500, from 1,000 to 2,000, from 1,000 to 3,000, from 1,000 to 5,000, from 1,000 to 7,000, from 1,000 to 10,000, from 1,000 to 25,000, from 1,000 to 50,000, from 1,000 to 70,000, from 1,000 to 100,000, from 1,500 to 3,000, from 1,500 to 5,000, from 1,500 to 7,000, from 1,500 to 10,000, from 1,500 to 25,000, from 1,500 to 50,000, from 1,500 to 70,000, from 1,500 to 100,000, from 2,000 to 3,000, from 2,000 to 5,000, from 2,000 to 7,000, from 2,000 to 10,000, from 2,000 to 25,000, from 2,000 to 50,000, from 2,000 to 70,000, and from 2,000 to 100,000).
  • According to the present invention, the first and second flanking regions may range independently from 15-1,000 nucleotides in length (e.g., greater than 30, 40, 45, 50, 55, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, and 900 nucleotides or at least 30, 40, 45, 50, 55, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, and 1,000 nucleotides).
  • According to the present invention, the tailing sequence may range from absent to 500 nucleotides in length (e.g., at least 60, 70, 80, 90, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, or 500 nucleotides). Where the tailing region is a polyA tail, the length may be determined in units of or as a function of polyA Binding Protein binding. In this embodiment, the polyA tail is long enough to bind at least 4 monomers of PolyA Binding Protein. PolyA Binding Protein monomers bind to stretches of approximately 38 nucleotides. As such, it has been observed that polyA tails of about 80 nucleotides and 160 nucleotides are functional.
  • According to the present invention, the capping region may comprise a single cap or a series of nucleotides forming the cap. In this embodiment the capping region may be from 1 to 10, e.g. 2-9, 3-8, 4-7, 1-5, 5-10, or at least 2, or 10 or fewer nucleotides in length. In some embodiments, the cap is absent.
  • According to the present invention, the first and second operational regions may range from 3 to 40, e.g., 5-30, 10-20, 15, or at least 4, or 30 or fewer nucleotides in length and may comprise, in addition to a Start and/or Stop codon, one or more signal and/or restriction sequences.
  • Flanking Regions: Untranslated Regions (UTRs)
  • Untranslated regions (UTRs) of a gene are transcribed but not translated. The 5′UTR starts at the transcription start site and continues to the start codon but does not include the start codon; whereas, the 3′UTR starts immediately following the stop codon and continues until the transcriptional termination signal. There is growing body of evidence about the regulatory roles played by the UTRs in terms of stability of the nucleic acid molecule and translation. The regulatory features of a UTR can be incorporated into the polynucleotides, primary constructs and/or mmRNA (“modified mRNA”) of the present invention to enhance the stability of the molecule. The specific features can also be incorporated to ensure controlled down-regulation of the transcript in case they are misdirected to undesired sites.
  • 5′ UTR and Translation Initiation
  • Natural 5′UTRs bear features which play roles in for translation initiation. They harbor signatures like Kozak sequences which are commonly known to be involved in the process by which the ribosome initiates translation of many genes. Kozak sequences have the consensus CCR(A/G)CCAUGG, where R is a purine (adenine or guanine) three bases upstream of the start codon (AUG), which is followed by another ‘G’. 5′UTR also have been known to form secondary structures which are involved in elongation factor binding.
  • By engineering the features typically found in abundantly expressed genes of specific target organs, one can enhance the stability and protein production of the polynucleotides, primary constructs or mmRNA of the invention. For example, introduction of 5′ UTR of liver-expressed mRNA, such as albumin, serum amyloid A, Apolipoprotein A/B/E, transferrin, alpha fetoprotein, erythropoietin, or Factor VIII, could be used to enhance expression of a nucleic acid molecule, such as a mmRNA, in hepatic cell lines or liver. Likewise, use of 5′ UTR from other tissue-specific mRNA to improve expression in that tissue is possible for muscle (MyoD, Myosin, Myoglobin, Myogenin, Herculin), for endothelial cells (Tie-1, CD36), for myeloid cells (C/EBP, AML1, G-CSF, GM-CSF, CD11b, MSR, Fr-1, i-NOS), for leukocytes (CD45, CD18), for adipose tissue (CD36, GLUT4, ACRP30, adiponectin) and for lung epithelial cells (SP-A/B/C/D).
  • Other non-UTR sequences may be incorporated into the 5′ (or 3′ UTR) UTRs. For example, introns or portions of introns sequences may be incorporated into the flanking regions of the polynucleotides, primary constructs or mmRNA of the invention. Incorporation of intronic sequences may increase protein production as well as mRNA levels.
  • 3′ UTR and the AU Rich Elements
  • 3′ UTRs are known to have stretches of Adenosines and Uridines embedded in them. These AU rich signatures are particularly prevalent in genes with high rates of turnover. Based on their sequence features and functional properties, the AU rich elements (AREs) can be separated into three classes (Chen et al, 1995): Class I AREs contain several dispersed copies of an AUUUA motif within U-rich regions. C-Myc and MyoD contain class I AREs. Class II AREs possess two or more overlapping UUAUUUA(U/A)(U/A) nonamers. Molecules containing this type of AREs include GM-CSF and TNF-α. Class III ARES are less well defined. These U rich regions do not contain an AUUUA motif. c-Jun and Myogenin are two well-studied examples of this class. Most proteins binding to the AREs are known to destabilize the messenger, whereas members of the ELAV family, most notably HuR, have been documented to increase the stability of mRNA. HuR binds to AREs of all the three classes. Engineering the HuR specific binding sites into the 3′ UTR of nucleic acid molecules will lead to HuR binding and thus, stabilization of the message in vivo.
  • Introduction, removal or modification of 3′ UTR AU rich elements (AREs) can be used to modulate the stability of polynucleotides, primary constructs or mmRNA of the invention. When engineering specific polynucleotides, primary constructs or mmRNA, one or more copies of an ARE can be introduced to make polynucleotides, primary constructs or mmRNA of the invention less stable and thereby curtail translation and decrease production of the resultant protein. Likewise, AREs can be identified and removed or mutated to increase the intracellular stability and thus increase translation and production of the resultant protein. Transfection experiments can be conducted in relevant cell lines, using polynucleotides, primary constructs or mmRNA of the invention and protein production can be assayed at various time points post-transfection. For example, cells can be transfected with different ARE-engineering molecules and by using an ELISA kit to the relevant protein and assaying protein produced at 6 hour, 12 hour, 24 hour, 48 hour, and 7 days post-transfection.
  • 5′ Capping
  • The 5′ cap structure of an mRNA is involved in nuclear export, increasing mRNA stability and binds the mRNA Cap Binding Protein (CBP), which is responsible for mRNA stability in the cell and translation competency through the association of CBP with poly(A) binding protein to form the mature cyclic mRNA species. The cap further assists the removal of 5′ proximal introns removal during mRNA splicing.
  • Endogenous mRNA molecules may be 5′-end capped generating a 5′-ppp-5′-triphosphate linkage between a terminal guanosine cap residue and the 5′-terminal transcribed sense nucleotide of the mRNA molecule. This 5′-guanylate cap may then be methylated to generate an N7-methyl-guanylate residue. The ribose sugars of the terminal and/or anteterminal transcribed nucleotides of the 5′ end of the mRNA may optionally also be 2′-O-methylated. 5′-decapping through hydrolysis and cleavage of the guanylate cap structure may target a nucleic acid molecule, such as an mRNA molecule, for degradation.
  • Modifications to the polynucleotides, primary constructs, and mmRNA of the present invention may generate a non-hydrolyzable cap structure preventing decapping and thus increasing mRNA half-life. Because cap structure hydrolysis requires cleavage of 5′-ppp-5′ phosphorodiester linkages, modified nucleotides may be used during the capping reaction. For example, a Vaccinia Capping Enzyme from New England Biolabs (Ipswich, Mass.) may be used with α-thio-guanosine nucleotides according to the manufacturer's instructions to create a phosphorothioate linkage in the 5′-ppp-5′ cap. Additional modified guanosine nucleotides may be used such as α-methyl-phosphonate and seleno-phosphate nucleotides.
  • Additional modifications include, but are not limited to, 2′-O-methylation of the ribose sugars of 5′-terminal and/or 5′-anteterminal nucleotides of the mRNA (as mentioned above) on the 2′-hydroxyl group of the sugar ring. Multiple distinct 5′-cap structures can be used to generate the 5′-cap of a nucleic acid molecule, such as an mRNA molecule.
  • Cap analogs, which herein are also referred to as synthetic cap analogs, chemical caps, chemical cap analogs, or structural or functional cap analogs, differ from natural (i.e. endogenous, wild-type or physiological) 5′-caps in their chemical structure, while retaining cap function. Cap analogs may be chemically (i.e. non-enzymatically) or enzymatically synthesized and/or linked to a nucleic acid molecule.
  • For example, the Anti-Reverse Cap Analog (ARCA) cap contains two guanines linked by a 5′-5′-triphosphate group, wherein one guanine contains an N7 methyl group as well as a 3′-O-methyl group (i.e., N7,3′-O-dimethyl-guanosine-5′-triphosphate-5′-guanosine (m7G-3′mppp-G; which may equivaliently be designated 3′ O-Me-m7G(5′)ppp(5′)G). The 3′-O atom of the other, unmodified, guanine becomes linked to the 5′-terminal nucleotide of the capped nucleic acid molecule (e.g. an mRNA or mmRNA). The N7- and 3′-O-methlyated guanine provides the terminal moiety of the capped nucleic acid molecule (e.g. mRNA or mmRNA).
  • Another exemplary cap is mCAP, which is similar to ARCA but has a 2′-O-methyl group on guanosine (i.e., N7,2′-O-dimethyl-guanosine-5′-triphosphate-5′-guanosine, m7Gm-ppp-G).
  • While cap analogs allow for the concomitant capping of a nucleic acid molecule in an in vitro transcription reaction, up to 20% of transcripts can remain uncapped. This, as well as the structural differences of a cap analog from an endogenous 5′-cap structures of nucleic acids produced by the endogenous, cellular transcription machinery, may lead to reduced translational competency and reduced cellular stability.
  • Polynucleotides, primary constructs and mmRNA of the invention may also be capped post-transcriptionally, using enzymes, in order to generate more authentic 5′-cap structures. As used herein, the phrase “more authentic” refers to a feature that closely mirrors or mimics, either structurally or functionally, an endogenous or wild type feature. That is, a “more authentic” feature is better representative of an endogenous, wild-type, natural or physiological cellular function and/or structure as compared to synthetic features or analogs, etc., of the prior art, or which outperforms the corresponding endogenous, wild-type, natural or physiological feature in one or more respects. Non-limiting examples of more authentic 5′cap structures of the present invention are those which, among other things, have enhanced binding of cap binding proteins, increased half life, reduced susceptibility to 5′ endonucleases and/or reduced 5′decapping, as compared to synthetic 5′cap structures known in the art (or to a wild-type, natural or physiological 5′cap structure). For example, recombinant Vaccinia Virus Capping Enzyme and recombinant 2′-O-methyltransferase enzyme can create a canonical 5′-5′-triphosphate linkage between the 5′-terminal nucleotide of an mRNA and a guanine cap nucleotide wherein the cap guanine contains an N7 methylation and the 5′-terminal nucleotide of the mRNA contains a 2′-O-methyl. Such a structure is termed the Cap1 structure. This cap results in a higher translational-competency and cellular stability and a reduced activation of cellular pro-inflammatory cytokines, as compared, e.g., to other 5′cap analog structures known in the art. Cap structures include, but are not limited to, 7mG(5′)ppp(5′)N,pN2p (cap 0), 7mG(5′)ppp(5′)NlmpNp (cap 1), and 7mG(5′)-ppp(5′)N1mpN2mp (cap 2).
  • Because the polynucleotides, primary constructs or mmRNA may be capped post-transcriptionally, and because this process is more efficient, nearly 100% of the polynucleotides, primary constructs or mmRNA may be capped. This is in contrast to ˜80% when a cap analog is linked to an mRNA in the course of an in vitro transcription reaction.
  • According to the present invention, 5′ terminal caps may include endogenous caps or cap analogs. According to the present invention, a 5′ terminal cap may comprise a guanine analog. Useful guanine analogs include, but are not limited to, inosine, N1-methyl-guanosine, 2′fluoro-guanosine, 7-deaza-guanosine, 8-oxo-guanosine, 2-amino-guanosine, LNA-guanosine, and 2-azido-guanosine.
  • Poly-A Tails
  • During RNA processing, a long chain of adenine nucleotides (poly-A tail) may be added to a polynucleotide such as an mRNA molecules in order to increase stability. Immediately after transcription, the 3′ end of the transcript may be cleaved to free a 3′ hydroxyl. Then poly-A polymerase adds a chain of adenine nucleotides to the RNA. The process, called polyadenylation, adds a poly-A tail that can be between, for example, approximately 100 and 250 residues long.
  • It has been discovered that unique poly-A tail lengths provide certain advantages to the polynucleotides, primary constructs or mmRNA of the present invention.
  • Generally, the length of a poly-A tail of the present invention is greater than 30 nucleotides in length. In another embodiment, the poly-A tail is greater than 35 nucleotides in length (e.g., at least or greater than about 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1,000, 1,100, 1,200, 1,300, 1,400, 1,500, 1,600, 1,700, 1,800, 1,900, 2,000, 2,500, and 3,000 nucleotides). In some embodiments, the polynucleotide, primary construct, or mmRNA includes from about 30 to about 3,000 nucleotides (e.g., from 30 to 50, from 30 to 100, from 30 to 250, from 30 to 500, from 30 to 750, from 30 to 1,000, from 30 to 1,500, from 30 to 2,000, from 30 to 2,500, from 50 to 100, from 50 to 250, from 50 to 500, from 50 to 750, from 50 to 1,000, from 50 to 1,500, from 50 to 2,000, from 50 to 2,500, from 50 to 3,000, from 100 to 500, from 100 to 750, from 100 to 1,000, from 100 to 1,500, from 100 to 2,000, from 100 to 2,500, from 100 to 3,000, from 500 to 750, from 500 to 1,000, from 500 to 1,500, from 500 to 2,000, from 500 to 2,500, from 500 to 3,000, from 1,000 to 1,500, from 1,000 to 2,000, from 1,000 to 2,500, from 1,000 to 3,000, from 1,500 to 2,000, from 1,500 to 2,500, from 1,500 to 3,000, from 2,000 to 3,000, from 2,000 to 2,500, and from 2,500 to 3,000).
  • In one embodiment, the poly-A tail is designed relative to the length of the overall polynucleotides, primary constructs or mmRNA. This design may be based on the length of the coding region, the length of a particular feature or region (such as the first or flanking regions), or based on the length of the ultimate product expressed from the polynucleotides, primary constructs or mmRNA.
  • In this context the poly-A tail may be 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100% greater in length than the polynucleotides, primary constructs or mmRNA or feature thereof. The poly-A tail may also be designed as a fraction of polynucleotides, primary constructs or mmRNA to which it belongs. In this context, the poly-A tail may be 10, 20, 30, 40, 50, 60, 70, 80, or 90% or more of the total length of the construct or the total length of the construct minus the poly-A tail. Further, engineered binding sites and conjugation of polynucleotides, primary constructs or mmRNA for Poly-A binding protein may enhance expression.
  • Additionally, multiple distinct polynucleotides, primary constructs or mmRNA may be linked together to the PABP (Poly-A binding protein) through the 3′-end using modified nucleotides at the 3′-terminus of the poly-A tail. Transfection experiments can be conducted in relevant cell lines at and protein production can be assayed by ELISA at 12 hr, 24 hr, 48 hr, 72 hr and day 7 post-transfection.
  • In one embodiment, the polynucleotide primary constructs of the present invention are designed to include a polyA-G Quartet. The G-quartet is a cyclic hydrogen bonded array of four guanine nucleotides that can be formed by G-rich sequences in both DNA and RNA. In this embodiment, the G-quartet is incorporated at the end of the poly-A tail. The resultant mmRNA construct is assayed for stability, protein production and other parameters including half-life at various time points. It has been discovered that the polyA-G quartet results in protein production equivalent to at least 75% of that seen using a poly-A tail of 120 nucleotides alone.
  • Modifications
  • Herein, in a polynucleotide (such as a primary construct or an mRNA molecule), the terms “modification” or, as appropriate, “modified” refer to modification with respect to A, G, U or C ribonucleotides. Generally, herein, these terms are not intended to refer to the ribonucleotide modifications in naturally occurring 5′-terminal mRNA cap moieties. In a polypeptide, the term “modification” refers to a modification as compared to the canonical set of 20 amino acids, moiety)
  • The modifications may be various distinct modifications. In some embodiments, the coding region, the flanking regions and/or the terminal regions may contain one, two, or more (optionally different) nucleoside or nucleotide modifications. In some embodiments, a modified polynucleotide, primary construct, or mmRNA introduced to a cell may exhibit reduced degradation in the cell, as compared to an unmodified polynucleotide, primary construct, or mmRNA.
  • The polynucleotides, primary constructs, and mmRNA can include any useful modification, such as to the sugar, the nucleobase, or the internucleoside linkage (e.g. to a linking phosphate/to a phosphodiester linkage/to the phosphodiester backbone). One or more atoms of a pyrimidine nucleobase may be replaced or substituted with optionally substituted amino, optionally substituted thiol, optionally substituted alkyl (e.g., methyl or ethyl), or halo (e.g., chloro or fluoro). In certain embodiments, modifications (e.g., one or more modifications) are present in each of the sugar and the internucleoside linkage. Modifications according to the present invention may be modifications of ribonucleic acids (RNAs) to deoxyribonucleic acids (DNAs), threose nucleic acids (TNAs), glycol nucleic acids (GNAs), peptide nucleic acids (PNAs), locked nucleic acids (LNAs) or hybrids thereof). Additional modifications are described herein.
  • As described herein, the polynucleotides, primary constructs, and mmRNA of the invention do not substantially induce an innate immune response of a cell into which the mRNA is introduced. Features of an induced innate immune response include 1) increased expression of pro-inflammatory cytokines, 2) activation of intracellular PRRs (RIG-I, MDAS, etc, and/or 3) termination or reduction in protein translation.
  • In certain embodiments, it may desirable to intracellularly degrade a modified nucleic acid molecule introduced into the cell. For example, degradation of a modified nucleic acid molecule may be preferable if precise timing of protein production is desired. Thus, in some embodiments, the invention provides a modified nucleic acid molecule containing a degradation domain, which is capable of being acted on in a directed manner within a cell. In another aspect, the present disclosure provides polynucleotides comprising a nucleoside or nucleotide that can disrupt the binding of a major groove interacting, e.g. binding, partner with the polynucleotide (e.g., where the modified nucleotide has decreased binding affinity to major groove interacting partner, as compared to an unmodified nucleotide).
  • The polynucleotides, primary constructs, and mmRNA can optionally include other agents (e.g., RNAi-inducing agents, RNAi agents, siRNAs, shRNAs, miRNAs, antisense RNAs, ribozymes, catalytic DNA, tRNA, RNAs that induce triple helix formation, aptamers, vectors, etc.). In some embodiments, the polynucleotides, primary constructs, or mmRNA may include one or more messenger RNAs (mRNAs) and one or more modified nucleoside or nucleotides (e.g., mmRNA molecules).
  • Design and Synthesis of mRNA
  • Polynucleotides, primary constructs or mmRNA for use in accordance with the invention may be prepared according to any available technique including, but not limited to chemical synthesis, enzymatic synthesis, which is generally termed in vitro transcription (IVT) or enzymatic or chemical cleavage of a longer precursor, etc. Methods of synthesizing RNAs are known in the art (see, e.g., Gait, M. J. (ed.) Oligonucleotide synthesis: a practical approach, Oxford [Oxfordshire], Washington, D.C.: IRL Press, 1984; and Herdewijn, P. (ed.) Oligonucleotide synthesis: methods and applications, Methods in Molecular Biology, v. 288 (Clifton, N.J.) Totowa, N.J.: Humana Press, 2005; both of which are incorporated herein by reference).
  • The process of design and synthesis of the primary constructs of the invention generally includes the steps of gene construction, mRNA production (either with or without modifications) and purification. In the enzymatic synthesis method, a target polynucleotide sequence encoding the polypeptide of interest is first selected for incorporation into a vector which will be amplified to produce a cDNA template. Optionally, the target polynucleotide sequence and/or any flanking sequences may be codon optimized. The cDNA template is then used to produce mRNA through in vitro transcription (IVT). After production, the mRNA may undergo purification and clean-up processes.
  • Vector Amplification
  • The vector containing the primary construct is then amplified and the plasmid isolated and purified using methods known in the art such as, but not limited to, a maxi prep using the Invitrogen PURELINK™ HiPure Maxiprep Kit (Carlsbad, Calif.).
  • Plasmid Linearization
  • The plasmid may then be linearized using methods known in the art such as, but not limited to, the use of restriction enzymes and buffers. The linearization reaction may be purified using methods including, for example Invitrogen's PURELINK™ PCR Micro Kit (Carlsbad, Calif.), and HPLC based purification methods such as, but not limited to, strong anion exchange HPLC, weak anion exchange HPLC, reverse phase HPLC (RP-HPLC), and hydrophobic interaction HPLC (HIC-HPLC) and Invitrogen's standard PURELINK™ PCR Kit (Carlsbad, Calif.). The purification method may be modified depending on the size of the linearization reaction which was conducted. The linearized plasmid is then used to generate cDNA for in vitro transcription (IVT) reactions.
  • mRNA Production
  • The process of mRNA or mmRNA production may include, but is not limited to, in vitro transcription, cDNA template removal and RNA clean-up, and mRNA capping and/or tailing reactions.
  • In Vitro Transcription
  • The cDNA produced in the previous step may be transcribed using an in vitro transcription (IVT) system. The system typically comprises a transcription buffer, nucleotide triphosphates (NTPs), an RNase inhibitor and a polymerase. The NTPs may be manufactured in house, may be selected from a supplier, or may be synthesized as described herein. The NTPs may be selected from, but are not limited to, those described herein including natural and unnatural (modified) NTPs. The polymerase may be selected from, but is not limited to, T7 RNA polymerase, T3 RNA polymerase and mutant polymerases such as, but not limited to, polymerases able to incorporate modified nucleic acids.
  • RNA Polymerases
  • Any number of RNA polymerases or variants may be used in the design of the primary constructs of the present invention.
  • RNA polymerases may be modified by inserting or deleting amino acids of the RNA polymerase sequence. As a non-limiting example, the RNA polymerase may be modified to exhibit an increased ability to incorporate a 2′-modified nucleotide triphosphate compared to an unmodified RNA polymerase (see International Publication WO2008078180 and U.S. Pat. No. 8,101,385; herein incorporated by reference in their entireties).
  • Variants may be obtained by evolving an RNA polymerase, optimizing the RNA polymerase amino acid and/or nucleic acid sequence and/or by using other methods known in the art. As a non-limiting example, T7 RNA polymerase variants may be evolved using the continuous directed evolution system set out by Esvelt et al. (Nature (2011) 472(7344):499-503; herein incorporated by reference in its entirety) where clones of T7 RNA polymerase may encode at least one mutation such as, but not limited to, lysine at position 93 substituted for threonine (K93T), I4M, A7T, E63V, V64D, A65E, D66Y, T76N, C125R, S128R, A136T, N165S, G175R, H176L, Y178H, F182L, L196F, G198V, D208Y, E222K, S228A, Q239R, T243N, G259D, M267I, G210C, H300R, D351A, A354S, E356D, L360P, A383V, Y385C, D388Y, S397R, M401T, N410S, K450R, P451T, G452V, E484A, H523L, H524N, G542V, E565K, K577E, K577M, N601S, S684Y, L699I, K713E, N748D, Q754R, E775K, A827V, D851N or L864F. As another non-limiting example, T7 RNA polymerase variants may encode at least mutation as described in U.S. Pub. Nos. 20100120024 and 20070117112; herein incorporated by reference in their entireties. Variants of RNA polymerase may also include, but are not limited to, substitutional variants, conservative amino acid substitution, insertional variants, deletional variants and/or covalent derivatives.
  • In one embodiment, the primary construct may be designed to be recognized by the wild type or variant RNA polymerases. In doing so, the primary construct may be modified to contain sites or regions of sequence changes from the wild type or parent primary construct.
  • In one embodiment, the primary construct may be designed to include at least one substitution and/or insertion upstream of an RNA polymerase binding or recognition site, downstream of the RNA polymerase binding or recognition site, upstream of the TATA box sequence, downstream of the TATA box sequence of the primary construct but upstream of the coding region of the primary construct, within the 5′UTR, before the 5′UTR and/or after the 5′UTR.
  • In one embodiment, the 5′UTR of the primary construct may be replaced by the insertion of at least one region and/or string of nucleotides of the same base. The region and/or string of nucleotides may include, but is not limited to, at least 3, at least 4, at least 5, at least 6, at least 7 or at least 8 nucleotides and the nucleotides may be natural and/or unnatural. As a non-limiting example, the group of nucleotides may include 5-8 adenine, cytosine, thymine, a string of any of the other nucleotides disclosed herein and/or combinations thereof.
  • In one embodiment, the 5′UTR of the primary construct may be replaced by the insertion of at least two regions and/or strings of nucleotides of two different bases such as, but not limited to, adenine, cytosine, thymine, any of the other nucleotides disclosed herein and/or combinations thereof. For example, the 5′UTR may be replaced by inserting 5-8 adenine bases followed by the insertion of 5-8 cytosine bases. In another example, the 5′UTR may be replaced by inserting 5-8 cytosine bases followed by the insertion of 5-8 adenine bases.
  • In one embodiment, the primary construct may include at least one substitution and/or insertion downstream of the transcription start site which may be recognized by an RNA polymerase. As a non-limiting example, at least one substitution and/or insertion may occur downstream the transcription start site by substituting at least one nucleic acid in the region just downstream of the transcription start site (such as, but not limited to, +1 to +6). Changes to region of nucleotides just downstream of the transcription start site may affect initiation rates, increase apparent nucleotide triphosphate (NTP) reaction constant values, and increase the dissociation of short transcripts from the transcription complex curing initial transcription (Brieba et al, Biochemistry (2002) 41: 5144-5149; herein incorporated by reference in its entirety). The modification, substitution and/or insertion of at least one nucleic acid may cause a silent mutation of the nucleic acid sequence or may cause a mutation in the amino acid sequence.
  • In one embodiment, the primary construct may include the substitution of at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12 or at least 13 guanine bases downstream of the transcription start site.
  • In one embodiment, the primary construct may include the substitution of at least 1, at least 2, at least 3, at least 4, at least 5 or at least 6 guanine bases in the region just downstream of the transcription start site. As a non-limiting example, if the nucleotides in the region are GGGAGA the guanine bases may be substituted by at least 1, at least 2, at least 3 or at least 4 adenine nucleotides. In another non-limiting example, if the nucleotides in the region are GGGAGA the guanine bases may be substituted by at least 1, at least 2, at least 3 or at least 4 cytosine bases. In another non-limiting example, if the nucleotides in the region are GGGAGA the guanine bases may be substituted by at least 1, at least 2, at least 3 or at least 4 thymine, and/or any of the nucleotides described herein.
  • In one embodiment, the primary construct may include at least one substitution and/or insertion upstream of the start codon. For the purpose of clarity, one of skill in the art would appreciate that the start codon is the first codon of the protein coding region whereas the transcription start site is the site where transcription begins. The primary construct may include, but is not limited to, at least 1, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7 or at least 8 substitutions and/or insertions of nucleotide bases. The nucleotide bases may be inserted or substituted at 1, at least 1, at least 2, at least 3, at least 4 or at least 5 locations upstream of the start codon. The nucleotides inserted and/or substituted may be the same base (e.g., all A or all C or all T or all G), two different bases (e.g., A and C, A and T, or C and T), three different bases (e.g., A, C and T or A, C and T) or at least four different bases. As a non-limiting example, the guanine base upstream of the coding region in the primary construct may be substituted with adenine, cytosine, thymine, or any of the nucleotides described herein. In another non-limiting example the substitution of guanine bases in the primary construct may be designed so as to leave one guanine base in the region downstream of the transcription start site and before the start codon (see Esvelt et al. Nature (2011) 472(7344):499-503; herein incorporated by reference in its entirety). As a non-limiting example, at least 5 nucleotides may be inserted at 1 location downstream of the transcription start site but upstream of the start codon and the at least 5 nucleotides may be the same base type.
  • Capping and/or Tailing Reactions
  • The primary construct or mmRNA may also undergo capping and/or tailing reactions. A capping reaction may be performed by methods known in the art to add a 5′ cap to the 5′ end of the primary construct. Methods for capping include, but are not limited to, using a Vaccinia Capping enzyme (New England Biolabs, Ipswich, Mass.).
  • A poly-A tailing reaction may be performed by methods known in the art, such as, but not limited to, 2′ O-methyltransferase and by methods as described herein. If the primary construct generated from cDNA does not include a poly-T, it may be beneficial to perform the poly-A-tailing reaction before the primary construct is cleaned.
  • mRNA Characterization
  • Primary construct or mmRNA purification may include, but is not limited to, mRNA or mmRNA clean-up, quality assurance and quality control. mRNA or mmRNA clean-up may be performed by methods known in the arts such as, but not limited to, AGENCOURT® beads (Beckman Coulter Genomics, Danvers, Mass.), poly-T beads, LNA™ oligo-T capture probes (EXIQON® Inc, Vedbaek, Denmark) or HPLC based purification methods such as, but not limited to, strong anion exchange HPLC, weak anion exchange HPLC, reverse phase HPLC (RP-HPLC), and hydrophobic interaction HPLC (HIC-HPLC). The term “purified” when used in relation to a polynucleotide such as a “purified mRNA or mmRNA” refers to one that is separated from at least one contaminant. As used herein, a “contaminant” is any substance which makes another unfit, impure or inferior. Thus, a purified polynucleotide (e.g., DNA and RNA) is present in a form or setting different from that in which it is found in nature, or a form or setting different from that which existed prior to subjecting it to a treatment or purification method.
  • A quality assurance and/or quality control check may be conducted using methods such as, but not limited to, gel electrophoresis, UV absorbance, or analytical HPLC.
  • In another embodiment, the mRNA or mmRNA may be sequenced by methods including, but not limited to reverse-transcriptase-PCR.
  • In one embodiment, the mRNA or mmRNA may be quantified using methods such as, but not limited to, ultraviolet visible spectroscopy (UV/Vis). A non-limiting example of a UV/Vis spectrometer is a NANODROP® spectrometer (ThermoFisher, Waltham, Mass.). The quantified mRNA or mmRNA may be analyzed in order to determine if the mRNA or mmRNA may be of proper size, check that no degradation of the mRNA or mmRNA has occurred. Degradation of the mRNA and/or mmRNA may be checked by methods such as, but not limited to, agarose gel electrophoresis, HPLC based purification methods such as, but not limited to, strong anion exchange HPLC, weak anion exchange HPLC, reverse phase HPLC (RP-HPLC), and hydrophobic interaction HPLC (HIC-HPLC), liquid chromatography-mass spectrometry (LCMS), capillary electrophoresis (CE) and capillary gel electrophoresis (CGE).
  • cDNA Template Removal and Clean-Up
  • There are several commonly used methods to achieve partial or near complete removal of DNA from mRNA at different scales. These methods are based on the differences in molecular structures or biochemical properties of DNA and RNA. For example, DNase I digestion uses the enzymatic substrate specificity to selectively cleave DNA molecules but leave RNA molecules intact and organic solvent extraction is based on the differential partitioning of DNA and RNA into organic and aqueous phases.
  • DNase I is an endonuclease that cleaves DNA by breaking phosphodiester bonds and produces smaller DNA fragments and/or di-, tri- and oligonucleotides which are subsequently removed by size-based separation methods. However, it is challenging to quantitatively determine the DNase I digestion efficiency and DNase I itself requires to be inactivated or removed in the subsequent process. Quantitative PCR is often applied to measure the residual DNA but it only detects the DNA molecules that contain both qPCR primers thus does not measure all other smaller DNA molecules that are partially digested. To overcome this challenge, a liquid chromatography-tandem mass spectrometry (LC/MS/MS) approach can be used where a total nuclease digestion is performed on the RNA drug substance sample following the DNA removal step. The presence of individual residual deoxynucleotides is quantitatively assayed against deoxynucleotide standards using MS/MS and the abundance is reported.
  • The cDNA template may be removed using methods known in the art such as, but not limited to, treatment with Deoxyribonuclease I (DNase I). RNA clean-up may also include a purification method such as, but not limited to, AGENCOURT® CLEANSE® system from Beckman Coulter (Danvers, Mass.), HPLC based purification methods such as, but not limited to, strong anion exchange HPLC, weak anion exchange HPLC, reverse phase HPLC (RP-HPLC), and hydrophobic interaction HPLC (HIC-HPLC).
  • DNase Treatment
  • To remove a DNA template from an in vitro transcription product, a portion of the transcription product can be incubated with DNase, for example DNase I. Then, the RNA transcript is separated from the digested DNA template by a separation method. For example, the separation method could be centrifugation, ultrafiltration, a precipitation, liquid chromatography, gel electrophoresis, or use of a vacuum column.
  • In some embodiments, a portion of the digested in vitro transcription product can be incubated with a second nuclease (for example, nuclease P1) for further analysis by liquid chromatography-tandem mass spectrometry (LC/MS/MS), where the presence or absence of residual deoxynucleotides in the digested product is detected. The total abundance of deoxynucleotides present in the RNA sample via the mass spectrometry analysis can be, for example, <500 ppm, <300 ppm, <250 ppm, <100 ppm, <50 ppm, <25 ppm, <10 ppm, <5 ppm, <1 ppm, or <0.2 ppm.
  • In another embodiment, the DNase could be attached to a solid support, such as a solid phase resin, controlled pore glass, polystyrene, polystyrene divinyl benzene, cellulose, polyacrylamide, silica, polymethacrylate, or dextran based polymers. The in vitro transcription reaction product can be contacted with the solid support to digest the DNA template.
  • Removal of Labeled DNA
  • In some embodiments, the DNA template is coupled to a label, so that the labeled DNA can later be separated from the RNA transcript in an in vitro transcription reaction product by running the product on a solid support that presents a ligand or functional group configured to bind the label.
  • In one embodiment, the DNA template is a plasmid is coupled to the label either before or after the plasmid has been linearized, where the plasmid has been linearized with a restriction enzyme.
  • In another embodiment, the DNA template is a PCR product. In a further embodiment one or more of the PCR primers is labeled, so that during the PCR amplification, the label will become coupled to the DNA template amplicon. In a further embodiment, the PCR primers are chemically synthesized. In a separate embodiment, the label is coupled to the 5′-end of the DNA template. The label can be a reactive group, such as a biotin, an amine, or a thiol. Biotin could be coupled to the DNA template by an alkylation reaction, whereas the amine could be coupled by heat activation or light activation.
  • In a separate embodiment, the DNA template is a PCR product, where the label is coupled to the DNA template by a DNA polymerase. For example, the label can be made up of modified nucleotides, so the DNA template could be made of these modified nucleotide labels. For example, the modified nucleotides could be 5′ aminoallyl pyrimidine NTPs, or N-6-aminohexyl cytidine NTPs. Furthermore, the modified nucleotides could comprise nucleotide analogs coupled to an intrinsic linker.
  • After the in vitro transcription reaction, the reaction product containing the labeled DNA template can be run on a solid support, where the solid support is configured to bind the label. A biotinylated DNA template will bind a streptavidin resin, an amine labeled DNA template will bind a N-hydroxysuccinimide-activated resin, and a DNA labeled with modified nucleotide aminoallyl-dUTP will be removed by reactive forms of cyanine 3 or cyanine 5-NHS esters (for example, using the Illustra CyScribe GFX Purification Kit from GE Healthcare). Also, epoxide or aldehyde resins may be used.
  • EXAMPLES Example 1: Preparing Plasmids for cDNA Production
  • cDNA is produced to provide a DNA template for in vitro transcription. To prepare plasmids for producing cDNA, NEB DH5-alpha Competent E. coli are used in one example. Transformations are performed according to NEB instructions using 100 ng of plasmid. The protocol is as follows:
  • Spread 50-100 μl of each dilution onto a selection plate and incubate overnight at 37° C. Alternatively, incubate at 30° C. for 24-36 hours or 25° C. for 48 hours.
  • A single colony is then used to inoculate 5 ml of LB growth media using the appropriate antibiotic and then allowed to grow (250 RPM, 37° C.) for 5 hours. This is then used to inoculate a 200 ml culture medium and allowed to grow overnight under the same conditions.
  • To isolate the plasmid (up to 850 μg), a maxi prep is performed using the Invitrogen PURELINK™ HiPure Maxiprep Kit (Carlsbad, Calif.), following the manufacturer's instructions, which are as follows: thaw a tube of NEB 5-alpha Competent E. coli cells on ice for 10 minutes. Add 1-5 μl containing 1 pg-100 ng of plasmid DNA to the cell mixture. Carefully flick the tube 4-5 times to mix cells and DNA. Do not vortex. Place the mixture on ice for 30 minutes. Do not mix. Heat shock at 42° C. for 30 seconds. Do not mix. Place on ice for 5 minutes. Do not mix. Pipette 950 μl of room temperature SOC into the mixture. Place at 37° C. for 60 minutes. Shake vigorously (250 rpm) or rotate. Warm selection plates to 37° C. Mix the cells thoroughly by flicking the tube and inverting.
  • In order to generate cDNA for In vitro Transcription (IVT), the plasmid is first linearized using a restriction enzyme such as XbaI. A typical restriction digest with XbaI will comprise the following: Plasmid 1.0 μg; 10× Buffer 1.0 μl; XbaI 1.5 μl; dH20 up to 10 μl; incubated at 37° C. for 1 hr. If performing at lab scale (<5 μg), the reaction is cleaned up using Invitrogen's PURELINK™ PCR Micro Kit (Carlsbad, Calif.) per manufacturer's instructions. Larger scale purifications may need to be done with a product that has a larger load capacity such as Invitrogen's standard PURELINK™ PCR Kit (Carlsbad, Calif.). Following the cleanup, the linearized vector is quantified using the NanoDrop and analyzed to confirm linearization using agarose gel electrophoresis.
  • Example 2: PCR for cDNA Production
  • PCR procedures for the preparation of cDNA are performed using 2×KAPA HIFI™ HotStart ReadyMix by Kapa Biosystems (Woburn, Mass.). This system includes 2× KAPA ReadyMix12.5 μl; Forward Primer (10 uM) 0.75 μl; Reverse Primer (10 uM) 0.75 μl; Template cDNA 100 ng; and dH20 diluted to 25.0 μl. The reaction conditions are at 95° C. for 5 min. and 25 cycles of 98° C. for 20 sec, then 58° C. for 15 sec, then 72° C. for 45 sec, then 72° C. for 5 min. then 4° C. to termination.
  • The reverse primer of the instant invention incorporates a poly-T120 for a poly-A120 in the mRNA. Other reverse primers with longer or shorter poly(T) tracts can be used to adjust the length of the poly(A) tail in the mRNA.
  • The reaction is cleaned up using Invitrogen's PURELINK™ PCR Micro Kit (Carlsbad, Calif.) per manufacturer's instructions (up to 5 μg). Larger reactions will require a cleanup using a product with a larger capacity. Following the cleanup, the cDNA is quantified using the NANODROP™ and analyzed by agarose gel electrophoresis to confirm the cDNA is the expected size. The cDNA is then submitted for sequencing analysis before proceeding to the in vitro transcription reaction.
  • Example 3: In Vitro Transcription (IVT)
  • mRNAs according to the invention may be made using standard laboratory methods and materials. The open reading frame (ORF) of the gene of interest may be flanked by a 5′ untranslated region (UTR), which may contain a strong Kozak translational initiation signal and/or an alpha-globin 3′ UTR which may include an oligo(dT) sequence for templated addition of a poly-A tail. The mRNAs may be modified to reduce the cellular innate immune response. The modifications to reduce the cellular response may include pseudouridine (ψ) and 5-methyl-cytidine (5meC, 5mc or m5C). (See, Kariko K et al. Immunity 23:165-75 (2005), Kariko K et al. Mol Ther 16:1833-40 (2008), Anderson B R et al. NAR (2010); each of which are herein incorporated by reference in their entireties.)
  • The ORF may also include various upstream or downstream additions (such as, but not limited to, β-globin, tags, etc.) may be ordered from an optimization service such as, but limited to, DNA2.0 (Menlo Park, Calif.) and may contain multiple cloning sites which may have XbaI recognition. Upon receipt of the construct, it may be reconstituted and transformed into chemically competent E. coli.
  • The in vitro transcription reaction can generate mRNA containing modified nucleotides or modified RNA. The input nucleotide triphosphate (NTP) mix is made in-house using natural and un-natural NTPs.
  • A typical in vitro transcription reaction includes the following:
  • 1 Template cDNA 1.0 μg
    2 10× transcription buffer (400 mM Tris-HCl 2.0 μl
    pH 8.0, 190 mM MgCl2, 50 mM DTT,
    10 mM Spermidine)
    3 Custom NTPs (25 mM each) 7.2 μl
    4 RNase Inhibitor 20 U
    5 T7 RNA polymerase 3000 U
    6 dH20 Up to 20.0 μl. and
    7 Incubation at 37° C. for 3 hr-5 hrs.
  • The crude IVT mix may be stored at 4° C. overnight for cleanup the next day. 1 U of RNase-free DNase is then used to digest the original template. After 15 minutes of incubation at 37° C., the mRNA is purified using Ambion's MEGACLEAR™ Kit (Austin, Tex.) following the manufacturer's instructions. This kit can purify up to 500 μg of RNA. Following the cleanup, the RNA is quantified using the NanoDrop and analyzed by agarose gel electrophoresis to confirm the RNA is the proper size and that no degradation of the RNA has occurred.
  • Example 4: Removal of DNA Template from IVT Product Using DNase
  • Following the in vitro transcription process, the DNA template was removed to isolate the RNA transcript. Several different methods have been used to remove the DNA, including incubation with DNase enzyme.
  • DNase I: For each μg of DNA template (either a PCR product or a linearized plasmid), 2 Units of DNase I enzyme were added to the in vitro transcription product. Upon completion of the in vitro transcription reaction, the entire sample was incubated for 1 hour at 37° C. Next, the digested DNA fragments or single deoxynucleotides were removed from the sample by ultrafiltration through centrifugation, leaving the isolated RNA transcript. Quantitation of the residual deoxynucleotides was performed by liquid chromatography-tandem mass spectrometry analysis.
  • DNase I solid phase resin: Alternatively, the in vitro transcription reaction product is applied to a solid phase resin containing immobilized DNase I. This preferred method is used because no enzyme contamination is added to the in vitro transcription mix. Columns containing immobile DNase I on a resin is purchased from Boca Scientific, Inc. (Boca Raton, Fla.). The in vitro transcription reaction product is added to the resin, and the RNA transcript is recovered from the resin.
  • Example 5: Removal of DNA Template from IVT Product Using Labeled DNA
  • Alternative to incubating the in vitro transcription product with DNase enzyme, labeled DNA transcripts are used to remove DNA from an in vitro transcription product to isolate the RNA transcript. The DNA template is synthesized to contain one a label (tag) to be used in post IVT removal of DNA. The proposed solid phase-based removal methods are effective for both linearized plasmid DNA or PCR amplified DNA. The labels/tags are selected based on their reactive chemical properties such that the labeled DNA is bound to proper solid resin that has high specific affinity for the chemical label/tag.
  • Plasmid DNA as template: if the DNA template is a plasmid, the plasmid may be labeled before or after linearization of the plasmid with a restriction enzyme. The LabelIT® Tracker™ Intracellular Nucleic Acid Localization Kit (Minis Bio, LLC) is used to couple a biotin molecule to the DNA template plasmid via DNA alkylation. The labeling reaction targets random sites on the DNA template, whereby each biotin molecule is covalently attached to one DNA template plasmid molecule. This non-destructive labeling reaction has produced mRNA functional in gene expression assay according to a statement of the manufacturer. A sufficient number of DNA template plasmid molecules are labeled at sites that are not involved in transcription, such that the DNA is effectively labeled without interfering with the in vitro transcription reaction.
  • If biotin is not used to label the DNA template, the plasmid DNA can be labeled with an amine. For example, PHOTOPROBE® (Vector Laboratories, Inc.) is a photo-activated labeling reagent that covalently couples an amino group to the DNA template. After adding PHOTOPROBE® to the DNA template sample, the labeling reaction is initiated by heat or light exposure (365 nm). Again, the labeling reaction targets random sites on the DNA template, but a sufficient number of DNA template plasmid molecules are amino-labeled at sites that are not involved in transcription, so the DNA is labeled without interfering with the in vitro transcription reaction.
  • PCR amplified DNA as template: Another method of labeling the DNA template includes labeling the DNA during PCR. The primers for use in the PCR are chemically synthesized, and a biotin, amine, thiol, or other label is added to the end of one or more of the primers. A large batch of labeled primers is manufactured and used in a PCR that amplifies the DNA template. When the PCR is complete, the DNA template has been amplified and is coupled to the label. Also, a labeled plasmid as discussed above can be used as a DNA template to produced labeled amplified DNA template molecules.
  • Alternative to labeling PCR primers or using an already-labeled DNA template, modified nucleotides such as 5-aminoallyl pyrimidine NTPs or N-6-aminohexyl cytidine NTPs are used to label the DNA template. The ideal ration of one modified nucleotide per DNA molecule is achievable by titration of the concentration of modified nucleotide to that of natural nucleotides. The degree of incorporation is not critical as any DNA containing more than 1 target affinity ligand will also be captured. Likewise, the impact of labeling on transcription remains to be determined. During the PCR, DNA polymerase amplifies the DNA template using the modified nucleotides, so that after completion of PCR, the amplified DNA template contains modified nucleotides. In another example, a PCR reaction is performed to produce cDNA fragments first, then apply plasmid labeling technique to PCR amplified DNA with biotin using the method described above (Mirus LabelIT® Tracker™ Intracellular Nucleic Acid Localization KitA). PCR amplified DNA template produced by any of the aforementioned methods can now be used in an in vitro transcription reaction to produce an RNA transcript.
  • Removal of DNA template: After in vitro transcription produces an RNA transcript sample from a DNA template, the DNA is removed from the sample by contacting the sample with a resin designed to bind the label. For example, if the DNA template is labeled with biotin, a streptavidin resin is used. If the DNA is labeled with nucleotide analog aminoallyl-dUTP, reactive forms of cyanine 3 or cyanine 5-NHS esters are used (for example, Illustra CyScribe GFX Purification Kit, GE Healthcare). If the DNA template is labeled with an amine, an NHS activated resin is used. In many cases, experimental evidence is required to identify the optimal tag. Post-in vitro transcription purification methods are developed individually for each label. However, these are standard interactions widely used in industrial applications. The labeled DNA is retained on the resin, and the isolated RNA transcript is recovered.
  • In all the above cases, the labeled DNA will be retained on resin and mRNA should be conveniently recovered in the flow-through for downstream processes. Again, the efficiency of cDNA removal will be assayed by LC/MS/MS analysis.
  • The new methods are superior to previous practice in that no DNase I enzyme is required, and the purification/DNA removal process is done by a single step column. It can be conveniently scaled up for larger batches. The mRNA should be recovered with high yield and not suffer additional loss as in other purification or partitioning methods. If labeled cDNA is removed without enzyme digestion, there are no concerns of secondary contamination of smaller DNA fragments or oligonucleotides.
  • Example 6: Quantitation of RNA Transcript for Detection of Impurities
  • After removal of the DNA (either by DNase digestion or removal of labeled DNA), the RNA transcript sample is subjected to a total nuclease digestion using nuclease P1. Thus, the presence of any deoxythymidine (dT), deoxyadenine (dA), deoxycytidine (dC), and deoxyguanosine (dG) are detected and their levels quantified by LC-MS/MS.
  • Then, the sample is subjected to liquid chromatography-tandem mass spectrometry analysis to detect the presence of individual residual deoxynucleotides (impurities).
  • While the invention has been particularly shown and described with reference to a preferred embodiment and various alternate embodiments, it will be understood by persons skilled in the relevant art that various changes in form and details can be made therein without departing from the spirit and scope of the invention.
  • All references, issued patents and patent applications cited within the body of the instant specification are hereby incorporated by reference in their entirety, for all purposes.
  • REFERENCES CITED
    • FDA Regulatory guidance for residual DNA http://www.fda.gov/downloads/biologicsbloodvaccines/guidancecomplianceregulatoryinformation/guidances/vaccines/ucm202439.pdf

Claims (16)

1-34. (canceled)
35. A method for removing a DNA template from a sample comprising the DNA template and an RNA transcript, the method comprising:
(a) providing the sample comprising the DNA template and the RNA transcript;
(b) digesting the DNA template by contacting the sample with a DNase enzyme, thereby producing a sample comprising a digested DNA template and the RNA transcript; and
(c) separating the digested DNA template from the RNA transcript by a process selected from the group consisting of centrifugation and ultrafiltration, precipitation, and liquid chromatography.
36. The method of claim 35, wherein the liquid chromatography comprises strong anion exchange HPLC, weak anion exchange HPLC, reverse phase HPLC (RP-HPLC), and/or hydrophobic interaction HPLC (HIC-HPLC).
37. The method of claim 35, wherein the RNA transcript is the product of in vitro transcription using a non-amplified DNA template.
38. The method of claim 35, wherein the RNA transcript is a full-length RNA transcript.
39. The method of claim 35, wherein the RNA transcript comprises chemically modified mRNA.
40. The method of claim 35, wherein the RNA transcript is from 100 nucleotides to 10,000 nucleotides in length.
41. The method of claim 35, wherein the DNase enzyme is DNase I.
42. The method of claim 41, wherein 2 units of the DNase I are added for each μg of DNA template in the sample.
43. The method of claim 41, wherein the DNase I is incubated with the sample at 37° Celsius for one hour.
44. The method of claim 35, wherein the DNase is attached to a solid support.
45. The method of claim 44, wherein the solid support is selected from the group consisting of a solid phase resin, controlled pore glass, polystyrene, polystyrene divinyl benzene, cellulose, polyacrylamide, silica, polymethacrylate, and dextran based polymers.
46. The method of claim 35, further comprising:
(d) contacting the sample resulting from (c) with a second nuclease under conditions that promote nucleotide digestion to obtain a digested sample; and
(e) analyzing the digested sample of (d) to detect the presence or absence of residual deoxynucleotides.
47. The method of claim 46, wherein the second nuclease is nuclease P1.
48. The method of claim 46, wherein the digested sample is analyzed in (e) by way of liquid chromatography-tandem mass spectrometry (LC/MS/MS).
49. The method of claim 48, wherein the total abundance of deoxynucleotides present in the sample resulting from (c), as assessed by the LC/MS/MS, is less than 500 ppm, less than 300 ppm, less than 250 ppm, less than 100 ppm, less than 50 ppm, less than 25 ppm, less than 10 ppm, less than 5 ppm, less than 1 ppm, or less than 0.2 ppm.
US17/113,940 2013-03-15 2020-12-07 Removal of dna fragments in mrna production process Abandoned US20210230578A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/113,940 US20210230578A1 (en) 2013-03-15 2020-12-07 Removal of dna fragments in mrna production process

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361799872P 2013-03-15 2013-03-15
PCT/US2014/026838 WO2014152030A1 (en) 2013-03-15 2014-03-13 Removal of dna fragments in mrna production process
US201514777301A 2015-09-15 2015-09-15
US16/049,132 US10858647B2 (en) 2013-03-15 2018-07-30 Removal of DNA fragments in mRNA production process
US17/113,940 US20210230578A1 (en) 2013-03-15 2020-12-07 Removal of dna fragments in mrna production process

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/049,132 Continuation US10858647B2 (en) 2013-03-15 2018-07-30 Removal of DNA fragments in mRNA production process

Publications (1)

Publication Number Publication Date
US20210230578A1 true US20210230578A1 (en) 2021-07-29

Family

ID=51581100

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/777,301 Active US10077439B2 (en) 2013-03-15 2014-03-13 Removal of DNA fragments in mRNA production process
US16/049,132 Active 2034-10-06 US10858647B2 (en) 2013-03-15 2018-07-30 Removal of DNA fragments in mRNA production process
US17/113,940 Abandoned US20210230578A1 (en) 2013-03-15 2020-12-07 Removal of dna fragments in mrna production process

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US14/777,301 Active US10077439B2 (en) 2013-03-15 2014-03-13 Removal of DNA fragments in mRNA production process
US16/049,132 Active 2034-10-06 US10858647B2 (en) 2013-03-15 2018-07-30 Removal of DNA fragments in mRNA production process

Country Status (3)

Country Link
US (3) US10077439B2 (en)
EP (1) EP2971165A4 (en)
WO (1) WO2014152030A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11547673B1 (en) 2020-04-22 2023-01-10 BioNTech SE Coronavirus vaccine
US11878055B1 (en) 2022-06-26 2024-01-23 BioNTech SE Coronavirus vaccine

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10347710B4 (en) 2003-10-14 2006-03-30 Johannes-Gutenberg-Universität Mainz Recombinant vaccines and their use
DE102005046490A1 (en) 2005-09-28 2007-03-29 Johannes-Gutenberg-Universität Mainz New nucleic acid molecule comprising promoter, a transcriptable nucleic acid sequence, a first and second nucleic acid sequence for producing modified RNA with transcriptional stability and translational efficiency
SI2506857T1 (en) 2009-12-01 2018-08-31 Translate Bio, Inc. Delivery of mrna for the augmentation of proteins and enzymes in human genetic diseases
EP3578205A1 (en) 2010-08-06 2019-12-11 ModernaTX, Inc. A pharmaceutical formulation comprising engineered nucleic acids and medical use thereof
EP2857499A1 (en) 2010-10-01 2015-04-08 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
US8853377B2 (en) 2010-11-30 2014-10-07 Shire Human Genetic Therapies, Inc. mRNA for use in treatment of human genetic diseases
EP2691101A2 (en) 2011-03-31 2014-02-05 Moderna Therapeutics, Inc. Delivery and formulation of engineered nucleic acids
SI3892295T1 (en) 2011-05-24 2023-09-29 BioNTech SE Individualized vaccines for cancer
PL2717893T3 (en) 2011-06-08 2019-12-31 Translate Bio, Inc. Lipid nanoparticle compositions and methods for mrna delivery
CA3018046A1 (en) 2011-12-16 2013-06-20 Moderna Therapeutics, Inc. Modified nucleoside, nucleotide, and nucleic acid compositions
WO2013143555A1 (en) 2012-03-26 2013-10-03 Biontech Ag Rna formulation for immunotherapy
AU2013243950A1 (en) 2012-04-02 2014-10-30 Moderna Therapeutics, Inc. Modified polynucleotides
US9572897B2 (en) 2012-04-02 2017-02-21 Modernatx, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
US9303079B2 (en) 2012-04-02 2016-04-05 Moderna Therapeutics, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
US9283287B2 (en) 2012-04-02 2016-03-15 Moderna Therapeutics, Inc. Modified polynucleotides for the production of nuclear proteins
EP2859102A4 (en) 2012-06-08 2016-05-11 Shire Human Genetic Therapies Nuclease resistant polynucleotides and uses thereof
MX2014015041A (en) 2012-06-08 2015-06-17 Shire Human Genetic Therapies Pulmonary delivery of mrna to non-lung target cells.
US9512456B2 (en) 2012-08-14 2016-12-06 Modernatx, Inc. Enzymes and polymerases for the synthesis of RNA
PT2922554T (en) 2012-11-26 2022-06-28 Modernatx Inc Terminally modified rna
WO2014082729A1 (en) 2012-11-28 2014-06-05 Biontech Ag Individualized vaccines for cancer
US20160024181A1 (en) 2013-03-13 2016-01-28 Moderna Therapeutics, Inc. Long-lived polynucleotide molecules
DK2970955T3 (en) 2013-03-14 2019-02-11 Translate Bio Inc METHODS FOR CLEANING MESSENGER RNA
AU2014239184B2 (en) 2013-03-14 2018-11-08 Translate Bio, Inc. Methods and compositions for delivering mRNA coded antibodies
US10258698B2 (en) 2013-03-14 2019-04-16 Modernatx, Inc. Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions
IL290953B2 (en) 2013-03-14 2024-01-01 Ethris Gmbh Cftr mrna compositions and related methods and uses
EP3578652B1 (en) 2013-03-15 2023-07-12 ModernaTX, Inc. Ribonucleic acid purification
US10590161B2 (en) 2013-03-15 2020-03-17 Modernatx, Inc. Ion exchange purification of mRNA
EP2971165A4 (en) 2013-03-15 2016-11-23 Moderna Therapeutics Inc Removal of dna fragments in mrna production process
WO2014152027A1 (en) * 2013-03-15 2014-09-25 Moderna Therapeutics, Inc. Manufacturing methods for production of rna transcripts
US10130649B2 (en) 2013-03-15 2018-11-20 Translate Bio, Inc. Synergistic enhancement of the delivery of nucleic acids via blended formulations
WO2014180490A1 (en) 2013-05-10 2014-11-13 Biontech Ag Predicting immunogenicity of t cell epitopes
HUE056760T2 (en) 2013-07-11 2022-03-28 Modernatx Inc Compositions comprising synthetic polynucleotides encoding crispr related proteins and synthetic sgrnas and methods of use
WO2015048744A2 (en) 2013-09-30 2015-04-02 Moderna Therapeutics, Inc. Polynucleotides encoding immune modulating polypeptides
EP3052511A4 (en) 2013-10-02 2017-05-31 Moderna Therapeutics, Inc. Polynucleotide molecules and uses thereof
BR112016008832A2 (en) 2013-10-22 2017-10-03 Shire Human Genetic Therapies DISTRIBUTION OF MRNA IN THE CNS AND ITS USES
KR102096796B1 (en) 2013-10-22 2020-05-27 샤이어 휴먼 지네틱 테라피즈 인크. Lipid formulations for delivery of messenger rna
AU2014340083B2 (en) 2013-10-22 2019-08-15 Translate Bio, Inc. mRNA therapy for phenylketonuria
ES2954366T3 (en) 2013-10-22 2023-11-21 Translate Bio Inc Messenger Ribonucleic Acid Therapy for Argininosuccinate Synthetase Deficiency
CN117402871A (en) 2014-04-25 2024-01-16 川斯勒佰尔公司 Method for purifying messenger RNA
EP3148552B1 (en) 2014-05-30 2019-07-31 Translate Bio, Inc. Biodegradable lipids for delivery of nucleic acids
US10286086B2 (en) 2014-06-19 2019-05-14 Modernatx, Inc. Alternative nucleic acid molecules and uses thereof
WO2015200465A1 (en) 2014-06-24 2015-12-30 Shire Human Genetic Therapies, Inc. Stereochemically enriched compositions for delivery of nucleic acids
JP6782171B2 (en) 2014-07-02 2020-11-11 シャイアー ヒューマン ジェネティック セラピーズ インコーポレイテッド Encapsulation of messenger RNA
EP3169335B8 (en) 2014-07-16 2019-10-09 ModernaTX, Inc. Circular polynucleotides
WO2016014846A1 (en) 2014-07-23 2016-01-28 Moderna Therapeutics, Inc. Modified polynucleotides for the production of intrabodies
WO2016045732A1 (en) 2014-09-25 2016-03-31 Biontech Rna Pharmaceuticals Gmbh Stable formulations of lipids and liposomes
ES2861597T3 (en) 2014-12-05 2021-10-06 Translate Bio Inc Messenger RNA therapy for the treatment of joint disease
WO2016128060A1 (en) 2015-02-12 2016-08-18 Biontech Ag Predicting t cell epitopes useful for vaccination
JP6895892B2 (en) 2015-03-19 2021-06-30 トランスレイト バイオ, インコーポレイテッド MRNA treatment for Pompe disease
EP3294885B1 (en) 2015-05-08 2020-07-01 CureVac Real Estate GmbH Method for producing rna
DK3303583T3 (en) 2015-05-29 2020-07-13 Curevac Real Estate Gmbh METHOD FOR PREPARATION AND PURIFICATION OF RNA, INCLUDING AT LEAST ONE STEP FOR TANGENTIAL FLOW FILTRATION
EP3324979B1 (en) 2015-07-21 2022-10-12 ModernaTX, Inc. Infectious disease vaccines
US11434486B2 (en) 2015-09-17 2022-09-06 Modernatx, Inc. Polynucleotides containing a morpholino linker
US10849920B2 (en) 2015-10-05 2020-12-01 Modernatx, Inc. Methods for therapeutic administration of messenger ribonucleic acid drugs
WO2017059902A1 (en) 2015-10-07 2017-04-13 Biontech Rna Pharmaceuticals Gmbh 3' utr sequences for stabilization of rna
US10144942B2 (en) 2015-10-14 2018-12-04 Translate Bio, Inc. Modification of RNA-related enzymes for enhanced production
PE20181530A1 (en) 2015-10-22 2018-09-26 Modernatx Inc RESPIRATORY SYNCITIAL VIRUS VACCINE
MX2018004918A (en) 2015-10-22 2019-04-01 Modernatx Inc Herpes simplex virus vaccine.
MX2018004916A (en) 2015-10-22 2019-07-04 Modernatx Inc Broad spectrum influenza virus vaccine.
TW201729838A (en) 2015-10-22 2017-09-01 現代公司 Nucleic acid vaccines for varicella zoster virus (VZV)
JP6921833B2 (en) 2015-10-22 2021-08-18 モデルナティーエックス, インコーポレイテッド Human cytomegalovirus vaccine
HRP20220872T1 (en) 2015-10-22 2022-12-23 Modernatx, Inc. Respiratory virus vaccines
US10266843B2 (en) 2016-04-08 2019-04-23 Translate Bio, Inc. Multimeric coding nucleic acid and uses thereof
EP3842530A1 (en) 2016-06-13 2021-06-30 Translate Bio, Inc. Messenger rna therapy for the treatment of ornithine transcarbamylase deficiency
WO2018009838A1 (en) 2016-07-07 2018-01-11 Rubius Therapeutics, Inc. Compositions and methods related to therapeutic cell systems expressing exogenous rna
CA3036831A1 (en) 2016-09-14 2018-03-22 Modernatx, Inc. High purity rna compositions and methods for preparation thereof
US20200032274A1 (en) 2017-02-01 2020-01-30 Moderna TX, Inc. Polynucleotide secondary structure
MA47603A (en) 2017-02-27 2020-01-01 Translate Bio Inc NEW ARNM CFTR WITH OPTIMIZED CODONS
WO2018213476A1 (en) 2017-05-16 2018-11-22 Translate Bio, Inc. Treatment of cystic fibrosis by delivery of codon-optimized mrna encoding cftr
US11167043B2 (en) 2017-12-20 2021-11-09 Translate Bio, Inc. Composition and methods for treatment of ornithine transcarbamylase deficiency
CN112930396A (en) 2018-08-24 2021-06-08 川斯勒佰尔公司 Method for purifying messenger RNA
WO2023069498A1 (en) 2021-10-22 2023-04-27 Senda Biosciences, Inc. Mrna vaccine composition
WO2023096858A1 (en) 2021-11-23 2023-06-01 Senda Biosciences, Inc. A bacteria-derived lipid composition and use thereof
WO2023107999A2 (en) 2021-12-08 2023-06-15 Modernatx, Inc. Herpes simplex virus mrna vaccines
WO2023122080A1 (en) 2021-12-20 2023-06-29 Senda Biosciences, Inc. Compositions comprising mrna and lipid reconstructed plant messenger packs

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256294A (en) * 1990-09-17 1993-10-26 Genentech, Inc. Tangential flow filtration process and apparatus
US6180778B1 (en) * 1994-02-11 2001-01-30 Qiagen Gmbh Process for the separation of double-stranded/single-stranded nucleic acid structures
US20030013646A1 (en) * 1999-12-10 2003-01-16 Habener Joel F. Methods to stimulate insulin production by pancreatic beta-cells
WO2004016803A2 (en) * 2002-08-14 2004-02-26 Duke University Method of enhancing cd4+ t cell responses
US20050171333A1 (en) * 2003-12-16 2005-08-04 Paulsen Kim E. Formulations and methods for denaturing proteins
US7026545B2 (en) * 2003-05-28 2006-04-11 Hewlett-Packard Development Company, L.P. Flex cable having a return-signal path and method for reducing length and impedance of a return-signal path
US20130259924A1 (en) * 2012-04-02 2013-10-03 modeRNA Therapeutics Modified polynucleotides for the production of biologics and proteins associated with human disease
US9850269B2 (en) * 2014-04-25 2017-12-26 Translate Bio, Inc. Methods for purification of messenger RNA
US10077439B2 (en) * 2013-03-15 2018-09-18 Modernatx, Inc. Removal of DNA fragments in mRNA production process

Family Cites Families (235)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3211309A1 (en) 1982-03-26 1983-09-29 Metin Dipl.-Ing. 6100 Darmstadt Colpan CHROMATOGRAPHIC METHOD FOR INSULATING MACROMOLECULES
US4737462A (en) 1982-10-19 1988-04-12 Cetus Corporation Structural genes, plasmids and transformed cells for producing cysteine depleted muteins of interferon-β
US4588585A (en) 1982-10-19 1986-05-13 Cetus Corporation Human recombinant cysteine depleted interferon-β muteins
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4959314A (en) 1984-11-09 1990-09-25 Cetus Corporation Cysteine-depleted muteins of biologically active proteins
US5034506A (en) 1985-03-15 1991-07-23 Anti-Gene Development Group Uncharged morpholino-based polymers having achiral intersubunit linkages
DE3639949A1 (en) 1986-11-22 1988-06-09 Diagen Inst Molekularbio METHOD FOR SEPARATING LONG CHAIN NUCLEIC ACIDS
US5599667A (en) 1987-03-02 1997-02-04 Gen-Probe Incorporated Polycationic supports and nucleic acid purification separation and hybridization
US5759802A (en) 1988-10-26 1998-06-02 Tonen Corporation Production of human serum alubumin A
US5512439A (en) 1988-11-21 1996-04-30 Dynal As Oligonucleotide-linked magnetic particles and uses thereof
US5591722A (en) 1989-09-15 1997-01-07 Southern Research Institute 2'-deoxy-4'-thioribonucleosides and their antiviral activity
DK0494955T3 (en) 1989-10-05 1998-10-26 Optein Inc Cell-free synthesis and isolation of novel genes and polypeptides
CA2028849A1 (en) 1990-03-08 1991-09-09 Michinao Mizugaki Monoclonal antibodies, assay method, reagent kit, sarching method and drug missiles using them
US5637459A (en) 1990-06-11 1997-06-10 Nexstar Pharmaceuticals, Inc. Systematic evolution of ligands by exponential enrichment: chimeric selex
US5489677A (en) 1990-07-27 1996-02-06 Isis Pharmaceuticals, Inc. Oligonucleoside linkages containing adjacent oxygen and nitrogen atoms
US5426180A (en) 1991-03-27 1995-06-20 Research Corporation Technologies, Inc. Methods of making single-stranded circular oligonucleotides
US5437976A (en) 1991-08-08 1995-08-01 Arizona Board Of Regents, The University Of Arizona Multi-domain DNA ligands bound to a solid matrix for protein and nucleic acid affinity chromatography and processing of solid-phase DNA
ATE204879T1 (en) 1991-12-24 2001-09-15 Isis Pharmaceuticals Inc ANTISENSE OLIGONUCLEOTIDES
FR2687679B1 (en) 1992-02-05 1994-10-28 Centre Nat Rech Scient OLIGOTHIONUCLEOTIDES.
FR2733762B1 (en) 1995-05-02 1997-08-01 Genset Sa METHOD FOR THE SPECIFIC COUPLING OF THE HAIR OF THE 5 'END OF A RNAM FRAGMENT AND PREPARATION OF RNAM AND COMPLETE DNA
US5766903A (en) 1995-08-23 1998-06-16 University Technology Corporation Circular RNA and uses thereof
US5808039A (en) 1995-10-18 1998-09-15 Beckman Instruments, Inc. 2'-OMe CAC phosphoramidite and methods for preparation and use thereof
US5871697A (en) 1995-10-24 1999-02-16 Curagen Corporation Method and apparatus for identifying, classifying, or quantifying DNA sequences in a sample without sequencing
US6022737A (en) 1995-11-02 2000-02-08 Amgen Inc. Formulations for non-viral in vivo transfection in the lungs
US5789578A (en) 1996-01-11 1998-08-04 Massey University Methods for the preparation of resins with ligands attached thereto through a linking group comprising sulfide, sulfoxide or sulfone functionality
US7291463B2 (en) 1996-01-23 2007-11-06 Affymetrix, Inc. Nucleic acid labeling compounds
US6011148A (en) 1996-08-01 2000-01-04 Megabios Corporation Methods for purifying nucleic acids
US6447998B1 (en) 1996-08-09 2002-09-10 Isis Pharmaceuticals, Inc. 2-Aminopyridine and 2-pyridone C-nucleosides, oligonucleotides comprising, and tests using the same oligonucleotides
US6475388B1 (en) 1996-11-13 2002-11-05 Transgenomic, Inc. Method and system for RNA analysis by matched ion polynucleotide chromatography
GB2324370B (en) * 1997-04-14 1999-03-03 Stuart Harbron Detection of hybrid double-stranded DNA with antibody after enzyme degradation of excess single-standed DNA
US5989911A (en) 1997-05-09 1999-11-23 University Of Massachusetts Site-specific synthesis of pseudouridine in RNA
US20030083272A1 (en) 1997-09-19 2003-05-01 Lahive & Cockfield, Llp Sense mrna therapy
WO1999022009A1 (en) 1997-10-24 1999-05-06 Megabios Corporation Methods for preparing polynucleotide transfection complexes
US6111096A (en) 1997-10-31 2000-08-29 Bbi Bioseq, Inc. Nucleic acid isolation and purification
US5955310A (en) 1998-02-26 1999-09-21 Novo Nordisk Biotech, Inc. Methods for producing a polypeptide in a bacillus cell
US6248268B1 (en) 1998-11-16 2001-06-19 Xc Corporation Process of making microparticles of a thermally-gelled polysaccharide
CA2361201A1 (en) * 1999-01-28 2000-08-03 Medical College Of Georgia Research Institute, Inc. Composition and method for in vivo and in vitro attenuation of gene expression using double stranded rna
US6270970B1 (en) 1999-05-14 2001-08-07 Promega Corporation Mixed-bed solid phase and its use in the isolation of nucleic acids
ATE492644T1 (en) 1999-09-09 2011-01-15 Curevac Gmbh TRANSFER OF MRNA USING POLYCATIONIC COMPOUNDS
AU767646B2 (en) 1999-09-10 2003-11-20 Geron Corporation Oligonucleotide N3'-P5' thiophosphoramidates: their synthesis and use
US6511832B1 (en) 1999-10-06 2003-01-28 Texas A&M University System In vitro synthesis of capped and polyadenylated mRNAs using baculovirus RNA polymerase
US6818739B2 (en) * 1999-12-03 2004-11-16 Ndsu Research Foundation Somatostatins
CA2395811A1 (en) 2000-01-31 2001-08-02 Human Genome Sciences, Inc. Nucleic acids, proteins, and antibodies
EP1276702A2 (en) 2000-03-31 2003-01-22 Genentech, Inc. Compositions and methods for detecting and quantifying gene expression
AU2001259113A1 (en) 2000-04-21 2001-11-07 Transgenomic, Inc. Apparatus and method for separating and purifying polynucleotides
GB0013658D0 (en) 2000-06-05 2000-07-26 Dynal Asa Nucleic acid isolation
US6521411B2 (en) 2000-09-28 2003-02-18 Transgenomic, Inc. Method and system for the preparation of cDNA
CN100495030C (en) 2000-09-30 2009-06-03 清华大学 Multi-force operator and use thereof
AU2002236524A1 (en) 2000-11-28 2002-06-11 Rosetta Inpharmatics, Inc. In vitro transcription method for rna amplification
US20020130430A1 (en) 2000-12-29 2002-09-19 Castor Trevor Percival Methods for making polymer microspheres/nanospheres and encapsulating therapeutic proteins and other products
US20040142433A1 (en) * 2001-02-02 2004-07-22 Padgett Hal S. Polynucleotide sequence variants
US7211654B2 (en) 2001-03-14 2007-05-01 Regents Of The University Of Michigan Linkers and co-coupling agents for optimization of oligonucleotide synthesis and purification on solid supports
ATE376434T1 (en) 2001-04-21 2007-11-15 Curevac Gmbh INJECTION DEVICE FOR MRNA APPLICATION
AU2002254773B2 (en) 2001-05-03 2005-12-08 Rensselaer Polytechnic Institute Novel methods of directed evolution
US20030170891A1 (en) 2001-06-06 2003-09-11 Mcswiggen James A. RNA interference mediated inhibition of epidermal growth factor receptor gene expression using short interfering nucleic acid (siNA)
EP1800697B1 (en) 2001-06-05 2010-04-14 CureVac GmbH Stabilised mRNA with increased G/C-content for use in gene therapy
US7235358B2 (en) 2001-06-08 2007-06-26 Expression Diagnostics, Inc. Methods and compositions for diagnosing and monitoring transplant rejection
US20040142325A1 (en) 2001-09-14 2004-07-22 Liat Mintz Methods and systems for annotating biomolecular sequences
AU2002325755A1 (en) 2001-09-18 2003-04-01 Affinium Pharmaceuticals, Inc. Methods and apparatuses for purification
AU2002351077A1 (en) 2001-11-05 2003-05-19 Exiqon A/S Oligonucleotides modified with novel alpha-l-rna analogues
CN1318586C (en) 2001-11-05 2007-05-30 詹森药业有限公司 Method for the in vitro synthesis of short double stranded RNAs
US20040076978A1 (en) * 2001-11-14 2004-04-22 Catherine Verfaillie Method to identify genes associated with chronic myelogenous leukemia
US20030138419A1 (en) 2001-11-16 2003-07-24 The University Of Tennessee Research Corporation Recombinant antibody fusion proteins and methods for detection of apoptotic cells
AU2002359732A1 (en) 2001-12-17 2003-06-30 Ribapharm Inc. Substituted purine nucleoside libraries and compounds by solid-phase combinatorial strategies
DE10162480A1 (en) 2001-12-19 2003-08-07 Ingmar Hoerr The application of mRNA for use as a therapeutic agent against tumor diseases
AU2003220291A1 (en) 2002-03-15 2003-09-29 Epigenomics Ag Discovery and diagnostic methods using 5-methylcytosine dna glycosylase
US8153141B2 (en) 2002-04-04 2012-04-10 Coley Pharmaceutical Gmbh Immunostimulatory G, U-containing oligoribonucleotides
US20040018525A1 (en) 2002-05-21 2004-01-29 Bayer Aktiengesellschaft Methods and compositions for the prediction, diagnosis, prognosis, prevention and treatment of malignant neoplasma
DE60327775D1 (en) 2002-06-24 2009-07-09 Exiqon As METHODS AND SYSTEMS FOR THE DETECTION AND ISOLATION OF NUCLEIC ACID SEQUENCES
GB0215509D0 (en) 2002-07-04 2002-08-14 Novartis Ag Marker genes
US20040220127A1 (en) * 2002-08-09 2004-11-04 Paul Sternberg Methods and compositions relating to 5'-chimeric ribonucleic acids
ATE435303T1 (en) 2002-08-12 2009-07-15 New England Biolabs Inc METHODS AND COMPOSITIONS RELATED TO GENE SILENCING
US20060121441A1 (en) 2002-09-24 2006-06-08 Micha Spira Methods of determining the effect of an agent on diploid cells and/or on the pattern of expression of polypeptides expressed therewith
CA2504481A1 (en) 2002-10-30 2004-05-21 Pointilliste, Inc. Systems for capture and analysis of biological particles and methods using the systems
US7851453B2 (en) 2003-01-16 2010-12-14 Idera Pharmaceuticals, Inc. Modulation of immunostimulatory properties of oligonucleotide-based compounds by utilizing modified immunostimulatory dinucleotides
US20040224425A1 (en) 2003-05-08 2004-11-11 Gjerde Douglas T. Biomolecule open channel solid phase extraction systems and methods
US8158354B2 (en) 2003-05-13 2012-04-17 Ibis Biosciences, Inc. Methods for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
AU2004275876B2 (en) 2003-09-25 2011-03-31 Coley Pharmaceutical Gmbh Nucleic acid-lipophilic conjugates
US20050239102A1 (en) 2003-10-31 2005-10-27 Verdine Gregory L Nucleic acid binding oligonucleotides
US8034789B2 (en) 2003-12-03 2011-10-11 Coda Therapeutics, Inc. Antisense compounds targeted to connexins and methods of use thereof
US9790539B2 (en) 2004-06-30 2017-10-17 Russell Biotech, Inc. Methods and reagents for improved selection of biological molecules
DE102004035227A1 (en) * 2004-07-21 2006-02-16 Curevac Gmbh mRNA mixture for vaccination against tumor diseases
EP2990410A1 (en) 2004-08-10 2016-03-02 Alnylam Pharmaceuticals Inc. Chemically modified oligonucleotides
CN102078622A (en) 2004-08-13 2011-06-01 巴里.J.马沙尔 Bacterial delivery system
CA2590245A1 (en) 2004-11-11 2006-05-18 Modular Genetics, Inc. Ladder assembly and system for generating diversity
FR2880345A1 (en) 2004-12-30 2006-07-07 Adisseo Ireland Ltd SYNTHESIS AND APPLICATIONS OF 2-OXO-4-METHYLTHIOBUTYRIC ACID, ITS SUCH AND ITS DERIVATIVES
EP2660482B1 (en) 2005-08-22 2019-08-07 Life Technologies Corporation Vorrichtung, System und Verfahren unter Verwendung von nichtmischbaren Flüssigkeiten mit unterschiedlichen Volumen
US9012219B2 (en) 2005-08-23 2015-04-21 The Trustees Of The University Of Pennsylvania RNA preparations comprising purified modified RNA for reprogramming cells
ES2937245T3 (en) 2005-08-23 2023-03-27 Univ Pennsylvania RNA containing modified nucleosides and methods of using the same
US9157066B2 (en) 2005-12-13 2015-10-13 The Trustees Of The University Of Pennsylvania Transcriptome transfer produces cellular phenotype conversion
WO2007089607A2 (en) 2006-01-26 2007-08-09 University Of Massachusetts Rna silencing agents for use in therapy and nanotransporters for efficient delivery of same
WO2007092538A2 (en) 2006-02-07 2007-08-16 President And Fellows Of Harvard College Methods for making nucleotide probes for sequencing and synthesis
EP2010659B1 (en) 2006-04-14 2014-06-18 CellScript, Inc. Kits and methods for generating 5' capped RNA
JP2007304525A (en) 2006-05-15 2007-11-22 Ricoh Co Ltd Image input device, electronic equipment, and image input method
US20080153078A1 (en) 2006-06-15 2008-06-26 Braman Jeffrey C System for isolating biomolecules from a sample
EP1882739A1 (en) 2006-06-30 2008-01-30 Qiagen GmbH Nucleic acid extraction method
ES2362376T3 (en) 2006-07-07 2011-07-04 Aarhus Universitet NANOPARTICLES FOR THE ADMINISTRATION OF NUCLEIC ACID.
JP2009544754A (en) 2006-07-28 2009-12-17 アプライド バイオシステムズ, エルエルシー Dinucleotide MRNA cap analog
AU2007283022B2 (en) * 2006-08-08 2011-07-28 Rheinische Friedrich-Wilhelms-Universitat Bonn Structure and use of 5' phosphate oligonucleotides
GB2445441B (en) 2006-09-26 2010-06-30 Ge Healthcare Bio Sciences Nucleic acid purification method
GB2445442A (en) 2006-09-26 2008-07-09 Ge Healthcare Bio Sciences Nucleic acid purification using anion exchange
EP2081442B1 (en) 2006-10-10 2016-08-10 TrovaGene, Inc. Compositions, methods and kits for isolating nucleic acids from body fluids using anion exchange media
DE102006051516A1 (en) 2006-10-31 2008-05-08 Curevac Gmbh (Base) modified RNA to increase the expression of a protein
DE102006061015A1 (en) 2006-12-22 2008-06-26 Curevac Gmbh Process for the purification of RNA on a preparative scale by HPLC
DE102007001370A1 (en) 2007-01-09 2008-07-10 Curevac Gmbh RNA-encoded antibodies
GB0706243D0 (en) 2007-03-30 2007-05-09 Univ Southampton Modified nucleic acids
US7682789B2 (en) 2007-05-04 2010-03-23 Ventana Medical Systems, Inc. Method for quantifying biomolecules conjugated to a nanoparticle
US20080311140A1 (en) 2007-05-29 2008-12-18 Baylor College Of Medicine Antigen specific immunosuppression by dendritic cell therapy
JP2010531142A (en) 2007-06-22 2010-09-24 サークル バイオロジクス、 エルエルシー. Liquid concentrator, autologous concentrated body fluid, and methods of use thereof
WO2009016431A1 (en) 2007-08-01 2009-02-05 Digilab, Inc. Sample preparation method and apparatus
WO2009030254A1 (en) 2007-09-04 2009-03-12 Curevac Gmbh Complexes of rna and cationic peptides for transfection and for immunostimulation
EP2535419A3 (en) 2007-09-26 2013-05-29 Intrexon Corporation Synthetic 5'UTRs, expression vectors, and methods for increasing transgene expression
WO2009046738A1 (en) 2007-10-09 2009-04-16 Curevac Gmbh Composition for treating lung cancer, particularly of non-small lung cancers (nsclc)
WO2009058911A2 (en) 2007-10-31 2009-05-07 Applied Biosystems Inc. Preparation and isolation of 5' capped mrna
EP2848688A1 (en) 2007-12-10 2015-03-18 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of factor VII gene
WO2009117167A1 (en) 2008-01-02 2009-09-24 Blood Cell Storage, Inc. Devices and processes for nucleic acid extraction
EP2176408B9 (en) 2008-01-31 2015-11-11 Curevac GmbH NUCLEIC ACIDS COMPRISING FORMULA (NuGiXmGnNv)a AND DERIVATIVES THEREOF AS AN IMMUNOSTIMULATING AGENTS /ADJUVANTS
US8506966B2 (en) 2008-02-22 2013-08-13 Novartis Ag Adjuvanted influenza vaccines for pediatric use
US20110130440A1 (en) 2008-03-26 2011-06-02 Alnylam Pharmaceuticals, Inc. Non-natural ribonucleotides, and methods of use thereof
NZ588583A (en) 2008-04-15 2012-08-31 Protiva Biotherapeutics Inc Novel lipid formulations for nucleic acid delivery
WO2009127230A1 (en) 2008-04-16 2009-10-22 Curevac Gmbh MODIFIED (m)RNA FOR SUPPRESSING OR AVOIDING AN IMMUNOSTIMULATORY RESPONSE AND IMMUNOSUPPRESSIVE COMPOSITION
WO2009148528A2 (en) 2008-05-30 2009-12-10 Millennium Pharmaceuticals, Inc. Assessment of chromosomal alterations to predict clinical outcome of bortezomib treatment
US20110177054A1 (en) 2008-06-06 2011-07-21 Derrick Gibbings Use of endo-lysosomal system and secreted vesicles (exosome-like) in treatments and diagnostics based on small rna and experimental study of small rna
PL215513B1 (en) 2008-06-06 2013-12-31 Univ Warszawski New borane phosphate analogs of dinucleotides, their application, RNA particle, method of obtaining RNA and method of obtaining peptides or protein
DK2319923T3 (en) 2008-07-24 2014-02-24 Meiji Seika Pharma Co Ltd A PYRIPYROPEN biosynthetic genes
EP2304026A4 (en) 2008-07-31 2013-12-18 Belrose Pharma Inc Nanoparticle compositions for nucleic acids delivery system
US20110201103A1 (en) 2008-08-07 2011-08-18 University Of Southern California System For Synergetic Expression Of Multiple Small Functional RNA Elements
US8404198B2 (en) 2008-08-27 2013-03-26 Life Technologies Corporation Apparatus for and method of processing biological samples
WO2010037408A1 (en) * 2008-09-30 2010-04-08 Curevac Gmbh Composition comprising a complexed (m)rna and a naked mrna for providing or enhancing an immunostimulatory response in a mammal and uses thereof
DE102008063001A1 (en) 2008-12-23 2010-06-24 Qiagen Gmbh Nucleic acid purification method
CA2756520C (en) 2009-03-24 2017-07-11 Council Of Scientific & Industrial Research Process for the preparation of agarose polymer from seaweed extractive
US20100261228A1 (en) 2009-04-09 2010-10-14 California Institute Of Technology Multiplexed sites for polymer synthesis
EP3165606A1 (en) 2009-05-01 2017-05-10 Ophthotech Corporation Methods for treating or preventing ophthalmological diseases
US8765370B2 (en) 2009-06-11 2014-07-01 Scinopharm Taiwan, Ltd Inhibition-based high-throughput screen strategy for cell clones
WO2011005850A1 (en) 2009-07-07 2011-01-13 The Research Foundation Of State University Of New York Lipidic compositions for induction of immune tolerance
BR112012002291A2 (en) 2009-07-31 2016-11-29 Ethris Gmbh "polyribonucleotide with a sequence encoding a protein or protein fragment, implant, and process for selecting nucleotide sequences"
US8598327B2 (en) 2009-08-18 2013-12-03 Baxter International Inc. Aptamers to tissue factor pathway inhibitor and their use as bleeding disorder therapeutics
US9574977B2 (en) 2013-02-26 2017-02-21 Innova Prep Liquid to liquid biological particle concentrator with disposable fluid path
JP5823405B2 (en) 2009-11-04 2015-11-25 ザ ユニバーシティ オブ ブリティッシュ コロンビア Nucleic acid-containing lipid particles and related methods
SI2506857T1 (en) 2009-12-01 2018-08-31 Translate Bio, Inc. Delivery of mrna for the augmentation of proteins and enzymes in human genetic diseases
LT3112467T (en) 2009-12-07 2018-06-25 The Trustees Of The University Of Pennsylvania Rna preparations comprising purified modified rna for reprogramming cells
JP2011130725A (en) 2009-12-25 2011-07-07 Contig I:Kk Lna oligonucleotide and cosmetic containing the same
DK2539449T3 (en) 2010-02-26 2018-08-06 Qiagen Gmbh PROCEDURE FOR PARALLEL ISOLATION AND CLEANING RNA AND DNA
US20110218170A1 (en) 2010-03-02 2011-09-08 Southern Research Institute Use of 2'-deoxy-4'-thiocytidine and its analogues as dna hypomethylating anticancer agents
WO2011119711A1 (en) 2010-03-23 2011-09-29 Arcxis Biotechnologies Inc. Automated cellular material preparation
EP2377938A1 (en) 2010-04-16 2011-10-19 Eukarys Capping-prone RNA polymerase enzymes and their applications
ES2713873T3 (en) 2010-04-16 2019-05-24 Nuevolution As Bifunctional complexes and methods for making and using such complexes
WO2011130624A2 (en) 2010-04-16 2011-10-20 Immune Disease Institute, Inc. Sustained polypeptide expression from synthetic, modified rnas and uses thereof
US20130260460A1 (en) 2010-04-22 2013-10-03 Isis Pharmaceuticals Inc Conformationally restricted dinucleotide monomers and oligonucleotides
EP3578205A1 (en) 2010-08-06 2019-12-11 ModernaTX, Inc. A pharmaceutical formulation comprising engineered nucleic acids and medical use thereof
EP2857499A1 (en) 2010-10-01 2015-04-08 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
US8898864B1 (en) 2010-10-08 2014-12-02 David Porter Integrated rockably released leverage snap fastening system
EP2691101A2 (en) 2011-03-31 2014-02-05 Moderna Therapeutics, Inc. Delivery and formulation of engineered nucleic acids
EP2694524B1 (en) 2011-04-04 2016-05-18 The U.S.A. As Represented By The Secretary, Department Of Health And Human Services 2'-o-aminooxymethyl nucleoside derivatives for use in the synthesis and modification of nucleosides, nucleotides and oligonucleotides
CN103687957A (en) 2011-05-17 2014-03-26 现代治疗公司 Engineered nucleic acids and methods of use thereof for non-human vertebrates
US20140113376A1 (en) 2011-06-01 2014-04-24 Rotem Sorek Compositions and methods for downregulating prokaryotic genes
US20130046083A1 (en) 2011-08-16 2013-02-21 Tom Brown Oligonucleotide ligation
US8846883B2 (en) 2011-08-16 2014-09-30 University Of Southhampton Oligonucleotide ligation
US20130058978A1 (en) 2011-09-06 2013-03-07 Selecta Biosciences, Inc. Induced tolerogenic dendritic cells for inducing regulatory b cells
EP2755986A4 (en) 2011-09-12 2015-05-20 Moderna Therapeutics Inc Engineered nucleic acids and methods of use thereof
EP2755693A4 (en) 2011-09-12 2015-05-20 Moderna Therapeutics Inc Engineered nucleic acids and methods of use thereof
US9464124B2 (en) 2011-09-12 2016-10-11 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
EP2760999A1 (en) 2011-09-26 2014-08-06 Qiagen GmbH Methods for separating nucleic acids by size
SG10201602654SA (en) 2011-10-03 2016-05-30 Moderna Therapeutics Inc Modified nucleosides,nucleotides,and nucleic acids,and uses thereof
CA3119789A1 (en) 2011-10-27 2013-05-02 Massachusetts Institute Of Technology Amino acid derivatives functionalized on the n-terminal capable of forming drug encapsulating microspheres
WO2013090294A1 (en) 2011-12-12 2013-06-20 The Trustees Of The University Of Pennsylvania Proteins comprising mrsa pbp2a and fragments thereof, nucleic acids encoding the same, and compositions and their use to prevent and treat mrsa infections
EP2791364A4 (en) 2011-12-14 2015-11-11 Moderna Therapeutics Inc Methods of responding to a biothreat
EP2791159A4 (en) 2011-12-14 2015-10-14 Moderna Therapeutics Inc Modified nucleic acids, and acute care uses thereof
WO2013090897A1 (en) 2011-12-15 2013-06-20 The Trustees Of The University Of Pennsylvania Using adaptive immunity to detect drug resistance
CA3018046A1 (en) 2011-12-16 2013-06-20 Moderna Therapeutics, Inc. Modified nucleoside, nucleotide, and nucleic acid compositions
CN104968354A (en) 2011-12-21 2015-10-07 现代治疗公司 Methods of increasing the viability or longevity of an organ or organ explant
EP2797634A4 (en) 2011-12-29 2015-08-05 Moderna Therapeutics Inc Modified mrnas encoding cell-penetrating polypeptides
US20150030576A1 (en) 2012-01-10 2015-01-29 Moderna Therapeutics, Inc. Methods and compositions for targeting agents into and across the blood-brain barrier
WO2013113326A1 (en) 2012-01-31 2013-08-08 Curevac Gmbh Pharmaceutical composition comprising a polymeric carrier cargo complex and at least one protein or peptide antigen
WO2013113325A1 (en) 2012-01-31 2013-08-08 Curevac Gmbh Negatively charged nucleic acid comprising complexes for immunostimulation
CN103325662B (en) 2012-03-21 2016-03-30 清华大学 The preparation method of semi-conductive single-walled carbon nanotubes
US20150050354A1 (en) 2012-04-02 2015-02-19 Moderna Therapeutics, Inc. Modified polynucleotides for the treatment of otic diseases and conditions
AU2013243949A1 (en) 2012-04-02 2014-10-30 Moderna Therapeutics, Inc. Modified polynucleotides for the production of biologics and proteins associated with human disease
US9303079B2 (en) 2012-04-02 2016-04-05 Moderna Therapeutics, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
EP2647426A1 (en) 2012-04-03 2013-10-09 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Replication of distributed nucleic acid molecules with preservation of their relative distribution through hybridization-based binding
WO2013184976A2 (en) 2012-06-06 2013-12-12 Northwestern University Compositions and methods for antigen-specific tolerance
MX2014015041A (en) 2012-06-08 2015-06-17 Shire Human Genetic Therapies Pulmonary delivery of mrna to non-lung target cells.
US9512456B2 (en) 2012-08-14 2016-12-06 Modernatx, Inc. Enzymes and polymerases for the synthesis of RNA
US20150307542A1 (en) 2012-10-03 2015-10-29 Moderna Therapeutics, Inc. Modified nucleic acid molecules and uses thereof
PT2922554T (en) 2012-11-26 2022-06-28 Modernatx Inc Terminally modified rna
US20140179770A1 (en) 2012-12-12 2014-06-26 Massachusetts Institute Of Technology Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications
EP2931914A4 (en) 2012-12-13 2016-08-17 Moderna Therapeutics Inc Modified polynucleotides for altering cell phenotype
EP3434774A1 (en) 2013-01-17 2019-01-30 ModernaTX, Inc. Signal-sensor polynucleotides for the alteration of cellular phenotypes
WO2014164253A1 (en) 2013-03-09 2014-10-09 Moderna Therapeutics, Inc. Heterologous untranslated regions for mrna
WO2014160243A1 (en) 2013-03-14 2014-10-02 The Trustees Of The University Of Pennsylvania Purification and purity assessment of rna molecules synthesized with modified nucleosides
US10258698B2 (en) 2013-03-14 2019-04-16 Modernatx, Inc. Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions
US20160030527A1 (en) 2013-03-14 2016-02-04 The Trustees Of The University Of Pennsylvania Compositions and Methods for Treatment of Stroke
CN105209633A (en) 2013-03-14 2015-12-30 夏尔人类遗传性治疗公司 Quantitative assessment for cap efficiency of messenger RNA
DK2971102T3 (en) 2013-03-14 2018-08-27 Translate Bio Inc QUANTITATIVE DETERMINATION FOR CAPPING EFFECTIVENESS OF MESSENGER RNA
DK2970955T3 (en) 2013-03-14 2019-02-11 Translate Bio Inc METHODS FOR CLEANING MESSENGER RNA
KR20150127582A (en) 2013-03-14 2015-11-17 샤이어 휴먼 지네틱 테라피즈 인크. RIBONUCLEIC ACIDs WITH 4'-THIO-MODIFIED NUCLEOTIDES AND RELATED METHODS
US8980864B2 (en) 2013-03-15 2015-03-17 Moderna Therapeutics, Inc. Compositions and methods of altering cholesterol levels
US20160017313A1 (en) 2013-03-15 2016-01-21 Moderna Therapeutics, Inc. Analysis of mrna heterogeneity and stability
EP3578652B1 (en) 2013-03-15 2023-07-12 ModernaTX, Inc. Ribonucleic acid purification
US20160032273A1 (en) 2013-03-15 2016-02-04 Moderna Therapeutics, Inc. Characterization of mrna molecules
US10590161B2 (en) 2013-03-15 2020-03-17 Modernatx, Inc. Ion exchange purification of mRNA
WO2014152027A1 (en) 2013-03-15 2014-09-25 Moderna Therapeutics, Inc. Manufacturing methods for production of rna transcripts
US20140273230A1 (en) 2013-03-15 2014-09-18 Sigma-Aldrich Co., Llc Crispr-based genome modification and regulation
CN105209913A (en) 2013-03-15 2015-12-30 Nvs技术股份有限公司 Analytical instrument systems
HUE056760T2 (en) 2013-07-11 2022-03-28 Modernatx Inc Compositions comprising synthetic polynucleotides encoding crispr related proteins and synthetic sgrnas and methods of use
US20150050738A1 (en) 2013-08-16 2015-02-19 Rana Therapeutics, Inc. Compositions and methods for modulating rna
US20160194368A1 (en) 2013-09-03 2016-07-07 Moderna Therapeutics, Inc. Circular polynucleotides
AU2014315287A1 (en) 2013-09-03 2015-03-12 Moderna Therapeutics, Inc. Chimeric polynucleotides
EP3043826A4 (en) 2013-09-13 2017-05-24 Moderna Therapeutics, Inc. Polynucleotide compositions containing amino acids
GB201317301D0 (en) 2013-09-30 2013-11-13 Linnarsson Sten Method for capturing and encoding nucleic acid from a plurality of single cells
WO2015048744A2 (en) 2013-09-30 2015-04-02 Moderna Therapeutics, Inc. Polynucleotides encoding immune modulating polypeptides
EP3052479A4 (en) 2013-10-02 2017-10-25 Moderna Therapeutics, Inc. Polynucleotide molecules and uses thereof
EP3052511A4 (en) 2013-10-02 2017-05-31 Moderna Therapeutics, Inc. Polynucleotide molecules and uses thereof
US10323076B2 (en) 2013-10-03 2019-06-18 Modernatx, Inc. Polynucleotides encoding low density lipoprotein receptor
AU2014337156A1 (en) 2013-10-18 2016-05-12 Modernatx, Inc. Compositions and methods for tolerizing cellular systems
WO2015070413A1 (en) 2013-11-14 2015-05-21 深圳智慧能源技术有限公司 Ceramic thermal shielding piece and heat-resistant structure
US20170173128A1 (en) 2013-12-06 2017-06-22 Moderna TX, Inc. Targeted adaptive vaccines
EP2918275B1 (en) 2013-12-13 2016-05-18 Moderna Therapeutics, Inc. Alternative nucleic acid molecules and uses thereof
SG10201805660WA (en) 2013-12-30 2018-08-30 Curevac Ag Methods for rna analysis
EP3092250A4 (en) 2014-01-08 2017-05-24 Moderna Therapeutics, Inc. Polynucleotides for the in vivo production of antibodies
HRP20220070T1 (en) 2014-04-23 2022-04-01 Modernatx, Inc. Nucleic acid vaccines
CN114797474A (en) 2014-05-21 2022-07-29 非链实验室 System and method for buffer solution exchange
WO2015196118A1 (en) 2014-06-19 2015-12-23 Moderna Therapeutics, Inc. Alternative nucleic acid molecules and uses thereof
US20170175129A1 (en) 2014-06-19 2017-06-22 Moderna Therapeutics, Inc. Alternative nucleic acid molecules and uses thereof
US10286086B2 (en) 2014-06-19 2019-05-14 Modernatx, Inc. Alternative nucleic acid molecules and uses thereof
EP3169335B8 (en) 2014-07-16 2019-10-09 ModernaTX, Inc. Circular polynucleotides
US20170204152A1 (en) 2014-07-16 2017-07-20 Moderna Therapeutics, Inc. Chimeric polynucleotides
EP3169309B1 (en) 2014-07-16 2023-05-10 Novartis AG Method of encapsulating a nucleic acid in a lipid nanoparticle host
EP2992958A1 (en) 2014-09-03 2016-03-09 STAT-Diagnostica D Innovation SL Nucleic acid purification cartridge
WO2016036902A1 (en) 2014-09-03 2016-03-10 Moderna Therapeutics, Inc. Tolerogenic compositions and methods
EP3041948B1 (en) 2014-11-10 2019-01-09 Modernatx, Inc. Alternative nucleic acid molecules containing reduced uracil content and uses thereof
US20180000953A1 (en) 2015-01-21 2018-01-04 Moderna Therapeutics, Inc. Lipid nanoparticle compositions
EP3247398A4 (en) 2015-01-23 2018-09-26 Moderna Therapeutics, Inc. Lipid nanoparticle compositions
EP3294885B1 (en) 2015-05-08 2020-07-01 CureVac Real Estate GmbH Method for producing rna
JP6921833B2 (en) 2015-10-22 2021-08-18 モデルナティーエックス, インコーポレイテッド Human cytomegalovirus vaccine

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256294A (en) * 1990-09-17 1993-10-26 Genentech, Inc. Tangential flow filtration process and apparatus
US6180778B1 (en) * 1994-02-11 2001-01-30 Qiagen Gmbh Process for the separation of double-stranded/single-stranded nucleic acid structures
US20030013646A1 (en) * 1999-12-10 2003-01-16 Habener Joel F. Methods to stimulate insulin production by pancreatic beta-cells
WO2004016803A2 (en) * 2002-08-14 2004-02-26 Duke University Method of enhancing cd4+ t cell responses
US7026545B2 (en) * 2003-05-28 2006-04-11 Hewlett-Packard Development Company, L.P. Flex cable having a return-signal path and method for reducing length and impedance of a return-signal path
US20050171333A1 (en) * 2003-12-16 2005-08-04 Paulsen Kim E. Formulations and methods for denaturing proteins
US20130259924A1 (en) * 2012-04-02 2013-10-03 modeRNA Therapeutics Modified polynucleotides for the production of biologics and proteins associated with human disease
US10077439B2 (en) * 2013-03-15 2018-09-18 Modernatx, Inc. Removal of DNA fragments in mRNA production process
US10858647B2 (en) * 2013-03-15 2020-12-08 Modernatx, Inc. Removal of DNA fragments in mRNA production process
US9850269B2 (en) * 2014-04-25 2017-12-26 Translate Bio, Inc. Methods for purification of messenger RNA

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Brendt et al., ACS Combinatorial Science 15:77-81 (JAN 2013) (Year: 2013) *
Kariko et al., Nucleic Acids Research 39(21) : e142 (Year: 2011) *
Krieg et al., Nucleic Acids Research 12(18 : 7057 (Year: 1984) *
Zahnd et al., Nature Methods 4(3) : 269 (Year: 2007) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11547673B1 (en) 2020-04-22 2023-01-10 BioNTech SE Coronavirus vaccine
US11925694B2 (en) 2020-04-22 2024-03-12 BioNTech SE Coronavirus vaccine
US11878055B1 (en) 2022-06-26 2024-01-23 BioNTech SE Coronavirus vaccine

Also Published As

Publication number Publication date
US10077439B2 (en) 2018-09-18
US10858647B2 (en) 2020-12-08
EP2971165A4 (en) 2016-11-23
US20160024492A1 (en) 2016-01-28
WO2014152030A1 (en) 2014-09-25
US20190100748A1 (en) 2019-04-04
EP2971165A1 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
US20210230578A1 (en) Removal of dna fragments in mrna production process
US20160032273A1 (en) Characterization of mrna molecules
EP3317424B1 (en) Method for analysis of an rna molecule
US9115380B2 (en) Kits and methods for generating 5′ capped RNA
CN107208096A (en) Composition and application method based on CRISPR
Broughton et al. Identifying Argonaute binding sites in Caenorhabditis elegans using iCLIP
Song et al. Reading chemical modifications in the transcriptome
US20190330682A1 (en) Methods and Compositions for Improving Removal of Ribosomal RNA from Biological Samples
CA3114892A1 (en) Methods and compositions for increasing capping efficiency of transcribed rna
WO2013135910A1 (en) Method for identification of the sequence of poly(a)+rna that physically interacts with protein
WO2018081788A1 (en) Methods of enhancing translation ability and stability of rna molecules, treatments, and kits
Avcilar-Kucukgoze et al. Purification and use of tRNA for enzymatic post-translational addition of amino acids to proteins
KR20200051648A (en) RNA or protein expression in vivo using double-stranded concatemer DNA containing phosphorothioated nucleotides
KR20200036925A (en) Cell-free protein expression using double-stranded concatemer DNA
JP2008253176A (en) Linker for obtaining highly affinitive molecule
Detke et al. Synthesis of histone messenger RNAs by RNA polymerase II in nuclei from S phase HeLa S3 cells
CN110998332B (en) Enhanced RNA interaction group Capture (eRIC)
JP5515121B2 (en) How to improve enzyme reactivity
US20230383293A1 (en) Modified functional nucleic acid molecules
US20230074066A1 (en) Compositions and methods for rapid rna-adenylation and rna sequencing
JP2022547949A (en) Methods and kits for preparing RNA samples for sequencing
CN111197070A (en) Method for identifying 2&#39; -O-methylation modification in RNA molecule and application thereof
RU2439156C2 (en) Method of obtaining ribonucleic acid
US11060129B2 (en) Aptamer digestion method
Lu et al. Identification of full-length circular nucleic acids using long-read sequencing technologies

Legal Events

Date Code Title Description
AS Assignment

Owner name: MODERNATX, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ISSA, WILLIAM JOSEPH;WANG, YUXUN;BANCEL, STEPHANE;SIGNING DATES FROM 20151005 TO 20151009;REEL/FRAME:055993/0686

Owner name: MODERNATX, INC., MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:MODERNA THERAPEUTICS, INC.;REEL/FRAME:055998/0030

Effective date: 20160808

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION