WO2011021666A1 - 環境ストレス下の翻訳抑制を回避する5'utrをコードする組換えdna分子 - Google Patents

環境ストレス下の翻訳抑制を回避する5'utrをコードする組換えdna分子 Download PDF

Info

Publication number
WO2011021666A1
WO2011021666A1 PCT/JP2010/064006 JP2010064006W WO2011021666A1 WO 2011021666 A1 WO2011021666 A1 WO 2011021666A1 JP 2010064006 W JP2010064006 W JP 2010064006W WO 2011021666 A1 WO2011021666 A1 WO 2011021666A1
Authority
WO
WIPO (PCT)
Prior art keywords
utr
seq
base
sequence
sequences
Prior art date
Application number
PCT/JP2010/064006
Other languages
English (en)
French (fr)
Inventor
晃 加藤
重彦 金谷
秀幸 松浦
慎也 武波
達也 納庄
佑喜 久保
清貴 上田
Original Assignee
国立大学法人奈良先端科学技術大学院大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人奈良先端科学技術大学院大学 filed Critical 国立大学法人奈良先端科学技術大学院大学
Priority to CA2771597A priority Critical patent/CA2771597C/en
Priority to JP2011527702A priority patent/JP5769173B2/ja
Priority to US13/391,069 priority patent/US9163254B2/en
Publication of WO2011021666A1 publication Critical patent/WO2011021666A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells

Definitions

  • the present invention relates to a recombinant gene encoding a 5 'untranslated region (hereinafter also referred to as 5' UTR) that contributes to avoiding translational suppression under environmental stress, an expression vector comprising the recombinant gene, and the expression vector It mainly relates to a transformant containing
  • Non-patent Document 1 the translation initiation reaction is generally the rate-limiting factor for protein synthesis in plants.
  • This translation initiation is one of the important control steps for plants to respond to changes in the external environment and control gene expression. For example, translation from most mRNA to protein is suppressed by receiving various stresses such as temperature, osmotic pressure, and anaerobic (hypoxia). On the other hand, translation from all mRNAs is not suppressed, and translation from some mRNAs, that is, protein synthesis is maintained.
  • Kawaguchi et al. Stipulated the regulation of translation under stress based on the relationship between the translational state of each mRNA species and 5'UTR characteristics in Arabidopsis plants under drought stress, as revealed by the polysome / microarray analysis described above. We have tried to search for factors in 5'UTR and reported that there is a correlation between translational state under drought stress and 5'UTR length and low GC content. However, even in this report, no important sequence features have been found, and Kawaguchi et al. Themselves thought that “the length of the 5′UTR and the GC content were not decisive factors for the translational state under stress. (Non-Patent Document 4).
  • the main object of the present invention is to find a sequence characteristic in 5′UTR related to a change in the translational state of a plant under environmental stress, and to provide a recombinant gene, an expression vector, and a transformant having the sequence characteristic.
  • the present inventor obtained 5′UTR sequence information and actual measurement data related to changes in the translation state under environmental stress, and based on the data, in silico By conducting analysis and further verification based on actual measurement data, we succeeded in identifying the important region and sequence of 5'UTR that regulates translation control, and completed the present invention through further intensive studies. .
  • the present invention includes, for example, the following recombinant DNA molecules, artificial mRNA molecules, vectors, and transformants according to items 1 to 13, and a method for producing a protein encoded by the recombinant gene using the transformants: Includes gene production method and translation suppression avoidance method.
  • Item 1 A recombinant DNA molecule encoding mRNA having 5'UTR of (a) or (b) below.
  • the 1st to 7th nucleotides from the 5 ′ end are composed of the 1st to 7th nucleotide sequences of SEQ ID NO: 4, and the 12th to 32nd nucleotide sequences from the 5 ′ end are derived from the 12th to 32nd nucleotide sequences of SEQ ID NO: 4.
  • 5'UTR which will (Ii)
  • the first to seventh positions from the 5 ′ end are composed of the first to seventh base sequences of SEQ ID NO: 6, and the 12th to 32nd base sequences of the 5 ′ end are derived from the 12th to 32nd base sequences of SEQ ID NO: 6.
  • 5'UTR which will (Iii)
  • the 1st to 7th nucleotides from the 5 ′ end are composed of the 1st to 7th nucleotide sequences of SEQ ID NO: 20, and the 12th to 32nd nucleotide sequences from the 5 ′ end are derived from the 12th to 32nd nucleotide sequences of SEQ ID NO: 20.
  • 5'UTR which will (Iv)
  • the first to seventh positions from the 5 ′ end are composed of the first to seventh base sequences of SEQ ID NO: 36, and the 12th to 32nd base sequences of the 5 ′ end are derived from the 12th to 32nd base sequences of SEQ ID NO: 36.
  • the first to seventh positions from the 5 ′ end are composed of the first to seventh base sequences of SEQ ID NO: 60, and the 12th to 32nd base sequences of the 5 ′ end are the 12th to 12th positions of SEQ ID NO: 60 5'UTR consisting of the 32nd base sequence
  • B In the base sequence of 5′UTR in (a), one or several bases are substituted, and translation suppression by at least one environmental stress selected from the group consisting of heat stress and salt stress is avoided. 5'UTR to do. Item 2.
  • Item 3. Item 3. A vector obtained by linking the recombinant DNA molecule according to Item 1 or 2 immediately after the start of transcription of a promoter.
  • Item 4. A transformant transformed with the vector according to Item 3.
  • the 1st to 7th nucleotides from the 5 ′ end are composed of the 1st to 7th nucleotide sequences of SEQ ID NO: 4, and the 12th to 32nd nucleotide sequences from the 5 ′ end are derived from the 12th to 32nd nucleotide sequences of SEQ ID NO: 4.
  • 5'UTR which will (Ii)
  • the first to seventh positions from the 5 ′ end are composed of the first to seventh base sequences of SEQ ID NO: 6, and the 12th to 32nd base sequences of the 5 ′ end are derived from the 12th to 32nd base sequences of SEQ ID NO: 6.
  • 5'UTR which will (Iii)
  • the 1st to 7th nucleotides from the 5 ′ end are composed of the 1st to 7th nucleotide sequences of SEQ ID NO: 20, and the 12th to 32nd nucleotide sequences from the 5 ′ end are derived from the 12th to 32nd nucleotide sequences of SEQ ID NO: 20.
  • 5'UTR which will (Iv)
  • the first to seventh positions from the 5 ′ end are composed of the first to seventh base sequences of SEQ ID NO: 36, and the 12th to 32nd base sequences of the 5 ′ end are derived from the 12th to 32nd base sequences of SEQ ID NO: 36.
  • the first to seventh positions from the 5 ′ end are composed of the first to seventh base sequences of SEQ ID NO: 60, and the 12th to 32nd base sequences of the 5 ′ end are the 12th to 12th positions of SEQ ID NO: 60 5'UTR consisting of the 32nd base sequence
  • B In the base sequence of 5′UTR in (a), one or several bases are substituted, and translation suppression by at least one environmental stress selected from the group consisting of heat stress and salt stress is avoided. 5'UTR to do.
  • Item 10 By recombining the base sequence of any gene so as to encode the mRNA having 5′UTR of (a) or (b) below, by at least one environmental stress selected from the group consisting of heat stress and salt stress A method for avoiding suppression of translation of a protein encoded by the gene.
  • A) (I) The 1st to 7th nucleotides from the 5 ′ end are composed of the 1st to 7th nucleotide sequences of SEQ ID NO: 4, and the 12th to 32nd nucleotide sequences from the 5 ′ end are derived from the 12th to 32nd nucleotide sequences of SEQ ID NO: 4.
  • 5'UTR which will (Ii) The first to seventh positions from the 5 ′ end are composed of the first to seventh base sequences of SEQ ID NO: 6, and the 12th to 32nd base sequences of the 5 ′ end are derived from the 12th to 32nd base sequences of SEQ ID NO: 6.
  • 5'UTR which will (Iii) The 1st to 7th nucleotides from the 5 ′ end are composed of the 1st to 7th nucleotide sequences of SEQ ID NO: 20, and the 12th to 32nd nucleotide sequences from the 5 ′ end are derived from the 12th to 32nd nucleotide sequences of SEQ ID NO: 20.
  • the first to seventh positions from the 5 ′ end are composed of the first to seventh base sequences of SEQ ID NO: 36, and the 12th to 32nd base sequences of the 5 ′ end are derived from the 12th to 32nd base sequences of SEQ ID NO: 36.
  • the first to seventh positions from the 5 ′ end are composed of the first to seventh base sequences of SEQ ID NO: 60, and the 12th to 32nd base sequences of the 5 ′ end are the 12th to 12th positions of SEQ ID NO: 60 5'UTR consisting of the 32nd base sequence
  • B In the base sequence of 5′UTR in (a), one or several bases are substituted, and translation suppression by at least one environmental stress selected from the group consisting of heat stress and salt stress is avoided. 5'UTR to do. Item 11.
  • the 5 ′ UTR in (a) is a 5 ′ UTR having the nucleotide sequence of SEQ ID NO: 4, 6, 20, 36, or 60 at the 5 ′ end, and the translation of the protein according to Item 10 is suppressed. How to avoid. Item 12.
  • (I) The 1st to 7th nucleotides from the 5 ′ end are composed of the 1st to 7th nucleotide sequences of SEQ ID NO: 4, and the 12th to 32nd nucleotide sequences from the 5 ′ end are derived from the 12th to 32nd nucleotide sequences of SEQ ID NO: 4.
  • 5'UTR which will (Ii) The first to seventh positions from the 5 ′ end are composed of the first to seventh base sequences of SEQ ID NO: 6, and the 12th to 32nd base sequences of the 5 ′ end are derived from the 12th to 32nd base sequences of SEQ ID NO: 6.
  • 5'UTR which will (Iii) The 1st to 7th nucleotides from the 5 ′ end are composed of the 1st to 7th nucleotide sequences of SEQ ID NO: 20, and the 12th to 32nd nucleotide sequences from the 5 ′ end are derived from the 12th to 32nd nucleotide sequences of SEQ ID NO: 20.
  • the first to seventh positions from the 5 ′ end are composed of the first to seventh base sequences of SEQ ID NO: 36, and the 12th to 32nd base sequences of the 5 ′ end are derived from the 12th to 32nd base sequences of SEQ ID NO: 36.
  • the first to seventh positions from the 5 ′ end are composed of the first to seventh base sequences of SEQ ID NO: 60, and the 12th to 32nd base sequences of the 5 ′ end are the 12th to 12th positions of SEQ ID NO: 60 5'UTR consisting of the 32nd base sequence
  • B In the base sequence of 5 'UTR in (a), 1 or several bases are substituted, and 5' avoids translational suppression due to at least one environmental stress selected from the group consisting of heat stress and salt stress UTR.
  • Item 13 Item 9. The artificial mRNA molecule according to Item 8, wherein the 5 ′ UTR in (a) is a 5 ′ UTR having the nucleotide sequence of SEQ ID NO: 4, 6, 20, 36, or 60 at the 5 ′ end.
  • a recombinant gene capable of avoiding translational suppression under environmental stress.
  • a vector obtained by linking the recombinant gene immediately after the transcription start point of the promoter, and a transformant containing the vector are provided.
  • gene expression can be performed with high efficiency without being suppressed by translation even under environmental stress.
  • these techniques contribute to the establishment of environmental stress resistant plants and the establishment of stable useful substance production techniques.
  • a sequence consisting of t bases appearing at least once in a sequence of length L in the range from base position k to k + L-1 in N samples is R 1 (t), R 2 (t), ..., R v (t), R V (t).
  • the appearance frequency of each sequence is expressed as f i (k, k + L-1) (R 1 (t)),..., f i (k, k + L-1) (R v (t)), ..., F i (k, k + L-1) (R V (t)).
  • the v-th array frequency is expressed as a variable f i (k, k + L-1) (R v (t)).
  • m 7 G represents the cap structure
  • B After linking the 5'UTR of the selected gene and introducing + cap_5'UTR_f-luc_pA mRNA into the protoplast together with the control + cap_r-luc_pA mRNA, and dividing the protoplast introduced with the mRNA FIG.
  • FIG. 2 is a drawing showing the results of measuring the f-luc and r-luc activities after allowing to stand for 20 minutes at normal temperature (22 ° C.) and heat stress (37 ° C.), respectively, and then recovering protoplasts.
  • the vertical axis shows the AGI code of the selected gene and the value of ⁇ PS in parentheses.
  • the horizontal axis shows the relative activity value with the activity value at 22 ° C. being 1 for each construction.
  • (A) shows a relative f-luc activity value
  • (b) shows a relative r-luc activity value. Values are shown as the mean and standard error of three independent experiments.
  • (A) is a drawing in which ⁇ PS values of 22 genes selected centering on the top ranking of ⁇ PS are indicated by circles on the histogram of ⁇ PS.
  • (B) Introduces the same amount of + cap_5'UTR_f-luc_pA mRNA ligated with 5'UTR of the selected gene into the protoplast together with the control + cap_r-luc_pA mRNA, and divides the protoplast introduced with mRNA. Thereafter, each is allowed to stand at normal temperature (22 ° C.) and heat stress (37 ° C.) for 20 minutes, after which the protoplasts are collected and the f-luc and r-luc activities are measured.
  • the vertical axis shows the AGI code of the selected gene and the value of ⁇ PS in parentheses.
  • the horizontal axis shows the relative activity value with the activity value at 22 ° C. being 1 for each construction.
  • (a) shows a relative luc activity value
  • (b) shows an r-luc activity value. Values are expressed as the mean and standard error of three independent experiments.
  • FIG. 9 is a drawing showing the correlation between the relative activity value at 37 ° C. with respect to 22 ° C. and the ⁇ PS value shown in FIGS. 7 and 8, for a total of 39 genes tested.
  • the vertical axis is a logarithmic display.
  • r represents the Pearson correlation coefficient. The presence or absence of correlation is statistically tested (p).
  • 14 to 34 (12 to 32) indicate the region of the 14th to 34th base from the 5 ′ end (the actual 5 ′ UTR region is 12 to 32 bases obtained by subtracting 2 from the value of the region).
  • the vertical axis indicated by in silico analysis illustrates the Q 2 value representing the prediction accuracy. The higher the Q 2 value is, the higher the prediction accuracy is, and it is possible to explain a model constructed only in that region. This indicates that the region directly affects the selective translation of reporter mRNA under heat stress.
  • GG was added to the 5 'end of the mRNA used in the transient expression experiment after transcription from the T3 promoter, and the sequence including it (GG + 5' UTR sequence) was used for in silico analysis.
  • the actual 5'UTR area is the area value minus 2.
  • 6 is a drawing showing the correlation between the relative activity value predicted by the PLS method based on the 1st to 7th bases and the measured relative activity value.
  • the vertical axis shows the relative activity values predicted from the regression model based on the 5 'end 9 bases (actually 7 bases) by the PLS method, and the horizontal axis shows the measured relative activity values of 39 genes.
  • . r represents the Pearson correlation coefficient.
  • p ⁇ 0.01 indicates the result of uncorrelated test. It is the figure which showed the influence which 5 'terminal 7 base of 5'UTR has on translation under heat stress of reporter mRNA.
  • 5'UTR with high relative activity (good (1); At4g14560, good (2); At3g15450, good (3); At1g77120, black characters) and 5'UTR with low relative activity (bad (1); At3g47610 , Bad (2); At5g57440, white letters)
  • A), (c), (e), (g), (i), (k) are mRNAs consisting of the full length of 5 'UTR.
  • (b), (d), (f), (h), (j), (l) are obtained by replacing the first to seventh bases of each 5'UTR with the indicated 5'UTR. is there.
  • + cap_5'UTR_f-luc_pARNAmRNA with each 5'UTR added is introduced into the protoplast together with the control + cap_r-luc_pA mRNA, and then the protoplast introduced with the mRNA is divided, respectively.
  • 2 is a diagram showing the correlation between the relative activity value predicted from the regression model based on the 12th to 32nd bases constructed by the PLS method and the measured relative activity value.
  • the vertical axis represents the relative activity value predicted from the regression model based on the 12th to 32nd bases by the PLS method.
  • the horizontal axis shows the measured relative activity values of 39 genes.
  • r represents the Pearson correlation coefficient.
  • p ⁇ 0.01 indicates the result of uncorrelated test. It is the figure which investigated the influence which 5 'terminal 7 base of 5'UTR and the 12th-32nd base have on the translation under the heat stress of reporter mRNA by exchanging a short pair (47 bp and 42 bp).
  • + cap_5'UTR_f-luc_pA mRNA with each 5'UTR added is introduced into the protoplast together with the control + cap_r-luc_pA mRNA, and after dividing the protoplast into which the mRNA has been introduced, Let stand for 20 minutes at a temperature °C (22 ° C) and heat stress (37 ° C), then collect protoplasts and measure the activity of f-luc and r-luc. The f-luc activity value is shown. Values are expressed as the mean of three independent experiments and the standard error.
  • + cap_5'UTR_f-luc_pA mRNA with each 5'UTR added is introduced into the protoplast together with the control + cap_r-luc_pA mRNA, and after dividing the protoplast into which the mRNA has been introduced, Let stand for 20 minutes at a temperature °C (22 ° C) and heat stress (37 ° C), then collect protoplasts and measure the activity of f-luc and r-luc. The f-luc activity value is shown. Values are shown as the mean of three independent experiments and the standard error. It is drawing which shows the result of having investigated the distance of the area
  • + cap_5'UTR_f-luc_pA mRNA with each 5'UTR added is introduced into the protoplast together with the control + cap_r-luc_pA mRNA, and after dividing the protoplast into which the mRNA has been introduced, Let stand for 20 minutes at temperature (22 ° C) and heat stress (37 ° C), then collect the protoplasts and measure the activity of f-luc and r-luc at 22 ° C for each construct. The f-luc activity value is shown. Values are expressed as the mean of three independent experiments and the standard error.
  • the horizontal axis indicates the base position within the 5 'UTR.
  • the vertical axis represents the weight (expression intensity) of each base calculated based on the model constructed by the PLS method. This indicates that the higher this is, the more the suppression of translation of reporter mRNA under heat stress is. Among the statistically significant ones (p ⁇ 0.05), the one with the highest weight of each base was selected and indicated by a square.
  • the base with the highest base weight is selected and indicated by a circle.
  • GG was added to the 5 'end after transcription from the T3 promoter in the mRNA used in the transient expression experiment, and the sequence ⁇ ⁇ (GG + 5' UTR sequence) including that was added for in silico analysis.
  • the actual 5'UTR area is the area value minus 2.
  • + cap_5'UTR_f-luc_pA mRNA with each 5'UTR added is introduced into the protoplast together with the control + cap_r-luc_pA mRNA, and after dividing the protoplast into which the mRNA has been introduced, Let stand for 20 minutes at temperature (22 °C), heat stress (37 °C), then collect protoplasts and measure the activity of f-luc and r-luc at 22 °C for each construction. The result which showed the f-luc activity value when doing was shown. The value showed the average value of three independent experiments, and the standard error.
  • (b) shows a result obtained by substituting the base region of the indicated number with the same region of 5 ′ UTR (At4g12000, good) having a high relative activity value as compared with (a).
  • (C), (d), and (e) show the respective 5 ′ UTRs in which the base region of the indicated number is replaced with the optimal sequence.
  • AUG occurs when the 12th to 32nd bases are replaced with the optimal sequence, so the 33rd u is replaced with a.
  • CaMV35S represents a promoter region derived from the cauliflower mosaic virus 35S rRNA gene
  • NOS-T represents a terminator region derived from an Agrobacterium nopaline synthase gene
  • Xb and Sac represent XbaI and SacI restriction enzyme recognition sites, respectively.
  • the arrow indicates the transcription start point and the transcription direction.
  • 1 is a diagram showing an outline of a synthetic mRNA used for verification. At1g77120 + indicates mRNA when a sequence derived from a vector expected to 5′UTR of At1g77120 is added. At1g77120 indicates an mRNA having only the 5′UTR of At1g77120.
  • FIG. 25 shows f-luc activity values when the activity value at 22 ° C. is set to 1 for each of the constructs At1g77120 + and At1g77120 shown in FIG. The value showed the average value of three independent experiments, and the standard error.
  • a construction diagram of a binary vector constructed by adding 5′UTR of At4g14560, At1g77120, At3g47610, At5g39740 to a reporter GUS gene having an HSP terminator downstream and under the control of the CaMV35S promoter is shown.
  • FIG. 1 shows a construction diagram of binary vectors introduced into At4g14560 + transformed cells and At1g77120 + transformed cells.
  • An outline of polysome / RT-PCR analysis is shown.
  • the polysome / RT-PCR analysis result in an At3g47610 transformed cell is shown.
  • the results using two lines of transformed cells obtained independently are shown.
  • the polysome / RT-PCR analysis result in an At5g39740 transformed cell is shown.
  • the results using two lines of transformed cells obtained independently are shown.
  • the extracted RNA solution was subjected to denaturing gel electrophoresis by equal volume and EtBr staining was performed. The positions of 28S and 18S rRNA are shown in the figure.
  • C The extracted RNA was subjected to RT-PCR analysis for each equal volume, and the results of detecting the mRNA of At5g39740 5′UTR-added GUS, At1g77120, At3g47610, and Actin2 present in each fraction are shown.
  • the polysome / RT-PCR analysis result in an At4g14560 transformed cell is shown. The results using two lines of transformed cells obtained independently are shown.
  • sucrose density gradient obtained by fractionating cell extracts derived from normal cells and cells subjected to heat stress treatment at 37 ° C./10 ⁇ min was collected in 15 fractions, and RNA was extracted from each fraction. The position of each fraction corresponds to the absorbance profile of (A) above.
  • the extracted RNA solution was subjected to denaturing gel electrophoresis by equal volume and EtBr staining was performed. The positions of 28S and 18S rRNA are shown in the figure.
  • sucrose density gradient obtained by fractionating cell extracts derived from normal cells and cells subjected to heat stress treatment at 37 ° C./10 ⁇ min was collected in 15 fractions, and RNA was extracted from each fraction. The position of each fraction corresponds to the absorbance profile of (A) above.
  • the extracted RNA solution was subjected to denaturing gel electrophoresis by equal volume and EtBr staining was performed. The positions of 28S and 18S rRNA are shown in the figure.
  • sucrose density gradient obtained by fractionating cell extracts derived from normal cells and cells subjected to salt stress treatment of 200 mM NaCl / 10 min was divided into 15 fractions and collected, and RNA was extracted from each fraction. The position of each fraction corresponds to the absorbance profile of (A) above.
  • the extracted RNA solution was subjected to denaturing gel electrophoresis by equal volume and EtBr staining was performed. The positions of 28S and 18S rRNA are shown in the figure.
  • sucrose density gradient obtained by fractionating cell extracts derived from normal cells and cells subjected to salt stress treatment of 200 mM NaCl / 10 min was divided into 15 fractions and collected, and RNA was extracted from each fraction. The position of each fraction corresponds to the absorbance profile of (A) above.
  • the extracted RNA solution was subjected to denaturing gel electrophoresis by equal volume and EtBr staining was performed. The positions of 28S and 18S rRNA are shown in the figure.
  • the extracted RNA is subjected to RT-PCR analysis in equal volumes, and the results of detecting the mRNA of At1g77120 5′UTR-added GUS, At1g77120, At3g47610, and Actin2 present in each fraction are shown.
  • the graph shows the relative GUS activity value on the 4th day when the activity value on the 3rd day is 1 when the transformed cells are normally cultured for 3 days and then cultured under heat stress conditions (24 hours / 32 ° C). As shown.
  • the culture conditions and the number of measurements are as follows. After normal inoculation, each transformed cell was cultured for 3 days at 22 ° C. under normal conditions, and the cells were collected.
  • an operation means keyboard or the like
  • a display means display or the like ordinarily provided in a computer
  • the processing performed by the system 1 actually means processing performed by the CPU 10 of the system 1.
  • the CPU 10 temporarily stores necessary data (intermediate data during processing, etc.) using the memory 11 as a work area, and appropriately records data to be stored for a long time such as calculation results in the recording unit 12.
  • the system 1 records a program used for performing each step of the prediction method of the present invention in, for example, an execution format (for example, generated by being converted by a compiler from a programming language such as C language).
  • the system 1 performs processing using the program recorded in the recording unit 12.
  • the gene entity is a DNA molecule encoding mRNA.
  • the mRNA transcribed from the gene is divided into three regions: 5'UTR, ORF (open reading frame), and 3'UTR.
  • the recombinant gene of the present invention is a gene recombined to encode mRNA having a specific 5 ′ UTR sequence. In other words, it can be said to be a recombinant gene encoding a specific 5 ′ UTR sequence. It may be said that it is a recombinant gene that expresses mRNA having a specific 5 ′ UTR sequence.
  • the recombinant gene of the present invention is not a gene existing in nature (that is, a gene possessed by various biological species) but a gene produced by artificially changing the base sequence of at least the portion corresponding to 5 ′ UTR.
  • a protein can be obtained by translating the mRNA encoded by the gene.
  • the gene encodes a protein.
  • mRNA encodes a protein.
  • a recombinant gene can be restated as a recombinant DNA molecule.
  • the recombinant gene of the present invention is a recombinant DNA molecule obtained by recombining (changing) the base sequence of DNA encoding mRNA.
  • an isolated recombinant DNA molecule is also preferred.
  • the mRNA molecule obtained by transcription from the recombinant DNA molecule has a specific 5 'UTR sequence.
  • the present invention also includes an artificial mRNA molecule having the specific 5 'UTR sequence.
  • the artificial mRNA molecule may be obtained by transcription of the recombinant DNA molecule of the present invention, or may be chemically synthesized.
  • Various known methods are known for artificially changing the base sequence of a gene, and can be appropriately selected and used. For example, by cleaving a gene with an appropriate restriction enzyme and then ligating a new nucleic acid fragment to the cleavage site, or by designing a primer pair that is not completely complementary to the target gene, or performing PCR, or By combining these techniques, the base sequence of the gene can be modified.
  • the recombinant gene of the present invention can avoid translational suppression under environmental stress (especially heat stress and salt stress) by encoding a specific 5 'UTR sequence. That is, since the mRNA molecule transcribed from the recombinant gene (recombinant DNA molecule) of the present invention has a specific 5 ′ UTR sequence, translation from the mRNA molecule to the protein is suppressed by environmental stress. It can be reduced, preferably translation can be prevented from being suppressed, and more preferably translation can be promoted.
  • the specific 5 'UTR sequence is a 5' UTR sequence in which the first to seventh positions from the 5 'end are specific base sequences, and the 12th to 32nd positions from the 5' end are specific base sequences.
  • the 8-11th base sequence from the 5 'end of the specific 5' UTR sequence is not particularly limited.
  • the 8th to 11th bases from the 5 'end can be any of adenine, uracil, guanine, or cytosine (A, U, G, or C).
  • it is the 8th to 11th nucleotide sequence from the 5 'end of 5' UTR possessed by mRNA existing in nature.
  • SEQ ID NO: 4 is the 5 ′ UTR sequence of gene At4g14560
  • SEQ ID NO: 6 is the 5 ′ UTR sequence of gene At1g77120
  • SEQ ID NO: 20 is the 5 ′ UTR sequence of gene At3g15450
  • SEQ ID NO: 36 is 5 of the gene At4g12000.
  • 'UTR sequence SEQ ID NO: 60 is the optimal 5' UTR sequence predicted by the method described below. Each 5'UTR sequence is as shown in Table 1.
  • the 8th to 11th bases of the predicted optimal sequence (SEQ ID NO: 60) are represented by “n”, where n represents adenine, uracil, guanine, or cytosine (A, U, G, or C). Show. That is, n indicates any base of A, U, G, or C.
  • the 1st to 7th and 12th to 32nd base sequences of the respective sequences are underlined in Table 1. It can also be said that the specific 5′UTR sequence is a 5′UTR sequence in which the 1st to 7th and 12th to 32nd base sequences from the 5 ′ end are the base sequences indicated by the underline in Table 1, respectively.
  • the specific 5'UTR is 5'UTR in which the 1st to 7th base sequence from the 5 'end is acacaag, and the 12th to 32nd base sequence from the 5' end is uucaaggauaucaaaucacaa, 5'UTR in which the 1st to 7th base sequence from the 5 'end is uacauca, and the 12th to 32nd base sequence from the 5' end is cacacaaaacuaacaaaagau, 5'UTR in which the 1st to 7th base sequence from the 5 'end is auaacac, and the 12th to 32nd base sequence from the 5' end is caagcauuggauuaaucaaag, 5'UTR in which the 1st to 7th base sequence from the 5 'end is auuaaca, and the 12th to 32nd base sequence from the 5' end is aaccgaaaaaagaaaaaaacu, or The 1st to 7th base
  • the base length is not particularly limited as long as the specific 5 'UTR sequence has a length of 32 bases or more.
  • the length is preferably 32 to 250 bases, more preferably 32 to 210 bases, still more preferably 32 to 120 bases, and even more preferably 32 to 60 bases.
  • bases other than the 1st to 7th and 12th to 32nd positions from the 5 'end are not particularly limited.
  • the base other than the 1st to 7th and 12th to 32nd positions from the 5 'end is adenine, uracil, guanine, or cytosine (A, U, G, or C).
  • the recombinant gene of the present invention is selected from the group consisting of heat stress and salt stress in which one or more (preferably one or several) bases are substituted in the specific 5′UTR sequence described above. Also included is a gene encoding 5 ′ UTR that avoids translational repression by at least one environmental stress.
  • the recombinant gene (recombinant DNA molecule) of the present invention includes -Encoding mRNA having 5'UTR as a 5'UTR polynucleotide comprising a base sequence in which one or more (preferably one or several) bases are substituted in the specific 5'UTR sequence described above;
  • the number of bases substituted in the 5′UTR sequence is preferably 1 to 9, more preferably 1 to 5, and further preferably 1 to 3.
  • Whether or not the recombinant gene can avoid translational suppression due to heat stress and / or salt stress is determined by, for example, using a host (preferably a plant, preferably a vector obtained by linking the recombinant gene immediately after the start of transcription of the promoter. More preferably dicotyledonous plants, more preferably Arabidopsis thaliana, or cells derived from these plants) to produce transformants, and when the transformants are grown under heat stress and / or salt stress, It can be determined whether or not the protein encoded by the recombinant gene is produced in an amount equal to or greater than that produced under normal conditions.
  • Comparison of protein amounts can be performed by, for example, polysome analysis, RT-PCR analysis, or protein quantification. These analyzes can be performed according to known methods. Protein quantification can also be performed according to a known method (for example, Bradford method).
  • More specific preferred specific 5 ′ UTR sequences may include 5 ′ UTR sequences having the sequence of SEQ ID NO: 4, 6, 20, 36, or 60 at the 5 ′ end, more preferably SEQ ID NO: Mention may be made of 5 'UTR sequences consisting of 4, 6, 20, 36 or 60 sequences.
  • the recombinant gene of the present invention may be any gene that has been recombined so as to encode mRNA having the specific 5 ′ UTR sequence, and the type of protein (including peptide) encoded by the gene is not particularly limited.
  • Preferred examples of proteins (including peptides) include proteins having pharmacological activity. Specific examples include enzymes, transcription factors, cytokines, membrane-bound proteins, various peptide hormones (for example, insulin, growth hormone, somatostatin), medical proteins such as vaccines and antibodies, and the like.
  • the recombinant gene of the present invention is a gene obtained by linking a gene encoding such a protein to a reporter gene such as GFP or luciferase, or a tag peptide sequence such as a His tag or a FLAG (registered trademark) tag.
  • a reporter gene such as GFP or luciferase
  • a tag peptide sequence such as a His tag or a FLAG (registered trademark) tag.
  • an artificially designed chimeric gene may be used.
  • a known gene (DNA molecule) used as a raw material for the recombinant gene can be used.
  • Known gene sequences can be obtained from databases such as a sequence database GenBank operated by NCBI (National Center for Biotechnology Information). Based on the sequence information, genes (DNA molecules) can be isolated from various organisms by conventional methods such as PCR. In addition, known genes are sold in the form of, for example, cDNA libraries from each sales company, and can be purchased and used.
  • the gene used as a raw material for the recombinant gene of the present invention is not particularly limited, but is preferably a plant-derived gene, more preferably a dicotyledonous plant-derived gene, and even more preferably an Arabidopsis-derived gene. That is, the protein encoded by the recombinant gene (DNA molecule) of the present invention is preferably a plant-derived protein, more preferably a dicotyledonous plant-derived protein, and even more preferably an Arabidopsis-derived protein.
  • the vector of the present invention is a vector obtained by linking the above-described recombinant gene of the present invention immediately after the transcription start point of the promoter. More specifically, the vector of the present invention is an expression vector obtained by linking the recombinant gene of the present invention to a cloning vector having a promoter sequence immediately after the transcription start point of the promoter.
  • cloning vectors examples include plasmid vectors, cosmid vectors, virus vectors, artificial chromosome vectors (eg, YAC, BAC, PAC) and the like. Of these, plasmid vectors and virus vectors are preferred.
  • the cloning vector to be used can be appropriately selected depending on the organism or cell (ie host) into which the vector is introduced in order to express the protein from the gene.
  • the vector of the present invention has a feature that expression of a protein encoded by a recombinant gene is not suppressed under environmental stress such as heat stress and / or salt stress, particularly when introduced into a plant (including plant cells).
  • Agrobacterium-derived plasmids usually used in plants are preferable, and Agrobacterium-derived plasmids having T-DNA (Ti-plasmids) are more preferable.
  • a cloning vector having a promoter sequence is used.
  • a promoter sequence can be appropriately selected and used depending on the type of host. For example, when the host is an animal (including animal cells), a human cytomegalovirus-derived promoter (CMV promoter), or an SV40 promoter can be exemplified. Moreover, when a host is a plant (a plant cell is included), CaMV35S promoter etc. which are promoters derived from a cauliflower mosaic virus can be illustrated. Moreover, when the host is a bacterium such as Escherichia coli, examples thereof include T7 promoter, T3 promoter, SP6 promoter, tac promoter, lac promoter and the like.
  • the vector of the present invention has a feature that expression of a protein encoded by a recombinant gene is not suppressed under environmental stress such as heat stress and / or salt stress, particularly when introduced into a plant (including plant cells). Therefore, the CaMV35S promoter is particularly preferable.
  • the cloning vector preferably has a gene group that can be used as a selection marker such as a drug resistance gene.
  • Such cloning vectors may be known ones, particularly those that can be purchased from each sales company.
  • a known method can be used as a method for incorporating the above-described recombinant gene into a cloning vector.
  • the above-mentioned recombinant gene can be amplified by PCR using a primer with a restriction enzyme site, treated with a restriction enzyme, and linked to a restriction enzyme-treated cloning vector.
  • the vector of the present invention is one in which the above-mentioned recombinant gene is ligated immediately after the transcription start point of the promoter.
  • the promoter sequence and the recombinant gene sequence are ligated.
  • the restriction enzyme site exists in the part.
  • inverse PCR may be performed so as to remove the restriction enzyme site, and the amplified product obtained may be self-ligated to prepare a vector excluding the restriction enzyme site present in the ligation part.
  • the primer set used for the inverse PCR is preferably designed so that the PCR amplification product can self-ligate.
  • ligase may be used for self-ligation.
  • linkage immediately after the start of transcription means that the recombinant gene of the present invention is 5 ′ of mRNA encoded by the recombinant gene of the present invention when the recombinant gene of the present invention is expressed in a host.
  • a transcription product in which a base transcribed from a promoter sequence of 0, 1, 2, or 3 bases (preferably 0, 1, or 2 bases) is bound to the end (ie, 5 ′ UTR end).
  • ligation is performed so that there is no extra base sequence between the promoter sequence and the recombinant gene sequence of the present invention.
  • a small number for example, 1, 2, or 3 bases
  • a vector in which such transcription occurs is also included in the vector of the present invention.
  • the transformant of the present invention is a transformant containing the vector of the present invention. More specifically, the transformant of the present invention is a transformant into which the vector of the present invention has been introduced and transformed with the vector of the present invention.
  • the organism or cell (host) into which the vector of the present invention is introduced is not particularly limited, but the vector of the present invention is an environment such as heat stress and / or salt stress, particularly when introduced into a plant (including plant cells). It is preferably a plant (including plant cells) because it has a feature that expression of the recombinant gene is not suppressed under stress.
  • bacteria such as Escherichia coli are preferably used as hosts.
  • Examples of the plant include dicotyledonous plants, and more specifically, Arabidopsis, tobacco, soybean, chrysanthemum, lettuce and the like can be exemplified.
  • Examples of plant cells include dicotyledonous plant-derived cells, and more specifically, Arabidopsis-derived cells, tobacco-derived cells, soybean-derived cells, chrysanthemum-derived cells, lettuce-derived cells, and the like. Plant cell-derived protoplasts are also included in the plant cells here.
  • cultivating the transformed plant cell is also contained in the transformant of this invention. In addition, when a tumor tissue, a shoot, a hairy root, etc.
  • a plant tissue culture method known in the art can be used to regenerate a plant body by administration of an appropriate concentration of a plant hormone such as auxin, cytokinin, gibberellin, abscisic acid, ethylene, brassinolide, or the like.
  • a transformed plant body can also be regenerated by using transformed plant cells.
  • a regeneration method a method is employed in which callus-like transformed cells are transferred to a medium with different hormone types and concentrations and cultured to form somatic embryos to obtain complete plants. Examples of the medium to be used include LS medium and MS medium.
  • the method for introducing the vector of the present invention into the host is not particularly limited, and an appropriate known method can be appropriately selected and used depending on the type of the host and the vector. Examples thereof include, but are not limited to, an electroporation method, a particle gun method, and a method using a Ti plasmid (for example, a binary vector method and a leaf disk method).
  • PCR Southern hybridization
  • Northern hybridization or the like.
  • DNA is prepared from the transformant, and a vector-specific primer is designed to perform PCR. Thereafter, the amplified product is subjected to agarose gel electrophoresis, polyacrylamide gel electrophoresis, capillary electrophoresis, etc., stained with ethidium bromide, SYBR Green solution, etc., and the amplified product is detected as a single band, Confirm that it has been transformed.
  • PCR can be performed using a primer previously labeled with a fluorescent dye or the like to detect an amplification product.
  • a method of binding the amplification product to a solid phase such as a microplate and confirming the amplification product by fluorescence or enzyme reaction may be employed.
  • the transformant of the present invention is transformed with the vector of the present invention. More specifically, in the transformant of the present invention, the recombinant gene of the present invention is transcribed from the vector of the present invention to produce mRNA, and the protein is translated from the mRNA. As described above, the recombinant gene of the present invention encodes a specific 5 'UTR sequence and can avoid or reduce translational suppression under heat stress and / or salt stress. Therefore, the transformant of the present invention can preferentially produce the protein encoded by the recombinant gene of the present invention under heat stress and / or salt stress.
  • heat stress refers to stress generated by growing a transformant at a temperature higher than normal temperature (room temperature: about 20 to 22 ° C.).
  • room temperature about 20 to 22 ° C.
  • the temperature is such that the transformant can survive.
  • the temperature at which the transformant can survive can be appropriately set according to the type of protein expressed from the recombinant gene, the type of host, and the like. More specifically, it is preferably 25 ° C. or higher, more preferably 25 to 37 ° C., and further preferably 25 to 32 ° C.
  • the salt stress in this specification means the stress which arises by growing a transformant with the salt concentration (typically sodium chloride (NaCl) concentration) more than normal salt concentration in a soil or a culture medium.
  • the salt concentration is preferably such that the transformant can survive.
  • the salt concentration in normal soil or medium is substantially 0 mM.
  • the salt concentration at which the transformant can survive can be appropriately set according to the type of protein expressed from the recombinant gene, the type of host, and the like. More specifically, it is preferably 50 mM NaCl or more, more preferably 50 to 200mM NaCl, still more preferably 50 to 100 mM NaCl.
  • the transformant of the present invention is grown (cultured) under at least one environmental stress selected from the group consisting of heat stress and salt stress, A method for producing a protein encoded by a gene is also included.
  • environmental stress may be applied in the method for growing or culturing a host.
  • the production protein may be purified by a known method, for example, by chromatography. More specifically, for example, it can be purified by affinity chromatography using an antibody that recognizes the produced protein. In addition, when the produced protein has some tag sequence, it can be purified using the tag as an index.
  • the recombinant gene of the present invention encodes an enzyme necessary for producing a secondary metabolite, so that the secondary metabolite is preferentially produced. It is also possible. That is, the plant produces various secondary metabolites.
  • the recombinant gene of the present invention is modified by modifying the 5′UTR-encoding portion of the gene of the enzyme necessary for producing the secondary metabolites. And if you create a transformed plant containing a vector formed by ligating it immediately after the transcription start point of the promoter, supplying the transformed plant with ingredients that are raw materials for secondary metabolites and applying environmental stress, It is also possible to produce the desired secondary metabolite preferentially.
  • the present invention also provides a method for modifying a nucleotide sequence of a 5 ′ UTR coding site in a stress environment by modifying the base sequence of the 5 ′ UTR coding site so that the 5 ′ UTR sequence encoded in any gene becomes the specific 5 ′ UTR sequence. Also included is a method for producing a recombinant gene (recombinant DNA molecule) that can avoid or reduce the suppression of translation of a protein encoded (preferably under heat stress and / or salt stress).
  • the gene whose base sequence of the 5 'UTR coding site is modified.
  • the same protein as the protein encoded by the above-mentioned recombinant gene can be exemplified.
  • the gene can also be obtained in the same manner as the gene used as a raw material for the above-mentioned recombinant gene.
  • the modification of the base sequence may be performed according to a conventional method, for example, the method described above. Other conditions can be performed in the same manner as the production of the recombinant DNA molecule described above.
  • the present invention is also suitable for any gene under a stress environment (preferably by modifying the base sequence of the 5 ′ UTR coding site so that the 5 ′ UTR sequence to be encoded becomes the specific 5 ′ UTR sequence described above. Includes a method for avoiding or reducing the suppression of translation of a protein encoded under heat stress and / or salt stress).
  • the gene whose base sequence of the 5 'UTR coding site is modified.
  • the same protein as the protein encoded by the above-mentioned recombinant gene can be exemplified.
  • the gene can also be obtained in the same manner as the gene used as a raw material for the above-mentioned recombinant gene.
  • the modification of the base sequence may be performed according to a conventional method, for example, the method described above. Other conditions can be performed in the same manner as the production of the recombinant DNA molecule described above.
  • Artificial mRNA molecule The present invention also encompasses the “mRNA molecule having a specific 5 ′ UTR sequence” described in the above “Recombinant gene (recombinant DNA molecule)” column. Note that the mRNA molecule is an artifact (ie, an artificial mRNA molecule) and does not include mRNA molecules that exist in nature.
  • the artificial mRNA molecule may be obtained by transcription of the recombinant DNA molecule of the present invention or may be chemically synthesized.
  • the above-described transformant is grown under environmental stress (preferably under heat stress and / or salt stress), and mRNA is recovered from the transformant by a conventional method, thereby efficiently obtaining the artificial mRNA molecule. be able to.
  • the artificial mRNA molecule By introducing the artificial mRNA molecule into a cell (preferably a plant cell or protoplast) by a conventional method and culturing the cell under environmental stress (preferably under heat stress and / or salt stress), the above-mentioned transformant.
  • the protein encoded by the artificial mRNA molecule can be preferentially produced.
  • the introduction method into cells and stress conditions may be the same as described above, for example.
  • Sequence feature to avoid or reduce translational repression by environmental stress prediction method is to avoid or reduce translational repression by environmental stress in plants, also predicting method of sequence features in 5'UTR provided.
  • a nucleic acid having a 5 ′ UTR having the sequence characteristics predicted by the prediction method is also provided.
  • the present invention includes, for example, the inventions described in the following items A to F.
  • a nucleic acid sequence comprising a 5 ′ untranslated region derived from a gene naturally expressed in a plant or a modified sequence thereof, which avoids or reduces translational suppression due to environmental stress, In the 5 ′ untranslated region, the region from the base position k ′ to k ′ + L′ ⁇ 1 set in item 1 in the 5 ′ untranslated region derived from a gene naturally expressed in a plant is the specific sequence of item 1.
  • An array, In the modified sequence the region from base position k ′ to k ′ + L′ ⁇ 1 set in item 1 in the 5 ′ untranslated region derived from a gene naturally expressed in plants is substituted with the specific sequence of item 1.
  • a nucleic acid sequence which is a sequence.
  • Item C A gene comprising the nucleic acid sequence according to Item B.
  • Item D An expression vector comprising the nucleic acid sequence according to Item B, wherein the nucleic acid sequence is linked immediately after the transcription start point.
  • Item E A transformant comprising the expression vector according to Item D.
  • Item F A transformed plant comprising the expression vector according to Item D.
  • sequence feature in the 5 ′ untranslated region means a specific sequence in the region from the base position k ′ to the k ′ + L′ ⁇ 1 from the 5 ′ end in the 5 ′ UTR.
  • the present invention includes the following steps (1) to (6) to perform in-silico analysis of 5′UTR sequence characteristics that regulate translational control due to environmental stress (preferably heat stress and / or salt stress). Provide a method of using and predicting.
  • N is the number of gene samples and is an integer of 2 or more.
  • the N genes include a plurality of genes having different translation states.
  • the translation state for example, a test result obtained by comprehensively analyzing changes in the translation state of a gene by polysome / microarray analysis or the like can be referred to.
  • the nucleic acid molecule containing 5 ′ UTR is not particularly limited as long as the translation level can be measured, and examples thereof include synthetic mRNA incorporating a reporter gene such as f-luc gene downstream of 5 ′ UTR.
  • the form of the nucleic acid molecule used for the measurement is not particularly limited, and may be, for example, a form in which the synthetic mRNA is introduced into an appropriate protoplast.
  • the environmental stress condition means a condition in which stress (preferably heat stress and / or salt stress) is applied under a different environment such as high temperature, high osmotic pressure, and high salt concentration.
  • the control condition means a normal condition, in other words, a condition similar to the environmental stress condition except that the environmental stress is not applied.
  • the method for obtaining the relative activity value of the translation level is not particularly limited, and can be performed according to a known method. For example, using a synthetic mRNA in which a reporter gene such as an f-luc gene is inserted downstream of a 5'UTR of a gene, a transient transformant is prepared and the transformant is subjected to environmental stress conditions or a control.
  • the expression level (translation amount) of the reporter gene compared to when placed under conditions is measured as an activity value, and the ratio can be defined as a “relative activity value”.
  • K is a variable indicating the base position from the 5 ′ end in 5′UTR, and is an integer of 1 or more and 5′UTR or less.
  • T is a value indicating the number of consecutive bases in a partial sequence that appears at least once in a sequence of length L from k to k + L ⁇ 1, and is an integer of 1 or more and L or less.
  • a sequence consisting of t bases appearing at least once in a sequence of length L in the range from base position k to k + L-1 in N samples is R 1 (t ), R 2 (t),..., R v (t), R V (t).
  • the frequency of occurrence of each sequence is f i (k, k + L-1) (R 1 (t)),..., f i (k, k + L-1) (R v (t)),... , f i (k, k + L ⁇ 1) (R V (t)).
  • the v-th array frequency is expressed as a variable f i (k, k + L ⁇ 1) (R v (t)).
  • constructing a correlation equation represents a relative activity value as a function of the frequency of appearance of the base sequence. And the regression coefficient of the appearance frequency of each base sequence is calculated
  • test method is t test.
  • Bases that are statistically significant in the relative activity value y are extracted for each base position, and any base at any position in the sequence of length L ranging from the base position k to k + L-1 is positive or negative. Information on whether to contribute to the relative activity value under any condition can be obtained.
  • factor X (N ⁇ V matrix) is linearly related to response y (N ⁇ 1).
  • factor X and response Y are expressed as in the following equations (5) and (6). be able to.
  • p k is a weight vector of the k-th component in X
  • q k is a coefficient of the k-th component in y.
  • D is the number of PLS components
  • t k is the kth latent variable
  • E is the residual of X
  • e is the residual of y.
  • D which is the number of components of PLS, is calculated as the number of components when the prediction accuracy is maximized by sequentially calculating the prediction accuracy by leave-one-out cross-validation every time the number of components is increased.
  • the calculation of the prediction accuracy can be performed using an index that associates the predicted value with the actual measurement value by leave-one-out cross-validation such as the Q 2 value, the correlation coefficient between the predicted value and the actual measurement value.
  • Q 2 is a scale indicating the prediction accuracy of the model, and can be expressed by the following equation (7).
  • y obs is a relative activity value obtained experimentally
  • y pred is a predicted value by the constructed model.
  • F is the residual of y.
  • a regression model with base positions k ′ and L ′ having a prediction accuracy relative to the relative activity value equal to or higher than a set value is selected from a plurality of regression models constructed by changing k and L, and the selected regression A specific sequence in the region from base position k ′ to k ′ + L′ ⁇ 1 is predicted using the model.
  • a plurality of regression models are constructed by changing the values of k and L. And the regression model of base position k 'and L' which makes the prediction precision with respect to a relative activity value more than a setting value is selected from them.
  • the prediction accuracy a known index can be used, and an example is Q 2 value.
  • Q 2 value is used as the prediction accuracy, it is considered that the region having a higher Q 2 value has a higher prediction accuracy, and that region directly affects the translation state under the environmental stress condition. From this, base positions k ′ and L ′ are selected as regions for improving such prediction accuracy, and regression models of the base positions k ′ and L ′ are selected.
  • k ′ is a constant that sets the prediction accuracy of the variable k to a set value or more
  • L ′ is a constant that sets the prediction accuracy of the variable L to a set value or more.
  • the region from k ′ to k 1 ′ + L 1 ′ ⁇ 1 determined by k ′ and L ′ is an important region for avoiding or reducing translational suppression due to environmental stress in plants.
  • the set value can be appropriately set according to the purpose, but is usually 0 or more, preferably 0.5 or more, more preferably 0.6 or more, and particularly about 0.8 or more.
  • a plurality of k ′ and L ′ can be selected according to the prediction accuracy.
  • k 1 ′ and L 1 ′ with the highest prediction accuracy are selected from k ′ and L ′ that are equal to or higher than the set value, and k 2 ′ and L 2 ′ with the second highest prediction accuracy are selected. be able to.
  • the specific sequence 1 in the region from the base position k 1 ′ to k 1 ′ + L 1 ′ ⁇ 1 is predicted using k 1 ′ and L 1 ′, and further the base position k using k 2 ′ and L 2 ′. It is also possible to predict the specific sequence 2 in the region from 2 ′ to k 2 ′ + L 2 ⁇ 1.
  • the specific sequence is a base sequence obtained from the selected regression model and a base sequence having a prediction accuracy equal to or higher than a set value. In other words, it is a base sequence excellent in the function of avoiding or reducing translational suppression due to environmental stress in plants.
  • the prediction method of the present invention can also be realized by a computer system using a computer program, for example.
  • it can be realized in a computer (computer system) shown in FIG. .
  • the present invention also includes a prediction system that realizes the prediction method of the present invention.
  • the present invention includes the following prediction system.
  • a system for predicting sequence features in a 5 ′ untranslated region (5′UTR) that avoids or reduces translational suppression due to environmental stress in plants Means for determining the relative activity value of the translation level under environmental stress conditions with respect to the control conditions of the nucleic acid molecule containing each 5 ′ UTR for N genes that are naturally expressed in plants, Means for determining the appearance frequency of a base sequence consisting of t bases that appears at least once for a sequence of length L from the base position k to k + L-1 from the 5 'end in the 5'UTR; Means for constructing a correlation between the relative activity value and the appearance frequency of the base sequence, and determining a regression coefficient of the appearance frequency of each base sequence by multivariate analysis; Using the regression coefficient, the regression coefficient values corresponding to the four bases A, U, G, and C at each base position in the length L region from the base position k to k + L ⁇ 1 are obtained, Means for determining the contribution of each base to the relative activity value; Means for
  • the prediction method of the present invention can include other steps other than the above (1) to (6) as long as the effects of the present invention are not impaired.
  • polysome / microarray analysis it is possible to add a step of analyzing changes in the translational state of a gene that is naturally expressed in plants under control conditions and environmental stress conditions.
  • N genes used in the step (1) can be selected.
  • the present invention can include known methods that are usually used in in silico analysis and multivariate analysis, as necessary.
  • Nucleic acid molecules comprising predicted 5 ′ untranslated regions or modified sequences thereof The present invention also includes nucleic acid molecules comprising 5 ′ untranslated regions or modified sequences thereof having sequence characteristics obtained by the predicting method.
  • the present invention relates to (1) a nucleic acid molecule comprising a 5 ′ untranslated region having a sequence feature obtained by the above-mentioned 1 prediction method, and (2) a sequence feature obtained by the above-mentioned 1 prediction method.
  • the nucleic acid molecule of (1) is a nucleic acid molecule containing a 5 ′ untranslated region derived from a gene naturally expressed in a plant, and the prediction method in a 5 ′ untranslated region derived from a gene naturally expressed in a plant
  • the region from base position k ′ predicted in step k ′ + L′ ⁇ 1 is a nucleic acid molecule having a specific sequence predicted by the prediction method.
  • 5'UTR1 (good (1)): SEQ ID NO: 4 in the sequence listing acacaagcauuuucaaggauaucaaaucacaaucccaagaagagcaauaacaagagaagaagaaguaguucaagaauuaaggaagagagcuucuccguuaaaguauagugagagaau Array of 5'UTR2 (good (2)): SEQ ID NO: 5 in the sequence listing auaacacauuucaagcauuggauuaaucaaagacaaagaaaacgaaa Array of 5'UTR3 (good (3)): SEQ ID NO: 6 in the sequence listing uacaucacaaucacacaaaaacuaacaaaagaucaaaagcaaguucuucacuguugaua Of the sequence.
  • Modified 5'UTR1 The 1st to 7th sequence from the 5 'end in the sequence of the 5' untranslated region derived from the gene naturally expressed in plants is replaced with the sequence of SEQ ID NO: 7 (uuaaaa)
  • Modified 5'UTR2 A sequence in which the 12th to 32nd sequence from the 5 'end in the 5' untranslated region derived from a gene naturally expressed in plants is replaced with the sequence of SEQ ID NO: 8 (acaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)
  • Modified 5′UTR3 The 1-7 base sequence from the 5 ′ end in the 5 ′ untranslated region derived from a gene naturally expressed in plants is replaced with the sequence of SEQ ID NO: 7 (uuaaaa)
  • the nucleic acid molecule comprising the predicted 5 'untranslated region of the present invention having the above sequence characteristics or a modified sequence thereof has a characteristic that it can avoid or reduce translational suppression due to environmental stress in plants.
  • ⁇ Normal plants are inhibited from translating proteins from most mRNAs when subjected to environmental stress.
  • a nucleic acid molecule containing the 5 'untranslated region of the present invention or a modified sequence thereof is introduced, suppression of translation under environmental stress conditions can be avoided and protein synthesis can be maintained.
  • the present invention also includes a gene comprising a nucleic acid sequence containing the predicted 5 'untranslated region or a modified sequence thereof in the present invention.
  • the gene of the present invention contains a protein coding sequence in addition to the predicted 5 'untranslated region or a modified sequence thereof.
  • the gene of the present invention includes a nucleic acid sequence containing the predicted 5 ′ untranslated region of the present invention or a modified sequence thereof, thereby preventing or reducing translational suppression caused by environmental stress. In this case, the protein synthesis ability is maintained.
  • the present invention also includes an expression vector into which the nucleic acid molecule is inserted.
  • the type of vector, the method for inserting the nucleic acid molecule into the vector, the mode of linking the nucleic acid molecule and the vector, etc. are the same as described above.
  • the present invention also includes a transformant that can be obtained by introducing the expression vector into a host.
  • a transformant that can be obtained by introducing the expression vector into a host.
  • the type of host and the method for introduction into the host are the same as described above.
  • an area important for translation control under environmental stress can be accurately predicted.
  • the prediction method of the present invention is a method for predicting sequence features in 5′UTR that are important for translational control under environmental stress, and predicting important regions in 5′UTR that avoid translational suppression due to environmental stress with high accuracy. It was confirmed by experimental verification that this could be done (Example).
  • the sequence of the gene indicated by the AGI code can be obtained from, for example, the homepage of The Arabidopsis Information Resource (TAIR).
  • TAIR The Arabidopsis Information Resource
  • Plasmid pT3-FL-pA vector which is a template for Firefly luciferase (hereinafter “f-luc”) vector
  • pT3 which is a template for Renilla luciferase (hereinafter “r-luc”) vector -RL-pA vector was prepared by the following method.
  • the f-luc and r-luc forward primers were designed to have the following restriction enzyme sites and T3 promoter sequences upstream of the ATG corresponding to the start codon.
  • the f-luc and r-luc backward primers were designed to have the following restriction enzyme sequences downstream of the TAA corresponding to the stop codon.
  • telomere sequence at the 3 'end is the following synthetic oligonucleotide:
  • the double-stranded fragments annealed with pT3-FL and pT3-RL were prepared by inserting them into EcoRI / BanIII sites, which were designated as pT3-FL-pA and pT3-RL-pA, respectively.
  • Amplification of the coding region of Firefly luciferase was performed by PCR reaction using the above pT3-FL-pA as a template.
  • the forward primer was designed to have BssHII and NcoI restriction enzyme sites upstream of ATG corresponding to the start codon.
  • a part of the downstream sequence of the start codon was mutated to design an AatII site (GACGCC ⁇ GACGTC). Adding a mutation will change the third alanine of f-luc to valine.
  • Each PCR product was digested with BssHII / NspV and inserted into the BssHII / NspV site of the pT3-FL-pA vector to obtain a template plasmid pFL-pA for in vitro synthesis.
  • a sequence in which a part of the 5 'UTR sequence was substituted was prepared as a PCR amplified fragment or a synthetic oligonucleotide using a mutation-introducing primer and inserted into the NcoI / AatII site of pFL-pA.
  • plasmids for transcription in vitro pT3- 5'UTR- FL-pA in which various kinds of 5′UTR sequences were linked were obtained.
  • FIG. 1 An outline of plasmid construction is shown in FIG. As shown in FIG. 1, a DNA fragment ligated with a 5 'UTR sequence to be tested downstream of the T3 promoter was inserted into a plasmid for f-luc mRNA synthesis using an NcoI / AatII site. In-vitro synthesized f-luc mRNA has a GG derived from the T3 promoter added to the 5 'end of the 5' UTR to be tested.
  • the synthesis was performed according to the protocol attached to the kit.
  • the synthesized RNA was treated with DNase I attached to the kit, purified by LiCl precipitation, and dissolved with attached RNase-free water.
  • the cap structure was added using the ScriptCap m 7 G Capping System (EPICENTRE). The operation followed the protocol attached to the kit.
  • the capped RNA was purified using RNeasy kit (QIAGEN) and eluted with RNase-free water. RNA concentration was measured using a spectrophotometer. RNA quality was assayed by 1.5% denaturing agarose gel electrophoresis.
  • Protoplasts were collected again by centrifugation, and suspended in an MMG solution (0.4 M mannitol, 15 mM MgCl 2 , 4 mM Mes-KOH, pH 5.7) so that the cell concentration was 1 ⁇ 10 4 cells / ⁇ l.
  • MMG solution 0.4 M mannitol, 15 mM MgCl 2 , 4 mM Mes-KOH, pH 5.7
  • sequence information related to relative activity values 2-1 Definition of sequence information and activity information
  • sequence information and activity information Experiments according to the above methods 1-1 to 1-7 (in other words, several genes with different translation states are extracted and a reporter in which 5'UTRs of these genes are linked Relative f-luc activity value in protoplasts (ie, normal) obtained by standing at normal temperature (22 ° C) and heat stress condition (37 ° C) obtained in transient expression experiments conducted by introducing mRNA into cultured cell protoplasts
  • the relative f-luc activity value in the protoplasts kept at the heat stress condition (37 ° C.) relative to the f-luc activity value in the protoplasts kept at the temperature (22 ° C.) is expressed as “relative activity value”.
  • the relative activity value of the i-th sample is y i .
  • Fig. 2 shows the relationship between sequence information and the definition of relative activity values.
  • each sequence is expressed as f i (k, k + L-1) (R 1 (t)),..., f i (k, k + L-1) (R v (t)), ..., F i (k, k + L-1) (R V (t)).
  • the v-th sequence frequency is represented as a variable f i (k, k + L ⁇ 1) (R v (t)).
  • FIG. 3 shows t consecutive bases (R 1 (t), R 2 (t),..., R v (t in a sequence of length L in the interval [k, k + L ⁇ 1] in N samples. )) Frequency.
  • I the regression coefficient at the v-th base frequency. Further, the contribution to the relative activity value in the sequence region was compared by Q 2 by calculating the regression coefficient described in 2-4.
  • a matrix is created in which the coefficients are arranged at the positions of k + j, k + j + 1,..., k + j + t-1 in the i-th sample (see the upper part of Fig. 4).
  • the mean and unbiased variance of the regression coefficients having four bases A, U, G, and C at the k + j-th base position are av (A) k + j , av (U) k + j , av (G) k + j , av (C) k + j and V (A) k + j , V (U) k + j , V (G) k + j , V (C) k + j . That is,
  • base corresponds to each base of A, U, G, and C.
  • This p (base) k + j is a probability that the regression coefficient of the base corresponding to base in k + j is assumed to be zero by chance, so that the sequence of length L in the range from base position k to k + L-1 Information on which base at which position contributes to the relative activity value under either positive or negative conditions can be obtained.
  • Fig. 4 shows the regression coefficient at the j + kth base position and the average and universal variance of the regression coefficients corresponding to the four bases.
  • a regression model was constructed by PLS (Partial Least Squares) method.
  • the PLS method is a method of linearly associating factor X (N ⁇ V matrix) with response y (N ⁇ 1).
  • p k is a weight vector of the k-th component in X
  • q k is a coefficient of the k-th component in y.
  • D is the number of PLS components
  • t k is the kth latent variable
  • E is the residual of X
  • e is the residual of y.
  • D is a number of components of the PLS is sequentially calculates the Q 2 value by Leave-one-out cross-validation each time increasing the number of components, Q 2 value is determined as the number of components when maximized.
  • Q 2 is a scale indicating the prediction accuracy of the model, and is expressed by the following equation (7).
  • y obs is an experimentally obtained value obtained experimentally
  • y pred is a predicted value based on the constructed model.
  • PLS equations (5) and (6) can be combined into equation (8).
  • F is the residual of y.
  • a normal cell prepared by dividing a cultured cell obtained by culturing under the same conditions and a cell subjected to heat stress treatment (37 ° C., 10 minutes) were each subjected to polysome analysis using sucrose density gradient centrifugation. It was confirmed by an absorption profile that the polysome fraction was decreased by the heat stress treatment and at the same time the non-polysome fraction was increased. Extract and purify RNA from the polysome fraction and non-polysome fraction respectively, and prepare antisenseantiRNA (aRNA) fluorescently labeled with Cy3 (polysome fraction) or Cy5 (non-polysome fraction) using the purified RNA as a template.
  • aRNA antisenseantiRNA
  • oligoarray® (Arabidopsis 3oligo® microarray® 44K; Agilent Technologies). Based on the microarray data obtained, the polys ⁇ ⁇ score (polysome fraction [Cy3] / non-polysome fraction [Cy5] Log ratio) and polysome fractions are used as indicators to indicate the translation state (polysome formation state) of individual mRNA species. A polygon ratio (corresponding to Cy3 / [Cy3 + Cy5]) indicating the percentage (%) of mRNA present in the minute was calculated.
  • Polysomescore in normal cells was determined by the following formula.
  • poly con represents the Cyanine3 (Cy3) signal value in normal cell-derived microarray data, in other words, the amount of mRNA present in the polysome fraction in normal cells.
  • nonpoly con represents the Cyanine5 (Cy5) signal value in microarray data derived from normal cells, in other words, the amount of mRNA present in the fraction that is not a polysome fraction in normal cells.
  • polyscore in the heat-stressed cells was determined by the following formula.
  • poly heat represents the Cy3 signal value in microarray data derived from cells subjected to high-temperature stress treatment, in other words, the amount of mRNA present in the polysome fraction in heat-treated cells.
  • nonpoly heat represents the Cy5 signal value in microarray data derived from cells subjected to high-temperature stress treatment, in other words, the amount of mRNA present in a fraction that is not a polysome fraction in cells subjected to heat stress treatment.
  • ⁇ PS represented by the following formula was determined for each gene as an index for evaluating changes in the translational state due to heat stress treatment.
  • the mRNA of 19099 gene was ranked according to the magnitude of ⁇ PS. That is, the higher the value of ⁇ PS, the higher the ranking, and the lower the value, the lower the ranking. A larger ⁇ PS value indicates that the translation state is not affected, and a smaller ⁇ PS value indicates that translation is significantly inhibited.
  • FIG. 7 (A) shows a diagram in which the ⁇ PS values of the selected 17 genes are circled on the ⁇ PS histogram.
  • FIG. 8 (A) shows a diagram in which ⁇ PS values of 22 genes are circled on the ⁇ PS histogram.
  • FIG. 6 shows an outline of the transient expression experiment.
  • f-luc firefly luciferase
  • r-luc Renilla luciferase
  • Firefly luciferase mRNA has a cap structure in which 5 'UTRs of each gene are linked and a poly A sequence, and is also represented as + cap_5' UTR_f-luc_pA mRNA.
  • RenillaRluciferase (r-luc) mRNA is a control RNA having a cap structure and a poly A sequence, and is also expressed as + cap_r-luc_pA mRNA.
  • Fig. 8 (B) shows the test results of 22 genes selected mainly in the top ranking.
  • An equal amount of + cap_5′UTR_f-luc_pA mRNA ligated with the 5′UTR of the selected gene was introduced into the protoplast together with the control + cap_r-luc_pA mRNA.
  • Relative f-luc activity value (a) or r-luc activity value with the AGI code of the selected gene on the vertical axis and the ⁇ PS value in parentheses on the horizontal axis, and the activity value at 22 ° C. for each construct on the horizontal axis (b) is shown.
  • the results showed the mean value of three independent experiments and the standard error.
  • FIG. 7 (B) (a) At4g14560 and FIG. 8 (B) (a) At1g55330, At1g77120, etc. Such a decrease in relative activity value was not observed.
  • 5'UTR is the level of mRNA translation under heat stress. It was shown to be an important factor in determining the response.
  • a sequence of length L was extracted from any position k of the 5 'UTR, such as 10 bases from the 5' end or 20 bases from the 10th base (Fig. 10-B).
  • Partial 3 base sequence included in the extracted region for example, count the frequency of AAA, AUG, UUC, etc. (Fig. 10-C), build a regression model of the specified range using the PLS method, 3 base sequence regression The coefficient for which the coefficient was obtained (FIG. 10-D).
  • Figure 11 shows the effect on translation under heat stress in 5'UTR by in silico analysis using the sequence information of 39 'gene 5'UTR treated in this study and the relative activity value obtained from transient expression experiments. The analysis result of the area which affects is shown.
  • 5 'UTR 7' base plays a very important role in avoiding translational suppression under heat stress Transient expression experiment of the importance of 7 bases 5 'UTR side predicted from in silico analysis, in other words, 9 bases predicted from in silico analysis excluding GG derived from T3 promoter It verified by.
  • At4g14560 is indicated as good (1)
  • At3g15450 is indicated as good (2)
  • At1g77120 is indicated as good (3).
  • At3g47610 is indicated by bad (1)
  • At5g57440 is indicated by bad (2).
  • FIG. 13 shows the full length of the 5 ′ UTR of the gene used and the structure of the 5 ′ UTR in which the 1st to 7th bases are replaced with the other 5 ′ UTR by the 1st to 7th bases.
  • Table 2 also shows the AGI code, sequence and base length for the 5 'UTR (a)-(l) used in the analysis of FIG.
  • the underlined part in bold indicates the sequence after exchanging 7 bases at the 5 'end.
  • the + cap_5′UTR_f-luc_pA mRNA added with (a) to (l) was introduced into the protoplast together with the control + cap_r-luc_pA mRNA. After dividing the protoplast into which the mRNA was introduced into two samples, each was allowed to stand at normal temperature (22 ° C.) and heat stress (37 ° C.) for 20 minutes. Thereafter, protoplasts were collected from each sample, and f-luc and r-luc activities were measured.
  • FIG. 13 shows the f-luc activity value of each construct when the activity value at 22 ° C. is 1. The results are shown as the average value of three independent experiments and the standard error.
  • the region excluding GG derived from the T3 promoter was estimated from the 14th to 34th bases predicted from in silico analysis.
  • FIG. 14 shows the relative activity values predicted from the regression model based on the 12th to 32nd bases by the PLS method, and the horizontal axis shows the measured relative activity values of 39 genes.
  • r represents the Pearson correlation coefficient.
  • p ⁇ 0.01 indicates the result of uncorrelated test.
  • the 5'UTR length of the paired genes to be replaced is as close as possible, and the short pair (47nt and 42nt) and the long pair (210nt) 198nt) exchanged with each other.
  • Figure 15 shows the results of a short pair replacement test.
  • 5′UTR white frame of gene At3g15450 with a high relative activity value
  • 5 ′ end 7 bases and 12th to 32nd bases of 5′UTR gray frame of gene At5g39740 with a low relative activity value
  • FIG. 15 (a), (a) and (e) show the 5 'UTR full-length sequence.
  • (b), (c), (d), (f), (g), and (h) are obtained by substituting the 5 ′ UTR of the indicated base region with the other 5 ′ UTR. Indicates.
  • Table 3 shows the AGI code, sequence and base length of the 5 'UTR (a)-(h) used in the analysis of FIG.
  • the underlined portion in bold indicates the sequence after exchanging the 7 'base at the 5' end and the 12th to 32nd bases, or both.
  • the + cap_5′UTR_f-luc_pA mRNA added with each 5 ′ UTR shown in (a)-(h) was introduced into the protoplast together with the control + cap_r-luc_pA mRNA. After dividing the protoplast into which the mRNA was introduced into two samples, each was allowed to stand at normal temperature (22 ° C.) and heat stress (37 ° C.) for 20 minutes. Thereafter, protoplasts were collected from each sample, and f-luc and r-luc activities were measured.
  • FIG. 15 shows the f-luc activity value when the activity value at 22 ° C. is 1 for each construction.
  • the results showed the mean value of three independent experiments and the standard error. Note that, regardless of the type of + cap_5′UTR_f-luc_pA mRNA tested, the expression level from + cap_r-luc_pA mRNA decreased to the same extent.
  • Fig. 16 shows the result of the long pair exchange test.
  • (A) and (e) show the full-length sequence of 5 'UTR.
  • (b), (c), (d), (f), (g) and (h) are obtained by substituting the 5′UTR with the other 5′UTR for the 5′UTR. Indicates.
  • Table 4 shows the 5 'UTR AGI code, sequence and base length of (a) to (h) used in the analysis of FIG.
  • the underlined portion in bold indicates the sequence after exchanging the 7 'base at the 5' end and the 12th to 32nd bases, or both.
  • the + cap_5′UTR_f-luc_pA mRNA added with each 5′UTR illustrated in (a)-(h) was introduced into the protoplast together with the + cap_r-luc_pA mRNA as a control.
  • Two samples of protoplasts into which mRNA had been introduced were separated, and each was allowed to stand at normal temperature (22 ° C.) and heat stress (37 ° C.) for 20 minutes. Thereafter, protoplasts were collected from each sample, and f-luc and r-luc activities were measured.
  • FIG. 16 shows the f-luc activity value when the activity value at 22 ° C. is 1 for each construction.
  • the results showed the mean value of three independent experiments and the standard error. Note that, regardless of the type of + cap_5′UTR_f-luc_pA mRNA tested, the expression level from + cap_r-luc_pA mRNA decreased to the same extent.
  • Fig. 17 shows the structure of the structure.
  • (a) shows the full length of 5 'UTR.
  • (b), (c), and (d) show the 5′UTR in which the 5′UTR of the gene having a high relative activity value is substituted for the base region of the indicated number.
  • Table 5 shows the 5 'UTR AGI code, sequence, and base length from (a) to (d) used in the analysis of FIG.
  • the underlined portion in bold indicates the sequence after exchanging the 7 'base at the 5' end and the 12th to 32nd bases, or both.
  • the + cap_5′UTR_f-luc_pA mRNA added with each 5 ′ UTR shown in (a) to (d) was introduced into the protoplast together with the control + cap_r-luc_pA mRNA. After dividing the protoplast into which mRNA was introduced, each was allowed to stand at normal temperature (22 ° C.) and heat stress (37 ° C.) for 20 minutes. Thereafter, the protoplasts were recovered and the f-luc and r-luc activities were measured.
  • FIG. 17 shows the f-luc activity value when the activity value at 22 ° C. of each construction is 1.
  • the results showed the mean value of three independent experiments and the standard error. Note that, regardless of the type of + cap_5′UTR_f-luc_pA mRNA tested, the expression level from + cap_r-luc_pA mRNA decreased to the same extent.
  • FIGS. 17-c and d) show relative activity values similar to those of the full-length sequence before exchanging the important region.
  • the 5'UTR 5 'end 7 bases and the 12th to 32nd base important regions of 5'UTR, which had a high relative activity value, exist not only in the 5'UTR but also on the 5' end side. It was shown that this could be important.
  • Non-patent Document 4 in which the full-length 5′UTR sequence was arranged by Kawaguchi et al., The relative activity value predicted from the 5′UTR sequence and the construction model was calculated. The degree of correlation was verified with respect to the ⁇ PS value ⁇ calculated from the polysome / microarray analysis described in 1), that is, the index indicating the change in the translational state due to heat stress.
  • Fig. 18 shows the results of examining the correlation between the relative activity predicted from the model formula constructed by PLS analysis in silico and ⁇ PS analyzed by polysome / microarray.
  • the horizontal axis of ⁇ PS obtained by polysome / microarray, the vertical axis of in silico by PLS obtained in 3-2-1 for the 1746 gene whose 5'UTR sequence information has already been arranged The relative activity value predicted from the constructed model obtained by the analysis is shown.
  • r represents the Pearson correlation coefficient.
  • p ⁇ 0.01 indicates the result of uncorrelated test. *
  • FIG. 19 based on the regression coefficient of the partial base sequence calculated by the PLS model constructed based on the 5th end 7 bases and 12th to 32nd base information in 4-1.
  • the PLS regression coefficient of each base at each position was placed (FIG. 19-A), the average value of each of the four bases at each base position was determined, and t-test was further performed (FIG. 19-B).
  • the optimal sequence was extracted by calculating the weight of each base at each base sequence position (influence on expression intensity).
  • the horizontal axis in FIG. 20 shows the base position within the 5 ′ UTR.
  • 9 represents the ninth base from the 5 ′ end of the.
  • the vertical axis represents the weight of each base, that is, the expression intensity calculated based on the model constructed by the PLS method. This indicates that the higher this is, the more the suppression of translation of reporter mRNA under heat stress is.
  • the one with the highest weight among the four bases was selected (black frame). If all four bases were not significant, the base with the highest base weight was selected (black circle).
  • GG was added to the 5 'end after transcription from the T3 promoter in the mRNA used in the transient expression experiment, and the sequence ⁇ ⁇ (GG + 5' UTR sequence) including that was added for in silico analysis. Using.
  • the actual 5 'UTR area is the area value minus 2.
  • 5′UTR As a verification method, using two types of 5′UTR having a low relative activity and different lengths, specifically, 5′UTR (42 bp) of At5g39740 and 5′UTR (198 bp) of At2g41630, Transient expression experiments were carried out by replacing the 5′-end 7 bases, the 12th to 32nd bases, or both with the optimal sequences shown above, and verified the effect on translation of reporter mRNA under heat stress.
  • the 5 ′ end 7 bases are uuaaaaa
  • the 12th to 32nd bases are acaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
  • the test 5′UTR 5 ′ end 7 bases and the 12th to 32nd bases or both The region of was replaced with the same sequence.
  • Fig. 21 shows the result of a short 5'UTR (At5g39740) replacement test.
  • the left figure of Fig. 21 shows the 5'UTR configuration.
  • (a) shows the full-length sequence of 5 'UTR.
  • (b) shows a result obtained by replacing the base region of the indicated number with the same region of 5′UTR (indicated by “good”) of the gene At3g15450 having a high relative activity value with respect to (a).
  • (c), (d), and (e) show the respective 5 ′ UTRs in which the base region of the indicated number is replaced with the optimum sequence (shown as “best”).
  • Table 6 shows the 5 'UTR AGI code, sequence and base length from (a) to (e) used in the analysis of FIG.
  • the underlined portion in bold indicates the sequence after exchanging the 7 'base at the 5' end and the 12th to 32nd bases, or both.
  • the + cap_5′UTR_f-luc_pA mRNA added with each 5′UTR shown in (a)-(e) was introduced into the protoplast together with the control + cap_r-luc_pA ⁇ ⁇ mRNA. After dividing the protoplast into which the mRNA was introduced into two samples, each was allowed to stand at normal temperature (22 ° C.) and heat stress (37 ° C.) for 20 minutes. Thereafter, protoplasts were collected from each sample, and f-luc and r-luc activities were measured.
  • the right figure of FIG. 21 shows the f-luc activity value when the activity value at 22 ° C. of each construction is 1.
  • the results showed the mean value of three independent experiments and the standard error. Note that, regardless of the type of + cap_5′UTR_f-luc_pA mRNA tested, the expression level from + cap_r-luc_pA mRNA decreased to the same extent.
  • FIG. 22 shows the result of a long 5 ′ UTR (At2g41630) replacement test.
  • At2g41630 was examined the effect on the translation of reporter mRNA by replacing the 7 'base of the 5' UTR (gray frame) and the 12th to 32nd bases of the 5 'UTR (gray frame) of the gene At2g41630 with a low relative activity value, or both. .
  • Fig. 22 shows the 5'UTR configuration.
  • (a) shows the full-length sequence of 5 'UTR.
  • (b) shows a result obtained by replacing the base region of the indicated number with the same region of 5′UTR (indicated by “good”) of the gene At4g12000 having a high relative activity value with respect to (a).
  • (C), (d), and (e) show the respective 5′UTRs in which the base region of the indicated number is replaced with the optimal sequence (indicated by “best”).
  • AUG was generated when the 12th to 32nd bases were replaced with the optimal sequence, so the 33rd u was replaced with a.
  • the optimal sequence presented by calculating the weight of each base at each base position using in ⁇ ⁇ silico analysis increased the relative activity value by the replacement experiment for two kinds of 5 ′ UTRs. This is considered to be a result supporting the usefulness of the in silico analysis using the PLS analysis that derived the importance of the 7 'base and the 12th to 32nd bases presented so far.
  • FIG. 23 shows a construction diagram of a general plant expression vector. In this case, a 5 ′ UTR and a gene are introduced into the XbaI and SacI sites of the basic expression vector.
  • the 5'UTR features that can avoid translational suppression due to heat stress include 5'UTR 5 'end 7 bases, 12th to 32nd base regions, It has become clear that it is important to be at the 5 'end rather than within the 5' UTR. Therefore, when the construction as shown in FIG. 23 is performed, there is a possibility that the ability to avoid translational suppression due to stress cannot be exhibited.
  • FIG. 24 shows the configuration of the 5 ′ UTR.
  • (At1g77120 +) indicates mRNA when a sequence derived from a vector expected to 5'UTR of At1g77120 is added, and (At1g77120) indicates mRNA having only 5'UTR of At1g77120.
  • C represents the transcription start point of the CaMV35S promoter, that is, the 5 ′ end of 5′UTR.
  • Table 8 shows 5'UTR sequences of (At1g77120 +) and (At1g77120).
  • the + cap_5′UTR_f-luc_pA mRNA added with each 5′UTR shown in FIG. 24 was introduced into the protoplast together with the control + cap_r-luc_pA ⁇ ⁇ mRNA. After dividing the protoplast into which the mRNA was introduced into two samples, each was allowed to stand at normal temperature (22 ° C.) and heat stress (37 ° C.) for 20 minutes. Thereafter, protoplasts were collected from each sample, and f-luc and r-luc activities were measured.
  • FIG. 25 shows the f-luc activity value when the activity value at 22 ° C. of each construct At1g77120 + and At1g77120 shown in FIG. 24 is 1. The results showed the mean value of three independent experiments and the standard error. Note that, regardless of the type of + cap_5′UTR_f-luc_pA mRNA tested, the expression level from + cap_r-luc_pA mRNA decreased to the same extent.
  • the PCR products were self-ligated, and the resulting plasmids were named At4g14560 NF HSP-T, At1g77120 NF HSP-T, At3g47610 NF HSP-T, At5g39740NF HSP-T, At5g39740-S NF HSP-T, respectively. Moreover, it was confirmed that there was no mutation by determining the base sequence.
  • HindIII / ERI fragment of At4g14560 + NF HSP-T, At1g77120 + NF HSP-T, At4g14560 NFHSP-T, At1g77120 NF HSP-T, At3g47610 NF HSP-T, At5g39740 NF HSP-T, At5g39740-S NF HSP-T was inserted into pRI910 (TAKARA-BIO) to prepare a transformation vector.
  • the prepared binary vector was introduced into Agrobacterium tumefaciens EHA105 strain by electroporation and stored at ⁇ 80 ° C. as a glycerol stock.
  • FIG. 26 illustrates a construction diagram of the prepared binary vector.
  • washing medium 1 ml or 500 ⁇ l of washed culture cells and the same amount of washed medium, modified LS Km Cb plate (modified LS medium, 40 mg / l kanamycin, 250 mg / l carbenicillin sodium, 3 g / l gellan gum ).
  • Subculture of stably transformed cells is carried out under conditions of 22 ° C, 18 hours light period / 6 hours dark period, stirring speed 120 rpm, 95 ml modified LS Km Cb liquid medium in 300 ml Erlenmeyer flask Used in. Every week, 4 to 10 ml of cells that reached the stationary phase were transplanted to 95 ml of fresh medium and subcultured.
  • KCl 25 mM MgCl 2 , 2 mM EGTA, 100 ⁇ g / ml heparin, 2% polyoxyethylene 10-tridecyl ether, 1% sodium deoycholate) were added and suspended gently.
  • the outline of polysome / RT-PCR analysis is shown in FIG.
  • the number of ribosomes bound to the mRNA is the efficiency of translation (translation occurs actively in mRNAs in which a large number of ribosomes are combined to form polysomes, and translation is suppressed in mRNAs in which ribosomes dissociate into non-polysomes. ) (Mathews et al., (2007). (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press), pp. 1-40 .; Kawaguchiand Bailey-Serres, KawaguchiR., And Bailey-Serres J. (2002). Curr Opin Plant Biol.
  • Polysome analysis that can fractionate mRNA present in cell extract by sucrose density gradient centrifugation according to the number of ribosome binding, Widely used as a method for analyzing changes in translation status.
  • RNA from each fraction of sucrose density gradient fractionated by the number of ribosome binding and performing RT-PCR the behavior of GUS mRNA with different 5 'UTR and endogenous gene mRNA depending on the presence or absence of stress can be analyzed.
  • the translation maintenance ability of each 5 'UTR can be verified.
  • two lines were used for analysis for each transformed cell.
  • the RT-PCR method was used to examine the distribution of mRNA of At1g77120 or At4g14560, which is a gene that maintains translation under heat stress, in the sucrose density gradient solution. Even at 10 min), translation was not suppressed and remained in the polysome fraction (FIG. 28C).
  • the mRNA distribution of the housekeeping genes Actin2 (Act2) and At3g47610 that undergo translational repression under heat stress is significantly shifted from the polysome to the non-polysome fraction due to heat stress treatment.
  • Act2 Act2
  • At3g47610 As with At3g47610 mRNA, GUS mRNA to which At3g47160 5'UTR was added was also shown to inhibit polysome formation and suppress translation (FIG. 28C).
  • At5g39740 transformed cells For the At5g39740 transformed cells, the same analysis as the At3g47610 transformed cells was performed. As a result, as with At3g47610 transformed cells, the polysome fraction decreased by stress treatment and the non-polysome fraction increased (Figure 29A), the distribution of 28S rRNA and 18S rRNA in the sucrose density gradient and the behavior of its absorption profile. (FIG. 29B), and maintenance of polysome formation of At1g77120 mRNA and transfer of Act2 and At3g47610 mRNA to non-polysome fractions were observed (FIG. 29C).
  • GUS mRNA with the addition of 5'UTR of At5g39740 which is a gene that suppresses translation under heat stress, inhibited translation under heat stress as in the case of using 5'UTR of At3g47610 ( Figure 29). C).
  • At4g14560 transformed cells The same analysis was performed on At4g14560 transformed cells. As a result, as before, the heat stress treatment at 37 ° C for 10 minutes reduced the polysome fraction and increased the non-polysome fraction (Figure 30A), and the distribution of 28S rRNA and 18S rRNA in the sucrose density gradient. (Fig.30B), and the translation of the At4g14560 mRNA, which maintains translation even under heat stress, and the suppression of Act2 and At3g47610 mRNA by heat stress treatment, which undergoes translational suppression under heat stress. Transition to the polysome fraction was observed (FIG. 30C).
  • GUS mRNA with 5'UTR of At4g14560 which maintains translation even under heat stress, remained in the polysome fraction even under heat stress (Fig. 30 C).
  • At5g39740-S transformed cells Create a 5'UTR by replacing the 5'UTR of At5g39740, whose translation is suppressed under heat stress, with the predicted optimal sequence (1-7 bases from the 5 'end: uuaaaaa, 12-32 bases: acaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa, see Figure 20)
  • An expression vector expressing this 5 ′ UTR was constructed.
  • the predicted optimal sequence was introduced into At5g39740 5′UTR at the same position as in FIGS. 21 (e) and 22 (e).
  • At5g39740-S transformed cells into which the constructed binary vector was introduced were created, and the effect of the predicted optimal sequence was verified in the same manner as the analysis of the transformed cells described above. The results are shown in FIG.
  • At4g14560-5'UTR and At1g77120-5'UTR which have translation maintenance ability at least under heat stress, show translation maintenance ability under salt stress and use At3g47610-5'UTR, which suppresses translation under heat stress. It was shown that the translation was similarly suppressed even under salt stress.
  • GUS activity was measured according to the method of Jefferson et al. (Jefferson et al., (1987). EMBO J. 6, 3901-3907). The cultured cells were centrifuged (800 rpm, 1 min, 22 ° C) to precipitate the cells, added with 300 ⁇ l Passive Lysis buffer (Promega), and disrupted by Handy Sonic (TOMY SEIKO CO., LTD) . The disrupted cells were centrifuged again (15000 rpm, 5 min, 4 ° C.), and 200 ⁇ l of the supernatant was collected.
  • reaction product 100 ⁇ l of supernatant and 200 ⁇ l of 1.5 mM 4-Methylumbelliferyl- ⁇ -D-glucuronide solution are mixed and reacted, and then reaction product is used with SPECTRAFLUOR (TECAN) at excitation wavelength of 365 nm and fluorescence wavelength of 455 nm
  • SPECTRAFLUOR TECAN
  • the fluorescence intensity of 4-methyl-umbelliferone (4-MU) was measured every minute for 30 minutes.
  • the average value of 4MU per minute was determined by subtracting the average value of blank from the average value of the increase in measured value per minute from 10 minutes to 20 minutes.
  • GUS activity was calculated as pmol / min / mg protin.
  • Protein assay reagent Commassie Brilliant blue G-250 100 mg / l 95% Ethanol 50 ml / l 85% (w / v) Phosphoric acid 100 ml / l
  • the 5′UTR of these genes has a translation maintaining ability, and the gene encoding the mRNA having the 5′UTR is expressed in the cell and placed under heat stress conditions. This indicates that the protein encoded by is preferentially produced.

Abstract

本発明は、環境ストレス下における植物の翻訳状態の変化に関わる5'UTRにおける配列特徴を見出し、当該配列特徴を備えた組換えDNA分子、発現ベクター、及び形質転換体等を提供することを課題とする。以下の(a)又は(b)の5'UTRを有するmRNAをコードする組換えDNA分子、該組換えDNA分子をプロモーターの転写開始点直後に連結してなるベクター、及び該ベクターを含む形質転換体が本発明により提供される。 (a)5'端から1~7番目及び12~32番目の塩基配列が、配列番号4、6、20、36、又は60の1~7番目及び12~32番目の塩基配列である、5'UTR (b)(a)の5'UTRの塩基配列において、1又は数個の塩基が置換され、 熱ストレス及び塩ストレスからなる群より選択される少なくとも1種の環境ストレスによる翻訳抑制を回避する5'UTR。

Description

環境ストレス下の翻訳抑制を回避する5’UTRをコードする組換えDNA分子
 本発明は、環境ストレス下における翻訳抑制回避に寄与する5’非翻訳領域(以下、5’UTRともいう)をコードする組換え遺伝子、当該組換え遺伝子を含んでなる発現ベクター、及び当該発現ベクターを含む形質転換体に主に関する。
 動物や酵母といった他の真核生物に同じく、一般的に植物においても、翻訳の開始反応がタンパク質合成の律速となっている (非特許文献1)。
 この翻訳開始は、植物が外環境の変化に速やかに応答して遺伝子発現を制御するための、重要な制御段階の一つである。例えば、温度、浸透圧、嫌気 (低酸素)といった様々なストレスを受けることによって、大部分のmRNAからタンパク質への翻訳が抑制される。一方、全てのmRNAからの翻訳が抑制されるわけではなく、一部のmRNAからの翻訳、つまりタンパク質合成は維持されている。この様な知見から、大部分のタンパク質合成を抑制する一方で、選択的かつ迅速に必要なタンパク質を合成するという、外環境からのストレスに応答した翻訳レベルでの遺伝子発現制御機構の存在が示唆されている。
 近年では、様々な環境ストレスによる各mRNAの翻訳状態の変化を網羅的に解析する試みが行われている。これはリボソームの結合程度に応じて分画したmRNAをマイクロアレイ解析に供することによって、各遺伝子の翻訳状態を網羅的に把握するという試みである。(非特許文献2~5)。このような試みによって、ストレスによっても翻訳の抑制を受けない数多くのmRNA種の存在が明らかとなると共に、ストレスに応答した翻訳レベルの変化は、mRNA種によって抑制の有無が決定されるというデジタル的なものではなく、全体として連続的なものである様子が明らかとなってきた。
 一方、ストレスによる翻訳状態の変化と5’非翻訳領域(5’UTR)の関連性が示唆されている。例えば、トウモロコシHsp 101やADH、シロイヌナズナHSP 81-3の5’UTRをレポーター遺伝子に連結した解析から、ストレスによる翻訳抑制の回避には5’UTRが重要であることが報告されている (非特許文献6~8)。しかしながら、その詳細な機構はまだ明らかになっていない。
 Kawaguchiらは、前述のポリソーム/マイクロアレイ解析により明らかにした、乾燥ストレス下のシロイヌナズナ植物体における各mRNA種の翻訳状態と5’UTRの特徴との関連性に基づき、ストレス下での翻訳制御を規定する5’UTR内の因子の探索を試み、乾燥ストレス下の翻訳状態と5’UTRの長さや低いGC含有率との間に相関関係が存在することを報告している。しかしながら、当該報告においても、重要な配列特徴を見出すには至っておらず、Kawaguchiら自身も、「5’UTRの長さやGC含有率が、ストレス下における翻訳状態の決定
的な要因ではないと考えられる」と言及している(非特許文献4)。
Gebauer, F. and Hentze, M.W., 2004, Molecular mechanisms of translational control,Nat. Rev. Mol. Cell Biol., 5: 827-835 Kawaguchi, R., Girke, T., Bray, E. A., and Bailey-Serres. J., 2004, Differential mRNA translation contributes to gene regulation under non-stress and dehydration stress conditions in Arabidopsis thaliana, The Plant Journal, 38: 823-839. Branco-Price, C., Kawaguchi, R., Ferreira, R. B., and Bailey-Serres, J., 2005, Genome-wide Analysis of Transcript Abundance and Translation in Arabidopsis Seedlings Subjected to Oxygen Deprivation, Annals of Botany, 96: 647-660 Kawaguchi, R., and Bailey-Serres, J., 2005, mRNA sequence features that contribute to translational regulation in Arabidopsis, Nucleic AcidsRes., 3: 955-965 Branco-Price, C., Kaiser, K. A., Jang, C. J. H., Larive, C. K., and Bailey-Serres, J., 2008, Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in Arabidopsis thaliana. The Plant Journal, 56: 743-755 Matsuura, H., Shinmyo, A., and Kato, K. 2008. Preferential translation mediated by Hsp 81-3 5’-UTR during heat shock involves ribosome entry at the 5’-end rather than an internal site in Arabidopsis suspension cells. J. Biosci. Bioeng., 105: 39-47 Dinkova, T. D., Zepeda, H., Martinz-Salas, E., Martinez, L. M., Nieto-Sotelo, J., and de Jimenez, E. S., 2005, Cap-independent translation of maize Hsp 101. The Plant Journal, 41: 722-731 Mardanova, E. S., Zamchuk. L. A., Skulachev, M. V., and Ravin, N, V., 2008, The 5’untranslated region of the maize alcohol dehydrogenase gene contains an internal ribosome entry site. Gene, 420: 11-16
 上述のように、植物の環境ストレス下における翻訳制御を規定する5'UTRの配列特徴は明らかになっていない。
 本発明は、環境ストレス下における植物の翻訳状態の変化に関わる5'UTRにおける配列特徴を見出し、当該配列特徴を備えた組換え遺伝子、発現ベクター、及び形質転換体を提供することを主な課題とする。
 本発明者は、上記課題を解決するために鋭意研究を重ねた結果、5'UTRの配列情報及び環境ストレス下での翻訳状態の変化に係る実測データを得、また当該データに基づいてin silico解析を行い、更に実測データに基づく検証を行うことにより、翻訳制御を規定する5'UTRの重要領域及び配列を同定することに成功し、更に鋭意検討を重ねて本発明を完成するに至った。
 すなわち、本発明は例えば以下の項1~13の組換えDNA分子、人工mRNA分子、ベクター、及び形質転換体、並びに該形質転換体を用いて前記組換え遺伝子がコードするタンパク質を産生させる方法、遺伝子製造方法、翻訳抑制回避方法を包含する。
項1.
以下の(a)又は(b)の5’UTRを有するmRNAをコードする組換えDNA分子。
(a)
(i)5’端から1~7番目が配列番号4の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号4の12~32番目の塩基配列からなる5’UTR、
(ii)5’端から1~7番目が配列番号6の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号6の12~32番目の塩基配列からなる5’UTR、
(iii)5’端から1~7番目が配列番号20の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号20の12~32番目の塩基配列からなる5’UTR、
(iv)5’端から1~7番目が配列番号36の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号36の12~32番目の塩基配列からなる5’UTR、又は
(v)5’端から1~7番目が配列番号60の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号60の12~32番目の塩基配列からなる5’UTR
(b)(a)の5’UTRの塩基配列において、1又は数個の塩基が置換され、かつ、熱ストレス及び塩ストレスからなる群より選択される少なくとも1種の環境ストレスによる翻訳抑制を回避する5’UTR。
項2.
(a)の5’UTRが、5’端に配列番号4、6、20、36、又は60の塩基配列を有する5’UTRである、請求項1に記載の組換えDNA分子。
項3.
項1又は2に記載の組換えDNA分子をプロモーターの転写開始点直後に連結してなるベクター。
項4.
項3に記載のベクターで形質転換された形質転換体。
項5.
形質転換体が形質転換植物である、項4に記載の形質転換体。
項6.
項4又は5に記載の形質転換体を、熱ストレス及び塩ストレスからなる群より選択される少なくとも1種の環境ストレス下で生育させ、前記組換えDNA分子がコードするタンパク質を産生させる方法。
項7.
項3に記載のベクターを植物に導入し、熱ストレス及び塩ストレスからなる群より選択される少なくとも1種の環境ストレスによる翻訳抑制を回避できる植物を製造する方法。
項8.
以下の(a)又は(b)の5’UTRを有するmRNAをコードするよう塩基配列を組み換えて、熱ストレス及び塩ストレスからなる群より選択される少なくとも1種の環境ストレスによる翻訳抑制を回避する遺伝子を製造する方法。
(a)
(i)5’端から1~7番目が配列番号4の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号4の12~32番目の塩基配列からなる5’UTR、
(ii)5’端から1~7番目が配列番号6の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号6の12~32番目の塩基配列からなる5’UTR、
(iii)5’端から1~7番目が配列番号20の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号20の12~32番目の塩基配列からなる5’UTR、
(iv)5’端から1~7番目が配列番号36の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号36の12~32番目の塩基配列からなる5’UTR、又は
(v)5’端から1~7番目が配列番号60の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号60の12~32番目の塩基配列からなる5’UTR
(b)(a)の5’UTRの塩基配列において、1又は数個の塩基が置換され、かつ、熱ストレス及び塩ストレスからなる群より選択される少なくとも1種の環境ストレスによる翻訳抑制を回避する5’UTR。
項9.
(a)の5’UTRが、5’端に配列番号4、6、20、36、又は60の塩基配列を有する5’UTRである、項8に記載の遺伝子を製造する方法。
項10.
以下の(a)又は(b)の5’UTRを有するmRNAをコードするよう、任意の遺伝子の塩基配列を組み換えて、熱ストレス及び塩ストレスからなる群より選択される少なくとも1種の環境ストレスにより、当該遺伝子がコードするタンパク質の翻訳が抑制されるのを回避する方法。
(a)
(i)5’端から1~7番目が配列番号4の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号4の12~32番目の塩基配列からなる5’UTR、
(ii)5’端から1~7番目が配列番号6の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号6の12~32番目の塩基配列からなる5’UTR、
(iii)5’端から1~7番目が配列番号20の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号20の12~32番目の塩基配列からなる5’UTR、
(iv)5’端から1~7番目が配列番号36の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号36の12~32番目の塩基配列からなる5’UTR、又は
(v)5’端から1~7番目が配列番号60の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号60の12~32番目の塩基配列からなる5’UTR
(b)(a)の5’UTRの塩基配列において、1又は数個の塩基が置換され、かつ、熱ストレス及び塩ストレスからなる群より選択される少なくとも1種の環境ストレスによる翻訳抑制を回避する5’UTR。
項11.
(a)の5’UTRが、5’端に配列番号4、6、20、36、又は60の塩基配列を有する5’UTRである、項10に記載のタンパク質の翻訳が抑制されるのを回避する方法。
項12.
以下の(a)又は(b)の5’UTRを有する人工mRNA分子。
(a)
(i)5’端から1~7番目が配列番号4の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号4の12~32番目の塩基配列からなる5’UTR、
(ii)5’端から1~7番目が配列番号6の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号6の12~32番目の塩基配列からなる5’UTR、
(iii)5’端から1~7番目が配列番号20の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号20の12~32番目の塩基配列からなる5’UTR、
(iv)5’端から1~7番目が配列番号36の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号36の12~32番目の塩基配列からなる5’UTR、又は
(v)5’端から1~7番目が配列番号60の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号60の12~32番目の塩基配列からなる5’UTR
(b)
(a)の5’UTRの塩基配列において、1又は数個の塩基が置換され、かつ、熱ストレス及び塩ストレスからなる群より選択される少なくとも1種の環境ストレスによる翻訳抑制を回避する5’UTR。
項13.
(a)の5’UTRが、5’端に配列番号4、6、20、36、又は60の塩基配列を有する5’UTRである、項8に記載の人工mRNA分子。
 本発明によれば、環境ストレス下において翻訳抑制が回避できる組換え遺伝子が提供される。また、当該組換え遺伝子をプロモーターの転写開始点直後に連結してなるベクター、該ベクターを含む形質転換体が提供される。これらにより、環境ストレス下においても翻訳の抑制を受けずに高い効率で遺伝子の発現を行うことが可能となる。更にこれらの技術は、特に環境ストレス耐性植物の作製や植物における安定した有用物質の生産技術の確立にも寄与する。
構築したプラスミドの概略を示す図面である。T3プロモーターの下流に試験する5’UTR配列を連結したDNA断片を、NcoI/ AatIIサイトを用いてf-luc mRNA合成用プラスミドに挿入している。 配列情報と相対活性値の設定例を示す図面である。i番目のサンプルについて配列のk番目から長さLの範囲を抜き出した配列をSeq= siksik+1…sik+L-1としている。ここで、i番目のサンプルにおける塩基配列上の位置を5’端より3’方向に、s1, s2, …, sk, …, sMとする。また、i番目のサンプルの相対活性値をyiとする。 N個のサンプルにおける区間[k,k+L-1]の長さLの配列におけるt個の連続塩基R1(t), R2(t), …, Rv(t), RV(t)の頻度の設定例を示す図面である。N個のサンプルにおける塩基位置kからk+L-1の範囲の長さLの配列において少なくとも1回出現するt個の塩基からなる配列をR1(t), R2(t), …, Rv(t), RV(t)としている。また、そのそれぞれの配列の出現頻度をfi (k, k+L-1)(R1(t)), …, fi (k, k+L-1)(Rv(t)), …, fi (k, k+L-1)(RV(t))としている。v番目の配列頻度は変量fi (k, k+L-1)(Rv(t))と表している 。 j+k番目の塩基位置における回帰係数と4つの塩基と対応した回帰係数の平均と普遍分散の設定例を示す図面である。k+j番目の4つの塩基A, U, G, Cそれぞれにおける平均値ならびに不偏分散を基に、4つの塩基A, U, G, Cに対応した回帰係数の分布が統計的に有意に正もしくは負とみなせるか否かを検定し、塩基位置kからk+L-1の範囲の長さLの配列のどの位置のどのような塩基が正あるいは負のいずれかの条件で相対活性値に寄与するかという情報を得る。 熱ストレスによるポリソーム形成状態の変化を示す指標であるΔPSのヒストグラムを19099種のmRNAについて示した図面である。ΔPSの値が小さいほどより顕著に阻害される傾向を示す。縦軸は遺伝子数を示す。 プロトプラスト一過性発現実験の概要を示す図面である。シロイヌナズナ培養細胞T87から調製したプロトプラストにin vitro合成したfirefly luciferase mRNA (f-luc mRNA)とRenilla luciferase mRNA (r-luc mRNA)をPEG法により導入した後、分割したプロトプラストをそれぞれ通常温度 (22℃)もしくは熱ストレス下(Heat stress)に20分間静置する。その後プロトプラストを回収し、ルシフェラーゼ活性(LUC activities)を測定する。m7Gはキャップ構造を、n=49はポリA配列の長さを示す。 (A)は、ΔPSの一定値ごとに選択した17遺伝子のΔPS値を、ΔPSのヒストグラム (n=19099)上に丸印で示した図面である。(B)は選択した遺伝子の5’UTRを連結した、+cap_5’UTR_f-luc_pA mRNAを等量ずつ、コントロールである+cap_r-luc_pA mRNAと共にプロトプラストに導入し、mRNAを導入したプロトプラストを分割した後、それぞれを通常温度 (22℃)、熱ストレス (37℃)で20分間静置し、その後プロトプラストを回収し、f-luc及びr-luc活性を測定した結果を示す図面である。縦軸には選択した遺伝子のAGIcodeおよび括弧内にΔPSの値を示す。横軸には各構築の22℃における活性値を1とした相対活性値を示す。(a)は相対f-luc活性値、(b)は相対r-luc活性値を示す。値は3回の独立した実験の平均値及び標準誤差で示した。 (A)は、ΔPSのランキング上位を中心に選択した22遺伝子のΔPS値を、ΔPSのヒストグラム上に丸印で示した図面である。 (B)は、選択した遺伝子の5’UTRを連結した、+cap_5’UTR_f-luc_pA mRNAを等量ずつ、コントロールである+cap_r-luc_pA mRNAと共にプロトプラストに導入し、mRNAを導入したプロトプラストを分割した後、それぞれを通常温度 (22℃)、熱ストレス (37℃)で20分間静置し、その後プロトプラストを回収し、f-luc及びr-luc活性を測定した結果を示す図面である。縦軸には選択した遺伝子のAGIcodeおよび括弧内にΔPSの値を示す。横軸には各構築の22℃における活性値を1とした相対活性値を示す。(a)は相対luc活性値、(b)はr-luc活性値を示す。値は、3回の独立した実験の平均値及び標準誤差で示した。 図7及び図8に示した22℃に対する37℃の相対活性値とΔPS値の相関を、試験した計39遺伝子について示す図面である。縦軸は対数表示である。rはピアソン相関係数を示す。相関の有無は統計的に検定している(p)。 PLS法に基づいた回帰モデルの構築と回帰係数の算出の概念図を示す図面である。 本試験で扱った39遺伝子の5’UTRの配列情報及び一過性発現実験より得られた相対活性値を用いたin silico解析による、5’UTR内の熱ストレス下における翻訳に影響を及ぼす領域を示す図面である。横軸には5’UTR内の5’端からの距離または塩基のポジションを示している。1~9(1~7)は、5'端から1~9番目の塩基(実際の5’UTRの領域は前記領域の値から2を引いた1~7塩基)の領域を示す。14~34(12~32)は、5'端から14~34番目の塩基(実際の5’UTRの領域は前記領域の値から2を引いた12~32塩基)の領域を示す。縦軸にはin silico解析によって示された、予測精度を表すQ2値を示している。Q2値が高い領域ほど予測精度が高く、その領域だけで構築したモデルを説明することができる。つまりその領域が熱ストレス下でのレポーターmRNAの選択的な翻訳に直接的に影響していることを示している。なお、一過性発現実験で用いたmRNAには全てT3プロモーターからの転写後に5’端にGGが付加されており、それを含めた配列 (GG + 5’UTRの配列)をin silico解析に用いていることから、実際の5’UTRの領域は領域の値から2を引いたものになる。 1~7番目の塩基を基にしたPLS法によって予測された相対活性値と実測の相対活性値との相関を示す図面である。縦軸には、PLS法によって5’端9塩基(実際には7塩基)を基にした回帰モデルから予測された相対活性値、横軸には39遺伝子の実測の相対活性値を示している。rはピアソン相関係数を示す。p<0.01は無相関検定の結果を示す。 5’UTRの5’端7塩基がレポーターmRNAの熱ストレス下での翻訳に与える影響を示した図面である。相対活性値の高かった5’UTR (good (1);At4g14560、good (2);At3g15450、good (3);At1g77120、黒文字)と相対活性値の低かった5’UTR (bad (1);At3g47610、bad (2);At5g57440、白文字)の5’端7塩基を入れ換えることによるレポーターmRNAの翻訳への影響を検証している。 (a)、(c)、(e)、(g)、(i)、(k)は5’UTRの全長からなるmRNAである。(b)、(d)、(f)、(h)、(j)、(l)は、それぞれの5’UTRの1~7番目の塩基を、示してある5’UTRに置換したものである。また、図面右には、図示した各5’UTRを付加した+cap_5’UTR_f-luc_pA mRNAを、コントロールである+cap_r-luc_pA mRNAと共にプロトプラストに導入し、mRNAを導入したプロトプラストを分割した後、それぞれを通常温度 (22℃)、熱ストレス (37℃)で20分間静置し、その後プロトプラストを回収し、f-luc及びr-luc活性を測定した場合における、22℃における活性値を1としたときのf-luc活性値を示す。値は、3回の独立した実験の平均値及び標準誤差で示した。 PLS法によって構築した12~32番目の塩基を基にした回帰モデルから予測された相対活性値と実測の相対活性値との相関を示す図面である。 縦軸には、PLS法によって12~32番目の塩基を基にした回帰モデルから予測された相対活性値を示す。横軸には39遺伝子の実測の相対活性値を示した。rはピアソン相関係数を示す。p<0.01は無相関検定の結果を示す。 5’UTRの5’端7塩基および12~32番目の塩基がレポーターmRNAの熱ストレス下での翻訳に与える影響を短いペア(47bpと42bp)の入れ換えにより調べた図面である。相対活性値の高かった5’UTR(At3g15450)と相対活性値の低かった5’UTR(At5g39740)の5’端7塩基および12~32番目の塩基、またはそれら両方を入れ換えることによるレポーターmRNAの翻訳への影響を検証した。(a)、(e)は5’UTRの全長配列からなるものを示す。(b)、(c)、(d)、(f)、(g)、(h)は、それぞれの5’UTRに対して、示した番号の塩基領域を他方の5’UTRに置換したものを示す。図面右には、図示した各5’UTRを付加した+cap_5’UTR_f-luc_pA mRNAを、コントロールである+cap_r-luc_pA mRNAと共にプロトプラストに導入し、mRNAを導入したプロトプラストを分割した後、それぞれを通常温度 (22℃)、熱ストレス (37℃)で20分間静置し、その後プロトプラストを回収し、f-luc及びr-luc活性を測定したときの、22℃における活性値を1としたときのf-luc活性値を示す。値は3回の独立した実験の平均値、及び標準誤差で示した。 5’UTRの5’端7塩基および12~32番目の塩基がレポーターmRNAの熱ストレス下での翻訳に与える影響を長いペア(210 bpと198 bp)の入れ換えにより調べた結果を示す図面である。相対活性値の高かった5’UTR(At4g12000)と相対活性値の低かった5’UTR(At2g41630)の5’端7塩基および12~32番目の塩基、またはそれら両方を入れ換えることによるレポーターmRNAへの発現への影響を検証した。(a)及び(e)は、5’UTRの全長配列からなるものを示す。(b)、(c)、(d)、(f)、(g)、(h)は、それぞれの5’UTRに対して、示した番号の塩基領域を他方の5’UTRに置換したものを示す。図面右には、図示した各5’UTRを付加した+cap_5’UTR_f-luc_pA mRNAを、コントロールである+cap_r-luc_pA mRNAと共にプロトプラストに導入し、mRNAを導入したプロトプラストを分割した後、それぞれを通常温度 (22℃)、熱ストレス (37℃)で20分間静置し、その後プロトプラストを回収し、f-luc及びr-luc活性を測定したときの、22℃における活性値を1としたときのf-luc活性値を示す。値は、3回の独立した実験の平均値、及び標準誤差で示した。 熱ストレス下での翻訳抑制の回避に貢献する領域と5’末端との距離を調べた結果を示す図面である。相対活性値の低かった5’UTR(At5g39740)に相対活性値の高かった5’UTR(At3g15450)を入れ換え、さらに5’端との距離を変化させ、熱ストレス下でのレポーターmRNAの翻訳に与える影響を調べた。(a)は示した5’UTRの全長からなるものを示す。(b)、(c)、(d)は、その5’UTRに対して、示した番号の塩基領域を相対活性値の高かった遺伝子の5’UTRに置換したものを示す。図面右には、図示した各5’UTRを付加した+cap_5’UTR_f-luc_pA mRNAを、コントロールである+cap_r-luc_pA mRNAと共にプロトプラストに導入し、mRNAを導入したプロトプラストを分割した後、それぞれを通常温度(22℃)、熱ストレス (37℃)で20分間静置し、その後プロトプラストを回収し、f-luc及びr-luc活性を測定したときの、各構築の22℃における活性値を1としたときのf-luc活性値を示す。値は3回の独立した実験の平均値、及び標準誤差で示した。 in silicoでのPLS解析によって構築されたモデル式から予測される相対活性値とポリソーム/マイクロアレイにて解析されたΔPSとの相関を示した図面である。横軸にポリソーム/マイクロアレイにて得られたΔPSを示す。縦軸には既に5’UTRの配列情報が整理されている1764遺伝子についてPLSによるin silico解析によって得られた構築モデルから予測された相対活性値を示す。rはピアソン相関係数を示す。p<0.01は無相関検定の結果を示す。 PLS回帰係数を用いた、各塩基位置における各塩基の相対活性値への寄与度の算出概念図を示した図面である。 本試験で扱った39遺伝子の5’UTRの配列情報及び一過性発現実験より得られた相対活性値を用いたPLSモデル構築より得られた、熱ストレス下におけるレポーターmRNAの翻訳の抑制回避に対して最も効果的であると予想される配列の抽出結果を示した図面である。横軸には5’UTR内での塩基のポジションを示している 。縦軸にはPLS法により構築されたモデルを基に算出された、各塩基の重み(発現強度)を示している。これが高いほど熱ストレス下でのレポーターmRNAの翻訳の抑制回避に寄与していることを示している。統計的に有意であるもの(p<0.05)の中で各塩基の重みが最も高いものを選択し四角で示した。また、4種の塩基とも有意でない場合は、塩基の重みが一番高い塩基を選択し、丸枠で示した。なお、一過性発現実験で用いたmRNAには全てT3プロモーターからの転写後に5’端にGGが付加されており、それを含めた配列 (GG + 5’UTRの配列)をin silico解析に用いていることから、実際の5’UTRの領域は領域の値から2を引いたものになる。 5’UTRの5’端7塩基および12~32番目の塩基を最適配列に入れ換えた場合の、レポーターmRNAの熱ストレス下での翻訳に与える影響を、短い5’UTR(42 bp)を用いて調べた結果を示す図面である。相対活性値の低かった遺伝子(At5g39740)の5’UTRの5’端7塩基および12~32番目の塩基、またはそれら両方を最適配列に入れ換えることによるレポーターmRNAの翻訳への影響を検証した。(a)は5’UTRの全長配列を示す。(b)は(a)に対して、示した番号の塩基領域を相対活性値の高かった5’UTR (At3g15450、good)の同領域に置換したものを示す。(c)、(d)、(e)は、それぞれの5’UTRに対して、示した番号の塩基領域を最適配列に置換したものを示す。図面右には、図示した各5’UTRを付加した+cap_5’UTR_f-luc_pA mRNAを、コントロールである+cap_r-luc_pA mRNAと共にプロトプラストに導入し、mRNAを導入したプロトプラストを分割した後、それぞれを通常温度 (22℃)、熱ストレス (37℃)で20分間静置し、その後プロトプラストを回収し、f-luc及びr-luc活性を測定したときの、各構築の22℃における活性値を1としたときのf-luc活性値を示した結果を示す。値は、3回の独立した実験の平均値、及び標準誤差を示した。 5’UTRの5’端7塩基および12~32番目の塩基を最適配列に入れ換えた場合の、レポーターmRNAの熱ストレス下での翻訳に与える影響を長い5’UTR(198 bp)を用いて調べた結果を示す図面である。相対活性値の低かった5’UTR (At2g41630)の5’端7塩基および12~32番目の塩基、またはそれら両方を最適配列に入れ換えることによるレポーターmRNAの翻訳への影響を検証した。(a)は5’UTRの全長配列を示す。(b)は(a)に対して、示した番号の塩基領域を相対活性値の高かった5’UTR (At4g12000、good)の同領域に置換したものを示す。(c)、(d)、(e)は、それぞれの5’UTRに対して、示した番号の塩基領域を最適配列に置換したものを示す。なおdとeについては12~32番目の塩基を最適配列に置換した場合にAUGが生じるため、33番目のuをaに置換している。 図面右には、各5’UTRを付加した+cap_5’UTR_f-luc_pA mRNAを、コントロールである+cap_r-luc_pA mRNAと共にプロトプラストに導入し、mRNAを導入したプロトプラストを分割した後、それぞれを通常温度 (22℃)、熱ストレス (37℃)で20分間静置し、その後プロトプラストを回収し、f-luc及びr-luc活性を測定したときの、各構築の22℃における活性値を1としたときのf-luc活性値を示した結果を示す。値は、3回の独立した実験の平均値、及び標準誤差を示した。 一般的な植物発現ベクターの構築図を示す図面である。「CaMV35S」はカリフラワーモザイクウイルス35S rRNA遺伝子由来のプロモーター領域を、「NOS-T」はアグロバクテリウムのノパリン合成酵素遺伝子由来のターミネーター領域をそれぞれ表す。「Xb」、「Sac」はそれぞれXbaI、SacI制限酵素認識部位を表す。矢印は転写開始点および転写方向を示す。 検証に用いた合成mRNAの概略を示す図面である。At1g77120+は、At1g77120の5’UTR に予想されるベクター由来の配列が付加された場合のmRNAを示す。At1g77120は、At1g77120の5’UTRのみを持つmRNAを示す。また、Cは、CaMV35Sプロモーターの転写開始点、即ち、5’UTRの5’末端を示す。 図24で示した各構築物At1g77120+及びAt1g77120について、22℃における活性値を1としたときのf-luc活性値を示した図面である。値は、3回の独立した実験の平均値、及び標準誤差を示した。 (a)At4g14560、At1g77120、At3g47610、At5g39740の5’UTRをHSPターミネーターを下流に持つレポーターGUS遺伝子に付加し、CaMV35Sプロモーター支配下に置き構築したバイナリーベクターの構築図を示す。(b)At4g14560+形質転換細胞とAt1g77120+形質転換細胞に導入されたバイナリーベクターの構築図を示す。 ポリソーム/RT-PCR解析の概要を示す。 At3g47610形質転換細胞におけるポリソーム/RT-PCR解析結果を示す。独立に取得した2ラインの形質転換細胞を用いた結果を示す。(A)通常細胞(22℃)及び熱ストレス処理した細胞(37℃/10 min)から調製した細胞抽出液をショ糖密度勾配遠心法(15-60%)により分画した後、254 nmの吸光プロファイルを記録した結果を示す。(B)通常細胞及び37℃/10 minの熱ストレス処理した細胞由来の細胞抽出液を分画したショ糖密度勾配を15の画分に分けて回収し、各画分からRNAを抽出した。各画分の位置は上記(A)の吸光プロファイルに対応している。抽出したRNA溶液を等容量ずつ変性ゲル電気泳動に供し、EtBr染色を行った。28S、18S rRNAの位置を図に示す。(C)抽出したRNAを等容量ずつRT-PCR解析に供し、それぞれの画分に存在するAt3g47610 5’UTR付加GUS、At1g77120、At4g14560、Actin2 それぞれのmRNAを検出した結果を示す。 At5g39740形質転換細胞におけるポリソーム/RT-PCR解析結果を示す。独立に取得した2ラインの形質転換細胞を用いた結果を示す。(A)通常細胞(22℃)及び熱ストレス処理した細胞(37℃/10 min)から調製した細胞抽出液をショ糖密度勾配遠心法(15-60%)により分画した後、254 nmの吸光プロファイルを記録した結果を示す。(B)通常細胞及び37℃/10 minの熱ストレス処理した細胞由来の細胞抽出液を分画したショ糖密度勾配を15の画分に分けて回収し、各画分からRNAを抽出した。各画分の位置は上記(A)の吸光プロファイルに対応している。抽出したRNA溶液を等容量ずつ変性ゲル電気泳動に供し、EtBr染色を行った。28S、18S rRNAの位置を図に示す。(C)抽出したRNAを等容量ずつRT-PCR解析に供し、それぞれの画分に存在するAt5g39740 5’UTR付加GUS、At1g77120、At3g47610、Actin2 それぞれのmRNAを検出した結果を示す。 At4g14560形質転換細胞におけるポリソーム/RT-PCR解析結果を示す。独立に取得した2ラインの形質転換細胞を用いた結果を示す。(A)通常細胞(22℃)及び熱ストレス処理した細胞(37℃/10 min)から調製した細胞抽出液をショ糖密度勾配遠心法(15-60%)により分画した後、254 nmの吸光プロファイルを記録した結果を示す。(B)通常細胞及び37℃/10 minの熱ストレス処理した細胞由来の細胞抽出液を分画したショ糖密度勾配を15の画分に分けて回収し、各画分からRNAを抽出した。各画分の位置は上記(A)の吸光プロファイルに対応している。抽出したRNA溶液を等容量ずつ変性ゲル電気泳動に供し、EtBr染色を行った。28S、18S rRNAの位置を図に示す。(C)抽出したRNAを等容量ずつRT-PCR解析に供しそれぞれの画分に存在するAt4g14560 5’UTR付加GUS、At4g14560、At3g47610、Actin2 それぞれのmRNAを検出した結果を示す。 At1g77120形質転換細胞におけるポリソーム/RT-PCR解析結果を示す。独立に取得した2ラインの形質転換細胞を用いた結果を示す。(A)通常細胞(22℃)及び熱ストレス処理した細胞(37℃/10 min)から調製した細胞抽出液をショ糖密度勾配遠心法(15-60%)により分画した後、254 nmの吸光プロファイルを記録した結果を示す。(B)通常細胞及び37℃/10 minの熱ストレス処理した細胞由来の細胞抽出液を分画したショ糖密度勾配を15の画分に分けて回収し、各画分からRNAを抽出した。各画分の位置は上記(A)の吸光プロファイルに対応している。抽出したRNA溶液を等容量ずつ変性ゲル電気泳動に供し、EtBr染色を行った。28S、18S rRNAの位置を図に示す。(C)抽出したRNAを等容量ずつRT-PCR解析に供しそれぞれの画分に存在するAt1g77120 5’UTR付加GUS、At1g77120、At3g47610、Actin2 それぞれのmRNAを検出した結果を示す。 At4g14560+形質転換細胞におけるポリソーム/RT-PCR解析結果を示す。独立に取得した2ラインの形質転換細胞を用いた結果を示す。(A)通常細胞(22℃)及び熱ストレス処理した細胞(37℃/10 min)から調製した細胞抽出液をショ糖密度勾配遠心法(15-60%)により分画した後、254 nmの吸光プロファイルを記録した結果を示す。(B)通常細胞及び37℃/10 minの熱ストレス処理した細胞由来の細胞抽出液を分画したショ糖密度勾配を15の画分に分けて回収し、各画分からRNAを抽出した。各画分の位置は上記(A)の吸光プロファイルに対応している。抽出したRNA溶液を等容量ずつ変性ゲル電気泳動に供し、EtBr染色を行った。28S、18S rRNAの位置を図に示す。(C)抽出したRNAを等容量ずつRT-PCR解析に供しそれぞれの画分に存在するAt4g14560+ 5’UTR付加GUS、At4g14560、At3g47610、Actin2 それぞれのmRNAを検出した結果を示す。 At1g77120+形質転換細胞におけるポリソーム/RT-PCR解析結果を示す。独立に取得した2ラインの形質転換細胞を用いた結果を示す。(A)通常細胞(22℃)及び熱ストレス処理した細胞(37℃/10 min)から調製した細胞抽出液をショ糖密度勾配遠心法(15-60%)により分画した後、254 nmの吸光プロファイルを記録した結果を示す。(B)通常細胞及び37℃/10 minの熱ストレス処理した細胞由来の細胞抽出液を分画したショ糖密度勾配を15の画分に分けて回収し、各画分からRNAを抽出した。各画分の位置は上記(A)の吸光プロファイルに対応している。抽出したRNA溶液を等容量ずつ変性ゲル電気泳動に供し、EtBr染色を行った。28S、18S rRNAの位置を図に示す。(C)抽出したRNAを等容量ずつRT-PCR解析に供しそれぞれの画分に存在するAt1g77120+ 5’UTR付加GUS、At1g77120、At3g47610、Actin2 それぞれのmRNAを検出した結果を示す。 At5g39740-S形質転換細胞におけるポリソーム/RT-PCR解析結果を示す。独立に取得した2ラインの形質転換細胞を用いた結果を示す。(A)通常細胞(22℃)及び熱ストレス処理した細胞(37℃/10 min)から調製した細胞抽出液をショ糖密度勾配遠心法(15-60%)により分画した後、254 nmの吸光プロファイルを記録した結果を示す。(B)通常細胞及び37℃/10 minの熱ストレス処理した細胞由来の細胞抽出液を分画したショ糖密度勾配を15の画分に分けて回収し、各画分からRNAを抽出した。各画分の位置は上記(A)の吸光プロファイルに対応している。抽出したRNA溶液を等容量ずつ変性ゲル電気泳動に供し、EtBr染色を行った。28S、18S rRNAの位置を図に示す。(C)抽出したRNAを等容量ずつRT-PCR解析に供し、それぞれの画分に存在するAt5g39740-S 5’UTR付加GUS、At1g77120、At3g47610、Actin2 それぞれのmRNAを検出した結果を示す。 At3g47610形質転換細胞におけるポリソーム/RT-PCR解析結果を示す。(A)通常細胞(22℃)及び塩ストレス処理した細胞(200 mM NaCl/10 min)から調製した細胞抽出液をショ糖密度勾配遠心法(15-60%)により分画した後、254 nmの吸光プロファイルを記録した結果を示す。(B)通常細胞及び200 mM NaCl/10 minの塩ストレス処理した細胞由来の細胞抽出液を分画したショ糖密度勾配を15の画分に分けて回収し、各画分からRNAを抽出した。各画分の位置は上記(A)の吸光プロファイルに対応している。抽出したRNA溶液を等容量ずつ変性ゲル電気泳動に供し、EtBr染色を行った。28S、18S rRNAの位置を図に示す。(C)抽出したRNAを等容量ずつRT-PCR解析に供し、それぞれの画分に存在するAt3g47610 5’UTR付加GUS、At1g77120、At3g47610、Actin2 それぞれのmRNAを検出した結果を示す。 At4g14560形質転換細胞におけるポリソーム/RT-PCR解析結果を示す。(A)通常細胞(22℃)及び塩ストレス処理した細胞(200 mM NaCl/10 min)から調製した細胞抽出液をショ糖密度勾配遠心法(15-60%)により分画した後、254 nmの吸光プロファイルを記録した結果を示す。(B)通常細胞及び200 mM NaCl/10 minの塩ストレス処理した細胞由来の細胞抽出液を分画したショ糖密度勾配を15の画分に分けて回収し、各画分からRNAを抽出した。各画分の位置は上記(A)の吸光プロファイルに対応している。抽出したRNA溶液を等容量ずつ変性ゲル電気泳動に供し、EtBr染色を行った。28S、18S rRNAの位置を図に示す。(C)抽出したRNAを等容量ずつRT-PCR解析に供し、それぞれの画分に存在するAt4g14560 5’UTR付加GUS、At4g14560、At3g47610、Actin2 それぞれのmRNAを検出した結果を示す。 At1g77120形質転換細胞におけるポリソーム/RT-PCR解析結果を示す。(A)通常細胞(22℃)及び塩ストレス処理した細胞(200 mM NaCl/10 min)から調製した細胞抽出液をショ糖密度勾配遠心法(15-60%)により分画した後、254 nmの吸光プロファイルを記録した結果を示す。(B)通常細胞及び200 mM NaCl/10 minの塩ストレス処理した細胞由来の細胞抽出液を分画したショ糖密度勾配を15の画分に分けて回収し、各画分からRNAを抽出した。各画分の位置は上記(A)の吸光プロファイルに対応している。抽出したRNA溶液を等容量ずつ変性ゲル電気泳動に供し、EtBr染色を行った。28S、18S rRNAの位置を図に示す。(C)抽出したRNAを等容量ずつRT-PCR解析に供し、それぞれの画分に存在するAt1g77120 5’UTR付加GUS、At1g77120、At3g47610、Actin2 それぞれのmRNAを検出した結果を示す。 形質転換細胞を3日間通常培養し、その後熱ストレス条件(24時間/32℃)下で培養したときの、3日目における活性値を1としたときの4日目の相対GUS活性値をグラフとして示す。培養条件及び測定回数は次の通り。通常の植え継ぎ後、各形質転換細胞を3日間/22℃の通常条件で培養した後、細胞を分取した。残りの培養液を24時間/32℃で培養した後、再び細胞の分取を行った。分取した細胞から、粗タンパク質溶液を調製し、タンパク質量当たりのGUS活性を測定した。活性測定はそれぞれ4もしくは5回行い、GUS活性の平均値、及び標準偏差を示した。 本発明の予測方法を実現するための処理を行うコンピュータ・システムの概略構成を示すブロック図である。コンピュータ・システム1は、データの演算を行うCPU10と、演算の作業領域に使用するメモリ11と、演算データを記録する記録部12と、各部の間でデータを伝送するバス13と、外部機器とのデータの入出力を行うインタフェース部14(図ではI/F部と記す)とを備えている。なお、図では記載を省略しているが、コンピュータが通常備えている操作手段(キーボード等)や表示手段(ディスプレイ等)も備えている。システム1が行う処理は、実際にはシステム1のCPU10が行う処理を意味する。CPU10はメモリ11を作業領域として必要なデータ(処理途中の中間データ等)を一時記憶し、記録部12に演算結果等の長期保存するデータを適宜記録する。また、システム1は、本発明の予測方法の各ステップの処理を行うために使用するプログラムを、例えば実行形式(例えば、C言語等のプログラミング言語からコンパイラにより変換されて生成される)で記録部12に予め記録しており、システム1は、記録部12に記録したプログラムを使用して処理を行う。
 以下、本発明について、さらに詳細に説明する。なお、本明細書におけるアミノ酸、ペプチド、塩基配列、核酸などの略号による表示は、IUPAC、IUBの規定、「塩基配列又はアミノ酸配列を含む明細書などの作成のためのガイドライン」(特許庁編)及び当該分野における慣用記号に従うものとする。特に、DNAはデオキシリボ核酸を表し、RNAはリボ核酸を表し、mRNAはメッセンジャーRNAを表す。
 また、遺伝子操作等の分子生物学的操作については、適宜公知の方法を用いることができる。例えば、特に断りのない限り、Molecular Cloning: A Laboratory Manual 3rd Edition(Cold Spring Harbor Laboratory Press)等に記載の方法に従って行うことができる。
組換え遺伝子(組換えDNA分子)
 本発明では、遺伝子の実体はmRNAをコードしているDNA分子である。遺伝子から転写されたmRNAは5’UTR、ORF(open reading frame)、及び3’UTRの3つの領域に区分けされる。本発明の組換え遺伝子は、特定の5’UTR配列を有するmRNAをコードするように組み換えられた遺伝子である。すなわち特定の5’UTR配列をコードする組換え遺伝子であるともいえる。特定の5’UTR配列を有するmRNAを発現する組換え遺伝子であるともいってもよい。本発明の組換え遺伝子は、自然界に存在する遺伝子(つまり、各種生物種が有する遺伝子)ではなく、人工的に少なくとも5’UTRに相当する部分の塩基配列を変化させて製造した遺伝子である。
 なお、遺伝子がコードするmRNAを翻訳することでタンパク質が得られる。よって、遺伝子はタンパク質をコードしているといえる。また、mRNAはタンパク質をコードしているともいえる。
 遺伝子の実体はDNA分子であるため、本明細書において、矛盾がない限り「遺伝子」を「DNA分子」と換言してもよい。例えば、組換え遺伝子は、組換えDNA分子と換言できる。詳細には、本発明の組換え遺伝子は、mRNAをコードするDNAの塩基配列を組み換えて(変化させて)得た組換えDNA分子である。また、好ましくは、単離された組換えDNA分子である。当該組換えDNA分子から転写されて得られるmRNA分子は、特定の5’UTR配列を有する。
 また、本発明は、当該特定の5’UTR配列を有する人工mRNA分子も包含する。当該人工mRNA分子は、本発明の組換えDNA分子が転写されて得られるものであってもよく、化学的に合成されたものであってもよい。
 遺伝子の塩基配列を人工的に変化させる方法は、様々な公知の方法が知られており、適宜選択して使用することができる。例えば、適切な制限酵素により遺伝子を切断した後新たな核酸断片を当該切断部へ連結させることにより、又は、目的遺伝子と完全に相補的ではないプライマー対を設計してPCRを行うことにより、あるいはこのような手法を組み合わせて用いることによって、遺伝子の塩基配列を改変することができる。
 自然界に存在するほとんどの遺伝子は、熱ストレス又は塩ストレスといった環境ストレス下では、通常の環境下に比べてmRNAからタンパク質への翻訳が抑制される。本発明の組換え遺伝子は、特定の5’UTR配列をコードすることにより、環境ストレス(特に熱ストレス及び塩ストレス)下での翻訳抑制を回避できる。つまり、本発明の組換え遺伝子(組換えDNA分子)から転写されてできるmRNA分子は、特定の5’UTR配列を有するため、環境ストレスにより当該mRNA分子からタンパク質への翻訳が抑制されるのを低減することができ、好ましくは翻訳が抑制されるのを防止することができ、より好ましくは翻訳が促進され得る。
 当該特定の5’UTR配列とは、5’端から1~7番目が特定の塩基配列であり、かつ5’端から12~32番目が特定の塩基配列である5’UTR配列をいう。当該特定の5’UTR配列の5’端から8~11番目の塩基配列は、特に制限されない。例えば、5’端から8~11番目の各塩基はアデニン、ウラシル、グアニン、又はシトシン(A、U、G、又はC)のいずれでもありえる。好ましくは、自然界に存在するmRNAが有する5’UTRの5’端から8~11番目の塩基配列である。より好ましくは、本発明の組み換え遺伝子により環境ストレスによる翻訳抑制を回避させて発現させるタンパク質をコードする、自然界に存在するmRNAが有する5’UTR配列の5’端から8~11番目の塩基配列である。
 当該特定の5’UTR配列は、より詳細には、5’端から1~7番目及び12~32番目の塩基配列が、配列番号4、6、20、36、又は60の配列の1~7番目及び12~32番目の塩基配列である。
 配列番号4は遺伝子At4g14560の5’UTR配列であり、配列番号6は遺伝子At1g77120の5’UTR配列であり、配列番号20は遺伝子At3g15450の5’UTR配列であり、配列番号36は遺伝子At4g12000の5’UTR配列であり、配列番号60は下述する方法により予測された最適5’UTR配列である。それぞれの5’UTR配列は表1に示す通りである。なお、予測最適配列(配列番号60)の8~11番目の塩基は「n」で表されているが、当該nはアデニン、ウラシル、グアニン、又はシトシン(A、U、G、又はC)を示す。つまり、nはA、U、G、又はCのいずれの塩基でもよいことを示す。
 また、それぞれの配列の1~7番目及び12~32番目の塩基配列には、表1において下線を引いた。当該特定の5’UTR配列は、5’端から1~7番目及び12~32番目の塩基配列が、それぞれ表1の下線で示す塩基配列である5’UTR配列であるということもできる。つまり、当該特定の5’UTRは、
5’端から1~7番目の塩基配列がacacaagであり、5’端から12~32番目の塩基配列がuucaaggauaucaaaucacaaである5’UTR、
5’端から1~7番目の塩基配列がuacaucaであり、5’端から12~32番目の塩基配列がcacacaaaacuaacaaaagauである5’UTR、
5’端から1~7番目の塩基配列がauaacacであり、5’端から12~32番目の塩基配列がcaagcauuggauuaaucaaagである5’UTR、
5’端から1~7番目の塩基配列がauuaacaであり、5’端から12~32番目の塩基配列がaaccgaaaaaagaaaaaaacuである5’UTR、又は
5’端から1~7番目の塩基配列がuuaaaaaであり、5’端から12~32番目の塩基配列がacaaaaaaaaaaaaaaaaaaaである5’UTRである。
Figure JPOXMLDOC01-appb-T000001
 また、当該特定の5’UTR配列は、32塩基長以上であれば、その塩基長は特に制限されない。好ましくは32~250塩基長、より好ましくは32~210塩基長、さらに好ましくは32~120塩基長、よりさらに好ましくは32~60塩基長である。また、5’端から1~7番目及び12~32番目以外の塩基は特に制限されない。好ましくは、5’端から1~7番目及び12~32番目以外の塩基はアデニン、ウラシル、グアニン、又はシトシン(A、U、G、又はC)である。
 また、本発明の組換え遺伝子は、上述の特定の5’UTR配列おいて1又は複数個(好ましくは1又は数個)の塩基が置換され、熱ストレス及び塩ストレスからなる群より選択される少なくとも1種の環境ストレスによる翻訳抑制を回避する5’UTRをコードする遺伝子も包含する。つまり、本発明の組換え遺伝子(組換えDNA分子)には、
-上述の特定の5’UTR配列おいて1又は複数個(好ましくは1又は数個)の塩基が置換された塩基配列からなるポリヌクレオチドを5’UTRとして有するmRNAをコードし、かつ、
-当該mRNAからタンパク質への翻訳が、熱ストレス及び塩ストレスからなる群より選択される少なくとも1種の環境ストレスにより抑制されるのを回避する
という特徴を有する組換え遺伝子(組換えDNA分子)も包含される。
 当該5’UTR配列おいて置換される塩基数は、好ましくは1~9個であり、より好ましくは1~5個であり、さらに好ましくは1~3個である。また、組換え遺伝子が熱ストレス及び/又は塩ストレスによる翻訳抑制を回避できるか否かは、例えば、当該組換え遺伝子をプロモーターの転写開始点直後に連結してなるベクターを宿主(好ましくは植物、より好ましくは双子葉植物、さらに好ましくはシロイヌナズナ、又はこれらの植物由来の細胞)に導入して形質転換体を作製し、当該形質転換体を熱ストレス及び/又は塩ストレス下で生育させた時、当該組換え遺伝子がコードするタンパク質が通常条件下で生育させたのと同等以上の量が産生されるか否かで判断することができる。つまり、通常条件下で生育させたのと同等以上の量のタンパク質を産生できる場合、翻訳抑制を防止、または翻訳を促進できたと判断できる(各ストレス条件及び通常条件については下記「形質転換体」欄を参照)。タンパク質量の比較は、例えばポリソーム解析やRT-PCR解析、タンパク質定量によって行うことができる。これらの解析は公知の方法に従って行うことができる。また、タンパク質定量も公知の方法(例えばBradford法)に従って行うことができる。
 より具体的な好ましい当該特定の5’UTR配列としては、配列番号4、6、20、36、又は60の配列を5’端に有する5’UTR配列を挙げることができ、より好ましくは配列番号4、6、20、36、又は60の配列からなる5’UTR配列を挙げることができる。
 本発明の組換え遺伝子は、当該特定の5’UTR配列を有するmRNAをコードするように組み換えられた遺伝子であればよく、当該遺伝子にコードされるタンパク質(ペプチドを含む)の種類は特に限定されない。タンパク質(ペプチドを含む)としては、薬理活性を有するタンパク質が好ましく例示できる。具体的には、例えば、酵素、転写因子、サイトカイン、膜結合タンパク質、各種ペプチドホルモン(例えば、インスリン、成長ホルモン、ソマトスタチン)、ワクチンや抗体などの医療用タンパク質、等が挙げられる。また、本発明の組換え遺伝子は、このようなタンパク質をコードする遺伝子に、GFPやルシフェラーゼ等のレポーター遺伝子、HisタグやFLAG(登録商標)タグ等のタグペプチドの配列が連結されてなる遺伝子や、人工的に設計されたキメラ遺伝子であってもよい。
 組換え遺伝子の原料とする遺伝子(DNA分子)は公知のものを用いることができる。公知の遺伝子配列は例えばNCBI(National Center for Biotechnology Information)が運営する配列データベースGenBank等のデータベースから入手することができる。当該配列情報を基に、例えばPCR等の常法により各種生物から遺伝子(DNA分子)を単離できる。また、各販社から例えばcDNAライブラリー等の形態で既知遺伝子が販売されており、これを購入して用いることができる。
本発明の組換え遺伝子の原料に用いる遺伝子としては、特に制限されないが、植物由来の遺伝子が好ましく、双子葉植物由来の遺伝子がより好ましく、シロイヌナズナ由来の遺伝子がさらに好ましい。つまり、本発明の組換え遺伝子(DNA分子)がコードするタンパク質は、植物由来タンパク質が好ましく、双子葉植物由来タンパク質がより好ましく、シロイヌナズナ由来タンパク質がさらに好ましい。
なお、下述するように、本発明の組換え遺伝子は、ベクターに組み込んでもよく、また、当該ベクターを宿主に導入して形質転換体を作製することができる。このとき、ベクターを導入する宿主のコドン使用頻度が公知であれば、導入前に組換え遺伝子のORF部分の塩基配列を当該宿主に好適なコドン使用頻度に適合するよう変更してもよい。
ベクター
 本発明のベクターは、上述の本発明の組換え遺伝子をプロモーターの転写開始点直後に連結してなるベクターである。より詳細には、本発明のベクターは、プロモーター配列を備えたクローニングベクターに、本発明の組換え遺伝子をプロモーターの転写開始点直後に連結してなる発現ベクターである。
 用いるクローニングベクターとしては、例えば、プラスミドベクター、コスミドベクター、ウイルスベクター、人工染色体ベクター(例えばYAC、BAC、PAC)等が挙げられる。これらの中でも、プラスミドベクター、ウイルスベクターが好ましい。また、用いるクローニングベクターは、遺伝子からタンパク質を発現させるためベクターを導入する生物又は細胞(即ち宿主)に応じて、適宜選択できる。本発明のベクターは、特に植物(植物細胞含む)へ導入された場合に、熱ストレス及び/又は塩ストレスといった環境ストレス下において、組換え遺伝子がコードするタンパク質の発現が抑制されないという特徴を有するため、クローニングベクターの中でも植物に通常用いられるアグロバクテリウム由来のプラスミドが好ましく、アグロバクテリウム由来でT-DNAを有するプラスミド(Ti-プラスミド)がより好ましい。
 クローニングベクターはプロモーター配列を有するものを用いる。プロモーター配列は、宿主の種類に応じて、適宜適切なものを選択して用いることができる。例えば、宿主が動物(動物細胞を含む)である場合は、ヒトサイトメガロウイルス由来プロモーター(CMVプロモーター)や、或いはSV40プロモーター等を例示できる。また、宿主が植物(植物細胞を含む)である場合は、カリフラワーモザイクウイルス由来のプロモーターであるCaMV35Sプロモーター等を例示できる。また、宿主が大腸菌等の細菌類である場合、T7プロモーター、T3プロモーター、SP6プロモーター、tacプロモーター、lacプロモーター等を例示できる。宿主が、酵母である場合、PGKプロモーター等を例示できる。宿主が昆虫細胞である場合は、例えば、P10プロモーター等が例示できる。本発明のベクターは、特に植物(植物細胞を含む)へ導入された場合に、熱ストレス及び/又は塩ストレスといった環境ストレス下において、組換え遺伝子がコードするタンパク質の発現が抑制されないという特徴を有するため、CaMV35Sプロモーターが特に好ましい。
 また、クローニングベクターは、薬剤耐性遺伝子等の選抜マーカーとして利用できる遺伝子群を有することが好ましい。
 このようなクローニングベクターは、公知であるもの、特に各販社から購入してできるものを用いることができる。
 上述の組換え遺伝子を、クローニングベクターへ組み込み連結する方法としては、公知の方法を用いることができる。例えば、上述の組換え遺伝子を、制限酵素サイトを付加したプライマーを用いてPCR法により増幅させ、これを制限酵素で処理し、制限酵素処理済みクローニングベクターへと連結させて導入することができる。
 なお、本発明のベクターは、プロモーターの転写開始点直後に上述の組換え遺伝子を連結させたものであるが、例えば上記制限酵素を利用したクローニング手法では、プロモーター配列と組換え遺伝子配列との連結部に制限酵素サイトが存在することになる。このような場合は、例えば当該制限酵素サイトを除くようインバースPCRを行い、得られる増幅産物をセルフライゲーションさせることにより、連結部に存在する制限酵素サイトを除いたベクターを作製すればよい。なお、この場合、当該インバースPCRに用いるプライマーセットは、PCR増幅産物がセルフライゲーションできるように設計することが好ましい。また、セルフライゲーションには例えばリガーゼを用いればよい。
 本発明の組換え遺伝子をプロモーター配列の“転写開始点直後に連結する”とは、宿主内で本発明の組換え遺伝子を発現させた時に、本発明の組換え遺伝子がコードするmRNAの5’端(すなわち5’UTR末端)に、0、1、2、又は3塩基(好ましくは0、1、又は2塩基)のプロモーター配列から転写された塩基が結合した転写産物が得られるように、本発明の組換え遺伝子とプロモーター配列を連結させることをいう。より具体的には、プロモーター配列と本発明の組換え遺伝子配列とを直接連結させることをいう。プロモーター配列と本発明の組換え遺伝子配列の間に余分な塩基配列が存在しないように連結させる、ともいえる。このようにプロモーター配列と本発明の組換え遺伝子配列とが直接連結していても、遺伝子発現の際にはプロモーター配列の塩基が少数(例えば1、2、又は3塩基)転写される場合があり、このような転写が起こるベクターも本発明のベクターに含まれる。
形質転換体
本発明の形質転換体は、本発明のベクターを含む形質転換体である。より詳細には、本発明の形質転換体は、本発明のベクターが導入され、本発明のベクターにより形質転換された形質転換体である。
 本発明のベクターを導入する生物又は細胞(宿主)は、特に制限されないが、本発明のベクターは、特に植物(植物細胞を含む)へ導入された場合に、熱ストレス及び/又は塩ストレスといった環境ストレス下において、組換え遺伝子の発現が抑制されないという特徴を有するため、植物(植物細胞を含む)であることが好ましい。また、ベクターの保存及び増産等を考慮すると、大腸菌等の細菌類を宿主とすることが好ましい。
 植物としては、双子葉植物が挙げられ、より具体的にはシロイヌナズナ、タバコ、ダイズ、キク、レタス等が例示できる。植物細胞としては、例えば双子葉植物由来細胞が挙げられ、より具体的には、シロイヌナズナ由来細胞、タバコ由来細胞、ダイズ由来細胞、キク由来細胞、レタス由来細胞等が例示できる。また、植物細胞由来のプロトプラストもここでの植物細胞に含まれる。また、形質転換された植物細胞を培養して得られる植物体も本発明の形質転換体に含まれる。なお、形質転換の結果腫瘍組織やシュート、毛状根などが得られる場合は、そのまま細胞培養、組織培養又は器官培養に用いることが可能である。また従来知られている植物組織培養法を用い、適当な濃度の植物ホルモン、例えば、オーキシン、サイトカイニン、ジベレリン、アブシジン酸、エチレン、ブラシノライド等の投与などにより植物体に再生させることができる。また、形質転換植物細胞を用いることにより、形質転換植物体を再生することもできる。再生方法としては、カルス状の形質転換細胞をホルモンの種類、濃度を変えた培地へ移して培養し、不定胚を形成させ、完全な植物体を得る方法が採用される。使用する培地としては、LS培地、MS培地などが例示される。
 また、本発明のベクターを宿主へ導入する方法は特に制限されず、宿主及びベクターの種類に応じて適宜適切な公知の方法を選択して用いることができる。例えば、エレクトロポレーション法、パーティクルガン法、Tiプラスミドを用いた方法(例えばバイナリーベクター法、リーフディスク法)等が例示できるが、これらに制限されない。
 なお、ベクターが宿主に組み込まれたか否かの確認は、PCR法、サザンハイブリダイゼーション法、ノーザンハイブリダイゼーション法等により行うことができる。例えば、形質転換体からDNAを調製し、ベクター特異的プライマーを設計してPCRを行う。その後は、増幅産物についてアガロースゲル電気泳動、ポリアクリルアミドゲル電気泳動又はキャピラリー電気泳動等を行い、臭化エチジウム、SYBR Green液等により染色し、そして増幅産物を1本のバンドとして検出することにより、形質転換されたことを確認する。また、予め蛍光色素等により標識したプライマーを用いてPCRを行い、増幅産物を検出することもできる。さらに、マイクロプレート等の固相に増幅産物を結合させ、蛍光又は酵素反応等により増幅産物を確認する方法も採用してもよい。
 本発明の形質転換体は、本発明のベクターにより形質転換されている。より詳細には、本発明の形質転換体では、本発明のベクターから本発明の組換え遺伝子が転写されmRNAができ、当該mRNAからタンパク質が翻訳される。上述の通り、本発明の組換え遺伝子は特定の5’UTR配列をコードしており、熱ストレス及び/又は塩ストレス下における翻訳抑制を回避又は低減できる。よって、本発明の形質転換体は、熱ストレス及び/又は塩ストレス下において、本発明の組換え遺伝子がコードするタンパク質を優先的に産生することができる。
 本明細書での熱ストレスとは、通常温度(室温:20~22℃程度)より高い温度で形質転換体を生育させることで生じるストレスをいう。但し、形質転換体が生存可能な温度であることが好ましい。形質転換体が生存可能な温度は、組換え遺伝子から発現するタンパク質の種類及び宿主の種類等に応じて適宜設定することができる。より具体的には、好ましくは25℃以上、より好ましくは25~37℃、さらに好ましくは25~32℃である。
 また、本明細書での塩ストレスとは、通常の土壌もしくは培地中の塩濃度(代表的には塩化ナトリウム(NaCl)濃度)以上の塩濃度で形質転換体を生育させることで生じるストレスをいう。但し、形質転換体が生存可能な塩濃度であることが好ましい。なお、通常の土壌もしくは培地中の塩濃度は、実質的に0mMである。形質転換体が生存可能な塩濃度は、組換え遺伝子から発現するタンパク質の種類及び宿主の種類等に応じて適宜設定することができる。より具体的には、好ましくは50 mM NaCl以上、より好ましくは50~200mM NaCl、さらに好ましくは50~100 mM NaClである。
形質転換体を用いたタンパク質産生方法
 本発明は、本発明の形質転換体を、熱ストレス及び塩ストレスからなる群より選択される少なくとも1種の環境ストレス下で生育(培養)し、前記組換え遺伝子がコードするタンパク質を産生させる方法も包含する。形質転換体の生育又は培養方法は、宿主の生育又は培養方法において、環境ストレスを加えればよい。
環境ストレス下では、通常ほとんどの遺伝子においてタンパク質の発現が翻訳レベルで抑制されるため、本発明の組換え遺伝子がコードするタンパク質を効率良く発現させることができる。また、他のタンパク質の発現が抑制されるため、産生させたタンパク質の精製も容易であり、効率的である。産生タンパク質の精製は公知の方法に従えばよく、例えばクロマトグラフィーにより精製を行うことができる。より具体的には、例えば、産生させたタンパク質を認識する抗体を用いたアフィニティークロマトグラフィーにより精製することができる。また、産生させたタンパク質が何らかのタグ配列を有する場合は、そのタグを指標として精製することもできる。
 また、宿主が植物(植物細胞を含む)である場合、本発明の組換え遺伝子が二次代謝物を産生するために必要な酵素をコードすることで、二次代謝物を優先的に産生させることも可能と考えられる。つまり、植物は種々の二次代謝物を産生しているところ、当該二次代謝物を産生するために必要な酵素の遺伝子の5’UTRをコードする部分を改変して本発明の組換え遺伝子とし、これをプロモーターの転写開始点直後に連結してなるベクターを含む形質転換植物を作出すれば、当該形質転換植物に二次代謝物の原料となる成分を供給し環境ストレスをかけることで、目的の二次代謝物を優先的に産出させることも可能と考えられる。
 さらにまた、本発明は、上記本発明のベクターを植物(植物細胞を含む)に導入することにより、熱ストレス及び塩ストレスからなる群より選択される少なくとも1種の環境ストレスによる翻訳抑制を回避できる植物を製造する方法も包含する。このようにして製造される植物は、前記環境ストレス下で、本発明の組換え遺伝子がコードするタンパク質を効率良く発現できる。ベクターの導入方法としては、上述のように適切な公知の方法を選択して用いることができる。
遺伝子改変方法
 本発明は、また、任意の遺伝子において、コードする5’UTR配列が上記特定の5’UTR配列となるように、5’UTRコード部位の塩基配列を改変することにより、ストレス環境下(好ましくは熱ストレス及び/又は塩ストレス下)でコードされるタンパク質の翻訳が抑制されるのを回避又は低減することができる組換え遺伝子(組換えDNA分子)を作製する方法も包含する。
 5’UTRコード部位の塩基配列が改変される遺伝子としては、特に制限はされない。コードするタンパク質が例えば上述の組換え遺伝子がコードするタンパク質と同様の遺伝子が例示できる。また、当該遺伝子の入手についても、上述の組換え遺伝子の原料とする遺伝子と同様に行い得る。塩基配列の改変についても、常法に従って行えばよく、例えば上述した方法に従えばよい。その他の条件も、上述した組換えDNA分子の作製と同様にして行い得る。
 本発明は、さらにまた、任意の遺伝子において、コードする5’UTR配列が上記特定の5’UTR配列となるように、5’UTRコード部位の塩基配列を改変することにより、ストレス環境下(好ましくは熱ストレス及び/又は塩ストレス下)でコードされるタンパク質の翻訳が抑制されるのを回避又は低減する方法も包含する。
 5’UTRコード部位の塩基配列が改変される遺伝子としては、特に制限はされない。コードするタンパク質が例えば上述の組換え遺伝子がコードするタンパク質と同様の遺伝子が例示できる。また、当該遺伝子の入手についても、上述の組換え遺伝子の原料とする遺伝子と同様に行い得る。塩基配列の改変についても、常法に従って行えばよく、例えば上述した方法に従えばよい。その他の条件も、上述した組換えDNA分子の作製と同様にして行い得る。
人工mRNA分子
 本発明は、また、上記「組換え遺伝子(組換えDNA分子)」欄で記載した“特定の5’UTR配列を有するmRNA分子”も包含する。なお、当該mRNA分子は人工物(すなわち人工mRNA分子)であり、自然界に存在するmRNA分子は含まない。
 当該人工mRNA分子は、本発明の組換えDNA分子が転写されて得られるものであってもよく、化学的に合成されたものであってもよい。例えば、上述の形質転換体を環境ストレス下(好ましくは熱ストレス及び/又は塩ストレス下)で生育させ、当該形質転換体から常法によりmRNAを回収することにより、効率よく当該人工mRNA分子を得ることができる。
 当該人工mRNA分子を常法により細胞(好ましくは植物細胞又はプロトプラスト)に導入し、当該細胞を環境ストレス下(好ましくは熱ストレス及び/又は塩ストレス下)で培養させることによって、上述した形質転換体と同様に、当該人工mRNA分子がコードするタンパク質を優先的に産生することができる。細胞への導入方法やストレス条件は、例えば上記と同様にすればよい。
環境ストレスによる翻訳抑制を回避又は低減させる配列的特徴の予測方法
 さらにまた、本発明は、植物における環境ストレスによる翻訳抑制を回避又は低減させる、5'UTRにおける配列特徴の予測方法も提供する。また、当該予測方法で予測された配列特徴を備えた5'UTRを有する核酸等も提供する。具体的には、本発明には、例えば以下の項A~Fに記載する発明が包含される。
 項A.植物における環境ストレスによる翻訳抑制を回避又は低減させる、5'非翻訳領域(5'UTR)における配列特徴の予測方法であって、
 植物内で天然に発現するN個の遺伝子について、各5’UTRを含む核酸分子の対照条件下に対する環境ストレス条件下における翻訳レベルの相対活性値を求める工程、
 前記5′UTRにおける5'末端からの塩基位置kからk+L-1までの長さLの配列について、少なくとも1回出現するt個の塩基からなる塩基配列の出現頻度を求める工程、
 前記相対活性値と、前記塩基配列の出現頻度との相関式を構築し、多変量解析により各塩基配列の出現頻度の回帰係数を求める工程、
 前記回帰係数を用いて、塩基位置kからk+L-1までの長さLの領域における各塩基位置における4つの塩基A、U、G、Cに対応した回帰係数の値を求め、各塩基位置における前記相対活性値に対する各塩基の寄与度を求める工程、 
 得られた寄与度及び前記相対活性値を用いて多変量解析により回帰モデルを構築する工程、
 k及びLを変えて構築した回帰モデルの中から、相対活性値に対する予測精度を設定値以上とする塩基位置k'及びL'の回帰モデルを選定し、選定した回帰モデルを用いて塩基位置k'からk'+L'-1の領域における特定配列を予測する工程
を含む予測方法。
 項B.植物内で天然に発現する遺伝子由来の5’非翻訳領域又はその改変配列を含む、環境ストレスによる翻訳抑制を回避又は低減させる核酸配列であって、
 前記5’非翻訳領域は、植物内で天然に発現する遺伝子由来の5’非翻訳領域における項1で設定した塩基位置k'からk'+L'-1の領域が項1の特定配列である配列であり、
 前記改変配列は、植物内で天然に発現する遺伝子由来の5’非翻訳領域における項1で設定した塩基位置k'からk'+L'-1の領域が項1の特定配列で置換されている配列である、核酸配列。
 項C.項Bに記載の核酸配列を含む遺伝子。
 項D.項Bに記載の核酸配列を含む発現ベクターであって、前記核酸配列が転写開始点直後に連結されている発現ベクター。
 項E.項Dに記載の発現ベクターを含む形質転換体。
 項F.項Dに記載の発現ベクターを含む形質転換植物。
  ここで、5'非翻訳領域(5'UTR)における配列特徴とは、5′UTRにおける5'末端からの塩基位置k'からk'+L'-1の領域における特定配列を意味する。
 本発明は、下記(1)~(6)の工程を備えることにより、環境ストレス(好ましくは熱ストレス及び/又は塩ストレス)による翻訳制御を規定する5'UTRの配列特徴を、in silico解析を用いて予測する方法を提供する。
 (1)まず、植物内で天然に発現するN個の遺伝子について、各5’UTRを含む核酸分子の対照条件下に対する環境ストレス条件下における翻訳レベルの相対活性値を求める。
 Nは遺伝子のサンプル数であり、2以上の整数である。
 N個の遺伝子は、翻訳状態の異なる複数の遺伝子を含んでいることが好ましい。翻訳状態については、例えば、ポリソーム/マイクロアレイ解析などにより、網羅的に遺伝子の翻訳状態の変化を解析した試験結果などを参酌することができる。
 5’UTRを含む核酸分子としては、翻訳レベルの測定が可能であれば特に制限されないが、例えば、5'UTRの下流にf-luc遺伝子等のリポーター遺伝子を組み込んだ合成mRNA等が挙げられる。
 測定に用いる核酸分子の形態も特に限定されず、例えば、上記合成mRNAを適当なプロトプラストに導入した形態であってもよい。
 環境ストレス条件としては、例えば、高温、高浸透圧、高塩濃度等の、通常とは異なる環境下に置かれ、ストレス(好ましくは熱ストレス及び/又は塩ストレス)が負荷された条件を意味する。また対照条件は、通常条件、別言すると、前記環境ストレスを加えない以外は環境ストレス条件と同様とした条件を意味する。
 翻訳レベルの相対活性値を求める手法も、特に限定されず、公知の手法に従って行うことができる。例えば、ある遺伝子の5'UTRの下流にf-luc遺伝子等のリポーター遺伝子を組み込んだ合成mRNAを用いて、一過的な形質転換体を作製し、当該形質転換体を環境ストレス条件下又は対照条件下に置いた場合とのリポーター遺伝子の発現レベル(翻訳量)を活性値として測定し、その比率を「相対活性値」とすることができる。
 より具体的には、実施例に記載の方法により求めることができる。
 (2)次いで、5′UTRにおける5'末端からの塩基位置kからk+L-1までの長さLの配列について、少なくとも1回出現するt個の塩基からなる部分配列の出現頻度を求める。
 kは5′UTRにおける5'末端からの塩基位置を示す変数であり、1以上、5'UTRの全長以下の整数である。
 また、Lは、塩基位置kからの塩基長を示す変数であり、1以上、5'UTRの全長以下の整数である。
 また、tはkからk+L-1までの長さLの配列において少なくとも1回出現する部分配列における塩基の連続数を示す値であり、1以上L以下の整数である。
 上記k、L及びtを用い、N個のサンプルにおける塩基位置kからk+L-1の範囲の長さLの配列において少なくとも1回出現するt個の塩基からなる配列は、R1(t), R2(t), …, Rv(t),RV(t)と表すことができる。またそれぞれの配列の出現頻度は、fi (k, k+L-1)(R1(t)), …, fi (k, k+L-1)(Rv(t)), …, fi (k, k+L-1)(RV(t))と表すことができる。ここで、v番目の配列頻度を変量fi (k, k+L-1)(Rv(t))と表す。
 (3)次いで、相対活性値と、前記塩基配列の出現頻度との相関式を構築し、多変量解析により各塩基配列の出現頻度の回帰係数を求める。
 相関式を構築するとは、換言すると、相対活性値を前記塩基配列の出現頻度による関数にて表現する。そして、各塩基配列の出現頻度の回帰係数を求める。
 そのための方法としては、PLS (Partial Least Squares)法に代表される多変量解析が用いられる。
 以下では多変量解析の一例として、PLS (Partial Least Squares)法による解析を例に挙げて説明するが、当該方法に限定されるということではない。
 相対活性値をyとする場合、配列頻度V個の変量f(k, k+L-1)(Rv(t)), (v=1,2…,V)との相関式は、式(1)により表現できる。
Figure JPOXMLDOC01-appb-M000002
 ここで、
Figure JPOXMLDOC01-appb-M000003
 は、v番目の塩基頻度における回帰係数である。
 回帰係数は、PLS (Partial Least Squares)法により、以下のように求めることができる。
 N個のサンプルについて、i番目のサンプルについて配列のk番目から長さLの範囲を抜き出した配列をSeq= siksik+1…sik+L-1とする。ここで、i番目のサンプルにおける塩基配列上の位置を5’端より3’方向に、s1, s2, …, sk, …, sMで表す。
i番目のサンプルにおいて、k+jを開始とする長さtの配列を
Figure JPOXMLDOC01-appb-M000004
とする。Seqi(k+j, k+j+t-1)とV個の配列Rv(t), (v=1, 2, …, V)と比べ、同一のものをR(i, k+j)とする。
 ここで、R(i, k+j)
Figure JPOXMLDOC01-appb-M000005
とする。
 このR(i, k+j)と対応したPLS係数を選び
Figure JPOXMLDOC01-appb-M000006
とすることにより、回帰係数を求めることができる。
 (4)次いで、前記回帰係数を用いて、塩基位置kからk+L-1の長さLの領域における各塩基位置における4つの塩基A、U、G、Cに対応した回帰係数の値を求め、各塩基位置における前記相対活性値に対する各塩基の寄与度を求める。
 具体的には以下の方法が挙げられる。
 工程(3)で得られた回帰係数をi番目のサンプルにおけるk+j, k+j+1, …, k+j+t-1の位置に配置した行列を作る。そして、k+j番目の塩基位置について4つの塩基A, U, G, Cを有する回帰係数の平均値及び不偏分散を求める。k+j番目の4つの塩基A, U, G, Cそれぞれにおける平均値ならびに不偏分散を基に、4つの塩基A, U, G, Cに対応した回帰係数の分布が統計的に有意に正もしくは負とみなせるか否かを検定することにより、相対活性値yに正あるいは負に寄与する塩基配列を抽出する。
 検定方法としては、例えばt検定が挙げられる。
 相対活性値yに統計的に有意な塩基をそれぞれの塩基位置について抽出し、塩基位置kからk+L-1の範囲の長さLの配列のどの位置のどのような塩基が正あるいは負のいずれかの条件で相対活性値に寄与するかという情報を得ることができる。
 (5)次いで、得られた寄与度及び前記相対活性値を用いて多変量解析により回帰モデルを構築する。
 PLS法では、因子X(N×V行列)を応答y(N×1)へ線形的に関連付ける。
 工程(4)で得られた各塩基の寄与度及び工程(1)で得られた相対活性値を用いて、因子X及び応答Yは、以下の式(5)及び(6)のように表すことができる。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 ここで、pkはXにおけるk番目の成分の重みベクトルであり、qkはyにおけるk番目の成分の係数である。またDはPLSの成分数、tkはk番目の潜在変数、EはXの残差であり、eはyの残差である。
 PLSの成分数であるDは、成分数を増加させるたびにLeave-one-out cross-validationにより予測精度を逐次計算し、予測精度が最大になるときの成分数として決定される。
 予測精度の計算は、Q2値、予測値と実測値の相関係数などのLeave-one-out cross-validationによる予測値と実測値の関係付ける指標を用いて行うことができる。
 Q2はモデルの予測精度を示す尺度であり、以下の式(7)で表すことができる。
Figure JPOXMLDOC01-appb-M000009
 ここで、yobsは実験的に得られた相対活性値であり、ypredは構築したモデルによる予測値である。
 またPLSの式 (5)と (6)をあわせると式 (8)にまとめることができる。
Figure JPOXMLDOC01-appb-M000010
 このとき、aは回帰係数ベクトルであり、その要素はaj(j = 1, 2, …, N)で表される。またfはyの残差である。
 (6)次いで、k及びLを変えて構築した複数の回帰モデルの中から、相対活性値に対する予測精度を設定値以上とする塩基位置k'及びL'の回帰モデルを選定し、選定した回帰モデルを用いて塩基位置k'からk'+L'-1の領域における特定配列を予測する。
 工程(5)において構築した回帰モデルにおいて、k及びLの値を変えて複数の回帰モデルを構築する。そして、その中から、相対活性値に対する予測精度を設定値以上とする塩基位置k'及びL'の回帰モデルを選定する。
 予測精度としては、公知の指標を用いることができるが、例えば、Q2値を挙げることができる。予測精度としてQ2値を用いた場合、Q2値が高い領域ほど予測精度が高く、その領域が環境ストレス条件下での翻訳状態に直接的に影響していると考えられる。これから、そのような予測精度を高める領域とする塩基位置k'及びL'選定し、当該塩基位置k'及びL'の回帰モデルを選定する。
 別言すると、k'は変数kのうち予測精度を設定値以上とする定数であり、L'は変数Lのうち、予測精度を設定値以上とする定数である。換言すると、k'及びL'で決定されるk'からk1'+L1'-1の領域は、植物における環境ストレスによる翻訳抑制を回避又は低減するための重要な領域である。
 設定値は、目的に応じて適宜設定できるが、通常0以上、好ましくは0.5以上、より好ましくは0.6以上、特に0.8以上程度である。
 k'及びL'は予測精度に応じて複数選定することもできる。即ち、設定値以上とするk'及びL'の中から、最も予測精度の高いk1'及びL1'を選定し、更に2番目に予測精度の高いk2'及びL2'を選定することができる。
 そして、k1'及びL1'を用いて塩基位置k1'からk1'+L1'-1の領域における特定配列1を予測し、更にk2'及びL2'を用いて塩基位置k2'からk2'+L2'-1の領域における特定配列2を予測することもできる。
 尚、ここで特定配列とは、前記選定した回帰モデルにより求められる塩基配列であって、予測精度を設定値以上とする塩基配列である。換言すると、植物における環境ストレスによる翻訳抑制を回避又は低減する機能に優れた塩基配列である。
 本発明の予測方法は、例えば、コンピュータープログラムを用いてコンピューターシステムにより実現することもできる。例えば、図39に示す計算機(コンピューターシステム)において実現できる。。つまり、本発明は本発明の予測方法を実現する予測システムも含む。具体的には、本発明は、以下の予測システムを含む。
植物における環境ストレスによる翻訳抑制を回避又は低減させる、5'非翻訳領域(5'UTR)における配列特徴の予測システムであって、
 植物内で天然に発現するN個の遺伝子について、各5’UTRを含む核酸分子の対照条件下に対する環境ストレス条件下における翻訳レベルの相対活性値を求める手段、
 前記5′UTRにおける5'末端からの塩基位置kからk+L-1までの長さLの配列について、少なくとも1回出現するt個の塩基からなる塩基配列の出現頻度を求める手段、
 前記相対活性値と、前記塩基配列の出現頻度との相関式を構築し、多変量解析により各塩基配列の出現頻度の回帰係数を求める手段、
 前記回帰係数を用いて、塩基位置kからk+L-1までの長さLの領域における各塩基位置における4つの塩基A、U、G、Cに対応した回帰係数の値を求め、各塩基位置における前記相対活性値に対する各塩基の寄与度を求める手段、 
 得られた寄与度及び前記相対活性値を用いて多変量解析により回帰モデルを構築する手段、
 k及びLを変えて構築した回帰モデルの中から、相対活性値に対する予測精度を設定値以上とする塩基位置k'及びL'の回帰モデルを選定し、選定した回帰モデルを用いて塩基位置k'からk'+L'-1の領域における特定配列を予測する手段
を備える予測システム。
 また、本発明の予測方法には、本発明の効果を損なわない限りで、上記(1)~(6)以外の他の工程を含むことができる。
 例えば、ポリソーム/マイクロアレイ解析により、植物において天然に発現する遺伝子の対照条件及び環境ストレス条件下における翻訳状態の変化を解析する工程を加えることができる。
 ポリソーム/マイクロアレイ解析は、公知の手法に従って行うことができる。例えば、対照条件下及び環境ストレス条件における植物細胞を、ショ糖密度勾配遠心を利用したポリソーム解析に供し、ポリソーム画分及び非ポリソーム画分からそれぞれRNAを抽出・精製して、マイクロアレイ解析を行う。得られたマイクロアレイ解析データから、全RNA或いは非ポリソーム画分に存在するRNAに対するポリソーム画分に存在するmRNAの比率を求める。これにより、植物における遺伝子の翻訳状態を網羅的に解析することができる。
 当該得られたポリソーム/マイクロアレイ解析の結果に基づいて、工程(1)に用いるN個の遺伝子を選定することができる。
 更に、本発明には、in silico解析や多変量解析において通常用いられる公知の手法を必要に応じて含めることもできる。
予測された5’非翻訳領域又はその改変配列を含む核酸分子
 本発明には、上記予測方法により得られる配列特徴を備えた5’非翻訳領域又はその改変配列を含む核酸分子も含まれる。換言すると、本発明は、(1)上記1の予測方法により得られた配列特徴を備えた5’非翻訳領域を含む核酸分子、及び(2)上記1の予測方法により得られた配列特徴を備えた5’非翻訳領域の改変配列を含む核酸分子を含む。
 (1)の核酸分子は、植物内で天然に発現する遺伝子由来の5’非翻訳領域を含む核酸分子であって、植物内で天然に発現する遺伝子由来の5’非翻訳領域における前記予測方法で予測した塩基位置k'からk'+L'-1の領域が前記予測方法で予測した特定配列である核酸分子である。
 また、(2)の核酸分子は、植物内で天然に発現する遺伝子由来の5’非翻訳領域の改変配列を含む核酸分子であって、改変配列は植物内で天然に発現する遺伝子由来の5’非翻訳領域の配列における前記予測方法で予測した塩基位置k'からk'+L'-1の領域が前記予測方法で予測した特定配列で置換されている配列である核酸分子である。
 例えばシロイヌナズナの場合、本発明の予測方法によって、5’非翻訳領域におけるk=1及びL=7の配列、即ち、5’端1~7番目の特定配列として、配列表の配列番号1(acacaag)の配列、配列表の配列番号2(auaacac)の配列、或いは、配列表の配列番号3(uacauca)の配列が予測される。
 これから、本発明の予測された5’非翻訳領域を含む核酸分子の配列としては、
5'UTR1(good(1)):配列表の配列番号4
acacaagcauuuucaaggauaucaaaucacaaucccaagaagagcaauaacaagagaagaagaaguaguucaagaauuaaggaagagagcuucuccguuaaaguauagugagagaau
の配列、
5'UTR2(good(2)):配列表の配列番号5
auaacacauuucaagcauuggauuaaucaaagacaaagaaaacgaaa
の配列、
5'UTR3(good(3)):配列表の配列番号6
uacaucacaaucacacaaaacuaacaaaagaucaaaagcaaguucuucacuguugaua
の配列が挙げられる。
 また、シロイヌナズナの場合、本発明の予測方法によって、5’非翻訳領域におけるk=1及びL=7の配列、即ち、5’端1~7番目の特定配列の一つとして配列表の配列番号7(uuaaaaa)の配列が予測される。
 また、5’非翻訳領域におけるk=12及びL=21の塩基配列、即ち、5’端12~32番目の特定配列の一つとして配列表の配列番号8(acaaaaaaaaaaaaaaaaaaa)の配列が予測される。
 これから、本発明の予測された5’非翻訳領域の改変配列を含む核酸分子としては、例えば、
 改変5'UTR1:植物内で天然に発現する遺伝子由来の5’非翻訳領域の配列における5'端から1~7番目の配列が配列表の配列番号7(uuaaaaa)の配列で置換されている配列を含む核酸分子、
 改変5'UTR2:植物内で天然に発現する遺伝子由来の5’非翻訳領域における5'端から12~32番目の配列が配列表の配列番号8(acaaaaaaaaaaaaaaaaaaa)の配列に置換されている配列を含む核酸分子、
 改変5'UTR3:植物内で天然に発現する遺伝子由来の5’非翻訳領域における5'端から1~7番目の塩基配列が配列表の配列番号7(uuaaaaa)の配列に置換され、かつ5'端から12~32番目の配列が配列表の配列番号8(acaaaaaaaaaaaaaaaaaaa)の配列に置換されている配列を含む核酸分子が挙げられる。
 上記配列特徴を備えた本発明の予測された5’非翻訳領域又はその改変配列を含む核酸分子は、植物の環境ストレスによる翻訳抑制を回避又は低減させ得るという特徴を有する。
 通常の植物は、環境ストレスを受けた場合に、大部分のmRNAからのタンパク質の翻訳が抑制される。しかし、本発明の5’非翻訳領域又はその改変配列を含む核酸分子を導入した場合には、環境ストレス条件下における翻訳の抑制を回避し、タンパク質合成を維持することが可能になる。
 本発明は、上記本発明における予測された5’非翻訳領域又はその改変配列を含む核酸配列を含む遺伝子も含む。本発明の遺伝子は、前記予測された5’非翻訳領域又はその改変配列を含む核酸配列以外に、タンパク質のコード配列を含んでいる。
 本発明の当該遺伝子は、上記本発明の予測された5’非翻訳領域又はその改変配列を含む核酸配列を含むことにより、環境ストレスによって受ける翻訳抑制が回避又は低減されており、環境ストレス条件下においてもタンパク質合成能を維持するという特性を備えたものとなる。
 本発明は、当該核酸分子を挿入した発現ベクターも含む。ベクターの種類、核酸分子のベクターへの挿入方法、核酸分子とベクターとの連結態様等は上述と同様である。
 本発明は、上記発現ベクターを宿主中に導入することにより得ることができる形質転換体も含む。宿主の種類及び宿主への導入方法等については、上述と同様である。
 本発明の予測方法によれば、環境ストレス下の翻訳制御に重要な領域を適確に予測し得る。
 本発明の予測方法は、環境ストレス下の翻訳制御に重要な5'UTR内の配列特徴を予測する方法であり、環境ストレスによる翻訳抑制を回避する5'UTR内の重要領域を高い精度で予測できることが実験的な検証でも確認された(実施例)。
 以下、本発明を具体的に説明するが、本発明は下記の例に限定されるものではない。なお、用いる遺伝子のうち、AGIコードで示す遺伝子の配列は、例えばThe Arabidopsis Information Resource (TAIR)のホームページより入手できる。
 1.材料及び方法
 1-1. 使用した培養細胞
 シロイヌナズナ培養細胞 (Arabidopsis thaliana T87)は、理化学研究所ジーンバンク室植物細胞開発銀行より分与して頂いた。300 ml容のマイヤーフラスコに改変LS培地 (Nagata, T. et al., 1992. Int. Rev.Cytol. 132: 1-30)を95ml入れ、培養は22℃、18時間明期/6時間暗期、攪拌速度120rpmの条件で行った。1週間ごとに定常期に達した細胞4 mlを新しい培地95mlに移植し継代培養を行った。実験には8ml移植したものを3日間培養した細胞を用いた。また、後述する安定形質転換細胞作出に使用した培養細胞は、定常期に達した細胞2 mlを植えつぎ、3-4日間培養した細胞を使用した。
 1-2. 遺伝子操作
大腸菌を用いた遺伝子操作は、公知の方法(例えばMolecular Cloning (Sambrook et al., 2001)に記載の方法)に従った。
 1-3. プラスミドの構築
 Firefly luciferase(以下、「f-luc」)用ベクターの鋳型となるpT3-FL-pAベクター、並びにRenilla luciferase (以下、「r-luc」用)ベクターの鋳型となるpT3-RL-pAベクターを下記の方法で作製した。
 f-luc用及びr-luc用どちらのforwardプライマーも開始コドンに相当するATGの上流に下記の制限酵素サイト及びT3プロモーター用の配列を持つように設計した。
Figure JPOXMLDOC01-appb-M000011
 また、f-luc用、r-luc用どちらのbackwardプライマーも終止コドンに相当するTAAの下流に下記の制限酵素配列を持つように設計した。
Figure JPOXMLDOC01-appb-M000012
 それぞれのPCR産物をpBluescript II SK(-) (Stratagene)のBssHII/BssHIIサイトに挿入し、T3プロモーター配列を持つin vitro合成用鋳型プラスミドpT3-FL (f-luc mRNA用)とpT3-RL (r-luc mRNA用)を得た。更に、3’末端にポリA配列を持つmRNAを合成するためのプラスミドは、下記の合成オリゴヌクレオチド
Figure JPOXMLDOC01-appb-M000013
をアニーリングさせた二本鎖断片をpT3-FL、pT3-RLのEcoRI/BanIIIサイトに挿入して作製し、それぞれpT3-FL-pA、及びpT3-RL-pAとした。
 Firefly luciferaseのコーディング領域の増幅は、上記pT3-FL-pAを鋳型にしたPCR反応により行った。
 フォワード(forward)プライマーは、開始コドンに相当するATGの上流にBssHII及びNcoIの制限酵素サイトを持つように設計した。加えて、開始コドンの下流配列の一部に変異を加え (GACGCC→GACGTC)、AatIIサイトとなるように設計した。変異を加えることによってf-lucの3番目のアラニンがバリンへと変わることになる。
 バックワード(backward)プライマーはf-lucのコーディング配列内に存在するNspVサイトを含むように、コーディング領域の602~626番目までに設計した。
 それぞれのPCR産物をBssHII/ NspVで消化し、pT3-FL-pAベクターのBssHII/ NspVサイトに挿入し、in vitro合成用鋳型プラスミドpFL-pAを得た。
 なお、NspVについては部分分解を行った。
 試験する5’UTRの配列については、5’端にNcoI、T3プロモーター、3’端にはAatIIを持つように設計した上で、Kawaguchiら (非特許文献4)によって整備された配列情報を基にしてプライマーを作製し、断片の増幅を行った。
 さらに5’UTRの配列の一部を置換した配列は、変異導入用プライマーを用いて、PCR増幅断片もしくは合成オリゴヌクレオチドとして調製し、pFL-pAのNcoI/AatIIサイトに挿入した。結果として、様々な種類の5’UTR配列が連結されたin vitro転写用プラスミド(pT3- 5’UTR- FL-pA)を得た。
 プラスミドの構築概略を図1に示す。図1に示されるように、T3プロモーターの下流に試験する5’UTR配列を連結したDNA断片を、NcoI/ AatIIサイトを用いてf-luc mRNA合成用プラスミドに挿入した。in vitro合成されたf-luc mRNAは、T3プロモーター由来のGGが、試験する5’UTRの5’端に付加される。
 1-4.mRNAの合成
ポリA配列を持つin vitro転写用プラスミド (pT3-5’UTR-FL-pA、pT3-RL-pA)はin vitro転写反応に先立ち、SspI(AATATT)によりポリA配列の末端部分を切断し直鎖状にした。従って、合成されるmRNAの3’末端には49塩基のアデニン残基 (ポリA配列)に続いてチミン残基が1塩基付加されることになる。SspI処理したDNA断片は、QIAquick PCR Purification Kit (QIAGEN)を用いて精製した。精製されたDNA断片を鋳型に、Megascript T3 transcription kit (Ambion)を用いて、キャップ構造を持たないmRNAを合成した。合成は、キットに添付されたプロトコールに従って行った。合成されたRNAはキットに付属のDNaseIで処理した後、LiCl沈殿により精製し、付属のRNase-free水で溶解した。キャップ構造の付加はScriptCap m7G Capping System (EPICENTRE)を用いた。操作は、キットに添付されたプロトコールに従った。
キャップを付加したRNAはRNeasy kit (QIAGEN)を用いて精製し、RNase-free水で溶出した。RNA濃度は分光光度計を用いて測定した。RNAの品質は1.5%変性アガロースゲル電気泳動により検定した。
 1-5.シロイヌナズナ培養細胞からのプロトプラスト調製
 シロイヌナズナ培養細胞T87からのプロトプラスト調製は、佐藤らの方法に若干の変更を加えて行った (Satoh J. et al., 2004, J.Biosci. Bioeng. 1: 1-8)。
培養細胞を0.4Mマンニトールで洗浄した後、酵素液 (0.4M Manitol、10% Cellulase RS [Yakult Honsha]、0.1% Pectolyase [Kikkoman]、pH 5.5)を加え、25℃にて2時間穏やかに攪拌した。40μmナイロンメッシュ (Cell Strainer;BD Falcon)でろ過した後、遠心 (800rpm、5min、4℃)を行い、沈殿を回収した。回収した沈殿に0.4Mマンニトールを加え、再度遠心 (800rpm、5min、4℃)することによりプロトプラストを得た。更に、0.4Mマンニトールで洗浄した後、プロトプラストをW5溶液 (154mM NaCl、125mM CaCl2、5mM KCl、2mM Mes-KOH、pH 5.6)に再懸濁し、氷中に30分静置した。細胞数の計測は血球計算板を用いて行った。再度遠心操作によりプロトプラストを回収し、細胞濃度が1×104cell/μlになるようにMMg溶液 (0.4M mannitol、15mM MgCl2、4mM Mes-KOH、pH5.7)に懸濁した。
 1-6.プロトプラストへのmRNAの導入
 mRNAのプロトプラストへの導入は、基本的にKovtunのpolyethlen glycol (PEG)を用いた方法に従った (Kovtun et al., 2000, Proc. Natl. Acad. Sci. U. S. A. 6: 2940-2945)。典型的にはmRNA (5μl前後)に1×104 cell/μlのプロトプラストを加えた後、混合液と等量のPEG溶液 (40% PEG 4000、0.2M Mannitol、0.1M Ca (NO3)2) (Sheen J., 2001, Plant Physiol. 127:1466-1475)を加えてゆっくりと混和した。5分間室温にて静置した後、W5溶液を加えて転倒混和し、遠心操作により回収した細胞をprotoplast-medium (Dansako et al.,2003. J. Biosci. Bioeng. 95: 52-58)により再懸濁した。再懸濁した細胞は、試験温度に一定時間静置した後、超小型遠心器を用いた遠心操作を行い、上清を除いた。その後、液体窒素で凍結して-80℃にて保存した。
 1-7.ルシフェラーゼ酵素活性測定
細胞の溶解は、5×105個のプロトプラスト当たり75μlのpassive lysis buffer (Promega)を用い、室温で15分間、ミキサーで溶解させた。溶解液中のf-luc、r-luc活性測定には、Dual-luciferase reporter assay system (Promega)とルミノメータ (Lumat LB 9501;Berthold)を付属のプロトコールに従って使用した。
 2 相対活性値と関連のある配列情報の抽出
2-1 配列情報と活性情報の定義
 上記1-1~1-7の方法に従った実験(換言すると、翻訳状態が異なるいくつかの遺伝子を抽出し、それら遺伝子の5’UTRを連結したレポーターmRNAを培養細胞プロトプラストに導入して行う一過性発現実験)において得られる、通常温度 (22℃)と熱ストレス条件 (37℃)に静置したプロトプラストにおける相対f-luc活性値 (つまり、通常温度 (22℃)に静置したプロトプラストにおけるf-luc活性値に対する、熱ストレス条件 (37℃)に静置したプロトプラストにおける相対f-luc活性値)を、以降「相対活性値」と表現する。
 N個のサンプルにおける塩基位置kからk+L-1の範囲の長さLの配列と相対活性値yの関係を数理モデルにより表現し、この数理モデルから相対活性値と最も関連のある塩基配列の特徴を抽出した。
 まず初めに、i番目のサンプルについて配列のk番目から長さLの範囲を抜き出した配列をSeq= siksik+1…sik+L-1とした。ここで、i番目のサンプルにおける塩基配列上の位置を5’端より3’方向に、s1, s2, …, sk, …, sMとした。また、i番目のサンプルの相対活性値をyiとした。
 図2に、配列情報と相対活性値の定義との関係を示す。
2-2 相対活性値を連続塩基頻度により説明するための回帰式の構築
 N個のサンプルにおける塩基位置kからk+L-1の範囲の長さLの配列において少なくとも1回出現するt個の塩基からなる配列をR1(t), R2(t), …, Rv(t), RV(t)とした。今回の実験では、t=3とした。
 また、そのそれぞれの配列の出現頻度をfi (k, k+L-1)(R1(t)), …, fi (k, k+L-1)(Rv(t)), …, fi (k, k+L-1)(RV(t))とした。
 ここで、v番目の配列頻度を変量fi (k, k+L-1)(Rv(t))と表した 。
 図3に、N個のサンプルにおける区間[k,k+L-1]の長さLの配列におけるt個の連続塩基(R1(t), R2(t), …, Rv(t))の頻度を示す。
 次に、配列頻度V個の変量f(k, k+L-1)(Rv(t)), (v=1,2…,V)と相対活性値yの線形下位形式を式 (1)により表現した。
Figure JPOXMLDOC01-appb-M000014
 ここで、
Figure JPOXMLDOC01-appb-M000015
は、v番目の塩基頻度における回帰係数である。また、配列領域における相対活性値への寄与については、2-4にて述べる回帰係数の算出によるQ2で比較した。
2-3 配列頻度-相対活性相関式を用いた塩基情報の抽出
i番目のサンプルにおいて、k+jを開始とする長さtの配列を
Figure JPOXMLDOC01-appb-M000016
とした。
 Seqi(k+j, k+j+t-1)とV個の配列Rv(t), (v=1, 2, …, V)と比べ、同一のものをR(i, k+j)とした。ここで、
Figure JPOXMLDOC01-appb-M000017
 とした。
 また、このR(i, k+j)と対応したPLS係数を選び
Figure JPOXMLDOC01-appb-M000018
 とした。
 この係数をi番目のサンプルにおけるk+j, k+j+1, …, k+j+t-1の位置に配置した行列を作った (図4上段参照)。
 そして、k+j番目の塩基位置について4つの塩基A, U, G, Cを有する回帰係数の平均値及び不偏分散をそれぞれ、av(A)k+j、av(U)k+j、av(G)k+j、av(C)k+j及びV(A)k+j、V(U)k+j、V(G)k+j、V(C)k+jとした。すなわち、
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
および
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000026
と記述した。
 k+j番目の4つの塩基A, U, G, Cそれぞれにおける平均値[式(2.1-2.4)]ならびに不偏分散[式(3.1-3.4)]を基に、4つの塩基A, U, G, Cに対応した回帰係数の分布が統計的に有意に正もしくは負とみなせるか否かを検定することにより、相対活性値yに正あるいは負に寄与する塩基配列を抽出した。
 そこで、本解析では、t検定を行うことにより、相対活性値yに統計的に有意な塩基をそれぞれの塩基位置について抽出した。t統計量は式(4)により表現した。
Figure JPOXMLDOC01-appb-M000027
ここでbaseは、A, U, G, Cのそれぞれの塩基と対応する。
 いま、t(base)k+jは、通常、自由度φ=n-1(sik+j=base)のt分布に従う。そこで、φ=n-1(sik+j=base)のt分布によりt(base)ik+jと対応する有意水準p(base)k+jとおいた。このp(base) k+jはk+jにおけるbaseと対応する塩基の回帰係数が偶然0とみなされる確率であるので、塩基位置kからk+L-1の範囲の長さLの配列のどの位置のどのような塩基が正あるいは負のいずれかの条件で相対活性値に寄与するかという情報を得ることができる。
 図4に、j+k番目の塩基位置における回帰係数と4つの塩基と対応した回帰係数の平均と普遍分散を示す。
2-4 PLSによる回帰係数の算出
 得られた配列情報及び相対活性値を基に、PLS (Partial Least Squares)法により回帰モデルを構築した。PLS法は、因子X(N×V行列)を応答y(N×1)へ線形的に関連付ける方法である。
 PLSは以下の式(5) と(6)で表した。
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000029
 ここで、pkはXにおけるk番目の成分の重みベクトルであり、qkはyにおけるk番目の成分の係数である。またDはPLSの成分数、tkはk番目の潜在変数、EはXの残差であり、eはyの残差である。PLSの成分数であるDは、成分数を増加させるたびにLeave-one-out cross-validationによりQ2値を逐次計算し、Q2値が最大になるときの成分数として決定される。Q2はモデルの予測精度を示す尺度であり、以下の式(7)で表した。
Figure JPOXMLDOC01-appb-M000030
 ここで、yobsは実験的に得られた実測値であり、ypredは構築したモデルによる予測値である。またPLSの式 (5)と (6)をあわせると式 (8)にまとめることができる。
Figure JPOXMLDOC01-appb-M000031
 このとき、aは回帰係数ベクトルであり、その要素はaj(j = 1, 2, …, N)で表される。またfはyの残差である。
 3.熱ストレス下における選択的な翻訳と5’UTRとの関連性
 3-1.試験に用いた39遺伝子の選択
 植物における環境ストレスによる翻訳状態の変化をゲノムワイドに解析するために、シロイヌナズナにおける通常細胞及びストレス処理した細胞由来の19099遺伝子について、ポリソーム/マイクロアレイ解析を行った。
 まず同一条件で培養して得た培養細胞を2分割して調製した通常細胞及び熱ストレス処理(37℃、10分)した細胞を、それぞれショ糖密度勾配遠心を利用したポリソーム解析に供した。熱ストレス処理によりポリソーム画分が減少すると同時に非ポリソーム画分が増大することは、吸光プロファイルにより確認した。ポリソーム画分及び非ポリソーム画分からそれぞれRNAを抽出・精製し、精製したRNAを鋳型にCy3 (ポリソーム画分)あるいはCy5(非ポリソーム画分)で蛍光標識したantisense RNA (aRNA)を調製し、Agilent oligoarray (Arabidopsis 3oligo microarray 44K; Agilent Technologies)上のプローブと競合ハイブリダイゼーションさせた。得られたマイクロアレイデータを基に、個々のmRNA種の翻訳状態(ポリソーム形成状態)を示す指標として、polysome score (ポリソーム画分[Cy3]/非ポリソーム画分[Cy5]のLog比)及びポリソーム画分に存在するmRNAの割合(%)を示すpolysome ratio (Cy3/[Cy3+Cy5]に相当)を算出した。
 通常細胞におけるpolysome scoreは、下記式により求めた。
Figure JPOXMLDOC01-appb-M000032
 上記式において、polyconは通常細胞由来のマイクロアレイデータにおけるCyanine3 (Cy3) シグナル値、換言すると通常細胞でのポリソーム画分に存在するmRNA量を表す。また、nonpolyconは通常細胞由来のマイクロアレイデータにおけるCyanine5 (Cy5) シグナル値、換言すると通常細胞でのポリソーム画分でない画分に存在するmRNA量を表す。
 また、熱ストレス処理した細胞におけるpolysome scoreは、下記式により求めた。
Figure JPOXMLDOC01-appb-M000033
 上記式においてpolyheatは、高温ストレス処理した細胞由来のマイクロアレイデータにおけるCy3シグナル値、換言すると熱ストレス処理した細胞でのポリソーム画分に存在するmRNA量を表す。また、nonpolyheatは、高温ストレス処理した細胞由来のマイクロアレイデータにおけるCy5シグナル値、換言すると熱ストレス処理した細胞でのポリソーム画分でない画分に存在するmRNA量を表す。
 更に、熱ストレス処理による翻訳状態の変化を評価するための指標として、下記式で表されるΔPSを各遺伝子について求めた。
Figure JPOXMLDOC01-appb-M000034
 また、ΔPSの大きさに従って、19099遺伝子のmRNAについて、ランキング化を行った。
即ち、ΔPSの値が大きいほど、ランキングの上位とし、値が小さいほど、下位に順位づけした。△PSの値が大きいほど、翻訳状態が影響を受けないことを示し、ΔPSの値が小さいほど翻訳が顕著に阻害されることを示す。
 図5に、熱ストレスによるポリソーム形成状態の変化を示す指標であるΔPSのヒストグラムを19099種のmRNAについて示した。縦軸は遺伝子数を示す。
 このポリソーム/マイクロアレイ解析の結果に基づいて、ΔPSのランキングの上位から下位に位置する遺伝子を含むように一定値ごとに17遺伝子を選択した。この際、Kawaguchiら(非特許文献4)の情報を基に5’UTRの全長が特定されているもののみ選択した。
 図7(A)に、選択した17遺伝子の、ΔPS値をΔPSのヒストグラム上に丸で示した図を示す。
 さらに、熱ストレス下においても翻訳状態が抑制されないと予想されるランキング上位の遺伝子を22個選択した。図8(A)に、22遺伝子のΔPS値をΔPSのヒストグラム上に丸で示した図を示す。
 上記選択した17遺伝子と22遺伝子の合計39遺伝子を、下記試験に用いた。
 3-2 選択した39遺伝子由来の5’UTRがキャップ構造を持つmRNAの翻訳に与える影響
 選択した39遺伝子の5’UTRの熱ストレス下における翻訳への寄与を検証するために、試験する5’UTRを付加したin vitro合成レポーターmRNAをプロトプラストに導入し、レポーターの発現を評価する一過性発現実験を行った。
 図6に、一過性発現実験の概要を示す。シロイヌナズナ培養細胞T87から調製したプロトプラストにin vitro合成したfirefly luciferase (f-luc) mRNAとRenilla luciferase (r-luc)mRNAをPEG法により導入した後、当該プロトプラストを2サンプルに分けた。
プロトプラストサンプルの1方を通常温度下(22℃)、もう1方を熱ストレス下(Heat stress)に20分間静置した。その後両プロトプラストサンプルを回収し、f-luc及びr-luc活性を測定した。m7Gはキャップ構造を、n=49はポリA配列の長さを示す。
 firefly luciferase mRNA (f-luc mRNA)は、各遺伝子の5’UTRを連結したキャップ構造、ポリA配列を有しており、+cap_5’UTR_f-luc_pA mRNAとも表される。また、Renilla luciferase (r-luc) mRNAは、キャップ構造及びポリA配列を有するコントロールRNAであって、+cap_r-luc_pA mRNAとも表される。
 図7(B)に、ΔPSのランキング上位から下位まで一定値ごとに選択した17遺伝子の試験結果を示す。選択した遺伝子の5’UTRを連結した、+cap_5’UTR_f-luc_pA mRNAを等量ずつ、コントロールである+cap_r-luc_pA mRNAと共にプロトプラストに導入した。mRNAを導入したプロトプラストを2サンプルに分けた後、それぞれを通常温度 (22℃)、熱ストレス (37℃)で20分間静置した。その後それぞれのサンプルからプロトプラストを回収し、f-luc及びr-luc活性を測定した。縦軸には選択した遺伝子のAGIcodeおよび括弧内にΔPSの値を示す。横軸には各構築の22℃における活性値を1とした相対f-luc活性値(a)、またはr-luc活性値(b)を示した。結果は、3回の独立した実験の平均値、及び標準誤差を示した。
 また、図8(B)に、ランキング上位を中心に選択した22遺伝子の試験結果を示す。選択した遺伝子の5’UTRを連結した、+cap_5’UTR_f-luc_pA mRNAを等量ずつ、コントロールである+cap_r-luc_pA mRNAと共にプロトプラストに導入した。mRNAを導入したプロトプラストを2サンプルに分けた後、それぞれを通常温度 (22℃)、熱ストレス (37℃)で20分間静置した。その後それぞれのサンプルからプロトプラストを回収し、f-luc及びr-luc活性を測定した。縦軸には選択した遺伝子のAGIcodeおよび括弧内にΔPSの値を、横軸には各構築の22℃における活性値を1とした相対f-luc活性値(a)、またはr-luc活性値(b)を示した。結果は、3回の独立した実験の平均値、及び標準誤差を示した。
 図7(B)(a) におけるAt3g47610、At3g51860、At5g39740等のデータに示されるように、ランキング中位または下位に位置する遺伝子の5’UTRを用いた場合には、37℃の熱ストレス処理によって相対活性値が減少した。
 一方、図7(B)(a)のAt4g14560、及び図8(B)(a)のAt1g55330、At1g77120等に例示されるように、ランキング上位に位置する遺伝子の5’UTRの場合については、そのような相対活性値の減少が見られなかった。
 これに対し、図7(B)(b)及び図8(B)(b)に示されるように、対照として共導入した+cap_r-luc_pA mRNAからの発現量は、+cap_5’UTR_f-luc_pA mRNAの種類に関わらず、熱ストレス処理によって一様に減少した。
 さらに、図9に、図7、図8に示した22℃に対する37℃の相対活性値とΔPS値の相関を、試験した計39遺伝子について示した。縦軸は対数表示である。rはピアソン相関係数を示す。相関の有無は統計的に検定した(p)。
 図9に示されるように、39遺伝子の5’UTRについて得られた22℃に対する37℃の相対活性値と、ΔPSの値との間に正の相関が認められた (r=0.67、p<0.05)。
 この結果は、熱ストレス下の翻訳状態を決定する因子としての5’UTRの重要性を示している。
 4. PLS法を用いたin silico解析による、熱ストレスに応答した翻訳制御を規定する5’UTRの配列情報の抽出とその検証
 前記3では、5’UTRが熱ストレス下におけるmRNAの翻訳レベルの応答を決定する重要な要因であることが示された。 
 そこで、更に、5’側からの塩基のポジションという観点に基づいたPLS解析を用いたin silico解析により、熱ストレス下の翻訳状態と関連のある、5’UTR内の配列情報の抽出を試みた。
 4-1 PLS法を用いた、翻訳レベルの応答と5’UTR配列情報を関連付ける予測モデルの構築
 先の一過性発現実験に供した計39遺伝子の5’UTRの配列情報と22℃に対する37℃の相対活性値の情報を基に、実際の相対活性値に対する変数 (部分塩基配列)の係数を求める多変量解析法 (PLS法)による回帰モデルの構築を行った。概念図を図10に表した。
 まず、前記3にて試験した39遺伝子の5’UTRの22℃に対する37℃の活性値 (相対活性値)と、それぞれの5’UTRの配列情報を抽出した (図10-A)。
 次に、5’端から10塩基、または10番目の塩基から20塩基という様に、5’UTRの任意の位置kから、長さLの配列を抜き出した (図10-B)。抜き出した領域に含まれる部分3塩基配列 、例えば、AAA、AUG、UUC等の頻度を数え (図10-C)、PLS法を用いて指定した範囲の回帰モデルを構築し、3塩基配列の回帰係数を求めた (図10-D)。
 そして、様々な領域の回帰モデルおよび回帰係数を算出し、実際の相対活性値に対するモデルの予測精度の尺度としてQ2を求めた。
 図11に、本試験で扱った39遺伝子の5’UTRの配列情報及び一過性発現実験より得られた相対活性値を用いたin silico解析による5’UTR内の熱ストレス下における翻訳に影響を及ぼす領域の解析結果を示す。
 図11の横軸は、5’UTR内の5’端からの距離を示している。縦軸にはin silico解析によって示された、予測精度を表すQ2値を示した。Q2値が高い領域ほど予測精度が高く、その領域だけで構築したモデルを説明することができる。つまりその領域が熱ストレス下でのレポーターmRNAの選択的な翻訳に直接的に影響していることを示している。なお、一過性発現実験で用いたmRNAには全てT3プロモーターからの転写後に5’端にGGが付加されており、それを含めた配列 (GG + 5’UTRの配列)をin silico解析に用いた。従って、実際の5’UTRの領域は領域の値から2を引いたものになる。
 その結果、モデル構築に使用した領域によってQ2が大きく異なることが解り、最もQ2が高かった5’端の9塩基 、実際の5’UTRではT3プロモーター由来のGGを除く7塩基、が非常に重要であるとの推測を得た。
 図12に、Q2の値が最も高い5’端9塩基(実際は7塩基)について、その領域を基にした回帰モデル及び回帰係数から得られた相対活性値の予測値と、実際に試験した39遺伝子の実測の相対活性値との相関を示した。rはピアソン相関係数を示す。p<0.01は無相関検定の結果を示す。
 その結果、非常に高い相関が見られ、精度の高いモデルの構築ができたことと考えられる。
 4-2 熱ストレス下での翻訳抑制回避には5’UTRの5’端7塩基が非常に重要な役割を果たす 
 in silico解析から予測された5’UTRの5’端側7塩基 、別言するとin silico解析より予測された9塩基からT3プロモーター由来のGGを除く7塩基、の重要性を一過性発現実験により検証した。
 これまでに一過性発現実験に供した39遺伝子の5’UTRのうち、37℃における22℃との相対活性値が高かった遺伝子At4g14560、At3g15450及びAt1g77120と、低かった遺伝子At3g47610及びAt5g57440の5’UTRの5’端7塩基を入れ換えて、先の一過性発現実験と同様に22℃と37℃におけるレポーター活性を測定した。
 相対活性値の高かった遺伝子の5’UTR について、At4g14560はgood (1)、At3g15450はgood (2)、At1g77120はgood (3)で示した。一方、相対活性値の低かった遺伝子の5’UTRについて、At3g47610はbad (1)、At5g57440はbad (2)で示した。
 図13左部に、用いた遺伝子の5'UTRの全長、及び5’UTRの1~7番目の塩基を他の5’UTRに1~7番目の塩基で入れ換えたものの構成を図示する。
 (a)、(c)、(e)、(g)、(i)、(k)は、用いた遺伝子の5’UTRの全長を示す。また、(b)、(d)、(f)、(h)、(j)及び(l)は、それぞれの遺伝子の5’UTRの1~7番目の塩基を、図示されている5’UTRに置換したものを示す。
 また表2に、図13の解析に用いた(a)-(l)の5'UTRについてのAGIcode、配列及び塩基長を示した。太字下線部は、5’端7塩基を入れ換えた後の配列を示している。
 (a)~(l)をそれぞれ付加した+cap_5’UTR_f-luc_pA mRNAを、コントロールである+cap_r-luc_pA mRNAと共にプロトプラストに導入した。mRNAを導入したプロトプラストを2サンプルに分けた後、それぞれを通常温度 (22℃)、熱ストレス (37℃)で20分間静置した。その後それぞれのサンプルからプロトプラストを回収し、f-luc及びr-luc活性を測定した。
 図13右に、各構築物についての、22℃における活性値を1としたときのf-luc活性値を示した。結果は、3回の独立した実験の平均値、及び標準誤差で示した。
 尚、試験した+cap_5’UTR_f-luc_pA mRNAの種類に関わらず、+cap_r-luc_pA mRNAからの発現量は同程度に減少した。
 図13における(a)と(b)、(e)と(f)、(i)と(j)との対比から示されるように、相対活性値の高い遺伝子の5’UTRの5’端7塩基を、相対活性値の低い遺伝子の5’UTRの5’端7塩基と入れ換えた場合、全ての5’UTRにおいて相対活性値の減少が認められた 。
 一方で、図13における(c)と(d)、(g)と(h)、(k)と(l)との対比から示されるように、相対活性値の低い遺伝子の5’UTRの5’端7塩基を、相対活性値の高い遺伝子の5’端7塩基と入れ換えた場合には、顕著な変化は見られなかったものの、相対活性値のわずかな上昇が認められた。ただし、(l)については相対活性値の高い遺伝子の5’UTRの5’端7塩基を入れ換えることによって、開始コドンAUGが新たに生じてしまうため (表2の(l)の配列参照)、真のレポーター活性を反映しているとは言えない。
 これらの結果は、熱ストレスによる選択的な翻訳には、5'UTRの5’端側7塩基が大きく影響していることを示している。
 しかしながら、相対活性値の低い遺伝子の5’UTRの5’端7塩基を、相対活性値の高い遺伝子の5’UTRの5’端7塩基と入れ換えたときに、相対活性値の増加が小さかったことから、翻訳抑制の回避に重要な5’UTR領域が、5’末端7塩基以外にも存在することが示唆された。 
Figure JPOXMLDOC01-appb-T000035
 4-3 5’UTR内の12~32番目の塩基についても熱ストレス下での翻訳抑制の回避に貢献している
 4-2より、熱ストレスによる翻訳抑制の回避に、5’UTRの5’端7塩基以外の領域も、貢献している可能性が示唆された。
 図11に示す、先のPLS法を用いたモデル構築とQ2解析から、熱ストレスによる翻訳抑制の回避に寄与する5’UTRの5’端7塩基以外の領域の候補として、12から32番目の塩基領域、言い換えると、in silico解析から予測された14から34番目の塩基からT3プロモーター由来のGGを除く領域、が推測された。
 そこで、Q2の値が2番目に高かった12~32番目の塩基について、その領域を基にした回帰モデル及び回帰係数から得られた相対活性値の予測値と、実際に試験した39遺伝子の実測の相対活性値との相関を調べた 。
 結果を図14に示す。図14の縦軸には、PLS法によって12~32番目の塩基を基にした回帰モデルから予測された相対活性値、横軸には39遺伝子の実測の相対活性値を示した。rはピアソン相関係数を示す。p<0.01は無相関検定の結果を示す。
 その結果、図12に示した5’端1~7塩基の結果ほどではないが、確かに高い相関が見られ、この領域でも精度の高いモデルの構築ができると考えられる。
 そこで、12~32番目の塩基についても、先の5’端7塩基の場合と同様に、一過性発現実験による評価を行った。
 ここでは、5’UTRの塩基長の違いによる影響を排除するために、入れ換えるペアの遺伝子の5’UTRの長さを出来るだけ近いものにし、短いペア(47ntと42nt)と長いペア(210ntと198nt)同士で入れ換えを行った。
 図15に短いペアの入れ換え試験の結果を示す。
 図15では、相対活性値の高い遺伝子At3g15450の5’UTR(白枠)と、相対活性値の低い遺伝子At5g39740の5’UTR (灰色枠)の5’端7塩基および12~32番目の塩基、またはそれら両方を入れ換えることによるレポーターmRNAの翻訳への影響を検証した。
 図15 において、(a)、(e)は、5’UTRの全長配列を示す。(b)、(c)、(d)、(f)、(g)、(h)は、それぞれの5’UTRに対して、示した番号の塩基領域を他方の5’UTRに置換したものを示す。
 また、表3に、図15の解析に用いた(a)-(h)の5’UTRのAGIcode、配列及び塩基長を示した。太字下線部は、5’端7塩基および12~32番目の塩基、または両方を入れ換え後の配列を示している。
 (a)-(h)で図示した各5’UTRを付加した+cap_5’UTR_f-luc_pA mRNAは、コントロールである+cap_r-luc_pA mRNAと共にプロトプラストに導入した。mRNAを導入したプロトプラストを2サンプルに分けた後、それぞれを通常温度 (22℃)、熱ストレス (37℃)で20分間静置した。その後それぞれのサンプルからプロトプラストを回収し、f-luc及びr-luc活性を測定した。
 図15右に、各構築の22℃における活性値を1としたときのf-luc活性値を示した。結果は、3回の独立した実験の平均値、及び標準誤差を示した。尚、試験した+cap_5’UTR_f-luc_pA mRNAの種類に関わらず、+cap_r-luc_pA mRNAからの発現量は同程度に減少した。
Figure JPOXMLDOC01-appb-T000036
短いペアの場合、相対活性値の高い遺伝子の5’UTR (白枠)の5’端7塩基に対して、相対活性値の低い遺伝子の5’UTR(灰色枠)の5’端7塩基を入れ換えることによって、活性値が減少した(図15-b)。また、5'端から12~32番目の塩基を入れ換えたものでは5'端7塩基を入れ換えたほどではないが減少が見られた (図15-c)。
 両方の領域を同時に入れ換えた場合には、7塩基のみを入れ換えた場合よりもさらに活性値が大きく減少した (図15-d)。一方、相対活性値の低い遺伝子の5’UTR(灰色枠)の5’端7塩基を相対活性値の高い遺伝子の5’UTR (白枠)の5’端7塩基と入れ換えた場合には活性値の増大が認められた (図15-f)。12~32番目の塩基を入れ換えた場合にも7塩基の場合ほどではないが増加が見られた (図15-g)。両方の領域を同時に入れ換えた場合には7塩基のみを入れ換えた場合よりもさらに大きく活性値が増加した (図15-h)。仮想的に、5’端7塩基、12~32番目の塩基以外の領域を入れ換えたと考えることが可能な、図15-aとh、あるいはdとeに着目してみた場合、5’端7塩基、12~32番目の塩基以外の領域が、相対活性値に与える影響はほとんどないことが示唆される。
 以上の結果は、熱ストレス下のレポーターmRNAの翻訳に対して、5’端7塩基が重要であることと共に、12~32番目の塩基領域単独では、その影響は小さいが、5’端7塩基と同時に存在することで、より大きな影響を与えることを示している。
 また、図16に長いペアの入れ換え試験の結果を示した。   
 図16では、相対活性値の高い遺伝子At4g12000の5’UTR(白枠)と相対活性値の低い遺伝子At2g41630の5’UTR(灰色枠)の5’端7塩基および12~32番目の塩基、またはそれら両方を入れ換えることによるレポーターmRNAへの発現への影響を検証した。
 (a)及び(e)は、5’UTRの全長配列を示す。(b)、(c)、(d)、(f)、(g)及び(h)は、それぞれの5’UTRに対して、示した番号の塩基領域を他方の5’UTRに置換したものを示す。
 また表4に、図16の解析に用いた、(a)~(h)の5’UTRのAGIcode、配列及び塩基長を示した。太字下線部は、5’端7塩基および12~32番目の塩基、または両方を入れ換え後の配列を示している。
 (a)-(h)で図示した各5’UTRを付加した+cap_5’UTR_f-luc_pA mRNAは、コントロールである+cap_r-luc_pA mRNAと共にプロトプラストに導入した。mRNAを導入したプロトプラストを2サンプル分けた後、それぞれを通常温度 (22℃)、熱ストレス (37℃)で20分間静置した。その後それぞれのサンプルからプロトプラストを回収し、f-luc及びr-luc活性を測定した。
 図16右に、各構築の22℃における活性値を1としたときのf-luc活性値を示した。結果は、3回の独立した実験の平均値、及び標準誤差を示した。尚、試験した+cap_5’UTR_f-luc_pA mRNAの種類に関わらず、+cap_r-luc_pA mRNAからの発現量は同程度に減少した。
Figure JPOXMLDOC01-appb-T000037
 長いペアの場合、相対活性値の高い遺伝子の5’UTR(白枠)の5’端7塩基に対して相対活性値の低い遺伝子の5’UTR(灰色枠)の5’端7塩基を入れ換えることによって活性値が減少した(図16-b)。また5'端から12~32番目の塩基を入れ換えたものでは5'端7塩基を入れ換えたものほどではないが減少が見られた (図16-c)。両方の領域を同時に入れ換えた場合には7塩基のみを入れ換えた場合よりもさらに活性値が大きく減少した (図16-d)。一方、相対活性値の低い遺伝子の5’UTR(灰色枠)の5’端7塩基を相対活性値の高い遺伝子の5’UTR(白枠)の5’端7塩基と入れ換えた場合には活性値の増大が認められた (図16-f)。12~32番目の塩基を入れ換えた場合にも7塩基の場合ほどではないが増加が見られた (図16-g)。両方の領域を同時に入れ換えた場合には7塩基のみを入れ換えた場合よりもさらに大きく活性値が増加した (図16-h)。
 以上の結果は、熱ストレス下のレポーターmRNAの翻訳に対して、5’端7塩基が重要であることと共に、12~32番目の塩基領域単独では、その影響は小さいが、5’端7塩基と同時に存在することで、より大きな影響を与えることを示している。
 4-4. 5’端7塩基及び12~32番目の塩基と5’末端との距離が熱ストレス下におけるレポーターmRNAの翻訳に与える影響
 これまでの実験結果より、5’UTR内の5’端7塩基及び12~32番目の塩基が、熱ストレス下におけるレポーターmRNAの発現を規定する重要な要因であることが示された。
 続いて、これら重要領域が単に5’UTR内に存在することではなく、その位置、つまり5’端近傍に存在することの重要性を検証した。
 具体的には、相対活性値の低かった遺伝子At5g39740の5’UTR(灰色枠)に、相対活性値の高かった遺伝子At3g15450の5’UTR(白枠)を入れ換え、さらに、入れ換えた5’端7塩基、12~32番目の塩基を5 bpずつ3’末端へ移動させた場合の、つまり重要領域と5’末端の距離を離した場合の、相対活性値への影響を一過性発現実験により評価した。
 図17左に、構築物の構成を示す。(a)は、5’UTRの全長を示す。(b)、(c)、(d)は、その5’UTRに対して、示した番号の塩基領域を相対活性値の高かった遺伝子の5’UTRに置換したものを示す。
 表5に、図17の解析に用いた、(a)-(d)までの5’UTRのAGIcode、配列及び塩基長を示した。太字下線部は、5’端7塩基および12~32番目の塩基、または両方を入れ換え後の配列を示している。
 (a)-(d)で 図示した各5’UTRを付加した+cap_5’UTR_f-luc_pA mRNAは、コントロールである+cap_r-luc_pA mRNAと共にプロトプラストに導入した。mRNAを導入したプロトプラストを分割した後、それぞれを通常温度 (22℃)、熱ストレス (37℃)で20分間静置した。その後プロトプラストを回収し、f-luc及びr-luc活性を測定した。
 また図17 右に、各構築の22℃における活性値を1としたときのf-luc活性値を示した。結果は、3回の独立した実験の平均値、及び標準誤差を示した。尚、試験した+cap_5’UTR_f-luc_pA mRNAの種類に関わらず、+cap_r-luc_pA mRNAからの発現量は同程度に減少した。
Figure JPOXMLDOC01-appb-T000038
 その結果、5’端7塩基と12~32番目の塩基を入れ換えたものに比べ (図17-b)、3’側へ5 bpあるいは10 bp移動させただけで相対活性値が著しく減少し (図17-c、d)、重要領域を入れ換える前の全長配列の場合と同程度の相対活性値を示した。
 このことから、相対活性値の高かった5’UTRの5’端7塩基、12~32番目の塩基の重要領域は、単に5’UTR内に存在するだけでなく、5’端側に存在することが重要である可能性が示された。
 4-5. in silico解析からの構築モデルを用いた活性予測値とΔPSとの相関
 これまでの実験では、一過性発現実験により実際に試験した5’UTRの配列情報とその実測値 (相対活性値)を基に、PLS法を用いたモデル構築を行い、熱ストレス下におけるレポーターmRNAの翻訳に寄与する重要領域 、即ち、5’端7塩基及び12~32番目の塩基を見出した。
 続いて、熱ストレスに応答した翻訳状態の変化を規定する因子としての5’端7塩基、12~32番目の塩基の重要性を異なる角度から検証した。
 まず、一過性発現実験により得られた約39種の遺伝子の5’UTRについての実測値 (相対活性値)を基に、5’端7塩基、12~32番目の塩基の両方の配列情報を利用したPLSによる回帰モデルの構築及び回帰係数の算出を改めて行った。
 続いて、Kawaguchiらによって全長5’UTR配列が整理された約3000の遺伝子(非特許文献4)について、その5’UTRの配列及び構築モデルから予測される相対活性値を算出し、3-1に記載したポリソーム/マイクロアレイ解析から算出したΔPS値 、即ち、熱ストレスによる翻訳状態の変化を表す指標に対し、どの程度相関しているか検証した。
 図18に、in silicoでのPLS解析によって構築されたモデル式から予測される相対活性値とポリソーム/マイクロアレイにて解析されたΔPSとの相関関係を調べた結果を示す。図18の横軸にポリソーム/マイクロアレイにて得られたΔPSを、縦軸には既に5’UTRの配列情報が整理されている1746遺伝子について3-2-1にて得られたPLSによるin silico解析によって得られた構築モデルから予測された相対活性値を示した。rはピアソン相関係数を示す。p<0.01は無相関検定の結果を示す。 
 その結果、2つの指標値 (予測相対活性値とΔPS値)の間に、緩やかではあるが(r=0.2737)、統計的に有意な (p<0.01)相関が見られた 。
 つまり、PLS法によって構築した回帰モデルに対して5’UTRの特定領域 (5’端7塩基、12~32番目の塩基)の情報をインプットするだけで、予測した相対活性値と実測したΔPS値が相関することを示している。レポーターmRNAへの一過的な発現に対する寄与だけでなく、mRNAのポリソーム形成状態の変化についても5’端7塩基及び12~32番目の塩基が重要因子として寄与していることが示唆された。
5.熱ストレス下においても翻訳の抑制を受けない最適配列
 5-1.in silico解析を用いた、熱ストレス下においても翻訳の抑制を受けない最適5’UTR配列の抽出
 続いて、PLS法により構築されたモデルを基に、熱ストレスによるレポーターmRNAの翻訳抑制の回避に寄与する最適配列の抽出を行った。
 具体的には、4-1において、5’端7塩基、12~32番目の塩基情報に基づいて構築したPLSモデルによって算出した部分塩基配列の回帰係数を基に、図19の概念図に示したように、各ポジションにおける各塩基のPLS回帰係数を配置し (図19-A)、各塩基位置における4種塩基のそれぞれの平均値を求め、さらにt検定を行った (図19-B)。各塩基配列ポジションにおける各塩基の重み (発現強度に与える影響)を算出することにより最適配列を抽出した。
 図20の横軸には5’UTR内での塩基のポジションを示している。例えば、9は 5’端から9番目の塩基を示す。また縦軸にはPLS法により構築されたモデルを基に算出された、各塩基の重み、換言すると発現強度を示した。これが高いほど熱ストレス下でのレポーターmRNAの翻訳の抑制回避に寄与していることを示している。統計的に有意であるもの(p<0.05)の中で各塩基の重みが4種の塩基の中で最も高いものを選択した(黒枠)。また、4種塩基とも有意でない場合は、塩基の重みが一番高い塩基を選択した(黒丸)。
 なお、一過性発現実験で用いたmRNAには全てT3プロモーターからの転写後に5’端にGGが付加されており、それを含めた配列 (GG + 5’UTRの配列)をin silico解析に用いた。実際の5’UTRの領域は領域の値から2を引いたものになる。
 5-2.in silico解析によって得られた最適配列の一過性発現実験による検証
 5-1に示すin silico解析の結果を受けて、提示された最適配列が実際のレポーターmRNAの熱ストレス下での翻訳抑制回避に寄与しているのかどうかを一過性発現実験によって検証した。
 検証方法としては、相対活性値が低く、且つ長さの異なる2種類の5’UTR 、具体的にはAt5g39740の5’UTR(42 bp)及びAt2g41630の5'UTR(198 bp)を用いて、5’端7塩基、12~32番目の塩基、または両方を上記に示した最適配列に入れ換えて一過性発現実験を行い、熱ストレス下におけるレポーターmRNAの翻訳に与える影響を検証した。最適配列(「best」と示す)としては、5’端7塩基はuuaaaaa、12~32番目の塩基はacaaaaaaaaaaaaaaaaaaaとして、試験5’UTRの5’端7塩基及び12~32番目の塩基またはその両方の領域を同配列と入れ換えた。
 尚、At2g41630の5’UTRの12~32番目の塩基を最適配列に置き換えた場合、開始コドンAUGが生じてしまうために、33番目の塩基もuからaに入れ換えた (表7)。
 図21に短い5’UTR (At5g39740)の入れ換え試験の結果を示した。
 相対活性値の低かった遺伝子At5g39740の5’UTR(灰色枠)の5’端7塩基および12~32番目の塩基、またはそれら両方を最適配列に入れ換えることによるレポーターmRNAの翻訳への影響を検証した。
 図21左図に5'UTRの構成を示す。(a)は5’UTRの全長配列を示す。(b)は、(a)に対して、示した番号の塩基領域を、相対活性値の高かった遺伝子At3g15450の5’UTR (「good」で示す)の同領域に置換したものを示す。(c)、(d)、(e)は、それぞれの5’UTRに対して、示した番号の塩基領域を最適配列(「best」と示す)に置換したものを示す。
 また、表6に、図21の解析に用いた、(a)-(e)までの5’UTRのAGIcode、配列及び塩基長を示した。太字下線部は、5’端7塩基および12~32番目の塩基、または両方を入れ換え後の配列を示している。(a)-(e)で図示した各5’UTRを付加した+cap_5’UTR_f-luc_pA mRNAは、コントロールである+cap_r-luc_pA mRNAと共にプロトプラストに導入した。mRNAを導入したプロトプラストを2サンプルに分けた後、それぞれを通常温度 (22℃)、熱ストレス (37℃)で20分間静置した。その後それぞれのサンプルからプロトプラストを回収し、f-luc及びr-luc活性を測定した。
 図21右図に、各構築の22℃における活性値を1としたときのf-luc活性値を示した。結果は、3回の独立した実験の平均値、及び標準誤差を示した。尚、試験した+cap_5’UTR_f-luc_pA mRNAの種類に関わらず、+cap_r-luc_pA mRNAからの発現量は同程度に減少した。 
 短い5’UTR(灰色枠)の場合、5’端7塩基を最適配列に入れ換えることによって、相対活性値の増大が認められた (図21-c)。12~32番目の塩基を最適配列に入れ換えた場合には相対活性値に影響は見られなかったものの (図21-d)、両方の領域を最適配列に入れ換えた場合には大きく相対活性値が増加した (図21-e)。また、その増加は図21-bに示した、同領域を相対活性値の高い5’UTRのものに入れ換えた場合よりも(図15-h)、増加の程度が大きくなった。以上の結果より、これまでも示した、5末端7塩基及び12~32番目の領域の重要性が再度示されたことに加え、最適配列が熱ストレス下での翻訳抑制回避に寄与することが示された。
Figure JPOXMLDOC01-appb-T000039
 また、図22に長い5’UTR (At2g41630)の入れ換え試験の結果を示した。
相対活性値の低かった遺伝子At2g41630の5’UTR(灰色枠)の5’端7塩基および12~32番目の塩基、またはそれら両方を最適配列に入れ換えることによるレポーターmRNAの翻訳への影響を検証した。
 図22左図に5'UTRの構成を示す。(a)は、5’UTRの全長配列を示す。(b)は、(a)に対して、示した番号の塩基領域を相対活性値の高かった遺伝子At4g12000の5’UTR (「good」で示す)の同領域に置換したものを示す。
 (c)、(d)、(e)は、それぞれの5’UTRに対して、示した番号の塩基領域を最適配列(「best」で示す)に置換したものを示す。なお(d)と(e)については12~32番目の塩基を最適配列に置換した場合にAUGが生じるため、33番目のuをaに置換した。
 表7に、図22の解析に用いた、(a)-(e)までの5’UTRのAGI code、配列及び塩基長を示した。太字下線部は、5’端7塩基および12~32番目の塩基、または両方を入れ換え後の配列を示している。
 (a)-(e)で図示した各5’UTRを付加した+cap_5’UTR_f-luc_pA mRNAは、コントロールである+cap_r-luc_pA mRNAと共にプロトプラストに導入した。mRNAを導入したプロトプラストを2サンプルに分けた後、それぞれを通常温度 (22℃)、熱ストレス(37℃)で20分間静置した。その後それぞれのサンプルからプロトプラストを回収し、f-luc及びr-luc活性を測定した。
 図22右図に、各構築の22℃における活性値を1としたときのf-luc活性値を示した。結果は、3回の独立した実験の平均値、及び標準誤差を示した。尚、試験した+cap_5’UTR_f-luc_pA mRNAの種類に関わらず、+cap_r-luc_pA mRNAからの発現量は同程度に減少した。
Figure JPOXMLDOC01-appb-T000040
 長い5’UTR(灰色枠)の場合、5’端7塩基を最適配列に入れ換えることによって、相対活性値の増大が認められた (図22-c)。また、12~33番目の塩基を最適配列に入れ換えた場合においても相対活性値の増大が認められた (図22-d)。そして両方の領域を最適配列に入れ換えた場合には大きく相対活性値が増加した (図22-e)。その増加は図22-bに示した、同領域を相対活性値の高い5’UTRのものに入れ換えた場合よりも、増加の程度が大きくなった。以上の結果より、これまでも示した、5末端7塩基及び12~32 (33)番目の領域の重要性および最適配列の効果が再度示された。
 以上、in silico解析を用いた各塩基ポジションにおける各塩基の重みの算出によって提示された最適配列が、2種の5’UTRに対する入れ換え実験によって、相対活性値を増加させた。これはこれまで提示してきた5’末端7塩基及び12~32番目の塩基の重要性を導き出したPLS解析を利用したin silico解析の有用性を支持している結果であると考えられる。
 6. 翻訳抑制を回避できる5’UTRのベクターDNAへの連結様式
 通常、有用遺伝子や5’UTRを連結した植物発現ベクターは、基本となるベクターのプロモーター領域下流に位置する制限酵素部位を利用して構築する(図23)。図23に一般的な植物発現ベクターの構築図を示す。この場合は、基本となる発現ベクターのXbaIおよびSacI部位に5’UTRおよび遺伝子を導入している。
 しかし、この場合はプロモーターから転写されたmRNAの5’側にベクターに由来する配列が付加されてしまうことになる。言い換えると、本来の5’UTRの5’側に転写開始点から構築に利用した制限酵素部位までの余分な配列が付加されてしまう。一方で、4-4の結果が示すように、熱ストレスによる翻訳抑制を回避できる5’UTRの特徴としては、5’UTRの5’端7塩基、12~32番目の塩基の領域が、単に5’UTR内に存在するのではなく、5’端側に存在することが重要であることが明らかとなっている。そのため、図23のような構築を行なった場合には、ストレスによる翻訳抑制を回避するという能力を発揮できない恐れが考えられる。
 6-1 ベクター由来の配列が熱ストレス下におけるレポーターmRNAの翻訳に与える影響
 相対活性値が高いAt1g77120の5’UTR 、およびその末端に図23でXbaI部位を利用してベクターに連結した場合に予想されるベクター由来の配列が付加された場合のmRNAをそれぞれ合成し、ベクター由来の配列が付加された場合の翻訳抑制回避への影響を一過性発現実験によって検証した。
 図24に5'UTRの構成を示す。 (At1g77120+)は、At1g77120の5’UTR に予想されるベクター由来の配列が付加された場合のmRNA 、(At1g77120)は、At1g77120の5’UTRのみを持つmRNAを示す。また、Cは、CaMV35Sプロモーターの転写開始点、即ち、5’UTRの5’末端を示す。
 表8に、 (At1g77120+)と(At1g77120)の5’UTR配列を示した。
Figure JPOXMLDOC01-appb-T000041
 図24で示した各5’UTRを付加した+cap_5’UTR_f-luc_pA mRNAは、コントロールである+cap_r-luc_pA mRNAと共にプロトプラストに導入した。mRNAを導入したプロトプラストを2サンプルに分けた後、それぞれを通常温度 (22℃)、熱ストレス (37℃)で20分間静置した。その後それぞれのサンプルからプロトプラストを回収し、f-luc及びr-luc活性を測定した。図25に、図24で示した各構築物At1g77120+及びAt1g77120の22℃における活性値を1としたときのf-luc活性値を示した。結果は、3回の独立した実験の平均値、及び標準誤差を示した。尚、試験した+cap_5’UTR_f-luc_pA mRNAの種類に関わらず、+cap_r-luc_pA mRNAからの発現量は同程度に減少した。 
 熱ストレス下において翻訳抑制を回避できるAt1g77120の5’UTR に発現ベクター構築後に予想されるベクター由来の配列を付加した場合、大きく相対活性値が減少した。
 このことから、植物へ導入した遺伝子を発現させ、かつ、ストレス下でも抑制されることなく効率的に翻訳させるためには、ストレス下でも翻訳抑制を回避できる5’UTRを適切な位置に、具体的にはプロモーターの転写開始点直後に連結する必要があることがわかった。
7. 安定形質転換細胞作出
7-1 バイナリーベクターの構築
 At1g77120+の5’UTRがCaMV35SプロモーターとGUS遺伝子(β-グルクロニダーゼ遺伝子)の間に挿入されているプラスミドAtADH NF (Sugio et al., J. Biosci. Bioeng., 3, 300-302.2008)のNOSターミネーター領域をSacI/EcoRIサイトを用いてHSPターミネーター (Nagaya et.al., Plant Cell Physiol. 51(2): 328-332 (2010))と置換した(At1g77120+ NF HSP-T)。At4g14560、At3g47610、At5g39740、At5g39740-Sの5’UTRについてXbaIサイトを持つforwardプライマーと3’側にStuIサイトを持つbackwardプライマー(表9)を用い、各5’UTRが挿入されているpT3-5’UTR-FL-pA を鋳型としてPCRを行った。得られたPCR産物をXbaI/StuIサイトを用いてAt1g77120+ HF HSP-TのAt1g77120の5’UTRと置換した。得られたプラスミドをそれぞれAt4g14560+ NF HSP-T、At3g47610+ NF HSP-T、At5g39740+NF HSP-T、At5g39740-S+ NF HSP-Tと名付けた。次にCaMV35Sプロモーターの転写開始点とそれぞれの5’UTRとの間の余分配列を取り除くために、forwardとbackward プライマー(表10)を用いてインバースPCRを行った。PCR産物を自己連結し、得られたプラスミドをそれぞれ At4g14560 NF HSP-T、At1g77120 NF HSP-T、At3g47610 NF HSP-T、At5g39740NF HSP-T、At5g39740-S NF HSP-Tと名付けた。また塩基配列を決定することで変異がないことを確認した。最後に、At4g14560+ NF HSP-T、At1g77120+ NF HSP-T、At4g14560 NFHSP-T、At1g77120 NF HSP-T、At3g47610 NF HSP-T、At5g39740 NF HSP-T、At5g39740-S NF HSP-TのHindIII/EcoRI断片をpRI910 (TAKARA-BIO)に挿入し形質転換用ベクターを作製した。作製したバイナリーベクターをエレクトロポレーション法によりAgrobacterium tumefaciens EHA105株に導入し、グリセロールストックとして-80℃で保存した。なお、図26に、作製したバイナリーベクターの構築図を例示する。
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
7-2 アグロバクテリウム法による培養細胞へのバイナリーベクター導入
 定常期に達した7日目のシロイヌナズナ培養細胞T87を新しい改変LS培地(95 ml)に2 mlを植え継ぎ、3日間24時間明期、22℃にて振蘯培養した。3日目シロイヌナズナ培養細胞T87培養液に2×YT培地(Molecular Cloning (Sambrook et al., 2001)に記載)で培養したアグロバクテリウム(作製した各バイナリーベクターが導入されている)を500 μlまたは1 ml (O.D.600測定値≒1)接種した。同時に終濃度100 μMのアセトシリゴンを添加し、22℃、連続明期、攪拌速度120 rpmの条件下で2日間、振蘯共存培養した。その後、共存培養液50 ml(全量の半分)を50 mlファルコンに移し、遠心(800×g, 1 min, 4℃)を行った後、上清を除き、100 mg/l カルベニシリンナトリウムを含む改変LS培地(洗浄培地)を約20 ml加え、洗浄を行った(5回)。洗浄の後の培養細胞を洗浄培地100 mlに移し、22℃、連続明期、攪拌速度120 rpmの条件下で2日間、振蘯回復培養した。回復培養後の培養細胞全量を洗浄培地で洗浄を行った(洗浄方法は上記と同様)。洗浄後の培養細胞と等量の洗浄培地を加えたものを1 ml又は500 μl、改変LS Km Cbプレート(改変LS培地, 40 mg/l カナマイシン, 250 mg/lカルベニシリンナトリウム, 3 g/l ゲランガム)に広げた。22℃、連続明期に2~3週間静置し、形成したカルスを新たな改変LS Km Cbプレートに移し、さらに増殖の良好なカルスを選択し、後述するGUS染色を行い、GUS遺伝子の発現を確認の後、十分に増殖したカルス塊を、95 mlの改変LS Km Cb液体培地中で培養し、その後の実験に使用した。
7-3 GUS染色による安定形質転換細胞の確認
  基本的にJeffersonらの方法 (Jefferson et al., (1987). EMBO J. 6, 3901-3907)に従い、GUS染色を行った。調整したGUS Extraction Buffer (50 mM NaH2PO4 pH7.0, 10 mMbeta-Mercaptoethanol, 10 mM Na2EDTA)に0.1 mM 5-Bromo-4-chloro-3-indoxyl-beta-D-glucuronide cyclohexylammonium salt (x-gluc)を染色の直前に加え、混合液を回収したカルス塊に1 ml加え攪拌し、37℃にて30分~2時間静置した。色の変化を観察した。GUS遺伝子の発現が確認されたカルスを形質転換細胞として以下の実験(ポリソーム解析、RT-PCR、及びGUS活性測定)に用いた。
7-4 安定形質転換細胞の継代
 培養は22℃、18時間明期/6時間暗期、攪拌速度120 rpmの条件で行い、95 mlの改変LS Km Cb液体培地を300 ml容の三角フラスコに入れ使用した。一週間ごとに、定常期に達した細胞4~10 mlを新しい培地95 mlに移植し、継代培養を行った。
8 ポリソーム/RT-PCR解析
8-1 安定形質転換細胞の生育条件及びストレス処理
 形質転換細胞に対し、熱ストレス処理又は塩ストレス処理を行った。形質転換細胞の熱ストレス処理には、培養3日目の細胞を用い、37℃で10分間振蘯培養した。熱ストレス処理後、吸引濾過により培地を除き、液体窒素中で凍結させ、-80℃にて保存した。通常細胞は温度が22℃である以外は、熱ストレス処理した細胞と同様に扱った。塩ストレス処理にも、培養3日目の形質転換細胞を用いた。終濃度200 mMとなるようにNaClを細胞培養液に加えた後、通常の培養条件(上記7-4に記載の条件)で10分間振蘯培養した。吸引濾過した細胞を液体窒素中で凍結させ、-80℃にて保存した。
8-2 ショ糖密度勾配遠心法を用いたポリソーム解析
 ショ糖密度勾配遠心を利用したポリソーム解析は、Davisらの方法に準じて行った (Davies, E., and Abe, S. (1995). Methods Cell Biol. 50, 209-222.)。通常細胞もしくは熱ストレス/塩ストレス処理した細胞約300 mgを乳棒と乳鉢を用いて液体窒素中で細かく破砕した後、破砕粉末に1.5 mlのbuffer U (200 mM Tris-HCl, pH 8.5, 50 mM KCl, 25 mM MgCl2, 2 mM EGTA, 100 μg/ml heparin, 2% polyoxyethylene 10-tridecyl ether, 1%sodium deoycholate)を加え、緩やかに懸濁した。遠心(15,000 ×g, 10 min, 4℃)により細胞残さを除いたのち、buffer B (50 mM Tris-HCl, pH8.5, 25 mM KCl, and 10 mM MgCl2)により調製した15-60%ショ糖密度勾配4.5 ml上に上清を重層し、超遠心を行った (SW55Ti rotor, 55,000 rpm, 50 min, 4℃, brake-off) (Beckman Coulter)。ペリスタポンプ (Minipuls 3; Gilson)に連結したマイクロピペット (40 μl Calibrated Pipet; Drummond)をショ糖密度勾配の上部から挿入し、下部からショ糖密度勾配液を約1 ml/minの速度で吸引すると同時に、バイオミニ紫外吸収モニターAC-5200 (ATTO)を用いて254 nmの吸光度を記録した。
8-3 ショ糖密度勾配遠心液からのRNA抽出 (15フラクション)
 ショ糖密度勾配遠心液約350 μlずつを、終濃度5.1 Mになるように8 Mグアニンジン塩酸塩を予め加えておいたチューブ15本に回収した。混合液と等量の100% エタノールを加え、-20℃にて一晩冷却した後、遠心操作(12,000×g, 45 min, 4℃)を行った。得られたペレットは85%エタノールにて一度洗浄した後、乾燥させた。その後のRNA精製にはRNeasyMini Kit (Qiagen)を付属のプロトコールに従い用いた(DNaseI処理をオプションとして行った)。 すべての画分のRNAをそれぞれ30 μlのRNase-free waterで溶解した。精製したRNAの品質は、1.5%変性ゲル電気泳動により検定した。
8-4 RT-PCR
 15の画分から精製したRNA溶液を、等容量ずつ用いて逆転写反応を行った。逆転写反応には、Transcriptor First Strand cDNA Synthesis Kit (Roche)を用い、反応系は20 μlとした (oligo dTプライマー使用)。PCR反応による特異的なcDNA産物の増幅は、2倍希釈した逆転写反応液2-3 μlを鋳型とし、遺伝子特異的なプライマー(表11)及びKAPA Taq Extra PCR Kit (KAPABIOSYSTEMS)を用いて行った(反応系は20 μl)。増幅産物は、アガロース電気泳動及びEtBr染色により可視化した。PCRのサイクル数はPCR産物の指数増加期内に設定した。
Figure JPOXMLDOC01-appb-T000044
 なお、ポリソーム/RT-PCR解析の概要を図27に示す。リボソームのmRNAへの結合数は翻訳の効率(多数のリボソームが結合しポリソームを形成しているmRNAでは翻訳が活発に行われ、リボソームが解離し非ポリソームとなっているmRNAでは翻訳が抑制される)を示す指標となるため (Mathews et al., (2007). (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press), pp. 1-40.; Kawaguchiand Bailey-Serres, KawaguchiR., and Bailey-Serres J. (2002). Curr Opin Plant Biol. 5, 460-5.)、ショ糖密度勾配遠心により細胞抽出液中に存在するmRNAをリボソームの結合数に応じて分画できるポリソーム解析は、細胞の翻訳状態の変化を解析する手法として広く利用されている。また、リボソーム結合数により分画したショ糖密度勾配液の各画分からRNAを精製し、RT-PCRを行うことで、異なる5’UTRを付加したGUS mRNAと内在遺伝子mRNAのストレスの有無による挙動の変化を解析できる。このポリソーム/RT-PCRを行うことで、各5’UTRの翻訳維持能力を検証できる。なお、再現性を得るために各形質転換細胞について、それぞれ2ラインを解析に用いた。
8-5 解析結果
<熱ストレス処理>
(At3g47610形質転換細胞)
 At3g47610形質転換細胞に37℃10分間の熱ストレス処理を行うことで、通常細胞と比較してポリソーム画分が減少するとともに非ポリソーム画分が増大していることがRNA量の指標とした254 nmの吸光プロファイルから示された(図28 A)。また、リボソームの構成因子である28S rRNAと18S rRNAのショ糖密度勾配液における分布が、吸光プロファイルの挙動を反映していることも、遠心後のショ糖密度勾配液を分画し、それぞれの画分から回収したRNAをアガロース電気泳動することにより確認された(図28 B)。さらに、アレイ解析の結果から、熱ストレス下でも翻訳が維持される遺伝子であるAt1g77120もしくはAt4g14560のmRNAのショ糖密度勾配液における分布をRT-PCR法により調べたところ、熱ストレス条件(37℃/10 min)においても、翻訳が抑制されることなくポリソーム画分にとどまっていた(図28 C)。一方で、アレイ解析の結果から、熱ストレス下で翻訳抑制を受けるハウスキーピング遺伝子Actin2 (Act2)とAt3g47610のmRNAでは熱ストレス処理により、mRNAの分布がポリソームから非ポリソーム画分に著しく移行しており(図28 C)、At3g47160の5’UTRを付加したGUS mRNAでも、At3g47610 mRNAと同様に、熱ストレス下においてポリソーム形成が阻害され、翻訳が抑制されることが示された(図28 C)。
(At5g39740形質転換細胞)
 At5g39740形質転換細胞についても、At3g47610形質転換細胞と同様の解析を行った。その結果、At3g47610形質転換細胞と同様、ストレス処理によるポリソーム画分の減少と非ポリソーム画分の増大(図29 A)、28S rRNAと18S rRNAのショ糖密度勾配液における分布とその吸光プロファイルの挙動の一致(図29 B)、そしてAt1g77120 mRNA のポリソーム形成の維持とAct2、At3g47610 mRNAの非ポリソーム画分への移行が観察された(図29 C)。また、熱ストレス下で翻訳が抑制される遺伝子であるAt5g39740の5’UTRを付加したGUS mRNAではAt3g47610の5’UTRを用いた場合と同様に熱ストレス下での翻訳が抑制された(図29 C)。
 これらAt3g47610形質転換細胞及びAt5g39740形質転換細胞を用いた解析の結果は、熱ストレス下で翻訳が抑制される遺伝子の5’UTRを導入遺伝子に付加した場合、その内在遺伝子と同様に熱ストレス下において翻訳が抑制されることを示している。
(At4g14560形質転換細胞)
 At4g14560形質転換細胞についても、同様の解析を行った。その結果、これまでと同様に、37℃10分間の熱ストレス処理による、ポリソーム画分の減少と非ポリソーム画分の増大(図30 A)、28S rRNAと18S rRNAのショ糖密度勾配液における分布とその吸光プロファイルの挙動の一致(図30 B)、そして熱ストレス下でも翻訳が維持されるAt4g14560 mRNAのポリソーム形成の維持と熱ストレス下で翻訳抑制をうけるAct2とAt3g47610 mRNAの熱ストレス処理による非ポリソーム画分への移行が認められた(図30 C)。一方で、At3g47610形質転換細胞とAt5g39740形質転換細胞とは異なり、熱ストレス下でも翻訳が維持されるAt4g14560の5’UTRを付加したGUS mRNAでは熱ストレス下においてもポリソーム画分にとどまっていた (図30 C)。
(At1g77120形質転換細胞)
 At1g77120形質転換細胞についても、同様の解析を行った。その結果、37℃10分間の熱ストレス処理によりポリソーム画分の減少と非ポリソーム画分の増大(図31 A)、28S rRNAと18S rRNAのショ糖密度勾配液における分布とその吸光プロファイルの挙動の一致(図31 B)、熱ストレス下でも翻訳が維持されるAt1g77120 mRNAの熱ストレス下でのポリソーム形成の維持と熱ストレス下で翻訳抑制をうけるAct2とAt3g47610 mRNAの熱ストレス処理による非ポリソーム画分への移行が認められた (図31 C)。一方、At1g77120の5’UTRを付加したGUS mRNAでは熱ストレス下においてもポリソーム画分にとどまっていた (図31 C)。
 これらAt4g14560形質転換細胞及びAt1g77120形質転換細胞を用いた解析結果から、熱ストレス下でも翻訳を維持する能力を持つ5’UTRを活用することで、植物へ導入した外来遺伝子が熱ストレス下でも抑制されることなく発現できることが示された。
(At4g14560+形質転換細胞及びAt1g77120+形質転換細胞)
 At4g14560+形質転換細胞及びAt1g77120+形質転換細胞を、それぞれ2ラインずつ、計4種類の形質転換細胞を用い、通常条件下(22℃)と熱ストレス下(37℃/10 min)で培養した細胞のGUS mRNAの挙動を、ポリソーム/RT-PCRにより解析した。その結果、余分配列を含むAt4g14560+形質転換細胞とAt1g77120+形質転換細胞では、上記4種の形質転換細胞を用いた解析結果と同様、熱ストレス処理によりポリソーム画分の減少と非ポリソーム画分の増大(図32 A, 図33 A)、28S rRNAと18S rRNAのショ糖密度勾配液における分布とその吸光プロファイルの挙動の一致(図32 B, 図33 B)、そして熱ストレス下で翻訳が維持されるAt4g14560及びAt1g77120 mRNAのポリソーム形成の維持、熱ストレス下で翻訳抑制を受けるAct2とAt3g47610 mRNAの非ポリソーム画分への移動が確認された (図32 C, 図33 C)。一方で、At4g14560+ 5’UTRを付加したGUS mRNAでは、At3g47610 やAt5g39740の5’UTRを付加したGUS mRNAほどではないが、At4g14560形質転換細胞のGUS mRNA(図30 C)と比較して、熱ストレス処理により、GUS mRNAの分布が非ポリソーム画分へ移行した(図32 C)。また、At1g77120+形質転換細胞の場合も、At1g77120形質転換細胞と比較してAt1g77120+ 5’UTRを付加したGUS mRNAが全体として非ポリソーム画分に移行していることが確認された(図31 C, 図33 C)。これらの結果は、6-1で行った一過性発現実験の結果と一致しており、5’UTRの5’側に余分な配列が存在すると、熱ストレス下での翻訳維持能力が損なわれることを示している。またこの結果は、発現ベクターを構築する際には、5’UTRにできるだけ余分な配列が付加されないように考慮する必要であることを示している。
(At5g39740-S形質転換細胞)
 熱ストレス下で翻訳が抑制されるAt5g39740の5’UTRを予想最適配列(5’端から1-7塩基:uuaaaaa, 12-32塩基:acaaaaaaaaaaaaaaaaaaa, 図20参照)に置換した5’UTRを作製し、この5’UTRを発現する発現ベクターを構築した。予想最適配列のAt5g39740 5’UTRへの導入は図21(e)及び図22(e)と同じ位置に行った。構築したバイナリーベクターを導入したAt5g39740-S形質転換細胞を作出し、予想最適配列の効果を上述の形質転換細胞の解析と同様にして検証した。結果を図34に示す。
 At5g39740形質転換細胞のGUS mRNAは、熱ストレス下において翻訳が抑制されることが示された (図34 C)。一方、At5g39740 5’UTRの一部を予想最適配列に置換したAt5g39740-S 5’UTRを付加したGUS mRNAでは非ポリソーム画分への移行が図29 Cの結果と比較して減少した(図34 C)。このことから、予想最適配列への置換により翻訳維持能力が向上することが示された。
<塩ストレス処理>
 熱ストレス下でも翻訳を維持する5’UTR(At4g14560及びAt1g77120)と翻訳が抑制される5’UTR(At3g47610)を用いて、塩ストレス下での翻訳維持能力を検証した。すなわち、At4g14560形質転換細胞、At1g77120形質転換細胞、及びAt3g47610形質転換細胞を用いてポリソーム/RT-PCR解析を行った。
 その結果、熱ストレス処理時と同様、塩ストレス処理によっても細胞全体としてのポリソーム画分の減少と非ポリソーム画分の増大(図35 A, 図36 A, 図37 A)、28S rRNAと18S rRNAのショ糖密度勾配液における分布とその吸光プロファイルの挙動の一致が認められ(図35 B, 図36 B, 図37 B)、塩ストレスによっても熱ストレスと同様に翻訳が阻害された。また、熱ストレス下で翻訳抑制を受けるAct2とAt3g47610 mRNAは塩ストレス処理によって非ポリソーム画分へ移行した (図35 C, 図36 C, 図37 C)。またAt3g47610の5’UTRを付加したGUS mRNAは塩ストレスによって同様に翻訳が抑制された (図35 C)。一方で、At4g14560 5’UTRを付加したGUS mRNAとAt1g77120 5’UTRを付加したGUS mRNAは、塩ストレス下でも抑制されることなくポリソーム画分にとどまっていた(図36 C, 図37 C)。
 このことから、少なくとも熱ストレス下で翻訳維持能力のあるAt4g14560 5’UTRとAt1g77120 5’UTRは塩ストレス下でも翻訳維持能力を発揮し、熱ストレス下において翻訳が抑制されるAt3g47610 5’UTRを用いた場合は塩ストレス下でも同様にその翻訳が抑制されることが示された。
9 GUS活性測定
 上述のポリソーム/RT-PCR解析では、短時間の強い熱ストレス処理(37℃/10 min)を行い、mRNAのポリソーム形成状態の変化から5’UTRの翻訳能力評価を行った。ここでは、形質転換細胞を長時間の熱ストレス下におき、翻訳産物であるGUSタンパク質の蓄積量の変化を調べることにより各5’UTRの翻訳維持能力を検証した。なお、37℃で長時間細胞を培養すると形質転換細胞は死滅するため、本検討では、下述するようにより弱い熱ストレスである32℃で培養を行った。
9-1 安定形質転換細胞のストレス処理
 植え継ぎ後3日目の安定形質転換細胞を、24時間32℃で培養し、熱ストレス処理とした。それ以外の条件は上記8-1に記載の条件と同様とした。
9-2 GUS活性測定
 Jeffersonらの方法 (Jefferson et al., (1987). EMBO J. 6, 3901-3907)に従い、GUS活性を測定した。培養細胞を遠心操作(800 rpm, 1 min, 22℃)により、細胞を沈殿させ、300 μlのPassive Lysis buffer (Promega)を加え、Handy Sonic(TOMY SEIKO CO., LTD)による細胞破砕を行った。破砕した細胞を再度遠心(15000 rpm, 5 min, 4℃)し、200 μlの上清を回収した。100 μlの上清と200 μlの1.5 mM 4-Methylumbelliferyl-β-D-glucuronide液を混合し、反応させたのち、SPECTRAFLUOR(TECAN)を用いて励起波長365 nm、蛍光波長455 nmで反応生成物4-methyl-umbelliferone (4-MU)の蛍光強度を1分毎に30分間測定した。10分から20分までの1分あたりの測定値の増加量の平均値からblankの平均値を引き、1分あたりの4MU平均増加量を決定した。GUS活性はpmol/min/mg protinとして算出した。
9-3 Bradford法による総タンパク質量の測定
 総タンパク質量の測定はBradfordの方法(Bradford, M. (1976).Anal. Biochem. 72, 248-254.)に従った。10 μlのタンパク質溶液に500 μlのタンパク質定量試薬を加えSPECTRAFLUOR (TECAN)を用いて測定し、既知濃度のBSAを用いて作製した検量線からタンパク質濃度を決定した。
    タンパク質定量試薬
    Commassie Brilliant blue G-250 100 mg/l
    95% Ethanol 50 ml/l
    85%(w/v) Phosphoric acid 100 ml/l
9-4 結果
 32℃/24時間の熱ストレス条件下において、翻訳維持能力のある遺伝子由来の5’UTR (At4g14560とAt1g77120)を付加した形質転換細胞では、GUSタンパク質蓄積量の維持傾向が見られた(図38)。一方、翻訳抑制を受ける遺伝子由来の5’UTR (At3g47610とAt5g39740)を用いた形質転換細胞では緩やかな熱ストレスに長時間曝される(24時間32℃)ことにより、GUSタンパク質の蓄積量に減少傾向が見られた(図38)。
 このことは、これらの遺伝子の5’UTRは翻訳維持能力を有しており、当該5’UTRを有するmRNAをコードする遺伝子を細胞内で発現させ、熱ストレス条件下に置くことで、当該遺伝子がコードするタンパク質が優先的に産生されることを示している。

Claims (15)

  1. 以下の(a)又は(b)の5’UTRを有するmRNAをコードする組換えDNA分子。
    (a)
    (i)5’端から1~7番目が配列番号4の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号4の12~32番目の塩基配列からなる5’UTR、
    (ii)5’端から1~7番目が配列番号6の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号6の12~32番目の塩基配列からなる5’UTR、
    (iii)5’端から1~7番目が配列番号20の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号20の12~32番目の塩基配列からなる5’UTR、
    (iv)5’端から1~7番目が配列番号36の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号36の12~32番目の塩基配列からなる5’UTR、又は
    (v)5’端から1~7番目が配列番号60の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号60の12~32番目の塩基配列からなる5’UTR
    (b)
    (a)の5’UTRの塩基配列において、1又は数個の塩基が置換され、かつ、熱ストレス及び塩ストレスからなる群より選択される少なくとも1種の環境ストレスによる翻訳抑制を回避する5’UTR。
  2. (a)の5’UTRが、5’端に配列番号4、6、20、36、又は60の塩基配列を有する5’UTRである、請求項1に記載の組換えDNA分子。
  3. 請求項1に記載の組換えDNA分子をプロモーターの転写開始点直後に連結してなるベクター。
  4. 請求項3に記載のベクターで形質転換された形質転換体。
  5. 形質転換体が形質転換植物である、請求項4に記載の形質転換体。
  6. 請求項5に記載の形質転換体を、熱ストレス及び塩ストレスからなる群より選択される少なくとも1種の環境ストレス下で生育させ、前記組換えDNA分子がコードするタンパク質を産生させる方法。
  7. 請求項3に記載のベクターを植物に導入し、熱ストレス及び塩ストレスからなる群より選択される少なくとも1種の環境ストレスによる翻訳抑制を回避できる植物を製造する方法。
  8. 以下の(a)又は(b)の5’UTRを有するmRNAをコードするよう塩基配列を組み換えて、熱ストレス及び塩ストレスからなる群より選択される少なくとも1種の環境ストレスによる翻訳抑制を回避する遺伝子を製造する方法。
    (a)
    (i)5’端から1~7番目が配列番号4の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号4の12~32番目の塩基配列からなる5’UTR、
    (ii)5’端から1~7番目が配列番号6の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号6の12~32番目の塩基配列からなる5’UTR、
    (iii)5’端から1~7番目が配列番号20の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号20の12~32番目の塩基配列からなる5’UTR、
    (iv)5’端から1~7番目が配列番号36の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号36の12~32番目の塩基配列からなる5’UTR、又は
    (v)5’端から1~7番目が配列番号60の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号60の12~32番目の塩基配列からなる5’UTR
    (b)(a)の5’UTRの塩基配列において、1又は数個の塩基が置換され、かつ、熱ストレス及び塩ストレスからなる群より選択される少なくとも1種の環境ストレスによる翻訳抑制を回避する5’UTR。
  9. (a)の5’UTRが、5’端に配列番号4、6、20、36、又は60の塩基配列を有する5’UTRである、請求項10に記載の遺伝子を製造する方法。
  10. 以下の(a)又は(b)の5’UTRを有するmRNAをコードするよう、任意の遺伝子の塩基配列を組み換えて、熱ストレス及び塩ストレスからなる群より選択される少なくとも1種の環境ストレスにより、当該遺伝子がコードするタンパク質の翻訳が抑制されるのを回避する方法。
    (a)
    (i)5’端から1~7番目が配列番号4の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号4の12~32番目の塩基配列からなる5’UTR、
    (ii)5’端から1~7番目が配列番号6の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号6の12~32番目の塩基配列からなる5’UTR、
    (iii)5’端から1~7番目が配列番号20の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号20の12~32番目の塩基配列からなる5’UTR、
    (iv)5’端から1~7番目が配列番号36の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号36の12~32番目の塩基配列からなる5’UTR、又は
    (v)5’端から1~7番目が配列番号60の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号60の12~32番目の塩基配列からなる5’UTR
    (b)(a)の5’UTRの塩基配列において、1又は数個の塩基が置換され、かつ、熱ストレス及び塩ストレスからなる群より選択される少なくとも1種の環境ストレスによる翻訳抑制を回避する5’UTR
  11. (a)の5’UTRが、5’端に配列番号4、6、20、36、又は60の塩基配列を有する5’UTRである、請求項10に記載のタンパク質の翻訳が抑制されるのを回避する方法。
  12. 以下の(a)又は(b)の5’UTRを有する人工mRNA分子。
    (a)
    (i)5’端から1~7番目が配列番号4の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号4の12~32番目の塩基配列からなる5’UTR、
    (ii)5’端から1~7番目が配列番号6の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号6の12~32番目の塩基配列からなる5’UTR、
    (iii)5’端から1~7番目が配列番号20の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号20の12~32番目の塩基配列からなる5’UTR、
    (iv)5’端から1~7番目が配列番号36の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号36の12~32番目の塩基配列からなる5’UTR、又は
    (v)5’端から1~7番目が配列番号60の1~7番目の塩基配列からなり、5’端から12~32番目の塩基配列が配列番号60の12~32番目の塩基配列からなる5’UTR
    (b)
    (a)の5’UTRの塩基配列において、1又は数個の塩基が置換され、かつ、熱ストレス及び塩ストレスからなる群より選択される少なくとも1種の環境ストレスによる翻訳抑制を回避する5’UTR
  13. (a)の5’UTRが、5’端に配列番号4、6、20、36、又は60の塩基配列を有する5’UTRである、請求項12に記載の人工mRNA分子。
  14. 植物における環境ストレスによる翻訳抑制を回避又は低減させる、5'UTRにおける配列特徴の予測方法であって、
     植物内で天然に発現するN個の遺伝子について、各5’UTRを含む核酸分子の対照条件下に対する環境ストレス条件下における翻訳レベルの相対活性値を求める工程、
     前記5′UTRにおける5'末端からの塩基位置kからk+L-1までの長さLの配列について、少なくとも1回出現するt個の塩基からなる塩基配列の出現頻度を求める工程、
     前記相対活性値と、前記塩基配列の出現頻度との相関式を構築し、多変量解析により各塩基配列の出現頻度の回帰係数を求める工程、
     前記回帰係数を用いて、塩基位置kからk+L-1までの長さLの領域における各塩基位置における4つの塩基A、U、G、Cに対応した回帰係数の値を求め、各塩基位置における前記相対活性値に対する各塩基の寄与度を求める工程、 
     得られた寄与度及び前記相対活性値を用いて多変量解析により回帰モデルを構築する工程、
     k及びLを変えて構築した回帰モデルの中から、相対活性値に対する予測精度を設定値以上とする塩基位置k'及びL'の回帰モデルを選定し、選定した回帰モデルを用いて塩基位置k'からk'+L'-1の領域における特定配列を予測する工程
    を含む予測方法。
  15. 植物における環境ストレスによる翻訳抑制を回避又は低減させる、5'UTRにおける配列特徴の予測システムであって、
     植物内で天然に発現するN個の遺伝子について、各5’UTRを含む核酸分子の対照条件下に対する環境ストレス条件下における翻訳レベルの相対活性値を求める手段、
     前記5′UTRにおける5'末端からの塩基位置kからk+L-1までの長さLの配列について、少なくとも1回出現するt個の塩基からなる塩基配列の出現頻度を求める手段、
     前記相対活性値と、前記塩基配列の出現頻度との相関式を構築し、多変量解析により各塩基配列の出現頻度の回帰係数を求める手段、
     前記回帰係数を用いて、塩基位置kからk+L-1までの長さLの領域における各塩基位置における4つの塩基A、U、G、Cに対応した回帰係数の値を求め、各塩基位置における前記相対活性値に対する各塩基の寄与度を求める手段、 
     得られた寄与度及び前記相対活性値を用いて多変量解析により回帰モデルを構築する手段、
     k及びLを変えて構築した回帰モデルの中から、相対活性値に対する予測精度を設定値以上とする塩基位置k'及びL'の回帰モデルを選定し、選定した回帰モデルを用いて塩基位置k'からk'+L'-1の領域における特定配列を予測する手段
    を備える予測システム。
     
     
PCT/JP2010/064006 2009-08-19 2010-08-19 環境ストレス下の翻訳抑制を回避する5'utrをコードする組換えdna分子 WO2011021666A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA2771597A CA2771597C (en) 2009-08-19 2010-08-19 Recombinant dna molecule encoding 5'utr capable of preventing inhibition of translation under environmental stresses
JP2011527702A JP5769173B2 (ja) 2009-08-19 2010-08-19 環境ストレス下の翻訳抑制を回避する5’utrをコードする組換えdna分子
US13/391,069 US9163254B2 (en) 2009-08-19 2010-08-19 Recombinant DNA molecule encoding 5′ UTR capable of preventing inhibition of translation under environmental stresses

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009190179 2009-08-19
JP2009-190179 2009-08-19
JP2010054891 2010-03-11
JP2010-054891 2010-03-11

Publications (1)

Publication Number Publication Date
WO2011021666A1 true WO2011021666A1 (ja) 2011-02-24

Family

ID=43607116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064006 WO2011021666A1 (ja) 2009-08-19 2010-08-19 環境ストレス下の翻訳抑制を回避する5'utrをコードする組換えdna分子

Country Status (4)

Country Link
US (1) US9163254B2 (ja)
JP (1) JP5769173B2 (ja)
CA (1) CA2771597C (ja)
WO (1) WO2011021666A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031821A1 (ja) * 2011-09-02 2013-03-07 国立大学法人奈良先端科学技術大学院大学 形質転換植物細胞を用いたタンパク質製造方法
US9163254B2 (en) 2009-08-19 2015-10-20 National University Corporation NARA Institute of Science and Technology Recombinant DNA molecule encoding 5′ UTR capable of preventing inhibition of translation under environmental stresses
WO2016175132A1 (ja) * 2015-04-30 2016-11-03 国立大学法人 奈良先端科学技術大学院大学 植物において組み換えタンパク質の高発現を可能にする5'utrをコードするdna分子

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR201901310T4 (tr) 2013-03-14 2019-02-21 Translate Bio Inc Mesajcı RNA'nın saflaştırılması yöntemleri.
CA2944800A1 (en) 2014-04-25 2015-10-29 Shire Human Genetic Therapies, Inc. Methods for purification of messenger rna
CA3108544A1 (en) 2018-08-24 2020-02-27 Translate Bio, Inc. Methods for purification of messenger rna

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002515754A (ja) 1996-11-12 2002-05-28 キュービーアイ エンタプライジズ リミテッド 翻訳的に制御される遺伝子の同定方法
JP2002513285A (ja) 1997-02-25 2002-05-08 キュービーアイ エンタープライジズ リミテッド 高翻訳効率のires配列及びこの配列を含む発現ベクター
US20060150283A1 (en) * 2004-02-13 2006-07-06 Nickolai Alexandrov Sequence-determined DNA fragments and corresponding polypeptides encoded thereby
JP5769173B2 (ja) 2009-08-19 2015-08-26 国立大学法人 奈良先端科学技術大学院大学 環境ストレス下の翻訳抑制を回避する5’utrをコードする組換えdna分子
JP2013503640A (ja) * 2009-09-04 2013-02-04 シンジェンタ パーティシペーションズ アクチェンゲゼルシャフト 植物におけるポリペプチドの発現を増加させるための翻訳エンハンサー要素のスタッキング
CA2847113C (en) * 2011-09-02 2017-06-13 National University Corporation NARA Institute of Science and Technology Protein production method using transformed plant cells

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AKIRA KATO ET AL: "Kankyo Stress no Eikyo o Koryo shita Donyu Idenshi Hatsugenkei, 2Ea-04", 27TH JAPANESE SOCIETY FOR PLANT CELL AND MOLECULAR BIOLOGY (FUJISAWA) TAIKAI SYMPOSIUM YOSHISHU, - 29 July 2009 (2009-07-29), pages 149 *
CHIE KASHIKI ET AL: "Kankyo Stress-ka deno Hon'yaku Seigyo ni Okeru 5'-UTR no Juyosei, P2D016(908)", 51TH THE JAPANESE SOCIETY OF PLANT PHYSIOLOGISTS NENKAI KOEN YOSHISHU, 12 March 2010 (2010-03-12), pages 330 *
KOSUKE HARIKAWA ET AL: "Identification of Internal Ribosome Entry Site in Arabidopsis Thaliana, 1D14-2", ABSTRACTS OF THE ANNUAL MEETING OF THE SOCIETY FOR BIOTECHNOLOGY, - 25 September 2005 (2005-09-25), JAPAN, pages 124 *
TAKAKO TSUDA ET AL: "The Property of 5'-UTR of HSP81-2 and HSP81-3 Genes That Are Efficiently Translated under Heat Stress Condition, 1D14-3", ABSTRACTS OF THE ANNUAL MEETING OF THE SOCIETY FOR BIOTECHNOLOGY, - 25 September 2005 (2005-09-25), JAPAN, pages 124 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9163254B2 (en) 2009-08-19 2015-10-20 National University Corporation NARA Institute of Science and Technology Recombinant DNA molecule encoding 5′ UTR capable of preventing inhibition of translation under environmental stresses
WO2013031821A1 (ja) * 2011-09-02 2013-03-07 国立大学法人奈良先端科学技術大学院大学 形質転換植物細胞を用いたタンパク質製造方法
JPWO2013031821A1 (ja) * 2011-09-02 2015-03-23 国立大学法人 奈良先端科学技術大学院大学 形質転換植物細胞を用いたタンパク質製造方法
WO2016175132A1 (ja) * 2015-04-30 2016-11-03 国立大学法人 奈良先端科学技術大学院大学 植物において組み換えタンパク質の高発現を可能にする5'utrをコードするdna分子

Also Published As

Publication number Publication date
JP5769173B2 (ja) 2015-08-26
CA2771597C (en) 2018-01-09
US9163254B2 (en) 2015-10-20
US20120174256A1 (en) 2012-07-05
JPWO2011021666A1 (ja) 2013-01-24
CA2771597A1 (en) 2011-02-24

Similar Documents

Publication Publication Date Title
JP5655947B2 (ja) 成葉特異的プロモーター
JP5769173B2 (ja) 環境ストレス下の翻訳抑制を回避する5’utrをコードする組換えdna分子
CN102575259B (zh) 用于增强植物中种子特异的和/或种子优先的基因表达的调节性核酸分子
CA3036968A1 (en) Trichome specific promoters for the manipulation of cannabinoids and other compounds in glandular trichomes
Ortega et al. The 5′ untranslated region of the soybean cytosolic glutamine synthetase β 1 gene contains prokaryotic translation initiation signals and acts as a translational enhancer in plants
JP6607616B2 (ja) 植物において組み換えタンパク質の高発現を可能にする5’utrをコードするdna分子
Yamasaki et al. Arabidopsis thaliana cold-regulated 47 gene 5′-untranslated region enables stable high-level expression of transgenes
David-Assael et al. Expression of AtMHX, an Arabidopsis vacuolar metal transporter, is repressed by the 5′ untranslated region of its gene
EP3112465A2 (en) Method for identification and isolation of terminator sequences causing enhanced transcription
AU2020344905A1 (en) Regulatory nucleic acid molecules for enhancing gene expression in plants
WO2013190720A1 (ja) サトウキビ花成制御技術
Mathieu et al. Cloning of a pine germin‐like protein (GLP) gene promoter and analysis of its activity in transgenic tobacco Bright Yellow 2 cells
EP1431392B1 (en) PLANT SYSTEM FOR COMPREHENSIVE GENE FUNCTION ANALYSIS WITH THE USE OF FULL-LENGTH cDNA
CN111948181A (zh) 利用烟草双荧光素酶报告系统检测ath-miRNA170-3p靶向MSH2的方法
KR20150113013A (ko) 식물에서 재조합 단백질의 과다발현을 위한 5&#39;&#39;(5&#39;&#39;-utr)에서 최적화된 리더 기능을 가진 인공 dna 서열 및 식물에서 재조합 단백질의 생산 방법
CA2847113C (en) Protein production method using transformed plant cells
JP5472089B2 (ja) 光合成組織における遺伝子発現制御に関わるdna
JP7290338B2 (ja) 単子葉植物において組み換えタンパク質の高発現を可能にする5’utrをコードするdna分子
KR102097524B1 (ko) 전신 발현 유도 프로모터, 이를 포함하는 발현 벡터, 이에 의한 형질 전환 식물체 및 이의 제조방법
JP2020018310A (ja) 植物におけるコード配列の発現レベルを制御するためのプロモーターエレメントにおけるAT(n)挿入物の使用
JPH08256777A (ja) 翻訳エンハンサー配列およびその使用
KR20140049126A (ko) 잎, 줄기 또는 이들 모두에 특이적 프로모터, 이를 포함하는 발현 벡터, 이에 의한 형질 전환 식물체 및 이의 제조방법
JP2013017472A (ja) グリシンベタイン合成酵素遺伝子で形質転換された環境ストレス耐性ヤトロファ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10810007

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011527702

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13391069

Country of ref document: US

Ref document number: 2771597

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10810007

Country of ref document: EP

Kind code of ref document: A1