WO2013031669A1 - 電池及びその製造方法 - Google Patents

電池及びその製造方法 Download PDF

Info

Publication number
WO2013031669A1
WO2013031669A1 PCT/JP2012/071390 JP2012071390W WO2013031669A1 WO 2013031669 A1 WO2013031669 A1 WO 2013031669A1 JP 2012071390 W JP2012071390 W JP 2012071390W WO 2013031669 A1 WO2013031669 A1 WO 2013031669A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
connection terminal
welding
sealing plate
caulking
Prior art date
Application number
PCT/JP2012/071390
Other languages
English (en)
French (fr)
Inventor
細川 弘
善也 丸山
晴彦 山本
英紀 樫本
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2013531272A priority Critical patent/JP6022460B2/ja
Publication of WO2013031669A1 publication Critical patent/WO2013031669A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/22Spot welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/38Conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery including a joint portion in which a pair of conductive members are connected by a caulking portion and a welded portion using a high energy ray, and a method for manufacturing the same.
  • EV electric vehicles
  • HEV hybrid electric vehicles
  • sealed batteries such as nickel-hydrogen secondary batteries and lithium ion secondary batteries are used, but in recent years light weight and high capacity batteries can be obtained.
  • Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are increasingly used.
  • batteries for EV and HEV are often used in which a power generation element is housed in a metal rectangular outer can or cylindrical outer can.
  • a high output discharge is performed, a large current is generated in the battery.
  • it is necessary to reduce the resistance of the battery to reduce the internal resistance as much as possible, and to prevent resistance variation. For this reason, various improvements have been made to achieve high reliability and low resistance in the terminal portion and the joint inside the battery.
  • Patent Documents 1 to 3 below bonding by caulking is performed.
  • the boundary part is welded with a high energy beam such as a laser.
  • Patent Documents 2 and 3 below show examples in which welding is performed with high energy rays so that a plurality of welding spots overlap each other for each of a plurality of regions along the boundary portion of the joint portion by caulking. ing.
  • FIG. 9A is a cross-sectional view showing the process of processing the tip of the crimped portion of the terminal disclosed in Patent Document 2 below
  • FIG. 9B is a view showing a step of laser welding after the step of FIG. 9A
  • 9B is a plan view of FIG. 9B
  • FIG. 9D is a plan view after laser welding is repeated a plurality of times so that a plurality of welding spots overlap each other.
  • the junction 60 between the current collector and the terminal disclosed in Patent Document 2 below includes a cover plate 61 fixed to a battery outer body (not shown), an inner insulating sealing material 62, and an outer insulating sealing material. 63, a current collector 64 connected to the power generation element, and a rivet terminal 65.
  • the inner insulating sealing material 62 and the outer insulating sealing material 63 have through holes and are arranged on both the inner and outer peripheral edge portions of the opening formed in the lid plate 61.
  • the current collector 64 is disposed so as to overlap the inner insulating sealing material 62.
  • the rivet terminal 65 has a caulking portion 65b protruding from the jaw portion 65a.
  • the joining portion 60 is configured such that the caulking portion 65 b of the rivet terminal 65 is connected to the outer insulating sealing material 63, the opening of the lid plate 61, the inner insulating sealing material 62, and the rivet of the current collector 64 from the outer peripheral side of the lid plate 61.
  • the rivet terminal 65 is assembled by penetrating the terminal hole, and then integrated by crimping the crimping portion 65b of the rivet terminal 65 so as to press the current collector 64.
  • a processing punch A having a concave portion complementary to the caulking portion 65b of the rivet terminal 65 and having an inclined portion A1 having a predetermined angle on the periphery of the concave portion is prepared.
  • the machining punch A is pushed so that the inclined portion A1 contacts the tip 65c of the caulking portion 65b, and the tip 65c of the caulking portion 65b is partially deformed, and as shown in FIG. It shape
  • laser spot welding is performed by irradiating the laser beam LB from the direction perpendicular to or near the top surface of the truncated cone portion of the tip 65c of the crimping portion 65b.
  • the irradiation range of the laser beam LB at this time is a region including at least the current collector 64 and the truncated cone portion of the tip 65c of the crimping portion 65b, and the truncated cone of the current collector 64 and the tip 65c of the crimping portion 65b. Butt welding between the two parts.
  • the current collector 64 is formed such that a plurality of welding spots 66 are formed so as to overlap each other along the truncated cone portion of the current collector 64 and the tip 65c of the caulking portion 65b. And the frustoconical portion of the tip 65c of the crimping portion 65b are butt welded.
  • the present invention has been made in order to solve the above-described problems, and in a battery including a joint portion in which a pair of conductive members are mechanically and electrically connected by a caulking portion and a welded portion by a high energy ray.
  • An object of the present invention is to provide a battery in which resistance variation is suppressed and reliability is improved, and a method for manufacturing the same.
  • a battery according to the present invention is a battery in which a pair of conductive members are fixed by caulking and a welded area welded to each other by a high energy ray is formed. Further, it is characterized in that it is formed by two or more overlapping welding spots in a direction crossing a boundary portion between one and the other of the pair of conductive members.
  • two or more overlapping weld spots are formed in a direction intersecting the boundary portion between one member and the other member (the boundary line between the one member and the other member). Even if the position of the end portion of the caulking portion of one member varies, it can be reliably welded with the high energy beam across the one member and the other member. Therefore, according to the battery of the present invention, the pair of conductive members are connected by caulking and welding with a high energy beam, so that the internal resistance is reduced and the electrical resistance changes with time even in an environment with a lot of vibration. Is less likely to occur, and a highly reliable battery can be obtained.
  • the battery of the present invention may be either a primary battery or a secondary battery, a cylindrical battery or a square battery, and a battery using a nonaqueous electrolyte and an aqueous electrolyte. Any of the batteries used is equally applicable.
  • region by the high energy ray in the battery of this invention is applicable to a positive electrode side and a negative electrode side.
  • the exterior body the power generation element housed in the exterior body, the sealing plate that seals the opening of the exterior body, and the sealing so as to penetrate the sealing plate
  • a connection terminal attached to a plate, and a current collector electrically connected to the power generation element and the connection terminal, wherein the welding region is formed between the current collector and the connection terminal. It is good as it is.
  • the joint between the current collector and the connection terminal is connected by caulking and welding with a high energy ray, so that the internal resistance is reduced and the electric power can be obtained even in an environment with a lot of vibration. Resistance changes with time are less likely to occur, and a highly reliable battery can be obtained.
  • the current collector may be caulked and fixed to the connection terminal, or the connection terminal may be caulked and fixed to the current collector.
  • the battery of the present invention can also be applied to a battery having a built-in safety means such as a current interruption mechanism as a connection terminal.
  • a metal thing can be used as an exterior body, and a sealing board and a metal thing can also be used. If the sealing plate is made of metal, the connection terminal and the sealing plate may be electrically insulated with a gasket or an insulating plate.
  • the exterior body, the power generation element housed in the exterior body, the sealing plate that seals the opening of the exterior body, and the sealing so as to penetrate the sealing plate A connection terminal attached to a plate, a current collector electrically connected to the power generation element and the connection terminal, and an external terminal electrically connected to the connection terminal, the welding region, It may be formed between the connection terminal and the external terminal, or between the current collector and the connection terminal, and between the connection terminal and the external terminal.
  • connection between the connection terminal and the external terminal, or between the current collector and the connection terminal and between the connection terminal and the external terminal is fixed by caulking and welding with a high energy line.
  • the connection terminal may be fixed to the external terminal by caulking, or the external terminal may be fixed to the connection terminal by caulking, and the connection terminal may be caulked to the current collector. While fixing and crimping to an external terminal, the current collector and the external terminal may be crimped to a connection terminal.
  • the welding spot is formed in a state where three or more points overlap each other, one point on both ends is formed closer to one member, and at least one point on the intermediate side is one member. It is preferable that it is formed so as to straddle the boundary with the other member and that another point on both end sides is located on the other member side.
  • the battery of the present invention even if the position of the end portion of the caulking portion of one member is shifted to one side of one member side or the other member side, it straddles between one member and the other member. Even if a small crack due to so-called solidification cracking occurs at the welding spot formed between one member and the other member, it can be reliably welded with a high energy beam. It is possible to prevent the residual welding spot from being left behind. Therefore, according to the battery of the present invention, it is possible to obtain a battery with higher internal resistance and less change in electrical resistance over time even in an environment with more vibrations and higher reliability.
  • the last welding spot in the welding region by the high energy ray is formed only on the one member or only on the other member.
  • the crack can be eliminated at the next overlapping welding spot other than the final welding spot. Therefore, if the last welding spot is a part of only one member or a part of the other member, even if a crack remains in the last welding spot, one member and the other member There is no crack in the joint portion, and one member and the other member can be reliably connected. For this reason, according to the battery of the present invention, the above-described effect can be achieved better.
  • the two or more overlapping welding spots are preferably formed from the crimped member side of the pair of conductive members toward the other member side. .
  • the end of the crimped member in a state where it is not welded to the other member is hard to escape the applied heat and hits the joint in a state where only the crimped member is irradiated with high energy rays. Since the effect of preheating the end portion of the crimped member is increased, the member is melted with a small amount of heat input. Therefore, like the battery of the present invention, the high energy beam is scanned from the crimped member toward the other member, and the end of the crimped member is melted and connected to the other member. However, the power of the high energy beam to irradiate is less than the case where the other member side and the caulked side member are connected by scanning the high energy ray from the other member side toward the caulked member side. It will be over. Note that the scanning direction of the high energy beam can be easily determined from the overlap state of the welding spots.
  • the welding region is formed at a plurality of locations along the boundary of the crimped member.
  • the battery of the present invention if the mechanical area and electrical conductivity of the joint portion between one member and the other member are insufficient at a single welding region with a high energy beam, welding with a high energy beam is performed. It can be improved by having a plurality of regions. However, if there are too many welding areas with high energy rays, the areas where the caulking force was applied will melt and the caulking force will weaken, so the welding areas with multiple high energy rays should not overlap. It is preferable.
  • the welding region is formed at a symmetrical position along the boundary of the crimped member.
  • the battery of the present invention when a force is applied to the crimping portion, a force is applied evenly to the welding region by the high energy ray, so that the strength of the joint portion between one member and the other member is increased, A battery with higher reliability can be obtained.
  • the pair of conductive members can be applied to those made of an aluminum metal.
  • connection terminals, external terminals and the like made of an aluminum-based metal are often used particularly on the positive electrode side of lithium ion secondary batteries.
  • Aluminum-based metals have a larger thermal expansion than steel and the like, and thus are liable to cause solidification cracking. In the battery of the present invention, even when the pair of conductive members are made of an aluminum-based metal, the above-described effect is satisfactorily achieved.
  • the crimped member may be formed by deforming a cylindrical shape before the crimping by spinning caulking.
  • the caulking part often cannot be applied with a large force in order to suppress deformation around the caulking part.
  • a cylindrical member is subjected to spinning caulking, one member and the other member can be firmly caulked and fixed without applying a large force, but the spread of the caulking portion tends to vary.
  • the welding region by the high energy beam is formed by two or more overlapping welding spots in the direction intersecting the boundary between one member and the other member. Even if the position of the caulking boundary due to caulking changes, it becomes difficult to cause poor welding.
  • the crimped member may be formed by deforming a crisp pin shape before crimping.
  • the shape of the crimped portion is a split pin, it can be easily crimped and the dimensional stability of the crimped portion is improved, but the crimped strength is reduced.
  • the battery of the present invention not only the caulking fixing part but also the welding region by the high energy ray is formed, so that the internal resistance is reduced and the electrical resistance changes with time even in an environment with a lot of vibration. It becomes difficult to obtain a battery with high reliability.
  • the crimped member is in a through hole having a tapered counterbore hole formed in one member of the pair of conductive members, and is opposite to the counterbore hole. Therefore, it is preferable that the other member of the pair of conductive members is inserted and deformed so that the other member is in contact with the counterbore hole.
  • the heat capacity of the portion of the one member in which the tapered counterbore hole is formed becomes small. Therefore, according to the battery of the present invention, the balance with the heat capacity of the other member to be caulked becomes good, and a welded portion with a high energy beam of good quality can be obtained. Changes are less likely to occur and a battery with higher reliability can be obtained.
  • a step portion having a diameter larger than the diameter of the tapered counterbore hole may be formed on the tapered counterbore hole side.
  • the surface of the welding surface is uneven. If the uneven surface is within the stepped portion, the uneven surface of the welding region is one member when viewed from the side. Since the surface of the other member is not exposed, the surface of the other member appears to be a flat surface, and the dimensional stability is improved. In addition, the large-diameter stepped portion can suppress the spatter generated by the irradiation of high energy rays from being scattered outside the aperture.
  • the battery manufacturing method of the present invention is a battery manufacturing method in which a pair of conductive members are fixed by caulking and welded regions are formed by welding with high energy beams. And caulking one of the pair of conductive members with respect to the other, and then scanning a high energy line in a direction intersecting a boundary portion between the one and the other of the pair of conductive members. To form a welding region consisting of two or more overlapping welding spots.
  • the battery includes an exterior body, a power generation element housed in the exterior body, a sealing plate that seals an opening of the exterior body, and the sealing plate.
  • a connection terminal attached to the sealing plate so as to pass through the power generation element, and a current collector electrically connected to the power generation element and the connection terminal. You may form between the said connection terminals.
  • the battery includes an exterior body, a power generation element housed in the exterior body, a sealing plate that seals an opening of the exterior body, and the sealing plate.
  • a connection terminal attached to the sealing plate so as to pass through, a current collector electrically connected to the power generation element and the connection terminal, and an external terminal electrically connected to the connection terminal,
  • the welding region may be formed between the current collector and the connection terminal and between the connection terminal and the external terminal.
  • the number of welding spots in the welding region may be three or more.
  • the last welding spot of the welding region by the high energy ray may be formed only on the one member or only on the other member.
  • the two or more overlapping welding spots may be formed from the crimped member side of the pair of conductive members toward the other member side.
  • the crimped member may be deformed by spinning caulking using a cylindrical shape before caulking.
  • the battery of the present invention having the above effects can be easily manufactured.
  • FIG. 1A is a perspective view in which an external terminal of a prismatic nonaqueous electrolyte secondary battery common to Examples and Comparative Examples is omitted
  • FIG. 1B is an exploded perspective view of a connection terminal portion. It is a disassembled perspective view which shows the state which attaches an external terminal to a connection terminal. It is sectional drawing which shows the state which crimps and fixes a connecting terminal to an external terminal by spinning caulking.
  • 4A is a plan view showing a state where the connection terminal is inserted into the hole of the external terminal
  • FIG. 4B is a cross-sectional view taken along line IVB-IVB in FIG. 4A
  • FIG. 4C is a plan view showing a state where spinning caulking is performed.
  • 4D is a cross-sectional view taken along the line IVD-IVD in FIG. 4C.
  • 5A is a plan view when a single welding spot is formed in Comparative Example 1
  • FIG. 5B is a cross-sectional view taken along line VB-VB in FIG. 5A
  • FIG. 5C is a single welding spot in Comparative Example 2.
  • 5D is a cross-sectional view taken along line VD-VD in FIG. 5C.
  • 6A is a plan view when the welding region of Example 1 is formed
  • FIG. 6B is a cross-sectional view taken along the line VIB-VIB of FIG. 6A
  • FIG. 6C is a state where the welding region of Example 2 is formed.
  • FIG. 6D is a cross-sectional view taken along the line VID-VID in FIG. 6C.
  • 7A is a plan view when a single welding spot is formed in Comparative Example 3
  • FIG. 7B is a cross-sectional view taken along the line VIIB-VIIB in FIG. 7A
  • FIG. 7C is a view in which the welding region of Example 3 is formed.
  • 7D is a cross-sectional view taken along line VIID-VIID in FIG. 7C.
  • FIG. 8A is a partial cross-sectional view of the first modification
  • FIG. 8B is a plan view before caulking of the second modification
  • FIG. 8C is a caulking and welding region of the second modification. It is a top view of a state.
  • FIG. 8A is a partial cross-sectional view of the first modification
  • FIG. 8B is a plan view before caulking of the second modification
  • FIG. 8C is a caulking and welding region of the second modification. It is
  • FIG. 9A is a cross-sectional view showing a processing step of the tip of a crimped portion of a conventional terminal
  • FIG. 9B is a view showing a laser welding step after the step of FIG. 9A
  • FIG. 9C is a plan view of FIG.
  • FIG. 9D is a plan view after laser welding is repeated a plurality of times so that a plurality of welding spots overlap each other.
  • connection form between a connection terminal and an external terminal in a prismatic nonaqueous electrolyte secondary battery for embodying the technical idea of the present invention. It is not intended to specify only the connection form between the connection terminal and the external terminal, and the present invention is also applicable to the connection form between the current collector inside the battery and the connection terminal. Further, the present invention is not limited to prismatic nonaqueous electrolyte secondary batteries, but also for primary batteries and secondary batteries, for both cylindrical batteries and prismatic batteries, and for nonaqueous batteries.
  • the present invention is equally applicable not only to a battery using an electrolyte but also to a battery using an aqueous electrolyte.
  • either a laser beam or an electron beam can be used as the high energy beam used for welding.
  • the laser beam will be described as a representative example.
  • FIG. 1A is a perspective view in which the external terminals of the rectangular nonaqueous electrolyte secondary battery common to the examples and the comparative examples are omitted
  • FIG. 1B is an exploded perspective view of the connection terminal portion.
  • the gasket 15 is not shown.
  • This rectangular non-aqueous electrolyte secondary battery 10 includes a flat power generation element (both not shown) in which a positive electrode plate and a negative electrode plate are wound or stacked with a separator interposed therebetween.
  • the battery outer can 11 is enclosed inside and sealed with a sealing plate 12.
  • the positive electrode connection terminal 13 and the negative electrode connection terminal 14 are provided in the state insulated from the sealing plate 12 with the gasket 15 and the insulating member 16 so that the sealing plate 12 might be penetrated.
  • the positive electrode plate is coated with a positive electrode active material mixture and rolled after drying so that a positive electrode core exposed portion in which the strip-shaped aluminum foil is exposed is formed on both surfaces of the positive electrode core made of aluminum foil. It is produced by.
  • the negative electrode plate is coated with a negative electrode active material mixture so that a negative electrode core exposed portion where the strip-shaped copper foil is exposed is formed on both surfaces of the negative electrode core made of copper foil, and after drying It is produced by rolling.
  • the flat power generation element is made of a microporous material made of polyolefin such that the positive electrode plate and the negative electrode plate are positioned at both ends in the winding axis direction so that the positive electrode core exposed portion and the negative electrode core exposed portion are located respectively. It is produced by winding or laminating in a flat shape via a separator.
  • the positive electrode core exposed portion is connected to the positive electrode connection terminal 13 via the positive electrode current collector
  • the negative electrode core exposed portion is connected to the negative electrode connection terminal 14 via the negative electrode current collector.
  • the positive electrode connection terminal 13 and the negative electrode connection terminal 14 are each fixed to the sealing plate 12 via an insulating member.
  • a flat power generation element is inserted into a rectangular battery outer can 11, and then a sealing plate 12 is laser welded to the opening of the battery outer can 11, and then an electrolyte solution is injected.
  • the non-aqueous electrolyte is injected from a hole (not shown), and the electrolyte injection hole is sealed.
  • the positive electrode current collector and the positive electrode connection terminal 13 are formed of an aluminum-based metal such as aluminum or an aluminum alloy.
  • the current collector and the negative electrode connection terminal 14 are different from each other in that they are formed of a copper-based metal such as copper or a copper alloy, other configurations are substantially the same. To explain.
  • the positive electrode connection terminal 13 is connected to a cylindrical first caulking member 13b formed on one side of the flange portion 13a and an external terminal formed on the other end side of the flange portion 13a. And a cylindrical second caulking member 13c for fixing.
  • the cylindrical first caulking member 13b is assembled by being inserted into openings formed in the gasket 15, the sealing plate 12, the insulating member 16, and the positive electrode current collector 17, respectively.
  • the second caulking member 13c is placed on a jig (not shown) so that the second caulking member 13c faces downward, and the caulking is performed so that the diameter of the first caulking member 13b expands in the same direction from the front end side.
  • the first caulking member 13b of the positive electrode connection terminal 13 and the positive electrode current collector 17 are firmly connected electrically and mechanically by laser welding as appropriate.
  • the caulking and laser welding between the first caulking member 13b of the positive electrode connecting terminal 13 and the positive electrode current collector 17 are performed in accordance with the second caulking member 13c of the positive electrode connecting terminal 13 and the external terminal described in detail below. 18 (refer to FIG. 2), since it can be performed in the same manner as the caulking and laser welding between them, a specific description is omitted here.
  • FIG. 2 is an exploded perspective view showing a state in which the external terminal is attached to the connection terminal.
  • FIG. 3 is a cross-sectional view showing a state in which the connection terminal is caulked and fixed to the external terminal by spinning caulking.
  • 4A is a plan view showing a state where the connection terminal is inserted into the hole of the external terminal
  • FIG. 4B is a cross-sectional view taken along line IVB-IVB in FIG. 4A
  • FIG. 4C is a plan view showing a state where spinning caulking is performed.
  • 4D is a cross-sectional view taken along the line IVD-IVD in FIG. 4C.
  • insulating members such as the gasket 15 are not shown.
  • the positive external terminal 18 used here has a Z-fitting shape, is made of an aluminum-based metal similar to the positive connection terminal 13, and has openings 18a and 18b formed at both ends.
  • the opening 18a on the upper end side is for connecting the plurality of rectangular nonaqueous electrolyte secondary batteries 10 in series and parallel or to connect with external wiring
  • the opening 18b on the lower end side is connected to the positive electrode connection terminal 13. It is for making it connect.
  • a tapered counterbore 18c is formed in the upper part of the opening 18b on the lower end side so that the inner diameter of the opening 18b is increased.
  • FIGS. 4A and 4B the state shown in FIGS. 4A and 4B is obtained.
  • spinning caulking is performed using the spinning caulking jig 20 as shown in FIG. 3 such that the diameter of the cylindrical second caulking member 13c is increased from the upper side.
  • the spinning caulking jig 20 is processed so that the tip end portion 20a has a reduced diameter, and rotates around an axis ⁇ 2 that is eccentric from the central axis ⁇ 1 of the cylindrical second caulking member 13c.
  • the caulking member 13c is driven to rotate about the central axis ⁇ 1.
  • the tip end side of the cylindrical second caulking member 13c is expanded and caulked and fixed to the surface of the tapered counterbore hole 18c of the positive electrode external terminal 18, resulting in the state shown in FIGS. 4C and 4D.
  • the tip side of the cylindrical second caulking member 13c of the positive electrode connection terminal 13 is firmly caulked to the surface of the tapered counterbore hole 18c of the positive electrode external terminal 18 without applying a large force. Since it can be fixed, a large force is not applied to the gasket 15 and the insulating member 16 (see FIG. 1B), and it is difficult to break.
  • FIGS. 5A is a plan view at the time of forming a single welding spot of Comparative Example 1
  • FIG. 5B is a cross-sectional view taken along the line VB-VB of FIG. 5A
  • FIG. FIG. 5D is a plan view showing a state in which a welding spot is formed
  • FIG. 5D is a cross-sectional view taken along line VD-VD in FIG. 5C
  • 6A is a plan view when the welding region of Example 1 is formed
  • FIG. 6B is a cross-sectional view taken along line VIB-VIB of FIG. 6A
  • FIG. 6C is a diagram showing that the welding region of Example 2 is formed.
  • 6D is a cross-sectional view taken along line VID-VID in FIG. 6C.
  • FIG. 5A is a plan view at the time of forming a single welding spot corresponding to Comparative Example 1 in which the crimped portion is formed relatively uniformly.
  • FIG. 5B is a cross-sectional view taken along the line VB-VB in FIG. 5A.
  • FIG. 5C is a plan view showing a state in which a single welding spot corresponding to Comparative Example 2 in which crimping portions are formed unevenly is formed.
  • FIG. 5D is a cross-sectional view taken along the line VD-VD in FIG. 5C.
  • 5A to 5D the same components as those in FIGS. 4A to 4D are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the positive electrode connection terminal 13 and the positive electrode external terminal 18 are integrated and placed on a jig (not shown), and the jig is rotated about the central axis ⁇ by 90 °, for example.
  • Four-point spot welding is automatically performed.
  • the central axis ⁇ of the jig coincides with the central axis ⁇ 1 of the cylindrical second caulking member 13c (see FIG. 3).
  • the irradiation position of the laser beam LB is fixed in advance so that the tip side of the second caulking member 13 c and the tapered counterbore hole 18 c of the positive electrode external terminal 18 are simultaneously irradiated.
  • the spinning caulking can firmly fix the member to be caulked and the other member without applying a large force, but has a property that the spread of the caulking portion tends to vary.
  • the variation of the dimension of such a crimping process part is due to the plastic deformation of the raw material to be crimped, even when other crimping processes are employed, it similarly occurs.
  • the laser beam LB is on the distal end side of the second crimping member 13c of the positive electrode connection terminal 13 in the portion where the spread of the crimped portion at the right end portion in FIG.
  • the tapered counterbore hole 18c of the positive electrode external terminal 18 is irradiated.
  • the welding spot 24 at the right end portion of FIG. 5C is formed only in the tapered counterbore 18c of the positive external terminal 18 as shown in FIG.
  • no welding spot is formed, and the effect of laser welding is not achieved.
  • an example is shown in which the extent of the caulking portion due to spinning caulking has been reduced.
  • welding is performed only on the positive electrode connection terminal 13. A spot is formed, and a welding spot is not formed in the tapered counterbore hole 18 c of the positive electrode external terminal 18.
  • the problem due to the dimensional variation of the caulking portion is that the tip side of the second caulking member 13 of the positive electrode connection terminal 13 of the conventional example and the tapered counterbore hole 18c of the positive electrode external terminal 18 as shown in FIG. 9D. It is not possible to solve this problem by forming a plurality of welding spots that overlap each other along the boundary. The reason is that the weld spot formation position is automatically corrected by detecting the boundary position between the tip end side of the second crimping member 13 of the positive electrode connection terminal 13 and the tapered counterbore hole 18 c of the positive electrode external terminal 18. Because it is not something.
  • FIGS. 6A and 6B from the second caulking member 13c side of the positive electrode connection terminal 13 to beyond the tip end side thereof, the tapered counterbore hole 18c side of the positive electrode external terminal 18 is provided.
  • two or more overlapping welding spots are formed by scanning the irradiation position of the laser beam LB.
  • 6A and 6B show a case where the tip end side of the cylindrical second caulking member 13c of the positive electrode connection terminal 13 is fixed to the surface of the tapered counterbore hole 18c of the positive electrode external terminal 18 without variation by spinning caulking.
  • 6C and 6D show a case where the expansion of the crimped portion at the right end portion of FIG. 6C is small.
  • the first welding spot 21a is formed so as to be positioned only on the second crimping member 13c side of the first welding spot 21a positive electrode connection terminal 13 by irradiation with the first laser beam LB.
  • the irradiation position of the laser beam LB is shifted to the tapered counterbore 18c side so that the second welding spot BR> G21b is overlapped with the first welding spot 21a, and the laser beam LB is further formed.
  • the first welding region 21 is formed by shifting the irradiation position to the positive electrode external terminal 18 side and forming the third welding spot 21c so as to overlap the second welding spot 21b.
  • Such welding regions 21 to 24 by laser light are formed, for example, at four locations so that the respective welding regions 21 to 24 are in symmetrical positions.
  • the welding spot pitch is preferably about 50 to 200 ⁇ m so that the degree of overlap is appropriate.
  • the first welding spots 21a to 24a and the third welding spots 21c to 24c in the respective welding regions 21 to 24 are respectively connected to the positive electrode connection terminals.
  • 13 is located only on the second caulking member 13c side or only on the positive electrode external terminal 18 side, the second welding spots 21b to 24b are connected to the second caulking member 13c side of the positive electrode connecting terminal 13 and the positive electrode external terminal 18 respectively. It is formed across both sides.
  • the positive electrode connecting terminal 13 and the positive electrode member 13c side and the positive electrode A welding spot can be reliably formed between the external terminals 18. Therefore, according to the prismatic nonaqueous electrolyte secondary battery described in Examples 1 and 2 including the welding regions 21 to 24 as shown in FIGS. 6A to 6D, the positive electrode connection terminal 13 and the positive electrode external terminal 18 Since the joint between the two is firmly fixed by caulking and welding with the laser beam LB, the internal resistance is reduced, and the electrical resistance is less likely to change over time even in an environment where there is a lot of vibration. A high prismatic nonaqueous electrolyte secondary battery is obtained.
  • the laser beam LB is scanned from the positive electrode connection terminal 13 side toward the tapered counterbore hole 18 c of the positive electrode external terminal 18 to melt the end portion of the positive electrode connection terminal 13, and the tapered counterbore hole of the positive electrode external terminal 18.
  • the laser beam LB is scanned from the tapered counterbored hole 18c side of the positive electrode external terminal 18 toward the positive electrode connecting terminal 13 side, and the tapered counterbore hole 18c of the positive electrode external terminal 18 and the positive electrode connecting terminal are scanned. Therefore, the power of the laser beam LB to be irradiated can be smaller than that in the case where the power source 13 is connected.
  • the first and second embodiments three overlapped welding spots in each of the welding regions 21 to 24 are formed.
  • the number is two or more, a good effect can be obtained. Play.
  • the first welding spot and the last welding spot of each welding region are respectively only on the second crimping member 13c side of the positive electrode connection terminal 13 or the tapered counterbore hole of the positive electrode external terminal 18 It becomes impossible to make it the state located only in the 18c side.
  • the number of overlapped welding spots in each welding region is preferably 3 or more, but it is useless even if it is too much, so it is preferable to keep the number around 4 each.
  • the number of each welded area can have a certain effect even at one place.
  • the mechanical strength and electrical conductivity of the joint are insufficient, it is assumed that there are a plurality of places. Depending on the number of regions, the mechanical strength and electrical conductivity of the joint can be improved.
  • the caulking force is weakened by melting the portion where the caulking force was applied. It is preferable.
  • the plurality of welding regions are formed so as to be symmetrical around the second crimping member 13c of the positive electrode connection terminal 13, when a force is applied to the crimping portion, overlapping welding spots are formed. Since the force is evenly applied to the region, the strength of the joint between the positive electrode connection terminal 13 and the positive electrode external terminal 18 is further increased.
  • FIG. 7A is a plan view at the time of forming a single welding spot corresponding to Comparative Example 3
  • FIG. 7B is a cross-sectional view taken along the line VIIB-VIIB in FIG. 7A
  • FIG. 7C corresponds to Example 3.
  • FIG. 7D is a cross-sectional view taken along the line VIID-VIID in FIG. 7C.
  • the single welding spot is solidified as shown in the welding spot 24 of FIG. 7A.
  • a minute crack 25 may be formed.
  • such a microcrack 25 of the welding spot 24 does not disappear, so that the mechanical strength of the welding spot becomes small.
  • the weld crack portion is formed in an overlapped state thereafter. Disappears due to the welding spot. Even if a minute crack is formed in the last welding spot as it solidifies, the last welding spot is formed on the tapered counterbore 18c of the positive electrode external terminal 18, so that the positive electrode connection terminal 13 and the positive electrode external The mechanical strength and electrical resistance of the joint between the terminals 18 are not affected.
  • a tapered counterbore hole 18c is formed above the opening 18b of the positive electrode external terminal 18 is shown.
  • a tapered counterbore hole is used.
  • the portion of the positive external terminal 18 where the tapered counterbore hole is formed has a small heat capacity. And a good quality welding spot can be obtained.
  • the welding spot formed by the laser beam LB has irregularities on the surface. If the irregularity surface cannot be seen from the surface of the positive electrode external terminal 18 in a side view, the apparent positive external terminal 18 The surface remains flat and dimensional stability is improved.
  • this large-diameter stepped portion it is possible to suppress the spatter generated by the irradiation of the high energy ray from being scattered outside the opening 18 b of the positive electrode external terminal 18. Therefore, it is possible to prevent the spatter from adhering to the surface of the positive electrode external terminal 18 and to make the surface of the positive electrode external terminal 18 flat with more certainty.
  • the measurement terminal of the device used for the inspection / test of the quality and characteristics of the battery can be brought into stable contact with the surface of the positive electrode external terminal 18.
  • Such an effect is not limited to the form formed by two or more overlapping welding spots in the direction intersecting the boundary between one and the other of the pair of conductive members as in the present invention, but the prior art. As described above, a continuous welded portion or weld spot is formed along the boundary between one and the other of the pair of conductive members.
  • FIG. 8A which is a partial sectional view of the first modification
  • the upper end side of the tapered counterbore hole as the positive electrode external terminal 18 is larger than the diameter of the counterbore hole 18c.
  • the caulking portion may be a split pin-shaped caulking portion 13d.
  • the caulking strength is smaller than that in the case of spinning caulking, but further, since the welding region 26 is formed by the laser beam LB, the internal resistance is reduced and the electrical resistance changes with time even in an environment with a lot of vibration. This makes it difficult to obtain a battery with high reliability.
  • the present invention can be applied to those having a well-known buckling caulking portion as the caulking portion, and as disclosed in Patent Document 4 as the positive electrode connecting terminal 13.
  • the present invention is also applicable to a device incorporating a safety means such as a current interruption mechanism.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

【課題】一対の導電部材間がカシメ部と高エネルギー線による溶接部とによって接続された接合部を備える電池において、内部抵抗変動が抑制され、信頼性が向上した電池及びその製造方法を提供する。 【解決手段】電池外装缶11と、発電要素と、封口板12と、封口板12に絶縁状態で取り付けられた接続端子13と、発電要素と接続端子13に電気的に接続された集電体と、接続端子13に電気的に接続された外部端子18と、を備え、集電体と接続端子13との及間び接続端子13と外部端子18との間の少なくとも一方は、一方の部材が他方の部材にカシメ固定されていると共に互いに高エネルギー線によって溶接されている電池において、高エネルギー線による溶接領域21~24は、一方の部材と他方の部材との境界部に交差する方向に、2点以上のオーバーラップした溶接スポット21a~24cで形成されている。

Description

電池及びその製造方法
 本発明は、一対の導電部材間がカシメ部と高エネルギー線による溶接部とによって接続された接合部を備える電池及びその製造方法に関する。
 近年、環境保護運動が高まり、二酸化炭素ガス等の温暖化の原因となる排ガスの排出規制が強化されている。そのため、自動車業界では、ガソリン、ディーゼル油、天然ガス等の化石燃料を使用する自動車に換えて、電気自動車(EV)やハイブリッド電気自動車(HEV)の開発が活発に行われている。このようなEV、HEV用電池としては、ニッケル-水素二次電池やリチウムイオン二次電池等の密閉電池が使用されているが、近年は軽量で、かつ高容量の電池が得られるということから、リチウムイオン二次電池等の非水電解質二次電池が多く用いられるようになってきている。
 EV、HEV用途においては、環境対応だけでなく、自動車としての基本性能、すなわち、加速性能や登坂性能等の走行能力の高度化も必要とされる。このような要求を満たすためには、単に電池容量を大きくすることのみならず、高出力の電池が必要である。一般に、EV、HEV用の電池は、発電要素を金属製の角形外装缶内ないし円筒形外装缶内に収容したものが多く使用されているが、高出力の放電を行うと電池に大電流が流れるため、電池の低抵抗化が必要であり、内部抵抗を極力低減させ、さらに抵抗変動がないようにする必要がある。そのため、端子部や電池内部の接合部における高信頼性化と低抵抗化を実現することについても種々の改良が行われてきている。
 これらの電池の端子部や電池内部の接合部における低抵抗化を実現する方法としては、従来から機械的なカシメ法が多く使用されていた。しかしながら、単なる機械的なカシメのみでは、EVやHEV等の振動が多い環境下では、電気抵抗の経時変化が発生するため、下記特許文献1~3にも示されているように、カシメによる接合部分の境界部をレーザ等の高エネルギー線によって溶接することが行われている。このとき境界部全体を溶接するとカシメの力がかかっていた部分が溶けることによりカシメの力が弱くなってしまうため、境界部の一部のみを高エネルギー線によって溶接している。そして、下記特許文献2及び3には、カシメによる接合部分の境界部に沿って、複数の領域毎に、それぞれ複数の溶接スポットが互いに重畳するように、高エネルギー線によって溶接した例が示されている。
 このうち、下記特許文献2に開示されている集電体と端子との接合部の形成方法を、高エネルギー線としてレーザ光を用いた場合について、図9を用いて説明する。なお、図9Aは下記特許文献2に開示されている端子のカシメ部の先端の加工工程を示す断面図であり、図9Bは図9Aの工程後にレーザ溶接する工程を示す図であり、図9Cは図9Bの平面図であり、図9Dはレーザ溶接を複数の溶接スポットが互いに重畳するように複数回繰り返した後の平面図である。
 下記特許文献2に開示されている集電体と端子との接合部60は、電池外装体(図示せず)に固定される蓋板61と、内側絶縁封止材62及び外部絶縁封止材63と、発電要素に接続された集電体64と、リベット端子65とを備えている。内側絶縁封止材62及び外部絶縁封止材63は、貫通孔を有し、蓋板61に形成された開孔の内外両周縁部に配されている。集電体64は、内側絶縁封止材62に重ねて配されている。リベット端子65は、顎部65aから突接したカシメ部65bを有している。
 そして、この接合部60は、リベット端子65のカシメ部65bを蓋板61の外周側から外部絶縁封止材63、蓋板61の開口、内側絶縁封止材62、及び集電体64のリベット端子孔を貫通するように組み立てられ、次いで、リベット端子65のカシメ部65bを集電体64を押圧するようにカシメることにより一体化されている。次いで、リベット端子65のカシメ部65bと相補的な凹部を有し、この凹部の周縁に所定角度の傾斜部A1を有する加工パンチAを用意する。そして、加工パンチAを、カシメ部65bの先端65cに傾斜部A1が当接するように押し込み、カシメ部65bの先端65cを部分的に変形加工させ、図9Bに示したように、カシメ部65bの先端65cが円錐台部となるように成形する。これにより、カシメ部65bの先端65cの形状は鈍角に調整される。
 次いで、図9B及び図9Cに示したように、カシメ部65bの先端65cの円錐台部の上面の垂直方向またはその付近の方向からレーザ光LBを照射することにより、レーザスポット溶接を行う。このときのレーザ光LBの照射範囲は、少なくとも集電体64とカシメ部65bの先端65cの円錐台部を含む領域となるようにして、集電体64とカシメ部65bの先端65cの円錐台部との間を突合せ溶接する。このレーザスポット溶接により、集電体64とカシメ部65bの先端65cの円錐台部の双方に照射されたレーザのエネルギーが偏りなく伝達され、溶接部には良好な溶接スポット(ナゲット)66が形成される。
 さらに、図9Dに示したように、集電体64とカシメ部65bの先端65cの円錐台部分に沿って、溶接スポット66が重畳するようにして複数個形成されるように、集電体64とカシメ部65bの先端65cの円錐台部との間が突合せ溶接される。
特開2009-087693号公報 特開2008-251411号公報 特開2010-033766号公報 特開2008-066254号公報
 上記特許文献2及び3に記載されているような接合部の形成を電池の端子部や電池内部の接合部の形成方法として採用すると、内部抵抗が低下すると共に、EVやHEV等の振動が多い環境下でも電気抵抗の経時変化が発生し難くなり、端子部や電池内部の接合部における高信頼性化と低内部抵抗化を実現することができるという優れた効果を奏する。
 しかしながら、この接合部の形成方法では、カシメ部が広がる大きさにばらつきが生じ、カシメ部と他の部材の境界部の位置が変動してしまうため、溶接スポット形成時に溶接位置外れを起こし易いという課題が生じた。加えて、電池の集電体、接続端子、外部端子等には凝固割れを起こしやすいアルミニウム系金属又は銅系金属が使用されているが、上記特許文献2及び3に示されているようにカシメ部と他の部材の境界部に沿って複数の溶接スポットが互いに重畳するように溶接スポットを形成した場合には、溶接スポット中央付近に発生した割れは、次の溶接スポットが完全にオーバーラップして消すことがないため、接合部に割れが残り易いという課題も生じた。なお、このような溶接部の割れは、シーム溶接のように連続的になされる溶接では形成され難くなるが、電池における端子部や電池内部の接合部はサイズが小さいため、電池の端子部や電池内部の接合部の形成方法としてシーム溶接を採用することは困難である。
 本発明は上記の課題を解決すべくなされたものであり、一対の導電部材間がカシメ部と高エネルギー線による溶接部とによって機械的かつ電気的に接続された接合部を備える電池において、内部抵抗変動が抑制され、信頼性が向上した電池及びその製造方法を提供することを目的とする。
 上記目的を達成するため、本発明の電池は、一対の導電性部材間がカシメ固定されていると共に互いに高エネルギー線によって溶接された溶接領域が形成されている電池であって、前記溶接領域は、前記一対の導電性部材の一方と他方との境界部に交差する方向に、2点以上のオーバーラップした溶接スポットで形成されていることを特徴とする。
 本発明の電池においては、2点以上のオーバーラップした溶接スポットが一方の部材と他方の部材との境界部(一方の部材と他方の部材の境界線)に交差する方向に形成されているため、一方の部材のカシメ部の端部の位置にばらつきが生じても、一方の部材と他方の部材とに跨がって確実に高エネルギー線によって溶接することができる。そのため、本発明の電池によれば、一対の導電性部材間がカシメ固定と高エネルギー線による溶接とによって接続されるので、内部抵抗が小さくなると共に、振動が多い環境下でも電気抵抗の経時変化が発生し難くなり、信頼性が高い電池が得られる。
 また、本発明の電池は、一次電池及び二次電池のいずれであっても、また、円筒形電池及び角形電池のいずれであっても、さらには、非水電解質を用いた電池及び水性電解質を用いた電池のいずれであっても、等しく適用可能である。さらに、本発明の電池における高エネルギー線による溶接領域は、正極側にも負極側に対しても適用することができる。
 また、本発明の電池においては、外装体と、前記外装体の内部に収容された発電要素と、前記外装体の開口部を封止する封口板と、前記封口板を貫通するように前記封口板に取り付けられた接続端子と、前記発電要素と前記接続端子に電気的に接続された集電体と、を備え、前記溶接領域は、前記集電体と前記接続端子との間に形成されているものとしてもよい。
 本発明の電池によれば、集電体と接続端子との間の接合部がカシメ固定と高エネルギー線による溶接とによって接続されるので、内部抵抗が小さくなると共に、振動が多い環境下でも電気抵抗の経時変化が発生し難くなり、信頼性が高い電池が得られる。なお、本発明の電池においては、集電体を接続端子にカシメ固定するものであっても、接続端子を集電体にカシメ固定するものであってもよい。また、本発明の電池は、接続端子として電流遮断機構等の安全手段を内蔵しているものに対しても適用可能である。なお、本発明の電池においては、外装体として金属製のものを使用することができ、また、封口板も金属製のものも使用し得る。封口板が金属製のものであれば、接続端子と封口板との間をガスケットないし絶縁板で電気的に絶縁すればよい。
 また、本発明の電池においては、外装体と、前記外装体の内部に収容された発電要素と、前記外装体の開口部を封止する封口板と、前記封口板を貫通するように前記封口板に取り付けられた接続端子と、前記発電要素と前記接続端子に電気的に接続された集電体と、前記接続端子に電気的に接続された外部端子と、を備え、前記溶接領域は、前記接続端子と前記外部端子との間、もしくは、前記集電体と前記接続端子との間及び前記接続端子と前記外部端子との間に形成されているものとしてもよい。
 本発明の電池によれば、接続端子と外部端子との間、もしくは、集電体と接続端子との間及び接続端子と外部端子との間の接合部がカシメ固定と高エネルギー線による溶接とによって接続されるので、内部抵抗が小さくなると共に、振動が多い環境下でも電気抵抗の経時変化が発生し難くなり、信頼性が高い電池が得られる。なお、本発明の電池においては、接続端子を外部端子にカシメ固定するものであっても、外部端子を接続端子にカシメ固定するものであってもよく、さらに、接続端子を集電体にカシメ固定すると共に外部端子にカシメ固定するものであっても、接続端子に集電体及び外部端子をカシメ固定するものであってもよい。
 また、本発明の電池においては、前記溶接スポットは、3点以上がオーバーラップした状態に形成され、両端側の一点が一方の部材寄りに形成され、中間側の少なくとも1点が一方の部材と他方の部材との境界に跨がって形成され、さらに両端側の別の一点が他方の部材側に位置するように形成されていることが好ましい。
 本発明の電池においては、一方の部材のカシメ部の端部の位置が一方の部材側又は他方の部材側のいずれ側にずれても、一方の部材と他方の部材とに跨がってより確実に高エネルギー線によって溶接することができ、しかも、一方の部材と他方の部材との間に形成された溶接スポットにいわゆる凝固割れによる微小な割れが生じても、この割れはこれにオーバーラップされた溶接スポットによって残らないようにすることができる。そのため、本発明の電池によれば、より内部抵抗が小さく、より振動が多い環境下でも電気抵抗の経時変化が発生し難く、より信頼性が高い電池が得られる。
 また、本発明の電池においては、前記高エネルギー線による溶接領域の最後の溶接スポットは、前記一方の部材のみの部分又は前記他方の部材のみの部分に形成されていることが好ましい。
 溶接スポットに凝固割れで微小な割れが生じることがあっても、最終の溶接スポット以外であれば次にオーバーラップする溶接スポットで割れが消えるようにできる。そのため、最後の溶接スポットが一方の部材のみの部分、あるいは他方の部材のみの部分になるようにすれば、万一最終の溶接スポットで割れが残ったとしても、一方の部材と他方の部材との接合部では割れが無く、一方の部材と他方の部材との間を確実に接続できる。そのため、本発明の電池によれば、上記効果がより良好に奏されるようになる。
 また、本発明の電池においては、前記2点以上のオーバーラップした溶接スポットは、前記一対の導電性部材のうちのカシメられた部材側から他方の部材側に向かって形成されていることが好ましい。
 他方の部材と溶接されていない状態でのカシメられた側の部材の端部は、加えられた熱が逃げ難く、カシメられた側の部材にのみ高エネルギー線が照射された状態では接合部にあたるカシメられた側の部材の端部を予熱する効果が大きくなるので、少ない入熱量で溶融するようになる。そのため、本発明の電池のように、カシメられた側の部材から他方の部材に向かって高エネルギー線を走査させてカシメられた側の部材の端部を溶融させて他方の部材と接続させる方が、他方の部材側からカシメられた側の部材側に向かって高エネルギー線を走査させて他方の部材とカシメられた側の部材とを接続させるよりも照射する高エネルギー線のパワーが少なくても済む。なお、高エネルギー線の走査方向は、溶接スポットのオーバーラップ状態から容易に判別することができる。
 また、本発明の電池においては、前記溶接領域は、前記カシメられた部材の境界に沿って複数箇所に形成されていることが好ましい。
 本発明の電池によれば、高エネルギー線による溶接領域が1箇所では一方の部材と他方の部材との接合部の機械的な強度や電気的な電導度が不足する場合、高エネルギー線による溶接領域を複数箇所となるようにすることによって改良し得る。ただ、高エネルギー線による溶接領域が多すぎると、カシメの力がかかっていた部分が溶融することによってカシメの力が弱くなってしまうため、複数の高エネルギー線による溶接領域は重畳しないようにすることが好ましい。
 また、本発明の電池においては、前記溶接領域は、前記カシメられた部材の境界に沿って対称な位置に形成されていることが好ましい。
 本発明の電池によれば、カシメ部に力が加えられた際に高エネルギー線による溶接領域に均等に力がかかるため、一方の部材と他方の部材との接合部の強度がより大きくなり、より信頼性が高い電池が得られる。
 また、本発明の電池においては、前記一対の導電性部材は、それぞれアルミニウム系金属からなるものに適用できる。
 集電体、接続端子、外部端子等がアルミニウム系金属からなるものは、特にリチウムイオン二次電池の正極側で多く用いられている。アルミニウム系金属は、鋼等と比べて熱膨張が大きいので、凝固割れを起こしやすい。本発明の電池では、一対の導電性部材がアルミニウム系金属からなるものを用いても、上記効果が良好に奏されるようになる。
 また、本発明の電池においては、前記カシメられた部材は、カシメ前の形状が円筒状のものをスピニングカシメにより変形させて形成したものとすることができる。
 カシメ部は、カシメ部周辺の変形を抑えるために大きな力を加えられない場合が多い。円筒状の部材をスピニングカシメすると、大きな力を加えなくても、一方の部材と他方の部材とを強固にカシメ固定することができるが、カシメ部の広がりにばらつきが生じ易い。そのため、スピニングカシメと位置ずれにより溶接不良を起こしやすい高エネルギー線を小さな領域に集中させる溶接法とを組み合わせることは一般的には困難である。本発明の電池によれば、高エネルギー線による溶接領域は、一方の部材と他方の部材との境界部に交差する方向に、2点以上のオーバーラップした溶接スポットで形成されているので、スピニングカシメによるカシメの境界部の位置が変動しても溶接不良を起こし難くなる。
 また、本発明の電池においては、前記カシメられた部材は、カシメ前の形状が割ピン状のものを変形させて形成したものとすることができる。
 カシメ部の形状が割りピン状であると、容易にカシメることができ、カシメ部の寸法安定性は良好になるが、カシメ強度は小さくなる。本発明の電池によれば、カシメ固定部だけでなく、さらに高エネルギー線による溶接領域が形成されているため、内部抵抗が小さくなると共に、振動が多い環境下でも電気抵抗の経時変化が発生し難くなり、信頼性が高い電池が得られる。
 また、本発明の電池においては、前記カシメられた部材は、前記一対の導電性部材のうちの一方の部材に形成されたテーパ状のザグリ穴を有する貫通穴内に、前記ザグリ穴とは反対側から、前記一対の導電性部材のうちの他方の部材を挿入して、前記他方の部材が前記ザグリ穴に接するように変形させて形成したものであることが好ましい。
 一方の部材に形成された貫通穴にテーパ状のザグリ穴が形成されていると、一方の部材のテーパ状のザグリ穴が形成された部分は熱容量が小さくなる。そのため、本発明の電池によれば、カシメられる他方の部材の熱容量とのバランスが良好となり、良好な品質の高エネルギー線による溶接部が得られるから、より振動が多い環境下でも電気抵抗の経時変化が発生し難くなり、より信頼性が高い電池が得られる。
 また、高エネルギー線による溶接部では溶接スポットの表面に凹凸が生じるが、この凹凸の面が側面視で一方の部材の表面よりも突出していなければ、見かけ上一方の部材の表面は平らな面のままとなり、寸法安定性が向上する。なお、他方の部材に対してスピニングカシメが採用される場合に本発明を適用すると、スピニングカシメ部とテーパ状のザグリ穴との間の寸法安定性及び密着性が良好となり、より高品質の電池が得られる。例えば、ザグリ穴が形成された一方の部材が外部端子の場合では、一方の部材の表面を平らな面にできることで、電池の品質や特性などの検査・試験のために使用させる装置の測定用端子を安定的に接触させることができるため、好ましい。
 また、本発明の電池においては、前記テーパ状のザグリ穴側には前記テーパ状のザグリ穴の径よりも大径の段差部が形成されていてもよい。
 高エネルギー線による溶接スポットが形成された溶接領域では、溶接面の表面に凹凸が生じるが、この凹凸の面が段差部内に収まっていれば、側面視で溶接領域の凹凸の面が一方の部材の表面から露出しないので、見かけ上他方の部材の表面は平らな面のままとなり、寸法安定性が向上する。また、大径の段差部により、高エネルギー線の照射により生じるスパッタが開孔の外側に飛散することを抑制することもできる。
 また、上記目的を達成するため、本発明の電池の製造方法は、一対の導電性部材間がカシメ固定されていると共に互いに高エネルギー線によって溶接された溶接領域が形成されている電池の製造方法であって、前記一対の導電性部材の一方を他方に対してカシメ加工し、次いで、前記一対の導電性部材の一方と他方との境界部に交差する方向に、高エネルギー線を走査することによって2点以上のオーバーラップした溶接スポットからなる溶接領域を形成することを特徴とする。
 また、本発明の電池の製造方法においては、前記電池は、外装体と、前記外装体の内部に収容された発電要素と、前記外装体の開口部を封止する封口板と、前記封口板を貫通するように前記封口板に取り付けられた接続端子と、前記発電要素と前記接続端子に電気的に接続された集電体と、を備えており、前記溶接領域を、前記集電体と前記接続端子との間に形成してもよい。
 また、本発明の電池の製造方法においては、前記電池は、外装体と、前記外装体の内部に収容された発電要素と、前記外装体の開口部を封止する封口板と、前記封口板を貫通するように前記封口板に取り付けられた接続端子と、前記発電要素と前記接続端子に電気的に接続された集電体と、前記接続端子に電気的に接続された外部端子と、を備えており、前記溶接領域を、前記集電体と前記接続端子との間及び前記接続端子と前記外部端子との間に形成してもよい。
 また、本発明の電池の製造方法においては、前記溶接領域の前記溶接スポットを3点以上としてもよい。また、本発明の電池の製造方法においては、前記高エネルギー線による溶接領域の最後の溶接スポットを前記一方の部材のみの部分又は前記他方の部材のみの部分に形成してもよい。また、本発明の電池の製造方法においては、前記2点以上のオーバーラップした溶接スポットを前記一対の導電性部材のうちのカシメられた部材側から他方の部材側に向かって形成してもよい。さらには、本発明の電池の製造方法においては、前記カシメられた部材は、カシメ前の形状が円筒状のものを使用してスピニングカシメによって変形させるようにしてもよい。
 本発明の電池の製造方法によれば、上記効果を奏する本発明の電池を、容易に製造することができるようになる。
図1Aは実施例及び比較例に共通する角形非水電解質二次電池の外部端子を省略した斜視図であり、図1Bは接続端子部の分解斜視図である。 接続端子に外部端子を取り付ける状態を示す分解斜視図である。 スピニングカシメによって接続端子を外部端子にカシメ固定する状態示す断面図である。 図4Aは外部端子の穴に接続端子を差し込んだ状態の平面図であり、図4Bは図4AのIVB-IVB線に沿った断面図であり、図4Cはスピニングカシメを行った状態の平面図であり、図4Dは図4CのIVD-IVD線に沿った断面図である。 図5Aは比較例1の単一の溶接スポット形成時の平面図であり、図5Bは図5AのVB-VB線に沿った断面図であり、図5Cは比較例2の単一の溶接スポットが形成された状態の平面図であり、図5Dは図5CのVD-VD線に沿った断面図である。 図6Aは実施例1の溶接領域が形成時の平面図であり、図6Bは図6AのVIB-VIB線に沿った断面図であり、図6Cは実施例2の溶接領域が形成された状態の平面図であり、図6Dは図6CのVID-VID線に沿った断面図である。 図7Aは比較例3の単一の溶接スポット形成時の平面図であり、図7Bは図7AのVIIB-VIIB線に沿った断面図であり、図7Cは実施例3の溶接領域が形成された状態の平面図であり、図7Dは図7CのVIID-VIID線に沿った断面図である。 図8Aは第1の変形例の部分断面図であり、図8Bは第2の変形例のカシメ前の平面図であり、図8Cは第2の変形例のカシメ加工及び溶接領域が形成された状態の平面図である。 図9Aは従来例の端子のカシメ部の先端の加工工程を示す断面図であり、図9Bは図9Aの工程後にレーザ溶接する工程を示す図であり、図9Cは図9Bの平面図であり、図9Dはレーザ溶接を複数の溶接スポットが互いに重畳するように複数回繰り返した後の平面図である。
 以下、本発明の実施形態を、実施例及び比較例によって図面を用いて説明する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための角形非水電解質二次電池における接続端子と外部端子との間の接続形態を例示するものであって、本発明をこの接続端子と外部端子との間の接続形態のみに特定することを意図するものではなく、本発明は電池内部の集電体と接続端子との間の接続形態にも適用可能である。また、本発明は、角形非水電解質二次電池だけでなく、一次電池及び二次電池のいずれに対しても、また、円筒形電池及び角形電池のいずれに対しても、さらには、非水電解質を用いた電池だけでなく水性電解質を用いた電池のいずれに対しても、等しく適用可能である。なお、本発明においては、溶接に使用する高エネルギー線としては、レーザ光及び電子ビームの何れをも使用し得るが、以下ではレーザ光に代表させて説明する。
 最初に、実施例及び比較例に共通する電池としての角形非水電解質二次電池を図1を用いて説明する。なお、図1Aは実施例及び比較例に共通する角形非水電解質二次電池の外部端子を省略した斜視図であり、図1Bは接続端子部の分解斜視図である。また、図1Aにおいては、ガスケット15は図示省略されている。
 この角形非水電解質二次電池10は、正極極板と負極極板とがセパレータを介して巻回ないし積層された偏平状の発電要素(何れも図示省略)を、角形の電池外装缶11の内部に収容し、封口板12によって電池外装缶11を密閉したものである。そして、封口板12を貫通するように、封口板12とはガスケット15及び絶縁部材16により絶縁された状態で、正極接続端子13及び負極接続端子14が設けられている。
 ここで、この角形非水電解質二次電池10で使用されている発電要素の構成を簡単に説明する。正極極板は、アルミニウム箔からなる正極芯体の両面に、帯状のアルミニウム箔が露出している正極芯体露出部が形成されるように、正極活物質合剤を塗布し、乾燥後に圧延することにより作製されている。また、負極極板は、銅箔からなる負極芯体の両面に、帯状の銅箔が露出している負極芯体露出部が形成されるように、負極活物質合剤を塗布し、乾燥後に圧延することによって作製されている。そして、偏平状の発電要素は、正極極板及び負極極板を、巻回軸方向の両端部に正極芯体露出部及び負極芯体露出部がそれぞれ位置するように、ポリオレフィン製の微多孔性セパレータを介して偏平状に巻回ないし積層することにより作製されている。
 このうち、正極芯体露出部は正極集電体を介して正極接続端子13に接続され、負極芯体露出部は負極集電体を介して負極接続端子14に接続されている。正極接続端子13、負極接続端子14はそれぞれ絶縁部材を介して封口板12に固定されている。この角形非水電解質二次電池10は、偏平状の発電要素を角形の電池外装缶11内に挿入した後、封口板12を電池外装缶11の開口部にレーザ溶接し、その後電解液注液孔(図示省略)から非水電解液を注液して、この電解液注液孔を密閉することにより作製されている。
 ここで、正極接続端子13及び負極接続端子14の具体的構成について説明を行うが、通常は正極集電体及び正極接続端子13がアルミニウムないしアルミニウム合金等のアルミニウム系金属から形成されており、負極集電体及び負極接続端子14が銅ないし銅合金等の銅系金属から形成されている点で相違しているが、その他の構成は実質的に同一であるので、正極接続端子13に代表させて説明を行う。
 この正極接続端子13は、図1Aに示したように、鍔部13aの一方側に形成された円筒状の第1のカシメ部材13bと、鍔部13aの他方端側に形成された外部端子に固定するための円筒状の第2のカシメ部材13cとを備えている。この円筒状の第1のカシメ部材13bは、ガスケット15、封口板12、絶縁部材16及び正極集電体17にそれぞれ形成された開口部内に挿通されて組み立てられる。
 このように組み立てられた状態で、第2のカシメ部材13cが下向きとなるように図示しない治具上に載置し、第1のカシメ部材13bの先端側から等方向に拡径するようにカシメると共に、適宜レーザ溶接することにより、正極接続端子13の第1のカシメ部材13bと正極集電体17とが電気的及び機械的に強固に接続される。なお、この正極接続端子13の第1のカシメ部材13bと正極集電体17との間のカシメ固定及びレーザ溶接は、以下に詳細に述べる正極接続端子13の第2のカシメ部材13cと外部端子18(図2参照)との間のカシメ固定及びレーザ溶接と同様に行うことができるので、ここでの具体的説明は省略する。
 このようにして作製された角形非水電解質二次電池10の正極接続端子13に対して、実施例及び比較例に共通する外部端子の取り付け工程を図2~図4を用いて説明する。図2は接続端子に外部端子を取り付ける状態を示す分解斜視図である。図3はスピニングカシメによって接続端子を外部端子にカシメ固定する状態示す断面図である。図4Aは外部端子の穴に接続端子を差し込んだ状態の平面図であり、図4Bは図4AのIVB-IVB線に沿った断面図であり、図4Cはスピニングカシメを行った状態の平面図であり、図4Dは図4CのIVD-IVD線に沿った断面図である。なお、図2においては、ガスケット15等の絶縁部材は図示省略されている。
 ここで使用している正極外部端子18は、Z金具状であり、正極接続端子13と同様のアルミニウム系金属で作製され、両端側に開孔18a及び18bが形成されている。このうち、上端側の開口18aは複数の角形非水電解質二次電池10を直並列に接続するためないし外部配線と接続するためのものであり、下端側の開孔18bは正極接続端子13と接続させるためのものである。そして下端側の開孔18b上部には、開孔18bの内径が拡径されるように、テーパ状のザグリ穴18cが形成されている。
 まず、正極外部端子18の下端側の開孔18bに下側から円筒状の第2のカシメ部材13cを挿入すると、図4A及び図4Bに示した状態となる。この状態で、図3に示したようにスピニングカシメ治具20を用いて、円筒状の第2のカシメ部材13cを上側から拡径するように、スピニングカシメを行う。スピニングカシメ治具20は先端部20aが縮径するように加工され、円筒状の第2のカシメ部材13cの中心軸φ1とは偏心した軸φ2の回りを回転しながら、円筒状の第2のカシメ部材13cの中心軸φ1の回りを回転するように駆動される。これにより、円筒状の第2のカシメ部材13cの先端側が拡径されて正極外部端子18のテーパ状のザグリ穴18cの表面にカシメ固定され、図4C及び図4Dに示した状態となる。
 このスピニングカシメによれば、大きな力を加えなくても、正極接続端子13の円筒状の第2のカシメ部材13cの先端側を正極外部端子18のテーパ状のザグリ穴18cの表面に強固にカシメ固定することができるので、ガスケット15や絶縁部材16(図1B参照)に大きな力がかからず、破損し難くなる。
 次に、スピニングカシメによって一体化された正極接続端子13と正極外部端子18との間のレーザ溶接について図5及び図6を用いて説明する。なお、図5Aは比較例1の単一の溶接スポット形成時の平面図であり、図5Bは図5AのVB-VB線に沿った断面図であり、図5Cは比較例2の単一の溶接スポットが形成された状態の平面図であり、図5Dは図5CのVD-VD線に沿った断面図である。また、図6Aは実施例1の溶接領域が形成時の平面図であり、図6Bは図6AのVIB-VIB線に沿った断面図であり、図6Cは実施例2の溶接領域が形成された状態の平面図であり、図6Dは図6CのVID-VID線に沿った断面図である。
 まず、レーザ溶接法によって1点のスポット溶接を行う場合に生じる現象を図5を用いて説明する。なお、図5Aは比較的均一にカシメ部が形成された比較例1に対応する単一の溶接スポット形成時の平面図である。図5Bは図5AのVB-VB線に沿った断面図である。図5Cは不均一にカシメ部が形成された比較例2に対応する単一の溶接スポットが形成された状態の平面図である。図5Dは図5CのVD-VD線に沿った断面図である。なお、図5A~図5Dにおいては、図4A~図4Dと同一の構成部分については同一の参照符号を付与してその詳細な説明は省略する。
 レーザ溶接は、正極接続端子13と正極外部端子18とが一体化された状態で治具(図示省略)上に載置し、治具を中心軸φの回りを例えば90°ずつ回転させることにより、4点のスポット溶接が自動的に行われる。なお、治具の中心軸φは円筒状の第2のカシメ部材13cの中心軸φ1(図3参照)と一致するようになされている。この場合、レーザ光LBの照射位置は、第2のカシメ部材13cの先端側と正極外部端子18のテーパ状のザグリ穴18cとに同時に照射されるように、予め固定されている。
 そうすると、スピニングカシメによって正極接続端子13の円筒状の第2のカシメ部材13cの先端側が正極外部端子18のテーパ状のザグリ穴18cの表面にばらつきなく固定された場合、図5A及び図5Bに示したように、レーザ光LBは、第2のカシメ部材13cの先端側と正極外部端子18のテーパ状のザグリ穴18cとに同時に照射されるので、一応良好な溶接スポット21~24が形成される。
 しかしながら、スピニングカシメは、大きな力を加えなくてもカシメ加工される部材と他方の部材とを強固に固定することができるが、カシメ部の広がりにばらつきが生じ易いという性質を有している。なお、このようなカシメ加工部の寸法のばらつきは、カシメ加工される素材の塑性変形によるものであるため、他のカシメ工程を採用した場合でも同様に生じる。
 そのため、例えば図5C及び図5Dに示したように、図5Cの右端部分のカシメ部の広がりが小さい状態となることがある。この場合、レーザ光LBの照射位置が予め固定されているため、図5Cの右端部分のカシメ部の広がりが小さい部分では、レーザ光LBが正極接続端子13の第2のカシメ部材13cの先端側には照射されず、正極外部端子18のテーパ状のザグリ穴18cのみに照射されてしまうことがある。
 このような状態となると、図5Cの右端部分の溶接スポット24は、図5Dに示したように、正極外部端子18のテーパ状のザグリ穴18cのみに形成されてしまい、正極接続端子13との間には溶接スポットが形成されない状態となり、レーザ溶接することの効果が奏されなくなる。なお、ここでは、スピニングカシメによるカシメ部の広がりが小さい状態となった例を示したが、スピニングカシメによるカシメ部の広がりが大きい状態となった場合には、逆に正極接続端子13のみに溶接スポットが形成され、正極外部端子18のテーパ状のザグリ穴18cには溶接スポットが形成されない状態となってしまう。
 このようなカシメ部の寸法変動による問題点は、図9Dに示したような、従来例の正極接続端子13の第2のカシメ部材13の先端側と正極外部端子18のテーパ状のザグリ穴18cとの境界に沿って互いにオーバーラップする複数個の溶接スポットを形成するようにしても、解決することはできない。その理由は、溶接スポットの形成位置は、正極接続端子13の第2のカシメ部材13の先端側と正極外部端子18のテーパ状のザグリ穴18cとの境界位置を検出して自動的に補正されるものではないからである。
 そこで、本発明では、図6A及び図6Bに示したように、正極接続端子13の第2のカシメ部材13c側から、その先端側を越えて、正極外部端子18のテーパ状のザグリ穴18c側に至まで、レーザ光LBの照射位置を走査することにより、2点以上のオーバーラップした溶接スポットが形成されるようにしている。なお、図6A及び図6Bはスピニングカシメによって正極接続端子13の円筒状の第2のカシメ部材13cの先端側が正極外部端子18のテーパ状のザグリ穴18cの表面にばらつきなく固定された場合を示し、図6C及び図6Dは、図6Cの右端部分のカシメ部の広がりが小さい状態となった場合を示している。
 実施例1に対応する図6A及び図6Bに示した例では、最初のレーザ光LBの照射により第1の溶接スポット21a正極接続端子13の第2のカシメ部材13c側のみに位置する状態に形成し、次いでレーザ光LBの照射位置をテーパ状のザグリ穴18c側にずらして第2の溶接スポッ・BR>G21bを第1の溶接スポット21aとオーバーラップするように形成し、さらに、レーザ光LBの照射位置を正極外部端子18側にずらして第3の溶接スポット21cを第2の溶接スポット21bとオーバーラップするように形成することにより最初の溶接領域21を形成する。このようなレーザ光による溶接領域21~24を、それぞれの溶接領域21~24が対称な位置になるように、例えば4箇所に形成する。この場合の溶接スポットのピッチは、オーバーラップの程度が適切となるようにするため、50~200μm程度とするとよい。
 この場合、実施例2に対応する図6C及び図6Dに示したように、それぞれの溶接領域21~24の第1の溶接スポット21a~24a及び第3の溶接スポット21c~24cがそれぞれ正極接続端子13の第2のカシメ部材13c側のみないし正極外部端子18側のみに位置する状態とすると、第2の溶接スポット21b~24bは正極接続端子13の第2のカシメ部材13c側と正極外部端子18側の両者に跨がって形成される。
 このような状態とすると、スピニングカシメによって正極接続端子13の円筒状の第2のカシメ部材13cの先端側の位置にばらつきがあっても、正極接続端子13の第2のカシメ部材13c側と正極外部端子18との間に確実に溶接スポットを形成することができる。そのため、図6A~図6Dに示されているような溶接領域21~24を備える実施例1及び2に記載の角形非水電解質二次電池によれば、正極接続端子13と正極外部端子18との間の接合部がカシメ固定とレーザ光LBによる溶接とによって強固に固定されるので、内部抵抗が小さくなると共に、振動が多い環境下でも電気抵抗の経時変化が発生し難くなり、信頼性が高い角形非水電解質二次電池が得られる。
 なお、このようなオーバーラップした溶接スポットは、治具の中心軸φ側から放射方向に向かって、すなわち、正極接続端子13の円筒状の第2のカシメ部材13cの中心側から正極外部端子18側に向かって形成するとよい。その理由は、正極外部端子18と溶接されていない状態での正極接続端子13の端部は、レーザ光LBによって加えられた熱が逃げ難いので、正極接続端子13にのみレーザ光LBが照射された状態では接合部にあたる正極接続端子13の端部を予熱する効果が大きくなるので、少ない入熱量で溶融するようになるからである。そのため、正極接続端子13側から正極外部端子18のテーパ状のザグリ穴18cに向かってレーザ光LBを走査させて正極接続端子13の端部を溶融させて正極外部端子18のテーパ状のザグリ穴18cと接続させる方が、正極外部端子18のテーパ状のザグリ穴18c側から正極接続端子13側に向かってレーザ光LBを走査させて正極外部端子18のテーパ状のザグリ穴18cと正極接続端子13とを接続させるよりも照射するレーザ光LBのパワーが少なくても済むようになる。
 なお、上記実施例1及び2ではそれぞれの溶接領域21~24におけるそれぞれのオーバーラップされた溶接スポットは、3個ずつ形成した例を示したが、それぞれ2個以上であれば一応良好な効果を奏する。しかしながら、それぞれ2個づつであると、それぞれの溶接領域の最初の溶接スポット及び最後の溶接スポットをそれぞれ正極接続端子13の第2のカシメ部材13c側のみないし正極外部端子18のテーパ状のザグリ穴18c側のみに位置する状態とすることができなくなる。そのため、それぞれの溶接領域におけるそれぞれのオーバーラップされた溶接スポットの数は3個以上とすることが好ましいが、余り多すぎても無駄となるので、それぞれ4個程度に留めることが好ましい。
 また、それぞれの溶接領域の数は、1箇所でもそれなりの効果を奏することができるが、接合部の機械的な強度や電気的な電導度が不足する場合には、複数箇所とすると、一応溶接領域の数に応じて接合部の機械的な強度や電気的な電導度が良好となるようにすることができる。しかしながら、あまり溶接領域の数多くても、カシメの力がかかっていた部分が溶融することによってカシメの力が弱くなってしまうため、溶接領域は重畳しないようにすることが好ましく、4箇所程度とすることが好ましい。
 さらに、複数の溶接領域は、正極接続端子13の第2のカシメ部材13cの周囲に対称となるように形成すると、カシメ部に力が加えられた際に、それぞれ重畳する溶接スポットが形成された領域に均等に力がかかるため、正極接続端子13と正極外部端子18との間の接合部の強度がより大きくなる。
 次に、溶接スポットに凝固に伴う微小な割れが形成された場合について、図7を用いて説明する。なお、図7Aは比較例3に対応する単一の溶接スポット形成時の平面図であり、図7Bは図7AのVIIB-VIIB線に沿った断面図であり、図7Cは実施例3に対応する溶接領域が形成された状態の平面図であり、図7Dは図7CのVIID-VIID線に沿った断面図である。
 例えば、正極接続端子13及び正極外部端子18としてアルミニウム系金属のような熱膨張率が大きい金属を用いた場合、単一の溶接スポットでは、図7Aの溶接スポット24に示したように、凝固に伴って微小な割れ25が形成されることがある。図7Aに示した比較例3に対応する単一の溶接スポットでは、このような溶接スポット24の微小割れ25は、消滅することがないため、この溶接スポットの機械的強度は小さくなってしまう。 
 それに対し、実施例3に対応する図7Bに示した溶接領域24では、最初の溶接スポットに凝固に伴って微小な割れが形成されても、この溶接割れ部分はその後にオーバーラップした状態に形成される溶接スポットによって消えてしまう。なお、最後の溶接スポットに凝固に伴って微小な割れが形成されても、最後の溶接スポットは正極外部端子18のテーパ状のザグリ穴18c上に形成されるから、正極接続端子13と正極外部端子18との間の接合部の機械的強度及び電気抵抗に影響を与えることはない。
 また、上記実施例1~3では、正極外部端子18の開孔18bの上側にテーパ状のザグリ穴18cが形成されているものを用いた例を示したが、このようなテーパ状のザグリ穴18cが形成されているものを使用すると、正極外部端子18のテーパ状のザグリ穴が形成された部分は熱容量が小さくなるので、カシメられる正極接続端子13の円筒状の第2のカシメ部材13c熱容量とのバランスが良好となり、良好な品質の溶接スポットが得られる。加えて、レーザ光LBにより形成された溶接スポットは、表面に凹凸が生じるが、この凹凸の面が側面視で正極外部端子18の表面から視認することができなければ、見かけ正極外部端子18の表面は平らな面のままとなり、寸法安定性が向上する。
 また、この大径の段差部を形成することにより、高エネルギー線の照射により生じるスパッタが正極外部端子18の開孔18bの外側に飛散することを抑制することもできる。したがって、正極外部端子18の表面にスパッタが付着することを防ぎ、より確実に正極外部端子18の表面を平らな面とすることが可能となる。これにより、電池の品質や特性などの検査・試験のために使用させる装置の測定用端子を正極外部端子18の表面に安定的に接触させることができるようになる。このような効果は、本願発明のように一対の導電性部材の一方と他方との境界部に交差する方向に、2点以上のオーバーラップした溶接スポットで形成される形態に限らず、従来技術のように、一対の導電性部材の一方と他方との境界部に沿って連続的な溶接部あるいは溶接スポットが形成される形態でも得られる。
 また、本発明においては、第1の変形例の部分断面図である図8Aに示したように、正極外部端子18としてテーパ状のザグリ穴の上端側には、ザグリ穴18cの径よりも大径の段差部18dが形成されているものを用いてもよい。このような構成を採用すれば、レーザ光LBによって形成された溶接スポットの表面に凹凸が生じても、この溶接スポットにより形成された溶接領域26の凹凸の面が側面視で正極外部端子18の表面から視認することができなければ、見かけ正極外部端子18の表面は平らな面のままとなり、寸法安定性が向上する。
 また、本発明においては、第2の変形例のカシメ前の平面図及びカシメ加工及び溶接領域が形成された状態の平面図である図8B及び図8Cに示したように、正極接続端子13のカシメ部を割りピン状のカシメ部13dとすることもできる。このような構成を採用すると、容易にカシメることができ、カシメ部の寸法安定性は良好になる。一方、カシメ強度はスピニングカシメの場合よりも小さくなるが、さらにレーザ光LBによる溶接領域26が形成されているため、内部抵抗が小さくなると共に、振動が多い環境下でも電気抵抗の経時変化が発生し難くなり、信頼性が高い電池が得られる。
 さらに、図示省略したが、本発明では、カシメ部として周知の座屈カシメ部を有するものに対しても適用可能であり、また、正極接続端子13として上記特許文献4に開示されているような電流遮断機構等の安全手段を内蔵しているものに対しても適用可能である。
 10:角形非水電解質二次電池 11:電池外装缶 12:封口板 13:正極接続端子 13a:鍔部 13b:第1のカシメ部材 13c:第2のカシメ部材 13d:割ピン状のカシメ部材 14:負極接続端子 15:ガスケット 16:絶縁部材 17:正極集電体 18:正極外部端子 18a:上端側の開孔 18b:下端側の開孔 18c:テーパ状のザグリ穴 18d:段差部 20:スピニングカシメ治具 20a:(スピニングカシメ治具の)先端部 21:溶接領域 21a~21d:溶接スポット 22:溶接領域 22a~22d:溶接スポット 23:溶接領域 23a~23d:溶接スポット 24:溶接領域 24a~24d:溶接スポット 25:微小な割れ 26:溶接領域
 
 

Claims (20)

  1.  一対の導電性部材間がカシメ固定されていると共に互いに高エネルギー線によって溶接された溶接領域が形成されている電池であって、
     前記溶接領域は、前記一対の導電性部材の一方と他方との境界部に交差する方向に、2点以上のオーバーラップした溶接スポットで形成されていることを特徴とする電池。
  2.  前記電池は、外装体と、前記外装体の内部に収容された発電要素と、前記外装体の開口部を封止する封口板と、前記封口板を貫通するように前記封口板に取り付けられた接続端子と、前記発電要素と前記接続端子に電気的に接続された集電体と、を備え、
     前記溶接領域は、前記集電体と前記接続端子との間に形成されていることを特徴とする請求項1に記載の電池。
  3.  前記電池は、外装体と、前記外装体の内部に収容された発電要素と、前記外装体の開口部を封止する封口板と、前記封口板を貫通するように前記封口板に取り付けられた接続端子と、前記発電要素と前記接続端子に電気的に接続された集電体と、前記接続端子に電気的に接続された外部端子と、を備え、
     前記溶接領域は、前記接続端子と前記外部端子との間、もしくは、前記集電体と前記接続端子との間及び前記接続端子と前記外部端子との間に形成されていることを特徴とする請求項1に記載の電池。
  4.  前記溶接スポットは、3点以上がオーバーラップした状態に形成され、両端側の一点が一方の部材寄りに形成され、中間側の少なくとも1点が一方の部材と他方の部材との境界に跨がって形成され、さらに両端側の別の一点が他方の部材側に位置するように形成されていることを特徴とする請求項1に記載の電池。
  5.  前記高エネルギー線による溶接領域の最後の溶接スポットは、前記一方の部材のみの部分又は前記他方の部材のみの部分に形成されていることを特徴とする請求項4に記載の電池。
  6.  前記2点以上のオーバーラップした溶接スポットは、前記一対の導電性部材のうちのカシメられた部材側から他方の部材側に向かって形成されていることを特徴とする請求項1に記載の電池。
  7.  前記溶接領域は、前記カシメられた部材の境界に沿って複数箇所に形成されていることを特徴とする請求項1に記載の電池。
  8.  前記溶接領域は、前記カシメられた部材の境界に沿って対称な位置に形成されていることを特徴とする請求項7に記載の電池。
  9.  前記一対の導電性部材は、それぞれアルミニウム系金属からなることを特徴とする請求項1に記載の電池。
  10.  前記カシメられた部材は、カシメ前の形状が円筒状のものをスピニングカシメにより変形させて形成したものであることを特徴とする請求項1に記載の電池。
  11.  前記カシメられた部材は、カシメ前の形状が割ピン状のものを変形させて形成したものであることを特徴とする請求項1に記載の電池。
  12.  前記カシメられた部材は、前記一対の導電性部材のうちの一方の部材に形成されたテーパ状のザグリ穴を有する貫通穴内に、前記ザグリ穴とは反対側から、前記一対の導電性部材のうちの他方の部材を挿入して、前記他方の部材が前記ザグリ穴に接するように変形させて形成したものであることを特徴とする請求項1~11のいずれかに記載の電池。
  13.  前記テーパ状のザグリ穴側には前記テーパ状のザグリ穴の径よりも大径の段差部が形成されていることを特徴とする請求項12に記載の電池。
  14.  一対の導電性部材間がカシメ固定されていると共に互いに高エネルギー線によって溶接された溶接領域が形成されている電池の製造方法であって、
     前記一対の導電性部材の一方を他方に対してカシメ加工し、次いで、前記一対の導電性部材の一方と他方との境界部に交差する方向に、高エネルギー線を走査することによって2点以上のオーバーラップした溶接スポットからなる溶接領域を形成することを特徴とする電池の製造方法。
  15.  前記電池は、外装体と、前記外装体の内部に収容された発電要素と、前記外装体の開口部を封止する封口板と、前記封口板を貫通するように前記封口板に取り付けられた接続端子と、前記発電要素と前記接続端子に電気的に接続された集電体と、を備えており、
     前記溶接領域を、前記集電体と前記接続端子との間に形成することを特徴とする請求項14に記載の電池の製造方法。
  16.  前記電池は、外装体と、前記外装体の内部に収容された発電要素と、前記外装体の開口部を封止する封口板と、前記封口板を貫通するように前記封口板に取り付けられた接続端子と、前記発電要素と前記接続端子に電気的に接続された集電体と、前記接続端子に電気的に接続された外部端子と、を備えており、
     前記溶接領域を、前記集電体と前記接続端子との間及び前記接続端子と前記外部端子との間に形成することを特徴とする請求項14に記載の電池の製造方法。
  17.  前記溶接領域の前記溶接スポットを3点以上とすることを特徴とする請求項14に記載の電池の製造方法。
  18.  前記高エネルギー線による溶接領域の最後の溶接スポットを前記一方の部材のみの部分又は前記他方の部材のみの部分に形成することを特徴とする請求項14~17に記載の電池の製造方法。
  19.  前記2点以上のオーバーラップした溶接スポットを前記一対の導電性部材のうちのカシメられた部材側から他方の部材側に向かって形成することを特徴とする請求項14~17のいずれかに記載の電池の製造方法。
  20.  前記カシメられた部材は、カシメ前の形状が円筒状のものを使用してスピニングカシメによって変形させることを特徴とする請求項14~17のいずれかに記載の電池の製造方法。
PCT/JP2012/071390 2011-08-31 2012-08-24 電池及びその製造方法 WO2013031669A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013531272A JP6022460B2 (ja) 2011-08-31 2012-08-24 電池及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011189949 2011-08-31
JP2011-189949 2011-08-31

Publications (1)

Publication Number Publication Date
WO2013031669A1 true WO2013031669A1 (ja) 2013-03-07

Family

ID=47756159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071390 WO2013031669A1 (ja) 2011-08-31 2012-08-24 電池及びその製造方法

Country Status (2)

Country Link
JP (1) JP6022460B2 (ja)
WO (1) WO2013031669A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017084585A (ja) * 2015-10-27 2017-05-18 トヨタ自動車株式会社 電池及び電池の製造方法
CN109585770A (zh) * 2017-09-29 2019-04-05 三洋电机株式会社 二次电池及其制造方法
JP2019087453A (ja) * 2017-11-08 2019-06-06 トヨタ自動車株式会社 蓄電装置および蓄電装置の製造方法
CN110048065A (zh) * 2018-01-17 2019-07-23 三洋电机株式会社 二次电池及其制造方法
JP2020064803A (ja) * 2018-10-18 2020-04-23 トヨタ自動車株式会社 電池および電池の製造方法
CN116014321A (zh) * 2023-02-09 2023-04-25 深圳海润新能源科技有限公司 端盖组件、储能装置和用电设备
GB2606039B (en) * 2021-08-18 2023-05-31 Twi Ltd Electron beam welding method and apparatus
EP4228081A1 (en) * 2022-02-14 2023-08-16 Prime Planet Energy & Solutions, Inc. Battery and battery manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102252312B1 (ko) * 2020-07-27 2021-05-14 주식회사 유로셀 부스 바 연결구조를 갖는 원통형 셀 제조방법
KR102252330B1 (ko) * 2020-07-27 2021-05-14 주식회사 유로셀 부스 바 연결구조를 갖는 각형 셀 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025880U (ja) * 1988-06-25 1990-01-16
JPH05337572A (ja) * 1992-06-12 1993-12-21 Brother Ind Ltd 金属部材接合部品
JP2000299099A (ja) * 1999-04-13 2000-10-24 Matsushita Electric Ind Co Ltd 電池の製造方法
JP2007162071A (ja) * 2005-12-14 2007-06-28 Toho Titanium Co Ltd チタンインゴットの製造方法
JP2009110885A (ja) * 2007-10-31 2009-05-21 Sanyo Electric Co Ltd 密閉電池及びその製造方法
JP2012054203A (ja) * 2010-09-03 2012-03-15 Hitachi Vehicle Energy Ltd 二次電池およびその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5121279B2 (ja) * 2007-03-30 2013-01-16 三洋電機株式会社 密閉型電池の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025880U (ja) * 1988-06-25 1990-01-16
JPH05337572A (ja) * 1992-06-12 1993-12-21 Brother Ind Ltd 金属部材接合部品
JP2000299099A (ja) * 1999-04-13 2000-10-24 Matsushita Electric Ind Co Ltd 電池の製造方法
JP2007162071A (ja) * 2005-12-14 2007-06-28 Toho Titanium Co Ltd チタンインゴットの製造方法
JP2009110885A (ja) * 2007-10-31 2009-05-21 Sanyo Electric Co Ltd 密閉電池及びその製造方法
JP2012054203A (ja) * 2010-09-03 2012-03-15 Hitachi Vehicle Energy Ltd 二次電池およびその製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017084585A (ja) * 2015-10-27 2017-05-18 トヨタ自動車株式会社 電池及び電池の製造方法
US10109824B2 (en) 2015-10-27 2018-10-23 Toyota Jidosha Kabushiki Kaisha Battery and manufacturing method for battery
CN109585770A (zh) * 2017-09-29 2019-04-05 三洋电机株式会社 二次电池及其制造方法
CN109585770B (zh) * 2017-09-29 2022-08-12 三洋电机株式会社 二次电池及其制造方法
JP2019087453A (ja) * 2017-11-08 2019-06-06 トヨタ自動車株式会社 蓄電装置および蓄電装置の製造方法
CN110048065A (zh) * 2018-01-17 2019-07-23 三洋电机株式会社 二次电池及其制造方法
JP2020064803A (ja) * 2018-10-18 2020-04-23 トヨタ自動車株式会社 電池および電池の製造方法
CN111081965A (zh) * 2018-10-18 2020-04-28 丰田自动车株式会社 电池和电池的制造方法
JP7100803B2 (ja) 2018-10-18 2022-07-14 トヨタ自動車株式会社 電池および電池の製造方法
GB2606039B (en) * 2021-08-18 2023-05-31 Twi Ltd Electron beam welding method and apparatus
EP4228081A1 (en) * 2022-02-14 2023-08-16 Prime Planet Energy & Solutions, Inc. Battery and battery manufacturing method
CN116014321A (zh) * 2023-02-09 2023-04-25 深圳海润新能源科技有限公司 端盖组件、储能装置和用电设备

Also Published As

Publication number Publication date
JP6022460B2 (ja) 2016-11-09
JPWO2013031669A1 (ja) 2015-03-23

Similar Documents

Publication Publication Date Title
JP6022460B2 (ja) 電池及びその製造方法
US8241786B2 (en) Secondary battery
US8722252B2 (en) Current carrying block for resistance welding, and method for manufacturing sealed battery and sealed battery each using the current carrying block
JP6089784B2 (ja) 角形二次電池
US8440348B2 (en) Sealed battery
US8906545B2 (en) Prismatic secondary battery
US9680145B2 (en) Prismatic secondary battery
JP6238105B2 (ja) 装置筐体及び装置筐体の製造方法
US20120248076A1 (en) Laser welding method and battery made by the same
WO2012090668A1 (ja) 電池端子用接続板および電池端子用接続板の製造方法
KR20100099039A (ko) 밀폐 전지의 제조 방법 및 밀폐 전지
JP2018018691A (ja) 二次電池及びその製造方法、並びにそれを用いた組電池
JP2010086688A (ja) 密閉電池
JP2007250442A (ja) 非水電解質二次電池
JP2011159445A (ja) バッテリ装置及びバッテリ装置の端子間接続方法
US20220123393A1 (en) Battery and method of manufacturing same
JP6493188B2 (ja) 電池の製造方法
JP4954806B2 (ja) コンデンサおよびコンデンサの製造方法
JP2015109140A (ja) 密閉型電池の製造方法
JP2015115223A (ja) 密閉型電池の製造方法
JP2022042676A (ja) 二次電池
JPWO2022185591A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827476

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013531272

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12827476

Country of ref document: EP

Kind code of ref document: A1