WO2013031603A1 - 液晶化合物およびその製造方法、液晶組成物および液晶電気光学素子 - Google Patents

液晶化合物およびその製造方法、液晶組成物および液晶電気光学素子 Download PDF

Info

Publication number
WO2013031603A1
WO2013031603A1 PCT/JP2012/071211 JP2012071211W WO2013031603A1 WO 2013031603 A1 WO2013031603 A1 WO 2013031603A1 JP 2012071211 W JP2012071211 W JP 2012071211W WO 2013031603 A1 WO2013031603 A1 WO 2013031603A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
substituted
atom
liquid crystal
Prior art date
Application number
PCT/JP2012/071211
Other languages
English (en)
French (fr)
Inventor
健史 北
横山 健二
渭原 聡
智之 淺井
英昌 高
Original Assignee
Agcセイミケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agcセイミケミカル株式会社 filed Critical Agcセイミケミカル株式会社
Priority to JP2013531235A priority Critical patent/JP6006217B2/ja
Publication of WO2013031603A1 publication Critical patent/WO2013031603A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0462Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the linking chain being a -CF2CF2O- chain

Definitions

  • the present invention relates to a liquid crystal compound and a production method thereof, a liquid crystal composition containing the compound, and a liquid crystal electro-optical element.
  • Liquid crystal electro-optical elements include mobile devices such as mobile phones and PDAs, display devices for OA devices such as copiers and personal computer monitors, display devices for home appliances such as liquid crystal televisions, clocks, calculators, measuring instruments, and automotive instruments. It is used for a wide range of applications such as cameras. For this reason, the liquid crystal electro-optical element is required to have various performances such as a wide operating temperature range, a low operating voltage, high-speed response, and chemical stability. Since it is difficult to satisfy all the performances required for such a liquid crystal electro-optical element with a single compound, a liquid crystal compound and a non-liquid crystal compound having particularly excellent characteristics are usually used. Several combined liquid crystal compositions are used as a material exhibiting a liquid crystal phase used in a liquid crystal electro-optical element.
  • the compounds used in the above liquid crystal composition it has excellent compatibility with other liquid crystal compounds and non-liquid crystal compounds, is chemically stable, and has a wide temperature range when used in liquid crystal electro-optical elements. It is important to have a high-speed response and a low voltage drive.
  • compounds capable of exhibiting such properties compounds containing a linking group having a specific structure in the molecule, such as —CF 2 CF 2 — (see Patent Documents 1 and 2), —CF 2 O— (Patent Document 3). And compounds containing a linking group such as —CH 2 CH 2 CF 2 O— (see Patent Document 3) are known.
  • the group may be decomposed in some cases.
  • a liquid crystal compound that can further respond to a high demand for a liquid crystal electro-optical element is desired.
  • the present invention is chemically stable, excellent in compatibility with other liquid crystal materials or non-liquid crystal materials, and has a high responsiveness, low viscosity, and a wide liquid crystal temperature range by designing a bonding group to the linking group.
  • An object of the present invention is to provide a liquid crystal compound that can also have characteristics such as a high clearing point.
  • the present invention also provides a method for producing such a liquid crystal compound, a liquid crystal composition suitable for obtaining a highly reliable liquid crystal electro-optical element, and a liquid crystal electro-optical element using the liquid crystal composition. Objective.
  • the present invention provides a liquid crystal compound having a specific structure containing a novel linking group —CF 2 CF 2 CF 2 O— as the liquid crystal compound as described above.
  • the liquid crystal compound according to the present invention is represented by the following formula (1).
  • the symbol in Formula (1) shows the following meanings.
  • R 1 and R 2 are each independently a hydrogen atom, a halogen atom, —CN, —NCS, —SF 5 or an alkyl group having 1 to 18 carbon atoms, and one or more hydrogen atoms in the alkyl group May be substituted with a halogen atom, and an etheric oxygen atom (—O—) or a thioetheric sulfur atom (—S—) is inserted between the carbon-carbon atom (C—C) or at the bond terminal of the group.
  • One or more —CH 2 CH 2 — may be substituted with —CH ⁇ CH— or —C ⁇ C—.
  • a 1 , A 2 , A 3 , A 4 , A 5 , A 6 and A 7 Independently of each other, trans-1,4-cyclohexylene group, 1,4-cyclohexenylene group, 1,3 -Cyclobutylene group, 1,2-cyclopropylene group, naphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, decahydronaphthalene-2,6-diyl group Or a 1,4-phenylene group, and in each of these groups, one or more hydrogen atoms may be substituted with a halogen atom, and one or two ⁇ CH— may be substituted with a nitrogen atom One or two —CH 2 — may be substituted with —O— or —S—.
  • Z 1 , Z 2 , Z 3 , Z 4 and Z 5 are each independently a single bond or an alkylene group having 1 to 4 carbon atoms, in which one or more hydrogen atoms are fluorine atoms
  • One or more —CH 2 — may be substituted with —O— or —S—, and one or more —CH 2 CH 2 — may be —CH ⁇ CH— or —C ⁇ C— may be substituted, and one —CH 2 CH 2 — may be substituted with —COO— or —OCO—.
  • m, n, p, q and r 0 or 1 independently of each other. However, 0 ⁇ m + n + p + q + r ⁇ 3.
  • the above -O- and / or -S- are not linked in the compound structure.
  • the liquid crystal compound is preferably represented by the following formula (1-1).
  • R 11 and R 21 are each independently a fluorine atom, —CN, or an alkyl group having 1 to 18 carbon atoms, wherein one or more hydrogen atoms may be substituted with a fluorine atom.
  • —O— or —S— may be inserted between C—C or at the bonding terminal of the group, and one or more —CH 2 CH 2 — may be substituted with —CH ⁇ CH—.
  • a 11 , A 21 , A 31 , A 41 , A 51 , A 61 and A 71 each independently a trans-1,4-cyclohexylene group or a 1,4-phenylene group,
  • one or more hydrogen atoms may be substituted with a halogen atom
  • one or two ⁇ CH— may be substituted with a nitrogen atom
  • one or two —CH 2 — is — It may be substituted with O— or —S—.
  • Z 11 , Z 21 , Z 31 , Z 41 and Z 51 are each independently a single bond, —COO—, —OCO—, —C ⁇ C— or an alkylene group having 1 to 4 carbon atoms, In the alkylene group, one or more hydrogen atoms may be substituted with a fluorine atom, and one or more —CH 2 — may be substituted with —O—.
  • m, n, p, q and r have the same meaning as described above.
  • the liquid crystal compound is more preferably represented by the following formula (1-2).
  • R 12 is an alkyl group having 1 to 10 carbon atoms, and one or more hydrogen atoms in the group may be substituted with a fluorine atom, and —O— is present between C—C or at the bond terminal of the group.
  • R 22 is a fluorine atom, —CN, or an alkyl group having 1 to 10 carbon atoms, and one or more hydrogen atoms in the alkyl group may be substituted with a fluorine atom, —O— may be inserted at the bonding terminal, and one or more —CH 2 CH 2 — may be substituted with —CH ⁇ CH—.
  • a 12 , A 22 , A 32 , A 42 , A 52 , A 62 and A 72 independently of each other, a trans-1,4-cyclohexylene group, a 1,4-phenylene group or one or two of them 1,4-phenylene group in which a hydrogen atom is substituted with a fluorine atom.
  • Z 12 , Z 22 , Z 32 , Z 42 and Z 52 independently of each other, a single bond, —C 2 H 4 —, —COO—, —OCO—, —C ⁇ C—.
  • m, n, p, q and r have the same meaning as described above.
  • the following method can be provided as an example of a method for producing the liquid crystal compound as described above.
  • R 3 is —OR a , —N (R a ) (R b ), and R a and R b are each independently an alkyl group having 1 to 5 carbon atoms.
  • M a metal atom or a group containing a metal atom.
  • Other symbols have the same meaning as the symbols in the above formula (1).
  • the liquid crystal compound is a compound represented by the following formula (1 ′) in which A 4 in the above formula (1) is a 1,4-cyclohexylene group
  • the following method is used.
  • R 3 —OR a , —N (R a ) (R b ), and R a and R b are each independently an alkyl group having 1 to 5 carbon atoms.
  • M a metal atom or a group containing a metal atom.
  • -Ph- 1,4-phenylene group.
  • -Cy- trans-1,4-cyclohexylene group.
  • Other symbols have the same meaning as the symbols in the above formula (1).
  • the present invention also provides a liquid crystal composition comprising the liquid crystal compound represented by the formula (1).
  • the present invention also provides a liquid crystal electro-optical element formed by sealing the liquid crystal composition between two substrates provided with electrodes.
  • the liquid crystal compound represented by the formula (1) of the present invention is chemically stable and excellent in compatibility with other liquid crystal materials or non-liquid crystal materials.
  • the liquid crystal compound of the present invention has a viscosity equal to or lower than that of a liquid crystal compound having a similar structure except for a linking group.
  • the compound of the present invention has various performances required for the liquid crystal electro-optic element, specifically, for example, a wide operating temperature by appropriately selecting the ring group, substituent and linking group constituting the compound.
  • a liquid crystal composition satisfying the range, high-speed response, chemical stability, and the like can be prepared.
  • an element excellent in high-speed response can be obtained in a wide temperature range.
  • a compound having a —CF 2 CF 2 CF 2 O— linking group is highly versatile and can be easily and efficiently produced industrially easily.
  • liquid crystal compound represented by the formula (1) is referred to as a compound (1), and the compounds represented by other formulas are also described in the same manner.
  • a liquid crystal compound means a compound that exhibits a liquid crystal phase and a compound that does not exhibit a liquid crystal phase but is useful as a constituent of a liquid crystal composition.
  • the one closer to R 1 in the formula (1) is always the first place, and the one closer to R 2 is always the fourth place.
  • “ ⁇ is negatively large” means that ⁇ is negative and the absolute value thereof is large. That is, if the value of ⁇ is ⁇ 1 and ⁇ 2, -2 is “ ⁇ is negatively larger”.
  • the liquid crystal electro-optical element is not limited to a display element, but various functional elements that use the electrical or optical characteristics of liquid crystal, such as a liquid crystal display element, a light control window, and an optical shutter. And elements used for applications such as a polarization conversion element and a variable focus lens.
  • examples of the group in which one or more hydrogen atoms in the alkyl group are substituted with halogen atoms include a fluoroalkyl group, A chloroalkyl group etc. are mentioned.
  • a fluorine atom is preferable.
  • examples of the group in which —O— or —S— is inserted between C—C in the alkyl group include an alkoxyalkyl group or an alkylthioalkyl group, and —O— or —S— is inserted at the bond terminal of the group.
  • Examples of the group include an alkoxy group and an alkylthio group.
  • Examples of the group in which —CH 2 CH 2 — in the alkyl group is substituted with —CH ⁇ CH— or —C ⁇ C— include an alkenyl group and an alkynyl group.
  • substitution with — or —C ⁇ C— may be performed simultaneously on the same alkyl group.
  • Examples of the group in which substitution of a fluorine atom and insertion of —O— are simultaneously performed include a fluoroalkoxy group and a fluoroalkoxyalkyl group.
  • Examples of the group in which —CH ⁇ CH— or —C ⁇ C— substitution and fluorine atom substitution are simultaneously performed include a fluoroalkenyl group and a fluoroalkynyl group.
  • Examples of the group in which substitution of —CH ⁇ CH— or —C ⁇ C— and insertion of —O— or —S— between C—C are performed simultaneously include alkenyloxyalkyl group, alkynyloxyalkyl group, alkenyl A thioalkyl group and an alkynylthioalkyl group can be mentioned.
  • Examples of the group in which —CH ⁇ CH— or —C ⁇ C— is substituted and —O— or —S— is inserted at the bonding end of the group include an alkenyloxy group, an alkynyloxy group, an alkenylthio group, and an alkynylthio group.
  • Groups. Further, groups in which fluorine atom substitution, —CH ⁇ CH— or —C ⁇ C— substitution, and —O— or —S— insertion are performed simultaneously include fluoroalkenyloxy group, fluoroalkynyloxy group And a fluoroalkenylthio group. These groups may be either linear or branched, but are preferably linear.
  • R 1 and R 2 are preferably fluorine atoms, —CN, and groups having 1 to 18 carbon atoms, since reactivity and side reactions are unlikely to occur.
  • R 1 is particularly preferably an alkyl group, alkoxy group, alkoxyalkyl group, alkenyl group, alkenyloxy group, or alkenyloxyalkyl group having 1 to 10 carbon atoms.
  • R 2 is a fluorine atom, —CN, and an alkyl group, alkoxy group, alkoxyalkyl group, alkenyl group, alkenyloxy group, alkenyloxyalkyl group, fluoroalkyl group, fluoroalkoxy group having 1 to 10 carbon atoms, A fluoroalkoxyalkyl group is particularly preferred.
  • substitution of a hydrogen atom with a halogen atom, ⁇ CH—nitrogen may be performed simultaneously on the same group.
  • a halogen atom a chlorine atom or a fluorine atom is preferable.
  • a 1 , A 2 , A 3 , A 4 , A 5 , A 6 and A 7 are 1,4-phenylene groups and further have a halogen atom as a substituent, one 1,4-phenylene group is substituted.
  • the number of halogen atoms to be used is 1 to 4, but 1 or 2 is preferable among them.
  • the number of halogen atoms is preferably 1 to 4.
  • the halogen atom may be bonded to the 1st or 4th carbon atom of the trans-1,4-cyclohexylene group.
  • Examples of the group in which one or two ⁇ CH— in the 1,4-phenylene group are substituted with a nitrogen atom include a 2,5-pyrimidinylene group and a 2,5-pyridinylene group.
  • Examples of the group in which one or two —CH 2 — in the trans-1,4-cyclohexylene group is substituted with —O— or —S— include a 1,3-dioxane-2,5-diyl group, A 1,3-dithian-2,5-diyl group may be mentioned.
  • a 1,4-phenylene group substituted with at least one of a halogen atom and a nitrogen atom is referred to as a “substituted 1,4-phenylene group” and substituted with at least one of a halogen atom, —O— and —S—.
  • the 1,4-cyclohexylene group thus prepared is referred to as “substituted trans-1,4-cyclohexylene group”.
  • a 1 , A 2 , A 3 , A 4 , A 5 , A 6 and A 7 are trans-1,4-cyclohexylene group, 1, A 4-phenylene group, a substituted trans-1,4-cyclohexylene group, or a substituted 1,4-phenylene group is preferred.
  • a trans-1,4-cyclohexylene group, a 1,4-phenylene group, or a 1,4-phenylene group in which one or two hydrogen atoms in the group are substituted with a fluorine atom is particularly preferable.
  • a 4 is a trans-1,4-cyclohexylene group.
  • a 4 is a 1,4-phenylene group, or a 1,4-phenylene group in which one or two hydrogen atoms in the group are substituted with fluorine atoms. It is particularly preferred.
  • the one closer to R 1 in the formula (1) is the first and the one closer to R 2 is the fourth And
  • Z 1 , Z 2 , Z 3 , Z 4 and Z 5 have the same meaning as described above.
  • substitution of a hydrogen atom with a fluorine atom substitution of —CH 2 — with —O— or —S—, —CH ⁇ CH— of —CH 2 CH 2 —, —C ⁇ C—, —COO— , —OCO— may be substituted simultaneously for the same group.
  • alkylene group in which one or more hydrogen atoms in the group are substituted with fluorine atoms examples include —CF 2 CF 2 —, —CF 2 CH 2 —, —CH 2 CF 2 —, —CHFCH 2 —, —CH 2 CHF—, —CF 2 CHF—, —CHFCF 2 — and the like can be mentioned.
  • alkylene group in which one or more —CH 2 — in the group is substituted by —O— or —S— include —CH 2 O—, —OCH 2 —, —CH 2 S—, —SCH 2 — and the like. Is mentioned.
  • examples of the group in which substitution of a hydrogen atom in a group with a fluorine atom and substitution of —CH 2 — in the group with —O— are performed simultaneously include —CF 2 O—, —OCF 2 — Etc.
  • the alkylene group in which one or more —CH 2 CH 2 — in the group is substituted with —CH ⁇ CH— or —C ⁇ C— includes an alkenylene group or an alkynylene group.
  • the alkenylene group or alkynylene group includes —CH ⁇ CH—, —CH ⁇ CH—CH 2 —, —CH ⁇ CH—CH 2 —CH 2 —, —CH ⁇ CH—CH ⁇ CH—, —CH 2 —CH.
  • ⁇ CH—CH 2 —, —C ⁇ C—, —C ⁇ C—CH 2 —, —C ⁇ C—CH 2 —CH 2 —, —C ⁇ C—C ⁇ C—, —CH 2 —C ⁇ C—CH 2 — and the like can be mentioned. Further, double bonds and triple bonds may be mixed as in —CH ⁇ CH—C ⁇ C—. These groups may be reversed. Examples of groups in which —CH ⁇ CH— or —C ⁇ C— and fluorine atoms are simultaneously substituted include —CF ⁇ CF—, —CF ⁇ CF—C ⁇ C— and the like.
  • Examples of the group in which one —CH 2 CH 2 — is substituted with —COO— or —OCO— include —COO—, —OCO—, —CH 2 CH 2 —COO—, —CH 2 CH 2 -OCO- and the like.
  • Z 1 , Z 2 , Z 3 , Z 4 or Z 5 in the formula (1) defined above is a single bond, the groups present on both sides of each group must be directly bonded. Means. For example, when Z 1 is a single bond and m and n are 1, A 1 and A 2 are directly bonded. When Z 1 , Z 2 and Z 3 are single bonds and m, n and p are 0, R 1 and A 4 are directly bonded. The same applies to Z 2 , Z 3 , Z 4 and Z 5 .
  • Z 1 , Z 2 , Z 3 , Z 4, and Z 5 are each a single bond, —COO—, —OCO—, —C ⁇ C— or an alkylene group having 1 to 4 carbon atoms for ease of synthesis or the like.
  • One or more hydrogen atoms in the group may be substituted with a fluorine atom, and one or more —CH 2 — in the group may be substituted with —O—.
  • a single bond, —C 2 H 4 —, —COO—, —OCO— or —C ⁇ C— is particularly preferable.
  • m, n, p, q and r have the same meaning as described above.
  • m, n, p, q, and r can be suitably selected according to the characteristics required for the compound. For example, when importance is attached to the low viscosity of the compound (1) or the excellent compatibility of the compound with other liquid crystal materials or non-liquid crystal materials, it is preferable that 0 ⁇ m + n + p + q + r ⁇ 1. On the other hand, when emphasizing the high liquid crystal temperature range of the compound, it is preferable that 1 ⁇ m + n + p + q + r ⁇ 3.
  • R —R 2 is preferably an electron withdrawing group.
  • R 2 fluorine atom, —OCF 3 , —OCF 2 H, —CN, —NCS, or —SF 5
  • a 5 , A 6 , A 7 Independently of each other, 1,4-phenylene group, 3-fluoro-1,4-phenylene group, or 3,5-difluoro-1,4-phenylene group.
  • Z 4 , Z 5 single bond q, r: independently of each other 0 or 1
  • a 1 , A 2 , A 3 , A 4 , A 5 , A 6 and A 7 are 2,3-difluoro-1,4- A phenylene group is preferred.
  • R 1 and R 2 directly bonded to the 2,3-difluoro-1,4-phenylene group are preferably alkoxy groups.
  • a 1,4-phenylene group when a 1,4-phenylene group is substituted on the carbon atom side of —CF 2 O—, if the group is not substituted with a fluorine atom, The CF 2 O— linking group is unstable and may be converted to —COO— by hydrolysis.
  • the linking group in the compound having the —CF 2 CF 2 CF 2 O— linking group of the present invention, the linking group may be substituted with a 1,4-phenylene group not substituted with a fluorine atom.
  • the compound having a —CF 2 CF 2 CF 2 O— linking group of the present invention is not limited even if the structure of the ring group at both ends of the linking group is not limited to a fluorine-substituted 1,4-phenylene group or the like. It can be seen that it has a feature that can be obtained stably.
  • the compound (1-1) is preferable.
  • R 11 - (A 11) m -Z 11 - (A 21) n -Z 21 - (A 31) p -Z 31 -A 41 -CF 2 CF 2 CF 2 OA 51 -Z 41 - (A 61) q -Z 51 - (A 71) r -R 21 (1-1) The symbols in the formula are as described above.
  • the compound (1-2) is more preferred.
  • the symbols in the formula are as described above.
  • Preferable examples of compound (1) include the following compounds.
  • R 12 and R 22 have the same meaning as described above, and other symbols have the following meanings.
  • -Cy- trans-1,4-cyclohexylene group.
  • -Phe- 1,4-phenylene group optionally substituted by one or two fluorine atoms.
  • R 3 is —OR a , —N (R a ) (R b ), and R a and R b are each independently an alkyl group having 1 to 5 carbon atoms.
  • M a metal atom or a group containing a metal atom.
  • Other symbols have the same meaning as the symbols in the above formula (1).
  • a series of reactions for obtaining the compound (1) by the production method 1 can be expressed as follows.
  • R 3 of the compound (9) is preferably —OR a because synthesis is easy.
  • R a is preferably an alkyl group having 1 to 3 carbon atoms.
  • Compound (10) can be synthesized, for example, by the following method.
  • the symbols in the formula have the same meaning as described above.
  • X is preferably a chlorine atom, a bromine atom or an iodine atom because of good reactivity, and an iodine atom is particularly preferred.
  • Examples of the metalation reaction of compound (11) include lithiation and a method of using a Grignard reagent by reaction with metallic magnesium.
  • Examples of lithiation include a method using metallic lithium and a halogen-metal exchange reaction using alkyllithium such as n-butyllithium as a lithiating agent.
  • M of the compound (10) obtained by metalation of the compound (11) MgI, MgBr, MgCl and Li are preferable, and Li is particularly preferable.
  • the compound (10) obtained by metalation of the compound (11) may be isolated and then reacted with the compound (9) without isolation after the metalation reaction. You may make it react with a compound (9) continuously.
  • the amount of compound (10) to be used is preferably 0.9 to 2.0 moles per 1 mole of compound (9). More preferred is .5 moles.
  • the amount of the compound (11) used is 0.9-2. 0 mol is preferable, and 1 to 1.5 mol is more preferable.
  • solvents include aromatic hydrocarbon solvents such as benzene, toluene, xylene, and ethylbenzene, aliphatic hydrocarbon solvents such as pentane, hexane, heptane, and octane; tetrahydrofuran, diethyl ether, diisopropyl ether, dibutyl ether, and t-butylmethyl.
  • Ether solvents such as ether and dimethoxyethane; petroleum ethers or a suitable mixed solvent of the above solvents can be used.
  • ether solvents such as diethyl ether and t-butyl methyl ether, and mixed solvents of ether solvents and aliphatic hydrocarbon solvents are preferable.
  • the reaction temperature is preferably ⁇ 100 to 50 ° C., more preferably ⁇ 95 to ⁇ 80 ° C.
  • the reaction time is preferably 0.1 to 24 hours, more preferably 0.1 to 5 hours.
  • fluorination of compound (8) is preferably carried out in a solvent.
  • Solvents that can be used include aromatic hydrocarbon solvents such as benzene, toluene, xylene, and ethylbenzene, aliphatic hydrocarbon solvents such as pentane, hexane, heptane, and octane; ethyl acetate, methyl acetate, propyl acetate, and the like Ester solvents such as methanol and ethanol; ketone solvents such as acetone and methyl ethyl ketone; ether solvents such as tetrahydrofuran, diethyl ether, dibutyl ether, t-butyl methyl ether, and dimethoxyethane; dichloromethane, 1,2 -Chlorinated solvents such as dichloroethane; petroleum ethers or a suitable mixed solvent of the above-mentioned solvents
  • Fluorination reaction includes sulfur tetrafluoride, N, N-diethylaminosulfur trifluoride, morpholino sulfur trifluoride, bis- (2-dimethoxyethyl) aminosulfur trifluoride, or carbonyl using xenon difluoride Examples thereof include direct fluorination reaction of compounds and oxidative desulfurization fluorination reaction via ortho-thioester, dithiane, and thiocarbonyl. Among these, reaction using N, N-diethylaminosulfur trifluoride is more preferable.
  • the amount of the fluorinating reagent to be used is preferably 0.5 to 20 times, more preferably 1 to 5 times, based on 1 mol of Compound (8).
  • the reaction temperature is preferably 0 to 150 ° C, more preferably 20 to 80 ° C.
  • the reaction time is preferably 1 to 72 hours, more preferably 3 to 24 hours.
  • R 3 —OR a , —N (R a ) (R b ), and R a and R b are each independently an alkyl group having 1 to 5 carbon atoms.
  • M a metal atom or a group containing a metal atom.
  • -Ph- 1,4-phenylene group.
  • -Cy- trans-1,4-cyclohexylene group.
  • Other symbols have the same meaning as the symbols in the above formula (1).
  • a series of reactions for obtaining the compound (1 ′) by the production method 2 can be expressed as follows.
  • -Ch- is a 1,4-cyclohexenylene group, and the definitions and preferred embodiments of other symbols are as described above for the compounds (1) and (1 ').
  • a compound (9 ') can be obtained by the method similar to the compound (9) of the manufacturing method 1.
  • R 4 may be a group usually used in organic synthesis as a protective group for the OH group.
  • a benzyl group, an acyl group, etc. are mentioned, and since it is easy to synthesize, a benzyl group is preferable.
  • the step of obtaining the compound (8 ′) from the compound (11) is the same as the step of obtaining the compound (8) by the production method 1.
  • the fluorination of the compound (8 ′) is the same as the step of obtaining the compound (1) by the production method 1.
  • the compound (7) obtained by fluorinating the compound (8 ′) is preferably hydrogenated to produce the compound (6) in a solvent.
  • Solvents that can be used in the production of compound (6) include aromatic hydrocarbon solvents such as benzene, toluene, xylene and ethylbenzene, aliphatic hydrocarbon solvents such as pentane, hexane, heptane and octane; acetic acid Ester solvents such as ethyl, methyl acetate and propyl acetate; alcohol solvents such as methanol and ethanol; ketone solvents such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran, diethyl ether, dibutyl ether, t-butyl methyl ether and dimethoxyethane System solvents; petroleum ethers or an appropriate mixed solvent of the above solvents can be used.
  • aromatic hydrocarbon solvents such as benzene, toluene, xylene and ethylbenzene, aliphatic hydrocarbon solvents
  • the production of compound (6) is preferably carried out in the presence of a heterogeneous catalyst.
  • the catalyst that can be used in the production of the compound (6) include transition metals such as palladium carbon, rhodium carbon, ruthenium carbon, Raney nickel, and platinum oxide.
  • the amount of the catalyst used is preferably 0.01 to 1.0 times, more preferably 0.1 to 0.5 times the mass of the compound (7).
  • the reaction temperature is preferably ⁇ 50 to 100 ° C., more preferably 0 to 40 ° C.
  • the reaction time is preferably 0.1 to 24 hours, more preferably 0.1 to 3 hours.
  • the oxidation reaction for producing compound (5) by oxidizing compound (6) includes Dess-Martin oxidation reaction using organic hypervalent iodine reagent, Jones oxidation using pyridinium chlorochromate and pyridinium dichromate. Reaction, Opppenauer oxidation reaction using tetraisopropoxyaluminum and acetone, Swern oxidation reaction using dimethyl sulfoxide and oxalyl chloride, or oxidation reaction using acetic acid and sodium hypochlorite aqueous solution. Among these, acetic acid, hypochlorous acid An oxidation reaction using an aqueous sodium acid solution is particularly desired.
  • the amount of acetic acid used is preferably 1 to 30 times, more preferably 3 to 5 times the mass of the compound (6).
  • the sodium hypochlorite aqueous solution is preferably used in an amount of 0.1 to 5 times, more preferably 0.1 to 1 times the amount of the compound (6).
  • the reaction temperature is preferably 0 to 100 ° C, more preferably 20 to 60 ° C.
  • the reaction time is preferably 1 to 72 hours, more preferably 3 to 48 hours.
  • Solvents include aromatic hydrocarbon solvents such as benzene, toluene, xylene, and ethylbenzene, aliphatic hydrocarbon solvents such as pentane, hexane, heptane, and octane; tetrahydrofuran, diethyl ether, diisopropyl ether, dibutyl ether, and t-butylmethyl.
  • Ether solvents such as ether and dimethoxyethane; petroleum ethers or a suitable mixed solvent of the above solvents can be used.
  • ether solvents such as diethyl ether and t-butyl methyl ether, and mixed solvents of ether solvents are preferable.
  • the amount of compound (4) to be used is preferably 0.9 to 20.0 mol, more preferably 1 to 10 mol, per 1 mol of compound (5).
  • the reaction temperature is preferably ⁇ 70 to 50 ° C., more preferably ⁇ 10 to 30 ° C.
  • the reaction time is preferably 0.1 to 24 hours, more preferably 0.1 to 5 hours.
  • the compound (4) can be easily obtained by a method described in a book of organic synthesis such as a new experimental chemistry course (published by Maruzen Co., Ltd.).
  • M is a metal atom or a group containing a metal atom.
  • MgI, MgBr, MgCl, and Li are especially preferable.
  • the compound (4) may be reacted with the compound (5) after isolation, or may be continuously reacted with the compound (5) without isolation after the metalation reaction.
  • the compound (2) is obtained by dehydrating the compound (3) obtained by the reaction between the compound (4) and the compound (5).
  • the dehydration reaction is preferably performed under acidic conditions.
  • the dehydration reaction is preferably carried out in a solvent, and examples of the solvent include those exemplified in the above reaction. Among them, aromatic hydrocarbon solvents such as toluene, ether solvents such as tetrahydrofuran, and mixtures of these solvents A solvent is preferred.
  • acids that can be used in the dehydration reaction include strong acids such as hydrochloric acid and sulfuric acid; carboxylic acids such as trifluoroacetic acid, acetic acid, and formic acid; and organic acids such as paratoluenesulfonic acid.
  • the amount of the acid used is preferably 0.01 to 10 equivalents, more preferably 0.1 to 1 equivalents, relative to compound (2).
  • the reaction temperature is preferably 0 ° C. to reflux, more preferably 30 ° C. to reflux.
  • the reaction time is preferably 0.1 to 24 hours, more preferably 0.1 to 3 hours.
  • the compound (1 ′) can be obtained by hydrogenating the compound (2).
  • the hydrogenation reaction is preferably carried out in a solvent, and examples of the solvent include those exemplified in the above reaction. Among them, alcohol solvents such as ethanol, ester solvents such as ethyl acetate, Mixed solvents are preferred.
  • the synthesis of compound (1 ′) is preferably carried out in the presence of a heterogeneous catalyst.
  • the catalyst that can be used in the production of the compound (1 ′) include transition metals such as palladium carbon, rhodium carbon, ruthenium carbon, Raney nickel, and platinum oxide.
  • the amount of the catalyst used is preferably 0.01 to 1.0 times, more preferably 0.1 to 0.5 times the mass of the compound (2).
  • the reaction temperature is preferably 0-100 ° C, more preferably 30-80 ° C.
  • the reaction time is preferably 0.1 to 24 hours, more preferably 0.1 to 3 hours.
  • the present invention provides a liquid crystal composition comprising the compound (1) of the present invention.
  • This liquid crystal composition is constituted by mixing the compound (1) of the present invention with other liquid crystal compounds or non-liquid crystal compounds (collectively referred to as “other compounds”).
  • the content of the compound (1) in the liquid crystal composition of the present invention can be appropriately changed depending on the purpose of use, the purpose of use, the type of other compounds, etc. 5 to 50% by mass is preferable, and 2 to 20% by mass is particularly preferable. Moreover, you may contain 2 or more types of compounds (1) in a liquid-crystal composition by a use, a use purpose, etc. In that case, the total amount of the compound (1) is preferably 0.5 to 80% by mass, particularly 2 to 50% by mass, based on the total amount of the liquid crystal composition.
  • Other compounds used in combination with the compound (1) include components for adjusting the refractive index anisotropy value, components for reducing the viscosity, components exhibiting liquid crystallinity at low temperatures, components for improving the dielectric anisotropy, and cholesteric A component for imparting properties, a component exhibiting dichroism, a component for imparting conductivity, and various other additives. These are appropriately selected depending on the application, required performance and the like, but usually those composed of a liquid crystal compound, a main component having a similar structure to the liquid crystal compound, and an additive component added if necessary.
  • examples of the other compound include those represented by the following formulae.
  • R 5 and R 6 represent a group such as an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, a halogen atom or a cyano group.
  • R 3 and R 4 may be the same or different from each other.
  • -Cy- represents a trans-1,4-cyclohexylene group
  • -Ph- represents a 1,4-phenylene group
  • -PhFF- represents a difluorophenylene group.
  • a hydrogen atom present in a ring structure or a terminal group in the compound may be substituted with a halogen atom, a cyano group, a methyl group, or the like.
  • the cyclohexane ring or the benzene ring may be substituted with another 6-membered ring or 5-membered ring, for example, a pyrimidine ring or a dioxane ring.
  • liquid crystal composition of the present invention examples include the following.
  • the symbols in the formula have the same meaning as described above.
  • the present invention provides a liquid crystal electro-optical element that uses the liquid crystal composition as a constituent material of a liquid crystal layer.
  • a liquid crystal electro-optical element having an electro-optical element portion formed by sandwiching a liquid crystal layer formed by injecting the liquid crystal composition of the present invention into a liquid crystal cell or the like between two substrates provided with electrodes.
  • This liquid crystal electro-optic element has various modes such as TN mode, STN mode, ECB mode, VA mode, guest host mode, dynamic scattering mode, phase change mode, DAP mode, dual frequency drive mode, ferroelectric liquid crystal display mode, etc.
  • the one driven by is mentioned.
  • As a drive mode passive drive and active drive can be used.
  • a typical liquid crystal electro-optic element includes a twisted nematic (TN) type liquid crystal display element.
  • the twisted nematic (TN) type liquid crystal display device first, plastics, onto a substrate such as glass, of SiO 2, Al 2 O undercoat layer or a color filter layer, such as 3 to form optionally, an In 2 O
  • a film made of 3- SnO 2 (ITO), SnO 2 or the like is formed, and an electrode having a required pattern is formed by photolithography or the like.
  • an overcoat layer of polyimide, polyamide, SiO 2 , Al 2 O 3 or the like is formed and oriented.
  • a sealing material is printed on this, it arrange
  • composition of the present invention is injected into an empty cell, and the injection port is sealed with a sealant to form a liquid crystal cell.
  • this liquid crystal cell is laminated with a polarizing plate, a color polarizing plate, a light source, a color filter, a transflective plate, a reflecting plate, a light guide plate, an ultraviolet cut filter, etc., printing characters, figures, etc., non-glare processing, etc.
  • a liquid crystal electro-optical element can be obtained.
  • the above description describes the basic configuration and manufacturing method of the liquid crystal electro-optic element, and other configurations can be adopted.
  • a substrate using a two-layer electrode a two-layer liquid crystal cell having a two-layer liquid crystal layer, a substrate using a reflective electrode, an active matrix device using an active matrix substrate having an active element such as a TFT or MIM, etc.
  • Various configurations can be employed.
  • the composition of the present invention is also suitable for active matrix devices such as TFT and MIM.
  • composition of the present invention is a mode other than the TN type, that is, a high twist angle super twist nematic (STN) type liquid crystal electro-optical element or a guest-host (GH) type liquid crystal using a polychromatic dye.
  • 19 F-NMR and GC-MS data of the obtained compound (12a) are shown.
  • 19 F-NMR and GC-MS data of the obtained compound (11a) are shown.
  • 19 F-NMR and GC-MS data of the obtained compound (6a) are shown.
  • 19 F-NMR and GC-MS data of the obtained compound (3a) are shown.
  • 19 F-NMR and GC-MS data of the obtained compound (2a) are shown.
  • the clearing point (Tc) of compound (1a) was 95.8 ° C., and the refractive index anisotropy ( ⁇ n) was 0.082.
  • the shear viscosity at 25 ° C. was 10.6 mm 2 ⁇ s ⁇ 1 , and ⁇ was 7.4.
  • Each of the above physical properties was prepared by mixing 90% by mass of the liquid crystal composition “ZLI-4792” manufactured by Merck Co., Ltd. at a ratio of 10% by mass of the compound (1a) of the present invention. It measured with the following method using the composition.
  • [Measurement of liquid crystal clearing point (Tc)] Place the liquid crystal composition on a hot plate of a melting point measuring apparatus equipped with a polarizing microscope, raise the temperature at 1 ° C./min, observe the phase change, measure the Tc of the liquid crystal composition, and extrapolate the measured value Thus, the extrapolated value of Tc of compound (1a) was calculated.
  • optical anisotropy (refractive index anisotropy; ⁇ n)
  • a voltage of 100 mV was applied to this cell at 20 ° C., and the dielectric constant ( ⁇ ) in the minor axis direction of the liquid crystal molecules was measured. A dielectric constant ( ⁇ ) in the major axis direction of liquid crystal molecules was measured by applying a voltage of 88V. The dielectric anisotropy ( ⁇ ) of the compound was determined by obtaining ⁇ of the composition from the formula ⁇ ⁇ and extrapolating.
  • 19 F-NMR and GC-MS data of the obtained compound (3b) are shown.
  • 19 F-NMR and GC-MS data of the obtained compound (2b) are shown.
  • the clearing point (Tc) of compound (1a) was 154.8 ° C., and the refractive index anisotropy ( ⁇ n) was 0.112.
  • the shear viscosity at 25 ° C. was 16.9 mm 2 ⁇ s ⁇ 1 , and ⁇ was 8.8.
  • Compound ( 1c) had a clearing point (Tc) of ⁇ 6.0 ° C. and a refractive index anisotropy ( ⁇ n) of 0.122.
  • the shear viscosity at 25 ° C. was 14.1 mm 2 ⁇ s ⁇ 1 , and ⁇ was 10.0.
  • Phase transition temperature C 38.2 I The extrapolated value was determined using Merck liquid crystal composition ZLI-4792 as the mother liquid crystal.
  • Compound (1d) had a clearing point (Tc) of ⁇ 49.7 ° C. and a refractive index anisotropy ( ⁇ n) of 0.109.
  • the shear viscosity at 25 ° C. was 19.5 mm 2 ⁇ s ⁇ 1 , and ⁇ was 15.5.
  • Phase transition temperature C 34.0 I When extrapolated values were determined using Merck's liquid crystal composition ZLI-4792 as the mother liquid crystal, the clearing point (Tc) of compound (1e) was ⁇ 11.7 ° C., and the refractive index anisotropy ( ⁇ n) was 0.076. The shear viscosity at 25 ° C. was 17.0 mm 2 ⁇ s ⁇ 1 , and ⁇ was 10.7.
  • the clearing point (Tc) of compound (1f) was 219.1 ° C.
  • the refractive index anisotropy ( ⁇ n) was 0.105
  • the shear viscosity at 25 ° C. was 29.8 mm 2 ⁇ s ⁇ 1
  • was 7.9.
  • the extrapolated value was determined using Merck's liquid crystal composition ZLI-4792 as the mother liquid crystal.
  • the clearing point (Tc) of the compound (1g) was 171 ° C.
  • the refractive index anisotropy ( ⁇ n) was 0.162, 25 ° C.
  • the shear viscosity was 32.6 mm 2 ⁇ s ⁇ 1 , and ⁇ was 9.3.
  • -Ph ( 3F, 5F) — represents a 3,5-difluoro-1,4-phenylene group
  • —Ph (2F, 3F) — represents a 2,3-difluoro-1,4-phenylene group.
  • -Cy- and -Ph have the same meaning as described above.
  • the positions of the substituents corresponding to the cyclic groups A 1 to A 7 are based on the R 1 side being the 1st position and the R 2 side being the 4th position as described above. Specifically, the left side is the first place and the right side is the fourth place in the formula.
  • “C 3 H 7 —Cy—Cy—CF 2 CF 2 CF 2 O—Ph (3F, 5F) —F” is the compound (1a) of the above Example. The same applies to other substituents and other compounds.
  • Examples of compounds in which Z 1 to Z 5 are not a single bond include the following.
  • the compound (1a) of the present invention has a higher liquid crystal phase upper limit temperature and the widest liquid crystal temperature range as compared with the compound having the same structure of the portion other than the linking group. I found it.
  • a liquid crystal composition was prepared by mixing 90% by mass of a liquid crystal composition “ZLI-4792” manufactured by Merck Co. at a ratio of 10% by mass of the compound (1a) of the present invention.
  • This liquid crystal composition is referred to as composition (A).
  • a composition was prepared by mixing 90% by mass of “ZLI-4792” with each compound at a ratio of 10% by mass.
  • Table 4 shows physical property values of the compounds (1a), (C1), (C2), and (C3) obtained by using the composition.
  • Tc and shear viscosity were measured in the same manner as in the compound (1a) and obtained by extrapolation.
  • the compound (1a) of the present invention has a high Tc and a low viscosity as compared with a compound having the same structure except for the linking group.
  • composition (A) A composition was prepared by mixing 10% by mass of the compound (1a) with Merck liquid crystal composition ZLI-4792. This is designated as composition (A). Similarly, the composition which mixed 10 mass% of compound (1c) and compound (1e) was prepared, respectively. Let these be a composition (B) and a composition (C), respectively. Each of the compositions was sealed in a glass cell and irradiated with a xenon lamp for 9 hours. The degree of cis isomerization and decomposition of the sample was measured by measuring Tc of the composition after irradiation. The results are shown in Table 5.
  • Tc of the composition containing compound (1a), compound (1c) and compound (1e) hardly changed. From this, it was found that the compound (1a), the compound (1c) and the compound (1e) of the present invention have good light stability.
  • the fluorine-containing liquid crystal compound of the present invention has high Tc, a wide liquid crystal temperature range, low viscosity, high light stability, and does not cause precipitation even when added to the composition. It has been found that it has good compatibility with the compound. It was also found that ⁇ n and ⁇ had sufficient values to be used as constituent components of the liquid crystal composition. It has been clarified that the use of such a compound of the present invention for a liquid crystal composition makes it possible to prepare a liquid crystal composition having both high Tc and low viscosity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

 化学的に安定であり、他の液晶材料または非液晶材料との相溶性に優れるとともに、高速応答性、低粘性、広い液晶温度範囲、高い透明点などの特性も併せ持つことが可能な液晶化合物、およびその製造方法、該化合物を含有する液晶組成物および液晶表示素子の提供。R1-(A1)m-Z1-(A2)n-Z2-(A3)p-Z3-A4-CF2CF2CF2O-A5-Z4-(A6)q-Z5-(A7)r-R2(1)で特定される-CF2CF2CF2O-連結基を有する液晶化合物。

Description

液晶化合物およびその製造方法、液晶組成物および液晶電気光学素子
 本発明は、液晶化合物およびその製造方法、該化合物を含有する液晶組成物および液晶電気光学素子に関する。
 液晶電気光学素子は、携帯電話、PDAなどの携帯機器、複写機、パソコンモニタなどのOA機器用表示装置、液晶テレビなどの家電製品用表示装置をはじめ、時計、電卓、測定器、自動車用計器、カメラなど、極めて広範な用途に用いられている。このため液晶電気光学素子には、広い動作温度範囲、低動作電圧、高速応答性、化学的安定性など、種々の性能が要求される。
 このような液晶電気光学素子に求められる全ての性能を単一の化合物によって満たすことは困難であることから、通常、1または2以上特異的に優れた特性を有する液晶化合物および非液晶性化合物をいくつか組み合わせた液晶組成物が液晶電気光学素子に使用される液晶相を示す材料として使用されている。
 上記液晶組成物に使用される化合物の特性の中でも、他の液晶化合物および非液晶化合物との相溶性に優れ、化学的にも安定であり、かつ液晶電気光学素子に用いた場合に広い温度範囲で高速応答性に優れ低電圧駆動を発揮できる性質は重要である。
 このような性質を発揮しうる化合物として、その分子中に特定構造の連結基を含有する化合物、たとえば-CFCF-(特許文献1~2参照)、-CF2O-(特許文献3参照)、-CHCHCFO-(特許文献3参照)などの連結基を含有する化合物が知られている。
特開2000-192041号公報 特開平05-331084号公報 特開平05-112778号公報 特開2003-2858号公報
 上記-CF2O-は、場合によって該基が分解されることがある。また、液晶電気光学素子に対する高い要求に、より一層応答しうる液晶化合物が望まれている。
 このため、本発明は、化学的に安定であり、他の液晶材料または非液晶材料との相溶性に優れるとともに、連結基への結合基の設計により高速応答性、低粘性、広い液晶温度範囲、高い透明点などの特性も併せ持つことが可能な液晶化合物を提供することを目的とする。
 また、本発明は、そのような液晶化合物の製造方法、さらに信頼性の高い液晶電気光学素子を得るのに好適な液晶組成物およびその液晶組成物を用いた液晶電気光学素子を提供することを目的とする。
 本発明は、上記のような液晶化合物として、新規な連結基-CF2CF2CF2O-を含む特定構造の液晶化合物を提供する。
 本発明に係る液晶化合物は、下式(1)で表される。
R1-(A1)m-Z1-(A2)n-Z2-(A3)p-Z3-A4-CF2CF2CF2O-A5-Z4-(A6)q-Z5-(A7)r-R2  (1)
 式(1)中の記号は、以下の意味を示す。
1およびR2:相互に独立して、水素原子、ハロゲン原子、-CN、-NCS、-SF5または炭素数1~18のアルキル基であり、該アルキル基中、1つ以上の水素原子はハロゲン原子で置換されていてもよく、炭素-炭素原子(C-C)間または該基の結合末端にエーテル性酸素原子(-O-)またはチオエーテル性硫黄原子(-S-)が挿入されていてもよく、1つ以上の-CH2CH-は-CH=CH-または-C≡C-で置換されていてもよい。
1、A2、A3、A4、A5、A6およびA7:相互に独立して、トランス-1,4-シクロへキシレン基、1,4-シクロヘキセニレン基、1,3-シクロブチレン基、1,2-シクロプロピレン基、ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基または1,4-フェニレン基であり、これら各基中、1つ以上の水素原子はハロゲン原子で置換されていてもよく、1つまたは2つの=CH-は窒素原子で置換されていてもよく、1つまたは2つの-CH2-は-O-または-S-で置換されていてもよい。
1、Z2、Z3、Z4およびZ5:相互に独立して、単結合または炭素数1~4のアルキレン基であり、該アルキレン基中、1つ以上の水素原子はフッ素原子で置換されていてもよく、1つ以上の-CH-は-O-または-S-で置換されていてもよく、1つ以上の-CH2CH-は-CH=CH-または-C≡C-で置換されていてもよく、1つの-CH2CH-は-COO-または-OCO-で置換されていてもよい。
m、n、p、qおよびr:相互に独立して0または1である。ただし、0≦m+n+p+q+r≦3。
 なお、本発明の化合物において、化合物構造の中で、上記-O-および/または-S-が連鎖することはない。
 前記液晶化合物は、下式(1-1)で表されることが好ましい。
R11-(A11)m-Z11-(A21)n-Z21-(A31)p-Z31-A41-CF2CF2CF2O-A51-Z41-(A61)q-Z51-(A71)r-R21 (1-1)
 式中の記号は、以下の意味を示す。
11およびR21:相互に独立して、フッ素原子、-CN、または炭素数1~18のアルキル基であり、該アルキル基中、1つ以上の水素原子はフッ素原子で置換されていてもよく、C-C間または該基の結合末端に-O-または-S-が挿入されていてもよく、1つ以上の-CH2CH-は-CH=CH-で置換されていてもよい。
11、A21、A31、A41、A51、A61およびA71:相互に独立して、トランス-1,4-シクロへキシレン基、または1,4-フェニレン基であり、これら各基中、1つ以上の水素原子はハロゲン原子で置換されていてもよく、1つまたは2つの=CH-は窒素原子で置換されていてもよく、1つまたは2つの-CH2-は-O-または-S-で置換されていてもよい。
11、Z21、Z31、Z41およびZ51:相互に独立して、単結合、-COO-、-OCO-、-C≡C-または炭素数1~4のアルキレン基であり、該アルキレン基中、1つ以上の水素原子はフッ素原子で置換されていてもよく、1つ以上の-CH2-は-O-で置換されていてもよい。
m、n、p、qおよびrは前記と同じ意味である。
 前記液晶化合物は、下式(1-2)で表されることがより好ましい。
R12-(A12)m-Z12-(A22)n-Z22-(A32)p-Z32-A42-CF2CF2CF2O-A52-Z42-(A62)q-Z52-(A72)r-R22 (1-2)
 式中の記号は、以下の意味を示す。
12:炭素数1~10のアルキル基であり、該基中の1つ以上の水素原子はフッ素原子で置換されていてもよく、C-C間または該基の結合末端に-O-が挿入されていてもよく、1つ以上の-CH2CH-は-CH=CH-で置換されていてもよい。
22:フッ素原子、-CNまたは炭素数1~10のアルキル基であり、該アルキル基中、1つ以上の水素原子はフッ素原子で置換されていてもよく、C-C間または該基の結合末端に-O-が挿入されていてもよく、1つ以上の-CH2CH-は-CH=CH-で置換されていてもよい。
12、A22、A32、A42、A52、A62およびA72:相互に独立して、トランス-1,4-シクロへキシレン基、1,4-フェニレン基または1つもしくは2つの水素原子がフッ素原子で置換された1,4-フェニレン基。
12、Z22、Z32、Z42およびZ52:相互に独立して、単結合、-C24-、-COO-、-OCO-、-C≡C-。
m、n、p、qおよびrは前記と同じ意味である。
 本発明では、上記のような液晶化合物の製造方法の一例として、以下の方法を提供することができる。
 下記式(9)で表される化合物と、下記式(10)で表される化合物とを反応させる工程、および
 上記で得られる下記式(8)で表される化合物をフッ素化する工程を含む、
式(1)で表される化合物の製造方法。
R1-(A1)m-Z1-(A2)n-Z2-(A3)p-Z3-A4-CO-R3     (9)
MCF2CF2O-A5-Z4-(A6)q-Z5-(A7)r-R2  (10)
R1-(A1)m-Z1-(A2)n-Z2-(A3)p-Z3-A4-C(=O)CF2CF2O-A5-Z4-(A6)q-Z5-(A7)r-R2  (8)
R1-(A1)m-Z1-(A2)n-Z2-(A3)p-Z3-A4-CF2CF2CF2O-A5-Z4-(A6)q-Z5-(A7)r-R2  (1)
 各式中の記号は以下の意味を示す。
3:-OR、-N(R)(R)であり、R、Rは、相互に独立して、炭素数1~5のアルキル基。
M:金属原子または金属原子を含む基。
他の記号は、上記式(1)における記号と同じ意味を示す。
 また、液晶化合物が、上記式(1)中のA4が1,4-シクロヘキシレン基である下記式(1’)で表される化合物である場合の製造方法の一例として、以下の方法を提供することができる。
 下記式(9’)で表される化合物と、下記式(10)で表される化合物とを反応させる工程、
 上記で得られる下記式(8’)で表される化合物をフッ素化する工程、
 上記で得られる下記式(7)で表される化合物を水添反応および酸化反応させる工程、および
 上記で得られる下記式(5)で表される化合物と、下記式(4)で表される化合物とを反応させ、次いで脱水反応および水添反応を行う工程を含む、
式(1’)で表される化合物の製造方法。
R4-O-Ph-CO-R3     (9’)
MCF2CF2O-A5-Z4-(A6)q-Z5-(A7)r-R2  (10)
R4-O-Ph-C(=O)CF2CF2O-A5-Z4-(A6)q-Z5-(A7)r-R2  (8’)
R4-O-Ph-CF2CF2CF2O-A5-Z4-(A6)q-Z5-(A7)r-R2  (7)
O=Cy-CF2CF2CF2O-A5-Z4-(A6)q-Z5-(A7)r-R2  (5)
R1-(A1)m-Z1-(A2)n-Z2-(A3)p-Z3-M     (4)
R1-(A1)m-Z1-(A2)n-Z2-(A3)p-Z3-Cy-CF2CF2CF2O-A5-Z4-(A6)q-Z5-(A7)r-R2  (1’)
 各式中の記号は以下の意味を示す。
3:-OR、-N(R)(R)であり、R、Rは相互に独立して、炭素数1~5のアルキル基。
M:金属原子または金属原子を含む基。
-Ph-:1,4-フェニレン基。
-Cy-:トランス-1,4-シクロヘキシレン基。
他の記号は、上記式(1)における記号と同じ意味を示す。
 また、本発明は、前記式(1)で表される液晶化合物を含む液晶組成物を提供する。
 また、本発明は、該液晶組成物を、電極が配設された2枚の基板間に封入してなる液晶電気光学素子を提供する。
 本発明の式(1)で表される液晶化合物は、化学的に安定であり、他の液晶材料または非液晶材料との相溶性に優れる。本発明の液晶化合物は、連結基以外が類似する構造の液晶化合物と同等またはそれより低い粘性を有する。また、本発明の化合物は、該化合物を構成する環基、置換基および連結基を適宜選択することにより、液晶電気光学素子に要求される様々な性能、具体的には、例えば、広い動作温度範囲、高速応答性、化学的安定性等、を満たした液晶組成物を調製できる。該液晶組成物を液晶電気光学素子に用いた場合に広い温度範囲で高速応答性に優れた素子が得られる。
 本発明の製造方法に従えば、-CF2CF2CF2O-連結基を有する化合物を汎用性が高く工業的にも容易に簡便かつ効率的に製造することができる。
 以下に本発明について更に詳しく説明する。
 本明細書において、式(1)で表される液晶化合物を化合物(1)と記し、他の式で表される化合物も同様に記す。
 本明細書において、液晶化合物とは、液晶相を示す化合物および液晶相を示さないが液晶組成物の構成成分として有用である化合物を意味する。
 本明細書において、特に断りのない限り、式(1)におけるR1に近いほうを常に1位とし、R2に近い方を常に4位とする。
 また、本明細書において、「Δεが負に大きい」とは、Δεが負であって、その絶対値が大きいことを意味する。つまり、Δεの値が-1と-2であれば、-2の方が「Δεが負に大きい」となる。
 また、本明細書において、液晶電気光学素子とは、表示素子に限られず、液晶の電気的または光学的特性を利用する各種の機能素子、例えば、液晶表示素子、さらに、調光窓、光シャッター、偏光変換素子、可変焦点レンズ等の用途に用いられる素子を含むものである。
 本発明の液晶化合物に係る式(1)中、前記に規定されるR1およびR2について、アルキル基中の1つ以上の水素原子がハロゲン原子で置換された基としては、フルオロアルキル基、クロロアルキル基等が挙げられる。アルキル基中の水素原子を置換するハロゲン原子としては、フッ素原子が好ましい。
 アルキル基中のC-C間に-O-または-S-が挿入された基としては、アルコキシアルキル基またはアルキルチオアルキル基が挙げられ、基の結合末端に-O-または-S-が挿入された基としては、アルコキシ基またはアルキルチオ基が挙げられる。
 アルキル基中の-CH2CH-が、-CH=CH-または-C≡C-で置換された基としては、アルケニル基またはアルキニル基が挙げられる。
 R1およびR2において、水素原子のフッ素原子への置換、C-C間または該基の結合末端への-O-または-S-の挿入、および-CH2CH-の-CH=CH-または-C≡C-への置換は、同一のアルキル基に対して同時に行われていてもよい。
 フッ素原子の置換と、-O-の挿入が同時に行われた基としては、フルオロアルコキシ基、フルオロアルコキシアルキル基が挙げられる。
 -CH=CH-または-C≡C-の置換と、フッ素原子の置換が同時に行われた基としては、フルオロアルケニル基、フルオロアルキニル基が挙げられる。
 -CH=CH-または-C≡C-の置換と、C-C間への-O-または-S-の挿入が同時に行われた基としては、アルケニルオキシアルキル基、アルキニルオキシアルキル基、アルケニルチオアルキル基、アルキニルチオアルキル基が挙げられる。
 -CH=CH-または-C≡C-の置換と、基の結合末端に-O-または-S-が挿入された基としては、アルケニルオキシ基、アルキニルオキシ基、アルケニルチオ基、またはアルキニルチオ基が挙げられる。
 さらに、フッ素原子の置換と、-CH=CH-または-C≡C-の置換と、-O-または-S-の挿入が同時に行われた基としては、フルオロアルケニルオキシ基、フルオロアルキニルオキシ基、フルオロアルケニルチオ基が挙げられる。
 これらの基は、直鎖状と分岐状のどちらでもかまわないが直鎖状が好ましい。
 R1およびR2は、上記のうちでも、反応性や副反応が生じにくいことから、フッ素原子、-CNおよび炭素数1~18の以下に挙げる基が好ましい。
アルキル基、アルコキシ基、アルコキシアルキル基、アルキルチオ基、アルキルチオアルキル基、アルケニル基、アルケニルオキシ基、アルケニルオキシアルキル基、アルケニルチオ基、フルオロアルキル基、フルオロアルコキシ基、フルオロアルコキシアルキル基、フルオロアルケニル基またはフルオロアルケニルチオ基。
 中でも、R1としては、炭素数1~10の、アルキル基、アルコキシ基、アルコキシアルキル基、アルケニル基、アルケニルオキシ基、アルケニルオキシアルキル基が特に好ましい。
 また、R2としては、フッ素原子、-CNおよび炭素数1~10の、アルキル基、アルコキシ基、アルコキシアルキル基、アルケニル基、アルケニルオキシ基、アルケニルオキシアルキル基、フルオロアルキル基、フルオロアルコキシ基、フルオロアルコキシアルキル基が特に好ましい。
 また、前記に規定される式(1)中のA1、A2、A3、A4、A5、A6およびA7においても、水素原子のハロゲン原子への置換、=CH-の窒素原子への置換、および、-CH2-の-O-または-S-への置換は、同一の基に対して同時に行われていてもよい。ハロゲン原子としては、塩素原子またはフッ素原子が好ましい。
 A1、A2、A3、A4、A5、A6およびA7が1,4-フェニレン基であり、さらに置換基としてハロゲン原子を有する場合、1つの1,4-フェニレン基に置換するハロゲン原子の数は1つから4つであるが、中でも1つまたは2つが好ましい。トランス-1,4-シクロヘキシレン基であり、さらに置換基としてハロゲン原子を有する場合、ハロゲン原子の数は1つから4つであることが好ましい。また、ハロゲン原子はトランス-1,4-シクロヘキシレン基の1位または4位の炭素原子に結合していてもよい。
 1,4-フェニレン基中の1つまたは2つの=CH-が窒素原子で置換された基としては、2,5-ピリミジニレン基または2,5-ピリジニレン基が挙げられる。
 トランス-1,4-シクロへキシレン基中の1つまたは2つの-CH2-が-O-または-S-で置換された基としては、1,3-ジオキサン-2,5-ジイル基、1,3-ジチアン-2,5-ジイル基が挙げられる。
 以下、ハロゲン原子および窒素原子の少なくとも1つで置換された1,4-フェニレン基を「置換1,4-フェニレン基」と記し、ハロゲン原子、-O-および-S-の少なくとも1つで置換された1,4-シクロヘキシレン基を「置換トランス-1、4-シクロヘキシレン基」と記す。
 上記のうちでも、A1、A2、A3、A4、A5、A6およびA7としては、反応性や原料入手の関係から、トランス-1,4-シクロへキシレン基、1,4-フェニレン基、置換トランス-1,4-シクロへキシレン基、または置換1,4-フェニレン基が好ましい。
 中でも、トランス-1,4-シクロへキシレン基、1,4-フェニレン基、または基中の水素原子の1つまたは2つがフッ素原子で置換された1,4-フェニレン基が特に好ましい。
 また、化合物(1)の粘性を下げるとともに、透明点を高くする観点からは、A4がトランス-1,4-シクロへキシレン基であることが特に好ましい。
 また、化合物(1)のΔεを大きくする観点からは、A4が1,4-フェニレン基、または基中の水素原子の1つまたは2つがフッ素原子で置換された1,4-フェニレン基であることが特に好ましい。
 なお、A1、A2、A3、A4、A5、A6およびA7のいずれにおいても、式(1)におけるR1に近い方を1位とし、R2に近いほうを4位とする。
 化合物(1)において、Z1、Z2、Z3、Z4およびZ5は、前記と同じ意味を示す。
 なお、水素原子のフッ素原子への置換、および-CH2-の-O-または-S-への置換、-CH2CH2-の-CH=CH-、-C≡C-、-COO-、-OCO-への置換は同一の基に対して同時に行われていてもよい。
 基中の1つ以上の水素原子がフッ素原子で置換されたアルキレン基としては、-CF2CF2-、-CF2CH2-、-CH2CF2-、-CHFCH2-、-CH2CHF-、-CF2CHF-、-CHFCF2-等が挙げられる。
 基中の1つ以上の-CH2-が-O-または-S-で置換されたアルキレン基としては、-CH2O-、-OCH2-、-CH2S-、-SCH2-等が挙げられる。
 また、基中の水素原子のフッ素原子への置換と、基中の-CH2-の-O-への置換と、が同時に行われた基としては、-CF2O-、-OCF2-等が挙げられる。
 基中の1つ以上の-CH2CH2-が、-CH=CH-または-C≡C-で置換されたアルキレン基としては、アルケニレン基またはアルキニレン基が挙げられる。アルケニレン基またはアルキニレン基としては、-CH=CH-、-CH=CH-CH2-、-CH=CH-CH2-CH2-、-CH=CH-CH=CH-、-CH2-CH=CH-CH2-、-C≡C-、-C≡C-CH2-、-C≡C-CH2-CH2-、-C≡C-C≡C-、-CH2-C≡C-CH2-等が挙げられる。また、-CH=CH-C≡C-のように、二重結合と三重結合が混在しても構わない。また、これらの基は逆向きでも構わない。
 -CH=CH-または-C≡C-の置換と、フッ素原子の置換が同時に行われた基としては、-CF=CF-、-CF=CF-C≡C-等が挙げられる。
 基中に1つの-CH2CH2-が、-COO-または-OCO-で置換された基としては、-COO-、-OCO-、-CH2CH2-COO-、-CH2CH2-OCO-等が挙げられる。
 また、前記に規定される式(1)中のZ1、Z2、Z3、Z4またはZ5が単結合である場合には、それぞれの基の両側に存在する基は直接結合することを意味する。例えば、Z1が単結合でありmおよびnが1の場合はA1とA2とは直接結合する。また、Z1、Z2およびZ3が単結合でありm、nおよびpが0である場合は、R1とA4とは直接結合する。Z2、Z3、Z4およびZ5においても同様である。
 Z1、Z2、Z3、Z4およびZ5としては、合成の容易さ等から、単結合、-COO-、-OCO-、-C≡C-または炭素数1~4のアルキレン基が好ましい。該基中の1つ以上の水素原子がフッ素原子で置換されていてもよく、該基中の1つ以上の-CH2-が-O-で置換されていてもよい。
 中でも、単結合、-C24-、-COO-、-OCO-または-C≡C-が特に好ましい。
 本発明の化合物(1)において、m、n、p、qおよびrは前記と同じ意味を示す。
 なお、m、n、p、qおよびrは化合物に要求特性に応じて適宜選択することができる。
 たとえば化合物(1)が低粘性であること、あるいは該化合物が他の液晶材料または非液晶材料との相溶性に優れている点を重視する場合、0≦m+n+p+q+r≦1であることが好ましい。一方、化合物の高い液晶温度範囲を重視する場合、1≦m+n+p+q+r≦3であることが好ましい。
 化合物(1)のΔεを正に大きくする観点からは、-CF2CF2CF2O-のO側である、「-A5-Z4-(A6q-Z5-(A7r-R2」が、電子求引性の基であることが好ましいと考えられる。この「-A5-Z4-(A6q-Z5-(A7r-R2」の電子求引性とは、化合物(1)において、q=r=0かつ「-A5-R2」のR2が水素原子であるものに比して電子求引性であることを意味する。
 「-A5-Z4-(A6q-Z5-(A7r-R2」が電子求引性の基となる場合としては、各基が以下のものであることが挙げられる。
 R2:フッ素原子、-OCF3、-OCF2H、-CN、-NCS、または-SF5
 A5、A6、A7:相互に独立して、1,4-フェニレン基、3-フルオロ-1,4-フェニレン基、または3,5-ジフルオロ-1,4-フェニレン基。
 Z4、Z5:単結合
 q、r:相互に独立して0または1
 このような、Δεが正に大きい化合物を用いることにより、低電圧駆動できる液晶電気光学素子が得られる。
 化合物(1)のΔεを負に大きくする観点からは、A1、A2、A3、A4、A5、A6およびA7の1つ以上が2,3-ジフルオロ-1,4-フェニレン基であることが好ましい。また、2,3-ジフルオロ-1,4-フェニレン基に直接結合するR1およびR2がアルコキシ基であることが好ましい。
 従来より知られた-CF2O-連結基含有化合物において、-CF2O-の炭素原子側に1,4-フェニレン基が置換した場合、該基がフッ素原子で置換されていないと、-CF2O-連結基が不安定で加水分解により-COO-に変換してしまうことがある。
 これに対して、本発明の-CF2CF2CF2O-連結基を有する化合物においては、該連結基に、フッ素原子が置換されていない1,4-フェニレン基が置換されていても、連結基の分解がほとんど生じず、化合物の安定性が著しく向上するという特長を有する。
 また、-CF=CF-などの不飽和結合を有する連結基と比較して、シス-トランス異性化を生じる部位が存在しないため、光などに対しても安定性が高いという特長を有する。
 このことから、本発明の-CF2CF2CF2O-連結基を有する化合物は、連結基の両端の環基の構造をフッ素置換1,4-フェニレン基などに限定しなくても、化合物を安定して得ることができるという特長を有していることが分る。
 上記のような本発明の化合物(1)のうちでも、化合物(1-1)が好ましい。
R11-(A11)m-Z11-(A21)n-Z21-(A31)p-Z31-A41-CF2CF2CF2O-A51-Z41-(A61)q-Z51-(A71)r-R21 (1-1)
 式中の記号は前記に記載のとおりである。
 本発明の化合物(1)としては、化合物(1-2)がより好ましい。
R12-(A12)m-Z12-(A22)n-Z22-(A32)p-Z32-A42-CF2CF2CF2O-A52-Z42-(A62)q-Z52-(A72)r-R22 (1-2)
 式中の記号は前記に記載のとおりである。
 化合物(1)の好ましいものとして、以下の化合物が挙げられる。以下の式中、R12およびR22は前記と同じ意味を示し、他の記号は以下の意味を示す。
-Cy-:トランス-1,4-シクロヘキシレン基。
-Phe-:1つまたは2つのフッ素原子で置換されていてもよい1,4-フェニレン基。
 2環の化合物(m+n+p+q+r=0であるもの):
Figure JPOXMLDOC01-appb-C000001
 3環の化合物(m+n+p+q+r=1であるもの):
Figure JPOXMLDOC01-appb-C000002
 4環の化合物(m+n+p+q+r=2であるもの):
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 5環の化合物(m+n+p+q+r=3であるもの):
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 上記のような本発明の化合物(1)の好ましい製造方法として、
 下記化合物(9)と、下記化合物(10)とを反応させる工程、および
 上記で得られる下記化合物(8)をフッ素化する工程を含む、
製造方法が挙げられる。以下、この製法を「製法1」と記す。
R1-(A1)m-Z1-(A2)n-Z2-(A3)p-Z3-A4-CO-R3    (9)
MCF2CF2O-A5-Z4-(A6)q-Z5-(A7)r-R2    (10)
R1-(A1)m-Z1-(A2)n-Z2-(A3)p-Z3-A4-C(=O)CF2CF2O-A5-Z4-(A6)q-Z5-(A7)r-R2  (8)
R1-(A1)m-Z1-(A2)n-Z2-(A3)p-Z3-A4-CF2CF2CF2O-A5-Z4-(A6)q-Z5-(A7)r-R2  (1)
 各式中の記号は以下の意味を示す。
3:-OR、-N(R)(R)であり、R、Rは、相互に独立して、炭素数1~5のアルキル基。
M:金属原子または金属原子を含む基。
他の記号は、上記式(1)における記号と同じ意味を示す。
 上記製法1で化合物(1)を得る一連の反応は、以下のように表すことができる。
Figure JPOXMLDOC01-appb-C000009
 上記化合物(9)は、新実験化学講座(丸善)等、有機合成の成書に記載されている方法にを参考にして合成できる。
 化合物(9)のR3としては、合成が容易であることから、-ORであることが好ましい。中でもRが炭素数1~3のアルキル基であることが好ましい。
 化合物(10)は、例えば、以下の方法で合成することができる。
Figure JPOXMLDOC01-appb-C000010

 式中の記号は前記と同じ意味を示す。
 化合物(11)において、Xとしては、反応性が良好であることから塩素原子、臭素原子またはヨウ素原子が好ましく、ヨウ素原子が特に好ましい。
 化合物(11)のメタル化反応としては、リチオ化や、金属マグネシウムとの反応によりグリニャール試薬とする方法が挙げられる。リチオ化としては、金属リチウムを使用する方法や、リチウム化剤としてn-ブチルリチウムなどのアルキルリチウムを用いたハロゲン-メタル交換反応が挙げられる。
 化合物(11)のメタル化により得られた化合物(10)のMとしては、MgI、MgBr、MgClおよびLiが好ましく、中でもLiが好ましい。
 上記製法1において、化合物(11)のメタル化により得られた化合物(10)は、単離した後で化合物(9)と反応させてもよく、メタル化反応の後で、単離することなく連続的に化合物(9)と反応させてもよい。
 化合物(8)の製造において、化合物(10)を単離する場合は、化合物(10)の使用量は化合物(9)1モルに対し、0.9~2.0モルが好ましく、1~1.5モルがより好ましい。
 化合物(10)を単離せず、化合物(11)のメタル化反応から連続的に反応を行う場合は、化合物(11)の使用量は化合物(9)1モルに対し、0.9~2.0モルが好ましく、1~1.5モルがより好ましい。
 化合物(8)の製造は溶媒中で実施するのが好ましい。溶媒としてはベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素系溶媒、ペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素系溶媒;テトラヒドロフラン、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、t-ブチルメチルエーテル、ジメトキシエタン等のエーテル系溶媒;石油エーテル類または前記溶媒の適当な混合溶媒等を用いることができる。これらの中でも、ジエチルエーテル、t-ブチルメチルエーテル等のエーテル系溶媒、エーテル系溶媒と脂肪族炭化水素系溶媒の混合溶媒が好ましい。
 反応温度は-100~50℃が好ましく、-95~-80℃がより好ましい。
 反応時間は0.1~24時間が好ましく、0.1~5時間がより好ましい。
 化合物(1)の製造において、化合物(8)のフッ素化は溶媒中で実施するのが好ましい。使用することができる溶媒としては、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素系溶媒、ペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素系溶媒;酢酸エチル、酢酸メチル、酢酸プロピル等のエステル系溶媒;メタノール、エタノール等のアルコール系溶媒;アセトン、メチルエチルケトン等のケトン系溶媒;テトラヒドロフラン、ジエチルエーテル、ジブチルエーテル、t-ブチルメチルエーテル、ジメトキシエタン等のエーテル系溶媒;ジクロロメタン、1,2-ジクロロエタン等の塩素系溶媒;石油エーテル類または前記溶媒の適当な混合溶媒等を用いることができる。これらの中でも、ジクロロメタン等の塩素系溶媒、エタノール等のアルコール系溶媒、これらの溶媒の混合溶媒が好ましい。
 フッ素化反応としては、四フッ化硫黄、三フッ化N,N-ジエチルアミノ硫黄、三フッ化モルホリノ硫黄、三フッ化ビス-(2-ジメトキシエチル)アミノ硫黄、または二フッ化キセノンを用いたカルボニル化合物の直接フッ素化反応や、オルト-チオエステル、ジチアン、チオカルボニルを経由した酸化的脱硫フッ素化反応が挙げられ、これらの中でも三フッ化N,N-ジエチルアミノ硫黄を用いる反応がより好まれる。
前記フッ素化試薬の使用量は、化合物(8)1モルに対し、0.5倍~20倍量するのが好ましく、1~5倍量使用するのがより好ましい。
 反応温度は0~150℃が好ましく、20~80℃がより好ましい。
 反応時間は1~72時間が好ましく、3~24時間がより好ましい。
 また、化合物(1)の中でも、A4がトランス1,4-シクロヘキシレン基である場合(化合物(1’))の製造方法は、下記の方法が好ましく挙げられる。以下、この製法を「製法2」と記す。
 下記式(9’)で表される化合物と、下記式(10)で表される化合物とを反応させる工程、
 上記で得られる下記式(8’)で表される化合物をフッ素化する工程、
 上記で得られる下記式(7)で表される化合物を水添反応および酸化反応させる工程、および
 上記で得られる下記式(5)で表される化合物と、下記式(4)で表される化合物とを反応させ、次いで脱水反応および水添反応を行う工程を含む、
式(1’)で表される化合物の製造方法。
R4-O-Ph-CO-R3     (9’)
MCF2CF2O-A5-Z4-(A6)q-Z5-(A7)r-R2   (10)
R4-O-Ph-C(=O)CF2CF2O-A5-Z4-(A6)q-Z5-(A7)r-R2  (8’)
R4-O-Ph-CF2CF2CF2O-A5-Z4-(A6)q-Z5-(A7)r-R2  (7)
O=Cy-CF2CF2CF2O-A5-Z4-(A6)q-Z5-(A7)r-R2  (5)
R1-(A1)m-Z1-(A2)n-Z2-(A3)p-Z3-M    (4)
R1-(A1)m-Z1-(A2)n-Z2-(A3)p-Z3-Cy-CF2CF2CF2O-A5-Z4-(A6)q-Z5-(A7)r-R2  (1’)
 各式中の記号は以下の意味を示す。
3:-OR、-N(R)(R)であり、R、Rは相互に独立して、炭素数1~5のアルキル基。
M:金属原子または金属原子を含む基。
-Ph-:1,4-フェニレン基。
-Cy-:トランス-1,4-シクロヘキシレン基。
他の記号は、上記式(1)における記号と同じ意味を示す。
 製法2で化合物(1’)を得る一連の反応は、以下のように表すことができる。
Figure JPOXMLDOC01-appb-C000011

 式中の-Ch-は1,4-シクロヘキセニレン基であり、他の記号の定義および好ましい態様は、化合物(1)および(1’)について前述したとおりである。
 上記製法2において、化合物(9’)は製法1の化合物(9)と同様の方法で得ることができる。
 化合物(9’)において、R4としては、OH基の保護基として有機合成で通常用いられるもので構わない。ベンジル基、アシル基等が挙げられ、合成が容易であることからベンジル基であることが好ましい。
 また、化合物(11)から化合物(8’)を得る工程は、前記製法1で化合物(8)を得るまでと同様である。
 化合物(8’)のフッ素化は、前記製法1で化合物(1)を得る工程と同様である。
 化合物(8’)をフッ素化して得た化合物(7)を水添反応し、化合物(6)を製造するのは、溶媒中で実施するのが好ましい。化合物(6)の製造の際に使用することができる溶媒としてはベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素系溶媒、ペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素系溶媒;酢酸エチル、酢酸メチル、酢酸プロピル等のエステル系溶媒;メタノール、エタノール等のアルコール系溶媒;アセトン、メチルエチルケトン等のケトン系溶媒;テトラヒドロフラン、ジエチルエーテル、ジブチルエーテル、t-ブチルメチルエーテル、ジメトキシエタン等のエーテル系溶媒;石油エーテル類または前記溶媒の適当な混合溶媒等を用いることができる。これらの中でも、エタノール等のアルコール系溶媒、酢酸エチル等のエステル系溶媒、これらの溶媒の混合溶媒が好ましい。
 また、化合物(6)の製造は不均一系触媒存在下で実施するのが好ましい。この化合物(6)の製造の際に使用できる触媒としてはパラジウムカーボン、ロジウムカーボン、ルテニウムカーボン、ラネーニッケル、酸化白金などの遷移金属類が挙げられる。
 前記触媒の使用量は、化合物(7)の質量に対し、0.01~1.0倍量使用するのが好ましく、0.1~0.5倍使用するのがより好ましい。
 反応温度は-50~100℃が好ましく、0~40℃がより好ましい。
 反応時間は0.1~24時間が好ましく、0.1~3時間がより好ましい。
 化合物(6)を酸化して、化合物(5)を製造するための酸化反応としては、有機超原子価ヨウ素試薬を用いるDess-Martin酸化反応、クロロクロム酸ピリジニウムや二クロム酸ピリジニウムを用いるJones酸化反応、テトライソプロポキシアルミニウムとアセトンを用いるOppenauer酸化反応、ジメチルスルホキシドと塩化オキサリルを用いるSwern酸化反応または、酢酸、次亜塩素酸ナトリウム水溶液を用いる酸化反応が挙げられ、これらの中でも酢酸、次亜塩素酸ナトリウム水溶液を用いる酸化反応が特に望まれる。
 酢酸の使用量としては、化合物(6)の質量に対して1~30倍量使用するのが好ましく、3~5倍量使用するのがより好ましい。また、次亜塩素酸ナトリウム水溶液は化合物(6)1モルに対して0.1~5倍モル使用するのが好ましく、0.1~1倍モル使用するのがより好ましい。
 反応温度は0~100℃が好ましく、20~60℃がより好ましい。
 反応時間は1~72時間が好ましく、3~48時間がより好ましい。
 化合物(4)と化合物(5)の反応は、溶媒中で実施するのが好ましい。溶媒としてはベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素系溶媒、ペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素系溶媒;テトラヒドロフラン、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、t-ブチルメチルエーテル、ジメトキシエタン等のエーテル系溶媒;石油エーテル類または前記溶媒の適当な混合溶媒等を用いることができる。これらの中でも、ジエチルエーテル、t-ブチルメチルエーテル等のエーテル系溶媒、エーテル系溶媒と脂肪族炭化水素系溶媒の混合溶媒が好ましい。
 化合物(4)の使用量は化合物(5)1モルに対し、0.9~20.0モルが好ましく、1~10モルがより好ましい。
 反応温度は-70~50℃が好ましく、-10~30℃がより好ましい。
 反応時間は0.1~24時間が好ましく、0.1~5時間がより好ましい。
 化合物(4)は、新実験化学講座(丸善株式会社出版)等、有機合成の成書に記載されている方法にて容易に得られる。
 Mは金属原子または金属原子を含む基である。特に制限はないが、中でもMgI、MgBr、MgClおよびLiが好ましい。
 なお、化合物(4)は、単離した後で化合物(5)と反応させてもよく、メタル化反応の後で、単離することなく連続的に化合物(5)と反応させてもよい。
 化合物(4)と化合物(5)との反応により得た化合物(3)を、脱水することにより化合物(2)が得られる。該脱水反応は酸性条件下で行うことが好ましい。
 脱水反応は溶媒中で実施するのが好ましく、該溶媒としては前記反応で例示したものが挙げられるが、中でもトルエン等の芳香族炭化水素系溶媒、テトラヒドロフラン等のエーテル系溶媒、これらの溶媒の混合溶媒が好ましい。
 脱水反応で使用できる酸としては、例えば、塩酸、硫酸等の強酸類;トリフルオロ酢酸、酢酸、蟻酸等のカルボン酸類;パラトルエンスルホン酸等の有機酸類が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
 酸の使用量としては、化合物(2)に対し、0.01~10当量が好ましく、0.1~1当量がより好ましい。
 反応温度は0℃~還流下が好ましく、30℃~還流下がより好ましい。
 反応時間は0.1~24時間が好ましく、0.1~3時間がより好ましい。
 前記化合物(2)を水素添加することにより、化合物(1’)を得ることができる。
 水添反応は、溶媒中で実施するのが好ましく、該溶媒としては前記反応で例示したものが挙げられるが、中でも、エタノール等のアルコール系溶媒、酢酸エチル等のエステル系溶媒、これらの溶媒の混合溶媒が好ましい。
 また、化合物(1’)の合成は不均一系触媒存在下で実施するのが好ましい。この化合物(1’)の製造の際に使用できる触媒としてはパラジウムカーボン、ロジウムカーボン、ルテニウムカーボン、ラネーニッケル、酸化白金などの遷移金属類が挙げられる。
 前記触媒の使用量は、化合物(2)の質量に対し、0.01~1.0倍量使用するのが好ましく、0.1~0.5倍使用するのがより好ましい。
 反応温度は0~100℃が好ましく、30~80℃がより好ましい。
 反応時間は0.1~24時間が好ましく、0.1~3時間がより好ましい。
 本発明は、本発明の化合物(1)を含む液晶組成物を提供する。この液晶組成物は、本発明の化合物(1)と、他の液晶化合物または非液晶化合物(これらを総称して「他の化合物」という)とを混合して構成される。
 本発明の液晶組成物における化合物(1)の含有量は、用途、使用目的、他の化合物の種類等により適宜変更することができるが、液晶組成物全量に対して化合物(1)は0.5~50質量%が好ましく、特に2~20質量%が好ましい。また、用途、使用目的等により、液晶組成物中に化合物(1)を2種類以上含有してもよい。その場合、液晶組成物の全量に対して化合物(1)の合計量で0.5~80質量%が好ましく、特に2~50質量%が好ましい。
 化合物(1)と混合して用いる他の化合物としては、屈折率異方性値を調整する成分、粘性を下げる成分、低温で液晶性を示す成分、誘電率異方性を向上させる成分、コレステリック性を付与する成分、二色性を示す成分、導電性を付与する成分、その他各種添加剤等が挙げられる。これらは、用途、要求性能等により、適宜選択されるが、通常は、液晶化合物および該液晶化合物と類似構造を有する主成分と、必要に応じて添加される添加成分とからなるものが好ましい。
 本発明の液晶組成物において、前記他の化合物としては、例えば、以下の式で表されるものが挙げられる。以下の式中、R5およびR6は、アルキル基、アルケニル基、アルキニル基、アルコキシ基、ハロゲン原子またはシアノ基等の基を表す。また、R3およびR4は、それぞれ同一であっても異なっていてもよい。また、以下の式中、-Cy-はトランス-1,4-シクロへキシレン基を表し、-Ph-は1,4-フェニレン基を表し、-PhFF-はジフロオロフェニレン基を表す。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 なお、これらの化合物は単なる代表例であり、該化合物中の環構造または末端基に存在する水素原子が、ハロゲン原子、シアノ基、メチル基等で置換されたものでもよい。また、シクロヘキサン環やベンゼン環が他の六員環や五員環、例えば、ピリミジン環やジオキサン環等で置換されたものでもよく、環と環との間の結合基がそれぞれ独立して他の2価の結合基、例えば-CH2O-、-CH=CH-、-N=N-、-CH=N-、-COOCH2-、-OCOCH2-または-COCH2-等に変更されているものでもよく、所望の性能に合わせて選択することができる。
 本発明の液晶組成物としては、以下のものを示すことができる。式中の記号は前記と同じ意味を示す。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 さらに、本発明は、前記液晶組成物を液晶層の構成材として用いる液晶電気光学素子を提供する。例えば、本発明の液晶組成物を液晶セル内に注入する等して形成される液晶層を、電極を備える2枚の基板間に挟持して構成される電気光学素子部を有する液晶電気光学素子を提供する。この液晶電気光学素子は、TN方式、STN方式、ECBモード、VAモード、ゲストホスト方式、動的散乱方式、フェーズチェンジ方式、DAP方式、二周波駆動方式、強誘電性液晶表示方式等種々のモードで駆動されるものが挙げられる。駆動モードとしては、パッシブ駆動、アクティブ駆動で使用できる。
 代表的な液晶電気光学素子としては、ツイストネマチック(TN)型液晶表示素子が挙げられる。このツイストネマチック(TN)型液晶表示素子は、まず、プラスチック、ガラス等の基板上に、必要に応じてSiO2、Al23等のアンダーコート層やカラーフィルター層を形成し、In23-SnO2(ITO)、SnO2等からなる被膜を成膜し、ホトリソグラフィ等により所要のパターンの電極を形成する。次に、必要に応じて、ポリイミド、ポリアミド、SiO2、Al23等のオーバーコート層を形成し、配向処理する。これにシール材を印刷し、電極面が相対向するように配して周辺をシールし、シール材を硬化して空セルを形成する。
 さらに、空セルに、本発明の組成物を注入し、注入口を封止剤で封止して液晶セルを構成する。この液晶セルに、必要に応じて、偏光板、カラー偏光板、光源、カラーフィルター、半透過反射板、反射板、導光板、紫外線カットフィルター等を積層、文字、図形等を印刷、ノングレア加工等をして液晶電気光学素子を得ることができる。
 なお、上述の説明は、液晶電気光学素子の基本的な構成および製法を説明したものであり、他の構成も採用できる。例えば、2層電極を用いた基板、2層の液晶層を形成した2層液晶セル、反射電極を用いた基板、TFT、MIM等の能動素子を形成したアクティブマトリクス基板を用いたアクティブマトリクス素子等、種々の構成のものが採用できる。特に本発明の組成物は、TFT、MIM等のアクティブマトリクス素子にも好適である。
 さらに、本発明の組成物は、前記TN型以外のモード、即ち、高ツイスト角のスーパーツイストネマチック(STN)型液晶電気光学素子や、多色性色素を用いたゲスト-ホスト(GH)型液晶電気光学素子、横方向の電界で液晶分子を基板に対して平行に駆動させるインプレーンスイッチング(IPS)型液晶電気光学素子、液晶分子を基板に対して垂直配向させるVA型液晶電気光学素子、強誘電性液晶電気光学素子等、種々の方式で使用することができる。また、電気的に書き込みをする方式ではなく、熱により書き込みをする方式に用いることもできる。
 以下に、実施例を挙げて本発明を更に具体的に説明する。なお以下の例は、本発明を制限することなく、本発明を例示しようとするものである。
 化合物(13a)の合成
Figure JPOXMLDOC01-appb-C000019

 化合物(14a)100gのジメチルアセトアミド1200ml溶液に炭酸カリウム113gを加え、50℃にて3時間攪拌した。窒素ガスで60%に希釈したテトラフルオロエチレンを793mL/minで60分間吹き込んだ後、1時間攪拌した後水300mlを加え反応を停止させた。ヘキサンにて抽出し、有機相を洗浄して、溶媒を減圧留去させて透明な液体として化合物(13a)を83g得た。
 得られた化合物(13a)の19F-NMRおよび、GC-MSデータを示す。
19F-NMR(CDCl3,CFCl3):δ -88.9(m、2F、OCF 2 )、-132.8(m、2F、CF 2 H)、-137.9(m、2F、3,5-F-Ph)、-163.4(m、1F、4-F-Ph)
GC-MS M+ 248、229、210、197、182、148、131、119、101、81、69、51
 化合物(12a)の合成
Figure JPOXMLDOC01-appb-C000020

 前記と同様にして得た化合物(13a)527gのtert-ブチルメチルエーテル5300ml溶液を-78℃に冷却してn-ブチルリチウム(1.65M)2400mlを滴下して-78℃にて4時間攪拌後、10%塩酸2700mlにて反応を停止した。有機相を水洗して、溶媒を留去させ黄色の液体として化合物(12a)を313g得た。
 得られた化合物(12a)の19F-NMRおよび、GC-MSデータを示す。
19F-NMR(CDCl3,CFCl3):δ
GC-MS M+ 228、200、181、159、150、131、112、99、81、69、50
 化合物(11a)の合成
Figure JPOXMLDOC01-appb-C000021

 N-ヨードスクシンイミド981gを塩化メチレン6200mlに分散させ、フッ化水素-ピリジン420mllを滴下した。前記と同様にして得た化合物(12a)570gの塩化メチレン1500mlを滴下して室温にて3時間攪拌した後、10%水酸化ナトリウム水溶液で反応を停止した。ヘキサンにて抽出し、有機相を水洗して、溶媒を減圧留去した。カラムクロマトグラフィーにて精製して紫色の液体として化合物(11a)を573g得た。
 得られた化合物(11a)の19F-NMRおよび、GC-MSデータを示す。
19F-NMR(CDCl3,CFCl3):δ -64.2(m、2F、CF 2 I)、-87.3(m、2F、OCF 2 )、-131.7(m、2F、3,5-F-Ph)、-161.7(m、1F、4-F-Ph)
GC-MS M+ 374、247、227、197、182、177、162、147、131、119、100、93、81、69
 化合物(9’a)の合成
Figure JPOXMLDOC01-appb-C000022

 4-ヒドロキシ安息香酸プロピル(15a)350gのN,N-ジメチルホルムアミド1750ml溶液に炭酸カリウム296gと臭化ベンジル365gを加え、室温にて終夜攪拌した後に水1700mlを加え反応を停止した。トルエンにて抽出し、有機相を水洗して、溶媒を減圧留去した。カラムクロマトグラフィーにて精製して白色の固体として化合物(9’a)を512g得た。
 得られた化合物(9’a)のGC-MSデータを示す。
GC-MS M+ 270、255、241、228、207、181、153、128、91、65、40
 化合物(8’a)の合成
Figure JPOXMLDOC01-appb-C000023

 化合物(9’a)248gと化合物(11a)582gのジエチルエーテル7400mL溶液を-95℃に冷却してn-ブチルリチウム(1.65M)1500mLを滴下して4時間攪拌後、10%塩酸1200mLにて反応を停止した。tert-ブチルメチルエーテルにて抽出し、有機相を水洗して、溶媒を減圧留去した。カラムクロマトグラフィーにて精製して白色の固体として化合物(8’a)を291g得た。
 得られた化合物(8’a)の19F-NMRおよびGC-MSデータを示す。
19F-NMR(CDCl3,CFCl3):δ -84.9(m、2F、OCF 2 )、-115.3(m、2F、COCF 2 )、-132.1(m、2F、3,5-F-Ph)、-162.3(m、1F、4-F-Ph)
GC-MS M+ 458、429、401、367、229、299、269、243、211、131、104、91、65
 化合物(7a)の合成
Figure JPOXMLDOC01-appb-C000024

 化合物(8’a)626gの1,2-ジクロロエタン3500ml溶液に三フッ化N,N-ジエチルアミノ硫黄513gを滴下し、50℃にて加熱して20時間攪拌後、25%炭酸カリウム水溶液にて反応を停止した。n-ヘキサンにて抽出し、有機相を水洗して、溶媒を減圧留去した。再結晶にて精製して褐色の固体として化合物(7a)を554g得た。
 得られた化合物(7a)の19F-NMRおよびGC-MSデータを示す。
19F-NMR(CDCl3,CFCl3):δ -83.2(m、2F、CF2CF2 CF 2 O)、-110.3(m、2F、CF 2 CF2CF2O)、-126.1(m、2F、CF2 CF 2 CF2O)、-132.0(m、2F、3,5-F-Ph)、-162.3(m、1F、4-F-Ph)
GC-MS M+ 480、461、429、390、349、303、283、253、233、181、131、91、65
 化合物(6a)の合成
Figure JPOXMLDOC01-appb-C000025

 化合物(7a)268gを5%パラジウムカーボン57g存在下に酢酸エチル1400mlを加え、水素添加する。水素添加後、溶媒を減圧留去して緑色の液体として得られた化合物77gを5%ロジウムカーボン16g存在下に酢酸エチル3500mlを加え、水素添加する。水素添加後、溶媒を減圧留去して無色透明の液体として化合物(6a)62gを得た。
 得られた化合物(6a)の19F-NMRおよびGC-MSデータを示す。
19F-NMR(CDCl3,CFCl3):δ -83.9(m、2F、CF2CF2 CF 2 O)、-118.5(m、2F、CF 2 CF2CF2O)、-124.5(m、2F、CF2 CF 2 CF2O)、-132.0(m、2F、3,5-F-Ph)、-162.3(m、1F、4-F-Ph)
GC-MS M+ 396、376、358、339、320、280、259、229、197、179、148、131、119、91、81、57
 化合物(5a)の合成
Figure JPOXMLDOC01-appb-C000026

 化合物(6a)112gの塩化メチレン475ml、酢酸560ml溶液に5%次亜塩素酸ナトリウム水溶液210gを加え、40℃にて26時間攪拌した。クロロホルムで抽出し有機相を水洗して、溶媒を減圧留去した。カラムクロマトグラフィーにて精製し無色透明の液体として化合物(5a)85gを得た。
 得られた化合物(5a)の19F-NMRおよびGC-MSデータを示す。
19F-NMR(CDCl3,CFCl3):δ -83.7(m、2F、CF2CF2 CF 2 O)、-117.7(m、2F、CF 2 CF2CF2O)、-124.1(m、2F、CF2 CF 2 CF2O)、-131.8(m、2F、3,5-F-Ph)、-161.9(m、1F、4-F-Ph)
GC-MS M+ 394、379、352、338、324、307、287、273、197、177、148、131、119、97、69、55
 化合物(3a)の合成
Figure JPOXMLDOC01-appb-C000027

 リチウム10gと4,4’-ジ-tert-ブチルビフェニル(DBB)312gをテトラヒドロフラン2300mlに分散させ、3時間攪拌後に4-n-プロピルシクロヘキシルクロライド75gのテトラヒドロフラン190ml溶液を滴下した。さらに2時間攪拌後に化合物(5a)30gのテトラヒドロフラン80ml溶液を滴下し時間攪拌した後に10%塩酸にて反応を停止した。tert-ブチルメチルエーテルで抽出し有機相を水洗して溶媒を減圧留去した。再結晶、カラムクロマトグラフィーにて精製し白色の固体として化合物(3a)15gを得た。
 得られた化合物(3a)の19F-NMRおよびGC-MSデータを示す。
19F-NMR(CDCl3,CFCl3):δ -83.9(m、2F、CF2CF2CF2O)、-118.6(m、2F、CF2CF2CF2O)、-124.2(m、2F、CF2CF2CF2O)、-132.0(m、2F、3,5-F-Ph)、-162.2(m、1F、4-F-Ph)
GC-MS M+ 520、502、459、417、395、377、245、327、307、259、209、181、153、121、97、83、69、55、41
 化合物(2a)の合成
Figure JPOXMLDOC01-appb-C000028

 化合物(3a)29gのトルエン745ml溶液にパラ-トルエンスルホン酸一水和物2gを加えて還流下で3時間攪拌した。有機相を水洗して溶媒を減圧留去して、カラムクロマトグラフィーにて精製して無色透明の液体として化合物(2a)25gを得た。
 得られた化合物(2a)の19F-NMRおよびGC-MSデータを示す。
19F-NMR(CDCl3,CFCl3):δ -83.9(m、2F、CF2CF2 CF 2 O)、-118.7(m、2F、CF 2 CF2CF2O)、-124.3(m、2F、CF2 CF 2 CF2O)、-132.1(m、2F、3,5-F-Ph)、-162.3(m、1F、4-F-Ph)
GC-MS M+ 502、473、459、445、418、391、363、343、277、221、149、171、131、123、95、81、67
 化合物(1a)の合成
Figure JPOXMLDOC01-appb-C000029

 化合物(2a)24gを5%パラジウムカーボン6g存在下に酢酸エチル577mlを加え、水素添加する。水素添加後、溶媒を減圧留去しカラムクロマトグラフィー、再結晶にて精製して白色の固体として化合物(1a)9gを得た。
 得られた化合物(1a)の19F-NMRおよびGC-MSデータを示す。
19F-NMR(CDCl3,CFCl3):δ -83.9(m、2F、CF2CF2 CF 2 O)、-118.7(m、2F、CF 2 CF2CF2O)、-124.3(m、2F、CF2 CF 2 CF2O)、-132.1(m、2F、3,5-F-Ph)、-162.3(m、1F、4-F-Ph)
GC-MS M+ 504、484、447、405、377、343、259、181、131、125、111、95、83、69、55、41
相転移温度 C 36 Sm 106.6 N 126.7 I
 メルク社製液晶組成物ZLI-4792を母液晶として外挿値を求めたところ、化合物(1a)の透明点(Tc)は95.8℃、屈折率異方性(Δn)は0.082、25℃でのずり粘度は10.6mm2・s-1、Δεは7.4であった。
 なお、前記の各物性値は、メルク社製液晶組成物「ZLI-4792」90質量%と、前記本発明の化合物(1a)10質量%の割合で混合し液晶組成物を調合し、この液晶組成物を用いて、以下の方法で測定した。
[液晶透明点(Tc)の測定]
 偏光顕微鏡を備えた融点測定装置のホットプレート上に液晶組成物を置き、1℃/minで昇温し、相変化を観察し、液晶組成物のTcを測定し、測定値を外挿することで化合物(1a)のTcの外挿値を算出した。
[光学異方性(屈折率異方性;Δn)の測定]
 波長589nmの光を用い、接眼鏡に偏光板を取り付けたアッベ屈折計により行った。主プリズムの表面を一方向にラビングしたあと、液晶組成物を主プリズムに滴下した。屈折率(n∥)は偏光の方向がラビングの方向と平行であるときに測定した。屈折率(n⊥)は偏光の方向がラビングの方向と垂直であるときに測定した。光学異方性の値は、Δn=n∥-n⊥、の式から計算し、測定値を外挿することによって算出した。
[ずり粘度の測定]
 日本グリース社製「粘度計校正用標準液」と液晶組成物がオストワルド型粘度管の2点間を到達する時間を測定し、換算式[標準液の粘度]×[液晶組成物の到達時間]/[標準液の到達時間]から25℃での液晶組成物のずり粘度を測定し、測定値を外挿することで化合物(1a)のずり粘度の外挿値を算出した。
[誘電率異方性(Δε)の測定]
 液晶組成物を2枚のガラスセル(間隔8μm)の間に封入した。20℃にてこのセルに100mVの電圧を印加して液晶分子の短軸方向の誘電率(ε⊥)を測定した。88Vの電圧を印加して液晶分子の長軸方向の誘電率(ε∥)を測定した。化合物の誘電率異方性(Δε)は式Δε=ε∥-ε⊥から組成物のΔεを求めて、外挿することで求めた。
化合物(3b)の合成
Figure JPOXMLDOC01-appb-C000030

 マグネシウム1.6gとTHF9mlを55℃まで加熱して、4’-プロピル-4-トランス-シクロヘキシル-ブロモベンゼン18gのTHF35ml溶液を40℃にて滴下し、1時間攪拌した。得られたグリニャール試薬に、化合物(5a)8gのTHF16ml溶液を室温にて滴下して2時間攪拌後、10%塩酸58mlを加え反応を停止した。tert-ブチルメチルエーテルにて抽出し、有機相を水洗して、溶媒を減圧留去した。カラムクロマトグラフィーにて精製して淡黄色の固体として化合物(3b)を12g得た。
 得られた化合物(3b)の19F-NMRおよびGC-MSデータを示す。
19F-NMR(CDCl3,CFCl3):δ -83.8(m、2F、CF2CF2 CF 2 O)、-118.1(m、2F、CF 2 CF2CF2O)、-124.6(m、2F、CF2 CF 2 CF2O)、-131.9(m、2F、3,5-F-Ph)、-162.2(m、1F、4-F-Ph)
GC-MS M+ 596、578、559、535、493、471、395、257、244、125、105、83、69、55、40
化合物(2b)の合成
Figure JPOXMLDOC01-appb-C000031
 化合物(3b)12gのトルエン245ml溶液にパラ-トルエンスルホン酸一水和物0.8gを加えて還流下で2時間攪拌した。有機相を水洗して溶媒を減圧留去して、カラムクロマトグラフィーにて精製して黄褐色の固体として化合物(2b)11gを得た。
 得られた化合物(2b)の19F-NMRおよびGC-MSデータを示す。
19F-NMR(CDCl3,CFCl3):δ -83.9(m、2F、CF2CF2 CF 2 O)、-119.5(m、2F、CF 2 CF2CF2O)、-124.5(m、2F、CF2 CF 2 CF2O)、-132.0(m、2F、3,5-F-Ph)、-162.2(m、1F、4-F-Ph)
GC-MS M+ 578、480、467、447、349、277、233、215、183、169、155、141、129、83、69、55、40
化合物(1b)の合成
Figure JPOXMLDOC01-appb-C000032

 化合物(2b)8gを5%パラジウムカーボン1.6g存在下に酢酸エチル160mlを加え、水素添加する。水素添加後、溶媒を減圧留去しカラムクロマトグラフィー、再結晶にて精製して白色の固体として化合物(1b)1gを得た。
 得られた化合物(1b)の19F-NMRおよびGC-MSデータを示す。
19F-NMR(CDCl3,CFCl3):δ -83.9(m、2F、CF2CF2 CF 2 O)、-113.9(m、2F、CF 2 CF2CF2O)、-124.5(m、2F、CF2 CF 2 CF2O)、-132.0(m、2F、3,5-F-Ph)、-162.2(m、1F、4-F-Ph)
GC-MS M+ 580、482、469、455、359、319、299、279、235、215、201、143、129、117、105、91、83、69、55、41
相転移温度 C 70 Sm 157.8 N 193.9 I
 メルク社製液晶組成物ZLI-4792を母液晶として外挿値を求めたところ、化合物(1a)の透明点(Tc)は154.8℃、屈折率異方性(Δn)は0.112、25℃でのずり粘度は16.9mm2・s-1、Δεは8.8であった。
 化合物(8c)の合成
Figure JPOXMLDOC01-appb-C000033

 4-(4’-プロピルフェニル)-安息香酸エチル(9c)10gと化合物(11a)(11c)28gのジエチルエーテル300mL溶液を-95℃に冷却してn-ブチルリチウム50mLを滴下して2時間攪拌後、10%塩酸63mLにて反応を停止した。tert-ブチルメチルエーテルにて抽出し、有機相を水洗して、溶媒を減圧留去した。カラムクロマトグラフィーにて精製して白色の固体として化合物(8c)を11g得た。
 得られた化合物(8c)の19F-NMRおよびGC-MSデータを示す。
19F-NMR(CDCl3,CFCl3):δ -84.9(m、2F、OCF 2 )、-117.9(m、2F、COCF 2 )、-131.6(m、2F、3,5-F-Ph)、-155.7(m、1F、4-F-Ph)
GC-MS M+ 470、441、403、294、275、224、223、196、178、152、115、97、82、69
 化合物(1c)の合成
Figure JPOXMLDOC01-appb-C000034

 化合物(8c)10gの1,2-ジクロロエタン50ml溶液に三フッ化N,N-ジエチルアミノ硫黄8gを滴下し、50℃にて加熱して18時間攪拌後、25%炭酸カリウム水溶液にて反応を停止した。n-ヘキサンにて抽出し、有機相を水洗して、溶媒を減圧留去した。再結晶、シリカゲルカラムクロマトグラフィーにて精製して白色の固体として化合物(1c)を2g得た。
 得られた化合物(1c)の19F-NMRおよびGC-MSデータを示す。
19F-NMR(CDCl3,CFCl3):δ -83.2(m、2F、CF2CF2 CF 2 O)、-111.1(m、2F、CF 2 CF2CF2O)、-126.1(m、2F、CF2 CF 2 CF2O)、-132.0(m、2F、3,5-F-Ph)、-162.2(m、1F、4-F-Ph)
GC-MS M+ 492、463、431、395、377、345、315、283、263、231、216、165、131、108、81、69
相転移温度 C 36.8 I
 メルク社製液晶組成物ZLI-4792を母液晶として外挿値を求めたところ、化合物1c)の透明点(Tc)は-6.0℃、屈折率異方性(Δn)は0.122、25℃でのずり粘度は14.1mm・s-1、Δεは10.0であった。
 同様にして化合物(1d)および(1e)を合成した。
Figure JPOXMLDOC01-appb-C000035

相転移温度 C 38.2 I
 メルク社製液晶組成物ZLI-4792を母液晶として外挿値を求めたところ、化合物(1d)の透明点(Tc)は-49.7℃、屈折率異方性(Δn)は0.109、25℃でのずり粘度は19.5mm2・s-1、Δεは15.5であった。
Figure JPOXMLDOC01-appb-C000036

相転移温度 C 34.0 I
 メルク社製液晶組成物ZLI-4792を母液晶として外挿値を求めたところ、化合物(1e)の透明点(Tc)は-11.7℃、屈折率異方性(Δn)は0.076、25℃でのずり粘度は17.0mm2・s-1、Δεは10.7であった。
 化合物(1f)の合成
Figure JPOXMLDOC01-appb-C000037

 化合物(1f)の合成は4-n-プロピルシクロヘキシルクロライドを4-n-プロピルビシクロヘキシルクロライドに変えた他は、化合物(1a)と同様の合成を行い、化合物(1f)を7g得た。
 得られた化合物(1f)の19F-NMRおよびGC-MSデータを示す。
19F-NMR(CDCl3,CFCl3):δ -83.9(m、2F、CF2CF2 CF 2 O)、-118.7(m、2F、CF 2 CF2CF2O)、-124.3(m、2F、CF2 CF 2 CF2O)、-132.1(m、2F、3,5-F-Ph)、-162.3(m、1F、4-F-Ph)
GC-MS M+ 586、566、543、460、445、405、377、343、259、191、163、137、125、95、83、69、55、41
相転移温度 C 213 Sm 239.3 N 246 I
 メルク社製液晶組成物ZLI-4792を母液晶として外挿値を求めたところ、化合物(1f)の透明点(Tc)は219.1℃、屈折率異方性(Δn)は0.105、25℃でのずり粘度は29.8mm2・s-1、Δεは7.9であった。
 化合物(1g)の合成
Figure JPOXMLDOC01-appb-C000038

 化合物(1g)の合成は4’-プロピル-4-トランス-シクロヘキシル-ブロモベンゼンを4-ブロモ-4’-プロピルビフェニルに変えた他は、化合物(1b)と同様の合成を行い、化合物(1g)を8g得た。
 得られた化合物(1g)の19F-NMRおよびGC-MSデータを示す。
19F-NMR(CDCl3,CFCl3):δ -83.7(m、2F、CF2CF2 CF 2 O)、-118.8(m、2F、CF 2 CF2CF2O)、-124.4(m、2F、CF2 CF 2 CF2O)、-132.2(m、2F、3,5-F-Ph)、-162.2(m、1F、4-F-Ph)
GC-MS M+ 574、545、527、489、443、377、341、312、272、235、209、180、152、115、90、54
相転移温度 C (72.4) 149 Sm 173.7 N 195.6 I
 なお、C相とSm相の間の相転移温度は、示差走査熱量計で確認した結果をカッコ内に記載した。
 メルク社製液晶組成物ZLI-4792を母液晶として外挿値を求めたところ、化合物(1g)の透明点(Tc)は171℃、屈折率異方性(Δn)は0.162、25℃でのずり粘度は32.6mm2・s-1、Δεは9.3であった。
 実施例および発明の詳細な説明における記述を基に、下記化合物を製造することができる。以下の化合物には、実施例に記載した化合物も含まれる。
 なお、以下の式中、-Ph(2F)-は2-フルオロ-1,4-フェニレン基を表し、-Ph(3F)-は3-フルオロ-1,4-フェニレン基を表し、-Ph(3F,5F)-は3,5-ジフルオロ-1,4-フェニレン基を表し、-Ph(2F,3F)-は2,3-ジフルオロ-1,4-フェニレン基を表す。-Cy-および-Phは-前記と同じ意味を示す。
 なお、下記化合物において、環基A1~A7に対応する基の置換基の位置は、前記のとおりR1側を1位、R2側を4位とするのを基準とする。具体的には、式の向かって左側を1位とし、右側を4位とするのを基準とする。例えば「C3H7-Cy-Cy-CF2CF2CF2O-Ph(3F,5F)-F」は、前記実施例の化合物(1a)である。他の置換基や、他の化合物も同様である。
 2環の化合物(m+n+p+q+r=0であるもの)としては以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000039
 3環の化合物(m+n+p+q+r=1であるもの)としては以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
 4環の化合物(m+n+p+q+r=2であるもの)としては以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
 5環の化合物(m+n+p+q+r=3であるもの)としては以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
 なお、Z1~Z5が単結合ではない化合物としては、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000057
 [比較例]
 比較例として、化合物(C1)、化合物(C2)および化合物(C3)を合成した。これらの化合物は、前記特許文献等に記載されている公知の方法を参考に合成した。
Figure JPOXMLDOC01-appb-C000058
 [液晶温度範囲の測定]
 偏光顕微鏡を備えた融点測定装置のホットプレート上に試料を置き、1℃/minで昇温し、相変化を観察した。示差走査熱量計(DSC6220、SIIナノテクノロジー社製)を用い、1℃/minで昇温し、相変化を確認した。
結果を表3に示す。
Figure JPOXMLDOC01-appb-T000059

 表3中、Cは結晶相、Smはスメクチック相、Nはネマチック相、Iはアイソトロピック相を表す。また、「相変化」の欄において、例えば、「Sm 100 N」は100℃を境にスメクチック相からネマチック相に変化したことを示す。
 前記表3に示す結果から明らかなように、本発明の化合物(1a)は、連結基以外の部分の構造が同じである化合物と比較して、高い液晶相上限温度、最も広い液晶温度範囲を有することがわかった。
[液晶組成物の調合]
 メルク社製液晶組成物「ZLI-4792」90質量%と、前記本発明の化合物(1a)10質量%の割合で混合し液晶組成物を調合した。この液晶組成物を組成物(A)とする。同様に、比較化合物(C1)、比較化合物(C2)および比較化合物(C3)についても、それぞれ「ZLI-4792」90質量%に各化合物を10質量%の割合で混合した組成物を調製した。
 前記組成物を用いて求めた化合物(1a)(C1)(C2)および(C3)の物性値を表4に示す。
なお、Tcおよびずり粘度は、化合物(1a)と同様に測定し、外挿により求めた。
Figure JPOXMLDOC01-appb-T000060
 本発明の化合物(1a)は、連結基以外の部分の構造が同じである化合物と比較して、高いTcと、低い粘度を有することが分った。
[光安定性の測定]
 メルク社製液晶組成物ZLI-4792に化合物(1a)を10質量%混合した組成物を調製した。これを組成物(A)とする。同様に、化合物(1c)と化合物(1e)を10質量%混合した組成物をそれぞれ調製した。これらをそれぞれ組成物(B)、組成物(C)とする。
 前記組成物をそれぞれガラスセルに封入し、キセノンランプで9時間照射した。
 照射後の組成物のTcを測定することでサンプルのシス異性化、分解の度合いを測った。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000061
 化合物(1a)、化合物(1c)および化合物(1e)を含有する組成物のTcはほとんど変化しなかった。このことから、本発明の化合物(1a)、化合物(1c)および化合物(1e)は光に対する安定性が良好であることがわかった。
 以上のように、本発明の含フッ素液晶化合物は、高いTc、広い液晶温度範囲、低い粘度、高い光安定性を有するとともに、組成物に添加しても析出が生じないことから、他の液晶化合物との良好な相溶性を有することが分った。また、ΔnやΔεの値についても、液晶組成物の構成成分として用いるのに十分な値を有していることが分った。
 このような本願化合物を液晶組成物に用いることで、高いTcと、低い粘度とを併せ持つ液晶組成物の調製ができることが明らかになった。

Claims (7)

  1.  下記式(1)で表される含フッ素液晶化合物。
    R1-(A1)m-Z1-(A2)n-Z2-(A3)p-Z3-A4-CF2CF2CF2O-A5-Z4-(A6)q-Z5-(A7)r-R2  (1)
     式(1)中の記号は、以下の意味を示す。
    1およびR2:相互に独立して、水素原子、ハロゲン原子、-CN、-NCS、-SF5または炭素数1~18のアルキル基であり、該アルキル基中、1つ以上の水素原子はハロゲン原子で置換されていてもよく、炭素-炭素原子間または該基の結合末端にエーテル性酸素原子またはチオエーテル性硫黄原子が挿入されていてもよく、1つ以上の-CH2CH-は-CH=CH-または-C≡C-で置換されていてもよい。
    1、A2、A3、A4、A5、A6およびA7:相互に独立して、トランス-1,4-シクロへキシレン基、1,4-シクロヘキセニレン基、1,3-シクロブチレン基、1,2-シクロプロピレン基、ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基または1,4-フェニレン基であり、これら各基中、1つ以上の水素原子はハロゲン原子で置換されていてもよく、1つまたは2つの=CH-は窒素原子で置換されていてもよく、1つまたは2つの-CH2-はエーテル性酸素原子またはチオエーテル性硫黄原子で置換されていてもよい。
    1、Z2、Z3、Z4およびZ5:相互に独立して、単結合または炭素数1~4のアルキレン基であり、該アルキレン基中、1つ以上の水素原子はフッ素原子で置換されていてもよく、1つ以上の-CH-はエーテル性酸素原子またはチオエーテル性硫黄原子で置換されていてもよく、1つ以上の-CH2CH-は-CH=CH-または-C≡C-で置換されていてもよく、1つの-CH2CH-は-COO-または-OCO-で置換されていてもよい。
    m、n、p、qおよびr:相互に独立して0または1である。ただし、0≦m+n+p+q+r≦3。
  2.  下式(1-1)で表される化合物である、請求項1に記載の液晶化合物。
    R11-(A11)m-Z11-(A21)n-Z21-(A31)p-Z31-A41-CF2CF2CF2O-A51-Z41-(A61)q-Z51-(A71)r-R21 (1-1)
     式中の記号は、以下の意味を示す。
    11およびR21:相互に独立して、フッ素原子、-CN、または炭素数1~18のアルキル基であり、該アルキル基中、1つ以上の水素原子はフッ素原子で置換されていてもよく、炭素-炭素原子間または該基の結合末端にエーテル性酸素原子またはチオエーテル性硫黄原子が挿入されていてもよく、1つ以上の-CH2CH-は-CH=CH-で置換されていてもよい。
    11、A21、A31、A41、A51、A61およびA71:相互に独立して、トランス-1,4-シクロへキシレン基、または1,4-フェニレン基であり、これら各基中、1つ以上の水素原子はハロゲン原子で置換されていてもよく、1つまたは2つの=CH-は窒素原子で置換されていてもよく、1つまたは2つの-CH2-はエーテル性酸素原子またはチオエーテル性硫黄原子で置換されていてもよい。
    11、Z21、Z31、Z41およびZ51:相互に独立して、単結合、-COO-、-OCO-、-C≡C-または炭素数1~4のアルキレン基であり、該アルキレン基中、1つ以上の水素原子はフッ素原子で置換されていてもよく、1つ以上の-CH2-はエーテル性酸素原子で置換されていてもよい。
    m、n、p、qおよびrは前記と同じ意味である。
  3.  下式(1-2)で表される化合物である、請求項1に記載の液晶化合物。
    R12-(A12)m-Z12-(A22)n-Z22-(A32)p-Z32-A42-CF2CF2CF2O-A52-Z42-(A62)q-Z52-(A72)r-R22 (1-2)
     式中の記号は、以下の意味を示す。
    12:炭素数1~10のアルキル基であり、該基中の1つ以上の水素原子はフッ素原子で置換されていてもよく、炭素-炭素原子間または該基の結合末端にエーテル性酸素原子が挿入されていてもよく、1つ以上の-CH2CH-は-CH=CH-で置換されていてもよい。
    22:フッ素原子、-CNまたは炭素数1~10のアルキル基であり、該アルキル基中、1つ以上の水素原子はフッ素原子で置換されていてもよく、炭素-炭素原子間または該基の結合末端にエーテル性酸素原子が挿入されていてもよく、1つ以上の-CH2CH-は-CH=CH-で置換されていてもよい。
    12、A22、A32、A42、A52、A62およびA72:相互に独立して、トランス-1,4-シクロへキシレン基、1,4-フェニレン基または1つもしくは2つの水素原子がフッ素原子で置換された1,4-フェニレン基。
    12、Z22、Z32、Z42およびZ52:相互に独立して、単結合、-C24-、-COO-、-OCO-、-C≡C-。
    m、n、p、qおよびrは前記と同じ意味である。
  4.  下記式(9)で表される化合物と、下記式(10)で表される化合物とを反応させる工程、および
     上記で得られる下記式(8)で表される化合物をフッ素化する工程を含む、
    式(1)で表される化合物の製造方法。
    R1-(A1)m-Z1-(A2)n-Z2-(A3)p-Z3-A4-CO-R3     (9)
    MCF2CF2O-A5-Z4-(A6)q-Z5-(A7)r-R2  (10)
    R1-(A1)m-Z1-(A2)n-Z2-(A3)p-Z3-A4-C(=O)CF2CF2O-A5-Z4-(A6)q-Z5-(A7)r-R2  (8)
    R1-(A1)m-Z1-(A2)n-Z2-(A3)p-Z3-A4-CF2CF2CF2O-A5-Z4-(A6)q-Z5-(A7)r-R2  (1)
     各式中の記号は以下の意味を示す。
    3:-OR、-N(R)(R)であり、R、Rは、相互に独立して、炭素数1~5のアルキル基。
    M:金属原子または金属原子を含む基。
    他の記号は、請求項1に記載の式(1)における記号と同じ意味を示す。
  5.  下記式(9’)で表される化合物と、下記式(10)で表される化合物とを反応させる工程、
     上記で得られる下記式(8’)で表される化合物をフッ素化する工程、
     上記で得られる下記式(7)で表される化合物を水添反応および酸化反応させる工程、および
     上記で得られる下記式(5)で表される化合物と、下記式(4)で表される化合物とを反応させ、次いで脱水反応および水添反応を行う工程を含む、
    式(1’)で表される化合物の製造方法。
    R4-O-Ph-CO-R3     (9’)
    MCF2CF2O-A5-Z4-(A6)q-Z5-(A7)r-R2  (10)
    R4-O-Ph-C(=O)CF2CF2O-A5-Z4-(A6)q-Z5-(A7)r-R2  (8’)
    R4-O-Ph-CF2CF2CF2O-A5-Z4-(A6)q-Z5-(A7)r-R2  (7)
    O=Cy-CF2CF2CF2O-A5-Z4-(A6)q-Z5-(A7)r-R2  (5)
    R1-(A1)m-Z1-(A2)n-Z2-(A3)p-Z3-M     (4)
    R1-(A1)m-Z1-(A2)n-Z2-(A3)p-Z3-Cy-CF2CF2CF2O-A5-Z4-(A6)q-Z5-(A7)r-R2  (1’)
     各式中の記号は以下の意味を示す。
    3:-OR、-N(R)(R)であり、R、Rは相互に独立して、炭素数1~5のアルキル基。
    M:金属原子または金属原子を含む基。
    -Ph-:1,4-フェニレン基。
    -Cy-:トランス-1,4-シクロヘキシレン基。
    4:保護基。
    他の記号は、請求項1に記載の式(1)における記号と同じ意味を示す。
  6.  請求項1ないし3のいずれかに記載の液晶化合物を含む液晶組成物。
  7.  請求項6に記載の液晶組成物を、電極が配設された2枚の基板間に封入してなる液晶電気光学素子。
PCT/JP2012/071211 2011-08-29 2012-08-22 液晶化合物およびその製造方法、液晶組成物および液晶電気光学素子 WO2013031603A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013531235A JP6006217B2 (ja) 2011-08-29 2012-08-22 液晶化合物およびその製造方法、液晶組成物および液晶電気光学素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-186154 2011-08-29
JP2011186154 2011-08-29

Publications (1)

Publication Number Publication Date
WO2013031603A1 true WO2013031603A1 (ja) 2013-03-07

Family

ID=47756095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071211 WO2013031603A1 (ja) 2011-08-29 2012-08-22 液晶化合物およびその製造方法、液晶組成物および液晶電気光学素子

Country Status (2)

Country Link
JP (1) JP6006217B2 (ja)
WO (1) WO2013031603A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157551A1 (ja) * 2013-03-29 2014-10-02 Agcセイミケミカル株式会社 化合物、その製造方法、液晶組成物および液晶電気光学素子
CN113795538A (zh) * 2019-05-10 2021-12-14 索尔维特殊聚合物意大利有限公司 含全氟环丁烷单体的制备方法
CN115745750A (zh) * 2022-09-28 2023-03-07 山东天隅新材料科技有限公司 邻苯基苯酚、制备方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4142519A1 (de) * 1991-01-31 1992-08-06 Merck Patent Gmbh Fluorbenzolderivate und fluessigkristallines medium
JPH07506368A (ja) * 1992-04-28 1995-07-13 ミネソタ マイニング アンド マニュファクチャリング カンパニー ペルフルオロエーテル末端部分を有する液晶化合物
JP2003002858A (ja) * 2000-08-10 2003-01-08 Chisso Corp ジフルオロプロピレンオキシ基を結合基とする液晶性化合物、液晶組成物および液晶表示素子
DE10335606A1 (de) * 2002-08-29 2004-03-11 Merck Patent Gmbh Flüssigkristalline Verbindungen mit CF2CF2O- oder CF2OCF2-Brücke
WO2009150963A1 (ja) * 2008-06-09 2009-12-17 チッソ株式会社 シクロヘキサン環を有する5環液晶化合物、液晶組成物および液晶表示素子
WO2010047260A1 (ja) * 2008-10-21 2010-04-29 チッソ株式会社 含窒素複素環を有する5環液晶化合物、液晶組成物および液晶表示素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4142519A1 (de) * 1991-01-31 1992-08-06 Merck Patent Gmbh Fluorbenzolderivate und fluessigkristallines medium
JPH07506368A (ja) * 1992-04-28 1995-07-13 ミネソタ マイニング アンド マニュファクチャリング カンパニー ペルフルオロエーテル末端部分を有する液晶化合物
JP2003002858A (ja) * 2000-08-10 2003-01-08 Chisso Corp ジフルオロプロピレンオキシ基を結合基とする液晶性化合物、液晶組成物および液晶表示素子
DE10335606A1 (de) * 2002-08-29 2004-03-11 Merck Patent Gmbh Flüssigkristalline Verbindungen mit CF2CF2O- oder CF2OCF2-Brücke
WO2009150963A1 (ja) * 2008-06-09 2009-12-17 チッソ株式会社 シクロヘキサン環を有する5環液晶化合物、液晶組成物および液晶表示素子
WO2010047260A1 (ja) * 2008-10-21 2010-04-29 チッソ株式会社 含窒素複素環を有する5環液晶化合物、液晶組成物および液晶表示素子

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157551A1 (ja) * 2013-03-29 2014-10-02 Agcセイミケミカル株式会社 化合物、その製造方法、液晶組成物および液晶電気光学素子
JPWO2014157551A1 (ja) * 2013-03-29 2017-02-16 Agcセイミケミカル株式会社 化合物、その製造方法、液晶組成物および液晶電気光学素子
CN113795538A (zh) * 2019-05-10 2021-12-14 索尔维特殊聚合物意大利有限公司 含全氟环丁烷单体的制备方法
US20220194885A1 (en) * 2019-05-10 2022-06-23 Solvay Specialty Polymers Italy S.P.A. Method of making perfluorocyclobutane-containing monomer
US11919834B2 (en) * 2019-05-10 2024-03-05 Solvay Specialty Polymers Italy S.P.A. Method of making perfluorocyclobutane-containing monomer
CN115745750A (zh) * 2022-09-28 2023-03-07 山东天隅新材料科技有限公司 邻苯基苯酚、制备方法及其应用
CN115745750B (zh) * 2022-09-28 2023-12-15 山东天隅新材料科技有限公司 邻苯基苯酚、制备方法及其应用

Also Published As

Publication number Publication date
JP6006217B2 (ja) 2016-10-12
JPWO2013031603A1 (ja) 2015-03-23

Similar Documents

Publication Publication Date Title
JP5608560B2 (ja) 液晶化合物およびその製造方法、液晶組成物および液晶電気光学素子
JPH0840953A (ja) トリフルオロメチルベンゼン誘導体および液晶組成物
JP6006217B2 (ja) 液晶化合物およびその製造方法、液晶組成物および液晶電気光学素子
WO2006048620A2 (en) Benzo-1, 3-dioxanes for use in liquid crystal devices
JP5401085B2 (ja) 含フッ素液晶化合物、それを含有する液晶組成物および液晶電気光学素子
US5626792A (en) High birefringence liquid crystal compounds
WO2014125924A1 (ja) 誘電率異方性が負の環構造を有する新規な化合物およびその製造方法、液晶組成物および液晶電気光学素子
JPWO2014010665A1 (ja) 誘電率異方性が負の環構造を有する新規な化合物およびその製造方法、液晶組成物および液晶電気光学素子
WO2010074071A1 (ja) 含フッ素液晶化合物、液晶組成物および液晶電気光学素子
JP5335275B2 (ja) 含フッ素液晶化合物、その製造方法および合成中間体、該含フッ素液晶化合物を含有する液晶組成物ならびに液晶電気光学素子
JP2011207871A (ja) 液晶化合物、その製造方法、液晶組成物および液晶電気光学素子
JP2005048007A (ja) トリフルオロナフタレン誘導体を含有する液晶組成物と表示素子及び液晶性化合物。
JP2013112621A (ja) 液晶化合物、その製造方法、液晶組成物および液晶電気光学素子
JP5680381B2 (ja) 液晶化合物、その製造方法、液晶組成物および液晶電気光学素子
JP5362266B2 (ja) 含フッ素液晶化合物、その製造法および合成中間体、該含フッ素液晶化合物を含有する液晶組成物および液晶電気光学素子
JP2012126709A (ja) 液晶化合物、液晶組成物および液晶素子
JP4547904B2 (ja) トリフルオロナフタレン誘導体を含有する液晶組成物と表示素子及び液晶性化合物。
JP2013112620A (ja) 液晶化合物、その製造方法、液晶組成物および液晶電気光学素子
JP2015131785A (ja) 誘電率異方性が負の環構造を有する新規な化合物およびその製造方法、液晶組成物および液晶電気光学素子
JP5763937B2 (ja) 液晶化合物、その製造方法、液晶組成物および液晶電気光学素子
JP4573399B2 (ja) ジフルオロベンゾニトリル化合物およびその中間体、製造方法、液晶組成物および液晶電気光学素子
JP5763938B2 (ja) 液晶化合物、その製造方法、液晶組成物および液晶電気光学素子
JP4501388B2 (ja) ジフルオロテトラヒドロナフタレン誘導体を含有する液晶組成物及び液晶性化合物
WO2014157551A1 (ja) 化合物、その製造方法、液晶組成物および液晶電気光学素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829041

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013531235

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12829041

Country of ref document: EP

Kind code of ref document: A1