WO2013031120A1 - 変調信号検出装置及び変調信号検出方法 - Google Patents

変調信号検出装置及び変調信号検出方法 Download PDF

Info

Publication number
WO2013031120A1
WO2013031120A1 PCT/JP2012/005168 JP2012005168W WO2013031120A1 WO 2013031120 A1 WO2013031120 A1 WO 2013031120A1 JP 2012005168 W JP2012005168 W JP 2012005168W WO 2013031120 A1 WO2013031120 A1 WO 2013031120A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase difference
signal
component
light
phase
Prior art date
Application number
PCT/JP2012/005168
Other languages
English (en)
French (fr)
Inventor
清貴 伊藤
日野 泰守
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/817,952 priority Critical patent/US9042002B2/en
Priority to EP12823184.2A priority patent/EP2752850A4/en
Priority to JP2013508711A priority patent/JP6153009B2/ja
Publication of WO2013031120A1 publication Critical patent/WO2013031120A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2/00Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1395Beam splitters or combiners
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6165Estimation of the phase of the received optical signal, phase error estimation or phase error correction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/223Demodulation in the optical domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/227Demodulator circuits; Receiver circuits using coherent demodulation
    • H04L27/2271Demodulator circuits; Receiver circuits using coherent demodulation wherein the carrier recovery circuit uses only the demodulated signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10268Improvement or modification of read or write signals bit detection or demodulation methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates

Definitions

  • the present invention relates to a modulation signal detection apparatus and a modulation signal detection method for detecting a modulation signal by detecting interference light in which signal light whose intensity or phase is modulated and reference light interfere with each other, and an optical disk
  • This is a technology applicable to media, optical data transmission, optical data communication, optical bus, and optical USB (Universal Serial Bus).
  • Optical disc media are widely used as large-capacity information recording media. Technological development for increasing the capacity of optical disk media has been performed on CDs, DVDs, and Blu-ray Discs by using shorter wavelength laser light and higher numerical aperture (NA) objective lenses. It was. Recently, services using online storage on the Internet called a cloud have been expanding year by year, and further increase in the capacity of storage including HDD (hard disk drive) or flash memory is desired.
  • HDD hard disk drive
  • flash memory flash memory
  • the shortening of the wavelength of laser light has been put into practical use for semiconductor lasers that emit laser light in the ultraviolet region of the 300 nm range.
  • light in the ultraviolet region of 300 nm or less is significantly attenuated in the air, a great effect by shortening the wavelength of the laser light cannot be expected.
  • a technique for increasing the recording surface density by using a SIL (solid immersion lens) having an NA of 1 or more has been developed.
  • Research is also being conducted to increase the recording surface density by using near-field light that occurs in a region smaller than the diffraction limit of light.
  • BD-XL has three or four recording surfaces, and further development has been made to increase the capacity by multilayering the recording surfaces. ing.
  • the capacity of the optical disk medium As the capacity of the optical disk medium is increased, the amount of signal modulated by reflection on the recording surface of the optical disk medium is further reduced, and the S / N of the reproduction signal is sufficiently increased. It cannot be secured. Accordingly, in order to increase the capacity of the optical disk medium in the future, it is essential to increase the S / N of the detection signal.
  • the light from the laser is branched into light that irradiates the optical disk medium (disk light) and light that does not irradiate the optical disk medium (reference light), and the reflected light from the optical disk medium (signal light) and reference Interference with light.
  • the weak signal amplitude by signal light is amplified by enlarging the light quantity of reference light.
  • FIG. 28 is a diagram showing a configuration of a conventional interference type optical disc apparatus.
  • a mirror driving unit 112 for adjusting the optical path length of the reference light is added to the reference light mirror 111 as shown in FIG. is doing.
  • the signal amplitude is controlled to always become maximum in response to fluctuations in the optical path length due to surface shake during rotation of the optical disc medium 101 or changes with time in the optical path length due to changes in the surrounding environment such as temperature. .
  • Patent Document 3 a corner cube prism is used as a reference light mirror, the corner cube prism is mounted on the same actuator as the objective lens, and the optical path length of the light to be interfered is adjusted according to the type of the optical disk medium or the recording layer to be read. The method is described.
  • Patent Document 4 describes a method of stably extracting signal components regardless of phase fluctuations by shifting the phase relationship between signal light and reference light by 90 degrees on four detectors. Yes.
  • the reduction in signal light S / N limits the progress in realizing high transfer rate and high density devices.
  • a high S / N is required to realize a high transfer rate.
  • the phase of the light generated by the laser is changed instead of the method of transmitting data by modulating the intensity of the laser. Modulation and data transmission are becoming mainstream. For this reason, a technique of optical phase control that accurately controls the phase of light on the receiving side and removes the light phase fluctuation factor generated in the communication path becomes important.
  • FIG. 29 and 30 are diagrams for explaining signal light modulation in the optical disk medium.
  • FIG. 29 is a diagram for explaining an example in which the intensity of signal light is modulated in the optical disc medium
  • FIG. 30 is a diagram for explaining an example in which the phase of signal light is modulated in the optical disc medium.
  • the intensity of the reflected light is modulated and information is recorded mainly by changing the reflectance of the recording surface 201a as shown in FIG. 29 by the irradiation of the laser beam. That is, information is recorded by forming marks 201m and spaces 201s having different reflectivities on the track of the recording surface 201a.
  • the optical disk medium 201 is a rewritable or write-once CD, DVD, Blu-ray Disc, or the like.
  • a groove 203g or a hole 203h is formed at a position where light is reflected on the recording surface 203a, whereby the phase of the reflected light is modulated and information is recorded.
  • information is recorded by forming continuous grooves 203g or discontinuous holes 203h in which the transmittance or refractive index is changed in the recording surface 203a.
  • the detection sensitivity of the signal has a great effect even if the optical path length of the reference light and the optical path length of the signal light are slightly changed by about several tens of nm. receive. This means that the difference between the optical path length of the reference light and the optical path length of the signal light needs to be kept constant with an accuracy of several tens of nanometers.
  • there is a variation factor in the optical path length there is a problem that it becomes very difficult to control the optical path length.
  • Patent Document 2 discloses a technique in which an optical system is integrated so as to follow the waviness of the recording surface of an optical disk medium, and a slow fluctuation is corrected by an actuator.
  • Patent Document 3 a configuration is disclosed in which a corner cube prism is mounted on an actuator of an objective lens, and the optical path of the reference light is changed by the same amount as the optical path of the signal light. Also in the configuration of Patent Document 3, the problem that the optical path length of the reference light and the optical path length of the signal light are changed due to the waviness of the recording surface of the optical disk medium is the same, and practical application is very difficult.
  • the optical phase cannot be detected by a method other than the method of detecting the optical phase using optical interference between the signal light and the reference light.
  • the wavelength of light used for optical communication, optical bus, or optical disk medium is very short, from several ⁇ m to 400 nm, in the above technique (phase detection technique using reference light using optical interference), reference light and signal.
  • Patent Document 4 does not specify the reproduction of the phase-modulated optical disk medium.
  • the phase component including the signal component is removed.
  • the reciprocal of the tangent obtained from the cosine and sine is obtained and only the phase component of the light is detected. The noise component accompanying this is included, and the noise component must be removed.
  • FIG. 31 is a diagram for explaining an example of calculating the phase component of light by arctangent.
  • the calculated value of the arc tangent which is the reciprocal of the tangent, has a discontinuous portion with a 2 ⁇ period. For this reason, when the range of the optical path length variation is very large compared to the phase modulation range of a very short wavelength of several ⁇ m to 400 nm, the arctangent output phase is discontinuous due to the phase noise component due to the optical path length variation. The correct output cannot be obtained.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a modulation signal detection device and a modulation signal detection method capable of detecting a modulation signal having a high S / N ratio. is there.
  • a modulation signal detection apparatus is a modulation signal detection apparatus that detects a modulation signal component from a signal based on a phase difference component between phase-modulated signal light and non-phase-modulated reference light. , Detecting a phase difference error component included in the phase difference component, and based on the detected phase difference error component, a first signal having the phase difference component as an angle of a cosine function, and a first signal
  • a correction unit that corrects a second signal having an angle of the cosine function substantially different by ⁇ / 2
  • a phase difference component is calculated from the first signal and the second signal corrected by the correction unit.
  • a phase calculation unit, and the correction unit performs correction by rotating the coordinate point indicated by the first signal and the second signal on the polar coordinate plane by an angle corresponding to the phase difference error component. Said first signal and Get the serial second signal.
  • the correction unit detects the phase difference error component included in the phase difference component, and based on the detected phase difference error component, the first signal having the phase difference component as the angle of the cosine function; A second signal having a cosine function angle of approximately ⁇ / 2 different from that of the first signal is corrected.
  • the phase calculation unit calculates a phase difference component from the first signal and the second signal corrected by the correction unit.
  • the correction unit rotates the coordinate points indicated by the first signal and the second signal on the polar coordinate plane by an angle corresponding to the phase difference error component, thereby correcting the first signal and the second signal. Get the signal.
  • a phase difference error component which is a phase noise component generated due to an optical path difference variation between the signal light and the reference light, is obtained from the phase difference component between the phase-modulated signal light and the non-phase-modulated reference light. It is possible to cancel, and a modulation signal with a high S / N ratio can be detected.
  • Embodiment 1 of this invention It is a figure which shows the structure of the phase difference calculating part in Embodiment 1 of this invention. It is a figure which shows the structure of the phase difference correction
  • Embodiment 4 of this invention It is a figure which shows the specific structure of the interference light detection part in Embodiment 4 of this invention. It is a figure which shows the specific structure of the signal processing part in Embodiment 4 of this invention. In Embodiment 4 of this invention, it is a figure which shows the structure of the interference light detection part provided with three detectors. It is a figure which shows the structure of the optical disk apparatus in Embodiment 5 of this invention. It is a figure which shows the structure of the interference light detection part in Embodiment 5 of this invention. It is a figure which shows the structure of the phase difference calculating part in Embodiment 5 of this invention. It is a figure which shows the whole structure of the optical transmission system in Embodiment 6 of this invention.
  • FIG. 1 and FIG. 4 are schematic diagrams showing the configuration of the modulation signal detection apparatus according to Embodiment 1 of the present invention.
  • the first embodiment will be specifically described.
  • FIG. 1 is a diagram showing a configuration of a phase difference calculation unit in Embodiment 1 of the present invention.
  • the phase difference calculation unit 10 includes a phase difference correction unit 3, a phase calculation unit 6, and a phase difference error detection unit 8.
  • the cosine component 1 and the sine component 2 are input to the phase difference correction unit 3.
  • the cosine component 1 has a phase difference (optical path difference) ⁇ between the reference light and the signal light.
  • the sine component 2 has substantially the same amplitude as the cosine component 1 and has a phase difference that is substantially ⁇ / 2 shifted from the cosine component 1.
  • the reason why the shift of the phase difference between the cosine component 1 and the sine component 2 is set to approximately ⁇ / 2 phase difference is to consider the accuracy or variation of the optical element.
  • optical elements such as a wave plate, a polarizer, and a beam splitter are used.
  • a ⁇ / 2 plate does not necessarily cause a phase difference of ⁇ / 2 but may cause a phase difference of ( ⁇ / 2) + ⁇ .
  • the cosine component 1 is cos ( ⁇ + ⁇ 1 )
  • the sine component 2 is sin ( ⁇ + ⁇ 2 ).
  • the phase difference ( ⁇ 1 ⁇ 2 ) added due to the accuracy or variation of the optical element is the S / N of the reproduction signal. If it is within the allowable range, the effects of the present invention can be obtained.
  • the signal is modulated into four values ( ⁇ ⁇ ⁇ ⁇ / 2, ⁇ / 2 ⁇ ⁇ 0, 0 ⁇ ⁇ ⁇ / 2, ⁇ / 2 ⁇ ⁇ ⁇ )
  • the phase difference shift added due to the accuracy or variation of the optical element is allowable in the range of ⁇ ⁇ / 4.
  • the phase difference between the cosine component 1 and the sine component 2 is approximately ⁇ / 2, which is within the allowable range of the S / N of the reproduction signal.
  • the phase difference correction unit 3 generates the phase difference correction cosine component 4 and the phase difference correction sine component 5 using the phase difference error component ⁇ output from the phase difference error detection unit 8.
  • the generated phase difference correction cosine component 4 and phase difference correction sine component 5 are input to the phase calculator 6.
  • the phase calculation unit 6 outputs a phase difference component 7.
  • the phase difference error detection unit 8 performs feedback control for generating the phase difference error component ⁇ based on the output phase difference component 7.
  • the phase difference error detection unit 8 detects a phase difference error component included in the phase difference component ⁇ .
  • the phase difference correction unit 3 uses a first signal (cosine component 1) with the phase difference component ⁇ as an angle of a cosine function, and a first A second signal (sine component 2) having a cosine function angle of approximately ⁇ / 2 with respect to the signal is corrected.
  • the phase calculation unit 6 calculates a modulation signal component from the first signal (phase difference correction cosine component 4) and the second signal (phase difference correction sine component 5) corrected by the phase difference correction unit 3. Further, the phase difference error detection unit 8 detects a phase difference error component from the phase difference component calculated by the phase calculation unit 6.
  • the phase difference component ⁇ includes both a signal component ⁇ sig obtained by modulating the phase of the signal light and a phase noise component ⁇ noise generated due to an optical path difference variation between the signal light and the reference light.
  • the phase difference component ⁇ is expressed by the following equation (1).
  • phase noise component ⁇ noise is expressed by the following equation (2).
  • the wavelength ⁇ of light is as short as several ⁇ m to 400 nm.
  • the optical path difference fluctuation ⁇ L due to waviness of the recording surface of the optical disk medium is as large as several hundred ⁇ m.
  • the range of the signal component ⁇ sig is one wavelength (2 ⁇ )
  • the amplitude of the waviness of the recording surface is 200 ⁇ m
  • the range of the phase noise component ⁇ noise is 500 ⁇ . . From this, it can be seen that the phase noise component ⁇ noise has a very large value compared to the signal component ⁇ sig .
  • phase difference correction unit 3 corrects the phase difference so that the phase difference component ⁇ does not exceed the 2 ⁇ period discontinuous portion of the arctangent calculation.
  • FIG. 2 is a diagram showing a configuration of the phase difference correction unit in the first embodiment of the present invention.
  • the phase difference correction unit 3 includes amplifiers 11, 12, 13, 14, addition calculation units 15, 16, a first error correction gain calculation unit 17, and a second error correction gain calculation unit 18.
  • the cosine component 1 input to the phase difference correction unit 3 is input to the amplifier 11 and the amplifier 13.
  • the amplifier 11 multiplies the cosine component 1 by ⁇
  • the amplifier 13 multiplies the cosine component 1 by ⁇ .
  • the sine component 2 input to the phase difference correction unit 3 is input to the amplifier 12 and the amplifier 14.
  • the amplifier 12 multiplies the sine component 2 by ⁇
  • the amplifier 14 multiplies the sine component 2 by ⁇ .
  • the first error correction gain calculation unit 17 calculates the error correction gain ⁇ by the following equation (3) using the phase difference error component ⁇ detected by the phase difference error detection unit 8.
  • the second error correction gain calculator 18 uses the phase difference error component ⁇ detected by the phase difference error detector 8 to calculate the error correction gain ⁇ by the following equation (4).
  • the addition operation unit 15 adds the cosine component 1 multiplied by ⁇ and the sine component 2 multiplied by ⁇ . Thereby, the addition calculation unit 15 outputs the phase difference correction cosine component 4 expressed by the following equation (5).
  • the addition operation unit 16 adds the sine component 2 multiplied by ⁇ and the cosine component 1 multiplied by ⁇ . As a result, the addition operation unit 16 outputs the phase difference correction sine component 5 expressed by the following equation (6).
  • Equations (5) and (6) are obtained by multiplying the cosine component 1 and the sine component 2 by the gain calculated based on the phase difference error component ⁇ , respectively, and adding the phase difference from the phase difference component ⁇ . This indicates that the phase difference correction cosine component 4 (first phase difference correction signal Y 1 ) and the phase difference correction sine component 5 (second phase difference correction signal Y 2 ) from which the error component ⁇ has been removed are obtained. Yes.
  • FIG. 3 is a diagram for explaining phase difference correction on the polar coordinate plane in the first embodiment of the present invention.
  • the coordinate point indicated by the cosine component 1 (first signal X 1 ) and the sine component 2 (second signal X 2 ) is X, and the phase difference correction cosine component 4 (first phase difference correction signal Y 1 ).
  • Y is a coordinate point indicated by the phase difference correction sign component 5 (second phase difference correction signal Y 2 ).
  • the coordinate point Y is a coordinate obtained by rotating the coordinate point X by an angle corresponding to the phase difference error component ⁇ on the polar coordinate plane.
  • the phase difference correcting unit 3 by rotating by an angle corresponding first signal X 1 and the coordinate point indicated by the second signal X 2 to the phase difference error component ⁇ in polar coordinates plane, the first obtaining a phase difference correction signal Y 1 and the second phase difference correction signal Y 2 of.
  • the phase difference correction unit 3 generates a first error correction gain ⁇ and a second error correction gain ⁇ based on the detected phase difference error component ⁇ , and based on the above equations (5) and (6). to generate a first phase difference correction signal Y 1 and the second phase difference correction signal Y 2 representing the first signal X 1 and the second signal X 2, which are corrected.
  • the phase calculating unit 6 calculates a phase difference component from the first phase difference correction signal Y 1 and the second phase difference correction signal Y 2.
  • the phase calculator 6 calculates the phase difference component 7 from the input phase difference correction cosine component 4 and phase difference correction sine component 5 based on the following equation (7).
  • FIG. 4 is a diagram showing a configuration of the phase difference error detection unit in the first embodiment of the present invention.
  • the phase difference error detection unit 8 includes a low-pass filter (LPF) 21 and an amplifier 22.
  • the phase difference component 7 calculated by the phase calculator 6 is input to the phase difference error detector 8.
  • the LPF 21 outputs a phase noise component ⁇ noise that is a component in a low frequency band with respect to the signal component ⁇ sig from the phase difference component 7 input to the phase difference error detection unit 8.
  • the LPF 21 outputs a difference between the phase noise component ⁇ noise and the phase difference error component ⁇ .
  • the LPF 21 extracts a frequency band corresponding to the phase difference error component from the phase difference component. Further, the LPF 21 extracts a frequency band corresponding to a phase difference error component lower than the frequency band corresponding to the modulation signal component included in the phase difference component from the phase difference component.
  • the amplifier 22 multiplies the phase difference error component output from the LPF 21 by ⁇ , and outputs the result to the phase difference correction unit 3.
  • the gain value ⁇ is a closed loop characteristic 1 composed of the phase difference correction unit 3, the phase calculation unit 6, and the phase difference error detection unit 8 of FIG. Any value within a range where / (1 + H) is stable.
  • the phase difference correction unit 3 can be controlled to cancel the second term ( ⁇ noise ) of the right side of the following formula (8) by the third term ( ⁇ ) of the right side.
  • ⁇ noise the second term of the right side of the following formula (8)
  • the third term of the right side
  • phase difference error detection unit 8 of the first embodiment can continuously detect from a minute fluctuation in the range of ⁇ ⁇ , which is on the order of nanometers, to a large fluctuation of ⁇ hundreds of ⁇ on the order of micrometers. Therefore, it is possible to suppress a nanometer-order phase noise component that is very difficult to follow with an actuator, and a high S / N reproduction is possible.
  • the phase difference correction unit 3 and the phase difference error detection unit 8 correspond to an example of a correction unit
  • the phase calculation unit 6 corresponds to an example of a phase calculation unit
  • the LPF 21 is an example of a low-pass filter.
  • the phase difference error detection unit 8 corresponds to an example of a phase difference error detection unit
  • the phase difference correction unit 3 corresponds to an example of a phase difference correction unit.
  • the phase difference correction unit 3 has been described with reference to FIG. 2, but the present invention is not limited to this.
  • a configuration in which a cosine component and a sine component having a phase difference component ⁇ including a signal component and a phase noise component are corrected into a phase difference correction cosine component and a phase difference correction sine component using a phase difference error component ⁇ . If it is.
  • the first error correction gain calculation unit 17 and the second error correction gain calculation unit 18 shown in FIG. 2 do not use the above equations (3) and (4), but use a lookup table or the like.
  • the error correction gains ⁇ and ⁇ may be determined using them.
  • the cosine component 1 is multiplied by ⁇ by the amplifier 13, and the cosine component 1 multiplied by ⁇ and the sine component 2 multiplied by ⁇ are added by the addition calculation unit 16.
  • the cosine component 1 may be multiplied by ⁇ by the amplifier 13, and the cosine component 1 multiplied by ⁇ from the ⁇ component multiplied by ⁇ may be subtracted by the addition operation unit 16. In this case, the same effect as in the first embodiment can be obtained.
  • FIG. 5 is a diagram showing a configuration of the phase difference correction unit in the first modification of the first embodiment.
  • the phase difference correction unit 3 includes amplifiers 11, 12, 13, 14, addition calculation units 15, 16, a first error correction gain calculation unit 17, and a third error correction gain calculation.
  • Unit 31 and an error correction lookup table (LUT) 32.
  • the first error correction gain calculator 17 refers to the error correction lookup table (LUT) 32 and calculates the error correction gain ⁇ from the phase difference error component ⁇ .
  • the first error correction gain calculation unit 17 outputs the calculated error correction gain ⁇ to the amplifiers 11 and 12 and the third error correction gain calculation unit 31.
  • the third error correction gain calculator 31 refers to the error correction LUT 32 and calculates a value obtained by shifting the phase by ⁇ / 2 from the input error correction gain ⁇ as the error correction gain ⁇ .
  • the third error correction gain calculator 31 outputs the calculated error correction gain ⁇ to the amplifiers 13 and 14. In this case, the same effect as in the first embodiment can be obtained.
  • FIG. 6 is a diagram showing the configuration of the phase difference correction unit in the second modification of the first embodiment.
  • the phase difference correction unit 3 includes multiplication units 41, 42, 43, 44, addition calculation units 15, 16, a first error correction gain calculation unit 17, and a second error correction gain.
  • an arithmetic unit 18 The cosine component 1 and the sine component 2 are A / D converted digital data.
  • the multiplier 41 multiplies the cosine component 1 by the error correction gain ⁇
  • the multiplier 42 multiplies the sine component 2 by the error correction gain ⁇
  • the multiplier 43 The component 1 may be multiplied by the error correction gain ⁇
  • the multiplication unit 44 may multiply the sine component 2 by the error correction gain ⁇ .
  • the phase calculation unit 6 generates the phase difference component 7 using the above equation (7), but the present invention is not limited to this.
  • the phase calculation unit 6 may include a lookup table that holds in advance a phase difference component 7 obtained as a result of arctangent calculation.
  • the phase calculation unit 6 may convert the phase difference correction cosine component 4 and the phase difference correction sine component 5 into the phase difference component 7 using a lookup table.
  • the phase calculation unit 6 may calculate the phase difference component 7 by performing case classification as in the following Expression (9) or Expression (10).
  • the phase difference error detection unit 8 has a stable closed loop characteristic composed of the phase difference correction unit 3, the phase calculation unit 6, and the phase difference error detection unit 8 of FIG. 1, and the second term on the right side of the above equation (8). Any configuration can be used as long as ( ⁇ noise ) can be controlled to be canceled by the third term ( ⁇ ) on the right side.
  • the LPF 21 may be a primary LPF or a secondary or higher LPF.
  • the phase difference error detection unit 8 may include a phase compensation unit in order to stabilize the closed loop characteristics.
  • the phase difference error detection unit 8 may include an integrator instead of the LPF 21.
  • FIG. 7 is a diagram showing the configuration of the phase difference error detection unit in the third modification of the first embodiment.
  • the phase difference error detection unit 8 includes an LPF 21, an amplifier 22, and an integrator 23.
  • the integrator 23 integrates the output from the amplifier 22 and outputs the integrated value to the phase difference correction unit 3. That is, the phase difference error detection unit 8 multiplies the phase difference error component by a predetermined ⁇ , and integrates the phase difference error components multiplied by ⁇ . Then, the phase difference correction unit 3 generates a first error correction gain ⁇ and a second error correction gain ⁇ based on the accumulated phase difference error component. In this case, the same effect as in the first embodiment can be obtained.
  • phase difference error detection unit 8 only needs to have a configuration capable of separating noise components other than signal components.
  • the phase difference error detection unit 8 may include a band elimination filter (BEF), a band pass filter (BPF), or a high pass filter (HPF) that can remove the frequency band of the signal component.
  • BEF band elimination filter
  • BPF band pass filter
  • HPF high pass filter
  • the phase difference error detection unit 8 may separate a noise component other than a signal component by converting a time domain signal into a frequency domain signal using Fourier transform and dividing a band in the frequency domain.
  • the waviness of the recording surface of the optical disc medium has been described as an example of the fluctuation factor due to the disturbance.
  • the fluctuation component in the frequency band lower than the modulation signal which has a fluctuation factor such as a temperature change, Cancellation is possible by the configuration of the first embodiment.
  • phase difference correction unit 3, the phase calculation unit 6, and the phase difference error detection unit 8 may be integrated in one LSI (Large Scale Integration).
  • the functions of the phase difference correction unit 3, the phase calculation unit 6, and the phase difference error detection unit 8 may be realized by a computer executable program and a computer.
  • FIG. 8 is a flowchart showing an example of the phase difference calculation process in the phase difference calculation unit shown in FIG.
  • the programs of the phase difference correction unit 3, the phase calculation unit 6, and the phase difference error detection unit 8 are represented by the flowchart shown in FIG.
  • step S1 the phase difference correction unit 3 receives input of the cosine component 1 (Acos ⁇ ) and the sine component 2 (Asin ⁇ ).
  • step S2 the phase difference correction unit 3 adds a value obtained by multiplying the cosine component 1 by the error correction gain ⁇ and a value obtained by multiplying the sine component 2 by the error correction gain ⁇ , and thereby the phase difference correction cosine component.
  • 4 (Acos ( ⁇ )) is calculated, and the value obtained by multiplying the sine component 2 by the error correction gain ⁇ is subtracted from the value obtained by multiplying the cosine component 1 by the error correction gain ⁇ , thereby obtaining the phase difference correction sine component 5 (Asin ( ⁇ )) is calculated.
  • step S3 the phase calculator 6 calculates the phase difference component 7 ( ⁇ ) by calculating the arc tangent of the value obtained by dividing the phase difference correction sine component 5 by the phase difference correction cosine component 4. To do.
  • step S 4 the phase calculation unit 6 outputs the calculated phase difference component 7 as a modulation signal to the outside of the phase difference calculation unit 10 and outputs the calculated phase difference component 7 to the phase difference error detection unit 8. To do.
  • step S5 the control unit determines whether or not to end the phase difference calculation process.
  • the control unit is provided inside or outside the phase difference calculation unit 10. If it is determined that the phase difference calculation process is to be ended (YES in step S5), the phase difference calculation process is ended.
  • step S6 the phase difference error detection unit 8 converts the phase difference error component from the phase difference component 7 calculated by the phase calculation unit 6. ⁇ is detected.
  • step S7 the first error correction gain calculation unit 17 calculates the error correction gain ⁇ by the above equation (3) using the phase difference error component ⁇ detected by the phase difference error detection unit 8.
  • the second error correction gain calculator 18 calculates the error correction gain ⁇ by the above equation (4) using the phase difference error component ⁇ detected by the phase difference error detector 8. Then, the process returns to step S1, and inputs of cosine component 1 (Acos ⁇ ) and sine component 2 (Asin ⁇ ) are accepted.
  • Embodiment 2 9 and 10 are schematic diagrams showing the configuration of the modulation signal detection apparatus according to Embodiment 2 of the present invention. The second embodiment will be specifically described below.
  • FIG. 9 is a diagram showing a configuration of the phase difference calculation unit in the second embodiment of the present invention.
  • the phase difference calculation unit 20 includes a phase difference correction unit 51 and a phase calculation unit 6.
  • the cosine component 1 and the sine component 2 are input to the phase difference correction unit 51.
  • the cosine component 1 has a phase difference (optical path difference) ⁇ between the reference light and the signal light.
  • the sine component 2 has substantially the same amplitude as the cosine component 1 and has a phase difference that is substantially ⁇ / 2 shifted from the cosine component 1.
  • the phase difference correction unit 51 generates a phase difference correction cosine component 52 and a phase difference correction sine component 53 using the phase difference error component ⁇ .
  • the generated phase difference correction cosine component 52 and phase difference correction sine component 53 are input to the phase calculator 6.
  • the phase calculation unit 6 outputs a phase difference component 7.
  • the phase difference correction unit 51 includes LPFs 61 and 62, amplifiers 63, 64, 65 and 66, and addition calculation units 67 and 68.
  • the LPF 61 generates a signal according to the phase noise component ⁇ noise other than the signal component ⁇ sig from the cosine component 1 input to the phase difference correction unit 51 and outputs the signal.
  • the LPF 62 generates a signal according to the phase noise component ⁇ noise other than the signal component ⁇ sig from the sine component 2 input to the phase difference correction unit 51 and outputs the signal.
  • the LPF 61 and the LPF 62 can ideally separate the frequency band of the signal component ⁇ sig and the frequency band of the phase noise component ⁇ noise , the following expression (11) is established. Therefore, the phase noise component ⁇ noise itself is treated as the phase difference error component ⁇ , and the phase noise component ⁇ noise can be suppressed.
  • Signal according to the phase noise component phi noise generated by the LPF61 includes an error correction gain ⁇ next to the amplifier 63, the signal according to the phase noise component phi noise generated by the LPF 62, the error correction of the amplifier 65, 66 Gain ⁇ .
  • the error correction gain ⁇ and the error correction gain ⁇ are expressed by the following equations (12) and (13).
  • the amplifier 63 multiplies the cosine component 1 by ⁇
  • the amplifier 64 multiplies the sine component 2 by ⁇
  • the amplifier 65 multiplies the cosine component 1 by ⁇
  • the amplifier 66 multiplies the sine component 2 by ⁇ .
  • Outputs from the amplifiers 63, 64, 65, and 66 are expressed by the following equations (14) to (17).
  • Output from the amplifier 63 A 2 cos ⁇ cos ⁇ (14) Output from the amplifier 64: A 2 sin ⁇ cos ⁇ (15) Output from the amplifier 65: A 2 cos ⁇ sin ⁇ (16) Output from amplifier 66: A 2 sin ⁇ sin ⁇ (17)
  • the addition operation unit 67 adds the output from the amplifier 63 and the output from the amplifier 66. As a result, the addition operation unit 67 outputs the phase difference correction cosine component 52 expressed by the following equation (18).
  • the addition operation unit 68 subtracts the output from the amplifier 65 from the output from the amplifier 64. As a result, the addition operation unit 68 outputs the phase difference correction sine component 53 represented by the following equation (19).
  • Equations (18) and (19) are obtained by multiplying cosine component 1 and sine component 2 by a gain according to phase difference error component ⁇ correlated with phase noise component ⁇ noise , respectively. This shows that a phase difference correction cosine component 52 and a phase difference correction sine component 53 obtained by removing the phase difference error component ⁇ from the phase difference component ⁇ are obtained.
  • the phase difference correction unit 51 detects the first phase difference error component (Acos ⁇ ) from the first signal (cosine component 1), and the second phase difference from the second signal (sine component 2).
  • An error component (Asin ⁇ ) is detected, the first signal is corrected based on the detected first phase difference error component, and the second signal is corrected based on the detected second phase difference error component.
  • the phase difference correction unit 51 can control to cancel the second term ( ⁇ noise ) of the right side of Expression (8) by the third term ( ⁇ ) of the right side, as in the first embodiment. It becomes possible. As a result, it is possible to reproduce a modulated signal that does not cause a discontinuity in arctangent calculation regardless of the range of the phase noise component ⁇ noise that is much larger than the signal component ⁇ sig .
  • the phase difference correction unit 51 of the second embodiment has a micrometer order of ⁇ several hundreds from a minute variation in the range of ⁇ ⁇ that is nanometer order. Even large fluctuations in ⁇ can be detected continuously. Therefore, it is possible to suppress a nanometer-order phase noise component that is very difficult to follow with an actuator, and a high S / N reproduction is possible.
  • the first error correction gain calculation unit 17 and the first error correction gain calculation unit 18 as shown in FIG. 2 of the first embodiment perform cosine transformation on the phase difference error component ⁇ .
  • the sine conversion is unnecessary, and the cosine component and the sine component according to the phase noise component can be directly handled.
  • phase difference correction unit 51 corresponds to an example of a correction unit
  • phase calculation unit 6 corresponds to an example of a phase calculation unit
  • the signal output from the LPF 61 is directly used as the gain of the amplifiers 63 and 64, and the signal output from the LPF 62 is directly used as the gain of the amplifiers 65 and 66.
  • the amplifiers 63, 64, 65, 66 may be configured to suppress the phase noise component ⁇ noise by using a value obtained by amplifying the output signals of the LPF 61 and the LPF 62 by an arbitrary value ⁇ as a gain.
  • the amplifiers 63, 64, 65, 66 output from the phase difference correction unit 51 by using as a gain a value amplified by an arbitrary value ⁇ that normalizes the amplitude component A of the output signals of the LPF 61 and the LPF 62.
  • the amplitude components of the phase difference correction cosine component 52 and the phase difference correction sine component 53 to be set may be “A”.
  • the waviness of the recording surface of the optical disc medium has been described as an example of the fluctuation factor due to the disturbance.
  • the fluctuation component in the frequency band lower than the modulation signal which has a fluctuation factor such as a temperature change, Cancellation is possible by the configuration of the second embodiment.
  • phase difference correction unit 51 may be configured to be able to separate noise components other than signal components.
  • the phase difference correction unit 51 may include a band elimination filter (BEF), a band pass filter (BPF), or a high pass filter (HPF) that can remove the frequency band of the signal component.
  • BEF band elimination filter
  • BPF band pass filter
  • HPF high pass filter
  • the phase difference correction unit 51 may separate a noise component other than the signal component by converting a time domain signal into a frequency domain signal using Fourier transform and dividing a band in the frequency domain.
  • phase difference correction unit 51 and the phase calculation unit 6 may be integrated in one LSI.
  • the functions of the phase difference correction unit 51 and the phase calculation unit 6 may be realized by a computer executable program and a computer.
  • FIG. 3 is schematic diagrams showing the configuration of the modulation signal detection apparatus according to Embodiment 3 of the present invention.
  • the third embodiment will be specifically described.
  • FIG. 11 is a diagram showing the configuration of the phase difference calculation unit in the third embodiment of the present invention.
  • the phase difference calculation unit 30 includes a phase difference correction unit 71 and a phase calculation unit 6.
  • the cosine component 1 and the sine component 2 are input to the phase difference correction unit 71.
  • the cosine component 1 has a phase difference (optical path difference) ⁇ between the reference light and the signal light.
  • the sine component 2 has substantially the same amplitude as the cosine component 1 and has a phase difference that is substantially ⁇ / 2 shifted from the cosine component 1.
  • the phase difference correction unit 71 generates the phase difference correction cosine component 4 and the phase difference correction sine component 5 using the phase difference error component ⁇ .
  • the generated phase difference correction cosine component 4 and phase difference correction sine component 5 are input to the phase calculator 6.
  • the phase calculation unit 6 outputs a phase difference component 7.
  • the phase difference correction unit 71 includes amplifiers 81, 82, 83, 84, 89, 90, addition calculation units 85, 86, and LPFs 87, 88.
  • the amplifier 81 multiplies the cosine component 1 by ⁇
  • the amplifier 82 multiplies the sine component 2 by ⁇
  • the amplifier 83 multiplies the cosine component 1 by ⁇
  • the amplifier 84 multiplies the sine component 2 by ⁇ .
  • the amplifiers 81, 82, 83, and 84 give gains to the cosine component 1 and the sine component 2 input to the phase difference correction unit 71 and output them. Outputs from the amplifiers 81, 82, 83, and 84 are expressed by the following equations (20) to (23).
  • Output from the amplifier 81 A cos ⁇ cos ⁇ (20)
  • Output from the amplifier 82 Asin ⁇ cos ⁇ (21)
  • Output from the amplifier 83 A cos ⁇ sin ⁇ (22)
  • Output from amplifier 84 Asin ⁇ sin ⁇ (23)
  • phase difference error component ⁇ is generated by the LPFs 87 and 88 and the amplifiers 89 and 90.
  • the error correction gain ⁇ of the amplifiers 81 and 82 and the error correction gain ⁇ of the amplifiers 83 and 84 are expressed by the following equations (24) and (25).
  • the addition operation unit 85 adds the output from the amplifier 81 and the output from the amplifier 84. Thereby, the addition operation unit 85 outputs the phase difference correction cosine component 4 represented by the following equation (26).
  • the addition operation unit 86 subtracts the output from the amplifier 83 from the output from the amplifier 82. Thereby, the addition operation unit 86 outputs the phase difference correction sine component 5 expressed by the following equation (27).
  • Expressions (26) and (27) are obtained by multiplying the cosine component 1 and the sine component 2 by the gain calculated based on the phase difference error component ⁇ , respectively, and adding the phase difference from the phase difference component ⁇ . This shows that the phase difference correction cosine component 4 and the phase difference correction sine component 5 from which the error component ⁇ has been removed are obtained.
  • the phase difference correction cosine component 4 and the phase difference correction sine component 5 output from the addition calculation units 85 and 86 are input to the LPFs 87 and 88, respectively.
  • the LPFs 87 and 88 output the phase noise component ⁇ noise , which is a low frequency band component relative to the signal component ⁇ sig , or the difference between the phase noise component ⁇ noise and the phase difference error component ⁇ .
  • the amplifiers 89 and 90 multiply the respective phase difference error components of the phase difference correction cosine component 4 and the phase difference correction sine component 5 output from the LPFs 87 and 88 by ⁇ .
  • a value obtained by multiplying the phase difference error component by ⁇ is set as the gain of the amplifiers 81, 82, 83, 84.
  • the value of ⁇ at this time is a closed loop characteristic 1 / in the phase difference correction unit 71 when the transfer function by the combination of the LPF 87 and the amplifier 89 is H 1 and the transfer function by the combination of the LPF 88 and the amplifier 90 is H 2.
  • An arbitrary value is set in such a range that both (1 + H 1 ) and 1 / (1 + H 2 ) are stable.
  • the phase difference correction unit 71 can control to cancel the second term ( ⁇ noise ) of the right side of Expression (8) by the third term ( ⁇ ) of the right side, as in the first embodiment. It becomes possible. As a result, it is possible to reproduce a modulated signal that does not cause a discontinuity in arctangent calculation regardless of the range of the phase noise component ⁇ noise that is much larger than the signal component ⁇ sig .
  • the phase difference correction unit 71 of the third embodiment can detect ⁇ several hundreds of micrometer orders from minute fluctuations in a range of ⁇ ⁇ that is nanometer order. Even large fluctuations in ⁇ can be detected continuously. Therefore, it is possible to suppress a nanometer-order phase noise component that is very difficult to follow with an actuator, and a high S / N reproduction is possible.
  • phase difference correction unit 71 corresponds to an example of a correction unit
  • phase calculation unit 6 corresponds to an example of a phase calculation unit
  • the phase difference correction unit 71 has been described with reference to FIG. 12, but the present invention is not limited to this.
  • the phase difference correction unit 71 is stable in the closed loop characteristics of the cosine component and the sine component in the phase difference correction unit 71 of FIG. 11, and the second term ( ⁇ noise ) on the right side of Equation (8) is the third term on the right side.
  • Any configuration that can be controlled to cancel by ( ⁇ ) may be used.
  • the LPFs 87 and 88 may be primary LPFs or secondary or higher LPFs.
  • the phase difference correction unit 71 may include a phase compensation unit in order to stabilize the closed loop characteristics.
  • phase difference correction unit 71 may include an integrator instead of the LPFs 87 and 88.
  • the phase difference correction unit 71 may include an integrator that integrates the outputs of the amplifiers 89 and 90, and may output the values integrated by the integrators to the amplifiers 81, 82, 83, and 84. Also in this case, the same effect as in the third embodiment can be obtained.
  • phase difference correction unit 71 may be configured to be able to separate noise components other than signal components.
  • the phase difference correction unit 71 may include a band elimination filter (BEF), a band pass filter (BPF), or a high pass filter (HPF) that can remove the frequency band of the signal component.
  • BEF band elimination filter
  • BPF band pass filter
  • HPF high pass filter
  • the phase difference correction unit 71 may separate a noise component other than the signal component by converting a time domain signal into a frequency domain signal using Fourier transform and dividing a band in the frequency domain.
  • the undulation of the recording surface of the optical disk medium has been described as an example of the fluctuation factor due to disturbance.
  • the fluctuation component in the frequency band lower than the modulation signal which has a fluctuation factor such as a temperature change, Cancellation is possible by the configuration of the third embodiment.
  • phase difference correction unit 71 and the phase calculation unit 6 may be integrated in one LSI.
  • the functions of the phase difference correction unit 71 and the phase calculation unit 6 may be realized by a computer executable program and a computer.
  • FIG. 13 and FIG. 14 are diagrams showing a configuration of a modulation signal detection apparatus in which signal light is modulated by an optical disk medium in Embodiment 4 of the present invention.
  • FIG. 13 is a diagram showing a configuration of the optical disc apparatus according to Embodiment 4 of the present invention.
  • the optical disc apparatus 300 reproduces data from the optical disc medium 301 or records data on the optical disc medium 301 using a clock signal generated from the optical disc medium 301 in which information is recorded.
  • the optical disc apparatus 300 includes a disc rotation motor 302, an optical head drive unit 304, a servo circuit 305, an optical head unit 306, and a signal processing unit 316.
  • the servo circuit 305 uses the servo error signal to control the lens driving unit 308 so that the light beam condensing state and the scanning state in the objective lens 307 are optimized.
  • the servo circuit 305 controls the optical head drive unit 304 so that the optical head unit 306 moves to an optimal radial position of the optical disc medium 301.
  • the servo circuit 305 optimally controls the rotational speed of the disk rotation motor 302 based on the radial position on the optical disk medium 301 that irradiates the light beam.
  • the optical disk medium 301 has at least one data recording surface. A track is formed on the data recording surface. Information is recorded on the track according to a predetermined data format.
  • the optical disk medium 301 has the same configuration as the optical disk medium 203 shown in FIG. FIG. 30 shows an example in which the phase of light is modulated in an optical disk medium. Data is recorded by forming continuous grooves 203g or discontinuous holes 203h in which the transmittance or refractive index is changed in the recording surface 203a. When the signal light is irradiated to the grooves 203g or the holes 203h, the phase-modulated signal light is reflected due to a difference in distance from the incidence to the optical disk medium to the reflection position. The signal light is reflected light from the optical disk medium 301.
  • the optical disk medium 301 in the fourth embodiment is not limited to the optical disk medium 203 shown in FIG. 30, and an optical disk medium in which the position where the signal light is reflected may be changed.
  • the optical disk medium 301 may be an optical disk medium in which the amount of signal light varies depending on the pit depth corresponding to binary values, such as a conventional CD-ROM, DVD-ROM, or BD-ROM. In this case, the phase of the reflected light is changed by multi-level modulation of the pit depth.
  • the optical disk medium 301 may be an optical disk medium whose reflectance is changed, such as a conventional CD-R / RW, DVD-R / RW / RAM, DVD + R / RW, or BD-R / RE. In this case, the phase of the reflected light changes by changing the position where the reflectance is changed. Even if such an optical disk medium is used, the effect of the fourth embodiment can be obtained.
  • the disk rotation motor 302 rotates the optical disk medium 301 at a specified number of rotations.
  • the signal processing unit 316 Based on the interference light detection signal output from the optical head unit 306, the signal processing unit 316 reproduces the data recorded on the optical disk medium 301, the disk rotation motor 302, the optical head drive unit 304, and the lens drive. Servo error signals for controlling the unit 308 are generated.
  • the optical head unit 306 includes a laser 309, a polarization beam splitter 310, ⁇ / 4 plates 311 and 312, a reference light mirror 313, an objective lens 307, a lens driving unit 308, and an interference light detection unit 315. .
  • the optical head unit 306 irradiates the optical disk medium 301 with a light beam, detects the light that interferes with the signal light reflected from the optical disk medium 301 and the reference light while scanning the track, and outputs an electrical signal.
  • the laser 309 emits laser light.
  • the polarization beam splitter 310 transmits almost 100% of the horizontally polarized light incident on the separation surface and reflects almost 100% of the vertically polarized light.
  • the polarization beam splitter 310 splits the laser light emitted from the laser 309 into vertically polarized signal light and horizontally polarized reference light.
  • the branched signal light passes through the ⁇ / 4 plate 311 on the optical path twice, so that the polarization direction is rotated by 90 degrees and returns to the polarization beam splitter 310.
  • the branched reference light passes through the ⁇ / 4 plate 312 on the optical path twice so that the polarization direction is rotated by 90 degrees and returns to the polarization beam splitter 310.
  • the signal light that has been horizontally polarized is transmitted through the polarization beam splitter 310 and the reference light that has been vertically polarized is the polarization beam splitter. 310 is reflected. And it becomes the interference light by the signal light and the reference light whose polarization planes are orthogonal to each other.
  • the polarization plane of the laser light incident on the polarization beam splitter 310 can be changed by changing the intensity ratio between the signal light and the reference light by rotating the laser 309 in advance.
  • the objective lens 307 condenses the signal light on the optical disc medium 301 and makes the signal light reflected from the optical disc medium 301 into parallel light.
  • the signal light converted into parallel light returns the optical path of the signal light in the forward path.
  • the objective lens 307 is driven in the focus direction and the tracking direction by the lens driving unit 308.
  • ⁇ / 4 plates 311 and 312 transmit light to convert linearly polarized light into circularly polarized light and convert circularly polarized light into linearly polarized light.
  • the linearly polarized light passes through the ⁇ / 4 plates 311 and 312 twice and becomes linearly polarized light whose polarization plane is rotated by 90 degrees. For example, vertical polarization is converted to horizontal polarization, and horizontal polarization is converted to vertical polarization.
  • the reference light mirror 313 reflects almost 100% of the reference light branched from the laser light.
  • the reference light reflected by the reference light mirror 313 returns on the same optical path as the forward path.
  • the interference light detection unit 315 detects the combined light of the signal light reflected from the optical disc medium 301 and the reference light reflected from the reference light mirror 313, and outputs an electrical signal.
  • the interference light detection unit 315 detects interference light in which at least three phase differences between the signal light and the reference light are different, and outputs an electrical signal.
  • FIG. 14 is a diagram illustrating a specific configuration of the interference light detection unit 315 according to the fourth embodiment.
  • the interference light detection unit 315 illustrated in FIG. 14 includes a half beam splitter (HBS) 321, a ⁇ / 2 plate 322, a ⁇ / 4 plate 323, a first PBS 324, a second PBS 325, and a first detection. 326, second detector 327, third detector 328, fourth detector 329, first arithmetic circuit 330, second arithmetic circuit 331, and phase difference arithmetic unit 10 Is provided.
  • HBS half beam splitter
  • the HBS 321 reflects and transmits the incident combined light (interference light) with almost the same intensity in two directions.
  • the ⁇ / 2 plate 322 rotates the polarization direction of the combined light transmitted through the HBS 321 by 45 degrees.
  • the first PBS 324 transmits almost 100% of the horizontal polarization of the combined light whose polarization direction is rotated by 45 degrees, and reflects almost 100% of the vertical polarization.
  • the first detector 326 and the second detector 327 output an electrical signal corresponding to the amount of incident light.
  • the first detector 326 detects light that interferes with the horizontal polarization direction of the combined light whose polarization direction is rotated by 45 degrees, and outputs an electric signal corresponding to the light amount.
  • the second detector 327 detects light that interferes with the vertical polarization direction of the combined light whose polarization direction is rotated by 45 degrees, and outputs an electrical signal corresponding to the light amount.
  • the first arithmetic circuit 330 outputs a differential signal between the electrical signal output from the first detector 326 and the electrical signal output from the second detector 327.
  • the ⁇ / 4 plate 323 rotates the polarization direction of the combined light reflected from the HBS 321 by 45 degrees, and ⁇ / 2 (90 degrees) between the signal light component and the reference light component of each of the vertically polarized light and the horizontally polarized light. Give the phase difference.
  • the second PBS 325 transmits almost 100% of the horizontally polarized light of the combined light that has passed through the ⁇ / 4 plate 323 and reflects almost 100% of the vertically polarized light.
  • the third detector 328 and the fourth detector 329 output an electrical signal corresponding to the amount of incident light.
  • the third detector 328 detects light that has interfered with the horizontal polarization direction of the combined light that has passed through the ⁇ / 4 plate 323, and outputs an electrical signal corresponding to the amount of light.
  • the fourth detector 329 detects light that has interfered with the vertical polarization direction of the combined light that has passed through the ⁇ / 4 plate 323, and outputs an electrical signal corresponding to the amount of light.
  • the second arithmetic circuit 331 outputs a differential signal between the electrical signal output from the third detector 328 and the electrical signal output from the fourth detector 329.
  • the phase difference calculation unit 10 performs a calculation based on the electric signal output from the first calculation circuit 330 and the electric signal output from the second calculation circuit 331, and outputs an interference light detection signal.
  • E d is the electric field of the signal light reflected from the optical disc medium 301
  • Ad is the amplitude component of the electric field of the signal light
  • E m is the electric field of the reference light reflected by the reference mirror 313
  • a m is the amplitude component of the electric field of the reference beam.
  • represents a phase component related to the wavelength ⁇ , time t and location z of the laser light
  • ⁇ sig represents a signal component phase-modulated by the optical disc medium 301
  • ⁇ noise S and ⁇ noise M are optical path difference fluctuations, etc. Represents a phase noise component caused by a phase difference fluctuation between the electric field of the signal light and the electric field of the reference light caused by the above.
  • the Jones vector of the light transmitted through the HBS 321 and transmitted through the ⁇ / 2 plate 322 is expressed by the following equation (29).
  • the ⁇ / 2 plate 322 is arranged so that the direction of 22.5 degrees is the fast axis when viewed from the horizontal polarization direction.
  • the fast axis is a vibration direction in which light travels fast in the wave plate.
  • the vibration direction in which light travels slowly is called the slow axis.
  • the electric field of the light that passes through the first PBS 324 and the electric field of the light that reflects the first PBS 324 are expressed by the following equations (30) and (31), respectively.
  • the detection signals of the first detector 326 and the second detector 327 are expressed by the following equations (32) and (33).
  • Equation (32) and Equation (33) ⁇ is the conversion efficiency of the detector. ⁇ is a phase difference due to the optical path length difference between the signal light and the reference light.
  • the differential signal obtained in the first arithmetic circuit 330 based on the detection signals of the first detector 326 and the second detector 327 is expressed by the following equation (34).
  • the Jones vector of the light reflected from the HBS 321 and transmitted through the ⁇ / 4 plate 323 is expressed by the following equation (35).
  • the ⁇ / 4 plate 323 is arranged so that the direction of 45 degrees is the fast axis when viewed from the horizontal polarization direction.
  • the detection signals of the third detector 328 and the fourth detector 329 are expressed by the following expressions (38) and (39).
  • the differential signal obtained in the second arithmetic circuit 331 based on the detection signals of the third detector 328 and the fourth detector 329 is expressed by the following equation (40).
  • the cosine component and the sine component calculated based on Expression (34) and Expression (40) are input to the phase difference calculation unit 10.
  • the phase difference calculator 10 outputs a signal ( ⁇ sig ) in which the phase noise component ⁇ noise is canceled from the phase difference component ⁇ as an interference detection signal.
  • the phase difference calculation unit 10 has the same configuration as that of the first embodiment, and a description thereof is omitted.
  • the modulation code is devised so that the frequency bands of the modulation signal component and the phase difference error component do not overlap in advance. Therefore, the signal component ( ⁇ sig ) and the phase difference error component ( ⁇ noise ⁇ ) can be separated by the simple LPF 21 shown in FIG.
  • the control frequency characteristic needs to be about 1/10 of the band of the LPF to be used.
  • phase difference error component separation method there is a method in which the reproduction signal always samples a specific level (for example, the zero cross point of the interference light detection signal).
  • the phase difference error component detected by the phase difference error detection unit 8 in this way is feedback-controlled by the phase difference correction unit 3 as a phase difference error correction value.
  • FIG. 15 is a diagram illustrating a specific configuration of the signal processing unit according to the fourth embodiment.
  • the signal processing unit 316 includes a reproduction signal processing unit 341 and a control signal processing unit 342.
  • the reproduction signal processing unit 341 reproduces data recorded on the optical disc medium 301 from the interference light detection signal, and generates a reproduction signal.
  • the control signal processing unit 342 generates a servo error signal based on the interference light detection signal, and outputs the generated servo error signal to the servo circuit 305.
  • the phase difference correction unit of the phase difference calculation unit 10 cancels out the second term ( ⁇ noise ) of the right side of Expression (8) by the third term ( ⁇ ) of the right side, as in the first embodiment. It becomes possible to control to. As a result, it is possible to reproduce a modulated signal that does not cause a discontinuity in arctangent calculation regardless of the range of the phase noise component ⁇ noise that is much larger than the signal component ⁇ sig .
  • phase difference error detection unit of the fourth embodiment as in the first embodiment, from a minute fluctuation in the range of ⁇ ⁇ which is a nanometer order to a large fluctuation of ⁇ hundreds of ⁇ in the micrometer order, It can be detected continuously. Therefore, it is possible to suppress a nanometer-order phase noise component that is very difficult to follow with an actuator, and an optical disc apparatus capable of reproducing at a high S / N is possible.
  • the optical disk device 300 corresponds to an example of a modulation signal detection device
  • the half beam splitter 321 corresponds to an example of a branching unit
  • the third detector 328 and the fourth detector 329 correspond to an example of at least three detectors
  • the first arithmetic circuit 330 and the second arithmetic circuit 331 correspond to an example of a detection signal arithmetic unit.
  • the intensity ratio between the signal light on the polarization plane of the laser light incident on the polarization beam splitter 310 and the reference light can be changed by rotating the laser 309 in advance.
  • the optical head unit 306 may include a ⁇ / 2 plate between the laser 309 and the polarization beam splitter 310. As described above, by rotating the ⁇ / 2 plate, the polarization plane of the laser light may rotate, and the intensity ratio between the signal light and the reference light may be varied.
  • the undulation of the recording surface of the optical disk medium has been described as an example of the fluctuation factor due to the disturbance.
  • the fluctuation component in the frequency band lower than the modulation signal which is caused by a temperature change or the like, Cancellation is possible with the configuration of the fourth embodiment.
  • the signal processing unit 316 is disposed outside the optical head unit 306, but the optical head unit 306 may include the signal processing unit 316.
  • the phase difference calculation unit 10 in the interference light detection unit 315 is arranged in the optical head unit 306, but the phase difference calculation unit 10 is arranged outside the optical head unit 306. May be.
  • the phase difference calculation unit 10 and the signal processing unit 316 may be integrated in one LSI.
  • the phase difference error detection unit 8 has been described with reference to FIG. 4, but the present invention is not limited to this.
  • the phase difference error detection unit 8 has a stable closed loop characteristic including the phase difference correction unit 3, the phase calculation unit 6, and the phase difference error detection unit 8 of FIG. 1, and the second term ( ⁇ of the right side of Expression (8)) Any configuration can be used as long as it can be controlled to cancel out ( noise ) by the third term ( ⁇ ) on the right side.
  • the LPF 21 may be a primary LPF or a secondary or higher LPF.
  • the phase difference error detection unit 8 may include a phase compensation unit in order to stabilize the closed loop characteristics.
  • phase difference error detection unit 8 may include an integrator instead of the LPF 21. Further, as shown in FIG. 7, the phase difference error detection unit 8 may include an integrator 23 that integrates the outputs from the amplifier 22 and outputs the integrated value to the phase difference correction unit 3. Also in this case, the same effect as in the fourth embodiment can be obtained.
  • the phase difference correction unit 3 has been described with reference to FIG. 2, but the present invention is not limited to this. Any configuration may be used as long as the cosine component and the sine component having the phase difference component ⁇ are corrected to the phase difference correction cosine component and the phase difference correction sine component by using the phase difference error component ⁇ .
  • the first error correction gain calculation unit 17 and the second error correction gain calculation unit 18 shown in FIG. 2 do not use the above equations (3) and (4), but use a lookup table or the like.
  • the error correction gains ⁇ and ⁇ may be determined using them.
  • the cosine component 1 is multiplied by ⁇ by the amplifier 13, and the cosine component 1 multiplied by ⁇ and the sine component 2 multiplied by ⁇ are added by the addition calculation unit 16.
  • the cosine component 1 may be multiplied by ⁇ by the amplifier 13, and the cosine component 1 multiplied by ⁇ from the ⁇ component multiplied by ⁇ may be subtracted by the addition operation unit 16. In this case, the same effect as in the fourth embodiment can be obtained.
  • the phase difference correction unit 3 includes amplifiers 11, 12, 13, and 14, addition calculation units 15 and 16, a first error correction gain calculation unit 17, and a third error correction.
  • a gain calculation unit 31 and an error correction lookup table (LUT) 32 may be provided.
  • the first error correction gain calculator 17 refers to the error correction look-up table (LUT) 32 and calculates an error correction gain ⁇ from the phase difference error component ⁇ .
  • the third error correction gain calculator 31 refers to the error correction LUT 32 and calculates a value obtained by shifting the phase by ⁇ / 2 from the input error correction gain ⁇ as the error correction gain ⁇ . In this case, the same effect as in the fourth embodiment can be obtained.
  • the phase difference correction unit 3 includes multiplication units 41, 42, 43, and 44, and an addition calculation unit. 15, 16, a first error correction gain calculation unit 17, and a second error correction gain calculation unit 18 may be provided.
  • the multiplier 41 may multiply the cosine component 1 by the error correction gain ⁇
  • the multiplier 42 may multiply the sine component 2 by the error correction gain ⁇
  • the multiplier 43 may 1 may be multiplied by the error correction gain ⁇
  • the multiplication unit 44 may multiply the sine component 2 by the error correction gain ⁇ .
  • the phase calculation unit 6 generates the phase difference component 7 using the above equation (7), but the present invention is not limited to this.
  • the phase calculation unit 6 may include a lookup table that holds in advance a phase difference component 7 obtained as a result of arctangent calculation.
  • the phase calculation unit 6 may convert the phase difference correction cosine component 4 and the phase difference correction sine component 5 into the phase difference component 7 using a lookup table.
  • the phase calculation unit 6 may calculate the phase difference component 7 by performing case classification as in the above formula (9) or formula (10).
  • the noise component other than the signal component is separated by the LPF 21 of the phase difference error detection unit 8, but the present invention is not limited to this.
  • the phase difference error detection unit 8 only needs to have a configuration capable of separating noise components other than signal components.
  • the phase difference error detection unit 8 may include a band elimination filter (BEF), a band pass filter (BPF), or a high pass filter (HPF) that can remove the frequency band of the signal component.
  • the phase difference error detection unit 8 may separate a noise component other than a signal component by converting a time domain signal into a frequency domain signal using Fourier transform and dividing a band in the frequency domain.
  • the signal processing unit 316 may be configured to be integrated in one LSI.
  • phase difference correction unit 3, the phase calculation unit 6, and the phase difference error detection unit 8 may be integrated in one LSI.
  • the functions of the phase difference correction unit 3, the phase calculation unit 6, and the phase difference error detection unit 8 may be realized by a computer executable program and a computer.
  • the programs of the phase difference correction unit 3, the phase calculation unit 6, and the phase difference error detection unit 8 are represented by the flowchart shown in FIG.
  • the interference light detector 315 may include three or more detectors, and each detector may detect the interference light so that the phase difference between the signal light and the reference light is different from each other.
  • the interference light detection unit 315 detects a branching unit that branches the interference light between the signal light and the reference light into at least three lights, and at least three lights branched by the branching unit, and according to the detected light amount And at least three detectors for outputting the detected signals, respectively, and a detection signal calculation unit for calculating the first signal and the second signal based on the detection signals output by the at least three detectors.
  • the phase difference between the signal light and the reference light at each detector is a combination of 0 degrees, 120 degrees, and 240 degrees, or -120 degrees, 0 degrees. And a combination of 120 degrees.
  • the interference light detection unit 315 includes four detectors as shown in FIG. 14, but the present invention is not limited to this, and the interference light detection unit 315 includes three or more interference light detection units 315.
  • the cosine component and the sine component can be generated by the detectors.
  • FIG. 16 is a diagram illustrating a configuration of an interference light detection unit including three detectors in Embodiment 4 of the present invention. At this time, the phase difference between the signal light and the reference light on each detector is 0, 2 ⁇ / 3, and 4 ⁇ / 3.
  • the interference light detector 450 shown in FIG. 16 includes non-polarizing beam splitters 451 and 452, polarizers 453, 454, and 455, a phase plate 456, a phase plate 457, a first detector 458, and a second detector A detector 459, a third detector 460, a detection signal calculator 461, and a phase difference calculator 10 are provided.
  • the polarizers 453, 454, and 455 transmit 45-degree polarized light.
  • the phase plate 456 generates a phase difference of 5 ⁇ / 3 between the signal light and the reference light.
  • the phase plate 457 generates a phase difference of ⁇ / 3 between the signal light and the reference light.
  • the non-polarizing beam splitter 451 splits the interference light incident on the interference light detection unit 450 at a 2: 1 intensity ratio.
  • the ratio of the reflected light and transmitted light of the non-polarizing beam splitter 451 is 2: 1.
  • the ratio between the reflected light and the transmitted light is the intensity division ratio.
  • the non-polarizing beam splitter 451 generates a phase difference of ⁇ between the signal light and the reference light with respect to the reflected light.
  • the light reflected by the non-polarizing beam splitter 451 enters the non-polarizing beam splitter 452.
  • the non-polarizing beam splitter 452 divides the incident light at a 1: 1 intensity ratio.
  • the ratio of the reflected light and transmitted light of the non-polarizing beam splitter 452 is 1: 1.
  • the ratio between the reflected light and the transmitted light is the intensity division ratio.
  • the non-polarizing beam splitter 452 generates a phase difference of ⁇ between the signal light and the reference light with respect to the reflected light.
  • the light transmitted through the non-polarizing beam splitter 452 enters the polarizer 455.
  • the polarizer 455 transmits only 45-degree polarized light out of the incident light.
  • the light transmitted through the polarizer 455 is detected by the first detector 458.
  • the first detector 458 since the light detected by the first detector 458 is reflected by the non-polarizing beam splitter 451, there is a phase difference of ⁇ between the signal light and the reference light.
  • the light reflected by the non-polarizing beam splitter 452 enters the phase plate 456.
  • the phase plate 456 generates a phase difference of 5 ⁇ / 3 between the signal light and the reference light with respect to the incident light.
  • the signal light and the reference light which are the sum of the phase difference due to reflection at the non-polarization beam splitter 451, the phase difference due to reflection at the non-polarization beam splitter 452, and the phase difference due to transmission through the phase plate 456, are combined.
  • the polarizer 454 transmits only 45-degree polarized light in the incident light.
  • the light transmitted through the polarizer 454 is detected by the second detector 459.
  • the light transmitted through the non-polarizing beam splitter 451 enters the phase plate 457.
  • the phase plate 457 generates a phase difference of ⁇ / 3 between the signal light and the reference light with respect to the incident light.
  • Light having a phase difference of ⁇ / 3 between the signal light and the reference light is incident on the polarizer 453.
  • the polarizer 453 transmits only 45-degree polarized light in the incident light.
  • the light transmitted through the polarizer 453 is detected by the third detector 460.
  • the intensity of light detected by each detector is expressed by the following equations (41) to (43).
  • the detection signal calculation unit 461 Based on the following formulas (44) and (45), the detection signal calculation unit 461 generates signals I A , detected by the first detector 458, the second detector 459, and the third detector 460.
  • a cosine component (Acos ⁇ ) and a sine component (Asin ⁇ ) are calculated from I B and I C.
  • the interference light detection unit 315 is not limited to the configuration shown in FIG.
  • a ⁇ / 2 plate and a ⁇ / 4 plate are used as optical elements for obtaining a signal having a different phase difference between the signal light and the reference light.
  • a composite optical functional element such as an optical waveguide may be used.
  • the interference light detection unit 315 and the signal processing unit 316 may be configured to be integrated into one LSI in which an optical waveguide, an electric circuit, and an electronic circuit are integrated.
  • the configuration of the phase difference calculation unit 10 has been described with reference to FIGS. 1, 2, and 4.
  • the present invention is not limited to this.
  • a configuration in which a cosine component and a sine component having a phase difference component ⁇ having a signal component and a phase noise component are corrected into a phase difference correction cosine component and a phase difference correction sine component using a phase difference error component ⁇ . If it is.
  • the first error correction gain calculation unit 17 and the second error correction gain calculation unit 18 shown in FIG. 2 do not use the above equations (3) and (4), but use a lookup table or the like.
  • the error correction gains ⁇ and ⁇ may be determined using them.
  • the cosine component 1 is multiplied by ⁇ by the amplifier 13, and the cosine component 1 multiplied by ⁇ and the sine component 2 multiplied by ⁇ are added by the addition calculation unit 16.
  • the cosine component 1 may be multiplied by ⁇ by the amplifier 13, and the cosine component 1 multiplied by ⁇ from the ⁇ component multiplied by ⁇ may be subtracted by the addition operation unit 16. In this case, the same effect as in the fourth embodiment can be obtained.
  • the phase difference correction unit 3 includes amplifiers 11, 12, 13, and 14, addition calculation units 15 and 16, a first error correction gain calculation unit 17, and a third error correction.
  • a gain calculation unit 31 and an error correction lookup table (LUT) 32 may be provided.
  • the first error correction gain calculator 17 refers to the error correction look-up table (LUT) 32 and calculates an error correction gain ⁇ from the phase difference error component ⁇ .
  • the third error correction gain calculator 31 refers to the error correction LUT 32 and calculates a value obtained by shifting the phase by ⁇ / 2 from the input error correction gain ⁇ as the error correction gain ⁇ . In this case, the same effect as in the fourth embodiment can be obtained.
  • the phase difference correction unit 3 includes multiplication units 41, 42, 43, and 44, and an addition operation as shown in FIG. Units 15 and 16, a first error correction gain calculation unit 17, and a second error correction gain calculation unit 18 may be provided.
  • the multiplier 41 may multiply the cosine component 1 by the error correction gain ⁇
  • the multiplier 42 may multiply the sine component 2 by the error correction gain ⁇
  • the multiplier 43 may 1 may be multiplied by the error correction gain ⁇
  • the multiplication unit 44 may multiply the sine component 2 by the error correction gain ⁇ .
  • phase difference calculation unit may have the configuration shown in FIGS. 9 and 10 or the configuration shown in FIGS. 11 and 12. In this case, the same effect as that of the fourth embodiment can be obtained.
  • FIG. 5 17 is diagrams showing a configuration of a modulation signal detection apparatus in which signal light is modulated by an optical disk medium in Embodiment 5 of the present invention.
  • FIGS. 13 and 14 the same components as those in FIGS. 13 and 14 are denoted by the same reference numerals, and description thereof is omitted.
  • FIG. 19 the same components as those in FIG.
  • FIG. 17 is a diagram showing a configuration of the optical disc apparatus according to Embodiment 5 of the present invention.
  • FIG. 18 is a diagram illustrating a specific configuration of the interference light detection unit according to the fifth embodiment of the present invention.
  • FIG. 19 is a diagram showing the configuration of the phase difference calculation unit in the fifth embodiment of the present invention.
  • the optical disc apparatus 400 reproduces data from the optical disc medium 301 or records data on the optical disc medium 301 using a clock signal generated from the optical disc medium 301 in which information is recorded.
  • the optical disk device 400 includes a disk rotation motor 302, an optical head drive unit 304, a servo circuit 305, an optical head unit 351, and a signal processing unit 316.
  • the optical head unit 351 includes a laser 309, a polarization beam splitter 310, ⁇ / 4 plates 311 and 312, a reference light mirror 313, an objective lens 307, a lens driving unit 308, an interference light detection unit 315, a focus A circuit 352.
  • the interference light detection unit 315 includes a half beam splitter (HBS) 321, a ⁇ / 2 plate 322, a ⁇ / 4 plate 323, a first PBS 324, and a second PBS 325.
  • the phase difference calculation unit 360 includes a phase difference correction unit 3, a phase calculation unit 6, a phase difference error detection unit 8, and a focus error signal generation unit 361.
  • the focus circuit 352 performs focus control of the lens driving unit 308 based on the focus error signal output from the phase difference calculation unit 360 (see FIG. 18) in the interference light detection unit 315.
  • the focus error signal generation unit 361 generates a focus error signal based on the phase difference error component ⁇ output from the phase difference error detection unit 8.
  • the phase difference error component ⁇ is correlated with the phase noise component ⁇ noise detected by the phase difference error detection unit 8.
  • a major factor of the phase noise component ⁇ noise is an optical path difference variation caused by waviness or warpage of the recording surface of the optical disc medium 301. Therefore, the focus error signal generation unit 361 can handle the phase difference error component ⁇ detected by the phase difference error detection unit 8 as a focus error signal.
  • the phase difference correction unit 3 can control to cancel the second term ( ⁇ noise ) on the right side of Equation (8) by the third term ( ⁇ ) on the right side. It becomes possible. As a result, it is possible to reproduce a modulated signal that does not cause a discontinuity in arctangent calculation regardless of the range of the phase noise component ⁇ noise that is much larger than the signal component ⁇ sig .
  • phase difference error detection unit 8 of the fifth embodiment similarly to the first embodiment, from a minute fluctuation in the range of ⁇ ⁇ , which is in the nanometer order, to a large fluctuation of ⁇ several hundreds of ⁇ in the micrometer order. , Can be detected continuously. Therefore, it is possible to suppress a nanometer-order phase noise component that is very difficult to follow with an actuator, and a high S / N reproduction is possible. Further, in the fifth embodiment, focus control using the phase difference error component ⁇ is possible.
  • the optical disk device 400 corresponds to an example of a modulation signal detection device
  • the half beam splitter 321 corresponds to an example of a branching unit
  • the third detector 328 and the fourth detector 329 correspond to an example of at least three detectors
  • the first arithmetic circuit 330 and the second arithmetic circuit 331 correspond to an example of a detection signal arithmetic unit.
  • FIG. 20 is a diagram showing an overall configuration of an optical transmission system 370 according to Embodiment 6 of the present invention.
  • FIG. 21 is a diagram illustrating a configuration of the optical transmitter illustrated in FIG. 20.
  • FIG. 22 is a diagram illustrating an example of the transmission light modulation unit illustrated in FIG.
  • FIG. 23 is a diagram showing a configuration of the modulation signal detection apparatus shown in FIG.
  • FIG. 23 the same components as those in FIGS. 13 and 14 are denoted by the same reference numerals, and the description thereof is omitted.
  • the optical transmission system 370 includes an optical transmitter 371, an optical transmission path 372, and a modulation signal detection device 373.
  • the optical transmitter 371 outputs a phase-modulated optical signal.
  • the optical signal output from the optical transmitter 371 is input to the modulation signal detection device 373 via the optical transmission path 372.
  • the optical transmitter 371 illustrated in FIG. 21 includes a laser 391, a transmission control unit 392, a transmission light modulation unit 393, a transmission signal processing unit 394, and a modulation control unit 395.
  • the transmission signal processing unit 394 receives transmission data.
  • the transmission signal processing unit 394 that has received the transmission data notifies the transmission control unit 392 that data transmission is to be performed, generates a phase modulation signal based on the transmission data, and outputs the generated phase modulation signal to the modulation control unit 395.
  • the transmission control unit 392 controls the laser 391 so that the transmission light is emitted from the laser 391.
  • the transmission light emitted from the laser 391 is guided to the transmission light modulation unit 393.
  • the modulation control unit 395 performs phase modulation on the transmission light by changing the refractive index of the transmission light modulation unit 393 based on the received phase modulation signal.
  • the transmission light is phase-modulated by the transmission light modulation unit 393 and becomes signal light.
  • the transmission light modulation unit 393 phase-modulates the transmission light by changing the refractive index, but the present invention is not limited to this.
  • the transmission light modulation unit 393 may phase-modulate the transmission light by changing the actual optical path length using, for example, a plurality of optical elements such as mirrors or optical fibers. In this case also, the effect of the present invention is realized. it can.
  • the transmission light modulation unit 393 includes an entrance mirror 401, a drive mirror 402, and an exit mirror 403.
  • the transmission light incident on the transmission light modulation unit 393 is reflected by the incident mirror 401 and travels toward the drive mirror 402.
  • the drive mirror 402 further reflects the transmission light reflected by the incident mirror 401 toward the exit mirror 403.
  • the drive mirror 402 can be driven in a direction substantially parallel to the optical axis of the light reflected by the incident mirror 401.
  • a method for driving the drive mirror 402 is not particularly limited.
  • the transmission light reflected by the drive mirror 402 is reflected by the output mirror 403.
  • the transmission light reflected by the output mirror 403 is output from the transmission light modulator 393 as signal light.
  • the geometric distance through which the transmission light passes is determined by the position of the drive mirror 402. Therefore, when the position of the drive mirror 402 is changed by an actuator or the like, the optical path length of the transmission light changes, and the phase of the output signal light can be made different from the phase of the transmission light.
  • the modulation signal detection device 373 includes a polarization beam splitter (PBS) 381, a reference light laser 382, an interference light detection unit 315, and a signal processing unit 383.
  • PBS polarization beam splitter
  • the horizontally polarized signal light is input to the modulation signal detection device 373.
  • the signal light is obtained by phase-modulating the light according to data to be transmitted to the modulation signal detection device 373.
  • the PBS 381 transmits almost 100% of horizontally polarized light and reflects almost 100% of vertically polarized light.
  • the polarization direction of the reference light output from the reference light laser 382 is a vertical direction substantially orthogonal to the signal light.
  • the horizontally polarized signal light is transmitted through the PBS 381 and the vertically polarized reference light is reflected from the PBS 381, so that a combined light of the signal light and the reference light is generated.
  • the wavelength of the reference light is approximately the same as the wavelength of the signal light so as to interfere with the signal light.
  • Equation (46) E d is the electric field of the signal light, and A d is the amplitude component of the electric field of the signal light.
  • E m is the electric field of the output reference light from the reference light laser 382
  • a m is the amplitude component of the electric field of the reference beam.
  • represents a phase component related to the wavelength ⁇ , time t and location z of the laser light
  • ⁇ sig represents a phase-modulated signal component
  • ⁇ noise S and ⁇ noise M are signal lights caused by optical path difference fluctuations and the like. Represents a phase noise component due to a phase difference variation between the electric field of the reference light and the electric field of the reference light.
  • the combined light generated by the PBS 381 enters the interference light detection unit 315.
  • the interference light detection unit 315 generates a plurality of interference lights having different phase differences from the incident combined light, converts the light amounts of the generated plurality of interference lights into electrical signals, and generates an interference light detection signal.
  • the configuration of the interference light detector 315 is shown in FIG.
  • the configurations of the interference light detection unit 315 and the phase difference calculation unit 10 are the same as the configurations of the interference light detection unit and the phase difference calculation unit in the fourth embodiment, and a description thereof will be omitted.
  • the phase difference correction unit of the phase difference calculation unit 10 cancels out the second term ( ⁇ noise ) of the right side of Expression (8) by the third term ( ⁇ ) of the right side, as in the first embodiment. It becomes possible to control to. As a result, it is possible to reproduce a modulated signal that does not cause a discontinuity in arctangent calculation regardless of the range of the phase noise component ⁇ noise that is much larger than the signal component ⁇ sig .
  • phase difference error detection unit of the sixth embodiment similarly to the first embodiment, from a minute fluctuation in the range of ⁇ ⁇ that is on the order of nanometers to a large fluctuation on the order of ⁇ several hundreds of ⁇ , It can be detected continuously. Therefore, it is possible to suppress a nanometer-order phase noise component that is very difficult to follow with an actuator, and an optical transmission system capable of reproducing at a high S / N is possible.
  • the modulation signal detection device 373 corresponds to an example of the modulation signal detection device.
  • the modulation signal detection device 373 is not limited to the configuration shown in FIG.
  • FIG. 24 is a diagram illustrating another configuration of the modulation signal detection apparatus according to the sixth embodiment.
  • the signal light is not necessarily incident on the modulation signal detection device 373 with horizontal polarization due to external characteristics such as the characteristics of the optical transmission path 372 or temperature. Therefore, as shown in FIG. 24, the signal light whose polarization direction is controlled by the polarization controller 420 is incident on the PBS 381. As a result, it is possible to suppress loss due to fluctuations in the polarization direction of the signal light.
  • the 24 includes a PBS 381, a reference light laser 382, an interference light detector 315, a signal processor 384, and a polarization controller 420.
  • the polarization controller 420 includes a ⁇ / 2 plate 421, a PBS 422, a detector 423, a control signal generator 424, and a controller 425.
  • the polarization direction of the signal light incident on the polarization controller 420 is not always horizontally polarized due to various disturbances in the optical transmission path 372.
  • the polarization controller 420 controls the polarization direction of the indeterminate signal light so as to be horizontally polarized.
  • the rotation of the ⁇ / 2 plate 421 is controlled by the control unit 425.
  • the control unit 425 controls the ⁇ / 2 plate 421 so that the fast axis is ⁇ degrees when viewed from the horizontal polarization direction.
  • the signal light transmitted through the ⁇ / 2 plate 421 is guided to the PBS 422.
  • the PBS 422 transmits almost 100% of horizontally polarized light and reflects almost 100% of vertically polarized light. If the signal light transmitted through the ⁇ / 2 plate 421 is completely horizontal polarized light, the signal light transmits almost 100% through the PBS 422.
  • the polarization plane of the signal light is slightly inclined from the horizontal direction, light reflected by the PBS 422 appears.
  • the detector 423 detects the light reflected by the PBS 422 and outputs an electrical signal.
  • the control signal generation unit 424 generates a control signal for controlling the rotation of the ⁇ / 2 plate 421 so that the signal output from the detector 423 is minimized.
  • the generated control signal is input to the control unit 1205.
  • the control unit 425 controls the signal light to be horizontally polarized by rotating the ⁇ / 2 plate 421 according to the control signal.
  • the polarization controller 420 includes the ⁇ / 2 plate 421 and the controller 425 that rotates the ⁇ / 2 plate 421 in order to rotate the polarization plane of the signal light.
  • the present invention is not limited to this.
  • the polarization controller 420 may rotate the plane of polarization using an element using a Faraday effect that rotates a plane of polarization of linearly polarized light parallel to the magnetic field by applying a magnetic field.
  • the effect of suppressing the loss of signal light can be obtained by using an element that can control the polarization plane of the signal light.
  • the interference light detector 315 may include three or more detectors, and each detector may detect the interference light so that the phase difference between the signal light and the reference light is different from each other. .
  • the interference light detection unit 315 includes three detectors, the phase difference between the signal light and the reference light at each detector is a combination of 0 degrees, 120 degrees, and 240 degrees, or -120 degrees, 0 degrees. And a combination of 120 degrees.
  • the interference light detection unit may be configured to include three detectors as shown in FIG. Since FIG. 16 has already been described in the fourth embodiment, a detailed description thereof will be omitted.
  • FIG. 25 is a diagram illustrating another configuration of the optical transmission system according to the sixth embodiment.
  • the optical transmission system 410 illustrated in FIG. 25 includes a plurality of optical transmitters 371, a wavelength multiplexing unit 411, an optical transmission path 372, a wavelength separation unit 412, and a plurality of modulation signal detection devices 373.
  • each optical transmitter 371 modulates transmission lights having different wavelengths and outputs them as signal lights.
  • the signal light output from each optical transmitter 371 is input to the modulation signal detection device 373 corresponding to each wavelength, and the modulation signal is reproduced. In this way, data can be transmitted in parallel.
  • Each optical transmitter 371 outputs signal light having different wavelengths.
  • a plurality of signal lights output from each optical transmitter 371 are input to the wavelength multiplexing unit 411.
  • the wavelength multiplexing unit 411 multiplexes a plurality of input signal lights.
  • the combined signal light is input to the wavelength separator 412 via the optical transmission path 372.
  • the wavelength separation unit 412 separates the input combined signal light into signal light for each wavelength, and outputs the separated signal light to each modulation signal detection device 373.
  • the modulation signal detector 373 receives the signal light separated by the wavelength separation unit 412.
  • the interference light detection unit 315 is not limited to the configuration shown in FIG.
  • a ⁇ / 2 plate and a ⁇ / 4 plate are used as optical elements for obtaining a signal having a different phase difference between the signal light and the reference light.
  • a composite optical functional element such as an optical waveguide may be used.
  • the interference light detection unit 315 and the signal processing unit 383 may be configured to be integrated into one LSI in which an optical waveguide, an electric circuit, and an electronic circuit are integrated.
  • a part or all of the modulation signal detection device 373 may be integrated into one LSI in which an optical waveguide, an electric circuit, and an electronic circuit are integrated.
  • FIG. 7 is schematic diagrams showing the configuration of the modulation signal detection apparatus according to Embodiment 7 of the present invention.
  • the seventh embodiment will be specifically described.
  • FIG. 26 is a diagram showing a configuration of the phase difference calculation unit in the seventh embodiment of the present invention.
  • the phase difference calculation unit 430 includes a phase difference error detection unit 431, a phase calculation unit 6, and a phase difference correction unit 432.
  • the cosine component 1 and the sine component 2 are input to the phase difference error detection unit 431 and the phase calculation unit 6.
  • the cosine component 1 has a phase difference (optical path difference) ⁇ between the reference light and the signal light.
  • the sine component 2 has substantially the same amplitude as the cosine component 1 and has a phase difference that is substantially ⁇ / 2 shifted from the cosine component 1.
  • the phase calculation unit 6 outputs a phase difference component ⁇ .
  • the detailed configuration of the phase calculation unit 6 is the same as the configuration of the first embodiment, and the description in the seventh embodiment is omitted.
  • the phase difference error detection unit 431 detects and outputs the phase difference error component ⁇ .
  • FIG. 27 is a diagram illustrating a configuration of the interference light detection unit according to the seventh embodiment of the present invention.
  • the phase difference error detection unit 431 illustrated in FIG. 27 includes a first error detection unit 441, a second error detection unit 442, and an arc tangent calculation unit 443.
  • the first error detector 441 generates a signal according to the phase noise component ⁇ noise other than the signal component ⁇ sig from the cosine component 1 input to the phase difference error detector 431. Generate and output.
  • the second error detection unit 442 follows the phase noise component ⁇ noise other than the signal component ⁇ sig from the sine component 2 input to the phase difference error detection unit 431 based on the following equation (48). Generate and output a signal.
  • the first error detection unit 441 and the second error detection unit 442 for example, the frequency band of the signal component ⁇ sig And a low-pass filter (LPF) that can ideally separate the frequency band of the phase noise component ⁇ noise and an amplifier that amplifies the signal separated by the LPF with an arbitrary value ⁇ .
  • LPF low-pass filter
  • the signal output (A cos ⁇ ) according to the phase noise component ⁇ noise generated by the first error detection unit 441 is output to the arctangent calculation unit 443. Further, the signal output (Asin ⁇ ) according to the phase noise component ⁇ noise generated by the second error detection unit 442 is output to the arctangent calculation unit 443.
  • the arc tangent calculation unit 443 outputs a phase difference error component ⁇ .
  • the arctangent calculation unit 443 has the same function as the phase calculation unit 6 in the first embodiment. Therefore, the description of the arctangent calculation unit 443 is omitted in the seventh embodiment.
  • the phase difference correction unit 432 calculates the following equation (49) based on the phase difference component ⁇ output from the phase calculation unit 6 and the phase difference error component ⁇ output from the phase difference error detection unit 431. To generate and output a phase difference signal Sig with the phase difference corrected.
  • the signal component ⁇ sig is modulated within a range of ⁇ ⁇ . Therefore, the phase difference correction unit 432 corrects the value of ⁇ by adding or subtracting 2 ⁇ to ⁇ when ⁇ exceeds the range ( ⁇ ⁇ range) of the signal component ⁇ sig. To do. Thereby, the reproduced modulated signal is prevented from becoming discontinuous due to the discontinuous portion of the arctangent calculation.
  • the phase difference correction unit 432 can perform control so as to cancel the second term ( ⁇ noise ) of the right side of Expression (8) by the third term ( ⁇ ) of the right side, as in the first embodiment. It becomes possible. As a result, it is possible to reproduce a modulated signal that does not cause a discontinuity in arctangent calculation regardless of the range of the phase noise component ⁇ noise that is much larger than the signal component ⁇ sig .
  • phase difference error detection unit 431 is similar to the first embodiment, from a minute fluctuation in a range of ⁇ ⁇ which is a nanometer order to a large fluctuation of ⁇ a few hundreds of ⁇ in a micrometer order. It can be detected continuously. Therefore, it is possible to suppress a nanometer-order phase noise component that is very difficult to follow with an actuator, and a high S / N reproduction is possible.
  • the first error correction gain calculation unit 17 and the first error correction gain calculation unit 18 as shown in FIG. 2 of the first embodiment perform cosine transformation on the phase difference error component ⁇ .
  • the sine conversion is unnecessary, and the phase difference error component ⁇ according to the phase noise component can be directly handled.
  • phase difference correction unit 432 and the phase difference error detection unit 431 correspond to an example of a correction unit
  • the phase calculation unit 6 corresponds to an example of a phase calculation unit
  • the phase difference error detection unit 431 corresponds to an example of a phase difference correction unit.
  • the phase difference correction unit 432 corresponds to an example of a phase difference correction unit.
  • the waviness of the recording surface of the optical disk medium has been described as an example of the fluctuation factor due to the disturbance. Cancellation is possible with the configuration of the seventh embodiment.
  • the first error detection unit 441 and the second error detection unit 442 use LPF to separate noise components other than signal components, but the present invention is not limited to this. Not.
  • the first error detection unit 441 and the second error detection unit 442 may have any configuration that can separate noise components other than signal components.
  • the first error detection unit 441 and the second error detection unit 442 may use a band removal filter (BEF) or a band pass filter (BPF) that can remove the frequency band of the signal component.
  • BEF band removal filter
  • BPF band pass filter
  • HPF high-pass filter
  • the first error detection unit 441 and the second error detection unit 442 use Fourier transform to convert a time domain signal into a frequency domain signal and divide a band in the frequency domain, so that noise other than the signal component is obtained. The components may be separated.
  • phase difference error detection unit 431, the phase calculation unit 6, and the phase difference correction unit 432 may be integrated in one LSI.
  • the functions of the phase difference error detection unit 431, the phase calculation unit 6, and the phase difference correction unit 432 may be realized by a computer executable program and a computer.
  • a modulation signal detection apparatus is a modulation signal detection apparatus that detects a modulation signal component from a signal based on a phase difference component between phase-modulated signal light and non-phase-modulated reference light. , Detecting a phase difference error component included in the phase difference component, and based on the detected phase difference error component, a first signal having the phase difference component as an angle of a cosine function, and a first signal
  • a correction unit that corrects a second signal having an angle of the cosine function substantially different by ⁇ / 2
  • a phase difference component is calculated from the first signal and the second signal corrected by the correction unit.
  • a phase calculation unit, and the correction unit performs correction by rotating the coordinate point indicated by the first signal and the second signal on the polar coordinate plane by an angle corresponding to the phase difference error component. Said first signal and Get the serial second signal.
  • the correction unit detects the phase difference error component included in the phase difference component, and based on the detected phase difference error component, the first signal having the phase difference component as the angle of the cosine function; A second signal having a cosine function angle of approximately ⁇ / 2 different from that of the first signal is corrected.
  • the phase calculation unit calculates a phase difference component from the first signal and the second signal corrected by the correction unit.
  • the correction unit rotates the coordinate points indicated by the first signal and the second signal on the polar coordinate plane by an angle corresponding to the phase difference error component, thereby correcting the first signal and the second signal. Get the signal.
  • phase difference error component which is a phase noise component generated due to an optical path difference variation between the signal light and the reference light
  • the correction unit includes a phase difference error detection unit that detects a phase difference error component included in the phase difference component, and the phase difference error detected by the phase difference error detection unit. It is preferable that a phase difference correction unit that corrects the first signal and the second signal based on a component is included.
  • the phase difference error detection unit detects a phase difference error component included in the phase difference component.
  • the phase difference correction unit corrects the first signal and the second signal based on the phase difference error component detected by the phase difference error detection unit.
  • phase difference error detection unit and the phase difference correction unit can be configured as mutually different components, and the first phase difference error detection unit uses the phase difference error component detected by the phase difference error detection unit.
  • the signal and the second signal can be corrected.
  • the phase difference error detection unit detects the phase difference error component from the phase difference component calculated by the phase calculation unit.
  • phase difference error component is detected from the phase difference component calculated by the phase calculation unit, it is possible to repeatedly perform correction so that the phase difference error component included in the phase difference component becomes zero. it can.
  • the correction unit detects a first phase difference error component from the first signal, detects a second phase difference error component from the second signal, and detects the first phase difference error component from the second signal. It is preferable that the first signal is corrected based on the first phase difference error component and the second signal is corrected based on the detected second phase difference error component.
  • the first phase difference error component is detected from the first signal
  • the second phase difference error component is detected from the second signal, and based on the detected first phase difference error component
  • the first signal is corrected
  • the second signal is corrected based on the detected second phase difference error component
  • the phase difference error component can be detected from each of the first signal and the second signal, and each of the first signal and the second signal can be corrected using each detected phase difference error component. it can.
  • the correction unit extracts a frequency band corresponding to the phase difference error component from the phase difference component.
  • the phase difference error component since the frequency band corresponding to the phase difference error component is extracted from the phase difference component, the phase difference error component can be easily detected.
  • the correction unit includes a low-pass filter that extracts, from the phase difference component, a frequency band corresponding to the phase difference error component that is lower than a frequency band corresponding to the modulation signal component. It is preferable.
  • the phase noise component that is the frequency band is extracted. can do.
  • the phase calculating unit it is preferable that difference the first retardation correction signal Y 1 and the second phase from the correction signal Y 2 calculates the phase difference component.
  • the first error correction gain ⁇ and the second error correction gain ⁇ are generated based on the detected phase difference error component, and the corrected first signal X is calculated based on the above equation.
  • difference 1 and the second first representative of the signal X 2 of the phase-difference correction signal Y 1 and the second phase correction signal Y 2 is generated.
  • the first phase difference correction signal Y 1 and the second phase difference component from the phase difference correction signal Y 2 is calculated.
  • the first phase difference correction signal Y 1 and the second phase difference correction signal Y 2 in which the phase difference error component is removed from the phase difference component can be easily calculated based on the above formula.
  • the correction unit multiplies the phase difference error component by a predetermined value, integrates the phase difference error component multiplied by the predetermined time, and based on the integrated phase difference error component, It is preferable to generate the error correction gain ⁇ and the second error correction gain ⁇ .
  • the first error correction gain ⁇ and the second error correction gain ⁇ can be generated based on the accumulated phase difference error component.
  • a branching unit that branches the interference light between the signal light and the reference light into at least three lights, and the at least three lights branched by the branching unit, respectively, At least three detectors that respectively output detection signals corresponding to the detected light amounts, and the first signal and the second signal are calculated based on the detection signals output by the at least three detectors. It is preferable to further include a detection signal calculation unit.
  • the branching unit branches the interference light between the signal light and the reference light into at least three lights.
  • At least three detectors respectively detect at least three branched lights and output detection signals corresponding to the amounts of the detected lights.
  • the detection signal calculation unit calculates the first signal and the second signal based on the detection signals output by at least three detectors.
  • the first signal and the second signal can be calculated by using three lights having different phase differences between the signal light and the reference light.
  • the signal light is preferably reflected light from an optical disk medium.
  • the data recorded on the optical disk medium is detected by detecting the modulation signal component from the signal based on the phase difference component between the signal light phase-modulated by the information recording surface of the optical disk medium and the reference light. Can be played.
  • the signal light is preferably obtained by phase-modulating light according to data to be transmitted to the modulation signal detection device.
  • the signal light is obtained by modulating the light according to the data to be transmitted to the modulation signal detection device, the data can be transmitted using the light.
  • a modulation signal detection method is a modulation signal detection method for detecting a modulation signal component from a signal based on a phase difference component between phase-modulated signal light and non-phase-modulated reference light.
  • a phase difference error detecting step for detecting a phase difference error component included in the phase difference component; and a first signal having the phase difference component as an angle of a cosine function based on the detected phase difference error component.
  • a correction step for correcting the second signal with an angle of the cosine function of approximately ⁇ / 2 with respect to the first signal, and the first signal corrected in the correction step and the second signal A phase calculation step of calculating a phase difference component from the signal, wherein the correction step corresponds to a coordinate point indicated by the first signal and the second signal on the polar coordinate plane as the phase difference error component. Corner In by rotating to obtain the corrected first signal and the second signal.
  • the phase difference error component included in the phase difference component is detected in the phase difference error detection step.
  • the correction step based on the detected phase difference error component, the first signal having the phase difference component as the angle of the cosine function and the second signal having a cosine function angle different from the first signal by approximately ⁇ / 2.
  • a phase difference component is calculated from the corrected first signal and second signal.
  • the coordinate points indicated by the first signal and the second signal on the polar coordinate plane are rotated by an angle corresponding to the phase difference error component, whereby the corrected first signal and the first signal are corrected. Two signals are obtained.
  • phase difference error component which is a phase noise component generated due to an optical path difference variation between the signal light and the reference light
  • the modulation signal detection apparatus and the modulation signal detection method according to the present invention can suppress phase noise components by signal processing, can amplify weak signal light, and are phase-modulated with phase-modulated signal light.
  • the present invention is useful as a modulation signal detection apparatus and a modulation signal detection method for detecting a modulation signal component from a signal based on a phase difference component with respect to a reference light that is not.
  • the modulation signal detection apparatus and modulation signal detection method according to the present invention are useful as a modulation signal detection apparatus and modulation signal detection method for improving the reproduction performance of a large-capacity optical storage.
  • the modulation signal detection apparatus and modulation signal detection method according to the present invention can also be applied to optical transmission applications such as optical communication or an optical bus.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • Optical Head (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

 位相差誤差検出部(8)は、位相差成分に含まれる位相差誤差成分を検出し、位相差補正部(3)は、検出した位相差誤差成分に基づいて、位相差成分を余弦関数の角度とした第1の信号と、第1の信号に対して余弦関数の角度が略π/2異なる第2の信号とを補正し、位相演算部(6)は、位相差補正部(3)によって補正された第1の信号及び第2の信号から位相差成分を演算し、位相差補正部(6)は、極座標平面上において第1の信号と第2の信号とで示される座標点を位相差誤差成分に相当する角度で回転させることにより、補正された第1の信号及び第2の信号を得る。

Description

変調信号検出装置及び変調信号検出方法
 本発明は、強度又は位相が変調された信号光と、参照光とを干渉させた干渉光を検出することで、変調信号を検出する変調信号検出装置及び変調信号検出方法に関するものであり、光ディスク媒体、光データ伝送、光データ通信、光バス及び光USB(ユニバーサル・シリアル・バス)などに応用可能な技術である。
 大容量の情報記録媒体として光ディスク媒体は幅広く用いられている。光ディスク媒体の大容量化のための技術開発は、CD、DVD及びBlu-ray Discへと、より短波長のレーザ光と、より高い開口数(NA)の対物レンズとを用いることで行われてきた。最近では、クラウドと呼ばれるインターネット上のオンラインストレージを利用したサービスが年々拡大してきており、HDD(ハードディスクドライブ)又はフラッシュメモリも含めたストレージのさらなる大容量化が望まれている。
 光ディスク媒体のさらなる大容量化については次に述べるような開発が行われている。
 まず、レーザ光の短波長化は、300nm台の紫外線領域のレーザ光を出射する半導体レーザの実用化がなされている。しかし、空気中では300nm以下の紫外線領域の光は著しく減衰するので、レーザ光の短波長化による大きな効果は望めない。
 次に、高NA化については、NAが1以上となるSIL(ソリッドイマージョンレンズ)を用いた方式で記録面密度を高める技術が開発されている。また、光の回折限界よりも小さな領域で起こる近接場光を利用することで記録面密度を高める研究も行われている。さらに、現在、市場に出ている光ディスク媒体のうちBD-XLは3つ又は4つの記録面を有しているが、さらに記録面を多層化することで、大容量化を目指す開発も行われている。
 これらのような、光ディスク媒体の大容量化が進められることによって、特に多層化では、光ディスク媒体の記録面での反射によって変調される信号光量がさらに低下し、再生信号のS/Nが十分に確保できなくなりつつある。したがって、今後、光ディスク媒体の大容量化を進めていくためには、検出信号のS/Nをより高くすることが必須となる。
 光ディスク媒体の再生信号のS/Nをより高くする技術として、光の干渉を用いた検出方式がある(例えば、特許文献1参照)。この検出方式では、レーザからの光が、光ディスク媒体に照射する光(ディスク光)と、光ディスク媒体に照射しない光(参照光)とに分岐され、光ディスク媒体からの反射光(信号光)と参照光とが干渉される。そして、参照光の光量を大きくすることによって、信号光による微弱な信号振幅が増幅される。これにより、原理的には、参照光の強度が可能な範囲内で強くなるので、光検出器で生じるアンプノイズ又はショットノイズなどに対してS/Nをより高くすることが可能となる。
 この技術は、微小な信号光を高いS/Nで検出できるというメリットはある。しかし、光の干渉が用いられるため、信号光の光路長と参照光の光路長との差が変動すると、信号光と参照光との光の位相関係が変わってしまい、再生される信号のノイズ成分となる。例えば、光路差の変動には、光ディスク媒体の回転時に発生する面ぶれなどがある。このため、新たな工夫が必要となり、特許文献2及び特許文献3にはその解決手段が開示されている。
 図28は、従来の干渉型の光ディスク装置の構成を示す図である。特許文献2では、信号光と参照光との光路長差の安定化を図るために、図28に示すように参照光ミラー111に参照光の光路長を調整するためのミラー駆動部112を付加している。これにより、光ディスク媒体101の回転時の面ぶれなどによる光路長の変動、又は温度などの周囲環境変化による光路長の経時変化に対応して、信号振幅が常に最大となるように制御している。
 また、特許文献3では、参照光ミラーとしてコーナーキューブプリズムを用い、コーナーキューブプリズムを対物レンズと同じアクチュエータに搭載し、光ディスク媒体の種類又は読み出す記録層に応じて干渉させる光の光路長を調整する方式が述べられている。また、特許文献4には、4つの検出器上で、信号光と参照光との位相関係をそれぞれ90度ずつずらすことで、位相変動に関係なく信号成分を安定して取り出す方式が述べられている。
 光ディスク分野において高転送レート及び高密度の装置を実現する上で信号光のS/Nの低下が、その進歩を制限する。これと同様に、光通信又は光を用いたインターフェース(光バス又は光USB(ユニバーサル・シリアル・バス))などの分野でも、高い転送レートを実現するためには、高いS/Nが必要となる。これらの光通信又は光を用いたインターフェースの分野でも、高い転送レートを低い電力で実現するために、レーザの強度を変調してデータを伝送する方式に替わって、レーザが発生する光の位相を変調してデータを伝送する方式が主流になりつつある。このため、光の位相を受信側で正確に制御して、通信路で発生する光位相の変動要因を除去する光位相制御の技術が重要になる。
 図29及び図30は、光ディスク媒体での信号光変調について説明するための図である。図29は、光ディスク媒体において信号光の強度が変調される例について説明するための図であり、図30は、光ディスク媒体において信号光の位相が変調される例について説明するための図である。
 従来の光ディスク媒体201では、主に、図29に示すような記録面201aの反射率がレーザ光の照射により変化されることで、反射光の強度が変調し、情報が記録される。すなわち、記録面201aのトラック上に、互いに反射率の異なるマーク201mとスペース201sとが形成されることで、情報が記録されている。例えば、光ディスク媒体201は、書換型又は追記型のCD、DVD又はBlu-ray Discなどである。
 ここで、光の干渉を用いれば、光の強度だけでなく、光の位相を検出することが可能となる。図30に示すように、記録面203aにおける光の反射する位置に溝203g又は孔203hが形成されることで、反射光の位相が変調され、情報が記録される。すなわち、記録面203a内に、透過率又は屈折率を変化させた連続した溝203g又は不連続な孔203hが形成されることで、情報が記録されている。これらの溝203g又は孔203hに信号光が照射されると、光ディスク媒体203に入射してから反射する位置に到達するまでの距離が異なることによって位相変調された信号光が反射される。
 光の干渉を用いて位相を検出する場合、検出する信号光の位相と、干渉させる参照光の位相との平均的な相対関係を精密に制御する必要がある。検出する信号光の平均的な位相と、干渉させる参照光の位相とが一定の関係を維持できなければ、検出信号の検出感度が大きく低下する。そのため、この検出方式を実用化するためには、位相関係の制御が非常に重要となる。
 しかしながら、光の波長は、数μm~400nmであり非常に短いため、参照光の光路長と信号光の光路長とが数十nm程度微妙に変化しただけで、信号の検出感度は大きな影響を受ける。これは、参照光の光路長と信号光の光路長との差を数十nmの精度で一定に保つ必要があることを意味している。光路長に変動要因がある場合は、光路長の制御が非常に困難となる課題を有していた。例えば、光ディスク媒体の場合は、光ディスク媒体の記録面のうねりの影響で、光ディスク媒体からの信号光の光路長は200μm程度の範囲で大きく変化する。この影響を回避するために、特許文献2では、光学系を一体化して光ディスク媒体の記録面のうねりに追従させると共に、ゆっくりとした変動をアクチュエータで補正する技術が開示されている。
 しかしながら、特許文献2の構成では、光ディスク媒体が傾いて信号光の角度が変化すると信号光の光路長が変化してしまう。光路長の変動を数十nmの精度でアクチュエータによって追随させることは非常に困難であり、特に、ある程度高い周波数帯域では変動の抑制が全くできない。このため、特許文献2の技術を実用化するには、光ディスク媒体の記録面のうねりによる変動を殆どゼロに近いほど小さくする必要があり、この変動が、実用化の大きな妨げとなっていた。
 また、特許文献3の構成では、コーナーキューブプリズムを対物レンズのアクチュエータに搭載して、参照光の光路も信号光の光路と同じだけ変化させる構成が開示されている。特許文献3の構成においても、光ディスク媒体の記録面のうねりにより、参照光の光路長と信号光の光路長とに変動が発生する課題は同じであり、実用化は非常に困難であった。
 光の周波数は非常に高いため、直接光位相を検出することは現在の技術では不可能である。そのため、信号光と参照光との光干渉を用いて光位相を検出する方法以外の方法で光位相を検出することは出来ない。しかし、光通信、光バス又は光ディスク媒体に用いられる光の波長は、数μm~400nmと非常に短いために、上記技術(光干渉を用いた参照光による位相検出技術)では、参照光と信号光との平均的な位相を光の波長の数十分の一に正確に制御する技術が求められる。光ディスク媒体、光通信及び光バスのそれぞれにおいて、参照光と信号光との光位相の変動要因は異なるが、ナノメータオーダの光位相制御がそれぞれ必要となる。
 また、特許文献4では、位相変調された光ディスク媒体の再生については明記されていない。特許文献4の構成では、光の強度成分のみを検出した場合、信号成分を含んだ位相成分が除去されてしまう。また、差動演算後に自乗和を演算するのではなく、コサインとサインとから求められるタンジェントの逆数を求め、光の位相成分のみを検出した場合、検出した光の位相成分には、光路長変動に伴ったノイズ成分が含まれてしまい、ノイズ成分を除去しなければならなくなる。
 図31は、光の位相成分をアークタンジェントにより算出する例について説明するための図である。タンジェントの逆数であるアークタンジェントの計算値は、図31に示すように、2π周期で不連続な部分を有している。このため、数μm~400nmの非常に短い波長の位相変調のレンジに対して、光路長変動のレンジが非常に大きい場合に、光路長変動による位相ノイズ成分によりアークタンジェントの出力位相が不連続部分をまたいでしまい、正しい出力が得られなくなる。
特開平6-223433号公報 特開2007-317284号公報 特開2009-252337号公報 特開2008-065961号公報
 本発明は、上記の問題を解決するためになされたもので、高いS/N比の変調信号を検出することができる変調信号検出装置及び変調信号検出方法を提供することを目的とするものである。
 本発明の一局面に係る変調信号検出装置は、位相変調された信号光と位相変調されていない参照光との位相差成分に基づいた信号から変調信号成分を検出する変調信号検出装置であって、前記位相差成分に含まれる位相差誤差成分を検出し、検出した前記位相差誤差成分に基づいて、前記位相差成分を余弦関数の角度とした第1の信号と、前記第1の信号に対して前記余弦関数の角度が略π/2異なる第2の信号とを補正する補正部と、前記補正部によって補正された前記第1の信号及び前記第2の信号から位相差成分を演算する位相演算部とを備え、前記補正部は、極座標平面上において前記第1の信号と前記第2の信号とで示される座標点を前記位相差誤差成分に相当する角度で回転させることにより、補正された前記第1の信号及び前記第2の信号を得る。
 この構成によれば、補正部は、位相差成分に含まれる位相差誤差成分を検出し、検出した位相差誤差成分に基づいて、位相差成分を余弦関数の角度とした第1の信号と、第1の信号に対して余弦関数の角度が略π/2異なる第2の信号とを補正する。位相演算部は、補正部によって補正された第1の信号及び第2の信号から位相差成分を演算する。そして、補正部は、極座標平面上において第1の信号と第2の信号とで示される座標点を位相差誤差成分に相当する角度で回転させることにより、補正された第1の信号及び第2の信号を得る。
 本発明によれば、位相変調された信号光と位相変調されていない参照光との位相差成分から、信号光と参照光との光路差変動により発生した位相ノイズ成分である位相差誤差成分をキャンセルすることができ、高いS/N比の変調信号を検出することができる。
 本発明の目的、特徴及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。
本発明の実施の形態1における位相差演算部の構成を示す図である。 本発明の実施の形態1における位相差補正部の構成を示す図である。 本発明の実施の形態1において、極座標平面上での位相差補正について説明するための図である。 本発明の実施の形態1における位相差誤差検出部の構成を示す図である。 本発明の実施の形態1の第1の変形例における位相差補正部の構成を示す図である。 本発明の実施の形態1の第2の変形例における位相差補正部の構成を示す図である。 本発明の実施の形態1の第3の変形例における位相差誤差検出部の構成を示す図である。 図1に示す位相差演算部における位相差演算処理の一例を示すフローチャートである。 本発明の実施の形態2における位相差演算部の構成を示す図である。 本発明の実施の形態2における位相差補正部の構成を示す図である。 本発明の実施の形態3における位相差演算部の構成を示す図である。 本発明の実施の形態3における位相差補正部の構成を示す図である。 本発明の実施の形態4における光ディスク装置の構成を示す図である。 本発明の実施の形態4における干渉光検出部の具体的な構成を示す図である。 本発明の実施の形態4における信号処理部の具体的な構成を示す図である。 本発明の実施の形態4において、3つの検出器を備える干渉光検出部の構成を示す図である。 本発明の実施の形態5における光ディスク装置の構成を示す図である。 本発明の実施の形態5における干渉光検出部の構成を示す図である。 本発明の実施の形態5における位相差演算部の構成を示す図である。 本発明の実施の形態6における光伝送システムの全体構成を示す図である。 図20に示す光送信器の構成を示す図である。 図21に示す送信光変調部の一例を示す図である。 図20に示す変調信号検出装置の構成を示す図である。 本発明の実施の形態6における変調信号検出装置の別の構成を示す図である。 本発明の実施の形態6における光伝送システムの別の構成を示す図である。 本発明の実施の形態7における位相差演算部の構成を示す図である。 本発明の実施の形態7における干渉光検出部の構成を示す図である。 従来の干渉型の光ディスク装置の構成を示す図である。 光ディスク媒体において信号光の強度が変調される例について説明するための図である。 光ディスク媒体において信号光の位相が変調される例について説明するための図である。 光の位相成分をアークタンジェントにより算出する例について説明するための図である。
 以下添付図面を参照しながら、本発明の実施の形態について説明する。なお、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。
 (実施の形態1)
 図1、図2及び図4は、本発明の実施の形態1における変調信号検出装置の構成を示す概略図である。以下、本実施の形態1について具体的に説明する。
 図1は、本発明の実施の形態1における位相差演算部の構成を示す図である。図1において、位相差演算部10は、位相差補正部3と、位相演算部6と、位相差誤差検出部8とを備える。コサイン成分1とサイン成分2とが、位相差補正部3に入力される。コサイン成分1は、参照光と信号光との位相差(光路差)Δφを有する。サイン成分2は、コサイン成分1と振幅がほぼ同じであり、コサイン成分1とほぼπ/2ずれた位相差を有する。
 ここで、コサイン成分1とサイン成分2との位相差のずれを、ほぼπ/2位相差としているのは、光学素子の精度又はばらつきなどを考慮するためである。一般的に、信号光と参照光との位相差成分Δφを位相項に持つコサイン成分1の信号及びサイン成分2の信号を検出するために、波長板、偏光子及びビームスプリッタなどの光学素子が用いられる。例えば、λ/2板は、必ずしもλ/2の位相差を生じさせるわけではなく、(λ/2)+Δλの位相差を生じさせることがある。このとき、コサイン成分1は、cos(Δφ+Δθ)となり、サイン成分2は、sin(Δφ+Δθ)となる。
 このようなコサイン成分1とサイン成分2との理想的な位相差ずれπ/2により、光学素子の精度又はばらつきによって加えられる位相差ずれ(Δθ-Δθ)は、再生信号のS/Nが許される範囲であれば、本発明の効果を得ることが可能である。例えば、信号が±πの範囲で、4値(-π<Δφ≦-π/2、-π/2<Δφ≦0、0<Δφ≦π/2、π/2<Δφ≦π)に変調される場合、光路差変動などによって生じる位相ノイズ成分が全くないとき、光学素子の精度又はばらつきによって加えられる位相差ずれは±π/4の範囲で許容可能である。本実施の形態1では、このコサイン成分1とサイン成分2との位相差のずれはほぼπ/2とし、再生信号のS/Nが許される範囲内に収まっており、光学素子の精度又はばらつきなどが問題にならない程度として説明をする。
 位相差補正部3は、位相差誤差検出部8から出力される位相差誤差成分δを用いて、位相差補正コサイン成分4と位相差補正サイン成分5とを生成する。生成された位相差補正コサイン成分4と位相差補正サイン成分5とは、位相演算部6に入力される。位相演算部6は、位相差成分7を出力する。位相差誤差検出部8は、出力された位相差成分7に基づいて位相差誤差成分δを生成するフィードバック制御を行う。
 すなわち、位相差誤差検出部8は、位相差成分Δφに含まれる位相差誤差成分を検出する。位相差補正部3は、位相差誤差検出部8によって検出された位相差誤差成分に基づいて、位相差成分Δφを余弦関数の角度とした第1の信号(コサイン成分1)と、第1の信号に対して余弦関数の角度が略π/2異なる第2の信号(サイン成分2)とを補正する。位相演算部6は、位相差補正部3によって補正された第1の信号(位相差補正コサイン成分4)及び第2の信号(位相差補正サイン成分5)から変調信号成分を演算する。また、位相差誤差検出部8は、位相演算部6によって演算された位相差成分から位相差誤差成分を検出する。
 ここで、位相差成分Δφは、信号光の位相を変調した信号成分φsigと、信号光と参照光との光路差変動などにより発生した位相ノイズ成分φnoiseとの両方を含んでいる。位相差成分Δφは、下記の式(1)で表される。
 Δφ=φsig+φnoise・・・・(1)
 ここで、光の波長をλとし、位相ノイズの要因となる光路差変動をΔLとすると、位相ノイズ成分φnoiseは、下記の式(2)で表される。
 φnoise=2π(ΔL/λ)・・・・(2)
 光の波長λは、数μm~400nmと非常に短く、例えば光ディスク媒体の記録面のうねりによる光路差変動ΔLは、数百μmと非常に大きい。例えば、400nmの波長の光が用いられ、信号成分φsigのレンジが一波長分(2π)であり、記録面のうねりの振幅が200μmであるとき、位相ノイズ成分φnoiseのレンジは500πとなる。このことより、信号成分φsigに比べて位相ノイズ成分φnoiseは非常に大きな値となることがわかる。位相ノイズ成分φnoiseが非常に大きいため、コサイン成分1(第1の信号X)とサイン成分2(第2の信号X)とが直接位相演算部6に入力されると、位相差成分Δφが位相演算部6におけるアークタンジェント演算の2π周期の不連続部分を越えてしまい、アークタンジェント演算により算出される位相が不連続となってしまう。そこで、位相差補正部3は、位相差成分Δφがアークタンジェント演算の2π周期の不連続部分を越えないように位相差を補正する。
 次に、図2を用いて、位相差補正部3について説明する。図2は、本発明の実施の形態1における位相差補正部の構成を示す図である。位相差補正部3は、アンプ11,12,13,14と、加算演算部15,16と、第1の誤差補正ゲイン演算部17と、第2の誤差補正ゲイン演算部18とを備える。位相差補正部3に入力されたコサイン成分1は、アンプ11及びアンプ13に入力される。アンプ11は、コサイン成分1をα倍し、アンプ13は、コサイン成分1を-β倍する。位相差補正部3に入力されたサイン成分2は、アンプ12及びアンプ14に入力される。アンプ12は、サイン成分2をα倍し、アンプ14は、サイン成分2をβ倍する。
 ここで、第1の誤差補正ゲイン演算部17は、位相差誤差検出部8によって検出された位相差誤差成分δを用いて、誤差補正ゲインαを下記の式(3)により算出する。第2の誤差補正ゲイン演算部18は、位相差誤差検出部8によって検出された位相差誤差成分δを用いて、誤差補正ゲインβを下記の式(4)により算出する。
 α=cosδ・・・・(3)
 β=sinδ・・・・(4)
 加算演算部15は、α倍されたコサイン成分1と、β倍されたサイン成分2とを加算する。これにより、加算演算部15は、下記の式(5)で表される位相差補正コサイン成分4を出力する。
 αX+βX=αAcosΔφ+βAsinΔφ=Acos(Δφ-δ)・・・・(5)
 加算演算部16は、α倍されたサイン成分2と、-β倍されたコサイン成分1とを加算する。これにより、加算演算部16は、下記の式(6)で表される位相差補正サイン成分5を出力する。
 αX-βX=αAsinΔφ-βAcosΔφ=Asin(Δφ-δ)・・・・(6)
 式(5)と式(6)とは、コサイン成分1とサイン成分2とに、それぞれ位相差誤差成分δに基づいて演算されたゲインを乗じて加算することで、位相差成分Δφから位相差誤差成分δが除去された位相差補正コサイン成分4(第1の位相差補正信号Y)と位相差補正サイン成分5(第2の位相差補正信号Y)とが得られることを表している。
 上記の位相差補正について、図3に示す極座標平面を用いてさらに説明する。図3は、本発明の実施の形態1において、極座標平面上での位相差補正について説明するための図である。
 コサイン成分1(第1の信号X)とサイン成分2(第2の信号X)とで示された座標点をX、位相差補正コサイン成分4(第1の位相差補正信号Y)と位相差補正サイン成分5(第2の位相差補正信号Y)とで示された座標点をYとする。座標点Yは、極座標平面上で、座標点Xを位相差誤差成分δに相当する角度で回転させた座標となる。
 すなわち、位相差補正部3は、極座標平面上において第1の信号Xと第2の信号Xとで示される座標点を位相差誤差成分δに相当する角度で回転させることにより、第1の位相差補正信号Y及び第2の位相差補正信号Yを得る。位相差補正部3は、検出された位相差誤差成分δに基づいて第1の誤差補正ゲインα及び第2の誤差補正ゲインβを生成し、上記の式(5)及び(6)に基づいて、補正された第1の信号X及び第2の信号Xを表す第1の位相差補正信号Y及び第2の位相差補正信号Yを生成する。そして、位相演算部6は、第1の位相差補正信号Y及び第2の位相差補正信号Yから位相差成分を演算する。
 次に、位相演算部6について説明する。位相演算部6は、入力された位相差補正コサイン成分4と位相差補正サイン成分5とから、下記の式(7)に基づいて位相差成分7を演算する。
 arctan{Asin(Δφ-δ)/Acos(Δφ-δ)}=Δφ-δ・・・・(7)
 次に、図4を用いて、位相差誤差検出部8について説明する。図4は、本発明の実施の形態1における位相差誤差検出部の構成を示す図である。図4において、位相差誤差検出部8は、ローパスフィルタ(LPF)21と、アンプ22とを備える。位相差誤差検出部8には、位相演算部6によって演算された位相差成分7が入力される。LPF21は、位相差誤差検出部8に入力された位相差成分7から、信号成分φsigに対して低い周波数帯域の成分である位相ノイズ成分φnoiseを出力する。あるいは、LPF21は、位相ノイズ成分φnoiseと位相差誤差成分δとの差分を出力する。
 すなわち、LPF21は、位相差成分から位相差誤差成分に対応する周波数帯域を抽出する。また、LPF21は、位相差成分から、位相差成分に含まれる変調信号成分に対応する周波数帯域よりも低い位相差誤差成分に対応する周波数帯域を抽出する。
 アンプ22は、LPF21から出力された位相差誤差成分をγ倍し、位相差補正部3へ出力する。このとき、ゲイン値γは、位相差誤差検出部8の伝達関数をHとしたとき、図1の位相差補正部3、位相演算部6及び位相差誤差検出部8で構成される閉ループ特性1/(1+H)が安定となるような範囲内で任意の値とする。
 かかる構成によれば、位相差補正部3は、以下の式(8)の右辺第2項(φnoise)を右辺第3項(δ)によって打ち消すように制御することが可能となる。その結果、信号成分φsigに比べて非常に大きい位相ノイズ成分φnoiseのレンジによらず、アークタンジェント演算の不連続が起こらない変調信号の再生が可能となる。
 Δφ=φsig+φnoise-δ・・・・(8)
 また、本実施の形態1の位相差誤差検出部8は、ナノメータオーダである±πの範囲の微小変動から、マイクロメータオーダの±数百πの大きな変動まで、連続的に検出可能である。そのため、アクチュエータで追随させることは非常に困難であるナノメータオーダの位相ノイズ成分の抑制も可能であり、高S/Nの再生が可能となる。
 なお、本実施の形態1において、位相差補正部3及び位相差誤差検出部8が補正部の一例に相当し、位相演算部6が位相演算部の一例に相当し、LPF21がローパスフィルタの一例に相当し、位相差誤差検出部8が位相差誤差検出部の一例に相当し、位相差補正部3が位相差補正部の一例に相当する。
 また、本実施の形態1において、位相差補正部3について図2を用いて説明したが、本発明はこれに限定されない。信号成分と位相ノイズ成分とを含む位相差成分Δφを持ったコサイン成分とサイン成分とが、位相差誤差成分δを用いて、位相差補正コサイン成分と位相差補正サイン成分とに補正される構成であればよい。例えば、図2に示した第1の誤差補正ゲイン演算部17及び第2の誤差補正ゲイン演算部18は、上記の式(3)及び式(4)を用いるのではなく、ルックアップテーブルなどを用いて、誤差補正ゲインα及びβを決定してもよい。
 また、図2に示す位相差補正部3では、コサイン成分1をアンプ13で-β倍し、-β倍されたコサイン成分1とα倍されたサイン成分2とを加算演算部16で加算させているが、コサイン成分1をアンプ13でβ倍し、α倍されたサイン成分2からβ倍されたコサイン成分1を加算演算部16で減算させてもよい。この場合、本実施の形態1と同様な効果が得られる。
 また、図5は、本実施の形態1の第1の変形例における位相差補正部の構成を示す図である。図5に示すように、位相差補正部3は、アンプ11,12,13,14と、加算演算部15,16と、第1の誤差補正ゲイン演算部17と、第3の誤差補正ゲイン演算部31と、誤差補正ルックアップテーブル(LUT)32とを備える。
 第1の誤差補正ゲイン演算部17は、誤差補正ルックアップテーブル(LUT)32を参照し、位相差誤差成分δから誤差補正ゲインαを演算する。第1の誤差補正ゲイン演算部17は、演算した誤差補正ゲインαをアンプ11,12及び第3の誤差補正ゲイン演算部31へ出力する。第3の誤差補正ゲイン演算部31は、誤差補正LUT32を参照し、入力された誤差補正ゲインαから、位相をπ/2シフトさせた値を誤差補正ゲインβとして演算する。第3の誤差補正ゲイン演算部31は、演算した誤差補正ゲインβをアンプ13,14へ出力する。この場合、本実施の形態1と同様な効果が得られる。
 また、図6は、本実施の形態1の第2の変形例における位相差補正部の構成を示す図である。図6に示すように、位相差補正部3は、乗算部41,42,43,44と、加算演算部15,16と、第1の誤差補正ゲイン演算部17と、第2の誤差補正ゲイン演算部18とを備える。コサイン成分1及びサイン成分2は、A/D変換されたデジタルデータである。この場合、図6に示すように、乗算部41は、コサイン成分1に誤差補正ゲインαを乗算し、乗算部42は、サイン成分2に誤差補正ゲインαを乗算し、乗算部43は、コサイン成分1に誤差補正ゲインβを乗算し、乗算部44は、サイン成分2に誤差補正ゲインβを乗算してもよい。
 なお、本実施の形態1において、位相演算部6は、上記の式(7)を用いて位相差成分7を生成しているが、本発明はこれに限定されない。例えば、位相演算部6は、アークタンジェント演算の結果得られる位相差成分7を予め保持するルックアップテーブルを備えてもよい。位相演算部6は、ルックアップテーブルを用いて位相差補正コサイン成分4及び位相差補正サイン成分5を位相差成分7に変換してもよい。また、位相演算部6は、以下の式(9)又は式(10)のように、場合分けを行って位相差成分7を演算してもよい。
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000002
 なお、本実施の形態1において、位相差誤差検出部8について図4を用いて説明したが、本発明はこれに限定されない。位相差誤差検出部8は、図1の位相差補正部3、位相演算部6及び位相差誤差検出部8で構成される閉ループ特性が安定であり、上記の式(8)の右辺第2項(φnoise)を右辺第3項(δ)によって打ち消すように制御できる構成であればよい。例えば、LPF21は、一次のLPFでもよいし、二次以上のLPFでもよい。また、LPF21が二次以上のLPFである場合、閉ループ特性を安定化するために、位相差誤差検出部8は、位相補償部を備えてもよい。また、位相差誤差検出部8は、LPF21の代わりに積分器を備えてもよい。
 また、図7は、本実施の形態1の第3の変形例における位相差誤差検出部の構成を示す図である。図7に示すように、位相差誤差検出部8は、LPF21と、アンプ22と、積算器23とを備える。積算器23は、アンプ22からの出力を積算し、積算した値を位相差補正部3へ出力する。すなわち、位相差誤差検出部8は、位相差誤差成分を所定のγ倍し、γ倍した位相差誤差成分を積算する。そして、位相差補正部3は、積算した位相差誤差成分に基づいて第1の誤差補正ゲインα及び第2の誤差補正ゲインβを生成する。この場合も、本実施の形態1と同様の効果が得られる。
 なお、本実施の形態1において、位相差誤差検出部8のLPF21によって、信号成分以外のノイズ成分が分離されるが、本発明はこれに限定されない。位相差誤差検出部8は、信号成分以外のノイズ成分を分離できる構成を備えていればよい。例えば、位相差誤差検出部8は、信号成分の周波数帯域を取り除くことが可能な帯域除去フィルタ(BEF)、バンドパスフィルタ(BPF)又はハイパスフィルタ(HPF)を備えてもよい。また、位相差誤差検出部8は、フーリエ変換を用いて、時間領域信号を周波数領域信号に変換し、周波数領域で帯域を分けることで、信号成分以外のノイズ成分を分離してもよい。
 また、本実施の形態1において、外乱による変動要因の一例として光ディスク媒体の記録面のうねりについて説明したが、温度変化などを変動要因とする、変調信号よりも低い周波数帯域の変動成分に関しても、本実施の形態1の構成によりキャンセルすることが可能である。
 また、本実施の形態1において、位相差補正部3、位相演算部6及び位相差誤差検出部8が、一つのLSI(Large Scale Integration)に集積される構成としてもよい。
 また、本実施の形態1において、位相差補正部3、位相演算部6及び位相差誤差検出部8の機能は、コンピュータにより実行可能なプログラム及びコンピュータにより実現されてもよい。図8は、図1に示す位相差演算部における位相差演算処理の一例を示すフローチャートである。例えば、位相差補正部3、位相演算部6及び位相差誤差検出部8のプログラムは、図8に示すフローチャートで表される。
 まず、ステップS1において、位相差補正部3は、コサイン成分1(AcosΔφ)とサイン成分2(AsinΔφ)との入力を受け付ける。
 次に、ステップS2において、位相差補正部3は、コサイン成分1に誤差補正ゲインαを乗算した値と、サイン成分2に誤差補正ゲインβを乗算した値とを加算し、位相差補正コサイン成分4(Acos(Δφ-δ))を算出するとともに、コサイン成分1に誤差補正ゲインβを乗算した値から、サイン成分2に誤差補正ゲインαを乗算した値を減算し、位相差補正サイン成分5(Asin(Δφ-δ))を算出する。
 次に、ステップS3において、位相演算部6は、位相差補正サイン成分5を位相差補正コサイン成分4で除算した値のアークタンジェントを演算することにより、位相差成分7(Δφ-δ)を演算する。
 次に、ステップS4において、位相演算部6は、演算した位相差成分7を変調信号として位相差演算部10の外部に出力するとともに、演算した位相差成分7を位相差誤差検出部8に出力する。
 次に、ステップS5において、制御部は、位相差演算処理を終了するか否かを判断する。なお、制御部は、位相差演算部10の内部又は外部に設けられる。ここで、位相差演算処理を終了すると判断された場合(ステップS5でYES)、位相差演算処理が終了する。
 一方、位相差演算処理を終了しないと判断された場合(ステップS5でNO)、ステップS6において、位相差誤差検出部8は、位相演算部6によって演算された位相差成分7から位相差誤差成分δを検出する。例えば、位相差誤差検出部8は、δ=γ∫(Δφ-δ)dφの式に基づいて、位相差誤差成分δを検出する。
 次にステップS7において、第1の誤差補正ゲイン演算部17は、位相差誤差検出部8によって検出された位相差誤差成分δを用いて、誤差補正ゲインαを上記の式(3)により算出し、第2の誤差補正ゲイン演算部18は、位相差誤差検出部8によって検出された位相差誤差成分δを用いて、誤差補正ゲインβを上記の式(4)により算出する。そして、ステップS1の処理に戻り、コサイン成分1(AcosΔφ)とサイン成分2(AsinΔφ)との入力が受け付けられる。
 (実施の形態2)
 図9及び図10は、本発明の実施の形態2における変調信号検出装置の構成を示す概略図である。以下、本実施の形態2について具体的に説明する。
 図9及び図10において、図1及び図2と同じ構成要素については同じ符号を用い、説明を省略する。
 図9は、本発明の実施の形態2における位相差演算部の構成を示す図である。図9において、位相差演算部20は、位相差補正部51と、位相演算部6とを備える。コサイン成分1とサイン成分2とが、位相差補正部51に入力される。コサイン成分1は、参照光と信号光との位相差(光路差)Δφを有する。サイン成分2は、コサイン成分1と振幅がほぼ同じであり、コサイン成分1とほぼπ/2ずれた位相差を有する。位相差補正部51は、位相差誤差成分δを用いて、位相差補正コサイン成分52と位相差補正サイン成分53とを生成する。生成された位相差補正コサイン成分52と位相差補正サイン成分53とは、位相演算部6に入力される。位相演算部6は、位相差成分7を出力する。
 次に、図10を用いて、位相差補正部51について説明する。図10は、本発明の実施の形態2における位相差補正部の構成を示す図である。位相差補正部51は、LPF61,62と、アンプ63,64,65,66と、加算演算部67,68とを備える。LPF61は、位相差補正部51に入力されたコサイン成分1から、信号成分φsig以外の位相ノイズ成分φnoiseに従った信号を生成して出力する。また、LPF62は、位相差補正部51に入力されたサイン成分2から、信号成分φsig以外の位相ノイズ成分φnoiseに従った信号を生成して出力する。
 ここで、LPF61及びLPF62が、信号成分φsigの周波数帯域と、位相ノイズ成分φnoiseの周波数帯域とを理想的に切り分けられる場合、以下の式(11)が成り立つ。そのため、位相ノイズ成分φnoiseそのものが位相差誤差成分δとして扱われ、位相ノイズ成分φnoiseを抑制することが可能となる。
 δ=φnoise・・・・(11)
 LPF61によって生成された位相ノイズ成分φnoiseに従った信号は、アンプ63,64の誤差補正ゲインαとなり、LPF62によって生成された位相ノイズ成分φnoiseに従った信号は、アンプ65,66の誤差補正ゲインβとなる。誤差補正ゲインα及び誤差補正ゲインβは、下記の式(12)及び式(13)で表される。
 α=Acosδ・・・・(12)
 β=Asinδ・・・・(13)
 アンプ63は、コサイン成分1をα倍し、アンプ64は、サイン成分2をα倍し、アンプ65は、コサイン成分1をβ倍し、アンプ66は、サイン成分2をβ倍する。アンプ63,64,65,66からの出力は、下記の式(14)~(17)で表される。
 アンプ63からの出力:AcosΔφcosδ・・・・(14)
 アンプ64からの出力:AsinΔφcosδ・・・・(15)
 アンプ65からの出力:AcosΔφsinδ・・・・(16)
 アンプ66からの出力:AsinΔφsinδ・・・・(17)
 加算演算部67は、アンプ63からの出力とアンプ66からの出力とを加算する。これにより、加算演算部67は、下記の式(18)で表される位相差補正コサイン成分52を出力する。
 AcosΔφcosδ+AsinΔφsinδ=Acos(Δφ-δ)・・・・(18)
 加算演算部68は、アンプ64からの出力からアンプ65からの出力を減算する。これにより、加算演算部68は、下記の式(19)で表される位相差補正サイン成分53を出力する。
 AsinΔφcosδ-AcosΔφsinδ=Asin(Δφ-δ)・・・・(19)
 式(18)と式(19)とは、コサイン成分1とサイン成分2とに、それぞれ位相ノイズ成分φnoiseに相関のある位相差誤差成分δに従ったゲインを乗じて加減算することで、位相差成分Δφから位相差誤差成分δが除去された位相差補正コサイン成分52と位相差補正サイン成分53とが得られることを表している。
 このように、位相差補正部51は、第1の信号(コサイン成分1)から第1の位相差誤差成分(Acosδ)を検出し、第2の信号(サイン成分2)から第2の位相差誤差成分(Asinδ)を検出し、検出した第1の位相差誤差成分に基づいて第1の信号を補正し、検出した第2の位相差誤差成分に基づいて第2の信号を補正する。
 かかる構成によれば、位相差補正部51は、実施の形態1と同様に、式(8)の右辺第2項(φnoise)を右辺第3項(δ)によって打ち消すように制御することが可能となる。その結果、信号成分φsigに比べて非常に大きい位相ノイズ成分φnoiseのレンジによらず、アークタンジェント演算の不連続が起こらない変調信号の再生が可能となる。
 また、本実施の形態2の位相差補正部51は、実施の形態1の位相差誤差検出部8と同様に、ナノメータオーダである±πの範囲の微小変動から、マイクロメータオーダの±数百πの大きな変動まで、連続的に検出可能である。そのため、アクチュエータで追随させることが非常に困難であるナノメータオーダの位相ノイズ成分の抑制も可能であり、高S/Nの再生が可能となる。
 また、本実施の形態2では、実施の形態1の図2で示したような第1の誤差補正ゲイン演算部17及び第1の誤差補正ゲイン演算部18において、位相差誤差成分δに対するコサイン変換及びサイン変換が不要であり、位相ノイズ成分に従ったコサイン成分とサイン成分とを直接扱うことが可能となる。
 なお、本実施の形態2において、位相差補正部51が補正部の一例に相当し、位相演算部6が位相演算部の一例に相当する。
 また、本実施の形態2において、LPF61から出力された信号が直接アンプ63,64のゲインとして用いられ、LPF62から出力された信号が直接アンプ65,66のゲインとして用いられているが、本発明はこれに限定されない。例えば、LPF61及びLPF62が、信号成分φsigの周波数帯域と、位相ノイズ成分φnoiseの周波数帯域とを理想的に切り分けられない場合、式(11)が満たされない。そのため、アンプ63,64,65,66は、LPF61及びLPF62の出力信号を任意の値γで増幅した値をゲインとすることで、位相ノイズ成分φnoiseの抑制が行われる構成としてもよい。
 また、アンプ63,64,65,66は、LPF61及びLPF62の出力信号の振幅成分Aを正規化するような任意の値γで増幅した値をゲインとすることで、位相差補正部51から出力される位相差補正コサイン成分52及び位相差補正サイン成分53の振幅成分が“A”となるような構成としてもよい。この正規化を行うときの値γは、コサイン成分1とサイン成分2とのそれぞれの自乗の和をとって得られる振幅成分Aの平方根(√(A)=A)の逆数(1/A)を用いることで可能となる。
 なお、本実施の形態2において、外乱による変動要因の一例として光ディスク媒体の記録面のうねりについて説明したが、温度変化などを変動要因とする、変調信号よりも低い周波数帯域の変動成分に関しても、本実施の形態2の構成によりキャンセルすることが可能である。
 また、本実施の形態2において、位相差補正部51のLPF61及びLPF62によって、信号成分以外のノイズ成分が分離されるが、本発明はこれに限定されない。位相差補正部51は、信号成分以外のノイズ成分を分離できる構成であればよい。例えば、位相差補正部51は、信号成分の周波数帯域を取り除くことが可能な帯域除去フィルタ(BEF)、バンドパスフィルタ(BPF)又はハイパスフィルタ(HPF)を備えてもよい。また、位相差補正部51は、フーリエ変換を用いて、時間領域信号を周波数領域信号に変換し、周波数領域で帯域を分けることで、信号成分以外のノイズ成分を分離してもよい。
 また、本実施の形態2において、位相差補正部51及び位相演算部6が、一つのLSIに集積される構成としてもよい。
 また、本実施の形態2において、位相差補正部51及び位相演算部6の機能は、コンピュータにより実行可能なプログラム及びコンピュータにより実現されてもよい。
 (実施の形態3)
 図11及び図12は、本発明の実施の形態3における変調信号検出装置の構成を示す概略図である。以下、本実施の形態3について具体的に説明する。
 図11及び図12において、図1及び図2と同じ構成要素については同じ符号を用い、説明を省略する。
 図11は、本発明の実施の形態3における位相差演算部の構成を示す図である。図11において、位相差演算部30は、位相差補正部71と、位相演算部6とを備える。コサイン成分1とサイン成分2とが、位相差補正部71に入力される。コサイン成分1は、参照光と信号光との位相差(光路差)Δφを有する。サイン成分2は、コサイン成分1と振幅がほぼ同じであり、コサイン成分1とほぼπ/2ずれた位相差を有する。位相差補正部71は、位相差誤差成分δを用いて、位相差補正コサイン成分4と位相差補正サイン成分5とを生成する。生成された位相差補正コサイン成分4と位相差補正サイン成分5とは、位相演算部6に入力される。位相演算部6は、位相差成分7を出力する。
 次に、図12を用いて、位相差補正部71について説明する。図12は、本発明の実施の形態3における位相差補正部の構成を示す図である。位相差補正部71は、アンプ81,82,83,84,89,90と、加算演算部85,86と、LPF87,88とを備える。アンプ81は、コサイン成分1をα倍し、アンプ82は、サイン成分2をα倍し、アンプ83は、コサイン成分1をβ倍し、アンプ84は、サイン成分2をβ倍する。アンプ81,82,83,84は、位相差補正部71に入力されたコサイン成分1とサイン成分2とにゲインを与えて出力する。アンプ81,82,83,84からの出力は、下記の式(20)~(23)で表される。
 アンプ81からの出力:AcosΔφcosδ・・・・(20)
 アンプ82からの出力:AsinΔφcosδ・・・・(21)
 アンプ83からの出力:AcosΔφsinδ・・・・(22)
 アンプ84からの出力:AsinΔφsinδ・・・・(23)
 ここで、位相差誤差成分δは、LPF87,88とアンプ89,90とによって生成される。アンプ81,82の誤差補正ゲインα及びアンプ83,84の誤差補正ゲインβは、下記の式(24)及び式(25)で表される。
 α=cosδ・・・・(24)
 β=sinδ・・・・(25)
 加算演算部85は、アンプ81からの出力とアンプ84からの出力とを加算する。これにより、加算演算部85は、下記の式(26)で表される位相差補正コサイン成分4を出力する。
 AcosΔφcosδ+AsinΔφsinδ=Acos(Δφ-δ)・・・・(26)
 加算演算部86は、アンプ82からの出力からアンプ83からの出力を減算する。これにより、加算演算部86は、下記の式(27)で表される位相差補正サイン成分5を出力する。
 AsinΔφcosδ-AcosΔφsinδ=Asin(Δφ-δ)・・・・(27)
 式(26)と式(27)とは、コサイン成分1とサイン成分2とに、それぞれ位相差誤差成分δに基づいて演算されたゲインを乗じて加算することで、位相差成分Δφから位相差誤差成分δが除去された位相差補正コサイン成分4と位相差補正サイン成分5とが得られることを表している。
 加算演算部85,86から出力された位相差補正コサイン成分4と位相差補正サイン成分5とは、LPF87,88にそれぞれ入力される。LPF87,88は、信号成分φsigに対して低い周波数帯域の成分である位相ノイズ成分φnoise、又は位相ノイズ成分φnoiseと位相差誤差成分δとの差分が出力される。アンプ89,90は、LPF87,88から出力された位相差補正コサイン成分4及び位相差補正サイン成分5のそれぞれの位相差誤差成分に対してそれぞれγ倍する。位相差誤差成分をγ倍した値が、アンプ81,82,83,84のゲインとして設定される。このときのγの値は、LPF87とアンプ89との組み合わせによる伝達関数をH、LPF88とアンプ90との組み合わせによる伝達関数をHとしたとき、位相差補正部71内の閉ループ特性1/(1+H)と1/(1+H)とがともに安定となるような範囲で任意の値とする。
 かかる構成によれば、位相差補正部71は、実施の形態1と同様に、式(8)の右辺第2項(φnoise)を右辺第3項(δ)によって打ち消すように制御することが可能となる。その結果、信号成分φsigに比べて非常に大きい位相ノイズ成分φnoiseのレンジによらず、アークタンジェント演算の不連続が起こらない変調信号の再生が可能となる。
 また、本実施の形態3の位相差補正部71は、実施の形態1の位相差誤差検出部8と同様に、ナノメータオーダである±πの範囲の微小変動から、マイクロメータオーダの±数百πの大きな変動まで、連続的に検出可能である。そのため、アクチュエータで追随させることが非常に困難であるナノメータオーダの位相ノイズ成分の抑制も可能であり、高S/Nの再生が可能となる。
 なお、本実施の形態3において、位相差補正部71が補正部の一例に相当し、位相演算部6が位相演算部の一例に相当する。
 また、本実施の形態3において、位相差補正部71について図12を用いて説明したが、本発明はこれに限定されない。位相差補正部71は、図11の位相差補正部71内のコサイン成分とサイン成分のそれぞれの閉ループ特性が安定であり、式(8)の右辺第2項(φnoise)を右辺第3項(δ)によって打ち消すように制御できる構成であればよい。例えば、LPF87,88は、一次のLPFでもよいし、二次以上のLPFでもよい。また、LPF87,88が二次以上のLPFである場合、閉ループ特性を安定化するために、位相差補正部71は、位相補償部を備えてもよい。
 また、位相差補正部71は、LPF87,88の代わりに積分器を備えてもよい。また、位相差補正部71は、アンプ89,90の出力を積算する積算器を備えてもよく、積算器によって積算された値をアンプ81,82,83,84へ出力してもよい。この場合も、本実施の形態3と同様の効果が得られる。
 なお、本実施の形態3において、位相差補正部71のLPF87,88によって、信号成分以外のノイズ成分が分離されるが、本発明はこれに限定されない。位相差補正部71は、信号成分以外のノイズ成分を分離できる構成であればよい。例えば、位相差補正部71は、信号成分の周波数帯域を取り除くことが可能な帯域除去フィルタ(BEF)、バンドパスフィルタ(BPF)又はハイパスフィルタ(HPF)を備えてもよい。また、位相差補正部71は、フーリエ変換を用いて、時間領域信号を周波数領域信号に変換し、周波数領域で帯域を分けることで、信号成分以外のノイズ成分を分離してもよい。
 また、本実施の形態3において、外乱による変動要因の一例として光ディスク媒体の記録面のうねりについて説明したが、温度変化などを変動要因とする、変調信号よりも低い周波数帯域の変動成分に関しても、本実施の形態3の構成によりキャンセルすることが可能である。
 また、本実施の形態3において、位相差補正部71及び位相演算部6が、一つのLSIに集積される構成としてもよい。
 また、本実施の形態3において、位相差補正部71及び位相演算部6の機能は、コンピュータにより実行可能なプログラム及びコンピュータにより実現されてもよい。
 (実施の形態4)
 図13及び図14は、本発明の実施の形態4において、光ディスク媒体によって信号光が変調される変調信号検出装置の構成を示す図である。
 図14において、図1及び図2と同じ構成要素については同じ符号を用い、説明を省略する。
 図13は、本発明の実施の形態4における光ディスク装置の構成を示す図である。図13において、光ディスク装置300は、情報が記録されている光ディスク媒体301から生成したクロック信号を用いて、光ディスク媒体301からデータを再生したり、光ディスク媒体301にデータを記録したりする。
 光ディスク装置300は、ディスク回転モータ302と、光ヘッド駆動部304と、サーボ回路305と、光ヘッド部306と、信号処理部316とを備える。サーボ回路305は、サーボエラー信号を用いて、対物レンズ307における光ビームの集光状態及び走査状態が最適になるようにレンズ駆動部308を制御する。また、サーボ回路305は、光ヘッド部306が光ディスク媒体301の最適な半径位置に移動するように光ヘッド駆動部304を制御する。また、サーボ回路305は、光ビームを照射する光ディスク媒体301上の半径位置に基づいて、ディスク回転モータ302の回転数を最適に制御する。
 光ディスク媒体301は、少なくとも1つ以上のデータ記録面を有している。データ記録面にはトラックが形成されている。トラック上には所定のデータフォーマットに従って情報が記録されている。光ディスク媒体301は、図30に示す光ディスク媒体203と同じ構成である。図30では、光ディスク媒体において光の位相が変調される例を示している。記録面203a内に、透過率又は屈折率を変化させた連続した溝203g又は不連続な孔203hが形成されることで、データが記録されている。これらの溝203g又は孔203hに信号光が照射されると、光ディスク媒体に入射してから反射する位置に到達するまでの距離が異なることによって位相変調された信号光が反射される。信号光は、光ディスク媒体301からの反射光である。
 なお、本実施の形態4における光ディスク媒体301は、図30に示す光ディスク媒体203に限定されず、信号光を反射する位置を変えた光ディスク媒体を用いてもよい。例えば、光ディスク媒体301は、従来のCD-ROM、DVD-ROM又はBD-ROMのように2値に対応したピットの深さによって信号光の光量が異なる光ディスク媒体であってもよい。この場合、ピットの深さを多値変調させることで、反射光の位相が変化する。また、光ディスク媒体301は、従来のCD-R/RW、DVD-R/RW/RAM、DVD+R/RW又はBD-R/REのように反射率を変化させる光ディスク媒体であってもよい。この場合、反射率を変化させる位置を変化させることで、反射光の位相が変化する。このような光ディスク媒体を用いても本実施の形態4の効果を得ることが可能である。
 ディスク回転モータ302は、光ディスク媒体301を指定された回転数で回転させる。
 信号処理部316は、光ヘッド部306から出力される干渉光検出信号に基づいて、光ディスク媒体301に記録されたデータを再生する再生信号と、ディスク回転モータ302、光ヘッド駆動部304及びレンズ駆動部308を制御するためのサーボエラー信号とを生成する。
 光ヘッド部306は、レーザ309と、偏光ビームスプリッタ310と、λ/4板311,312と、参照光ミラー313と、対物レンズ307と、レンズ駆動部308と、干渉光検出部315とを備える。光ヘッド部306は、光ディスク媒体301に光ビームを照射し、トラックを走査しながら光ディスク媒体301から反射した信号光と、参照光とを干渉させた光を検出して電気信号を出力する。
 レーザ309は、レーザ光を出射する。偏光ビームスプリッタ310は、分離面に入射する水平偏光をほぼ100%透過させ、垂直偏光をほぼ100%反射させる。偏光ビームスプリッタ310は、レーザ309から出射されたレーザ光を垂直偏光の信号光と、水平偏光の参照光とに分岐する。また、分岐された信号光は、光路上にあるλ/4板311を2回通ることで偏光方向が90度回転して、偏光ビームスプリッタ310に戻る。分岐された参照光は、光路上にあるλ/4板312を2回通ることで偏光方向が90度回転して、偏光ビームスプリッタ310に戻る。ここで、偏光方向が90度回転しているために、分岐したときとは逆に、水平偏光となった信号光は偏光ビームスプリッタ310を透過し、垂直偏光となった参照光は偏光ビームスプリッタ310を反射する。そして、お互いに偏光面が直交した信号光と参照光による干渉光となる。
 ここで、偏光ビームスプリッタ310に入射するレーザ光の偏光面は、レーザ309をあらかじめ回転させて配置することで、信号光と参照光との強度比を変えることが可能となる。
 対物レンズ307は、光ディスク媒体301に信号光を集光させるとともに、光ディスク媒体301を反射した信号光を平行光にする。平行光にされた信号光は、往路の信号光の光路を戻る。また、対物レンズ307は、レンズ駆動部308によりフォーカス方向とトラッキング方向とに駆動される。
 λ/4板311、312は、透過することで、直線偏光を円偏光に変換し、円偏光を直線偏光に変換する。直線偏光は、λ/4板311、312を2回透過することで、偏光面が90度回転した直線偏光となる。例えば、垂直偏光は水平偏光に変換され、水平偏光は垂直偏光に変換される。
 参照光ミラー313は、レーザ光から分岐された参照光をほぼ100%反射させる。参照光ミラー313を反射した参照光は、往路と同じ光路を戻る。
 干渉光検出部315は、光ディスク媒体301から反射してきた信号光と、参照光ミラー313から反射してきた参照光との合波光を検出し、電気信号を出力する。干渉光検出部315は、信号光と参照光との位相差を少なくとも3つ以上異ならせた干渉光を検出し、電気信号を出力する。
 図14は、本実施の形態4における干渉光検出部315の具体的な構成を示す図である。図14に示す干渉光検出部315は、ハーフビームスプリッタ(HBS)321と、λ/2板322と、λ/4板323と、第1のPBS324と、第2のPBS325と、第1の検出器326と、第2の検出器327と、第3の検出器328と、第4の検出器329と、第1の演算回路330と、第2の演算回路331と、位相差演算部10とを備える。
 HBS321は、入射した合波光(干渉光)を二方向にほぼ同じ強度で反射及び透過する。
 λ/2板322は、HBS321を透過した合波光の偏光方向を45度回転させる。第1のPBS324は、偏光方向が45度回転させられた合波光の水平偏光をほぼ100%透過させ、垂直偏光をほぼ100%反射させる。第1の検出器326及び第2の検出器327は、入射した光量に応じた電気信号を出力する。第1の検出器326は、偏光方向が45度回転させられた合波光の水平偏光方向に干渉した光を検出して、光量に応じた電気信号を出力する。第2の検出器327は、偏光方向が45度回転させられた合波光の垂直偏光方向に干渉した光を検出して、光量に応じた電気信号を出力する。第1の演算回路330は、第1の検出器326から出力された電気信号と第2の検出器327から出力された電気信号との差動信号を出力する。
 λ/4板323は、HBS321を反射した合波光の偏光方向を45度回転させ、垂直偏光及び水平偏光のそれぞれの、信号光成分と参照光成分との間にπ/2(90度)の位相差を与える。第2のPBS325は、λ/4板323を通過した合波光の水平偏光をほぼ100%透過させ、垂直偏光をほぼ100%反射させる。第3の検出器328及び第4の検出器329は、入射した光量に応じた電気信号を出力する。第3の検出器328は、λ/4板323を通過した合波光の水平偏光方向に干渉した光を検出して、光量に応じた電気信号を出力する。第4の検出器329は、λ/4板323を通過した合波光の垂直偏光方向に干渉した光を検出して、光量に応じた電気信号を出力する。第2の演算回路331は、第3の検出器328から出力された電気信号と第4の検出器329から出力された電気信号との差動信号を出力する。
 位相差演算部10は、第1の演算回路330から出力された電気信号及び第2の演算回路331から出力された電気信号に基づいて演算を行い、干渉光検出信号を出力する。
 ここで、干渉光検出部315に入射した、信号光と参照光との合波光の偏光状態をジョーンズベクトルで表すと下記の式(28)のようになる。
Figure JPOXMLDOC01-appb-I000003
 式(28)において、Eは、光ディスク媒体301を反射した信号光の電場であり、Aは、信号光の電場の振幅成分である。Eは、参照光ミラー313を反射した参照光の電場であり、Aは、参照光の電場の振幅成分である。θは、レーザ光の波長λ、時間t及び場所zに関連した位相成分を表し、φsigは、光ディスク媒体301によって位相変調された信号成分を表し、φnoiseS及びφnoiseMは、光路差変動などによって起こる信号光の電場と参照光の電場との位相差変動による位相ノイズ成分を表している。
 HBS321を透過し、λ/2板322を透過した光のジョーンズベクトルは以下の式(29)のようになる。このとき、λ/2板322は、水平偏光方向から見て、22.5度の方向がfast軸となるように配置する。fast軸とは、波長板において、光が速く進む振動方向である。また、光が遅く進む振動方向はslow軸と呼ぶ。
Figure JPOXMLDOC01-appb-I000004
 次に、第1のPBS324を透過する光の電場と、第1のPBS324を反射する光の電場とはそれぞれ下記の式(30)及び式(31)のようになる。
 透過(水平偏光):(E+E)/2・・・・(30)
 反射(垂直偏光):(E-E)/2・・・・(31)
 これより、第1の検出器326及び第2の検出器327の検出信号は次の式(32)及び式(33)のようになる。
Figure JPOXMLDOC01-appb-I000005
 式(32)及び式(33)において、ηは、検出器の変換効率である。Δφは、信号光と参照光との光路長差による位相差である。第1の検出器326及び第2の検出器327の検出信号に基づいて第1の演算回路330において得られる差動信号は次式(34)のようになる。
 ηAcosΔφ=AcosΔφ・・・・(34)
 一方、HBS321を反射して、λ/4板323を透過した光のジョーンズベクトルは以下の式(35)のようになる。このとき、λ/4板323は、水平偏光方向から見て、45度の方向がfast軸となるように配置される。
Figure JPOXMLDOC01-appb-I000006
 次に、第2のPBS325を透過する光の電場と、第2のPBS325を反射する光の電場とはそれぞれ次の式(36)及び式(37)のようになる。
Figure JPOXMLDOC01-appb-I000007
 式(36)及び式(37)より、第3の検出器328及び第4の検出器329の検出信号は次の式(38)及び式(39)のようになる。
Figure JPOXMLDOC01-appb-I000008
 第3の検出器328及び第4の検出器329の検出信号に基づいて第2の演算回路331において得られる差動信号は次式(40)のようになる。
 ηAsinΔφ=AsinΔφ・・・・(40)
 式(34)と式(40)とに基づいて演算されたコサイン成分とサイン成分とが位相差演算部10に入力される。位相差演算部10は、位相差成分Δφから位相ノイズ成分φnoiseがキャンセルされた信号(φsig)を干渉検出信号として出力する。ここで、位相差演算部10については、実施の形態1と同じ構成とし、説明を省略する。
 本実施の形態4では、変調信号成分と位相差誤差成分との周波数帯域が予め重ならないように変調の符号が工夫されている。そのため、図4に示した簡単なLPF21で信号成分(φsig)と位相差誤差成分(φnoise-δ)との分離が可能である。しかし、簡単なLPF21が用いられる場合は、信号成分が位相差誤差信号に漏れ込まないようにする必要がある。そのため、信号成分の帯域と位相差誤差成分の帯域とを確実に分ける必要があり、フィルタ特性が急峻なLPFを用いる必要がある。そのため、安定に位相差誤差量を除去して制御するには制御周波数特性は、用いるLPFの帯域の1/10程度にする必要がある。また、より優れた位相差誤差成分の分離方法としては、再生信号が必ず特定のレベル(例えば干渉光検出信号のゼロクロス点)をサンプリングする方法がある。このようにして位相差誤差検出部8で検出された位相差誤差成分は、位相差誤差の補正値として、位相差補正部3にフィードバック制御される。
 次に、本実施の形態4における信号処理部316について説明する。図15は、本実施の形態4における信号処理部の具体的な構成を示す図である。
 信号処理部316は、再生信号処理部341と制御信号処理部342とを備える。再生信号処理部341は、干渉光検出信号から、光ディスク媒体301に記録されたデータを再生し、再生信号を生成する。制御信号処理部342は、干渉光検出信号に基づいてサーボエラー信号を生成し、生成したサーボエラー信号をサーボ回路305へ出力する。
 かかる構成によれば、位相差演算部10の位相差補正部は、実施の形態1と同様に、式(8)の右辺第2項(φnoise)を右辺第3項(δ)によって打ち消すように制御することが可能となる。その結果、信号成分φsigに比べて非常に大きい位相ノイズ成分φnoiseのレンジによらず、アークタンジェント演算の不連続が起こらない変調信号の再生が可能となる。
 また、本実施の形態4の位相差誤差検出部においても、実施の形態1と同様に、ナノメータオーダである±πの範囲の微小変動から、マイクロメータオーダの±数百πの大きな変動まで、連続的に検出可能である。そのため、アクチュエータで追随させることが非常に困難であるナノメータオーダの位相ノイズ成分の抑制も可能であり、高S/Nでの再生が可能な光ディスク装置が可能となる。
 なお、本実施の形態4において、光ディスク装置300が変調信号検出装置の一例に相当し、ハーフビームスプリッタ321が分岐部の一例に相当し、第1の検出器326、第2の検出器327、第3の検出器328及び第4の検出器329が少なくとも3つの検出器の一例に相当し、第1の演算回路330及び第2の演算回路331が検出信号演算部の一例に相当する。
 また、本実施の形態4において、レーザ309をあらかじめ回転させて配置することで、偏光ビームスプリッタ310に入射するレーザ光の偏光面の信号光と参照光との強度比を変えることができるとしたが、本発明はこれに限定されない。例えば、光ヘッド部306は、レーザ309と偏光ビームスプリッタ310との間にλ/2板を備えてもよい。このように、λ/2板を回転させることで、レーザ光の偏光面が回転し、信号光と参照光との強度比を可変してもよい。
 また、本実施の形態4において、外乱による変動要因の一例として光ディスク媒体の記録面のうねりについて説明したが、温度変化などを変動要因とする、変調信号よりも低い周波数帯域の変動成分に関しても、本実施の形態4の構成によりキャンセルすることが可能である。
 また、本実施の形態4において、信号処理部316は光ヘッド部306外に配置されているが、光ヘッド部306は、信号処理部316を備えてもよい。
 また、本実施の形態4において、干渉光検出部315内の位相差演算部10は、光ヘッド部306内に配置されているが、位相差演算部10は、光ヘッド部306外に配置されてもよい。この場合、位相差演算部10と信号処理部316とが一つのLSIに集積される構成としてもよい。
 また、本実施の形態4において、位相差誤差検出部8について図4を用いて説明したが、本発明はこれに限定されない。位相差誤差検出部8は、図1の位相差補正部3、位相演算部6及び位相差誤差検出部8で構成される閉ループ特性が安定であり、式(8)の右辺第2項(φnoise)を右辺第3項(δ)によって打ち消すように制御できる構成であればよい。例えば、LPF21は、一次のLPFでもよいし、二次以上のLPFでもよい。また、LPF21が二次以上のLPFである場合、閉ループ特性を安定化するために、位相差誤差検出部8は、位相補償部を備えてもよい。また、位相差誤差検出部8は、LPF21の代わりに積分器を備えてもよい。また、位相差誤差検出部8は、図7に示すように、アンプ22からの出力を積算し、積算した値を位相差補正部3へ出力する積算器23を備えてもよい。この場合も、本実施の形態4と同様の効果が得られる。
 なお、本実施の形態4において、位相差補正部3について図2を用いて説明したが、本発明はこれに限定されない。位相差成分Δφを持ったコサイン成分とサイン成分とが、位相差誤差成分δを用いて、位相差補正コサイン成分と位相差補正サイン成分とに補正される構成であればよい。例えば、図2に示した第1の誤差補正ゲイン演算部17及び第2の誤差補正ゲイン演算部18は、上記の式(3)及び式(4)を用いるのではなく、ルックアップテーブルなどを用いて、誤差補正ゲインα及びβを決定してもよい。
 また、図2に示す位相差補正部3では、コサイン成分1をアンプ13で-β倍し、-β倍されたコサイン成分1とα倍されたサイン成分2とを加算演算部16で加算させているが、コサイン成分1をアンプ13でβ倍し、α倍されたサイン成分2からβ倍されたコサイン成分1を加算演算部16で減算させてもよい。この場合、本実施の形態4と同様な効果が得られる。
 また、図5に示すように、位相差補正部3は、アンプ11,12,13,14と、加算演算部15,16と、第1の誤差補正ゲイン演算部17と、第3の誤差補正ゲイン演算部31と、誤差補正ルックアップテーブル(LUT)32とを備えてもよい。第1の誤差補正ゲイン演算部17は、誤差補正ルックアップテーブル(LUT)32を参照し、位相差誤差成分δから誤差補正ゲインαを演算する。第3の誤差補正ゲイン演算部31は、誤差補正LUT32を参照し、入力された誤差補正ゲインαから、位相をπ/2シフトさせた値を誤差補正ゲインβとして演算する。この場合、本実施の形態4と同様な効果が得られる。
 また、コサイン成分1及びサイン成分2がA/D変換されたデジタルデータである場合、図6に示すように、位相差補正部3は、乗算部41,42,43,44と、加算演算部15,16と、第1の誤差補正ゲイン演算部17と、第2の誤差補正ゲイン演算部18とを備えてもよい。この場合、乗算部41は、コサイン成分1に誤差補正ゲインαを乗算してもよく、乗算部42は、サイン成分2に誤差補正ゲインαを乗算してもよく、乗算部43は、コサイン成分1に誤差補正ゲインβを乗算してもよく、乗算部44は、サイン成分2に誤差補正ゲインβを乗算してもよい。
 なお、本実施の形態4において、位相演算部6は、上記の式(7)を用いて位相差成分7を生成しているが、本発明はこれに限定されない。例えば、位相演算部6は、アークタンジェント演算の結果得られる位相差成分7を予め保持するルックアップテーブルを備えてもよい。位相演算部6は、ルックアップテーブルを用いて位相差補正コサイン成分4及び位相差補正サイン成分5を位相差成分7に変換してもよい。また、位相演算部6は、上記の式(9)又は式(10)のように、場合分けを行って位相差成分7を演算してもよい。
 また、本実施の形態4において、位相差誤差検出部8のLPF21によって、信号成分以外のノイズ成分が分離されるが、本発明はこれに限定されない。位相差誤差検出部8は、信号成分以外のノイズ成分を分離できる構成を備えていればよい。例えば、位相差誤差検出部8は、信号成分の周波数帯域を取り除くことが可能な帯域除去フィルタ(BEF)、バンドパスフィルタ(BPF)又はハイパスフィルタ(HPF)を備えてもよい。また、位相差誤差検出部8は、フーリエ変換を用いて、時間領域信号を周波数領域信号に変換し、周波数領域で帯域を分けることで、信号成分以外のノイズ成分を分離してもよい。
 また、本実施の形態4において、信号処理部316は、一つのLSIに集積される構成としてもよい。
 また、本実施の形態4において、位相差補正部3、位相演算部6及び位相差誤差検出部8は、一つのLSIに集積される構成としてもよい。
 また、本実施の形態4において、位相差補正部3、位相演算部6及び位相差誤差検出部8の機能は、コンピュータにより実行可能なプログラム及びコンピュータにより実現されてもよい。例えば、位相差補正部3、位相演算部6及び位相差誤差検出部8のプログラムは、図8に示すフローチャートで表される。
 また、本実施の形態4において、干渉光検出部315の構成について、図14を用いて説明したが、本発明はこれに限定されない。原理的には、干渉光検出部315は、3つ以上の検出器を備えればよく、各検出器は、信号光と参照光との位相差が互いに異なるように干渉光を検出すればよい。干渉光検出部315は、信号光と参照光との干渉光を少なくとも3つの光に分岐する分岐部と、分岐部によって分岐された少なくとも3つの光をそれぞれ検出し、検出した光の光量に応じた検出信号をそれぞれ出力する少なくとも3つの検出器と、少なくとも3つの検出器によって出力された検出信号に基づいて第1の信号及び第2の信号を演算する検出信号演算部とを含んでもよい。例えば、干渉光検出部315が3つの検出器を備える場合、各検出器での信号光と参照光との位相差は、0度、120度及び240度の組合せ、又は-120度、0度及び120度の組合せにより実現してもよい。
 また、本実施の形態4において、干渉光検出部315は、図14のように4つの検出器を備えているが、本発明はこれに限定されず、干渉光検出部315は、3つ以上の検出器によってコサイン成分とサイン成分とを生成することが可能である。
 例えば、図16は、本発明の実施の形態4において、3つの検出器を備える干渉光検出部の構成を示す図である。このとき、各検出器上での信号光と参照光との位相差は、0、2π/3及び4π/3である。
 図16に示す干渉光検出部450は、無偏光ビームスプリッタ451,452と、偏光子453,454,455と、位相板456と、位相板457と、第1の検出器458と、第2の検出器459と、第3の検出器460と、検出信号演算部461と、位相差演算部10とを備える。偏光子453,454,455は、45度偏光を透過する。位相板456は、信号光と参照光との間に5π/3の位相差を発生させる。位相板457は、信号光と参照光との間にπ/3の位相差を発生させる。
 無偏光ビームスプリッタ451は、干渉光検出部450に入射した干渉光を2対1の強度比で分割する。ここで、無偏光ビームスプリッタ451の反射光と透過光との比は2対1である。反射光と透過光との比が強度分割比となっている。無偏光ビームスプリッタ451は、反射光に対して、信号光と参照光との間にπの位相差を発生させる。
 まず、無偏光ビームスプリッタ451で反射された光は、無偏光ビームスプリッタ452に入射する。無偏光ビームスプリッタ452は、入射した光を1対1の強度比で分割する。ここで、無偏光ビームスプリッタ452の反射光と透過光との比は1対1である。反射光と透過光との比が強度分割比となっている。無偏光ビームスプリッタ452は、反射光に対して、信号光と参照光との間にπの位相差を発生させる。
 無偏光ビームスプリッタ452を透過した光は、偏光子455に入射する。偏光子455は、入射した光のうち45度偏光のみを透過させる。偏光子455を透過した光は、第1の検出器458によって検出される。このとき、第1の検出器458によって検出される光は、無偏光ビームスプリッタ451で反射されているため、信号光と参照光との間にπの位相差を有する。
 次に、無偏光ビームスプリッタ452を反射した光は、位相板456に入射する。位相板456は、入射した光に対し、信号光と参照光との間に5π/3の位相差を発生させる。ここで、無偏光ビームスプリッタ451での反射による位相差と、無偏光ビームスプリッタ452での反射による位相差と、位相板456での透過による位相差とを合わせた、信号光と参照光との間に11π/3(=5π/3)の位相差を有する光は、偏光子454に入射する。偏光子454は、入射した光のうち45度偏光のみを透過させる。偏光子454を透過した光は、第2の検出器459によって検出される。
 次に、無偏光ビームスプリッタ451を透過した光は、位相板457に入射する。位相板457は、入射した光に対し、信号光と参照光との間にπ/3の位相差を発生させる。信号光と参照光との間にπ/3の位相差を有する光は、偏光子453に入射する。偏光子453は、入射した光のうち45度偏光のみを透過させる。偏光子453を透過した光は、第3の検出器460によって検出される。ここで、各検出器で検出される光の強度は以下の式(41)~式(43)のようになる。
Figure JPOXMLDOC01-appb-I000009
 検出信号演算部461は、以下の式(44)及び式(45)に基づいて、第1の検出器458、第2の検出器459及び第3の検出器460で検出された信号I,I,Iからコサイン成分(AcosΔφ)とサイン成分(AsinΔφ)とを算出する。
Figure JPOXMLDOC01-appb-I000010
 なお、干渉光検出部315は、図14に示す構成に限られない。例えば、信号光と参照光との位相差を異ならせた信号を得るための光学素子として、λ/2板及びλ/4板を用いているが、偏光を制御できる光学素子、ナノフォトニック材料又は光導波路などの複合光学機能素子を用いてもよい。
 また、本実施の形態4において、干渉光検出部315と信号処理部316は、光導波路、電気回路及び電子回路が一体となった一つのLSIに集積される構成としてもよい。
 また、本実施の形態4において、位相差演算部10の構成について、図1、図2及び図4を用いて説明したが、本発明はこれに限定されない。信号成分と位相ノイズ成分とを有する位相差成分Δφを持ったコサイン成分とサイン成分とが、位相差誤差成分δを用いて、位相差補正コサイン成分と位相差補正サイン成分とに補正される構成であればよい。例えば、図2に示した第1の誤差補正ゲイン演算部17及び第2の誤差補正ゲイン演算部18は、上記の式(3)及び式(4)を用いるのではなく、ルックアップテーブルなどを用いて、誤差補正ゲインα及びβを決定してもよい。
 また、図2に示す位相差補正部3では、コサイン成分1をアンプ13で-β倍し、-β倍されたコサイン成分1とα倍されたサイン成分2とを加算演算部16で加算させているが、コサイン成分1をアンプ13でβ倍し、α倍されたサイン成分2からβ倍されたコサイン成分1を加算演算部16で減算させてもよい。この場合、本実施の形態4と同様な効果が得られる。
 また、図5に示すように、位相差補正部3は、アンプ11,12,13,14と、加算演算部15,16と、第1の誤差補正ゲイン演算部17と、第3の誤差補正ゲイン演算部31と、誤差補正ルックアップテーブル(LUT)32とを備えてもよい。第1の誤差補正ゲイン演算部17は、誤差補正ルックアップテーブル(LUT)32を参照し、位相差誤差成分δから誤差補正ゲインαを演算する。第3の誤差補正ゲイン演算部31は、誤差補正LUT32を参照し、入力された誤差補正ゲインαから、位相をπ/2シフトさせた値を誤差補正ゲインβとして演算する。この場合、本実施の形態4と同様な効果が得られる。
 また、コサイン成分1とサイン成分2とがA/D変換されたデジタルデータである場合、図6に示すように、位相差補正部3は、乗算部41,42,43,44と、加算演算部15,16と、第1の誤差補正ゲイン演算部17と、第2の誤差補正ゲイン演算部18とを備えてもよい。この場合、乗算部41は、コサイン成分1に誤差補正ゲインαを乗算してもよく、乗算部42は、サイン成分2に誤差補正ゲインαを乗算してもよく、乗算部43は、コサイン成分1に誤差補正ゲインβを乗算してもよく、乗算部44は、サイン成分2に誤差補正ゲインβを乗算してもよい。
 また、位相差演算部は、図9及び図10に示す構成であってもよいし、図11及び図12に示す構成であってよい。この場合も、本実施の形態4と同様な効果が得られる。
 (実施の形態5)
 図17、図18及び図19は、本発明の実施の形態5において、光ディスク媒体によって信号光が変調される変調信号検出装置の構成を示す図である。
 図17及び図18において、図13及び図14と同じ構成要素については同じ符号を用い、説明を省略する。図19において、図1と同じ構成要素については同じ符号を用い、説明を省略する。
 図17は、本発明の実施の形態5における光ディスク装置の構成を示す図である。図18は、本発明の実施の形態5における干渉光検出部の具体的な構成を示す図である。図19は、本発明の実施の形態5における位相差演算部の構成を示す図である。
 図17において、光ディスク装置400は、情報が記録されている光ディスク媒体301から生成したクロック信号を用いて、光ディスク媒体301からデータを再生したり、光ディスク媒体301にデータを記録したりする。
 光ディスク装置400は、ディスク回転モータ302と、光ヘッド駆動部304と、サーボ回路305と、光ヘッド部351と、信号処理部316とを備える。
 光ヘッド部351は、レーザ309と、偏光ビームスプリッタ310と、λ/4板311,312と、参照光ミラー313と、対物レンズ307と、レンズ駆動部308と、干渉光検出部315と、フォーカス回路352とを備える。
 また、図18に示すように、干渉光検出部315は、ハーフビームスプリッタ(HBS)321と、λ/2板322と、λ/4板323と、第1のPBS324と、第2のPBS325と、第1の検出器326と、第2の検出器327と、第3の検出器328と、第4の検出器329と、第1の演算回路330と、第2の演算回路331と、位相差演算部360とを備える。
 また、図19に示すように、位相差演算部360は、位相差補正部3と、位相演算部6と、位相差誤差検出部8と、フォーカスエラー信号生成部361とを備える。
 フォーカス回路352は、干渉光検出部315内の位相差演算部360(図18参照)から出力されたフォーカスエラー信号に基づいて、レンズ駆動部308のフォーカス制御を行う。
 フォーカスエラー信号生成部361は、位相差誤差検出部8から出力された位相差誤差成分δに基づいて、フォーカスエラー信号を生成する。位相差誤差成分δは、位相差誤差検出部8において検出される位相ノイズ成分φnoiseに相関がある。位相ノイズ成分φnoiseの大きな要因は、光ディスク媒体301の記録面のうねり又は反りによって発生する光路差変動である。そのため、フォーカスエラー信号生成部361は、位相差誤差検出部8によって検出された位相差誤差成分δを、フォーカスエラー信号として扱うことが可能である。
 かかる構成によれば、実施の形態4と同様に、位相差補正部3は、式(8)の右辺第2項(φnoise)を右辺第3項(δ)によって打ち消すように制御することが可能となる。その結果、信号成分φsigに比べて非常に大きい位相ノイズ成分φnoiseのレンジによらず、アークタンジェント演算の不連続が起こらない変調信号の再生が可能となる。
 また、本実施の形態5の位相差誤差検出部8においても、実施の形態1と同様に、ナノメータオーダである±πの範囲の微小変動から、マイクロメータオーダの±数百πの大きな変動まで、連続的に検出可能である。そのため、アクチュエータで追随させることが非常に困難であるナノメータオーダの位相ノイズ成分の抑制も可能であり、高S/Nの再生が可能となる。さらに、本実施の形態5では、位相差誤差成分δを用いたフォーカス制御が可能となる。
 なお、本実施の形態5において、光ディスク装置400が変調信号検出装置の一例に相当し、ハーフビームスプリッタ321が分岐部の一例に相当し、第1の検出器326、第2の検出器327、第3の検出器328及び第4の検出器329が少なくとも3つの検出器の一例に相当し、第1の演算回路330及び第2の演算回路331が検出信号演算部の一例に相当する。
 (実施の形態6)
 図20は、本発明の実施の形態6における光伝送システム370の全体構成を示す図である。図21は、図20に示す光送信器の構成を示す図である。図22は、図21に示す送信光変調部の一例を示す図である。図23は、図20に示す変調信号検出装置の構成を示す図である。
 本実施の形態6について、図20、図21、図22及び図23を用いて説明する。図23において、図13及び図14と同じ構成要素については同じ符号を用い、説明を省略する。
 図20において、光伝送システム370は、光送信器371と、光伝送路372と、変調信号検出装置373とを備える。光送信器371は、位相変調した光信号を出力する。光送信器371から出力された光信号は、光伝送路372を介して、変調信号検出装置373に入力される。
 まず、図21を用いて光送信器371の一例について説明する。図21に示す光送信器371は、レーザ391と、送信制御部392と、送信光変調部393と、送信信号処理部394と、変調制御部395とを備える。
 送信信号処理部394は、送信データを受け取る。送信データを受け取った送信信号処理部394は、送信制御部392にデータ送信を行うことを伝え、送信データを基にして位相変調信号を生成し、生成した位相変調信号を変調制御部395に出力する。送信制御部392は、レーザ391から送信光を出射するようにレーザ391を制御する。レーザ391から出射された送信光は、送信光変調部393に導かれる。
 変調制御部395は、受け取った位相変調信号を基に、送信光変調部393の屈折率を変化させることで、送信光を位相変調する。送信光は、送信光変調部393によって位相変調され、信号光となる。
 なお、本実施の形態6において、送信光変調部393は、屈折率を変えることで送信光を位相変調させているが、本発明はこれに限定されない。送信光変調部393は、例えば、ミラー又は光ファイバーなどの複数の光学素子を用いて実際の光路長を変化させることで送信光を位相変調させてもよく、この場合も、本発明の効果を実現できる。
 光路長を変化させる送信光変調部393の一例を、図22を用いて説明する。送信光変調部393は、入射ミラー401と、駆動ミラー402と、出射ミラー403とを備える。送信光変調部393に入射した送信光は、入射ミラー401によって反射され、駆動ミラー402へ向かう。駆動ミラー402は、入射ミラー401で反射された送信光を、さらに出射ミラー403の方向へ反射する。駆動ミラー402は、入射ミラー401で反射された光の光軸に対して、ほぼ平行な方向に駆動することが可能である。駆動ミラー402の駆動方法については、特に限定されない。駆動ミラー402で反射された送信光は、出射ミラー403で反射される。出射ミラー403で反射された送信光は、信号光として送信光変調部393から出射される。
 送信光変調部393内で、送信光が通る幾何学的距離は、駆動ミラー402の位置によって決まる。そのため、アクチュエータなどによって、駆動ミラー402の位置が変化されることで、送信光の光路長が変化し、出力される信号光の位相を、送信光の位相と異ならせることが可能となる。
 つづいて、変調信号検出装置373について、図23を用いて説明する。変調信号検出装置373は、偏光ビームスプリッタ(PBS)381と、参照光レーザ382と、干渉光検出部315と、信号処理部383とを備える。
 変調信号検出装置373には、水平偏光の信号光が入力される。信号光は、変調信号検出装置373へ伝送すべきデータに応じて光が位相変調されることで得られる。PBS381は、水平偏光をほぼ100%透過させ、垂直偏光をほぼ100%反射させる。参照光レーザ382から出力された参照光の偏光方向は、信号光とほぼ直交させた垂直方向とする。これにより、水平偏光の信号光はPBS381を透過し、垂直偏光の参照光はPBS381を反射するので、信号光と参照光との合波光が生成される。また参照光の波長は、信号光と干渉させるために、信号光の波長とほぼ同じとする。
 次に、PBS381において、信号光と参照光とが合波された光のジョーンズベクトルは以下の式(46)のようになる。
Figure JPOXMLDOC01-appb-I000011
 式(46)において、Eは、信号光の電場であり、Aは、信号光の電場の振幅成分である。Eは、参照光レーザ382から出力された参照光の電場であり、Aは、参照光の電場の振幅成分である。θは、レーザ光の波長λ、時間t及び場所zに関連した位相成分を表し、φsigは、位相変調された信号成分を表し、φnoiseS及びφnoiseMは、光路差変動などによって起こる信号光の電場と参照光の電場との位相差変動による位相ノイズ成分を表している。
 PBS381で生成された合波光は、干渉光検出部315に入射する。干渉光検出部315は、入射した合波光から、位相差の異なる複数の干渉光を生成し、生成した複数の干渉光の光量を電気信号に変換し、干渉光検出信号を生成する。
 干渉光検出部315の構成は、図14に示している。干渉光検出部315及び位相差演算部10の構成は、実施の形態4における干渉光検出部及び位相差演算部の構成と同じであり、説明を省略する。
 かかる構成によれば、位相差演算部10の位相差補正部は、実施の形態1と同様に、式(8)の右辺第2項(φnoise)を右辺第3項(δ)によって打ち消すように制御することが可能となる。その結果、信号成分φsigに比べて非常に大きい位相ノイズ成分φnoiseのレンジによらず、アークタンジェント演算の不連続が起こらない変調信号の再生が可能となる。
 また、本実施の形態6の位相差誤差検出部においても、実施の形態1と同様に、ナノメータオーダである±πの範囲の微小変動から、マイクロメータオーダの±数百πの大きな変動まで、連続的に検出可能である。そのため、アクチュエータで追随させることが非常に困難であるナノメータオーダの位相ノイズ成分の抑制も可能であり、高S/Nでの再生が可能な光伝送システムが可能となる。
 なお、本実施の形態6において、変調信号検出装置373が変調信号検出装置の一例に相当する。
 また、本実施の形態6において、変調信号検出装置373は、図23に示した構成に限られない。図24は、本実施の形態6における変調信号検出装置の別の構成を示す図である。例えば、信号光は、光伝送路372の特性、又は温度などの外的要因によって必ずしも水平偏光で変調信号検出装置373に入射されるわけではない。そこで、図24に示すように、偏光制御部420によって偏光方向が制御された信号光を、PBS381に入射させる。これにより、信号光の偏光方向の変動によるロスを抑えることが可能となる。
 図24に示す変調信号検出装置373は、PBS381と、参照光レーザ382と、干渉光検出部315と、信号処理部384と、偏光制御部420とを備える。偏光制御部420は、λ/2板421と、PBS422と、検出器423と、制御信号生成部424と、制御部425とを備える。
 偏光制御部420に入射した信号光の偏光方向は、光伝送路372において様々な外乱を受けることにより、常に水平偏光となっているとは限らない。偏光制御部420は、その不確定な信号光の偏光方向を、水平偏光になるように制御する。
 λ/2板421は、制御部425によって、回転制御される。制御部425は、水平偏光方向から見て、fast軸がθ度になるようにλ/2板421を制御する。これにより、信号光は、偏光面が2θ回転されて透過される。λ/2板421を透過した信号光は、PBS422に導かれる。このとき、PBS422は、水平偏光をほぼ100%透過させ、垂直偏光をほぼ100%反射させる。λ/2板421を透過する信号光が完全な水平偏光であれば、信号光は、PBS422をほぼ100%透過する。しかし、信号光の偏光面が水平方向から少しでも傾いていると、PBS422によって反射される光が現れる。検出器423は、PBS422によって反射された光を検出し、電気信号を出力する。
 制御信号生成部424は、検出器423から出力される信号が最小となるように、λ/2板421を回転制御するための制御信号を生成する。生成された制御信号は、制御部1205に入力される。制御部425は、制御信号に応じてλ/2板421を回転させることで、信号光を水平偏光になるように制御する。
 なお、本実施の形態6において、偏光制御部420は、信号光の偏光面を回転させるために、λ/2板421と、λ/2板421を回転させる制御部425とを備えているが、本発明はこれに限定されない。偏光制御部420は、例えば、磁場を加えることで磁場に平行な直線偏光の偏光面を回転させるファラデー効果を利用した素子を用いて偏光面を回転させてもよい。いずれにしても、信号光の偏光面を制御できる素子を用いることで、信号光のロスを抑制する効果を得ることができる。
 なお、本実施の形態6において、干渉光検出部315の構成について、図14を用いて説明したが、本発明はこれに限定されない。原理的には、干渉光検出部315は、3つ以上の検出器を備えればよく、各検出器は、信号光と参照光との位相差が互いに異なるように干渉光を検出すればよい。例えば、干渉光検出部315が3つの検出器を備える場合、各検出器での信号光と参照光との位相差は、0度、120度及び240度の組合せ、又は-120度、0度及び120度の組合せにより実現してもよい。例えば、干渉光検出部は、図16に示すような3つの検出器を備える構成としてもよい。図16については、実施の形態4で既に説明しているので、詳細な説明を省略する。
 なお、本実施の形態6において、光伝送システムの構成について、図20を用いて説明したが、本発明はこれに限定されない。図25は、本実施の形態6における光伝送システムの別の構成を示す図である。例えば、図25に示す光伝送システム410は、複数の光送信器371と、波長多重部411と、光伝送路372と、波長分離部412と、複数の変調信号検出装置373とを備える。この場合、各光送信器371は、互いに波長の異なる送信光を変調して信号光として出力する。各光送信器371から出力された信号光は、各波長に対応した変調信号検出装置373に入力され、変調信号の再生が行われる。こうすることで、並列にデータを伝送することが可能となる。
 各光送信器371は、互いに異なる波長の信号光をそれぞれ出力する。各光送信器371から出力された複数の信号光が波長多重部411に入力される。波長多重部411は、入力された複数の信号光を合波する。合波された信号光は、光伝送路372を介して、波長分離部412に入力される。波長分離部412は、入力された合波された信号光を波長ごとの信号光に分離し、分離した信号光を各変調信号検出装置373にそれぞれ出力する。変調信号検出装置373には、波長分離部412によって分離された信号光が入力される。
 なお、干渉光検出部315は、図14に示す構成に限られない。例えば、信号光と参照光との位相差を異ならせた信号を得るための光学素子として、λ/2板及びλ/4板を用いているが、偏光を制御できる光学素子、ナノフォトニック材料又は光導波路などの複合光学機能素子を用いてもよい。
 また、本実施の形態6において、干渉光検出部315及び信号処理部383は、光導波路、電気回路及び電子回路が一体となった一つのLSIに集積される構成としてもよい。
 また、本実施の形態6において、変調信号検出装置373の一部又は全部が、光導波路、電気回路及び電子回路が一体となった一つのLSIに集積される構成としてもよい。
 (実施の形態7)
 図26及び図27は、本発明の実施の形態7における変調信号検出装置の構成を示す概略図である。以下、本実施の形態7について具体的に説明する。
 図26及び図27において、図1及び図2と同じ構成要素については同じ符号を用い、説明を省略する。
 図26は、本発明の実施の形態7における位相差演算部の構成を示す図である。図26において、位相差演算部430は、位相差誤差検出部431と、位相演算部6と、位相差補正部432とを備える。コサイン成分1及びサイン成分2が、位相差誤差検出部431及び位相演算部6に入力される。コサイン成分1は、参照光と信号光との位相差(光路差)Δφを有する。サイン成分2は、コサイン成分1と振幅がほぼ同じであり、コサイン成分1とほぼπ/2ずれた位相差を有する。位相演算部6は、位相差成分Δφを出力する。位相演算部6の詳細な構成については、実施の形態1の構成と同様とし、本実施の形態7での説明を省略する。
 位相差誤差検出部431は、位相差誤差成分δを検出して出力する。
 次に、図27を用いて、位相差誤差検出部431について説明する。図27は、本発明の実施の形態7における干渉光検出部の構成を示す図である。図27に示す位相差誤差検出部431は、第1の誤差検出部441と、第2の誤差検出部442と、アークタンジェント演算部443とを備える。第1の誤差検出部441は、下記の式(47)に基づいて、位相差誤差検出部431に入力されたコサイン成分1から、信号成分φsig以外の位相ノイズ成分φnoiseに従った信号を生成して出力する。また、第2の誤差検出部442は、下記の式(48)に基づいて、位相差誤差検出部431に入力されたサイン成分2から、信号成分φsig以外の位相ノイズ成分φnoiseに従った信号を生成して出力する。
 Acosδ=γAcosφnoise・・・・(47)
 Asinδ=γAsinφnoise・・・・(48)
 ここで、位相ノイズ成分φnoiseの周波数帯域が、信号成分φsigの周波数帯域より低い場合、第1の誤差検出部441及び第2の誤差検出部442は、例えば、信号成分φsigの周波数帯域と位相ノイズ成分φnoiseの周波数帯域とを理想的に切り分けられるローパスフィルタ(LPF)と、LPFで切り分けられた信号を任意の値γで増幅するアンプで構成される。
 第1の誤差検出部441によって生成された位相ノイズ成分φnoiseに従った信号出力(Acosδ)は、アークタンジェント演算部443に出力される。また、第2の誤差検出部442によって生成された位相ノイズ成分φnoiseに従った信号出力(Asinδ)は、アークタンジェント演算部443に出力される。アークタンジェント演算部443は、位相差誤差成分δを出力する。ここで、アークタンジェント演算部443は、実施の形態1における位相演算部6と同様の機能を有している。そのため、本実施の形態7において、アークタンジェント演算部443の説明を省略する。
 位相差補正部432は、位相演算部6から出力された位相差成分Δφと、位相差誤差検出部431から出力された位相差誤差成分δとに基づいて、以下の式(49)に示す演算を行うことによって、位相差が補正された位相差信号Sigを生成して出力する。
Figure JPOXMLDOC01-appb-I000012
 本実施の形態7では、信号成分φsigは±πの範囲内で変調されている。そのため、位相差補正部432は、Δφ-δが信号成分φsigの範囲(±πの範囲)を超える場合に、Δφ-δに2πを加算又は減算することにより、Δφ-δの値を補正する。これにより、アークタンジェント演算の不連続部分によって、再生された変調信号が不連続にならないようにしている。
 かかる構成によれば、位相差補正部432は、実施の形態1と同様に、式(8)の右辺第2項(φnoise)を右辺第3項(δ)によって打ち消すように制御することが可能となる。その結果、信号成分φsigに比べて非常に大きい位相ノイズ成分φnoiseのレンジによらず、アークタンジェント演算の不連続が起こらない変調信号の再生が可能となる。
 また、本実施の形態7の位相差誤差検出部431は、実施の形態1と同様に、ナノメータオーダである±πの範囲の微小変動から、マイクロメータオーダの±数百πの大きな変動まで、連続的に検出可能である。そのため、アクチュエータで追随させることが非常に困難であるナノメータオーダの位相ノイズ成分の抑制も可能であり、高S/Nの再生が可能となる。
 また、本実施の形態7では、実施の形態1の図2で示したような第1の誤差補正ゲイン演算部17及び第1の誤差補正ゲイン演算部18において、位相差誤差成分δに対するコサイン変換及びサイン変換が不要であり、位相ノイズ成分に従った位相差誤差成分δを直接扱うことが可能となる。
 なお、本実施の形態7において、位相差補正部432及び位相差誤差検出部431が補正部の一例に相当し、位相演算部6が位相演算部の一例に相当し、位相差誤差検出部431が位相差誤差検出部の一例に相当し、位相差補正部432が位相差補正部の一例に相当する。
 また、本実施の形態7において、外乱による変動要因の一例として光ディスク媒体の記録面のうねりについて説明したが、温度変化などを変動要因とする、変調信号よりも低い周波数帯域の変動成分に関しても、本実施の形態7の構成によりキャンセルすることが可能である。
 また、本実施の形態7において、第1の誤差検出部441及び第2の誤差検出部442は、信号成分以外のノイズ成分を分離するためにLPFを用いているが、本発明はこれに限定されない。第1の誤差検出部441及び第2の誤差検出部442は、信号成分以外のノイズ成分を分離できる構成であればよい。例えば、第1の誤差検出部441及び第2の誤差検出部442は、信号成分の周波数帯域を取り除くことが可能な帯域除去フィルタ(BEF)又はバンドパスフィルタ(BPF)を用いてもよい。また、信号成分の周波数帯域よりも高い周波数帯域を有するノイズ成分が存在する場合には、第1の誤差検出部441及び第2の誤差検出部442は、ハイパスフィルタ(HPF)を用いてもよい。また、第1の誤差検出部441及び第2の誤差検出部442は、フーリエ変換を用いて、時間領域信号を周波数領域信号に変換し、周波数領域で帯域を分けることで、信号成分以外のノイズ成分を分離してもよい。
 また、本実施の形態7において、位相差誤差検出部431、位相演算部6及び位相差補正部432が、一つのLSIに集積される構成としてもよい。
 また、本実施の形態7において、位相差誤差検出部431、位相演算部6及び位相差補正部432の機能は、コンピュータにより実行可能なプログラム及びコンピュータにより実現されてもよい。
 なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている。
 本発明の一局面に係る変調信号検出装置は、位相変調された信号光と位相変調されていない参照光との位相差成分に基づいた信号から変調信号成分を検出する変調信号検出装置であって、前記位相差成分に含まれる位相差誤差成分を検出し、検出した前記位相差誤差成分に基づいて、前記位相差成分を余弦関数の角度とした第1の信号と、前記第1の信号に対して前記余弦関数の角度が略π/2異なる第2の信号とを補正する補正部と、前記補正部によって補正された前記第1の信号及び前記第2の信号から位相差成分を演算する位相演算部とを備え、前記補正部は、極座標平面上において前記第1の信号と前記第2の信号とで示される座標点を前記位相差誤差成分に相当する角度で回転させることにより、補正された前記第1の信号及び前記第2の信号を得る。
 この構成によれば、補正部は、位相差成分に含まれる位相差誤差成分を検出し、検出した位相差誤差成分に基づいて、位相差成分を余弦関数の角度とした第1の信号と、第1の信号に対して余弦関数の角度が略π/2異なる第2の信号とを補正する。位相演算部は、補正部によって補正された第1の信号及び第2の信号から位相差成分を演算する。そして、補正部は、極座標平面上において第1の信号と第2の信号とで示される座標点を位相差誤差成分に相当する角度で回転させることにより、補正された第1の信号及び第2の信号を得る。
 したがって、位相変調された信号光と位相変調されていない参照光との位相差成分から、信号光と参照光との光路差変動により発生した位相ノイズ成分である位相差誤差成分をキャンセルすることができ、高いS/N比の変調信号を検出することができる。
 また、上記の変調信号検出装置において、前記補正部は、前記位相差成分に含まれる位相差誤差成分を検出する位相差誤差検出部と、前記位相差誤差検出部によって検出された前記位相差誤差成分に基づいて、前記第1の信号と前記第2の信号とを補正する位相差補正部とを含むことが好ましい。
 この構成によれば、位相差誤差検出部は、位相差成分に含まれる位相差誤差成分を検出する。位相差補正部は、位相差誤差検出部によって検出された位相差誤差成分に基づいて、第1の信号と第2の信号とを補正する。
 したがって、位相差誤差検出部と位相差補正部とを互いに異なる構成要素とすることができ、位相差誤差検出部によって検出された位相差誤差成分を用いて、位相差誤差検出部によって第1の信号と第2の信号とを補正することができる。
 また、上記の変調信号検出装置において、前記位相差誤差検出部は、前記位相演算部によって演算された前記位相差成分から前記位相差誤差成分を検出することが好ましい。
 この構成によれば、位相演算部によって演算された位相差成分から位相差誤差成分が検出されるので、位相差成分に含まれる位相差誤差成分がゼロになるように、繰り返し補正を行うことができる。
 また、上記の変調信号検出装置において、前記補正部は、前記第1の信号から第1の位相差誤差成分を検出し、前記第2の信号から第2の位相差誤差成分を検出し、検出した前記第1の位相差誤差成分に基づいて前記第1の信号を補正し、検出した前記第2の位相差誤差成分に基づいて前記第2の信号を補正することが好ましい。
 この構成によれば、第1の信号から第1の位相差誤差成分が検出され、第2の信号から第2の位相差誤差成分が検出され、検出された第1の位相差誤差成分に基づいて第1の信号が補正され、検出された第2の位相差誤差成分に基づいて第2の信号が補正される。
 したがって、第1の信号及び第2の信号のそれぞれから位相差誤差成分を検出することができ、検出した各位相差誤差成分を用いて第1の信号及び第2の信号のそれぞれを補正することができる。
 また、上記の変調信号検出装置において、前記補正部は、前記位相差成分から前記位相差誤差成分に対応する周波数帯域を抽出することが好ましい。
 この構成によれば、位相差成分から位相差誤差成分に対応する周波数帯域が抽出されるので、位相差誤差成分を容易に検出することができる。
 また、上記の変調信号検出装置において、前記補正部は、前記位相差成分から、前記変調信号成分に対応する周波数帯域よりも低い前記位相差誤差成分に対応する周波数帯域を抽出するローパスフィルタを含むことが好ましい。
 この構成によれば、位相差成分から、変調信号成分に対応する周波数帯域よりも低い位相差誤差成分に対応する周波数帯域が位相差成分から抽出されるので、周波数帯域である位相ノイズ成分を抽出することができる。
 また、上記の変調信号検出装置において、前記補正部は、検出された前記位相差誤差成分に基づいて第1の誤差補正ゲインα及び第2の誤差補正ゲインβを生成し、下記の式に基づいて、補正された第1の信号X及び第2の信号Xを表す第1の位相差補正信号Y及び第2の位相差補正信号Yを生成し、
 Y=αX+βX
 Y=αX-βX
 前記位相演算部は、前記第1の位相差補正信号Y及び前記第2の位相差補正信号Yから前記位相差成分を演算することが好ましい。
 この構成によれば、検出された位相差誤差成分に基づいて第1の誤差補正ゲインα及び第2の誤差補正ゲインβが生成され、上記の式に基づいて、補正された第1の信号X及び第2の信号Xを表す第1の位相差補正信号Y及び第2の位相差補正信号Yが生成される。そして、第1の位相差補正信号Y及び第2の位相差補正信号Yから位相差成分が演算される。
 したがって、上記の式に基づいて、位相差成分から位相差誤差成分が除去された第1の位相差補正信号Y及び第2の位相差補正信号Yを容易に算出することができる。
 また、上記の変調信号検出装置において、前記補正部は、前記位相差誤差成分を所定倍し、前記所定倍した位相差誤差成分を積算し、積算した前記位相差誤差成分に基づいて前記第1の誤差補正ゲインα及び前記第2の誤差補正ゲインβを生成することが好ましい。
 この構成によれば、積算した位相差誤差成分に基づいて第1の誤差補正ゲインα及び第2の誤差補正ゲインβを生成することができる。
 また、上記の変調信号検出装置において、前記信号光と前記参照光との干渉光を少なくとも3つの光に分岐する分岐部と、前記分岐部によって分岐された前記少なくとも3つの光をそれぞれ検出し、検出した光の光量に応じた検出信号をそれぞれ出力する少なくとも3つの検出器と、前記少なくとも3つの検出器によって出力された検出信号に基づいて前記第1の信号及び前記第2の信号を演算する検出信号演算部とをさらに備えることが好ましい。
 この構成によれば、分岐部は、信号光と前記参照光との干渉光を少なくとも3つの光に分岐する。少なくとも3つの検出器は、分岐された少なくとも3つの光をそれぞれ検出し、検出した光の光量に応じた検出信号をそれぞれ出力する。検出信号演算部は、少なくとも3つの検出器によって出力された検出信号に基づいて第1の信号及び第2の信号を演算する。
 したがって、信号光と参照光との位相差を異ならせた3つの光を用いることにより、第1の信号及び第2の信号を演算することができる。
 また、上記の変調信号検出装置において、前記信号光は、光ディスク媒体からの反射光であることが好ましい。
 この構成によれば、光ディスク媒体の情報記録面により位相変調された信号光と、参照光との位相差成分に基づいた信号から変調信号成分を検出することにより、光ディスク媒体に記録されているデータを再生することができる。
 また、上記の変調信号検出装置において、前記信号光は、前記変調信号検出装置へ伝送すべきデータに応じて光が位相変調されることで得られることが好ましい。
 この構成によれば、信号光は、変調信号検出装置へ伝送すべきデータに応じて光が変調されることで得られるので、光を用いてデータを伝送することができる。
 本発明の他の局面に係る変調信号検出方法は、位相変調された信号光と位相変調されていない参照光との位相差成分に基づいた信号から変調信号成分を検出する変調信号検出方法であって、前記位相差成分に含まれる位相差誤差成分を検出する位相差誤差検出ステップと、検出された前記位相差誤差成分に基づいて、前記位相差成分を余弦関数の角度とした第1の信号と、前記第1の信号に対して前記余弦関数の角度が略π/2異なる第2の信号とを補正する補正ステップと、前記補正ステップにおいて補正された前記第1の信号及び前記第2の信号から位相差成分を演算する位相演算ステップとを含み、前記補正ステップは、極座標平面上において前記第1の信号と前記第2の信号とで示される座標点を前記位相差誤差成分に相当する角度で回転させることにより、補正された前記第1の信号及び前記第2の信号を得る。
 この構成によれば、位相差誤差検出ステップにおいて、位相差成分に含まれる位相差誤差成分が検出される。補正ステップにおいて、検出された位相差誤差成分に基づいて、位相差成分が余弦関数の角度とした第1の信号と、第1の信号に対して余弦関数の角度が略π/2異なる第2の信号とが補正される。位相演算ステップにおいて、補正された第1の信号及び第2の信号から位相差成分が演算される。そして、補正ステップにおいて、極座標平面上において第1の信号と第2の信号とで示される座標点が位相差誤差成分に相当する角度で回転されることにより、補正された第1の信号及び第2の信号が得られる。
 したがって、位相変調された信号光と位相変調されていない参照光との位相差成分から、信号光と参照光との光路差変動により発生した位相ノイズ成分である位相差誤差成分をキャンセルすることができ、高いS/N比の変調信号を検出することができる。
 なお、発明を実施するための形態の項においてなされた具体的な実施態様又は実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と特許請求事項との範囲内で、種々変更して実施することができるものである。
 本発明に係る変調信号検出装置及び変調信号検出方法は、位相ノイズ成分を信号処理によって抑制することができ、かつ微弱な信号光を増幅させることができ、位相変調された信号光と位相変調されていない参照光との位相差成分に基づいた信号から変調信号成分を検出する変調信号検出装置及び変調信号検出方法として有用である。また、本発明に係る変調信号検出装置及び変調信号検出方法は、大容量光ストレージの再生性能を向上させる変調信号検出装置及び変調信号検出方法として有用である。また、本発明に係る変調信号検出装置及び変調信号検出方法は、光通信又は光バスなどの光伝送の用途にも応用できる。

Claims (12)

  1.  位相変調された信号光と位相変調されていない参照光との位相差成分に基づいた信号から変調信号成分を検出する変調信号検出装置であって、
     前記位相差成分に含まれる位相差誤差成分を検出し、検出した前記位相差誤差成分に基づいて、前記位相差成分を余弦関数の角度とした第1の信号と、前記第1の信号に対して前記余弦関数の角度が略π/2異なる第2の信号とを補正する補正部と、
     前記補正部によって補正された前記第1の信号及び前記第2の信号から位相差成分を演算する位相演算部とを備え、
     前記補正部は、極座標平面上において前記第1の信号と前記第2の信号とで示される座標点を前記位相差誤差成分に相当する角度で回転させることにより、補正された前記第1の信号及び前記第2の信号を得ることを特徴とする変調信号検出装置。
  2.  前記補正部は、
     前記位相差成分に含まれる位相差誤差成分を検出する位相差誤差検出部と、
     前記位相差誤差検出部によって検出された前記位相差誤差成分に基づいて、前記第1の信号と前記第2の信号とを補正する位相差補正部とを含むことを特徴とする請求項1記載の変調信号検出装置。
  3.  前記位相差誤差検出部は、前記位相演算部によって演算された前記位相差成分から前記位相差誤差成分を検出することを特徴とする請求項2記載の変調信号検出装置。
  4.  前記補正部は、前記第1の信号から第1の位相差誤差成分を検出し、前記第2の信号から第2の位相差誤差成分を検出し、検出した前記第1の位相差誤差成分に基づいて前記第1の信号を補正し、検出した前記第2の位相差誤差成分に基づいて前記第2の信号を補正することを特徴とする請求項1記載の変調信号検出装置。
  5.  前記補正部は、前記位相差成分から前記位相差誤差成分に対応する周波数帯域を抽出することを特徴とする請求項1~4のいずれかに記載の変調信号検出装置。
  6.  前記補正部は、前記位相差成分から、前記変調信号成分に対応する周波数帯域よりも低い前記位相差誤差成分に対応する周波数帯域を抽出するローパスフィルタを含むことを特徴とする請求項5記載の変調信号検出装置。
  7.  前記補正部は、検出された前記位相差誤差成分に基づいて第1の誤差補正ゲインα及び第2の誤差補正ゲインβを生成し、下記の式に基づいて、補正された第1の信号X及び第2の信号Xを表す第1の位相差補正信号Y及び第2の位相差補正信号Yを生成し、
     Y=αX+βX
     Y=αX-βX
     前記位相演算部は、前記第1の位相差補正信号Y及び前記第2の位相差補正信号Yから前記位相差成分を演算することを特徴とする請求項1~6のいずれかに記載の変調信号検出装置。
  8.  前記補正部は、前記位相差誤差成分を所定倍し、前記所定倍した位相差誤差成分を積算し、積算した前記位相差誤差成分に基づいて前記第1の誤差補正ゲインα及び前記第2の誤差補正ゲインβを生成することを特徴とする請求項7記載の変調信号検出装置。
  9.  前記信号光と前記参照光との干渉光を少なくとも3つの光に分岐する分岐部と、
     前記分岐部によって分岐された前記少なくとも3つの光をそれぞれ検出し、検出した光の光量に応じた検出信号をそれぞれ出力する少なくとも3つの検出器と、
     前記少なくとも3つの検出器によって出力された検出信号に基づいて前記第1の信号及び前記第2の信号を演算する検出信号演算部とをさらに備えることを特徴とする請求項1~8のいずれかに記載の変調信号検出装置。
  10.  前記信号光は、光ディスク媒体からの反射光であることを特徴とする請求項1~9のいずれかに記載の変調信号検出装置。
  11.  前記信号光は、前記変調信号検出装置へ伝送すべきデータに応じて光が位相変調されることで得られることを特徴とする請求項1~9のいずれかに記載の変調信号検出装置。
  12.  位相変調された信号光と位相変調されていない参照光との位相差成分に基づいた信号から変調信号成分を検出する変調信号検出方法であって、
     前記位相差成分に含まれる位相差誤差成分を検出する位相差誤差検出ステップと、
     検出された前記位相差誤差成分に基づいて、前記位相差成分を余弦関数の角度とした第1の信号と、前記第1の信号に対して前記余弦関数の角度が略π/2異なる第2の信号とを補正する補正ステップと、
     前記補正ステップにおいて補正された前記第1の信号及び前記第2の信号から位相差成分を演算する位相演算ステップとを含み、
     前記補正ステップは、極座標平面上において前記第1の信号と前記第2の信号とで示される座標点を前記位相差誤差成分に相当する角度で回転させることにより、補正された前記第1の信号及び前記第2の信号を得ることを特徴とする変調信号検出方法。
PCT/JP2012/005168 2011-08-30 2012-08-16 変調信号検出装置及び変調信号検出方法 WO2013031120A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/817,952 US9042002B2 (en) 2011-08-30 2012-08-16 Modulated signal detecting apparatus and modulated signal detecting method
EP12823184.2A EP2752850A4 (en) 2011-08-30 2012-08-16 DEVICE FOR DETECTING MODULATED SIGNALS AND METHOD FOR DETECTING MODULATED SIGNALS
JP2013508711A JP6153009B2 (ja) 2011-08-30 2012-08-16 変調信号検出装置及び変調信号検出方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-187584 2011-08-30
JP2011187584 2011-08-30

Publications (1)

Publication Number Publication Date
WO2013031120A1 true WO2013031120A1 (ja) 2013-03-07

Family

ID=47755652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005168 WO2013031120A1 (ja) 2011-08-30 2012-08-16 変調信号検出装置及び変調信号検出方法

Country Status (4)

Country Link
US (1) US9042002B2 (ja)
EP (1) EP2752850A4 (ja)
JP (1) JP6153009B2 (ja)
WO (1) WO2013031120A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016120924A1 (ja) * 2015-01-30 2016-08-04 ソニー株式会社 再生装置および再生方法
WO2017187688A1 (ja) * 2016-04-28 2017-11-02 ソニー株式会社 再生装置および再生方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072048A1 (ja) * 2013-11-13 2015-05-21 パナソニックIpマネジメント株式会社 モータ駆動装置および制御方法
JPWO2021084592A1 (ja) * 2019-10-28 2021-05-06
CN115655333A (zh) * 2022-11-09 2023-01-31 长春汇通光电技术有限公司 正余弦信号的相位差校正方法、正余弦编码器及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05274679A (ja) * 1992-03-26 1993-10-22 Nikon Corp 情報が位相と振幅の独立した変化として記録された光記録媒体、その再生方法及び再生装置
JPH06223433A (ja) 1993-01-29 1994-08-12 Nippon Hoso Kyokai <Nhk> 光磁気信号の検出方法および装置
JP2007064860A (ja) * 2005-09-01 2007-03-15 Hitachi Communication Technologies Ltd 光電界波形観測装置
JP2007317284A (ja) 2006-05-25 2007-12-06 Hitachi Ltd 光ディスク装置
JP2008065961A (ja) 2006-09-11 2008-03-21 Hitachi Ltd 光情報検出方法、光ヘッド及び光ディスク装置
JP2008269680A (ja) * 2007-04-18 2008-11-06 Hitachi Ltd 光ヘッドおよび光ディスク装置
JP2009015944A (ja) * 2007-07-03 2009-01-22 Hitachi Ltd 光ディスク装置
JP2009252337A (ja) 2008-04-11 2009-10-29 Hitachi Ltd 光ヘッド及び光ディスク装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4110138C1 (en) * 1991-03-27 1992-03-05 Deutsche Forschungsanstalt Fuer Luft- Und Raumfahrt Ev, 5300 Bonn, De Carrier recovery for optical PSK homodyne receiver - by rotating local oscillator phase 90 deg. for one synchronisation bit period to produce phase error signal
JP3392037B2 (ja) * 1998-01-30 2003-03-31 株式会社ケンウッド ディジタル復調器
JP4878127B2 (ja) * 2005-06-10 2012-02-15 株式会社トプコン 時間差測定装置および距離測定装置並びに距離測定方法
CN101257349B (zh) * 2007-02-26 2011-05-11 富士通株式会社 数字相位估计器、数字锁相环以及光相干接收机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05274679A (ja) * 1992-03-26 1993-10-22 Nikon Corp 情報が位相と振幅の独立した変化として記録された光記録媒体、その再生方法及び再生装置
JPH06223433A (ja) 1993-01-29 1994-08-12 Nippon Hoso Kyokai <Nhk> 光磁気信号の検出方法および装置
JP2007064860A (ja) * 2005-09-01 2007-03-15 Hitachi Communication Technologies Ltd 光電界波形観測装置
JP2007317284A (ja) 2006-05-25 2007-12-06 Hitachi Ltd 光ディスク装置
JP2008065961A (ja) 2006-09-11 2008-03-21 Hitachi Ltd 光情報検出方法、光ヘッド及び光ディスク装置
JP2008269680A (ja) * 2007-04-18 2008-11-06 Hitachi Ltd 光ヘッドおよび光ディスク装置
JP2009015944A (ja) * 2007-07-03 2009-01-22 Hitachi Ltd 光ディスク装置
JP2009252337A (ja) 2008-04-11 2009-10-29 Hitachi Ltd 光ヘッド及び光ディスク装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2752850A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016120924A1 (ja) * 2015-01-30 2016-08-04 ソニー株式会社 再生装置および再生方法
CN107210048A (zh) * 2015-01-30 2017-09-26 索尼公司 重放装置及重放方法
JPWO2016120924A1 (ja) * 2015-01-30 2017-11-09 ソニー株式会社 再生装置および再生方法
US9916856B2 (en) 2015-01-30 2018-03-13 Sony Corporation Playing apparatus and playing method
CN107210048B (zh) * 2015-01-30 2020-05-12 索尼公司 重放装置及重放方法
WO2017187688A1 (ja) * 2016-04-28 2017-11-02 ソニー株式会社 再生装置および再生方法
JPWO2017187688A1 (ja) * 2016-04-28 2019-03-07 ソニー株式会社 再生装置および再生方法
US10339967B2 (en) 2016-04-28 2019-07-02 Sony Corporation Reproducing apparatus and reproducing method

Also Published As

Publication number Publication date
JPWO2013031120A1 (ja) 2015-03-23
EP2752850A1 (en) 2014-07-09
US9042002B2 (en) 2015-05-26
JP6153009B2 (ja) 2017-06-28
EP2752850A4 (en) 2016-04-13
US20130271823A1 (en) 2013-10-17

Similar Documents

Publication Publication Date Title
JP4564948B2 (ja) 光情報検出方法、光ヘッド及び光ディスク装置
JP5081763B2 (ja) 光情報検出方法、光ピックアップ及び光情報記録再生装置
US8488433B2 (en) Modulated signal detecting apparatus and modulated signal detecting method
JP5256161B2 (ja) 光情報記録再生装置及び情報再生装置
JP6153009B2 (ja) 変調信号検出装置及び変調信号検出方法
JP5452040B2 (ja) 光学的情報再生方法、光ヘッドおよび光ディスク装置
US9245570B2 (en) Reproducing apparatus and reproducing method
JP5043049B2 (ja) 光学的情報再生方法及び光ディスク装置
JP2007193894A (ja) 光記録再生装置、光学ピックアップ及びトラッキングエラー信号検出方法
JP6881438B2 (ja) 再生装置および再生方法
JP6167405B2 (ja) 光ピックアップ及び光ディスク装置
JP2012069189A (ja) 再生装置、光路長サーボ制御方法
US8659982B2 (en) Optical information recording/reproducing apparatus and optical information reproducing apparatus
WO2013014882A1 (ja) 変調信号検出装置及び変調信号検出方法
JP5525657B2 (ja) 光情報記録再生装置
JP2012003814A (ja) 光ピックアップ
JP2011187118A (ja) 光ピックアップ及び光ディスク装置
KR20120080921A (ko) 광 픽업장치 및 이를 적용한 광디스크 장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013508711

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012823184

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13817952

Country of ref document: US

Ref document number: 2012823184

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE