WO2013030894A1 - 燃料電池モジュール - Google Patents

燃料電池モジュール Download PDF

Info

Publication number
WO2013030894A1
WO2013030894A1 PCT/JP2011/004887 JP2011004887W WO2013030894A1 WO 2013030894 A1 WO2013030894 A1 WO 2013030894A1 JP 2011004887 W JP2011004887 W JP 2011004887W WO 2013030894 A1 WO2013030894 A1 WO 2013030894A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
membrane electrode
protective member
catalyst layer
cell module
Prior art date
Application number
PCT/JP2011/004887
Other languages
English (en)
French (fr)
Inventor
悟朗 藤田
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to PCT/JP2011/004887 priority Critical patent/WO2013030894A1/ja
Publication of WO2013030894A1 publication Critical patent/WO2013030894A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell module.
  • the fuel cell system is a device that generates electrical energy from hydrogen and oxygen, and can achieve high power generation efficiency.
  • the main features of the fuel cell system are direct power generation that does not go through the process of thermal energy or kinetic energy as in the conventional power generation method, so that high power generation efficiency can be expected even on a small scale, and emissions of nitrogen compounds, etc. There are few, and noise and vibration are also small, and environmental properties are good.
  • the fuel cell system can effectively use the chemical energy of the fuel and has environmentally friendly characteristics, so it is expected as an energy supply system for the 21st century, from space use to automobiles and portable devices. It is attracting attention as a promising new power generation system that can be used in various applications from large-scale power generation to small-scale power generation, and technological development is in full swing toward practical use.
  • Fuel cells generate heat and increase in temperature with power generation. If the temperature of the fuel cell rises excessively, performance degradation due to dryout occurs. Further, if the generated water is excessively retained, a so-called flooding phenomenon occurs, so that the performance of the fuel cell is deteriorated. For this reason, a technique is known in which moisture is adjusted in a fuel cell by installing an intake / exhaust port on the cathode side and opening / closing the intake / exhaust port using a sensor or actuator (see Patent Document 1).
  • the conventional fuel cell system has a problem that the mechanism for moisture adjustment is complicated and consumes electric power. Further, since moisture adjustment is performed by opening and closing a pair of intake and exhaust ports for a fuel cell having a plurality of cells (membrane electrode assemblies), the amount of moisture varies depending on the cells. As a result, the amount of power generation in each cell varies, and as a result, the power generation operation of the fuel cell may become unstable.
  • the present invention has been made in view of these problems, and an object of the present invention is to provide a fuel cell module that can more appropriately adjust the moisture of each cell with a simple configuration without consuming electric power.
  • An aspect of the present invention is a fuel cell module.
  • the fuel cell module includes a membrane electrode assembly including an electrolyte membrane, a cathode catalyst layer provided on one side of the electrolyte membrane, and an anode catalyst layer provided on the other side of the electrolyte membrane.
  • moisture adjustment of each cell can be performed more appropriately with a simple configuration without consuming electric power.
  • FIG. 1 is a perspective view schematically showing a fuel cell system according to an embodiment. It is a disassembled perspective view which shows the outline of the fuel cell module which concerns on embodiment.
  • FIG. 3 is a schematic cross-sectional view along the line AA in FIG. 2. It is a figure which shows typically the positional relationship of a protection member and a cathode catalyst layer when temperature and humidity change.
  • FIG. 1 is a perspective view showing an outline of a fuel cell system according to an embodiment.
  • the fuel cell system 10 includes a fuel cell module 100, a fuel storage unit 20, a fuel supply unit 30, and a circuit unit 40 as main components. Details of the fuel cell module 100 will be described later.
  • the fuel storage unit 20 stores a hydrogen storage alloy.
  • the hydrogen storage alloy can store hydrogen and release the stored hydrogen, and is, for example, rare earth-based MmNi4.32Mn0.18Al0.1Fe0.1Co0.3 (Mm is Misch metal).
  • the hydrogen storage alloy can be formed into a compression molded body (pellet) obtained by mixing a binder such as polytetrafluoroethylene (PTFE) dispersion into the above-mentioned hydrogen storage alloy powder and compression molding with a press. If necessary, a sintering process may be performed after the compression molding.
  • a binder such as polytetrafluoroethylene (PTFE) dispersion into the above-mentioned hydrogen storage alloy powder and compression molding with a press.
  • PTFE polytetrafluoroethylene
  • the fuel supply unit 30 includes a hydrogen supply path and a regulator (both not shown) as main components.
  • One end of the hydrogen supply path communicates with the outlet of the fuel storage unit 20, and the other end communicates with the anodes of the pair of fuel cell modules 100.
  • a regulator is provided in the middle of the hydrogen supply path. When the hydrogen is released from the hydrogen storage alloy by the regulator, the pressure of hydrogen supplied to the pair of fuel cell modules 100 is reduced. Thereby, the anode catalyst layer of the fuel cell module 100 is protected.
  • DC power generated in the fuel cell module 100 is converted into DC power of a predetermined voltage (for example, 24V) by a DC / DC converter, and then converted to AC power (for example, 100V) by a DC / AC inverter.
  • the AC power converted by the DC / AC inverter is output to an output terminal (not shown).
  • the DC power of a predetermined voltage converted by the DC / DC converter is used as a power source for controlling the above-described regulator and the like.
  • FIG. 2 is an exploded perspective view schematically showing the fuel cell module 100 according to the embodiment.
  • FIG. 3 is a schematic sectional view taken along line AA in FIG.
  • the fuel cell module 100 mainly includes a fuel cell, a cathode side housing 170, an anode side housing 172, a protective member 180, a first opening position adjustment unit 192, a second opening position adjustment unit 190, and a spring 200.
  • 202 mainly includes a fuel cell, a cathode side housing 170, an anode side housing 172, a protective member 180, a first opening position adjustment unit 192, a second opening position adjustment unit 190, and a spring 200.
  • 202 mainly includes a fuel cell, a cathode side housing 170, an anode side housing 172, a protective member 180, a first opening position adjustment unit 192, a second opening position adjustment unit 190, and a spring 200.
  • 202 mainly includes a fuel gas chamber 176 and a
  • the membrane electrode assembly 120 includes an electrolyte membrane 123, a cathode catalyst layer 124 provided on one surface of the electrolyte membrane 123, and an anode catalyst layer 125 provided on the other surface of the electrolyte membrane 123.
  • the electrolyte membrane 123 is provided so as to fill the opening provided in the insulating base material 122.
  • air is supplied as an oxidant to the cathode catalyst layer 124.
  • hydrogen is supplied to the anode catalyst layer 125 as a fuel gas.
  • the electrolyte membrane 123 is sandwiched between the pair of cathode catalyst layers 124 and anode catalyst layers 125 to form a membrane electrode assembly 120, that is, a cell.
  • Each cell is an electrochemical reaction between hydrogen and oxygen in the air. Power is generated by reaction.
  • three sets of membrane electrode assemblies 120 are arranged in a plane, but the number of membrane electrode assemblies 120 is not limited to this.
  • the interconnector 126 is provided through the base material 122 between the adjacent membrane electrode assemblies 120.
  • the cathode catalyst layer 124 of one membrane electrode assembly 120 is connected to one end of the interconnector 126, and the anode catalyst layer 125 of the other membrane electrode assembly 120 is connected to the other end of the interconnector 126. It is connected to the.
  • the interconnector 126 is made of a conductive material such as carbon. With the above configuration, adjacent membrane electrode assemblies 120 are connected in series by the interconnector 126.
  • the electrolyte membrane 123 preferably exhibits good ion conductivity in a wet state, and functions as an ion exchange membrane that moves protons between the cathode catalyst layer 124 and the anode catalyst layer 125.
  • the electrolyte membrane 123 is formed of a solid polymer material such as a fluorine-containing polymer or a non-fluorine polymer.
  • the perfluorocarbon polymer having a sulfonic acid type perfluorocarbon polymer, a polysulfone resin, a phosphonic acid group, or a carboxylic acid group. Etc. can be used.
  • sulfonic acid type perfluorocarbon polymer examples include Nafion (manufactured by DuPont: registered trademark) 112.
  • non-fluorine polymers include sulfonated aromatic polyetheretherketone and polysulfone.
  • the cathode catalyst layer 124 and the anode catalyst layer 125 have ion exchange resin and catalyst particles, and possibly carbon particles.
  • the ion exchange resin included in the cathode catalyst layer 124 and the anode catalyst layer 125 connects the catalyst particles and the electrolyte membrane 123 and has a role of transmitting protons therebetween.
  • This ion exchange resin may be formed of the same polymer material as the electrolyte membrane 123.
  • catalyst metals include Sc, Y, Ti, Zr, V, Nb, Fe, Co, Ni, Ru, Rh, Pd, Pt, Os, Ir, alloys selected from lanthanoid series elements and actinoid series elements, A simple substance is mentioned.
  • acetylene black, ketjen black, carbon nanotubes or the like may be used as the carbon particles.
  • the cathode housing 170 is a housing member provided on the cathode side of the membrane electrode assembly 120.
  • An air intake 171 for taking in air from the outside is provided on the upper surface of the cathode housing 170.
  • the anode side housing 172 is a housing member provided on the anode side of the membrane electrode assembly 120.
  • a fuel gas chamber 176 for fuel storage is formed between the anode side housing 172 and the anode catalyst layer 125.
  • fuel supply port (not shown) in the anode-side housing 172, fuel can be appropriately supplemented from the fuel storage unit 20.
  • Examples of materials used for the cathode side housing 170 and the anode side housing 172 include general plastic resins such as phenol resin, vinyl resin, polyethylene resin, polypropylene resin, polystyrene resin, urea resin, and fluorine resin.
  • the gasket 174 is provided so that the outer peripheral part of the base material 122 may be covered.
  • the gasket 174 is attached to a recess provided on the inner wall of the anode side housing 172.
  • the gasket 74 enhances the sealing performance of the fuel gas chamber 176.
  • the protective member 180 is disposed so as to face the cathode catalyst layer 124 of the membrane electrode assembly (cell) 120.
  • the protective member 180 is disposed between the cathode catalyst layer 124 of the membrane electrode assembly 120 and the cathode housing 170.
  • the protective member 180 is formed of a flat plate member, and the protective member 180 has a large number of openings 182 penetrating from one main surface to the other main surface. Air permeability between the cathode catalyst layer 124 and the outside of the fuel cell module 100 is obtained by these openings 182.
  • the material of the protective member 180 is not specifically limited, For example, insulators, such as aluminum and polyacrylate which carried out the alumite process, are mentioned.
  • the opening 182 forms a plurality of rows along the longitudinal direction of each cell, and the pitch of each row is equal to the pitch of each cell.
  • the diameter of the opening 182 is substantially equal to the interval between adjacent cells or about 1/4 of the width of each cell.
  • Both ends of the arcuate spring 200 are fixed to one side surface of the pair of side surfaces of the protective member 180 facing the cell arrangement direction with the convex portion facing the side inner wall of the cathode side housing 170.
  • the convex portion of the spring 200 abuts on the side inner wall of the cathode housing 170 so as to be slidable, and the spring 200 is compressed between the side inner wall of the cathode housing 170 and the protection member 180, whereby the protection member 180 is It is biased toward the other side surface opposite to the one side surface.
  • Both ends of an arcuate spring 202 with a convex portion facing the main surface of the protective member 180 are fixed to the back surface opposite to the upper surface of the cathode housing 170.
  • the spring 202 is fixed to the back surface of the cathode housing 170 along each side of the opening 182.
  • the convex part of the spring 202 is slidably contacted with the main surface of the protective member 180, and the spring 202 is compressed between the back surface of the cathode housing 170 and the protective member 180, so that the protective member 180 becomes a cathode catalyst layer. It is biased toward 124.
  • the first opening position adjustment unit 192 expands by absorbing moisture in the air or water droplets condensed around the first opening position adjustment unit 192 when the humidity increases, and moisture in the air when the humidity decreases. It is formed of a member that evaporates and contracts. For example, the first opening position adjustment unit 192 expands by absorbing generated water generated from the cathode catalyst layer 124. Specifically, the first opening position adjusting unit 192 is a member that absorbs water and expands, such as a water-absorbing polymer, a water-expandable rubber that is a composite material with the water-absorbing polymer, and a wicking material. The first opening position adjustment unit 192 is installed so as to surround the plurality of membrane electrode assemblies 120 arranged in a plane.
  • the lower surface of the first opening position adjusting unit 192 is fixed to the upper surface of the anode side housing 172.
  • the upper surface of the first opening position adjustment unit 192 is slidably in contact with the back surface of the protective member 180.
  • the first opening position adjusting portion 192 expands, and the length of the first opening position adjusting portion 192 in the direction orthogonal to the main surface of the protective member 180 increases, thereby causing the cathode catalyst layer.
  • the distance between 124 and the protective member 180 increases.
  • the first opening position adjustment unit 192 returns to the original length.
  • the distance between the cathode catalyst layer 124 and the protective member 180 is reduced.
  • the protection member 180 moves toward the first opening position adjustment unit 192 by the elastic force of the spring 202.
  • the second opening position adjustment unit 190 is an arcuate bimetal whose convex portion faces the other side surface of the protective member 180, and both ends thereof are fixed to the side inner wall of the cathode side housing 170.
  • the bimetal constituting the second opening position adjusting unit 190 is, for example, an alloy having a low expansion coefficient (Ni36% -Fe) and an alloy having a high expansion coefficient (70% Mn-Cu-Ni alloy).
  • the convex part on the alloy side having a high expansion coefficient faces the protective member 180.
  • the bimetal does not have to be arcuate as in the present embodiment, but the bimetal is preliminarily molded into an arcuate shape. Thus, the bendability can be improved.
  • the degree of curvature of the second opening position adjustment unit 190 increases as the temperature rises.
  • the second opening position adjustment unit 190 is curved so that the convexity of the second opening position adjustment unit 190 is increased.
  • the portion moves to a position further away from the inner side wall of the cathode housing 170, and the length in the cell arrangement direction is extended.
  • the protection member 180 is pushed and slid toward the inner wall on the side of the cathode housing 170 opposite to the second opening position adjustment unit 190.
  • the second opening position adjusting unit 190 when the temperature is lowered from the temperature in a state where the degree of bending is increased, the second opening position adjusting unit 190 returns to the original degree of bending. In other words, the length of the second opening position adjustment unit 190 in the cell arrangement direction is restored. As the degree of curvature of the second opening position adjustment unit 190 returns to the original state, the protection member 180 slides toward the second opening position adjustment unit 190 by the elastic force of the spring 200.
  • FIG. 4 is a diagram schematically showing the positional relationship between the protective member and the cathode catalyst layer when the temperature and humidity change.
  • the “low active region” refers to a region of a member that does not contribute to an electrochemical reaction, such as the interconnector 126 or the base material 122, in the fuel cell, and the electrochemical in the membrane electrode assembly 120. A region where the activity of the reaction is relatively low.
  • the “highly active region” refers to a region in the membrane electrode assembly 120 that has a relatively high electrochemical reaction activity.
  • the region where the activity of the electrochemical reaction is relatively low is a region where the electrochemical reaction is 50% or less compared to the portion where the activity of the electrochemical reaction is maximized (for example, the central portion of the membrane electrode assembly 120).
  • the region where the activity of the electrochemical reaction is relatively low is that the amount of generated water is 50 compared to the portion where the activity of the electrochemical reaction is maximized (for example, the central portion of the membrane electrode assembly 120).
  • the opening 182 provided in the protective member 180 is adjacent to the low active region (in the example of FIG. 4A).
  • the protective member 180 and the cathode catalyst layer 124 are close to each other. That is, the protective member 180 excluding the opening 182 overlaps with the highly active region (the central portion of the cathode catalyst layer 124 in the example of FIG. 4A), and the protective member 180 and the cathode catalyst layer 124 approach each other. Yes.
  • the produced water contained in the cathode catalyst layer 124 is held in the cathode catalyst layer 124, so that the produced water is less likely to evaporate to the outside from the opening 182.
  • the membrane electrode assembly 120 is suppressed from drying out.
  • the protective member 180 and the cathode catalyst layer 124 are close to each other, and the protective member 180 is on the surface of the cathode catalyst layer 124. Move in the cell array direction.
  • the opening 182 provided in the protective member 180 and the highly active region overlap each other, and the cathode catalyst layer 124 is formed in the opening 182. Exposed outside.
  • the cathode catalyst layer 124 and the protective member 180 overlap in a portion away from the opening 182, and generated water is held in the cathode catalyst layer 124 in this region.
  • the opening 182 evaporation of generated water contained in the cathode catalyst layer 124 is promoted.
  • the evaporation amount of the produced water contained in the cathode catalyst layer 124 can be kept moderate under low temperature / dry conditions.
  • the protective member 180 Under high-temperature and high-humidity conditions (for example, 40 ° C., 90% RH, see FIG. 4C), the protective member 180 is in a state where the opening 182 provided in the protective member 180 overlaps the low active region. It moves in a direction orthogonal to the main surface of the protective member 180 so as to be away from the catalyst layer 124. This creates a space between the cathode catalyst layer 124 and the protective member 180. As a result, the generated water contained in the cathode catalyst layer 124 evaporates and diffuses into the space, and extra water is released to the outside from the opening 182. Thereby, the evaporation amount of the produced water contained in the cathode catalyst layer 124 can be kept moderate under high temperature and high humidity conditions.
  • the opening 182 provided in the protective member 180 overlaps with the highly active region, and the cathode catalyst layer 124
  • the distance between the protective member 180 and the protective member 180 is wider than that in the low temperature / dry condition. This creates a space between the cathode catalyst layer 124 and the protective member 180.
  • the generated water contained in the cathode catalyst layer 124 evaporates and diffuses into the space, and extra water is released to the outside from the opening 182.
  • the protective member 180 moves relatively in the cell arrangement direction, The region exposed to the opening 182 provided in the protective member 180 shifts from the low active region to the high active region. In other words, when the temperature condition shifts from the high temperature condition to the low temperature condition, the ratio of the highly active region to the region exposed to the opening 182 provided in the protective member 180 increases.
  • the protective member 180 moves relatively in the cell arrangement direction (the opposite direction to the case where the temperature condition shifts from the high temperature condition to the low temperature condition).
  • the region exposed to the opening 182 provided in the protective member 180 shifts from the high active region to the low active region. That is, as the temperature condition shifts from the low temperature condition to the high temperature condition, the overlapping area of the protective member 180 excluding the opening 182 and the highly active region is increased.
  • the distance between the protective member 180 and the cathode catalyst layer 124 gradually increases when the humidity condition shifts from a dry condition to a humid condition due to changes in the operating conditions of the fuel cell system and the surrounding environment. Conversely, when the humidity condition shifts from the humid condition to the dry condition, the distance between the protective member 180 and the cathode catalyst layer 124 gradually decreases.
  • FIG. 4 ( E1) and FIG. 4 (E2) show how the protective member 180 finely moves in the cell arrangement direction when shifting from the high temperature condition to the low temperature condition in the drying condition.
  • FIG. 4 (E5) and FIG. 4 (E6) show how the protective member 180 slightly moves in the cell arrangement direction when shifting from a high temperature condition to a low temperature condition in a humid condition.
  • FIG. 4 (E7) shows how the protective member 180 slightly moves in a direction perpendicular to the cell main surface when shifting from a dry condition to a humid condition under a high temperature condition.
  • FIG. 4 (E8) shows how the protective member 180 slightly moves in a direction perpendicular to the cell main surface when shifting from a dry condition to a humid condition under a low temperature condition.
  • the relative position between the opening 182 of the protective member 180 and the highly active region in the cell arrangement direction and / or protection according to changes in temperature and humidity accompanying changes in the operating state of the fuel cell system and the surrounding environment By adjusting the distance between the member 180 and the cathode catalyst layer 124, the moisture balance of the membrane electrode assembly 120 can be kept moderate with a simple configuration without consuming electric power. By doing so, it is possible to prevent cell performance from being deteriorated due to dryout, flooding, or the like.
  • the first opening position adjusting unit 192 when the humidity is high, the first opening position adjusting unit 192 generates water in the air or water droplets condensed around the first opening position adjusting unit 192, for example, generated water generated from the cathode catalyst layer 124. Since it absorbs and expand
  • a bimetal is exemplified as the second opening position adjustment unit 190 whose length in the cell arrangement direction changes according to the temperature.
  • the second opening position adjustment unit 190 is illustrated as an example.
  • a shape memory alloy such as titanium / nickel alloy may be used.
  • the openings 182 provided in the protection member 180 may be formed in two or more rows in a direction orthogonal to the cell arrangement direction corresponding to each cell. In other words, the openings 182 may be arranged close to each cell width at a pitch finer than the pitch of each cell.
  • the openings 182 arranged in each cell width are defined as one opening group, a plurality of openings 182 are provided.
  • the pitch of the opening group may be formed corresponding to the pitch of each cell.
  • hydrogen is exemplified as the fuel, but liquid fuel such as methanol may be used as the fuel.
  • the adjacent membrane electrode assemblies 120 are connected in series by the interconnector 126.
  • the cathode catalyst layers 124 or the anode catalyst layers 125 of the adjacent membrane electrode assemblies 120 are electrically connected.
  • Adjacent membrane electrode assemblies 120 may be connected in parallel by connecting with a connecting member.
  • the plurality of openings 182 are linearly arranged in the plurality of openings 182 arranged corresponding to each cell.
  • the plurality of openings 182 is arranged in a row. May be arranged in a band-like region having a certain width.
  • the plurality of openings 182 may be arranged in a so-called zigzag pattern so as to be shifted from each other in the cell arrangement direction.
  • the shape of the opening 182 is not limited to a circular shape, and may be, for example, a rectangular shape.
  • the present invention can be used for moisture adjustment in a fuel cell module.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 燃料電池モジュール100は、複数の膜電極接合体120が平面配列された燃料電池を有する。膜電極接合体120のカソード側に平板状の保護部材180が対向配置されている。保護部材180には開口部182が設けられている。第1の開口部位置調整部192、第2の開口部位置調整部190により、燃料電池モジュール100の運転状況や周囲環境の変化に伴う温度および湿度の変化に応じて膜電極接合体120の配列方向における保護部材180と高活性領域の相対位置、および/または保護部材180とカソード触媒層124との間隔が調整される。

Description

燃料電池モジュール
 本発明は、燃料電池モジュールに関する。
 燃料電池システムは水素と酸素とから電気エネルギを発生させる装置であり、高い発電効率を得ることができる。燃料電池システムの主な特徴としては、従来の発電方式のように熱エネルギや運動エネルギの過程を経ることがない直接発電であるので、小規模でも高い発電効率が期待できること、窒素化合物等の排出が少なく、騒音や振動も小さいので環境性が良いことなどが挙げられる。このように、燃料電池システムは燃料のもつ化学エネルギを有効に利用でき、環境にやさしい特性を持っているので、21世紀を担うエネルギ供給システムとして期待され、宇宙用から自動車用、携帯機器用まで、大規模発電から小規模発電まで、種々の用途に使用できる将来有望な新しい発電システムとして注目され、実用化に向けて技術開発が本格化している。
 燃料電池は発電に伴い発熱し、温度が上昇する。燃料電池の温度が過度に上昇すると、ドライアウトによる性能低下が生じる。また、生成水が滞留しすぎると、いわゆるフラッディングという現象が生じるため、やはり燃料電池の性能が低下する。このため、カソード側に吸排気口を設置し、センサやアクチュエータを用いて当該吸排気口を開閉して燃料電池の水分調整を行う技術が知られている(特許文献1参照)。
特開2011-66011号公報
 従来の燃料電池システムでは、水分調整のための機構が複雑でかつ電力を消費してしまうという問題があった。また、複数のセル(膜電極接合体)を有する燃料電池に対して1組の吸排気口の開閉により水分調整を行っているため、セルによって水分量にばらつきが生じてしまう。この結果、各セルにおける発電量にばらつきが生じ、ひいては燃料電池の発電動作が不安定となる場合があった。
 本発明はこうした課題に鑑みてなされたものであり、その目的は、電力を消費することなく簡便な構成で各セルの水分調整をより適切に行うことのできる燃料電池モジュールの提供にある。
 本発明のある態様は、燃料電池モジュールである。当該燃料電池モジュールは、電解質膜と、前記電解質膜の一方の側に設けられているカソード触媒層と、前記電解質膜の他方の側に設けられているアノード触媒層とを含む膜電極接合体からなる燃料電池と、前記燃料電池のカソード側に対向配置され、開口部が形成された保護部材と、膜電極接合体の高活性領域に対する前記開口部の相対位置を変化させる開口部位置調整部と、を備えることを特徴とする。
 本発明の燃料電池モジュールによれば、電力を消費することなく簡便な構成で各セル(膜電極接合体)の水分調整をより適切に行うことができる。
実施の形態に係る燃料電池システムの概略を示す斜視図である。 実施の形態に係る燃料電池モジュールの概略を示す分解斜視図である。 図2のA-A線に沿った概略断面図である。 温度および湿度が変化したときの、保護部材とカソード触媒層との位置関係を模式的に示す図である。
 以下、本発明の実施の形態を図面を参照して説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 図1は、実施の形態に係る燃料電池システムの概略を示す斜視図である。
 燃料電池システム10は、主な構成として燃料電池モジュール100、燃料収容部20、燃料供給部30および回路部40を備える。燃料電池モジュール100の詳細については後述する。
 燃料収容部20には水素吸蔵合金が収容されている。水素吸蔵合金は、水素の吸蔵と、吸蔵した水素の放出とが可能であり、たとえば、希土類系のMmNi4.32Mn0.18Al0.1Fe0.1Co0.3(Mmはミッシュメタル)である。なお、水素吸蔵合金は、希土類系の合金に限られず、たとえばTi-Mn系合金、Ti-Fe系合金、Ti-Zr系合金、Mg-Ni系合金、Zr-Mn系合金等であってもよい。具体的には、水素吸蔵合金としてLaNi合金、MgNi合金、Ti1+xCr2-yMn(x=0.1~0.3、y=0~1.0)合金などを挙げることができる。水素吸蔵合金は、上述した水素吸蔵合金の粉末にポリテトラフルオロエチレン(PTFE)デイスパージョンなどの結着剤を混合し、プレス機で圧縮成形した圧縮成形体(ペレット)とすることができる。必要に応じて、圧縮成形後に焼結処理がなされていてもよい。
 燃料供給部30は、水素供給路およびレギュレータ(ともに図示せず)を主な構成として備える。水素供給路は、一端が燃料収容部20の出口と連通し、他端が一対の燃料電池モジュール100のアノードと連通している。水素供給路の途中にレギュレータが設けられている。レギュレータにより、水素吸蔵合金から水素が放出される際に、一対の燃料電池モジュール100に供給される水素の圧力が低減される。これにより、燃料電池モジュール100のアノード触媒層が保護される。
 回路部40において、燃料電池モジュール100にて発生した直流電力がDC/DCコンバータにより所定電圧(たとえば24V)の直流電力に変換された後、DC/ACインバータによって交流電力(たとえば100V)に変換される。DC/ACインバータで変換された交流電力は出力端(図示せず)へ出力される。また、上記DC/DCコンバータで変換された所定電圧の直流電力は、上述したレギュレータ等を制御する際の電源として利用される。
 図2は、実施の形態に係る燃料電池モジュール100の概略を示す分解斜視図である。図3は、図2のA-A線に沿った概略断面図である。燃料電池モジュール100は、主な構成として、燃料電池、カソード側ハウジング170、アノード側ハウジング172、保護部材180、第1の開口部位置調整部192、第2の開口部位置調整部190、バネ200、202、燃料ガス室176およびガスケット174を備える。燃料電池は、膜電極接合体(セル)120、基材122およびインターコネクタ126を有する。
 膜電極接合体120は、電解質膜123、電解質膜123の一方の面に設けられているカソード触媒層124、および電解質膜123の他方の面に設けられているアノード触媒層125を有する。電解質膜123は、絶縁性の基材122に設けられた開口部を充填するように設けられている。カソード触媒層124には、酸化剤としてたとえば空気が供給される。一方、アノード触媒層125には燃料ガスとしてたとえば水素が供給される。一対のカソード触媒層124とアノード触媒層125との間に電解質膜123が狭持されることにより膜電極接合体120、すなわちセルが構成され、各セルは水素と空気中の酸素との電気化学反応により発電する。本実施形態の燃料電池モジュール100では、3組の膜電極接合体120が平面配列されているが、膜電極接合体120の数はこれに限定されない。
 インターコネクタ126は、隣接する膜電極接合体120の間において、基材122を貫通して設けられている。隣接する膜電極接合体120において、一方の膜電極接合体120のカソード触媒層124がインターコネクタ126の一端に接続され、他方の膜電極接合体120のアノード触媒層125がインターコネクタ126の他端に接続されている。インターコネクタ126はカーボンなどの導電性の材料で形成されている。以上の構成により、隣接する膜電極接合体120同士はインターコネクタ126により直列接続されている。
 電解質膜123は、湿潤状態において良好なイオン伝導性を示すことが好ましく、カソード触媒層124とアノード触媒層125との間でプロトンを移動させるイオン交換膜として機能する。電解質膜123は、含フッ素重合体や非フッ素重合体等の固体高分子材料によって形成され、たとえば、スルホン酸型パーフルオロカーボン重合体、ポリサルホン樹脂、ホスホン酸基又はカルボン酸基を有するパーフルオロカーボン重合体等を用いることができる。スルホン酸型パーフルオロカーボン重合体の例として、ナフィオン(デュポン社製:登録商標)112などが挙げられる。また、非フッ素重合体の例として、スルホン化された、芳香族ポリエーテルエーテルケトン、ポリスルホンなどが挙げられる。
 カソード触媒層124およびアノード触媒層125は、イオン交換樹脂ならびに触媒粒子、場合によって炭素粒子を有する。カソード触媒層124およびアノード触媒層125が有するイオン交換樹脂は、触媒粒子と電解質膜123を接続し、両者間においてプロトンを伝達する役割を持つ。このイオン交換樹脂は、電解質膜123と同様の高分子材料から形成されてよい。触媒金属としては、Sc、Y、Ti、Zr、V、Nb、Fe、Co、Ni、Ru、Rh、Pd、Pt、Os、Ir、ランタノイド系列元素やアクチノイド系列の元素の中から選ばれる合金や単体が挙げられる。また触媒を担持する場合には炭素粒子として、アセチレンブラック、ケッチェンブラック、カーボンナノチューブなどを用いてもよい。
 カソード側ハウジング170は、膜電極接合体120のカソード側に設けられた収容部材である。カソード側ハウジング170の上面には、外部から空気を取り込むための空気取入口171が設けられている。
 一方、アノード側ハウジング172は、膜電極接合体120のアノード側に設けられた収容部材である。アノード側ハウジング172とアノード触媒層125との間に、燃料貯蔵用の燃料ガス室176が形成されている。なお、アノード側ハウジング172に燃料供給口(図示せず)を設置することにより、燃料収容部20から燃料を適宜補充可能である。
 カソード側ハウジング170およびアノード側ハウジング172に用いられる材料としては、フェノール樹脂、ビニル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、尿素樹脂、フッ素樹脂等の一般的なプラスティック樹脂が挙げられる。
 ガスケット174は、基材122の外周部を覆うように設けられている。ガスケット174はアノード側ハウジング172の内壁に設けられた凹部に取り付けられている。ガスケット74により、燃料ガス室176の密封性が高められている。
 保護部材180は、膜電極接合体(セル)120のカソード触媒層124と対向するように配置されている。また、保護部材180は、膜電極接合体120のカソード触媒層124とカソード側ハウジング170との間に配置されている。保護部材180は平板状の部材で形成されており、保護部材180には一方の主表面から他方の主表面に貫通する多数の開口部182が形成されている。これらの開口部182によりカソード触媒層124と燃料電池モジュール100外部との間の通気性が得られている。保護部材180の材料は特に限定されないが、たとえば、アルマイト処理したアルミニウムやポリアクリレートなどの絶縁体が挙げられる。
 本実施の形態では、開口部182は、各セルの長手方向に沿って複数の列をなしており、かつ、各列のピッチは各セルのピッチと同等である。また、開口部182の径は、隣接するセル間の間隔と略同等あるいは各セルの幅の1/4程度である。
 セルの配列方向に対向する保護部材180の一対の側面のうち一方の側面に、凸部をカソード側ハウジング170の側内壁に向けた状態で弓状のバネ200の両端部が固定されている。バネ200の凸部がカソード側ハウジング170の側内壁と摺動可能に当接し、カソード側ハウジング170の側内壁と保護部材180との間でバネ200が押し縮められることにより、保護部材180が上記一方の側面と対向する他方の側面の方に付勢されている。
 カソード側ハウジング170の上面と反対側となる裏面に、凸部を保護部材180の主表面に向けた弓状のバネ202の両端部が固定されている。本実施の形態では、開口部182の各辺に沿って、カソード側ハウジング170の裏面にそれぞれバネ202が固定されている。バネ202の凸部が保護部材180の主表面と摺動可能に当接し、カソード側ハウジング170の裏面と保護部材180との間でバネ202が押し縮められることにより、保護部材180がカソード触媒層124の方に付勢されている。
 第1の開口部位置調整部192は、湿度が高くなると空気中の水分または第1の開口部位置調整部192の周辺に結露した水滴を吸収して膨張し、湿度が低くなると空気中に水分を蒸発させて収縮する部材で形成されている。たとえば、第1の開口部位置調整部192は、カソード触媒層124から発生する生成水を吸収して膨張する。具体的には、第1の開口部位置調整部192は、吸水性ポリマ、吸水性ポリマーとの複合材である水膨張ゴム、ウイッキング材などの水を吸収して膨張する部材である。第1の開口部位置調整部192は、平面配列された複数の膜電極接合体120を取り囲むように設置されている。第1の開口部位置調整部192の下面はアノード側ハウジング172の上面に固定されている。また、第1の開口部位置調整部192の上面は保護部材180の裏面と摺動可能に当接している。湿度が高くなるにつれて、第1の開口部位置調整部192が膨張し、保護部材180の主表面と直交する方向における第1の開口部位置調整部192の長さが伸びることにより、カソード触媒層124と保護部材180との距離が広がる。一方、第1の開口部位置調整部192の長さが伸びた状態の湿度から湿度が低下すると、第1の開口部位置調整部192は元の長さに戻る。これにより、カソード触媒層124と保護部材180との距離が縮まる。第1の開口部位置調整部192の長さが元に戻るにつれて、バネ202の弾性力により保護部材180が第1の開口部位置調整部192の方へ移動する。
 第2の開口部位置調整部190は、凸部を保護部材180の上記他方の側面に向けた弓状のバイメタルであり、その両端部がカソード側ハウジング170の側内壁に固定されている。具体的には、第2の開口部位置調整部190を構成するバイメタルは、たとえば低膨張係数を有する合金(Ni36%-Fe)と高膨張係数を有する合金(70%Mn-Cu-Ni合金)からなる2層構造を有しており、高膨張係数を有する合金側の凸部が保護部材180の方に面している。なお、第2の開口部位置調整部190としてバイメタルを用いる場合には、本実施の形態のように、バイメタルは予め弓状でなくてもよいが、バイメタルを予め弓状に成型しておくことにより、湾曲性を向上させることができる。
 第2の開口部位置調整部190は、温度が上昇すると湾曲の度合いが大きくなる、言い換えると、第2の開口部位置調整部190が湾曲することで第2の開口部位置調整部190の凸部がカソード側ハウジング170の側内壁からより離れた位置に移動し、セルの配列方向における長さが伸びる。これにより、保護部材180が第2の開口部位置調整部190とは反対側のカソード側ハウジング170の側内壁の方へ押し出されてスライドする。
 一方、湾曲度合いが大きくなった状態の温度から温度が低下すると、第2の開口部位置調整部190は元の湾曲度合いに戻る。言い換えると、セルの配列方向における第2の開口部位置調整部190の長さが元に戻る。第2の開口部位置調整部190の湾曲度合いが元に戻るにつれて、バネ200の弾性力により保護部材180が第2の開口部位置調整部190の方へスライドする。
 図4は、温度および湿度が変化したときの、保護部材とカソード触媒層との位置関係を模式的に示す図である。なお、以下の説明において、「低活性領域」とは、燃料電池のうち、インターコネクタ126や基材122などの電気化学反応に寄与しない部材の領域と、膜電極接合体120の中で電気化学反応の活性が相対的に低い領域とをいう。また、「高活性領域」とは、膜電極接合体120の中で電気化学反応の活性が相対的に高い領域とをいう。電気化学反応の活性が相対的に低い領域とは、電気化学反応の活性が最大になる部分(たとえば、膜電極接合体120の中心部分)に比べて、電気化学反応が50%以下になる領域をいう。言い換えると、電気化学反応の活性が相対的に低い領域とは、電気化学反応の活性が最大になる部分(たとえば、膜電極接合体120の中心部分)に比べて、生成水の発生量が50%以下になる領域をいう。
 高温・乾燥の条件下(たとえば、40℃、20%RH、図4(A)参照)では、保護部材180に設けられた開口部182が低活性領域(図4(A)の例では、隣接するカソード触媒層124の間の領域)と重畳し、かつ保護部材180とカソード触媒層124とが接近している。つまり、開口部182を除く保護部材180が高活性領域(図4(A)の例では、カソード触媒層124の中央部分)と重畳し、かつ保護部材180とカソード触媒層124とが接近している。これにより、カソード触媒層124に含まれる生成水がカソード触媒層124に保持されるため、生成水が開口部182から外部に蒸発しにくくなる。この結果、膜電極接合体120がドライアウトすることが抑制される。
 低温・乾燥の条件下(たとえば、10℃、20%RH、図4(B)参照)では、保護部材180とカソード触媒層124とが接近した状態で、保護部材180がカソード触媒層124の表面に沿ってセルの配列方向に移動する。これにより、保護部材180に設けられた開口部182と高活性領域(図4(B)の例では、カソード触媒層124の中央部分)とが重畳し、開口部182内でカソード触媒層124が外部に露出する。この結果、開口部182から外れた部分では、カソード触媒層124と保護部材180とが重畳する領域が存在し、この領域では、カソード触媒層124に生成水が保持される。一方、開口部182内では、カソード触媒層124に含まれる生成水の蒸発が促進される。これにより、低温・乾燥の条件下において、カソード触媒層124に含まれる生成水の蒸発量を適度に保つことができる。
 高温・多湿の条件下(たとえば、40℃、90%RH、図4(C)参照)では、保護部材180に設けられた開口部182が低活性領域と重畳した状態で、保護部材180がカソード触媒層124から離れるように保護部材180の主表面と直交する方向に移動する。これにより、カソード触媒層124と保護部材180との間に空間が生じる。この結果、カソード触媒層124に含まれる生成水が蒸発して当該空間に拡散し、さらには、余分な水分が開口部182から外部に放出される。これにより、高温・多湿の条件下において、カソード触媒層124に含まれる生成水の蒸発量を適度に保つことができる。
 低温・多湿の条件下(たとえば、10℃、90%RH、図4(D)参照)では、保護部材180に設けられた開口部182と高活性領域とが重畳するとともに、カソード触媒層124と保護部材180との間隔が低温・乾燥の条件下の状態における間隔より広がっている。これにより、カソード触媒層124と保護部材180との間に空間が生じる。この結果、カソード触媒層124に含まれる生成水が蒸発して当該空間に拡散し、さらには、余分な水分が開口部182から外部に放出される。カソード触媒層124から蒸発した生成水が開口部182から容易に外部に排出されるため、カソード触媒層124に含まれる生成水の蒸発がより一層促進され、膜電極接合体120にフラッディングが生じることが抑制される。
 以上をまとめると、燃料電池システムの運転状況および周囲環境の変化により、温度条件が高温条件から低温条件に移行する場合には、保護部材180がセルの配列方向に相対的に移動することにより、保護部材180に設けられた開口部182に露出する領域が低活性領域から高活性領域に移行する。言い換えると、温度条件が高温条件から低温条件に移行する場合には、保護部材180に設けられた開口部182に露出する領域に占める高活性領域の割合が増加する。逆に、温度条件が低温条件から高温条件に移行する場合には、保護部材180がセルの配列方向(高温条件から低温条件に移行する場合とは反対方向)に相対的に移動することにより、保護部材180に設けられた開口部182に露出する領域が高活性領域から低活性領域に移行する。つまり、温度条件が低温条件から高温条件に移行するにつれて、開口部182を除く保護部材180と高活性領域との重畳面積を大きくする。
 一方、燃料電池システムの運転状況および周囲環境の変化により、湿度条件が乾燥条件から多湿条件に移行する場合には、保護部材180とカソード触媒層124との距離が徐々に広がる。逆に、湿度条件が多湿条件から乾燥条件に移行する場合には、保護部材180とカソード触媒層124との距離が徐々に縮まる。
 なお、温度条件および湿度条件が共に変化する場合には、保護部材180はセルの配列方向での移動と、保護部材180とカソード触媒層124との間隔の調整とが同時進行する(図4(E1)、図4(E2)参照)。図4(E3)、図4(E4)は、乾燥条件において、高温条件から低温条件に移行する際に、保護部材180がセルの配列方向に微動する様子を示す。図4(E5)、図4(E6)は、多湿条件において、高温条件から低温条件に移行する際に、保護部材180がセルの配列方向に微動する様子を示す。また、図4(E7)は、高温条件において、乾燥条件から多湿条件に移行する際に、保護部材180がセル主面と直交する方向に微動する様子を示す。図4(E8)は、低温条件において、乾燥条件から多湿条件に移行する際に、保護部材180がセル主面と直交する方向に微動する様子を示す。
 このように、燃料電池システムの運転状況や周囲環境の変化に伴う温度および湿度の変化に応じてセルの配列方向における保護部材180の開口部182と高活性領域との相対位置、および/または保護部材180とカソード触媒層124との間隔を調整することで、電力を消費することなく簡便な構成で、膜電極接合体120の水分バランスを適度に保つことができる。こうすることで、ドライアウトやフラッディング等によりセルの性能低下が生じることを防止することができる。
 また、膜電極接合体120の配列方向における複数の開口部182のピッチが、膜電極接合体120のピッチと同等であるため、各膜電極接合体120における水分調整を同時に同様な状態に維持することができる。このため、各膜電極接合体120における発電量のばらつきが抑制されるため、燃料電池システム10の発電動作の安定化を図ることができる。
 さらに、湿度が高い場合に、第1の開口部位置調整部192が空気中の水分または第1の開口部位置調整部192の周辺に結露した水滴、たとえばカソード触媒層124から発生する生成水を吸収して膨張するため、セル表面に生成水が滞留するのを抑制することができ、フラッディングが起こることを抑制することができる。
 本発明は、上述の実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうるものである。
 たとえば、上述の実施の形態では、温度に応じてセルの配列方向の長さが変化する第2の開口部位置調整部190としてバイメタルが例示されているが、第2の開口部位置調整部190としてチタン・ニッケル合金などの形状記憶合金を用いてもよい。
 また、保護部材180に設けられた開口部182は、各セルに対応してセルの配列方向と直交する方向に2列以上形成されていてもよい。つまり、開口部182は、各セル幅内において各セルのピッチよりも細かいピッチで接近して配置されもよく、各セル幅内に配置された開口部182を1つの開口郡部としたとき、複数の開口郡部のピッチが各セルのピッチに対応して形成されてもよい。
 また、上述の実施の形態では、燃料として水素が例示されているが、メタノール等の液体燃料を燃料としてもよい。
 また、上述の実施の形態では、隣接する膜電極接合体120同士がインターコネクタ126により直列接続されているが、隣接する膜電極接合体120のカソード触媒層124同士またはアノード触媒層125同士を電気接続部材で接続することにより、隣接する膜電極接合体120同士を並列接続してもよい。
 また、上述の実施の形態では、各セルに対応して設置された複数の開口部182の列において、複数の開口部182が直線的に配置されているが、この複数の開口部182の列は、一定の幅を有する帯状の領域内に配置されていてもよい。たとえば、帯状の領域内において、複数の開口部182は互いにセルの配列方向にずれて、いわゆる千鳥状に配置されていてもよい。また、開口部182の形状は円形状に限定されず、たとえば矩形状であってもよい。
10 燃料電池システム、20 燃料収容部、30 燃料供給部、40 回路部、100 燃料電池モジュール、120 膜電極接合体、122 基材、123 電解質膜、124 カソード触媒層、125 アノード触媒層、126 インターコネクタ、170 カソード側ハウジング、172 アノード側ハウジング、180 保護部材、182 開口部、190 第2の開口部位置調整部、192 第1の開口部位置調整部
 本発明は燃料電池モジュールにおける水分調整に利用できる。

Claims (6)

  1.  電解質膜と、前記電解質膜の一方の側に設けられているカソード触媒層と、前記電解質膜の他方の側に設けられているアノード触媒層とを含む膜電極接合体からなる燃料電池と、
     前記燃料電池のカソード側に対向配置され、開口部が形成された保護部材と、
     膜電極接合体の高活性領域に対する前記開口部の相対位置を変化させる開口部位置調整部と、
     を備えることを特徴とする燃料電池モジュール。
  2.  前記膜電極接合体が複数配設された燃料電池と、前記開口部が複数形成された平板状の保護部材と、前記開口部位置調整部と、
     を備え、
     前記膜電極接合体の配列方向における複数の前記開口部のピッチが、複数の前記膜電極接合体のピッチと同等であることを特徴とする請求項1に記載の燃料電池モジュール。
  3.  前記開口部位置調整部は、前記保護部材の主表面と直交する方向に伸縮する第1の調整部材を含み、
     前記第1の調整部材が伸縮することにより、前記保護部材と前記カソード触媒層との距離が調整される請求項1または2に記載の燃料電池モジュール。
  4.  前記第1の調整部材が、湿度に応じて前記保護部材の主表面と直交する方向に伸縮することを特徴とする請求項3に記載の燃料電池モジュール。
  5.  前記開口部位置調整部は、前記膜電極接合体の配列方向における長さが伸縮する第2の調整部材を含み、
     前記第2の調整部材が伸びることにより、各膜電極接合体において、前記開口部に露出する高活性領域の面積が減少する請求項1乃至4のいずれか1項に記載の燃料電池モジュール。
  6.  前記第2の調整部材が、温度に応じて前記膜電極接合体の配列方向における長さが伸縮することを特徴とする請求項5に記載の燃料電池モジュール。
PCT/JP2011/004887 2011-08-31 2011-08-31 燃料電池モジュール WO2013030894A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/004887 WO2013030894A1 (ja) 2011-08-31 2011-08-31 燃料電池モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/004887 WO2013030894A1 (ja) 2011-08-31 2011-08-31 燃料電池モジュール

Publications (1)

Publication Number Publication Date
WO2013030894A1 true WO2013030894A1 (ja) 2013-03-07

Family

ID=47755452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004887 WO2013030894A1 (ja) 2011-08-31 2011-08-31 燃料電池モジュール

Country Status (1)

Country Link
WO (1) WO2013030894A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116185A (ja) * 2003-10-02 2005-04-28 Nec Corp 燃料電池および燃料電池の運転方法
JP2005322591A (ja) * 2004-05-11 2005-11-17 Toyota Motor Corp 燃料電池
JP2007066688A (ja) * 2005-08-31 2007-03-15 Hitachi Maxell Ltd 燃料電池
WO2007105287A1 (ja) * 2006-03-13 2007-09-20 Fujitsu Limited 燃料電池
JP2007323932A (ja) * 2006-05-31 2007-12-13 Sanyo Electric Co Ltd 燃料電池モジュールおよびコネクタ
JP2009123469A (ja) * 2007-11-14 2009-06-04 Hitachi Maxell Ltd 燃料電池発電システム
JP2010277968A (ja) * 2009-06-01 2010-12-09 Toyota Motor Corp 燃料電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116185A (ja) * 2003-10-02 2005-04-28 Nec Corp 燃料電池および燃料電池の運転方法
JP2005322591A (ja) * 2004-05-11 2005-11-17 Toyota Motor Corp 燃料電池
JP2007066688A (ja) * 2005-08-31 2007-03-15 Hitachi Maxell Ltd 燃料電池
WO2007105287A1 (ja) * 2006-03-13 2007-09-20 Fujitsu Limited 燃料電池
JP2007323932A (ja) * 2006-05-31 2007-12-13 Sanyo Electric Co Ltd 燃料電池モジュールおよびコネクタ
JP2009123469A (ja) * 2007-11-14 2009-06-04 Hitachi Maxell Ltd 燃料電池発電システム
JP2010277968A (ja) * 2009-06-01 2010-12-09 Toyota Motor Corp 燃料電池

Similar Documents

Publication Publication Date Title
US7875405B2 (en) Side-by-side fuel cells
US20070202372A1 (en) Compound membrane and fuel cell using the same
JP2011204609A (ja) 燃料電池層、燃料電池システム、および燃料電池層の製造方法
JP5183080B2 (ja) 燃料電池
JP5766401B2 (ja) 燃料電池アセンブリー
JP6477681B2 (ja) 燃料電池モジュールおよび燃料電池スタック
JP5548474B2 (ja) 複合膜および燃料電池
JP5362406B2 (ja) 燃料電池
JP5029897B2 (ja) 燃料電池
WO2013030894A1 (ja) 燃料電池モジュール
JP2014102876A (ja) 燃料電池
WO2013114800A1 (ja) 燃料電池及び燃料電池システム
JP5865346B2 (ja) 燃料電池および燃料電池の製造方法
JP2013115016A (ja) 燃料電池
JP2010238574A (ja) 複合膜および燃料電池
JP2012014873A (ja) 膜電極接合体および燃料電池
JP2009277465A (ja) 高分子電解質形燃料電池スタック
JP2013214484A (ja) 燃料電池システム
WO2013145776A1 (en) Fuel cell system comprising a detachable fuel cartridge including a hydrogen storage alloy
JP2010238414A (ja) 膜電極接合体、膜電極接合体の製造方法および燃料電池
WO2013065082A1 (ja) 燃料電池システム
JP2014049345A (ja) 燃料電池システム
JP2012248400A (ja) 膜電極接合体および燃料電池
WO2013018124A1 (ja) 燃料電池システム
TW200818592A (en) Fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11871499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP