WO2013029208A1 - Batterie de stockage au lithium-ion à base de multiples éléments, riche en lithium et à énergie spécifique élevée, et son procédé de fabrication - Google Patents

Batterie de stockage au lithium-ion à base de multiples éléments, riche en lithium et à énergie spécifique élevée, et son procédé de fabrication Download PDF

Info

Publication number
WO2013029208A1
WO2013029208A1 PCT/CN2011/001869 CN2011001869W WO2013029208A1 WO 2013029208 A1 WO2013029208 A1 WO 2013029208A1 CN 2011001869 W CN2011001869 W CN 2011001869W WO 2013029208 A1 WO2013029208 A1 WO 2013029208A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
electrolyte
negative electrode
positive electrode
lithium ion
Prior art date
Application number
PCT/CN2011/001869
Other languages
English (en)
Chinese (zh)
Inventor
黄莉
解晶莹
王可
顾海涛
丰震河
谢朝香
Original Assignee
上海空间电源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海空间电源研究所 filed Critical 上海空间电源研究所
Publication of WO2013029208A1 publication Critical patent/WO2013029208A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of high-energy lithium ion batteries, and relates to a lithium ion battery, and in particular to a lithium ion battery having high voltage, high specific capacity, and high specific energy charge and discharge characteristics. Background technique
  • lithium-ion batteries Since its commercialization in 1991, lithium-ion batteries have been widely used in information, energy, transportation and other fields due to their high operating voltage, high energy density, long cycle life, and environmental protection. In recent years, as governments are competing to develop new energy industries, such as new energy vehicles and renewable energy power generation, the performance requirements of batteries in these areas are constantly increasing, especially for high specific energy.
  • a battery prepared from a conventional battery active material such as lithium cobaltate, lithium manganate or lithium iron phosphate can not meet the requirements of practical applications, and a new type of safe high specific energy lithium ion battery must be developed based on materials. system.
  • An object of the present invention is to provide a lithium ion secondary battery having a high specific capacity and a high voltage, which is characterized by high specific energy and high cycle stability.
  • the present invention provides a high specific energy lithium-rich lithium ion battery, which comprises a positive electrode, a negative electrode, a separator, an electrolyte and an outer package, wherein:
  • the positive electrode includes a binder, a conductive agent, and a positive electrode active material, and the positive electrode active material is a lithium-rich multicomponent material.
  • the negative electrode includes a binder, a conductive agent, and a negative electrode electroactive substance.
  • the negative electrode electroactive material is selected from any one of a graphite material, a silicon, a silicon carbon, a silicon composite material, and a tin base alloy material; the negative electrode electroactive material has a high specific capacity, a low specific surface area, and a relatively high specific surface area. High compaction density and good safety.
  • the graphite-based material is selected from a novel graphite system in which natural graphite or artificial graphite is surface-modified (the modified graphite is commercially available as commercially available from Hitachi Chemical Co., Ltd.).
  • the prepared negative electrode has the advantages of high specific capacity, high solid density, and stability to the electrolyte solvent.
  • the negative electrode binder is a polymer binder of styrene-butadiene rubber, organic olefinic acid or carboxylate; the binder has good bonding property and excellent elasticity, and can withstand the negative electrode in the battery charge and discharge cycle The stress caused by the expansion and contraction of the active material gives the battery excellent cycle performance.
  • the electrolyte is a fluorine-containing high-voltage organic electrolyte system.
  • the lithium-rich multi-component has the formula: xLi[Li 1/3 Mn2/ 3 ]02-yLiM0 2 -(lxy)LiMe 2 0 4 ,
  • M Mn, Ni, Co, Al, Cr, Mg, Zr, Ti, Zn, Fe
  • Me Mn, Ni, Co, Al, Cr, Mg, Zr, Ti, Zn, Fe Any one, 0 ⁇ x ⁇ 0.7, 0 ⁇ y ⁇ 0.9.
  • the lithium-rich multi-component material is a composite structure of layered Li[Li 1/3 Mn 2/3 ]0 2 , layered LiM0 2 and spinel LiMe 2 0 4 ; Kby capacity and high charge and discharge voltage.
  • the high specific energy lithium-rich multi-element lithium ion battery wherein: the solvent of the electrolyte is any one of an organic carbonate, an organic carboxylic acid ester, an ether, an organic fluorinated ester, an organic sulfone, and an organic boride.
  • the above-mentioned high-voltage resistant solvent has stable electrochemical performance at high voltage, can withstand up to 4.6V charge and discharge of the battery, and has the characteristics of flame retardancy, so that the battery has good safety performance and cycle performance.
  • the electrolyte of the electrolytic solution is any one or more of electrolyte salts containing LiCF 3 S0 3 , LiBF 4 , LiC10 4 , LiPF 6 , LiN(CF 3 S0 2 ) 2 and LiAsF 6 to ensure that the battery is as high as 4.6.
  • the battery of V is charged and discharged.
  • the electrolyte further comprises a fluorine-containing substituted succinic anhydride or a fluorine-containing substituted succinic anhydride derivative additive, the additive
  • the positive electrode binder is a high molecular weight polyvinylidene fluoride.
  • the positive electrode conductive agent selects superconducting carbon black, flake graphite, carbon nanotube, carbon fiber, graphene or superconducting carbon black, flake graphite, carbon nanotube, carbon fiber And a mixture of any one or more of graphene.
  • the negative electrode conductive agent selects one or more of superconducting carbon black, carbon nanotube, carbon fiber or superconducting carbon black, carbon nanotube, carbon fiber mixture.
  • the invention also provides a preparation method of the above high specific energy lithium-rich multi-element lithium ion battery, wherein the method comprises the following specific steps:
  • Step 1 mixing and stirring the positive electrode binder with the solvent, adding the positive electrode conductive agent and stirring, then adding the positive electrode active material to obtain a solid-liquid mixture, and finally applying the solid-liquid mixture on the surface of the aluminum foil, drying That is, the positive electrode is obtained; - Step 2, the distilled water and the negative electrode binder are mixed and stirred, and then the negative electrode conductive agent is added to stir, and then the negative electrode electroactive material is added to stir to obtain a solid-liquid mixture, and finally the solid-liquid mixture is applied to the surface of the copper foil. Above, drying to obtain the negative electrode;
  • Step 3 cutting the positive electrode prepared in the above step 1 and the negative electrode in the step 2 are respectively cut into several Small pieces, will be thousands of positive, negative pieces, stacked in the positive and negative alternate way, all the small pieces are separated by a diaphragm, then all the positive pieces are connected, all the negative pieces are connected, and respectively in the positive piece Weld the aluminum piece at the joint, weld the nickel piece or the nickel plated piece at the negative electrode connection, and finally fix all the positive and negative pieces together by tape to make it in close contact, which is the battery core;
  • Step 4 loading the above-mentioned battery core into the outer package, and removing moisture in the battery core;
  • Step 5 adding an electrolyte to the outer package, sealing and standing, so that the electrolyte fully wets the coating material on the copper foil and the aluminum foil;
  • Step 6 Perform a chemical conversion process on the battery (for the two-stage formation process): remove the gas in the outer package after the first charge to the predetermined voltage, and then continue charging to a higher specified voltage and perform the charge-discharge cycle three times before removing the outer package. The gas in the chamber is then closed to the gas exhaust passage to complete the manufacture of the high specific energy lithium ion battery of the present invention.
  • the formation process of the battery is a special two-stage chemical conversion process to ensure high capacity, electrochemical stability and safety of the battery system.
  • the present invention has the following beneficial effects:
  • the lithium-rich multi-component composite cathode material exhibits a charging characteristic of LiM0 2 at a low potential, and lithium in the Li 2 Mn0 3 component is released at 4.5 V, and a layered Mn0 is formed accompanying the release of oxygen.
  • Li 2 Mn0 3 plays a role in stabilizing the positive electrode structure during charge and discharge of the battery.
  • the prepared negative electrode Since the negative electrode is made of a surface modification material of natural graphite or artificial graphite, the prepared negative electrode has a high specific capacity, a high-pressure solid density, a solvent stability to the electrolyte, and a smooth surface structure to make less solid.
  • the electrolyte interface film ie, SEI film
  • SEI film surface amorphous coating controls the formation of metal lithium dendrites, so that the battery has better cycle performance and safety performance.
  • the electrolyte has high conductivity and good wettability to the material, and the electrolyte and electrode interface can be kept at high voltage.
  • the electrochemical stability, and the dissolution of metal manganese ions in the electrolyte is controlled by means of complexation bonds.
  • Figure 1 is a graph showing the charge and discharge characteristics of a battery during the formation of a high specific energy lithium ion battery prepared in accordance with Example 1.
  • FIG. 2a-2b are cycle curves of a lAh high specific energy lithium ion battery prepared in accordance with Example 1.
  • FIG. 3 is a comparison of cycle curves of a lAh high specific energy lithium ion secondary battery prepared in accordance with Example 1 and Comparative Example 1, respectively. The best way to implement the invention
  • the carbonate precursor is mixed with a stoichiometric amount of 1.02 times of lithium carbonate ball mill, and maintained at 900 ° C for 10 h to obtain a fluorine-containing electrolyte.
  • the preparation method is as follows: LiPF6 is dissolved in ethylene carbonate (EC) :), ethyl methyl carbonate (EMC) (volume ratio EC / EM03 ⁇ ), prepare 1.2mol / L LiPF6 solution, add 5% by weight of fluoroethylene carbonate (FEC) as an additive, stir well to make it even , and defoaming.
  • the positive and negative electrodes prepared above are cut into small pieces of a certain shape, and a plurality of positive and negative electrode pieces are sequentially stacked in an alternating manner of positive and negative electrodes, and the positive and negative electrodes are insulated by a separator, and aluminum strips are welded on the aluminum foil, respectively.
  • the nickel strip is welded on the foil, and finally the positive and negative electrodes are fixed with tape to prevent the positive and negative electrodes from being electrically conductive, and the battery is made of a capacity of 1 Ah. Then, the cell is loaded into the outer package and the water is removed in a vacuum.
  • the cycle curve of the 1Ah high-energy lithium ion battery prepared according to the first embodiment has a temperature condition of 23 ⁇ 2° C., and still maintains 91.5% of the initial capacity after 100 cycles. As shown in Fig. 2b, it is still more than 84% of the initial capacity after 176 cycles, which proves that the battery has good cycle performance. Comparative example 1
  • the positive and negative electrodes prepared above are cut into small pieces of a certain shape, and a plurality of positive and negative electrode pieces are sequentially stacked in an alternating manner of positive and negative electrodes, and the positive and negative electrodes are insulated by a separator, and the aluminum strips are respectively spliced on the aluminum foil.
  • the nickel strip is welded on the copper foil, and finally the positive and negative electrodes are fixed with tape to prevent the positive and negative electrodes from being electrically conductive, and the battery is made of a capacity of 1 Ah. Then, the cell is loaded into the outer package and the water is removed in a vacuum.
  • the positive and negative electrodes prepared above are cut into small pieces of a certain shape, and a plurality of positive and negative electrode pieces are sequentially stacked in an alternating manner of positive and negative electrodes, and the positive and negative electrodes are insulated by a diaphragm, and the aluminum strips are respectively spliced on the aluminum foil.
  • the nickel strip is welded on the copper foil, and finally the positive and negative electrodes are fixed with tape to prevent the positive and negative electrodes from being electrically conductive, and the battery is made of a capacity of 1 Ah. Then, the cell is loaded into the outer package and the water is removed in a vacuum.
  • Example 2 4 g of a high-voltage fluorine-containing electrolyte was placed in the outer package containing the water-containing core, sealed, and allowed to stand, so that the electrolyte sufficiently wetted the solid particles on the aluminum foil and the copper foil. After charging to 4.6V, the battery is discharged, and then the gas generated during the charging and discharging process is exhausted, and the exhaust passage is closed to complete the preparation of the lithium ion battery of Comparative Example 2.
  • the battery prepared by the one-time forming process has a specific capacity of only 192 mAh/g. Moreover, the cycle performance is poor, and the remaining capacity after 80 cycles is less than 80% of the initial capacity.
  • Example 2 4 g of a high-voltage fluorine-containing electrolyte was placed in the outer package containing the water-containing core, sealed, and allowed to stand, so that the electrolyte sufficiently wetted the solid particles on the aluminum foil and the copper foil. After charging to 4.6V, the battery is discharged, and then the gas generated
  • the positive and negative electrodes prepared above are cut into small pieces of a certain shape, and a plurality of positive and negative electrode pieces are sequentially stacked in an alternating manner of positive and negative electrodes, and the positive and negative electrodes are insulated by a separator, and the aluminum strips are respectively spliced on the aluminum foil.
  • the high specific energy lithium ion battery provided by the invention has the advantages of high specific energy, good cycle performance, safety performance and good chemical stability, and can be used as a clean new energy source.

Abstract

La présente invention concerne une batterie de stockage au lithium-ion à base de multiples éléments, riche en lithium et à énergie spécifique élevée, et son procédé de fabrication. La batterie de stockage comprend un pôle positif, un pôle négatif, un film de séparation, un électrolyte et un boîtier. Le pôle positif comprend un adhésif, un agent conducteur et une substance électroactive de pôle positif. La substance électroactive de pôle positif est un matériau à base de multiples éléments et riche en lithium. Le pôle négatif comprend un adhésif, un agent conducteur et une substance électroactive de pôle négatif. Plus d'un élément quelconque parmi un matériau à base de graphite, du silicium, du carbure de silicium et un matériau composite à base de silicium et un matériau d'alliage à base d'étain est choisi comme substance électroactive de pôle négatif. L'adhésif du pôle négatif est un adhésif polymère de caoutchouc butadiène styrène, d'alcénoïque organique ou d'ester carboxylique. L'électrolyte est un système d'électrolyte organique résistant à une haute tension et contenant du fluor. Le procédé de fabrication d'une batterie de stockage fourni dans la présente invention adopte un processus de formation chimique à deux étapes, de manière à garantir la grande capacité de la batterie, la stabilité électrochimique et la performance de sécurité, de sorte que la batterie de stockage fabriquée présente des avantages tels qu'une énergie spécifique élevée, une performance de cycle et une performance de sécurité souhaitables et une bonne stabilité chimique, et puisse être utilisée comme source d'énergie nouvelle et propre.
PCT/CN2011/001869 2011-08-29 2011-11-07 Batterie de stockage au lithium-ion à base de multiples éléments, riche en lithium et à énergie spécifique élevée, et son procédé de fabrication WO2013029208A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110250883.8 2011-08-29
CN201110250883A CN102315481A (zh) 2011-08-29 2011-08-29 高比能富锂多元系锂离子蓄电池及其制造方法

Publications (1)

Publication Number Publication Date
WO2013029208A1 true WO2013029208A1 (fr) 2013-03-07

Family

ID=45428414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001869 WO2013029208A1 (fr) 2011-08-29 2011-11-07 Batterie de stockage au lithium-ion à base de multiples éléments, riche en lithium et à énergie spécifique élevée, et son procédé de fabrication

Country Status (2)

Country Link
CN (1) CN102315481A (fr)
WO (1) WO2013029208A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104319422B (zh) * 2014-10-10 2017-01-18 奇瑞汽车股份有限公司 一种用于提高富锂锰锂离子电池循环稳定性的方法
US20180371632A1 (en) * 2015-12-03 2018-12-27 Clean Lithium Corporation Method for producing a lithium film
KR101733410B1 (ko) * 2016-11-11 2017-05-10 일진머티리얼즈 주식회사 저온 물성이 우수한 이차전지용 전해동박 및 그의 제조방법
CN106410267A (zh) * 2016-11-11 2017-02-15 上海空间电源研究所 高比能量硅基锂离子二次电池及其制备方法
CN109599553A (zh) * 2018-11-20 2019-04-09 湘潭大学 一种中空球形镍锰酸钠及其制备方法、钠离子电池正极片和钠离子电池
CN112687880B (zh) * 2020-12-28 2022-06-14 山东大学 一种富锂材料、其改性方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1700498A (zh) * 2004-05-22 2005-11-23 比亚迪股份有限公司 一种锂离子二次电池
CN1979941A (zh) * 2005-12-09 2007-06-13 比亚迪股份有限公司 电解液、含有该电解液的锂离子电池以及它们的制备方法
CN101080830A (zh) * 2004-09-03 2007-11-28 芝加哥大学阿尔贡有限责任公司 锂电池用氧化锰复合电极
CN101159327A (zh) * 2006-10-04 2008-04-09 三星Sdi株式会社 正极活性材料及使用其的锂电池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006123601A1 (fr) * 2005-05-16 2006-11-23 Mitsubishi Chemical Corporation Batterie rechargeable avec électrolyte non aqueux, son électrode négative et son matériau
CN101286578A (zh) * 2008-05-23 2008-10-15 清华大学 一种运用真空系统的锂离子二次电池的化成方法
CN102082290A (zh) * 2010-12-30 2011-06-01 奇瑞汽车股份有限公司 一种高电压高比能量锂离子电池及其制备方法
CN102148372B (zh) * 2011-03-08 2013-08-28 中信国安盟固利动力科技有限公司 高能复合锂离子电池正极材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1700498A (zh) * 2004-05-22 2005-11-23 比亚迪股份有限公司 一种锂离子二次电池
CN101080830A (zh) * 2004-09-03 2007-11-28 芝加哥大学阿尔贡有限责任公司 锂电池用氧化锰复合电极
CN1979941A (zh) * 2005-12-09 2007-06-13 比亚迪股份有限公司 电解液、含有该电解液的锂离子电池以及它们的制备方法
CN101159327A (zh) * 2006-10-04 2008-04-09 三星Sdi株式会社 正极活性材料及使用其的锂电池

Also Published As

Publication number Publication date
CN102315481A (zh) 2012-01-11

Similar Documents

Publication Publication Date Title
JP5462445B2 (ja) リチウムイオン二次電池
WO2014134967A1 (fr) Film d'électrode positive de batterie au lithium-ion et préparation et application de celui-ci
WO2012146046A1 (fr) Batterie de capacité au polyimide et son procédé de fabrication
CN102201604A (zh) 一种电容电池电芯及其制作方法
CN104335395A (zh) 锂二次电池用负极活性物质及包含该物质的锂二次电池
CN111082129A (zh) 电化学装置和电子装置
CN103682417A (zh) 一种凝胶聚合物储能锂离子电池及其制备方法
CN104835961A (zh) 一种表面包覆碳的过渡金属硫化物以及制备方法和应用
CN104335397B (zh) 锂二次电池用负极活性物质及包含该物质的锂二次电池
CN113066961B (zh) 负极极片、电化学装置和电子装置
JP2023516413A (ja) 負極活物質材料、並びに、それを用いた電気化学装置及び電子装置
JP5403711B2 (ja) リチウムイオン二次電池の製造方法
WO2015161400A1 (fr) Matière active de cathode de composite de métal de transition à base de soufre, cathode correspondante et batterie correspondante
WO2018059180A1 (fr) Alimentation électrique chimique haute puissance et à haute énergie, et son procédé de préparation
WO2013029208A1 (fr) Batterie de stockage au lithium-ion à base de multiples éléments, riche en lithium et à énergie spécifique élevée, et son procédé de fabrication
TW201801379A (zh) 負極活性物質、混合負極活性物質材料、非水電解質二次電池、負極活性物質的製造方法及非水電解質二次電池的製造方法
JP2023510989A (ja) 電解液、電気化学装置及び電子装置
CN103117410A (zh) 一种1.5v可充电锂电池及其制备方法
CN103762350B (zh) 一种用于锂电的钛系负极材料及其制备方法
CN103915622A (zh) 过渡金属硫化物负极活性物质及相应负极及相应电池
WO2023070992A1 (fr) Dispositif électrochimique et dispositif électronique comprenant celui-ci
JP2012084426A (ja) 非水電解質二次電池
WO2023070268A1 (fr) Dispositif électrochimique et appareil de consommation d'énergie le comprenant
US20130071758A1 (en) Nonaqueous electrolyte for electrochemical device, and electrochemical device
JP5863631B2 (ja) 非水電解質二次電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11871529

Country of ref document: EP

Kind code of ref document: A1