WO2013027671A1 - シンチレーター - Google Patents
シンチレーター Download PDFInfo
- Publication number
- WO2013027671A1 WO2013027671A1 PCT/JP2012/070911 JP2012070911W WO2013027671A1 WO 2013027671 A1 WO2013027671 A1 WO 2013027671A1 JP 2012070911 W JP2012070911 W JP 2012070911W WO 2013027671 A1 WO2013027671 A1 WO 2013027671A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- csi
- scintillator
- thallium
- crystal
- bismuth
- Prior art date
Links
- XQPRBTXUXXVTKB-UHFFFAOYSA-M caesium iodide Chemical compound [I-].[Cs+] XQPRBTXUXXVTKB-UHFFFAOYSA-M 0.000 claims abstract description 85
- 229910052716 thallium Inorganic materials 0.000 claims abstract description 46
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 claims abstract description 42
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 37
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000013078 crystal Substances 0.000 claims description 65
- 239000002994 raw material Substances 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 28
- 230000005855 radiation Effects 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 11
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 239000002178 crystalline material Substances 0.000 abstract description 2
- 239000003708 ampul Substances 0.000 description 22
- 239000010453 quartz Substances 0.000 description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 17
- 238000005259 measurement Methods 0.000 description 15
- 239000000843 powder Substances 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 11
- 239000002585 base Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 238000002600 positron emission tomography Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 238000002591 computed tomography Methods 0.000 description 4
- CMJCEVKJYRZMIA-UHFFFAOYSA-M thallium(i) iodide Chemical compound [Tl]I CMJCEVKJYRZMIA-UHFFFAOYSA-M 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000002109 crystal growth method Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- -1 Tl or Bi iodide Chemical class 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 230000005251 gamma ray Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/20—Measuring radiation intensity with scintillation detectors
- G01T1/202—Measuring radiation intensity with scintillation detectors the detector being a crystal
- G01T1/2023—Selection of materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
- C09K11/025—Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/74—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing arsenic, antimony or bismuth
- C09K11/7428—Halogenides
- C09K11/7435—Halogenides with alkali or alkaline earth metals
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/12—Halides
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K4/00—Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B11/00—Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K4/00—Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
- G21K2004/06—Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens with a phosphor layer
Definitions
- the present invention relates to a scintillator that can be suitably used for an X-ray detector, for example.
- a scintillator is a substance that absorbs radiation such as ⁇ -rays and X-rays and emits visible light or electromagnetic waves having a wavelength close to that of visible light. As its application, it is used in medical PET (Positron Emission Tomography), TOF-PET (Time of Flight Positron Emission Tomography), X-ray CT (Computer Tomography), and airports.
- Various radiation detectors such as personal belongings inspection equipment.
- Such a radiation detector generally includes a scintillator unit that receives radiation and converts it into visible light, and a photomultiplier tube (hereinafter referred to as an electrical signal) that detects visible light converted and transmitted by the scintillator unit. And a photodetection unit such as a photodiode.
- a scintillator used for this type of application is desired to be a scintillator with a high light emission output in order to reduce noise and increase measurement accuracy.
- alkali halide crystals such as CsI and NaI have been widely used as scintillators.
- scintillators based on CsI are used because of their relatively high radiation absorption efficiency, relatively little radiation damage, and relatively easy thin film production by vacuum deposition or the like.
- Patent Document 1 discloses cesium iodide: thallium (CsI: Tl) in which cesium iodide (CsI) is doped with thallium (Tl).
- CsI cesium iodide
- Tl thallium
- a high output can be obtained by combining with a PD (photodiode) as a detector. It had the problem of causing an afterglow that tends to blur the image. In particular, when imaging moving objects such as a baggage inspection machine, the afterglow characteristic becomes important, and it has been necessary to solve such a problem.
- the present invention intends to provide a new scintillator in which the afterglow characteristic of cesium iodide: thallium (CsI: Tl) doped with thallium is improved with CsI as a base.
- the present invention proposes a scintillator obtained by doping bismuth (Bi) into a crystal material containing CsI (cesium iodide) as a base and containing thallium (Tl) as a light emission center.
- CsI bismuth
- Tl thallium
- Such a scintillator is a new crystal material having a composition different from that of a conventionally disclosed material, and has an afterglow characteristic of cesium iodide: thallium (CsI: Tl) doped with thallium on the basis of CsI. It can be greatly improved. Therefore, if the scintillator proposed by the present invention is used, for example, an X-ray detector having a high light emission output can be obtained.
- the scintillator according to the present embodiment (hereinafter referred to as “the present scintillator”) is a crystalline material containing CsI (cesium iodide) as a host (matrix) and thallium (Tl) as a light emission center.
- CsI cesium iodide
- Tl thallium
- the doping amount of thallium (Tl) is not particularly limited.
- the concentration of thallium (Tl) with respect to Cs of CsI (cesium iodide) is 0.05 at. % To 1.00 at. It is preferable to dope so that it becomes%.
- the doping amount of thallium (Tl) is 0.05 at. If it is at least%, the scintillation emission efficiency of the grown crystal can be sufficiently obtained. On the other hand, 1.00 at. If it is less than or equal to%, it is possible to avoid a decrease in the amount of light emission due to concentration quenching. From this viewpoint, the doping amount of thallium (Tl) is 0.05 at.
- Cs of CsI (cesium iodide).
- % To 1.00 at. % Particularly 0.10 at. % Or more or 0.75 at. % Or less, more preferably 0.20 at. % Or more or 0.50 at. % Or less is more preferable.
- the doping amount of bismuth (Bi) is such that the concentration of bismuth (Bi) with respect to Cs of CsI (cesium iodide) is 0.001 at. % To 0.100 at. % Is preferable, and 0.001 at. % Or more or 0.020 at. % Or less, of which 0.001 at. % Or more or 0.010 at. It is preferable to dope so that it may become less than%.
- the doping amount of each element means the ratio of various elements added to the Cs element in CsI during crystal growth.
- the thallium (Tl) doping amount was compared with the thallium (Tl) content actually incorporated in the crystal. It was confirmed that the content of Tl) was 20 to 70% of the dope amount. Therefore, the doping amount of thallium (Tl) is 0.05 to 1.00 at. %, The thallium (Tl) content is 0.015 to 0.700 at. %.
- bismuth (Bi) the amount of bismuth (Bi) doped and the content of bismuth (Bi) actually incorporated in the crystal were compared.
- the doping amount of bismuth (Bi) is 0.001 to 0.100 at. %
- the bismuth (Bi) content is 7.0 ⁇ 10 ⁇ 6 at. % To 6.0 ⁇ 10 ⁇ 3 at. %.
- the form of the scintillator may be any of a bulk shape, a column shape, and a thin film shape, and in any case, the effect of reducing afterglow can be enjoyed.
- the scintillator may be a single crystal or a polycrystal because it can enjoy the effect that afterglow can be reduced regardless of whether it is a single crystal or a polycrystal.
- the single crystal according to the present invention means a crystal that is recognized as a CsI single-phase crystal when the crystal is measured by XRD, as confirmed in Examples.
- a radiation detector such as an X-ray detector or a ⁇ -ray detector can be configured by combining the scintillator and a light detection unit such as a photomultiplier or a photodiode.
- this scintillator is a scintillator for various X-ray detectors such as medical PET (Positron Emission Tomography), TOF-PET (Time of Flight Positron Emission Tomography), CT (Computer Tomography).
- a radiation detector such as various X-ray detectors and ⁇ -ray detectors, it can be suitably used.
- This scintillator can be obtained by mixing and heat-melting a raw material containing a CsI raw material, a Tl raw material, and a Bi raw material, and then growing the crystal.
- the Tl raw material and Bi raw material include Tl or Bi halides such as Tl or Bi iodide, oxides, metals, or metal compounds.
- the crystal growth method at this time is not particularly limited.
- the Bridgman-Stockbarger method also referred to as “BS method”
- the temperature gradient fixing method such as VGF method
- CZ method Czochralski
- Well-known crystal growth methods such as the Kilopros method, the micro pull-down method, the zone melt method, these improved methods, and other melt growth methods can be appropriately employed.
- typical BS method and CZ method will be described.
- the BS method is a method in which raw materials are put in a crucible and melted, and crystals are grown from the bottom of the crucible while the crucible is pulled down.
- the crystal growing apparatus is relatively inexpensive and has a feature that a large-diameter crystal can be grown relatively easily.
- it is difficult to control the crystal growth orientation, and excessive stress is applied during crystal growth or cooling, so that it is said that the stress distribution remains in the crystal and strain and dislocations are easily induced.
- the CZ method is a method in which raw materials are put in a crucible and melted, and seeds (seed crystals) are brought into contact with the melt surface to grow (crystallize) while rotating the crystals.
- the CZ method is said to facilitate the growth of the target crystal orientation because it is possible to identify and crystallize the crystal orientation.
- CsI powder, TlI powder, and BiI 3 powder as raw materials are weighed and mixed in a predetermined amount, this mixture is filled in a quartz ampule, and this ampule is vacuum-sealed. If necessary, seed crystals can be placed at the bottom of the ampoule.
- This quartz ampoule is installed in a crystal growth apparatus. As the atmosphere in the crystal growth apparatus, an atmosphere suitable for the heater material to be used is selected. The quartz ampule is heated by the heating device, and the raw material filled in the ampule is melted.
- the melted raw material in the ampoule After the raw material in the ampoule has melted, when the ampoule is pulled vertically downward at a speed of about 0.1 mm / hour to 3 mm / hour, the melted raw material starts to solidify from the bottom of the ampoule and crystals grow. When the melt in the ampoule has been solidified, the pulling of the ampoule is finished, and the ingot-like crystal can be grown by cooling to about room temperature while gradually cooling with a heating device.
- the ingot-like crystal grown as described above may be cut into a predetermined size and then processed into a desired scintillator shape.
- the crystal can be heat-treated as necessary, but is not necessarily heat-treated.
- a heat treatment method for example, the crystal grown in the above process is placed in a container, the container is placed in a heat treatment furnace, and the temperature in the heat treatment furnace is soaked to about 80 to 90% of the melting point. The strain remaining in the crystal can be removed by heating.
- the atmosphere in the heat treatment may be an inert gas atmosphere such as high-purity argon (Ar) gas. However, it is not limited to such a heat treatment method.
- the “X-ray scintillator” means an electromagnetic wave (scintillation light that absorbs X-rays and has a wavelength close to that of visible light or visible light (the wavelength range of light may extend from near ultraviolet to near infrared). ) And a component of a radiation detector having such a function.
- a “scintillator” is an electromagnetic wave that absorbs radiation such as X-rays and ⁇ -rays and has a wavelength close to that of visible light or visible light (the wavelength range of light may extend from near ultraviolet to near infrared). It means a substance that emits (scintillation light) and a component of a radiation detector having such a function.
- X to Y (X and Y are arbitrary numbers) is described, it means “preferably greater than X” or “preferably greater than Y” with the meaning of “X to Y” unless otherwise specified. The meaning of “small” is also included. Further, when “X or more” (X is an arbitrary number) or “Y or less” (Y is an arbitrary number), the intention of “preferably larger than X” or “preferably smaller than Y” Is included.
- the output (nA) and afterglow (ppm) were measured using the measuring apparatus shown in FIG.
- the measurement sample (scintillator disk) was 8 mm in diameter and 2 mm in thickness.
- the output is the output of the photodiode when the PIN photodiode receives the scintillation light generated in the measurement sample by irradiating the measurement sample with a predetermined X-ray.
- the afterglow is the X-ray This means afterglow after a predetermined time after irradiation.
- a target made of tungsten (W) is irradiated with an electron beam having an applied voltage of 120 kV and an applied current of 20 mA to generate an X-ray, and this X-ray is irradiated to a measurement sample, and the output of scintillation light and transmitted X-ray is a PIN photodiode. (“S1723-5” manufactured by HAMAMATSU).
- a light shielding tape was put on the hole of the lead plate to shield the scintillation light, and the output of only the transmitted X-ray was measured. And the output by the transmitted X-ray was subtracted, and the output by the scintillation light was obtained.
- X-rays are generated by irradiating an electron beam of 120 kV and 20 mA, the X-ray is irradiated to the measurement sample for 1 second, and the current value flowing through the PIN photodiode (“S1723-5” manufactured by HAMAMATSU) (I) was measured.
- the X-ray irradiation was cut, and the current value (I 20 ms ) flowing through the PIN photodiode was measured 20 ms after the cut.
- the current value flowing through the PIN photodiode was measured as the background value (I bg ) before the measurement sample was irradiated with the X-ray, and the afterglow (20 @ ms) was calculated from the following equation.
- Afterglow (20 @ ms) (I 20ms -I bg ) / (I-I bg )
- X-ray diffraction (XRD) measurement uses “RINT-2000 (40 kV, 40 mA)” manufactured by Rigaku Corporation as a measuring device, a Cu target is used as a radiation source, and 2 ⁇ ranges from 10 to 80 degrees. An XRD pattern was obtained.
- Example 1-6 Comparative Example 1-6>
- Various raw materials were weighed in predetermined amounts so that the amount of each element would be the value shown in Table 1, mixed in a mortar, set in the crystal growing apparatus shown in FIG. 2, and crystals were grown.
- the doping amount of each additive element is shown as the atomic percentage (at.%) With respect to the Cs element in the base material CsI.
- Crystal growth was performed by the following vertical Bridgman method. That is, 10% HF water was put into a quartz ampoule having a size barrel diameter of 8 mm and a tip diameter of 2 mm and washed for 4 hours. The quartz ampule was thoroughly washed with water in this way, and then dried by heating to 250 ° C. while evacuating the internal pressure of the ampule to 10 torr using a rotary pump. The raw material mixed in the mortar as described above is put into the quartz ampule thus pretreated, heated to 250 ° C. while evacuating at 10 torr using a rotary pump, and then the moisture contained in the raw material is blown off.
- the quartz was heated and melted with a burner to enclose the raw material.
- the quartz ampule was set in a furnace having an Ar gas atmosphere, heated with a heater until the raw material was melted, and maintained at that temperature for 1 hour after the raw material was melted. Thereafter, the quartz ampule was pulled down at a speed of 0.06 mm / min, and after 8 hours, the pulling was stopped, and heating of the heater was gradually stopped over 10 hours.
- the crystal body thus obtained was cut out in a predetermined size and a predetermined direction to obtain each of the above measurement samples.
- Example 1-6 A part of the crystal obtained in Example 1-6 was pulverized and subjected to powder XRD measurement. As a result, all of the crystals obtained in Example 1-6 were CsI single-phase crystals, The other phases were not confirmed.
- thallium (Tl) has an amount of thallium (Tl) to Cs of CsI (cesium iodide) of 0.05 at. % To 1.00 at. %, Especially 0.10 at. % Or more or 0.75 at. % Or less, especially 0.20 at. % Or more or 0.50 at.
- bismuth (Bi) is preferably bismuth (Bi) with respect to Cs of CsI (cesium iodide).
- % To 0.100 at. %, Especially 0.001 at. % Or more or 0.020 at. % Or less, of which 0.001 at. % Or more or 0.010 at. It has been found that it is preferable to dope so as to be not more than%.
- Example 1-6 A part of the crystal obtained in Example 1-6 was collected, and this was used as a concentration analysis sample to analyze the concentration of the additive element contained in the crystal.
- ICP-MS model: SPS3000
- the doping amount of thallium (Tl) is 0.05 to 1.00 at.
- the content of thallium (Tl) is 0.015 to 0.700 at.
- Cs of CsI cesium iodide
- the amount of bismuth (Bi) doped and the content of bismuth (Bi) actually incorporated in the crystal were compared. It was confirmed that the content of (Bi) was 0.7 to 6% of the dope amount. Therefore, the doping amount of bismuth (Bi) is 0.001 to 0.100 at. With respect to Cs of CsI (cesium iodide). %, The content of bismuth (Bi) is 7.0 ⁇ 10 ⁇ 6 at. Per Cs of CsI (cesium iodide). % To 6.0 ⁇ 10 ⁇ 3 at. %.
- Example 7 By using a quartz ampoule with a 1 inch diameter cylinder, the doping amount of the additive element in the raw material was set to Tl 0.50 at. %, Bi 0.01 at. The crystals were grown according to the procedure shown in Examples 1 to 6 except that the raw material powder weighed and mixed so as to be in a percentage was enclosed in a quartz ampule. And the sample was cut out from the site
- Example 8 By using a quartz ampule of a cylinder type with a diameter of 2 inches, the doping amount of the additive element in the raw material is set to Tl 0.50 at. %, Bi 0.001 at.
- the crystals were grown according to the procedure shown in Examples 1 to 6 except that the raw material powder weighed and mixed so as to be in a percentage was enclosed in a quartz ampule. And the measurement sample was cut out from the site
- Examples 7 and 8 When a part of the crystal obtained in Examples 7 and 8 was pulverized and subjected to powder XRD measurement, all were CsI single-phase crystals, and no other phases were confirmed. Also in Examples 7 and 8, afterglow can be reduced by doping bismuth (Bi) into a crystal material containing CsI (cesium iodide) as a base and containing thallium (Tl) as an emission center. I understood.
- Bi bismuth
- the concentration of thallium (Tl) with respect to Cs of CsI (cesium iodide) is 0.05 at. % To 1.00 at. %, Especially 0.10 at. % Or more or 0.75 at. % Or less, especially 0.20 at. % Or more or 0.50 at. % Is preferably doped with thallium (Tl) so that the content of thallium (Tl) is 0.015 to 0.700 at. With respect to Cs of CsI (cesium iodide). It was confirmed that it was preferable to contain it in the ratio of%. On the other hand, the doping amount of bismuth (Bi) is 0.001 at.
- Cs of CsI (cesium iodide). % To 0.100 at. %, Especially 0.001 at. % Or more or 0.020 at. % Or less, of which 0.001 at. % Or more or 0.010 at. %, And the content of bismuth (Bi) is 7.0 ⁇ 10 ⁇ 6 at. With respect to Cs of CsI (cesium iodide). % To 6.0 ⁇ 10 ⁇ 3 at. It was confirmed that it was preferable to contain it in the ratio of%.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- High Energy & Nuclear Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- General Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Molecular Biology (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Measurement Of Radiation (AREA)
- Luminescent Compositions (AREA)
- Conversion Of X-Rays Into Visible Images (AREA)
- Nuclear Medicine (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
本実施形態に係るシンチレーター(以下「本シンチレーター」という)は、ホスト(母体)としてのCsI(ヨウ化セシウム)と、発光中心としてのタリウム(Tl)と、を含有する結晶材料であって、これにビスマス(Bi)をドープしてなる構成を有するシンチレーターである。
かかる観点から、タリウム(Tl)のドープ量は、CsI(ヨウ化セシウム)のCsに対して0.05at.%~1.00at.%であるのが好ましく、特に0.10at.%以上或いは0.75at.%以下であるのがさらに好ましく、中でも特に0.20at.%以上或いは0.50at.%以下であるのがさらに好ましい。
後述する実施例で確認したように、タリウム(Tl)のドープ量と、実際に結晶中に取り込まれているタリウム(Tl)の含有量とを比較したところ、実際に結晶中に取り込まれるタリウム(Tl)の含有量はドープ量の20~70%となることが確認された。よって、タリウム(Tl)のドープ量が0.05~1.00at.%の場合、タリウム(Tl)の含有量は0.015~0.700at.%となることが分かった。
他方、ビスマス(Bi)に関しても同様に、ビスマス(Bi)のドープ量と、実際に結晶中に取り込まれているビスマス(Bi)の含有量とを比較したところ、実際に結晶中に取り込まれるビスマス(Bi)の含有量はドープ量の0.7~6%となることが確認された。よって、ビスマス(Bi)のドープ量が0.001~0.100at.%の場合、ビスマス(Bi)の含有量は7.0×10-6at.%~6.0×10-3at.%となることが分かった。
また、本シンチレーターは、単結晶であっても多結晶であっても残光を低減することができるという効果を享受することができるため、単結晶であっても多結晶であってもよい。
この際、本発明におkる単結晶とは、実施例で確認しているように、結晶をXRDで測定した際にCsI単相の結晶体と認められるものをいう。
本シンチレーターと、ホトマルやフォトダイオードなどの光検出部とを組み合わせてX線検出器やγ線検出器などの放射線検出器を構成することができる。中でも、本シンチレーターは、医療用のPET(陽電子放射断層撮影装置)やTOF-PET(タイム・オブ・フライト陽電子放射断層撮影装置)、CT(コンピュータ断層撮影装置)などの各種X線検出器のシンチレーターとして好適に使用することができ、これを用いて各種X線検出器やγ線検出器などの放射線検出器を構成することができる。
次に、本シンチレーターを製造する方法について説明する。但し、本シンチレーターの製造方法が次に説明する方法に限定されるものではない。
この際、Tl原料及びBi原料としては、Tl又はBiのヨウ化物などのようなTl又はBiのハロゲン化物や、酸化物、金属或いは金属化合物などを挙げることができる。但し、これらに限るものではない。
この際の結晶育成方法は、特に限定するものではなく、例えばBridgman-Stockbarger法(「BS法」ともいう)、温度勾配固定化法(例えばVGF法など)、Czochralski(「CZ法」ともいう)、キロプロス法、マイクロ引き下げ法、ゾーンメルト法、これらの改良法、その他の融液成長法等、公知の結晶育成方法を適宜採用することができる。
以下、代表的なBS法とCZ法について説明する。
例えば、原料となるCsI粉体、TlI粉体及びBiI3粉体を所定量に秤量・混合し、この混合物を石英アンプルに充填し、このアンプルを真空封入する。必要によりアンプル底部に、種結晶を入れておくこともできる。この石英アンプルを結晶成長装置内に設置する。結晶成長装置内の雰囲気は、使用するヒーター材質に適切な雰囲気を選択する。加熱装置によって石英アンプルを加熱し、アンプルに充填した原料を溶融させる。
アンプル内の原料が融解した後、アンプルを0.1mm/時間~3mm/時間程度の速度で鉛直下方に引き下げると、融液となった原料はアンプル底部から固化が始まり、結晶が成長する。アンプル内の融液がすべて固化した段階でアンプルの引き下げを終了し、加熱装置により徐冷しつつ、室温程度にまで冷却することで、インゴット状の結晶を育成することができる。
なお、必要に応じて結晶を熱処理することも可能であるが、必ずしも熱処理する必要はない。
熱処理の方法としては、例えば、前記工程で育成された結晶体を容器に入れ、この容器を熱処理炉内に設置し、熱処理炉内温度を融点の約80~90%の温度に均熱的に加熱して、結晶中に残留する歪を除去することができる。熱処理における雰囲気は、高純度アルゴン(Ar)ガス等の不活性ガス雰囲気とすればよい。但し、このような熱処理方法に限定するものではない。
本発明において「X線シンチレーター」とは、X線を吸収し、可視光又は可視光に近い波長(光の波長域は近紫外~近赤外にまで広がっていてもよい)の電磁波(シンチレーション光)を放射する物質、並びに、そのような機能を備えた放射線検出器の構成部材を意味する。
また、「シンチレーター」とは、X線やγ線などの放射線を吸収し、可視光又は可視光に近い波長(光の波長域は近紫外~近赤外にまで広がっていてもよい)の電磁波(シンチレーション光)を放射する物質、並びに、そのような機能を備えた放射線検出器の構成部材を意味する。
また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と記載した場合、「Xより大きいことが好ましい」或いは「Yより小さいことが好ましい」旨の意図を包含する。
図1に示す測定装置を使用して、出力(nA)及び残光(ppm)を測定した。
測定サンプル(シンチレーター円板)は、直径8mm×厚み2mmを使用した。
この際、前記出力とは、所定のX線を測定サンプルに照射したことにより測定サンプルに生じるシンチレーション光をPINフォトダイオードで受光した時のフォトダイオードの出力であり、前記残光とは、X線照射後所定時間後の残光という意味である。
残光(20@ms)=(I20ms-Ibg)/(I-Ibg)
X線回折(XRD)測定は、測定装置として株式会社リガク製「RINT-2000(40kV、40mA)」を使用し、線源にはCuターゲットを用いて、2θが10度から80度の範囲でXRDパターンを得た。
各元素の量が表1に示す値となるように、各種原料を所定量秤量し、乳鉢で混合し、図2に示す結晶育成装置にセットし、結晶を育成した。ここで、各添加元素のドープ量は、母材であるCsI中のCs元素に対する原子数パーセント(at.%)として示した。
なお、CsI原料にはCsI粉(99.999%)、Tl原料にはTlI粉(99.999%)、Bi原料にはBiI3粉原料(99.999%)、Ag原料にはAgI粉(99.999%)、Sm原料にはSmI2粉(99.9%)、Yb原料にはYBI3粉(99.9%)、Tm原料にはTmI2粉(99.9%)、Eu原料にはEuI2粉(99.9%)、Pb原料にはPbI2粉(99.9%)を使用した。
このように前処理した石英アンプルに、上記の如く乳鉢で混合した原料を入れ、ロータリーポンプを用い10torrで真空引きしながら250℃に加熱し、原料に含まれている水分を飛ばした後、真空状態を維持したまま石英をバーナーで加熱して溶融させて原料を封入した。
次に、石英アンプルをArガス雰囲気とした炉にセットし、原料が溶けるまでヒーターで加熱し、原料溶融後1時間その温度を保持した。その後、0.06mm/分の速度で石英アンプルを引き下げ、8時間引き下げた後、引き下げを停止し、10時間かけて徐々にヒーターの加熱を停止させた。
このようにして得られた結晶体を、所定の大きさ・所定の方向に切り出して、それぞれの上記の測定サンプルとした。
実施例1-6で得られた結晶体の一部を粉砕し、粉末XRD測定を行ったところ、実施例1-6で得られた結晶体はいずれも、CsI単相の結晶体であり、他の相は確認されなかった。
また、上記の試験並びにこれまでの試験結果から、残光を低減することができる観点から、タリウム(Tl)は、CsI(ヨウ化セシウム)のCsに対するタリウム(Tl)の量が0.05at.%~1.00at.%、特に0.10at.%以上或いは0.75at.%以下、中でも特に0.20at.%以上或いは0.50at.%以下となるようにドープするのが好ましく、その際、ビスマス(Bi)は、CsI(ヨウ化セシウム)のCsに対するビスマス(Bi)の量が0.001at.%~0.100at.%、中でも0.001at.%以上或いは0.020at.%以下、その中でも0.001at.%以上或いは0.010at.%以下となるようにドープするのが好ましいことが分かった。
ここで、タリウム(Tl)及びビスマス(Bi)のドープ量と、実際に結晶中に取り込まれるタリウム(Tl)及びビスマス(Bi)の含有量との関係を、検討した。
TlおよびBiの元素分析には、ICP-MS(型式:SPS3000)を用い、試料中の質量%(wt.%)を求めた。得られた質量%で表される含有量から、TlおよびBi元素のCsI中のCsに対する原子数パーセント(at.%)および原子数パーセント(at.%)をそれぞれ算出した。結果を表2に示した。
他方、ビスマス(Bi)に関しても同様に、ビスマス(Bi)のドープ量と、実際に結晶中に取り込まれているビスマス(Bi)の含有量とを比較したところ、実際に結晶中に取り込まれるビスマス(Bi)の含有量はドープ量の0.7~6%となることが確認された。よって、ビスマス(Bi)のドープ量がCsI(ヨウ化セシウム)のCsに対して0.001~の0.100at.%の場合、ビスマス(Bi)の含有量はCsI(ヨウ化セシウム)のCsに対して7.0×10-6at.%~6.0×10-3at.%となることが分かった。
寸胴部直径1インチの寸胴型の石英アンプルを用いて、原料中の添加元素のドープ量を、Tl 0.50at.%、Bi 0.01at.%となるように原料粉を秤量・混合したものを石英アンプル内に封入したこと以外は、実施例1~6で示した手順に準じて、結晶を成長させた。そして、得られた結晶の異なる固化率の部位からサンプルを切り出し、上記同様に分析すると共に、出力特性及び残光特性を評価した。
寸胴部直径2インチの寸胴型の石英アンプルを用いて、原料中の添加元素のドープ量を、Tl 0.50at.%、Bi 0.001at.%となるように原料粉を秤量・混合したものを石英アンプル内に封入したこと以外は、実施例1~6で示した手順に準じて、結晶を成長させた。そして、得られた結晶の異なる固化率の部位から測定サンプルを切り出し、上記同様に分析すると共に、出力特性及び残光特性を評価した。
実施例7,8についても、CsI(ヨウ化セシウム)を母体とし、発光中心としてタリウム(Tl)を含有する結晶材料に、ビスマス(Bi)をドープすることにより残光を低減することができることが分かった。
他方、ビスマス(Bi)のドープ量は、CsI(ヨウ化セシウム)のCsに対して0.001at.%~0.100at.%、中でも0.001at.%以上或いは0.020at.%以下、その中でも0.001at.%以上或いは0.010at.%以下となるようにドープするのが好ましく、ビスマス(Bi)の含有量としては、CsI(ヨウ化セシウム)のCsに対して7.0×10-6at.%~6.0×10-3at.%の割合で含有するのが好ましいことが確認された。
2 誘導加熱コイル
3 アルミナ断熱材
4 石英ステージ
5 石英管
6 石英アンプル坩堝
7 石英シャフト
8 引き下げ機構
9 支持棒
Claims (8)
- CsI(ヨウ化セシウム)を母体とし、発光中心としてタリウム(Tl)を含有する結晶材料にビスマス(Bi)をドープしてなるシンチレーター。
- CsI(ヨウ化セシウム)のCsに対してタリウム(Tl)を0.05at.%~1.00at.%、ビスマス(Bi)を0.001at.%~0.100at.%の割合でドープしてなる請求項1記載のシンチレーター。
- CsI(ヨウ化セシウム)のCsに対してタリウム(Tl)を0.015at.%~0.700at.%、ビスマス(Bi)を7.0×10-6at.%~6.0×10-3at.%の割合で含有してなる請求項1又は2に記載のシンチレーター。
- CsI原料、Tl原料及びBi原料を含む原料を混合して加熱溶融した後、結晶成長させて得られるシンチレーター。
- 請求項1~4の何れかに記載のシンチレーターを用いてなる放射線検出器。
- CsI(ヨウ化セシウム)を母体とし、発光中心としてタリウム(Tl)を含有する結晶材料にビスマス(Bi)をドープすることにより、前記結晶材料の残光を低減することを特徴とするシンチレーターの残光低減方法。
- CsI(ヨウ化セシウム)のCsに対してタリウム(Tl)を0.05at.%~1.00at.%、ビスマス(Bi)を0.001at.%~0.100at.%の割合でドープすることを特徴とする請求項6に記載のシンチレーターの残光低減方法。
- CsI(ヨウ化セシウム)のCsに対してタリウム(Tl)を0.015at.%~0.700at.%、ビスマス(Bi)を7.0×10-6at.%~6.0×10-3at.%の割合で含有させることを特徴とする請求項6又は7に記載のシンチレーターの残光低減方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013529999A JP5594799B2 (ja) | 2011-08-19 | 2012-08-17 | シンチレーター |
CN201280039480.1A CN103732722B (zh) | 2011-08-19 | 2012-08-17 | 闪烁体 |
US14/239,366 US9678223B2 (en) | 2011-08-19 | 2012-08-17 | Scintillator |
EP12825478.6A EP2746362B1 (en) | 2011-08-19 | 2012-08-17 | Scintillator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011179703 | 2011-08-19 | ||
JP2011-179703 | 2011-08-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013027671A1 true WO2013027671A1 (ja) | 2013-02-28 |
Family
ID=47746414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/070911 WO2013027671A1 (ja) | 2011-08-19 | 2012-08-17 | シンチレーター |
Country Status (6)
Country | Link |
---|---|
US (1) | US9678223B2 (ja) |
EP (1) | EP2746362B1 (ja) |
JP (2) | JP5594799B2 (ja) |
CN (2) | CN105062477B (ja) |
HU (1) | HUE028890T2 (ja) |
WO (1) | WO2013027671A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015038459A (ja) * | 2013-07-16 | 2015-02-26 | 株式会社東芝 | シンチレータパネルおよびその製造方法 |
JP2015038458A (ja) * | 2013-07-16 | 2015-02-26 | 株式会社東芝 | 放射線検出器およびその製造方法 |
JP5858370B1 (ja) * | 2011-08-19 | 2016-02-10 | 日本結晶光学株式会社 | シンチレーター及びその製造方法、並びに放射線検出器 |
WO2016158495A1 (ja) | 2015-03-31 | 2016-10-06 | 日本結晶光学株式会社 | シンチレータ |
KR101784118B1 (ko) | 2013-07-16 | 2017-10-10 | 도시바 덴시칸 디바이스 가부시키가이샤 | 방사선 검출기, 신틸레이터 패널, 및 그 제조 방법 |
CN111172590A (zh) * | 2020-02-18 | 2020-05-19 | 北京圣通和晶科技有限公司 | 一种提拉法生长大尺寸碘化铯晶体的工艺 |
JP2021531360A (ja) * | 2018-05-25 | 2021-11-18 | サン−ゴバン セラミックス アンド プラスティクス, インコーポレイティドSaint−Gobain Ceramics And Plastics, Inc. | 残光を低減するためのアンチモン及びその他のマルチバランスカチオンを含むCsI(Tl)シンチレータ結晶、ならびにシンチレーション結晶を含む放射線検出装置 |
CN114616491A (zh) * | 2019-10-28 | 2022-06-10 | 圣戈本陶瓷及塑料股份有限公司 | 包含多价阳离子以减少余辉的CsI(Tl)闪烁体晶体,以及包括闪烁晶体的辐射检测装置 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105849228A (zh) * | 2014-10-21 | 2016-08-10 | 公立大学法人大阪府立大学 | 碱金属卤化物系闪烁体粉末的制造方法和闪烁体材料的制造方法 |
US9696434B2 (en) * | 2015-06-04 | 2017-07-04 | Toshiba Medical Systems Corporation | Scintillator array test method, apparatus, and system |
CN107703533B (zh) * | 2016-08-05 | 2024-03-05 | 京东方科技集团股份有限公司 | 探测面板及探测装置 |
US11073626B2 (en) * | 2017-11-10 | 2021-07-27 | Canon Kabushiki Kaisha | Scintillator, method of forming the same, and radiation detection apparatus |
US10649098B2 (en) * | 2018-01-29 | 2020-05-12 | Samsung Electronics Co., Ltd. | Light converting nanoparticle, method of making the light converting nanoparticle, and composition and optical film comprising the same |
CN114395802B8 (zh) * | 2022-03-25 | 2022-07-08 | 江苏先进无机材料研究院 | 一种铊掺杂碘化铯闪烁晶体制备方法和辐射探测面板 |
WO2024186349A1 (en) * | 2023-03-08 | 2024-09-12 | Luxium Solutions, Llc | Csi(tl) scintillator crystal including co-dopants antiomy and bismuth to reduce afterglow, and a radiation detection apparatus including the scintillation crystal |
CN118064841B (zh) * | 2024-04-18 | 2024-08-23 | 杭州钛光科技有限公司 | 一种低余晖x射线闪烁体膜的制备及应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4877752A (ja) * | 1972-01-19 | 1973-10-19 | ||
WO2008029602A1 (fr) * | 2006-08-31 | 2008-03-13 | Konica Minolta Medical & Graphic, Inc. | Scintillateur et plaque de scintillateur utilisant celui-ci |
JP2008215951A (ja) | 2007-03-01 | 2008-09-18 | Toshiba Corp | 放射線検出器 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB538178A (en) * | 1939-05-09 | 1941-07-23 | British Thomson Houston Co Ltd | Improvements in and relating to fluorescent screens |
US4100445A (en) * | 1976-03-15 | 1978-07-11 | The Machlett Laboratories, Inc. | Image output screen comprising juxtaposed doped alkali-halide crystalline rods |
US4780375A (en) * | 1985-04-02 | 1988-10-25 | Fuji Photo Film Co., Ltd. | Phosphor, and radiation image storage panel |
JPH08295878A (ja) * | 1995-04-26 | 1996-11-12 | Yazaki Corp | シンチレータ及び放射線検出器用シンチレータ並びに放射線検出器 |
DE10259935A1 (de) * | 2002-12-20 | 2004-07-01 | Bayer Ag | Herstellung und Verwendung von in-situ-modifizierten Nanopartikeln |
US7368719B2 (en) | 2006-06-28 | 2008-05-06 | Ge Homeland Protection, Inc. | Scintillating materials, articles employing the same, and methods for their use |
DE102005034915B4 (de) | 2005-07-26 | 2012-06-21 | Siemens Ag | Strahlungswandler und Verfahren zur Herstellung des Strahlungswandlers |
JP4877752B2 (ja) | 2006-06-14 | 2012-02-15 | 河村電器産業株式会社 | 分電盤の気密構造 |
WO2011093176A2 (en) | 2010-01-28 | 2011-08-04 | Canon Kabushiki Kaisha | Scintillator crystal body, method for manufacturing the same, and radiation detector |
JP2012098175A (ja) * | 2010-11-02 | 2012-05-24 | Sony Corp | 放射線検出素子およびその製造方法、放射線検出モジュール並びに放射線画像診断装置 |
JP5594799B2 (ja) * | 2011-08-19 | 2014-09-24 | 日本結晶光学株式会社 | シンチレーター |
-
2012
- 2012-08-17 JP JP2013529999A patent/JP5594799B2/ja active Active
- 2012-08-17 HU HUE12825478A patent/HUE028890T2/en unknown
- 2012-08-17 WO PCT/JP2012/070911 patent/WO2013027671A1/ja active Application Filing
- 2012-08-17 CN CN201510423954.8A patent/CN105062477B/zh active Active
- 2012-08-17 CN CN201280039480.1A patent/CN103732722B/zh active Active
- 2012-08-17 US US14/239,366 patent/US9678223B2/en active Active
- 2012-08-17 EP EP12825478.6A patent/EP2746362B1/en active Active
-
2014
- 2014-06-17 JP JP2014124369A patent/JP5858370B1/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4877752A (ja) * | 1972-01-19 | 1973-10-19 | ||
WO2008029602A1 (fr) * | 2006-08-31 | 2008-03-13 | Konica Minolta Medical & Graphic, Inc. | Scintillateur et plaque de scintillateur utilisant celui-ci |
JP2008215951A (ja) | 2007-03-01 | 2008-09-18 | Toshiba Corp | 放射線検出器 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2746362A4 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5858370B1 (ja) * | 2011-08-19 | 2016-02-10 | 日本結晶光学株式会社 | シンチレーター及びその製造方法、並びに放射線検出器 |
JP2015038459A (ja) * | 2013-07-16 | 2015-02-26 | 株式会社東芝 | シンチレータパネルおよびその製造方法 |
JP2015038458A (ja) * | 2013-07-16 | 2015-02-26 | 株式会社東芝 | 放射線検出器およびその製造方法 |
KR101784118B1 (ko) | 2013-07-16 | 2017-10-10 | 도시바 덴시칸 디바이스 가부시키가이샤 | 방사선 검출기, 신틸레이터 패널, 및 그 제조 방법 |
CN106211779B (zh) * | 2015-03-31 | 2017-06-16 | 日本结晶光学株式会社 | 闪烁体 |
CN106211779A (zh) * | 2015-03-31 | 2016-12-07 | 日本结晶光学株式会社 | 闪烁体 |
JP6011835B1 (ja) * | 2015-03-31 | 2016-10-19 | 日本結晶光学株式会社 | シンチレータ |
WO2016158495A1 (ja) | 2015-03-31 | 2016-10-06 | 日本結晶光学株式会社 | シンチレータ |
US9869777B2 (en) | 2015-03-31 | 2018-01-16 | Nihon Kessho Kogaku Co., Ltd. | Scintillator |
JP2021531360A (ja) * | 2018-05-25 | 2021-11-18 | サン−ゴバン セラミックス アンド プラスティクス, インコーポレイティドSaint−Gobain Ceramics And Plastics, Inc. | 残光を低減するためのアンチモン及びその他のマルチバランスカチオンを含むCsI(Tl)シンチレータ結晶、ならびにシンチレーション結晶を含む放射線検出装置 |
JP7097998B2 (ja) | 2018-05-25 | 2022-07-08 | サン-ゴバン セラミックス アンド プラスティクス,インコーポレイティド | 残光を低減するためのアンチモン及びその他のマルチバランスカチオンを含むCsI(Tl)シンチレータ結晶、ならびにシンチレーション結晶を含む放射線検出装置 |
CN114616491A (zh) * | 2019-10-28 | 2022-06-10 | 圣戈本陶瓷及塑料股份有限公司 | 包含多价阳离子以减少余辉的CsI(Tl)闪烁体晶体,以及包括闪烁晶体的辐射检测装置 |
JP2023500479A (ja) * | 2019-10-28 | 2023-01-06 | サン-ゴバン セラミックス アンド プラスティクス,インコーポレイティド | 残光を低減するための多価カチオンを含むCsI(Tl)シンチレータ結晶、及びシンチレーション結晶を含む放射線検出装置 |
JP7361908B2 (ja) | 2019-10-28 | 2023-10-16 | サン-ゴバン セラミックス アンド プラスティクス,インコーポレイティド | 残光を低減するための多価カチオンを含むCsI(Tl)シンチレータ結晶、及びシンチレーション結晶を含む放射線検出装置 |
CN111172590A (zh) * | 2020-02-18 | 2020-05-19 | 北京圣通和晶科技有限公司 | 一种提拉法生长大尺寸碘化铯晶体的工艺 |
Also Published As
Publication number | Publication date |
---|---|
CN105062477A (zh) | 2015-11-18 |
JP5594799B2 (ja) | 2014-09-24 |
JP5858370B1 (ja) | 2016-02-10 |
CN103732722A (zh) | 2014-04-16 |
CN103732722B (zh) | 2015-12-23 |
JP2016130272A (ja) | 2016-07-21 |
EP2746362A4 (en) | 2015-05-06 |
HUE028890T2 (en) | 2017-01-30 |
JPWO2013027671A1 (ja) | 2015-04-30 |
US20140203211A1 (en) | 2014-07-24 |
EP2746362B1 (en) | 2016-02-03 |
EP2746362A1 (en) | 2014-06-25 |
US9678223B2 (en) | 2017-06-13 |
CN105062477B (zh) | 2017-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5858370B1 (ja) | シンチレーター及びその製造方法、並びに放射線検出器 | |
CN101945974A (zh) | 中子检测用闪烁体和中子检测装置 | |
JP5245176B2 (ja) | ヨウ化物系単結晶体の製造方法 | |
JP6011835B1 (ja) | シンチレータ | |
JP5566218B2 (ja) | フッ化物単結晶、真空紫外発光素子、シンチレーター及びフッ化物単結晶の製造方法 | |
WO2015007229A1 (en) | Ultrabright csi:tl scintillators with reduced afterglow: fabrication and application | |
US8496851B2 (en) | Scintillation materials in single crystalline, polycrystalline and ceramic form | |
JP5994149B2 (ja) | X線シンチレータ用材料 | |
WO2012115234A1 (ja) | 中性子検出用シンチレーター及び中性子線検出器 | |
JP5393266B2 (ja) | 希土類含有K3LuF6、真空紫外発光素子及び真空紫外発光シンチレーター | |
JP5127778B2 (ja) | フッ化物結晶、真空紫外発光素子及び真空紫外発光シンチレーター | |
JP5317952B2 (ja) | フッ化物結晶、真空紫外発光素子及び真空紫外発光シンチレーター | |
JP5729954B2 (ja) | フッ化物単結晶、シンチレーター及びフッ化物単結晶の製造方法 | |
JP5611239B2 (ja) | 金属フッ化物結晶、真空紫外発光素子及び真空紫外発光シンチレーター | |
JP2011184206A (ja) | フッ化物結晶、真空紫外発光素子及び真空紫外発光シンチレーター | |
WO2012026584A1 (ja) | 中性子検出用シンチレーター及び中性子線検出器 | |
JP2005263621A (ja) | タングステン酸亜鉛単結晶及びその製造方法 | |
JP2014205788A (ja) | 無機結晶の製造方法 | |
JP2010280541A (ja) | 真空紫外発光素子及び真空紫外発光シンチレーター | |
JP2005343753A (ja) | タングステン酸亜鉛単結晶及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12825478 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013529999 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14239366 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012825478 Country of ref document: EP |