WO2013026419A1 - 一种支架输送装置 - Google Patents

一种支架输送装置 Download PDF

Info

Publication number
WO2013026419A1
WO2013026419A1 PCT/CN2012/080634 CN2012080634W WO2013026419A1 WO 2013026419 A1 WO2013026419 A1 WO 2013026419A1 CN 2012080634 W CN2012080634 W CN 2012080634W WO 2013026419 A1 WO2013026419 A1 WO 2013026419A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
delivery device
stent delivery
outer tube
tube
Prior art date
Application number
PCT/CN2012/080634
Other languages
English (en)
French (fr)
Inventor
张琳琳
唐智荣
罗七一
Original Assignee
上海微创医疗器械(集团)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微创医疗器械(集团)有限公司 filed Critical 上海微创医疗器械(集团)有限公司
Publication of WO2013026419A1 publication Critical patent/WO2013026419A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/958Inflatable balloons for placing stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0091Three-dimensional shapes helically-coiled or spirally-coiled, i.e. having a 2-D spiral cross-section

Definitions

  • the present invention relates to a stent delivery device for medical use. Background technique
  • Patent document CN201279337 discloses a balloon dilatation catheter which is a fast exchange balloon catheter with a spiral structure in the middle, wherein the spiral portion is described as follows: The spiral portion is provided with a spiral through groove penetrating the tube wall, The pitch of the spiral passage groove decreases in a direction approaching the slope portion. However, the positioning accuracy of the prior art stent delivery device is poor. Summary of the invention
  • a stent delivery device comprising a connector, an outer tube, an inner tube and a balloon, the outer tube connecting the balloon and the connecting member, the inner tube passing through Illustrating the outer tube and the interior of the balloon, the connector is in communication with the balloon via an interface thereof, through a lumen formed between the outer tube and the inner tube,
  • the outer tube includes: a distal outer tube portion located at a distal end portion of the outer tube; a proximal tube portion of the proximal portion of the outer tube,
  • At least one of the distal outer tube portion and the proximal outer tube portion includes at least two layers, the at least two layers of material and structure being capable of enhancing the positioning accuracy of the stent delivery device.
  • the distal outer tube portion is composed of three layers, that is, an outer layer, an inner layer, and an intermediate layer, wherein The outer layer and the inner layer are composed of a polymer material, and the intermediate layer is formed by spirally winding a wire along the outer circumference of the inner layer.
  • the proximal tube portion is composed of three layers, that is, an outer layer, an inner layer, and an intermediate layer, wherein The outer layer and the inner layer are made of a polymer material, and the intermediate layer is a braided network tube structure formed by braiding a wire along the outer circumference of the inner layer.
  • the distal outer tube portion is composed of two layers, that is, an outer layer and an inner layer, wherein the outer layer is composed of
  • the polymer material is composed of a spiral tube structure formed by engraving along the outer circumference of the pipe material.
  • the proximal tube portion is composed of two layers, that is, an outer layer and an inner layer, wherein the outer layer is composed of
  • the polymer material is composed of a spiral tube structure formed by engraving along the outer circumference of the pipe material.
  • the proximal outer tube portion is also composed of two layers, that is, an outer layer of the outer tube portion and an inner layer of the outer tube portion
  • the outer layer of the outer tube portion is made of a polymer material
  • the inner layer of the outer tube portion is a spiral tube structure formed by engraving along the outer circumference of the tube; wherein the inner layer of the outer tube portion is The stiffness of the spiral tube is less than the stiffness of the spiral tube of the inner layer of the proximal outer tube portion.
  • the outer tube further includes an intermediate portion between the distal outer tube portion and the proximal outer tube portion.
  • the distal outer tube portion and the intermediate portion are composed of three layers, that is, an outer layer, an inner layer, and an intermediate layer
  • the outer layer and the inner layer are composed of a polymer material, and the intermediate layer is formed by spirally winding a wire along an outer circumference of the inner layer.
  • the proximal tube portion and the intermediate portion are composed of three layers, that is, an outer layer, an inner layer, and an intermediate layer
  • the outer layer and the inner layer are made of a polymer material
  • the intermediate layer is a braided mesh tube structure formed by braiding a wire along an outer circumference of the inner layer.
  • the distal outer tube portion and the intermediate portion are composed of two layers, that is, an outer layer and an inner layer, wherein
  • the outer layer is composed of a polymer material
  • the inner layer is a spiral tube structure formed by engraving along the outer circumference of the tube.
  • the proximal tube portion and the intermediate portion are composed of two layers, that is, an outer layer and an inner layer, wherein The outer layer is composed of a polymer material, and the inner layer is a spiral tube structure formed by engraving along the outer circumference of the tube.
  • the distal end portion of the inner tube is provided with a developing ring.
  • the wire is 304 stainless steel, 316 stainless steel or Nickel-titanium alloy or its family of materials.
  • a branch according to any one of parts (7) to (11) of the present invention In the rack conveying device, preferably, the intermediate portion has a length of 10 to 300 mm.
  • the distal outer tube portion has a length of 50 to 500 mm.
  • the material of the tubing is stainless steel or nickel-titanium alloy
  • the material of the pipe is also a polymer material, but the hardness of the polymer material of the pipe is higher than the hardness of the polymer material of the outer layer.
  • the rigidity of the spiral tube of the inner layer of the distal outer tube portion is smaller than the spiral tube of the inner layer of the intermediate portion Stiffness.
  • the rigidity of the spiral tube of the inner layer of the proximal tube portion is larger than the spiral tube of the inner layer of the intermediate portion Stiffness.
  • FIG. 1 shows a schematic structural view of a stent delivery device in accordance with one embodiment of the present invention.
  • Fig. 2 is a view showing the structure of a distal outer tube portion of a stent delivery device according to an embodiment of the present invention.
  • Fig. 3 is a view showing the structure of a distal outer tube portion of a stent delivery device according to another embodiment of the present invention.
  • Fig. 4 is a view showing the structure of a proximal outer tube portion of a stent delivery device according to an embodiment of the present invention.
  • Fig. 5 is a view showing the structure of a proximal outer tube portion of a stent delivery device according to another embodiment of the present invention.
  • Figure 6 shows a schematic view of the structure of a cylindrical spring.
  • Figure 7 shows the spiral tube structure obtained by cutting the original tubing. detailed description
  • the present invention provides a stent delivery device for medical use by which a balloon can be used to expand a through vessel or a carrier. Preferred embodiments of the present invention are described in detail below with reference to FIGS. 1 through 7. As shown in Fig.
  • the stent delivery device of the present invention comprises a balloon 1, a distal outer tube portion 3, a proximal outer tube portion 5, a middle portion 4, a connecting member 6, an inner tube 7, a developing ring 2, and the like.
  • the outer tube portion 3, the outer tube portion 5, and the intermediate portion 4 form an outer tube
  • the inner tube 7 passes through the outer tube.
  • An inner cavity is formed between the outer tube and the inner tube 7.
  • a connector 6 is coupled to the proximal end of the outer tube.
  • the connecting member 6 has an interface through which the connecting member 6 is connected to the balloon 1 through the inner cavity formed between the proximal outer tube portion 5, the intermediate portion 4 and the distal outer tube portion 3 and the inner tube 7.
  • the stent delivery device according to the present invention can pass through the connecting member 6, the inner cavity between the outer and outer tube portions 5 and the inner tube 7, the inner chamber between the intermediate portion 4 and the inner tube 7, and the outer tube portion 3 and the inner tube
  • the lumen between 7 is in communication with the balloon 1 to achieve the function of expanding the balloon and supporting the stent.
  • the outer tube of the stent delivery device of the present invention may be constructed of only the distal outer tube portion 3 and the proximal outer tube portion 5. SP, the middle part 4 is not required.
  • the arrangement of the developing ring 2 is also not necessary.
  • the stent delivery device of the present invention may not be provided with the development ring 2.
  • At least one of the distal outer tube portion 3 and the proximal outer tube portion 5 of the outer tube of the stent delivery device comprises at least two layers, the at least two layers of material and structure being capable of enhancing the stent delivery device Positioning accuracy.
  • 2 is a schematic view showing the structure of a distal outer tube portion of a stent delivery device according to an embodiment of the present invention.
  • the distal outer tube portion 3 is composed of a polymer material and a metal wire, and the wire has a spiral structure, and the wire material is stainless steel or nickel titanium alloy or a homogenous material thereof, for example, 304 stainless steel or 316 stainless steel. Specifically, as shown in FIG.
  • the outer outer tube portion 3 is composed of three layers, that is, composed of an outer layer 9, an inner layer 10 and an intermediate layer 8, wherein the outer layer 9 and the inner layer 10 may be composed of a polymer material, and the intermediate layer 8 may be formed by spirally winding a wire along the outer circumference of the inner layer 10.
  • the intermediate portion 4 in Fig. 1 may have the same structure as that of the distal outer tube portion 3 in Fig. 2 .
  • 3 is a schematic view showing the structure of a distal outer tube portion of a stent delivery device according to another embodiment of the present invention.
  • the distal outer tube portion 3 is composed of an outer layer 11 of a polymer material and a spiral inner layer 12.
  • the distal outer tube portion 3 is only It consists of only two layers, that is, the outer layer 1 1 and the inner layer 12, wherein the outer layer 11 can be composed of a polymer material, and the inner layer 12 is a spiral tube structure formed by engraving along the outer circumference of the tube. .
  • the intermediate portion 4 in Fig. 1 may have the same structure as that of the distal outer tube portion 3 in Fig. 3.
  • the material of the pipe forming the inner layer 12 is stainless steel or nickel titanium alloy; or the material of the pipe forming the inner layer 12 may also be a polymer material, but the inner layer 12
  • the hardness of the polymer material is higher than the hardness of the polymer material of the outer layer 11.
  • the stiffness of the helical tube of the inner layer 12 of the distal outer tube portion 3 is different from the stiffness of the helical tube of the inner layer 12 of the intermediate portion 4. Further, it is preferable that the rigidity of the spiral tube of the inner layer 12 of the distal outer tube portion 3 is smaller than the rigidity of the spiral tube of the inner layer 12 of the intermediate portion 4. With this arrangement, the flexibility of the outer tube of the stent delivery device can be made larger at the distal portion than at the proximal portion, so that the positioning accuracy of the stent delivery device can be improved.
  • Figs. 6 shows a schematic structural view of a cylindrical spring
  • Fig. 6 shows a schematic structural view of a cylindrical spring
  • the main dimensions of the cylindrical spring are: spring wire diameter d, outer diameter of the coil 1), inner diameter of the coil D, diameter D 2 of the coil, pitch t, helix angle ⁇ , free length, and the like.
  • the ratio of the spring load F to the corresponding deformation f is called the spring stiffness and is denoted by k.
  • the formula for calculating the stiffness of the spring is as follows: k _ F _ GD 2
  • k is the spring stiffness
  • F is the load of the spring
  • f is the corresponding spring deformation
  • G is the shear modulus of the spring material
  • D 2 is the diameter of the coil
  • C is the winding ratio
  • n is the number of turns of the spring.
  • the winding ratio (or spring index) C is one of the most important parameters.
  • the smaller the winding ratio is, the smaller the stiffness of the spring is, the harder the spring is, the larger the stress difference between the inner and outer sides of the spring is, the lower the material utilization rate is.
  • the spiral tube structure of the inner tube of the present invention is obtained by cutting the original tube.
  • the threaded tube structure as shown in Fig. 7 can be understood using a spring structure as shown in Fig. 6.
  • the remaining portion after the pipe is cut can be approximated to correspond to the spring wire diameter d as shown in Fig. 6.
  • the inner layer 12 of the distal outer tube portion 3 The stiffness of the spiral tube should generally be less than the stiffness of the spiral tube of the inner layer 12 of the intermediate portion 4.
  • 4 is a schematic view showing the structure of a proximal outer tube portion of a stent delivery device according to an embodiment of the present invention.
  • the outer tube portion 5 includes a braided mesh tube structure
  • the inner layer 15 and the outer layer 14 of the outer tube portion 5 are made of a high-strength polymer material
  • the intermediate layer 13 is a wire braid. Network management structure.
  • the proximal outer tube portion 5 is composed of three layers, that is, composed of an outer layer 14, an inner layer 15 and an intermediate layer 13, wherein the outer layer 14 and the inner layer 15 are composed of a polymer
  • the intermediate layer 13 is a braided mesh tube structure formed by braiding a wire along the outer circumference of the inner layer 15.
  • the intermediate portion 4 in Fig. 1 may have the same structure as that of the proximal outer tube portion 5 in Fig. 4 .
  • the wire forming the intermediate layer 13 is 304 stainless steel, 316 stainless steel or nickel titanium alloy or a homogenous material thereof.
  • Fig. 5 is a view showing the structure of a proximal outer tube portion of a stent delivery device according to another embodiment of the present invention.
  • the outer tube portion 5 is made of an outer layer of a polymer material.
  • the proximal outer tube portion 5 is composed of only two layers, that is, the outer layer 16 and the inner layer 17, wherein the outer layer 16 may be composed of a polymer material, and the inner layer 17 It is a spiral tube structure formed by engraving along the outer circumference of the pipe.
  • the intermediate portion 4 in Fig. 1 may have the same structure as that of the proximal outer tube portion 5 in Fig. 5.
  • the material of the pipe forming the inner layer 17 is stainless steel or nickel-titanium alloy; or the material of the pipe forming the inner layer 17 may also be a polymer material, but the hardness of the polymer material It is higher in hardness than the polymer material of the outer layer.
  • the rigidity of the spiral tube of the inner layer 17 of the proximal outer tube portion 5 is different from the rigidity of the spiral tube of the inner layer 17 of the intermediate portion 4. Further, it is preferable that the rigidity of the spiral tube of the inner layer 17 of the proximal outer tube portion 5 is larger than the rigidity of the spiral tube of the inner layer 17 of the intermediate portion 4. With this arrangement, the flexibility of the outer tube of the stent delivery device can be made larger at the distal portion than at the proximal portion, so that the positioning accuracy of the stent delivery device can be improved.
  • the intermediate portion 4 of the outer tube of the stent delivery device has a length of 10-300 mm.
  • the length of the distal outer tube portion 3 of the outer tube of the stent delivery device is
  • the outer layer of the outer tube of the outer tube of the stent delivery device, the outer layer of the outer tube portion and/or the outer layer of the intermediate portion are Polymer material composition.
  • the invention is not limited thereto.
  • the outer layer of the outer tube portion of the outer tube, the outer layer of the outer tube portion and/or the outer layer of the intermediate portion may also be constructed of some other material, such as a non-metallic composite material or a fiber reinforced composite material. Further, in the above-described embodiments of Figs.
  • the outer tube portion, the outer tube portion, and/or the intermediate portion of the outer tube of the stent delivery device are composed of two or three layers.
  • the invention is not limited thereto.
  • the distal outer tube portion, the proximal outer tube portion, and/or the intermediate portion of the outer tube of the stent delivery device may also be constructed of more than three layers.
  • the stent delivery device of the present invention is in the form of a coaxial balloon catheter, wherein the distal outer tube portion 3, the proximal outer tube portion 5 and/or the intermediate portion 4 of the outer tube of the catheter of the stent delivery device have The novel design described above can thereby improve the positioning accuracy of the stent delivery device.
  • the stent mesh or the stent for the bifurcation lesion can be accurately positioned in the collateral vessel or the main branch vessel.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

一种支架输送装置,其包括连接件(6)、外管、内管(7)和球囊(1),所述外管连接球囊(1)和连接件(6),所述内管(7)穿过外管以及球囊(1)的内部,所述连接件(6)经由其接口、通过外管与内管(7)之间形成的内腔而与球囊(1)连通,所述外管包括:位于外管的远端部分的远外管部(3);以及位于外管的近端部分的近外管部(5),所述远外管部(3)和所述近外管部(5)中的至少一个包括至少两层,所述至少两层的材料和结构能够增强该支架输送装置的定位准确性。该支架输送装置提供了特殊设计的外管结构,由此,可以改善支架输送装置的定位准确性。

Description

一种支架输送装置 技术领域
本发明涉及一种用于医疗用途的支架输送装置。 背景技术
当前国内支架输送装置大多注重于跟踪性、 通过性、 推送性。 然 而分叉病变手术过程中需要考虑侧支血管覆盖, 因而存在着支架网孔 与侧支血管对应的技术难题。 临床上主要通过球囊扩张支架网孔以达 到所需血管直径要求, 但是这种手段存在着所扩尺寸不可控、 网孔不 能定位等问题。 而且, 国内现在还没有公开专门用于分叉病变的支架 输送装置。 专利文献 CN201279337公开了一种球囊扩张导管, 该球囊扩张导 管为快速交换式球囊导管, 中间采用螺旋结构, 其中对于螺旋部分描 述如下: 螺旋部分设有贯穿管壁的螺旋状通槽, 所述螺旋状通槽的螺 距沿着靠近斜坡部分的方向递减。 但是, 该现有技术的支架输送装置 的定位准确性较差。 发明内容
鉴于现有技术的上述技术问题, 本发明的目的在于开发一种支架 输送装置, 从而可以改善支架输送装置的定位准确性。
( 1 )根据本发明, 提供了一种支架输送装置, 包括连接件、外管、 内管和球囊, 所述外管连接所述球囊和所述连接件, 所述内管穿过所 述外管以及所述球囊的内部, 所述连接件经由其接口、 通过所述外管 与所述内管之间形成的内腔而与所述球囊连通,
所述外管包括: 位于所述外管的远端部分的远外管部; 以及位于 所述外管的近端部分的近外管部,
其特征在于:
所述远外管部和所述近外管部中的至少一个包括至少两层, 所述 至少两层的材料和结构能够增强该支架输送装置的定位准确性。
(2) 在根据本发明的第 (1) 部分所述的支架输送装置中, 优选 地, 所述远外管部由三层构成, 即由外层、 内层和中间层构成, 其中 所述外层和所述内层由高分子材料构成, 所述中间层由金属丝沿所述 内层的外周螺旋状绕织而成。
(3) 在根据本发明的第 (1) 部分所述的支架输送装置中, 优选 地, 所述近外管部由三层构成, 即由外层、 内层和中间层构成, 其中 所述外层和所述内层由高分子材料构成, 所述中间层为由金属丝沿所 述内层的外周编织而形成的编织网管结构。
(4) 在根据本发明的第 (1) 部分所述的支架输送装置中, 优选 地, 所述远外管部由两层构成, 即由外层和内层构成, 其中所述外层 由高分子材料构成, 所述内层为沿管材的外周刻槽而成的螺旋管结构。
(5) 在根据本发明的第 (1) 部分所述的支架输送装置中, 优选 地, 所述近外管部由两层构成, 即由外层和内层构成, 其中所述外层 由高分子材料构成, 所述内层为沿管材的外周刻槽而成的螺旋管结构。
(6) 在根据本发明的第 (4) 部分所述的支架输送装置中, 优选 地, 所述近外管部也由两层构成, 即由近外管部外层和近外管部内层 构成, 其中所述近外管部外层由高分子材料构成, 所述近外管部内层 为沿管材的外周刻槽而成的螺旋管结构; 其中, 所述远外管部的内层 的螺旋管的刚度小于所述近外管部的内层的螺旋管的刚度。
(7) 在根据本发明的第 (1) 部分所述的支架输送装置中, 优选 地, 所述外管还包括在所述远外管部和所述近外管部之间的中间部分。
(8) 在根据本发明的第 (7) 部分所述的支架输送装置中, 优选 地, 所述远外管部和所述中间部分由三层构成, 即由外层、 内层和中 间层构成, 其中所述外层和所述内层由高分子材料构成, 所述中间层 由金属丝沿所述内层的外周螺旋状绕织而成。
(9) 在根据本发明的第 (7) 部分所述的支架输送装置中, 优选 地, 所述近外管部和所述中间部分由三层构成, 即由外层、 内层和中 间层构成, 其中所述外层和所述内层由高分子材料构成, 所述中间层 为由金属丝沿所述内层的外周编织而形成的编织网管结构。
(10) 在根据本发明的第 (7) 部分所述的支架输送装置中, 优选 地, 所述远外管部和所述中间部分由两层构成, 即由外层和内层构成, 其中所述外层由高分子材料构成, 所述内层为沿管材的外周刻槽而成 的螺旋管结构。
(11) 在根据本发明的第 (7) 部分所述的支架输送装置中, 优选 地, 所述近外管部和所述中间部分由两层构成, 即由外层和内层构成, 其中所述外层由高分子材料构成, 所述内层为沿管材的外周刻槽而成 的螺旋管结构。
(12) 在根据本发明的第 (1) 〜 (11) 部分中任一部分所述的支 架输送装置中, 优选地, 所述内管的远端部分设有显影环。
(13) 在根据本发明的第 (2) 、 (3) 、 (8) 和 (9) 部分中任 一部分所述的支架输送装置中, 优选地, 所述金属丝为 304不锈钢、 316 不锈钢或镍钛合金或其同族材料。 (14) 在根据本发明的第 (7) 〜 (11) 部分中任一部分所述的支 架输送装置中, 优选地, 所述中间部分的长度为 10-300mm。
(15) 在根据本发明的第 (1) 〜 (11) 部分中任一部分所述的支 架输送装置中, 优选地, 所述远外管部的长度为 50-500mm。
(16) 在根据本发明的第 (4) 〜 (6) 和 (10) 〜 (11) 部分中任 一部分所述的支架输送装置中, 优选地, 所述管材的材料为不锈钢或 者镍钛合金; 或者所述管材的材料也为高分子材料, 但该管材的高分 子材料的硬度比所述外层的高分子材料的硬度高。
(17) 在根据本发明的第 (10) 部分所述的支架输送装置中, 优 选地, 所述远外管部的内层的螺旋管的刚度小于所述中间部分的内层 的螺旋管的刚度。 (18) 在根据本发明的第 (11) 部分所述的支架输送装置中, 优 选地, 所述近外管部的内层的螺旋管的刚度大于所述中间部分的内层 的螺旋管的刚度。 根据本发明, 提供了如上所述特殊设计的外管结构, 由此, 可以 改善支架输送装置的定位准确性。 通过控制支架输送装置的定位准确 性, 使支架网孔或用于分叉病变的支架可以准确定位于侧支血管或主 支血管。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例描 述中所需要使用的附图作简单地介绍。 显而易见的是, 下面描述中的 附图仅仅是本申请中记载的一些特定实施例, 其不是对本发明的保护 范围的限制。 对于本领域普通技术人员来讲, 在不付出创造性劳动的 前提下, 当然还可以根据本发明的这些实施例及其附图获得一些其它 的实施例和附图。 图 1 示出了根据本发明一个实施例的支架输送装置的结构示意 图。
图 2示出了根据本发明一个实施例的支架输送装置的远外管部的 结构示意图。
图 3示出了根据本发明另一个实施例的支架输送装置的远外管部 的结构示意图。
图 4示出了根据本发明一个实施例的支架输送装置的近外管部的 结构示意图。
图 5示出了根据本发明另一个实施例的支架输送装置的近外管部 的结构示意图。
图 6示出了圆柱弹簧的结构示意图。
图 7示出了通过切割原始管材得到的螺旋管结构。 具体实施方式
为了使本领域技术人员更好地理解本申请中的技术方案, 下面将 结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述。 显然, 所描述的实施例仅仅是本申请一部分实施例, 而 不是全部的实施例。 基于本申请所述的具体实施例, 本领域普通技术 人员在没有做出创造性劳动的前提下所获得的所有其它实施例, 都应 当落在本发明构思范围之内。 本发明提供了一种用于医疗用途的支架输送装置, 通过该支架输 送装置, 可以使用球囊来扩张贯通血管或携带支架。 以下参考图 1〜图 7来详细描述本发明的优选实施例。 如图 1所示, 本发明的支架输送装置包括球囊 1、 远外管部 3、 近 外管部 5、 中间部分 4、 连接件 6、 内管 7、 显影环 2等部分。 具体地, 远外管部 3、 近外管部 5、 中间部分 4形成外管, 而内管 7则穿过该外 管以及球囊 1 的内部。 所述外管与内管 7之间形成有内腔。 连接件 6 与所述外管的近端连接。 连接件 6有一接口, 连接件 6经由该接口、 通过近外管部 5、中间部分 4和远外管部 3与内管 7之间形成的内腔而 和球囊 1连接。 根据本发明的支架输送装置, 可以通过连接件 6、 近外 管部 5和内管 7之间的内腔、 中间部分 4和内管 7之间的内腔以及远 外管部 3和内管 7之间的内腔而与球囊 1连通, 从而达到扩张球囊功 能和起到支撑支架的作用。 在另外一些实施例中, 本发明的支架输送装置的外管可以仅仅由 远外管部 3和近外管部 5两部分构成。 SP , 中间部分 4不是必需的。 此外, 在本发明中, 显影环 2的设置也不是必需的。 在一些实施例中, 本发明的支架输送装置可以不设置显影环 2。 在本发明中, 所述支架输送装置的外管的远外管部 3和近外管部 5中的至少一个包括至少两层,所述至少两层的材料和结构能够增强该 支架输送装置的定位准确性。 图 2示出了根据本发明一个实施例的支架输送装置的远外管部的 结构示意图。 在该实施例中, 所述远外管部 3 由高分子材料和金属丝 构成, 金属丝的结构为螺旋状, 金属丝的材质为不锈钢或镍钛合金或 其同族材料, 所述不锈钢例如为 304不锈钢或 316不锈钢。 具体地, 如图 2所示, 总体上, 所述远外管部 3由三层构成, 即由外层 9、 内层 10和中间层 8构成,其中所述外层 9和所述内层 10可以由高分子材料 构成, 所述中间层 8可以由金属丝沿所述内层 10的外周螺旋状绕织而 成。 此外, 图 1 中的所述中间部分 4也可以具有与图 2中的所述远外 管部 3的结构相同的结构。 图 3示出了根据本发明另一个实施例的支架输送装置的远外管部 的结构示意图。 在该实施例中, 所述远外管部 3 由高分子材料的外层 1 1和螺旋管状的内层 12构成。 具体地, 如图所示, 所述远外管部 3仅 仅由两层构成, 即由外层 1 1和内层 12构成, 其中所述外层 1 1可以由 高分子材料构成,所述内层 12为沿管材的外周刻槽而成的螺旋管结构。 此外, 图 1中的所述中间部分 4也可以具有与图 3中的所述远外管部 3 的结构相同的结构。 优选的是, 形成所述内层 12的所述管材的材料为 不锈钢或者镍钛合金; 或者形成所述内层 12的所述管材的材料也可以 是高分子材料, 但是所述内层 12的该高分子材料的硬度要比所述外层 1 1的高分子材料的硬度高。 优选的是,所述远外管部 3的内层 12的螺旋管的刚度不同于所述 中间部分 4的内层 12的螺旋管的刚度。 进一步, 优选的是, 所述远外 管部 3的内层 12的螺旋管的刚度小于所述中间部分 4的内层 12的螺 旋管的刚度。 通过这种设置, 可以使得支架输送装置的外管的柔性在 远侧部分处比在近侧部分处更大, 从而可以改善支架输送装置的定位 准确性。 可以通过参考图 6和图 7来进一步详细理解本发明的上述特征。 图 6示出了圆柱弹簧的结构示意图, 而图 7示出了通过切割原始管材 得到的螺旋管结构。 如图 6所示, 圆柱弹簧的主要尺寸有: 弹簧丝直径 d、 弹簧圈外 径1)、 弹簧圈内径 D 弹簧圈中径 D2、 节距 t、 螺旋升角 α、 自由长度 等。 弹簧的载荷 F与对应的变形 f的比值称为弹簧刚度, 用 k表示。 弹簧的刚度计算公式如下所示: k _ F _ GD2
~7~ 8C4« 其中: k为弹簧刚度; F为弹簧的载荷; f 为对应的弹簧变形; G 为弹簧材料的剪切弹性模量; D2为弹簧圈中径; C为旋绕比; n为弹簧 卷绕圈数。 在弹簧设计中, 旋绕比 (或称弹簧指数) C是最重要的参数之一。 旋绕比 C的计算公式为: C=D2/d, 其中 D2为弹簧圈中径; d为弹簧丝 直径。 对于一个弹簧而言, 在弹簧其它结构参数不变的情况下, 旋绕 比愈小, 弹簧的刚度愈大, 弹簧愈硬, 弹簧内外侧的应力相差愈大, 材料利用率低; 反之弹簧愈软。 此外, 上述的弹簧刚度计算公式中的 其它参数0、 D2、 n的数值变化也都会影响弹簧的刚度。 如图 7所示, 本发明的内管的螺旋管结构是通过切割原始管材得 到的。 可以利用如图 6中所示的弹簧结构来理解如图 7 中所示的螺纹 管结构。 如图 7 所示, 管材切割后的剩余部分可以近似认为相当于如 图 6中所示的弹簧丝直径 d。 由此,在弹簧圈中径(被切割管材的直径) D2确定的情况下, 弹簧丝直径 (管材切割后的剩余部分) d 越大, 旋 绕比 C越小 (C=D2/d) 。 因而, 在螺旋管其它结构参数固定的情况下, 旋绕比 C越小, 螺旋管的刚度愈大, 螺旋管愈硬; 反之螺旋管愈软。 此外, 在本发明中, 在进行螺纹管结构设计的时候, 也应该结合上述 弹簧刚度计算公式考虑到影响弹簧刚度的其它参数0、 D2、 n等。 因此, 本领域技术人员容易理解, 在上述实施例中, 为了使得支 架输送装置的外管的柔性在远侧部分处比在近侧部分处更大, 所述远 外管部 3的内层 12的螺旋管的刚度通常应该小于所述中间部分 4的内 层 12的螺旋管的刚度。 图 4示出了根据本发明一个实施例的支架输送装置的近外管部的 结构示意图。 在该实施例中, 所述近外管部 5 包括有编织网管结构, 所述近外管部 5 的内层 15和外层 14的材料为高强度高分子材料, 中 间层 13为金属丝编织网管结构。 具体地, 如图所示, 所述近外管部 5 由三层构成, 即由外层 14、 内层 15和中间层 13构成, 其中所述外层 14和所述内层 15 由高分子材料构成, 所述中间层 13为由金属丝沿所 述内层 15的外周编织而形成的编织网管结构。 此外, 图 1中的所述中 间部分 4也可以具有与图 4中的所述近外管部 5 的结构相同的结构。 优选的是, 形成所述中间层 13的所述金属丝为 304不锈钢、 316不锈 钢或镍钛合金或其同族材料。 图 5示出了根据本发明另一个实施例的支架输送装置的近外管部 的结构示意图。 在该实施例中, 所述近外管部 5 由高分子材料的外层
16和螺旋管的内层 17构成。 具体地, 如图所示, 所述近外管部 5仅仅 由两层构成, 即由外层 16和内层 17构成, 其中所述外层 16可以由高 分子材料构成, 所述内层 17为沿管材的外周刻槽而成的螺旋管结构。 此外, 图 1中的所述中间部分 4也可以具有与图 5中的所述近外管部 5 的结构相同的结构。 优选的是, 形成所述内层 17的所述管材的材料为 不锈钢或者镍钛合金; 或者形成所述内层 17的所述管材的材料也可以 为高分子材料, 但是该高分子材料的硬度要比所述外层的高分子材料 的硬度高。 优选的是,所述近外管部 5的内层 17的螺旋管的刚度不同于所述 中间部分 4的内层 17的螺旋管的刚度。 进一步, 优选的是, 所述近外 管部 5的内层 17的螺旋管的刚度大于所述中间部分 4的内层 17的螺 旋管的刚度。 通过这种设置, 可以使得支架输送装置的外管的柔性在 远侧部分处比在近侧部分处更大, 从而可以改善支架输送装置的定位 准确性。 优选的是, 所述支架输送装置的外管的中间部分 4 的长度为 10-300mm。 优选的是, 所述支架输送装置的外管的远外管部 3 的长度为
50-500mmo 在上述的图 2〜图 5的实施例中, 所述支架输送装置的外管的远外 管部的外层、近外管部的外层和 /或中间部分的外层由高分子材料构成。 但是, 本发明不限于此。 在其它一些实施例中, 所述支架输送装置的 外管的远外管部的外层、 近外管部的外层和 /或中间部分的外层也可由 一些其它材料构成, 例如可以由非金属复合材料或纤维增强复合材料 构成。 此外, 在上述的图 2〜图 5的实施例中, 所述支架输送装置的外管 的远外管部、 近外管部和 /或中间部分由两层或三层构成。 但是, 本发 明不限于此。 在其它一些实施例中, 所述支架输送装置的外管的远外 管部、 近外管部和 /或中间部分也可以由多于三层的结构构成。 总体上, 本发明的支架输送装置的结构为同轴式球囊导管形式, 其中所述支架输送装置的导管的外管的远外管部 3、 近外管部 5和 /或 中间部分 4 具有上述的新颖设计, 由此可以改善支架输送装置的定位 准确性。 通过控制支架输送装置的定位准确性, 使支架网孔或用于分 叉病变的支架可以准确定位于侧支血管或主支血管。 以上所述仅是本申请的一些具体实施例。 应当指出, 对于本技术 领域的普通技术人员来说, 在不脱离本申请发明原理和发明构思的前 提下, 还可以对上述实施例进行各种组合或做出若干改进和变型, 这 些组合、 改进和变型也应视为落在本申请的保护范围和发明构思之内。

Claims

1. 一种支架输送装置, 包括连接件、 外管、 内管和球囊, 所述外 管连接所述球囊和所述连接件, 所述内管穿过所述外管以及所述球囊 的内部, 所述连接件经由其接口、 通过所述外管与所述内管之间形成 的内腔而与所述球囊连通,
所述外管包括: 位于所述外管的远端部分的远外管部; 以及位于 所述外管的近端部分的近外管部,
其特征在于:
所述远外管部和所述近外管部中的至少一个包括至少两层, 所述 至少两层的材料和结构能够增强该支架输送装置的定位准确性。
2. 根据权利要求 1所述的支架输送装置, 其特征在于: 所述远外 管部由三层构成, 即由外层、 内层和中间层构成, 其中所述外层和所 述内层由高分子材料构成, 所述中间层由金属丝沿所述内层的外周螺 旋状绕织而成。
3. 根据权利要求 1所述的支架输送装置, 其特征在于: 所述近外 管部由三层构成, 即由外层、 内层和中间层构成, 其中所述外层和所 述内层由高分子材料构成, 所述中间层为由金属丝沿所述内层的外周 编织而形成的编织网管结构。
4. 根据权利要求 1所述的支架输送装置, 其特征在于: 所述远外 管部由两层构成, 即由外层和内层构成, 其中所述外层由高分子材料 构成, 所述内层为沿管材的外周刻槽而成的螺旋管结构。
5. 根据权利要求 1所述的支架输送装置, 其特征在于: 所述近外 管部由两层构成, 即由外层和内层构成, 其中所述外层由高分子材料 构成, 所述内层为沿管材的外周刻槽而成的螺旋管结构。
6. 根据权利要求 4所述的支架输送装置, 其特征在于: 所述近外 管部也由两层构成, 即由近外管部外层和近外管部内层构成, 其中所 述近外管部外层由高分子材料构成, 所述近外管部内层为沿管材的外 周刻槽而成的螺旋管结构; 其中, 所述远外管部的内层的螺旋管的刚 度小于所述近外管部的内层的螺旋管的刚度。
7. 根据权利要求 1所述的支架输送装置, 其特征在于: 所述外管 还包括在所述远外管部和所述近外管部之间的中间部分。
8. 根据权利要求 7所述的支架输送装置, 其特征在于: 所述远外 管部和所述中间部分由三层构成, 即由外层、 内层和中间层构成, 其 中所述外层和所述内层由高分子材料构成, 所述中间层由金属丝沿所 述内层的外周螺旋状绕织而成。
9. 根据权利要求 7所述的支架输送装置, 其特征在于: 所述近外 管部和所述中间部分由三层构成, 即由外层、 内层和中间层构成, 其 中所述外层和所述内层由高分子材料构成, 所述中间层为由金属丝沿 所述内层的外周编织而形成的编织网管结构。
10. 根据权利要求 7所述的支架输送装置, 其特征在于: 所述远外 管部和所述中间部分由两层构成, 即由外层和内层构成, 其中所述外 层由高分子材料构成, 所述内层为沿管材的外周刻槽而成的螺旋管结 构。
1 1. 根据权利要求 7所述的支架输送装置, 其特征在于: 所述近外 管部和所述中间部分由两层构成, 即由外层和内层构成, 其中所述外 层由高分子材料构成, 所述内层为沿管材的外周刻槽而成的螺旋管结 构。
12. 根据权利要求 1-1 1中任一项所述的支架输送装置, 其特征在 于: 所述内管的远端部分设有显影环。
13. 根据权利要求 2、 3、 8和 9中任一项所述的支架输送装置, 其 特征在于: 所述金属丝为 304不锈钢、 316不锈钢或镍钛合金或其同族 材料。
14. 根据权利要求 7至 1 1中任一项所述的支架输送装置, 其特征在 于: 所述中间部分的长度为 10-300mm。
15. 根据权利要求 1-1 1中任一项所述的支架输送装置, 其特征在 于: 所述远外管部的长度为 50-500mm。
16. 根据权利要求 4-6和 10-1 1中任一项所述的支架输送装置, 其特 征在于:
所述管材的材料为不锈钢或者镍钛合金; 或者
所述管材的材料也为高分子材料, 但该管材的高分子材料的硬度 比所述外层的高分子材料的硬度高。
17. 根据权利要求 10所述的支架输送装置, 其特征在于: 所述远 外管部的内层的螺旋管的刚度小于所述中间部分的内层的螺旋管的刚 度。
18. 根据权利要求 1 1所述的支架输送装置, 其特征在于: 所述近 外管部的内层的螺旋管的刚度大于所述中间部分的内层的螺旋管的刚 度。
PCT/CN2012/080634 2011-08-25 2012-08-27 一种支架输送装置 WO2013026419A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110245171.7 2011-08-25
CN2011102451717A CN102379761A (zh) 2011-08-25 2011-08-25 一种支架输送装置

Publications (1)

Publication Number Publication Date
WO2013026419A1 true WO2013026419A1 (zh) 2013-02-28

Family

ID=45819878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080634 WO2013026419A1 (zh) 2011-08-25 2012-08-27 一种支架输送装置

Country Status (2)

Country Link
CN (1) CN102379761A (zh)
WO (1) WO2013026419A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102379761A (zh) * 2011-08-25 2012-03-21 微创医疗器械(上海)有限公司 一种支架输送装置
CN102793598B (zh) * 2012-08-30 2015-09-09 吕文峰 球曩扩张支架输送系统
CN103817505B (zh) * 2012-11-19 2016-08-03 微创心脉医疗科技(上海)有限公司 支架组装设备
WO2016035739A1 (ja) * 2014-09-04 2016-03-10 テルモ株式会社 カテーテル
CN107280715A (zh) * 2016-03-08 2017-10-24 殷月慧 一种血管扩张器植入工具
CN107198572A (zh) * 2016-03-15 2017-09-26 深圳市擎源医疗器械有限公司 三叉神经半月节压迫装置
CN107198573A (zh) * 2016-03-15 2017-09-26 深圳市擎源医疗器械有限公司 三叉神经半月节压迫装置
CN107398004A (zh) * 2017-07-24 2017-11-28 湖南埃普特医疗器械有限公司 一种退管装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027516A (en) * 1995-05-04 2000-02-22 The United States Of America As Represented By The Department Of Health And Human Services Highly elastic, adjustable helical coil stent
US20020058910A1 (en) * 1994-10-24 2002-05-16 Hermann George D. Large-diameter introducer sheath having hemostasis valve and removable steering mechanism
CN1469724A (zh) * 2000-10-18 2004-01-21 �������ɭ 用于布设血管内植入物的装置
CN1561240A (zh) * 2001-09-28 2005-01-05 钟渊化学工业株式会社 支架递送导管
US20070073310A1 (en) * 2005-09-29 2007-03-29 Cook Incorporated Method for joining medical devices
CN101234047A (zh) * 2008-01-14 2008-08-06 明一生物科技(上海)有限公司 一种用于颅内自扩张式支架输送器的推送鞘管
CN101933821A (zh) * 2009-06-30 2011-01-05 微创医疗器械(上海)有限公司 一种微导管
CN102038565A (zh) * 2010-12-17 2011-05-04 北京有色金属研究总院 新型大血管支架放送系统
CN102379761A (zh) * 2011-08-25 2012-03-21 微创医疗器械(上海)有限公司 一种支架输送装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020058910A1 (en) * 1994-10-24 2002-05-16 Hermann George D. Large-diameter introducer sheath having hemostasis valve and removable steering mechanism
US6027516A (en) * 1995-05-04 2000-02-22 The United States Of America As Represented By The Department Of Health And Human Services Highly elastic, adjustable helical coil stent
CN1469724A (zh) * 2000-10-18 2004-01-21 �������ɭ 用于布设血管内植入物的装置
CN1561240A (zh) * 2001-09-28 2005-01-05 钟渊化学工业株式会社 支架递送导管
US20070073310A1 (en) * 2005-09-29 2007-03-29 Cook Incorporated Method for joining medical devices
CN101234047A (zh) * 2008-01-14 2008-08-06 明一生物科技(上海)有限公司 一种用于颅内自扩张式支架输送器的推送鞘管
CN101933821A (zh) * 2009-06-30 2011-01-05 微创医疗器械(上海)有限公司 一种微导管
CN102038565A (zh) * 2010-12-17 2011-05-04 北京有色金属研究总院 新型大血管支架放送系统
CN102379761A (zh) * 2011-08-25 2012-03-21 微创医疗器械(上海)有限公司 一种支架输送装置

Also Published As

Publication number Publication date
CN102379761A (zh) 2012-03-21

Similar Documents

Publication Publication Date Title
WO2013026419A1 (zh) 一种支架输送装置
US11654259B2 (en) Microcatheter
JP3217806U (ja) 先端とバルーンの間にフレキシブルな接続部が設けられたバルーンカテーテル
US11872354B2 (en) Flexible catheter shaft frame with seam
JP5751619B2 (ja) ステント
JP5769992B2 (ja) カテーテル
WO2011000264A1 (zh) 一种微导管
JP2017533012A (ja) 累加柔軟性カテーテル支持フレーム
JP6679729B2 (ja) 補強材付きポリマーカテーテルシャフト
JP4790349B2 (ja) カテーテル
JP6125806B2 (ja) カテーテル
CN104707235A (zh) 一种新型微导管
KR20210128509A (ko) 대형 루멘 안내 카테터
JP2010042115A (ja) 柔軟性が変化する医療用チューブ
JPWO2008056625A1 (ja) 医療用カテーテルチューブ
CN116407345A (zh) 介入医疗器械输送系统
JP5736472B1 (ja) 医療用ガイドワイヤ
JP5964063B2 (ja) カテーテル
CN106823102A (zh) 一种双丝编织血管造影导管
WO2022166539A1 (zh) 一种导管加强层和导管
JP2023053999A (ja) カテーテルおよびその製造方法
JP6960402B2 (ja) 介入ガイドカテーテル
CN211584832U (zh) 远端通路导管
JP6057584B2 (ja) 自己拡張型ステントデリバリーシステムとその製造方法
CN114870200A (zh) 一种导管加强层和导管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12826428

Country of ref document: EP

Kind code of ref document: A1