WO2013021933A1 - 照明装置、表示装置、及びテレビ受信装置 - Google Patents

照明装置、表示装置、及びテレビ受信装置 Download PDF

Info

Publication number
WO2013021933A1
WO2013021933A1 PCT/JP2012/069810 JP2012069810W WO2013021933A1 WO 2013021933 A1 WO2013021933 A1 WO 2013021933A1 JP 2012069810 W JP2012069810 W JP 2012069810W WO 2013021933 A1 WO2013021933 A1 WO 2013021933A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
led
chassis
substrate
Prior art date
Application number
PCT/JP2012/069810
Other languages
English (en)
French (fr)
Inventor
真之助 野澤
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013021933A1 publication Critical patent/WO2013021933A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors

Definitions

  • the present invention relates to a lighting device, a display device, and a television receiver.
  • image display devices such as television receivers are shifting from conventional cathode ray tubes to thin display devices to which thin display elements such as liquid crystal panels and plasma display panels are applied.
  • liquid crystal panel When a liquid crystal panel is used as the display element, the liquid crystal panel does not emit light, and thus a backlight device is separately required as a lighting device.
  • Patent Document 1 discloses a backlight device that includes an LED mounted on a surface of a mounting substrate as a light source, and the surface of the mounting substrate is covered with a light reflecting member.
  • the light reflecting member is made of a material obtained by further adding a high light reflecting material having a high light reflectance to a white solder resist, and is obtained by printing and applying the material onto the mounting surface of the mounting substrate.
  • a backlight device it is possible to suppress the absorption of light on the surface of the mounting substrate, and to improve the luminance and reduce the occurrence of luminance unevenness.
  • the current value for driving the LED is changed, and the luminance of the LED arranged on the end side of the backlight device is changed to that of the LED arranged on the central side. It can be considered to be relatively higher than the luminance.
  • a method requires special electrical control, and a simpler method is required.
  • the present invention has been completed based on the above situation, and aims to make the luminance uniform with a simple configuration.
  • an illumination device includes a light source, a light source board on which the light source is mounted, a chassis on which the light source board is disposed, and the light source among the light source boards.
  • the reflective layer is formed so that the thickness of the reflection layer is relatively thinner than the portion located on the end side of the chassis, in the portion located on the center side from the portion located on the end side.
  • the light reflectance on the central portion side of the chassis can be lower than that on the end portion side, and conversely, the light reflectance on the end portion side of the chassis can be made higher than that on the central portion side. For this reason, even when a region where the light source cannot be arranged on the end side of the chassis occurs, the luminance on the end side of the chassis can be relatively high, and the luminance of the lighting device can be increased. It can be made uniform.
  • the reflective layer may be made of a white solder resist.
  • the lens member diffuses light
  • the lens member is disposed on a plate surface on which the light source of the light source substrate is mounted, and covers a light emitting side of the light source
  • the reflective layer includes at least the reflection layer It may be formed in a portion overlapping with the lens member.
  • the reflective layer is formed at least in a portion overlapping with the lens member, the light reflected by the reflective layer enters the lens member, and a part thereof is in the end direction of the light emitting portion.
  • the luminance at the end of the light emitting part can be made relatively higher.
  • the reflection sheet reflects light, and has an opening that is larger than the outer shape of the lens member.
  • the lens member is inserted through the opening, and the light source of the light source substrate is mounted.
  • a reflective sheet disposed on the plate surface, and the reflective layer may be formed at least in a portion overlapping the opening.
  • the reflection sheet the light is efficiently reflected on the light emitting surface side, and the reflection layer is formed at least in a portion overlapping with the opening of the reflection sheet. Therefore, the light entering the opening is reflected.
  • the light can be reflected by the layer, and the luminance of the end portion of the light emitting portion can be further increased.
  • the said structure WHEREIN has at least the 1st light source substrate distribute
  • the said light source substrate formed in the said 1st light source substrate may be thinner than the thickness of the reflective layer.
  • the thickness of the reflective layer is made different for each light source substrate in this way, the thickness of the reflective layer can be easily made different between the end portion side and the central portion side of the chassis.
  • the chassis has a rectangular bottom plate, the first light source substrate and the second light source substrate have a strip shape, and the long side of the bottom plate extends along the longitudinal direction of the strip shape. , Each of which can be arranged on the bottom plate surface in parallel with the strip-like short direction.
  • the first light source substrate can be disposed in the vicinity of the long side of the bottom plate, and the luminance on the long side of the bottom plate in the light emitting portion is relatively high. it can.
  • the chassis has a rectangular bottom plate
  • the first light source substrate and the second light source substrate have a strip shape
  • the longitudinal direction of the strip shape extends along the short side of the bottom plate.
  • Each of which can be arranged on the bottom plate surface in parallel with the strip-like short direction.
  • the first light source substrate can be disposed close to the short side of the bottom plate, and the luminance on the short side of the bottom plate in the light emitting portion is relatively high. it can.
  • one or a plurality of the second light source substrates are arranged in a row, and among the second light source substrates arranged in the row, the center side is closer to the layer thickness on the end side of the row. It can be assumed that the layer thickness is formed thin.
  • the layer thickness on the center side is thinner than the layer thickness on the end side of the row, so the luminance on the end side is reduced. It can be made relatively high, and the luminance on the side where the end side of the light emitting part is arranged can be made relatively high.
  • a light guide member having a light incident surface provided on a side surface and a light emitting surface provided on one plate surface, and the light emitted from the light source is incident on the light incident surface
  • a light guide member that is emitted from the light exit surface, and the light source substrate is disposed with a plate surface on which the light source is mounted facing the light incident surface of the light guide member. It can be.
  • the light source substrate is disposed with the plate surface on which the light source is mounted facing the light incident surface of the light guide member, so that the light reflected by the reflective layer enters the light guide member.
  • the brightness of the light emitting part can be made uniform.
  • the reflective layer may have a thickness of 5 ⁇ m or more and 30 ⁇ m or less at a portion located on the center side.
  • the thickness of the reflective layer in the portion located on the central portion side of the chassis is 5 ⁇ m or more, the substrate can be sufficiently protected in the portion located on the central portion side. Moreover, since the layer thickness of the reflective layer in the portion located on the central portion side is 30 ⁇ m or less, the reflectance of the portion located on the end portion side and the portion located on the central portion side can be easily set.
  • the said structure WHEREIN has the light-projection part which radiate
  • a diffusion plate having a function of diffusing the light, and an optical sheet having at least one of a function of condensing the light transmitted through the diffusion plate and a function of diffusing the light transmitted through the diffusion plate Can be.
  • the light emitted from the light emitting portion of the chassis is transmitted through the diffusion plate and the optical sheet, and the luminance of the illumination device can be made even more uniform.
  • the light source may include a light emitting diode.
  • a display device of the present invention includes the above-described illumination device and a display panel that performs display using light from the illumination device.
  • a liquid crystal panel can be exemplified as the display panel.
  • Such a display device can be applied as a liquid crystal display device to various uses such as a display of a television or a personal computer, and is particularly suitable for a large screen.
  • the invention's effect ADVANTAGE OF THE INVENTION
  • the illuminating device which can make a brightness
  • FIG. 1 is an exploded perspective view showing a schematic configuration of a television receiver according to Embodiment 1 of the present invention.
  • the exploded perspective view which shows schematic structure of the liquid crystal display device with which a television receiver is equipped
  • the top view which shows the arrangement configuration of the LED board in the chassis with which a liquid crystal display device is equipped, and a diffusion member Sectional view taken along line iv-iv in FIG. 3 in the liquid crystal display device
  • FIG. 3 is a cross-sectional view taken along the line v-v in FIG.
  • the top view which shows the arrangement configuration of a 1st LED board and a 2nd LED board (it abbreviate
  • the top view which shows the 2nd LED board distribute
  • FIG. 7 is an exploded perspective view illustrating a schematic configuration of a liquid crystal display device included in a television receiver according to a sixth embodiment. Sectional view showing the liquid crystal display device cut in the short side direction Plan view of LED board The graph which shows typically the film thickness of the LED substrate of FIG.
  • FIGS. 1 A first embodiment of the present invention will be described with reference to FIGS.
  • the liquid crystal display device 10 is illustrated.
  • a part of each drawing shows an X-axis, a Y-axis, and a Z-axis, and the directions of the axes are drawn in common directions in the drawings.
  • the upper side shown in FIG.4 and FIG.5 be a front side, and let the lower side of the figure be a back side.
  • the television receiver TV includes a liquid crystal display device 10, front and back cabinets Ca and Cb that are accommodated so as to sandwich the liquid crystal display device 10, a power source P, a tuner T, And a stand S.
  • the liquid crystal display device (display device) 10 has a horizontally long rectangular shape (rectangular shape) as a whole and is accommodated in a vertically placed state.
  • the liquid crystal display device 10 includes a liquid crystal panel 11 that is a display panel and a backlight device (illumination device) 12 that is an external light source, which are integrated by a frame-like bezel 13 or the like. Is supposed to be retained.
  • the liquid crystal panel 11 and the backlight device 12 constituting the liquid crystal display device 10 will be described.
  • the liquid crystal panel (display panel) 11 has a rectangular shape in plan view, and a pair of glass substrates are bonded together with a predetermined gap therebetween, and liquid crystal is sealed between the glass substrates. It is said.
  • One glass substrate is provided with a switching element (for example, TFT) connected to a source wiring and a gate wiring orthogonal to each other, a pixel electrode connected to the switching element, an alignment film, and the like.
  • the substrate is provided with a color filter and counter electrodes in which colored portions such as R (red), G (green), and B (blue) are arranged in a predetermined arrangement, and an alignment film.
  • a polarizing plate is disposed on the outside of both substrates.
  • the backlight device 12 has a substantially box-shaped chassis 14 having an opening 14b (light emitting portion) for emitting light from a light source on the light emitting portion 12a side (liquid crystal panel 11 side). And an optical member 15 group (a diffusing plate 15 a and a plurality of optical sheets 15 b arranged between the diffusing plate 15 a and the liquid crystal panel 11) arranged so as to cover the opening 14 b of the chassis 14, A frame 16 is provided along the outer edge portion and holds the outer edge portion of the group of optical members 15 between the chassis 14 and the frame 16. Further, in the chassis 14, as shown in FIGS.
  • an LED 17 Light Emitting ⁇ Diode
  • an LED substrate 18 light source substrate
  • an LED substrate 18 A diffusion lens 19 (lens member) attached at a position corresponding to the LED 17
  • the chassis 14 includes a holding member 20 that can hold the LED board 18 between the chassis 14 and a reflection sheet 21 that reflects light in the chassis 14 toward the optical member 15.
  • the optical member 15 side is closer to the light emitting portion 12 a side than the LED 17. Below, each component of the backlight apparatus 12 is demonstrated.
  • the chassis 14 is made of metal and, as shown in FIGS. 3 to 5, has a rectangular bottom plate 14a similar to the liquid crystal panel 11, a side plate 14c rising from an outer end of each side of the bottom plate 14a, and each side plate 14c. And a receiving plate 14d projecting outward from the rising edge, and as a whole, has a shallow substantially box shape (substantially shallow dish shape) opened toward the front side.
  • the long side direction of the chassis 14 matches the X-axis direction, and the short side direction matches the Y-axis direction.
  • a frame 16 and an optical member 15 to be described below can be placed on each receiving plate 14d in the chassis 14 from the front side.
  • the frame 16 is screwed to the receiving plate 14d.
  • an attachment hole for attaching the holding member 20 is provided in the bottom plate 14a of the chassis 14 so as to open.
  • the optical member 15 has a horizontally long rectangular shape (rectangular shape) in a plan view, like the liquid crystal panel 11 and the chassis 14. As shown in FIGS. 4 and 5, the optical member 15 has its outer edge portion placed on the receiving plate 14 d so as to cover the opening 14 b of the chassis 14 and be interposed between the liquid crystal panel 11 and the LED 17. Arranged.
  • the optical member 15 includes a diffusion plate 15a disposed on the back side (the side opposite to the LED 17 side and the light emitting unit 12a side), and an optical sheet 15b disposed on the front side (the liquid crystal panel 11 side and the light emitting unit 12a side).
  • Consists of The diffusing plate 15a has a structure in which a large number of diffusing particles are dispersed in a substantially transparent resin base material having a predetermined thickness, and has a function of diffusing transmitted light.
  • the optical sheet 15b has a sheet shape that is thinner than the diffusion plate 15a, and two optical sheets 15b are laminated. Specific types of the optical sheet 15b include, for example, a diffusion sheet, a lens sheet, a reflective polarizing sheet, and the like, which can be appropriately selected and used.
  • the frame 16 has a frame shape along the outer peripheral edge portions of the liquid crystal panel 11 and the optical member 15. An outer edge portion of the optical member 15 can be sandwiched between the frame 16 and each receiving plate 14d (FIGS. 4 and 5).
  • the frame 16 can receive the outer edge portion of the liquid crystal panel 11 from the back side, and can sandwich the outer edge portion of the liquid crystal panel 11 with the bezel 13 disposed on the front side (FIGS. 4 and 5). ).
  • the LED 17 has a configuration in which an LED chip is sealed with a resin material on a substrate portion fixed to the LED substrate 18.
  • the LED chip mounted on the substrate unit has one main emission wavelength, and specifically, one that emits blue light in a single color is used.
  • a phosphor that converts blue light emitted from the LED chip into white light is dispersed and blended in the resin material for sealing the LED chip.
  • the LED 17 can emit white light.
  • the LED 17 is a so-called top type in which a surface opposite to the mounting surface with respect to the LED substrate 18 is a light emitting surface 17a.
  • the optical axis LA of the LED 17 is set to substantially coincide with the Z-axis direction (direction orthogonal to the main plate surfaces of the liquid crystal panel 11 and the optical member 15). Note that the light emitted from the LED 17 spreads radially to some extent within a predetermined angle range around the optical axis LA, but its directivity is higher than that of a cold cathode tube or the like. That is, the emission intensity of the LED 17 shows an angular distribution that tends to decrease as the direction along the optical axis LA is high and the tilt angle with respect to the optical axis LA increases.
  • the LED substrate 18 includes a base material 30 that is rectangular (strip-shaped) in plan view, and the long side direction is the X-axis direction (the bottom plate 14 a of the chassis 14 is (Long side direction) and the short side direction matches the Y-axis direction (short side direction of the bottom plate 14a of the chassis 14) and is accommodated while extending along the bottom plate 14a in the chassis 14 (see FIG. 3 to 5).
  • the substrate 30 of the LED substrate 18 is made of a metal such as an aluminum material same as the chassis 14, and a pattern wiring 31 made of a metal film such as a copper foil is formed on the surface of the substrate 30 via an insulating layer (not shown). Is done.
  • the pattern wiring 31 is disposed on the side of the plate surface 18b (the plate surface on which the light source is mounted) on which the LED 17 is mounted, and is electrically connected to the LED 17. Further, a white solder resist layer 32 (reflection layer) for protecting the wiring is laminated on the surface of the pattern wiring 31. The solder resist layer 32 will be described in detail later.
  • a plurality of LEDs 17 are linearly arranged in parallel along the long side direction (X-axis direction) of the LED substrate 18, and are connected in series by a pattern wiring 31 formed on the LED substrate 18.
  • the arrangement pitch of the LEDs 17 is substantially constant, that is, the LEDs 17 are arranged at equal intervals.
  • the connector part 18a is provided in the both ends of the long side direction in the LED board 18. As shown in FIG.
  • the LED substrate 18 having the above-described configuration is arranged in parallel in the chassis 14 in a state where the long side direction and the short side direction are aligned with each other in the X-axis direction and the Y-axis direction. ing. That is, the LED board 18 and the LED 17 mounted thereon are both set in the X-axis direction (the long side direction of the chassis 14 and the LED board 18) in the chassis 14 and in the Y-axis direction (of the chassis 14 and the LED board 18). Matrix arrangement (arranged in a matrix) with the short side direction as the column direction.
  • a total of 27 LED substrates 18 are arranged in parallel in the chassis 14, three in the X-axis direction and nine in the Y-axis direction.
  • two types of LED substrates 18 having different long side dimensions and the number of mounted LEDs 17 are used.
  • the LED substrate 18 six LEDs 17 are mounted, and the long side dimension is a relatively long six-part mounting type and the five LEDs 17 are mounted, and the long side dimension is relatively long.
  • the short five-mount type is used, one for the six-mount type at the X-axis direction end position of the chassis 14 and one for the five-mount type at the central position in the same direction. , Each is arranged.
  • the LED boards 18 that form one row along the X-axis direction are electrically connected to each other by fitting and connecting the adjacent connector portions 18a to each other.
  • Connector portions 18a corresponding to both ends in the X-axis direction are electrically connected to external control circuits (not shown).
  • the LEDs 17 arranged on the LED boards 18 in one row are connected in series, and the lighting / extinction of a large number of LEDs 17 included in the row is collectively controlled by a single control circuit. be able to.
  • the short side dimension and the arrangement pitch of LED17 are made substantially the same.
  • the diffusing lens 19 is made of a synthetic resin material (for example, polycarbonate or acrylic) that is almost transparent (having high translucency) and has a refractive index higher than that of air. As shown in FIGS. 6 and 7, the diffusing lens 19 is formed in a substantially circular shape when seen in a plan view, and covers each LED 17 individually from the front side with respect to the LED substrate 18, that is, as seen in a plan view. Each is attached so as to overlap with the LED 17. The diffusing lens 19 can emit light having strong directivity emitted from the LED 17 while diffusing. Thereby, it is possible to reduce the number of installed LEDs 17. The diffusing lens 19 is disposed at a position that is substantially concentric with the LED 17 in a plan view.
  • a synthetic resin material for example, polycarbonate or acrylic
  • the diffuser lens 19 is sufficiently larger in both the X-axis direction and the Y-axis direction than the LED 17.
  • the diffusing lens 19 has dimensions smaller than the LED substrate 18 in the X-axis direction and the Y-axis direction. Therefore, the LED substrate 18 is disposed in a region overlapping with the diffusing lens 19 in the Z-axis direction.
  • a surface facing the LED substrate 18 is a light incident surface 19a on which light from the LED 17 is incident, whereas a surface facing the optical member 15 is a light emitting surface 19b that emits light. It is said.
  • the light incident surface 19a is parallel to the plate surface 18b of the LED substrate 18 as a whole.
  • the light incident side 19a overlaps with the LED 17 when seen in a plan view.
  • the recess 19c is formed to have an inclined surface.
  • the light incident side concave portion 19c has a substantially conical shape and is disposed at a substantially concentric position in the diffusing lens 19, and is open toward the back side, that is, the LED 17 side.
  • the light incident side concave portion 19c has a substantially inverted V-shaped cross section, and its peripheral surface is an inclined surface inclined with respect to the Z-axis direction. Therefore, the light emitted from the LED 17 and entering the light incident side concave portion 19c enters the diffusion lens 19 through the inclined surface, but at that time, the amount of the inclination angle of the inclined surface with respect to the optical axis LA is as follows. The light is refracted in a direction away from the center, that is, a wide angle, and enters the diffusing lens 19.
  • the diffusing lens 19 is provided with mounting legs 19 d that project toward the LED substrate 18 and that serve as a structure for attaching the diffusing lens 19 to the LED substrate 18.
  • Three attachment legs 19d are arranged in the diffuser lens 19 at positions closer to the outer peripheral end than the light incident side recess 19c, and the lines connecting the attachments form a substantially equilateral triangle when viewed in a plane. Arranged in position.
  • Each mounting leg 19d has its tip fixed to the LED substrate 18 with an adhesive or the like.
  • the diffusing lens 19 is fixed to the LED substrate 18 via the mounting leg portion 19d, so that a predetermined gap is formed between the light incident surface 19a and the LED substrate 18. In this gap, incidence of light from a space outside the diffusion lens 19 in a plan view is allowed.
  • the light exit surface 19b of the diffusion lens 19 is formed in a flat and substantially spherical shape.
  • the light emitted from the diffusing lens 19 can be emitted while being refracted in a direction away from the center at the interface with the external air layer, that is, a wide angle.
  • a light emitting side recess 19e is formed in a region of the light emitting surface 19b that overlaps the LED 17 when seen in a plan view.
  • the light emitting side concave portion 19e has a substantially bowl shape, and is formed in a flat and substantially spherical shape with a peripheral surface having a downward slope toward the center.
  • the angle formed by the tangent of the peripheral surface of the light exit side recess 19e with respect to the optical axis LA of the LED 17 is relatively larger than the angle formed by the inclined surface of the light incident side recess 19c with respect to the optical axis LA. It is said.
  • a light emission side recess 19e in a region of the light emission surface 19b that overlaps the LED 17 when viewed in plan, much of the light from the LED 17 is emitted while being refracted at a wide angle, or one of the light from the LED 17 is The portion can be reflected to the LED substrate 18 side.
  • the reflection sheet 21 is made of a synthetic resin, and the surface of the reflection sheet 21 is white with excellent light reflectivity. As shown in FIG. 3, the reflection sheet 21 has a size that is laid over almost the entire inner surface of the chassis 14, so that all the LED boards 18 that are arranged in parallel in the chassis 14 are collectively displayed from the front side. And can be covered. The reflection sheet 21 can efficiently raise the light in the chassis 14 toward the optical member 15 side.
  • the reflection sheet 21 extends along the bottom plate 14a of the chassis 14 and covers a large portion of the bottom plate 14a.
  • the reflection sheet 21 rises from each outer end of the bottom portion 21a to the front side and is inclined with respect to the bottom portion 21a.
  • the four rising portions 21b and the extending portions 21c that extend outward from the outer ends of the respective rising portions 21b and are placed on the receiving plate 14d of the chassis 14 are configured.
  • the bottom 21a of the reflection sheet 21 is disposed so as to overlap the front side with respect to the plate surface 18b on which the LEDs 17 of each LED board 18 are mounted.
  • a lens insertion hole 21d (opening) through which each diffusion lens 19 is inserted is provided in the bottom portion 21a of the reflection sheet 21 at a position overlapping with each diffusion lens 19 (each LED 17) in plan view.
  • the lens insertion holes 21 d are individually inserted through the respective diffusion lenses 19, and are arranged in a matrix of 9 rows and 17 columns on the bottom 21 a of the reflection sheet 21 in the same manner as the LEDs 17.
  • the lens insertion hole 21 d has a circular shape when seen in a plan view, and its diameter is set to be larger than that of the diffusing lens 19.
  • each diffusing lens 19 can be surely passed through each lens insertion hole 21 d regardless of the presence or absence of a dimensional error.
  • the diameter dimension of the lens insertion hole 21 d is set to be smaller than the short side dimension of the LED substrate 18.
  • the holding member 20 holds the LED substrate 18 and also has a holding member 20B having a support portion 27 that supports the optical member 15, and a holding member that holds the LED substrate 18 but does not have the support portion 27 that supports the optical member 15.
  • This support portion 27 can support the optical member 15 (directly the diffusion plate 15a) from the back side, thereby maintaining a constant positional relationship between the LED 17 and the optical member 15 in the Z-axis direction. And inadvertent deformation of the optical member 15 can be restricted.
  • the solder resist layer 32 is obtained by printing and applying a white solder resist having a light reflectivity superior to that of a commonly used green solder resist to a predetermined thickness. As shown in FIG. 9, the solder resist layer 32 is provided over substantially the entire surface of the base material 30 and the pattern wiring 31 of the LED substrate 18 except for the portion where the LEDs 17 are mounted. That is, the solder resist layer 32 is formed in a portion overlapping the diffusing lens 19 as shown in FIG. The solder resist layer 32 faces the light incident surface 19a of the diffusion lens 19 in the Z-axis direction, and is located between the diffusion lens 19 and the base material 30 of the LED substrate 18.
  • the solder resist layer 32 is formed on the entire portion overlapping with the opening of the lens insertion hole 21 d of the reflection sheet 21 except for a portion where the LED 17 is mounted in a plan view. Thereby, the solder resist layer 32 is exposed at the opening of the lens insertion hole 21d, and the chassis 14, the base material 30 of the LED substrate 18 or the pattern wiring 31 is hardly exposed.
  • the layer thickness of the solder resist layer 32 is 5 ⁇ m or more in order to sufficiently protect the pattern wiring 31 from external impacts and corrosive substances. Further, as shown in FIG. 11, it is known that the thickness of the solder resist layer 32 is at least in the range from 5 ⁇ m to 30 ⁇ m, and the light reflectance increases as the layer thickness increases, and from 5 ⁇ m to 25 ⁇ m. It is known that the tendency is remarkable in the range of.
  • the light reflectance of the solder resist layer 32 is an average light reflectance within the measurement diameter measured by CM-700d manufactured by Konica Minolta. In this embodiment, the thickness of the solder resist layer 32 is measured by a film thickness meter DUALSCOPE MPOR-FP manufactured by Fischer.
  • the one to be used is the first LED substrate 34 (first light source substrate).
  • the second LED boards 35 those located closer to the center of the chassis 14 than the first LED board 34 are the second LED boards 35 (second light source boards).
  • the layer thickness of the solder resist layer 32 in the first LED substrate 34 is substantially uniform over the substrate surface, and is 30 ⁇ m, and its light reflectance is about 90%.
  • the layer thickness of the solder resist layer 32 in the second LED substrate 35 is substantially uniform over the substrate surface and is 15 ⁇ m, and its light reflectance is about 83%. That is, the layer thickness of the second LED substrate 35 is relatively thinner than the layer thickness of the first LED substrate 34, and the light reflectance of the first LED substrate 34 is relatively larger than the light reflectance of the second LED substrate 35. It is considered expensive.
  • the layer thickness of the second LED substrate 35 is preferably set to a thickness of 5 ⁇ m to 30 ⁇ m in designing the light reflectance of the LED substrate 18, and is set to a thickness of 5 ⁇ m to 25 ⁇ m. More preferably.
  • the solder resist layer 32 is exposed from the lens insertion holes 21 d arranged in a matrix of 9 rows and 17 columns in the backlight device 12.
  • the solder resist layers 32 arranged on the first LED substrate 34 are located on both ends of the short side direction (Y-axis direction) of the chassis 14 in plan view among the lens insertion holes 21d arranged in a matrix. It will be exposed from the lens insertion hole 21d located in the eye and the ninth row.
  • the solder resist layer 32 disposed on the second LED substrate 35 is exposed from the lens insertion holes 21d located in the second to eighth rows of the lens insertion holes 21d arranged in a matrix. That is, the solder resist layers 32 arranged on the first LED substrate 34 are dotted along the long side of the chassis 14 and in the vicinity thereof.
  • each LED 17 provided in the backlight device 12 is turned on and an image signal is supplied to the liquid crystal panel 11. Thereby, a predetermined image is displayed on the display surface of the liquid crystal panel 11.
  • the light emitted as each LED 17 is turned on first enters the light incident surface 19 a of the diffusing lens 19. At this time, most of the light is incident on the inclined surface of the light incident side recess 19c in the light incident surface 19a, so that the light enters the diffusing lens 19 while being refracted at a wide angle according to the inclination angle.
  • the incident light propagates through the diffusing lens 19 and then exits from the light exit surface 19b.
  • the light exit surface 19b has a flat, substantially spherical shape, an external air layer is formed. Light is emitted while being refracted at a wider angle at the interface.
  • a light emitting side concave portion 19e having a substantially bowl shape is formed, and the peripheral surface has a flat and substantially spherical shape. Light can be emitted while being refracted at a wide angle on the peripheral surface of the light emitting side recess 19e, or reflected to the LED substrate 18 side.
  • Part of the light emitted from the diffusing lens 19 is emitted to the light emitting unit 12a side (the liquid crystal panel 11 side) of the backlight device 12 via the optical member 15.
  • a part of the light emitted from the diffusing lens 19 is directed toward the reflection sheet 21 or the solder resist layer 32 and is reflected by the reflection sheet 21 or the solder resist layer 32, and again, the light emission part 12a side (liquid crystal Panel 11 side).
  • the backlight device 12 of the present embodiment includes the LED 17, the LED board 18 on which the LED 17 is mounted, the chassis 14 on which the LED board 18 is disposed, and the LED 17 among the LED boards 18.
  • the layer thickness of the solder resist layer 32 is located closer to the center than the portion located on both ends in the short side direction (Y-axis direction) of the chassis 14. Since the light reflection rate at the central portion side of the chassis is lower than that at the end portion side, the light reflection at both end portions in the short side direction (Y-axis direction) of the chassis 14 is reversed. The rate can be made higher than the center side. For this reason, even when the area
  • the backlight device 12 when the backlight device 12 is viewed from the light emitting portion 12a side, the rising portion 21b of the reflection sheet 21 is formed in a region overlapping with both ends of the light emitting portion 12a in the Y-axis direction, as shown in FIG. It is arranged, LED17 is not arranged. On the other hand, an LED 17 is disposed immediately below the region overlapping the central portion of the light emitting portion 12a in the Y-axis direction. For this reason, even if the light emitted from the LED 17 is diffused by the diffusing lens 19 in the backlight device 12, the amount of light directed toward both ends in the Y-axis direction of the light emitting portion 12a is small. In particular, backlight devices in recent years tend to be thin and have a narrow frame.
  • the first row and the ninth row are located at both ends in the short side direction (Y-axis direction) of the chassis 14 in plan view.
  • the solder resist layer 32 with a light reflectance of about 90% is exposed in the lens insertion hole 21d, and the solder resist layer 32 with a light reflectance of about 83% is exposed in the lens insertion hole 21d located in the second to eighth rows. is doing.
  • the amount of light reflected by the solder resist layer 32 located on both ends of the short side direction (Y-axis direction) of the chassis 14 is changed to the amount of light reflected by the solder resist layer 32 located on the center side of the chassis 14.
  • the reflective layer provided on the LED substrate 18 is made of the white solder resist layer 32.
  • the solder resist layer 32 necessary for ensuring the insulation of the substrate can be used as the reflective layer, the configuration is simple and the manufacturing cost can be reduced.
  • the solder resist layer 32 is formed at least in a portion overlapping with the diffusing lens 19. For this reason, the light reflected by the solder resist layer 32 enters the diffusing lens 19, and a part thereof is diffused toward both ends in the Y-axis direction of the light emitting portion 12a of the backlight device 12, The luminance at the end of the light emitting part 12a can be further improved.
  • the solder resist layer 32 is formed at least in a portion overlapping with the lens insertion hole 21d of the reflection sheet 21. For this reason, the light that has entered the lens insertion hole 21d can be reflected by the solder resist layer 32, and the luminance of the end of the light emitting portion 12a can be further improved.
  • the LED substrate 18 includes a first LED substrate 34 and a second LED substrate 35, and is formed on the second LED substrate 35 based on the layer thickness of the solder resist layer 32 formed on the first LED substrate 34.
  • the solder resist layer 32 is formed to be thin.
  • the layer thickness of the solder resist layer 32 can be easily made different between the end portion side and the central portion side of the chassis 14.
  • the layer thickness of one board is generally made uniform within the plate surface.
  • the first LED substrate 34 and the second LED substrate 35 can be individually manufactured by a general method of forming the solder resist layer 32, and the configuration is simple and the manufacturing cost can be reduced.
  • the first LED substrate 34 and the second LED substrate 35 are formed in a strip shape, and the long side of the bottom plate 14a of the chassis 14 is along the longitudinal direction of the strip shape. It is arranged in parallel with the hand direction on the bottom plate 14a surface.
  • the 1st LED board 34 can be arrange
  • the change in luminance along the short side direction is more visible than the change in luminance along the long side direction.
  • luminance along a short side direction can be made uniform, and the brightness
  • the layer thickness of the second LED substrate 35 is set to 5 ⁇ m or more and 30 ⁇ m or less. For this reason, the layer thickness of the solder resist layer 32 of the 1st LED board 34 and the 2nd LED board 35 will be 5 micrometers or more, and a board
  • the diffusion plate 15a and the optical sheet 15b are provided, the light emitted from the opening 14b of the chassis 14 is transmitted through the diffusion plate 15a and the optical sheet 15b.
  • the luminance of the light emitting part 12a of the backlight device 12 can be made uniform.
  • the light source is the LED 17 and includes a light emitting diode, so that it is possible to increase the brightness.
  • Embodiment 2 A second embodiment of the present invention will be described with reference to FIGS.
  • the 2nd LED board 135 and the soldering resist layer 132 which changed the structure of the soldering resist layer 32 of the 2nd LED board 35 are shown.
  • the layer thickness of the solder resist layer 132 in the first LED substrate 34 is substantially uniform over the substrate surface, and is 30 ⁇ m, and its light reflectance is about 90%.
  • the layer thickness of the solder resist layer 132 in the second LED substrate 135 is such that the two second LED substrates 135 arranged in a line along the long side direction (X-axis direction) of the chassis 14 are on both ends of the line.
  • the end side portion 137 disposed on the central portion and the central portion side portion 138 disposed on the central portion side are different from each other.
  • the second LED board 135-2 and the second LED board 135-3 are arranged from the left in the arrangement order of the lines. These are called the second LED board 135-2 and the second LED board 135-3.
  • the end side portion 137 is located in the first column among the diffusion lenses 19 arranged in a matrix of 9 rows and 17 columns, and overlaps with the diffusion lens 19 located at the left end of the second LED substrate 135-1. The region is located in the row and overlaps with the diffusion lens 19 located at the right end of the second LED substrate 135-3. That is, the end portion side portion 137 is a portion adjacent to the short side of the chassis 14 in a state where the second LED substrate 135 is disposed on the chassis 14.
  • the center side portion 138 is a portion of the second LED substrate 135 excluding the end side portion 137. That is, the central portion 138 is an area overlapping with the diffusing lens 19 located in the 2nd to 16th rows, that is, a portion on the right side of the diffusing lens 19 adjacent to the diffusing lens 19 at the right end of the second LED substrate 135-1 And the entire second LED substrate 135-2 and a portion on the left side of the diffusion lens 19 adjacent to the diffusion lens 19 at the left end of the second LED substrate 135-3.
  • the layer thickness of the solder resist layer 132 on the second LED substrate 135 is such that the layer thickness of the central portion 138 is 15 ⁇ m, and the light reflectance is about 83%. That is, the layer thickness of the central side portion 138 of the second LED substrate 135 is relatively thinner than the layer thickness of the first LED substrate 34, and the light reflectance of the first LED substrate 34 is that of the second LED substrate 135. The light reflectance of the central portion 138 is relatively higher.
  • the layer thickness of the central side portion 138 of the second LED substrate 135 is preferably set to a thickness of 5 ⁇ m to 30 ⁇ m in designing the light reflectance of the LED substrate 18. More preferably, the thickness is set.
  • the layer thickness of the solder resist layer 132 on the second LED substrate 135 is such that the end portion 137 has a layer thickness of 30 ⁇ m, and its light reflectance is about 90%. That is, the layer thickness of the central side portion 138 of the second LED boards 135 arranged in a row is relatively thinner than the layer thickness of the end side portion 137, and the light reflection of the end side portion 137 is performed. The rate is relatively higher than the light reflectivity of the central portion 138.
  • the layer thickness and the light reflectance of the solder resist layer 32 of the second LED substrate 135-3 are the end portion 137 located on the right side and the center located on the left side. It changes with the part side part 138.
  • the end side part 137 is arranged on the left side and the center side part 138 is arranged on the right side symmetrically with the second LED board 135-3.
  • the solder resist is printed on the entire second LED boards 135-1 and 135-3 in the solder resist printing and coating process.
  • coating a soldering resist only to the edge part side part 137 shall be included. That is, the solder resist layer 132 can be easily formed by performing a so-called twice coating process.
  • solder resist layer 132 is exposed from the lens insertion holes 21 d arranged in a matrix of 9 rows and 17 columns in the backlight device 12.
  • Solder resist layers 132 arranged on the first LED substrate 34 are located at both ends in the short side direction (Y-axis direction) of the chassis 14 in plan view among the lens insertion holes 21d arranged in a matrix. It will be exposed from the lens insertion hole 21d located in the eye and the ninth row.
  • the solder resist layers 132 disposed on the end portion 137 of the second LED substrate 135 are located at both ends of the chassis 14 in the long side direction (X-axis direction) of the lens insertion holes 21d arranged in a matrix.
  • the solder resist layer 132 disposed on the central portion 138 of the second LED substrate 135 is positioned in the second to the 17th columns of the second to eighth rows of the lens insertion holes 21d arranged in a matrix. It is exposed from the lens insertion hole 21d. That is, the solder resist layer 132 disposed on the first LED substrate 34 and the solder resist layer 132 disposed on the end side portion 137 of the second LED substrate 135 are pointed along and close to the long side and the short side of the chassis 14. Will exist.
  • three second LED substrates 135 are arranged in a row, and among the second LED substrates 135 arranged in a row, the layer thickness of the central portion side portion 138 is larger than the layer thickness of the end portion portion 137. Thinly formed. For this reason, the luminance of the end portion 137 can be made relatively higher than that of the central portion 138, and the luminance on the short side of the bottom plate 14a of the chassis 14 in the light emitting portion 12a of the backlight device 12 can be reduced. It can be relatively high. That is, the brightness of the long side of the bottom plate 14a of the chassis 14 can be increased by the first LED board 34, and the brightness of the short side can be increased by the end portion portion 137 of the second LED board 135.
  • the luminance can be made relatively high over the entire circumference of the bottom plate 14a of the chassis 14. That is, the shortage of light amount toward the peripheral end portion of the light emitting portion 12 a can be supplemented by the light reflected by the solder resist layer 132.
  • Embodiment 3 of the present invention will be described with reference to FIG.
  • the 1st LED board 234 and the 2nd LED board 235 which changed the arrangement configuration of the 1st LED board 34 and the 2nd LED board 35 are shown.
  • the LED substrate 18 has a base material 30 that has a rectangular shape (strip shape) in plan view, and the long side direction is the Y-axis direction (the short side direction of the bottom plate 14 a of the chassis 14). ) And the short side direction coincides with the X-axis direction (long side direction of the bottom plate 14a of the chassis 14) and is accommodated while extending along the bottom plate 14a in the chassis 14.
  • a plurality of LED substrates 18 are arranged in parallel in the chassis 14 in the X-axis direction with the long side direction and the short side direction aligned with each other.
  • the LED boards 18 are arranged in parallel with the X-axis direction aligned with the alignment direction, and the LEDs 17 mounted on the LED boards 18 are arranged in the X-axis direction (the long side direction of the chassis 14 and the LED board 18 in the chassis 14).
  • the short side direction is a row direction
  • the Y-axis direction (the short side direction of the chassis 14 and the long side direction of the LED substrate 18) is a column direction (arranged in a matrix).
  • the LED boards 18 are arranged in parallel in the chassis 14, 17 in the X-axis direction and 1 in the Y-axis direction.
  • the LED substrate 18 is a type on which nine LEDs 17 are mounted.
  • the LED boards 18 are positioned on the first and the 17th board in the parallel arrangement of the LED boards 18, that is, positioned on both ends in the long side direction of the chassis 14. This is the first LED substrate 234 (first light source substrate).
  • the first LED substrate 234 first light source substrate
  • the second LED board 235 second light source board
  • the layer thickness of the solder resist layer 232 in the first LED substrate 234 is substantially uniform over the substrate surface and is 30 ⁇ m, and its light reflectance is about 90%.
  • the layer thickness of the solder resist layer 232 in the second LED substrate 235 is substantially uniform over the substrate surface, being 15 ⁇ m, and its light reflectance is about 83%. That is, the layer thickness of the second LED substrate 235 is relatively thinner than the layer thickness of the first LED substrate 234, and the light reflectance of the first LED substrate 234 is relatively larger than the light reflectance of the second LED substrate 235. It is considered expensive.
  • the layer thickness of the second LED substrate 235 is preferably set to a thickness of 5 ⁇ m to 30 ⁇ m in designing the light reflectance of the LED substrate 18, and is set to a thickness of 5 ⁇ m to 25 ⁇ m. More preferably.
  • the solder resist layer 232 is exposed from the lens insertion holes 21 d arranged in a matrix of 9 rows and 17 columns in the backlight device 12.
  • the solder resist layer 232 disposed on the first LED substrate 234 is one row located at both ends of the long side direction (X-axis direction) of the chassis 14 in plan view among the lens insertion holes 21d arranged in a matrix. It will be exposed from the lens insertion hole 21d located in the eye and the 17th row.
  • the solder resist layer 232 disposed on the second LED substrate 235 is exposed from the lens insertion holes 21d located in the second to sixteenth rows among the lens insertion holes 21d arranged in a matrix. That is, the solder resist layer 232 disposed on the first LED substrate 234 is dotted along the short side of the chassis 14 and in proximity thereto.
  • the first LED substrate 234 and the second LED substrate 235 are formed in a strip shape, and the short side of the bottom plate 14a of the chassis 14 extends along the longitudinal direction of the strip shape. Parallel to the bottom plate surface. For this reason, the 1st LED board 234 can be arrange
  • Embodiment 4 A fourth embodiment of the present invention will be described with reference to FIG.
  • the 2nd LED board 335 and the soldering resist layer 332 which changed the structure of the soldering resist layer 232 of the 2nd LED board 235 of Embodiment 3 are shown.
  • action, and effect similar to above-described embodiment is abbreviate
  • 17 LED boards 18 on which nine LEDs 17 are mounted are arranged in parallel.
  • the LED boards 18 positioned on the first and 17th boards in the parallel arrangement that is, positioned on both ends in the long side direction of the chassis 14. This is the first LED substrate 334 (first light source substrate).
  • the one located between the second and 16th boards, that is, the one located closer to the center of the chassis 14 than the first LED board 334 is the second LED board 335 (second light source board).
  • the layer thickness of the solder resist layer 332 on the first LED substrate 334 is substantially uniform over the substrate surface, and is 30 ⁇ m, and its light reflectance is about 90%.
  • the layer thickness of the solder resist layer 332 in the second LED substrate 335 is the same as that of the second LED substrate 335 arranged along the long side direction in the short side direction (Y-axis direction) of the chassis 14.
  • the end portion side portion 337 disposed on both end sides is different from the central portion side portion 338 disposed on the center portion side.
  • the end portion 337 is located in the first row of the diffusion lenses 19 arranged in a matrix of 9 rows and 17 columns, and overlaps with the diffusion lens 19 located at the upper end of the second LED substrate 335, and the ninth row.
  • the region overlaps with the diffusion lens 19 located at the lower end of the second LED substrate 335. That is, the end portion 337 is a portion adjacent to the long side of the chassis 14 in a state where the second LED substrate 335 is disposed on the chassis 14.
  • the central portion side portion 338 is a portion of the second LED substrate 335 excluding the end portion side portion 337.
  • the central portion 338 has a region overlapping with the diffuser lens 19 located in the second to eighth rows, that is, from the diffuser lens 19 adjacent to the diffuser lens 19 at the upper end of the second LED substrate 335, to the second LED substrate 335. It is a part to the diffuser lens 19 adjacent to the diffuser lens 19 at the lower end.
  • the layer thickness of the solder resist layer 332 in the second LED substrate 335 is such that the thickness of the central side portion 338 is 15 ⁇ m, and the light reflectance is about 83%. That is, the layer thickness of the central portion side portion 338 of the second LED substrate 335 is relatively thinner than the layer thickness of the first LED substrate 334, and the light reflectance of the first LED substrate 334 is lower than that of the second LED substrate 335. The light reflectance of the center side portion 338 is relatively higher.
  • the layer thickness of the central side portion 338 of the second LED substrate 335 is preferably set to a thickness of 5 ⁇ m to 30 ⁇ m in designing the light reflectivity of the LED substrate 18. More preferably, the thickness is set.
  • the layer thickness of the solder resist layer 332 on the second LED substrate 335 is such that the layer thickness of the end portion side portion 337 is 30 ⁇ m, and the light reflectance is about 90%. That is, as shown in FIG. 16, the layer thickness of the central side portion 338 of the second LED substrate 335 is relatively thinner than the layer thickness of the end side portion 337. The light reflectance is relatively higher than the light reflectance of the central portion side portion 338.
  • the solder resist layer 332 is exposed from the lens insertion holes 21 d arranged in a matrix of 9 rows and 17 columns in the backlight device 12.
  • the solder resist layer 332 arranged on the first LED substrate 334 is one row located at both ends of the long side direction (X-axis direction) of the chassis 14 in plan view among the lens insertion holes 21d arranged in a matrix. It will be exposed from the lens insertion hole 21d located in the eye and the 17th row.
  • the solder resist layer 332 disposed on the end side portion 337 of the second LED substrate 335 is located at both ends in the short side direction (Y-axis direction) of the chassis 14 in the lens insertion holes 21d arranged in a matrix.
  • the solder resist layer 332 disposed on the central portion 338 of the second LED substrate 335 is positioned in the second to the 17th columns of the second to eighth rows in the lens insertion holes 21d arranged in a matrix. It is exposed from the lens insertion hole 21d. That is, the solder resist layer 332 disposed on the first LED substrate 334 and the solder resist layer 332 disposed on the end side portion 337 of the second LED substrate 335 are pointed along the short side and the long side of the chassis 14. Will exist.
  • the second LED substrate 335 is formed such that, of the second LED substrates 335 arranged in a row, the central portion side portion 338 is thinner than the end portion portion 337. Therefore, the luminance of the end portion 337 can be made relatively higher than that of the central portion 338, and the luminance of the long side of the bottom plate 14a of the chassis 14 in the light emitting portion 12a of the backlight device 12 can be increased. It can be relatively high. That is, the brightness of the short side of the bottom plate 14a of the chassis 14 can be increased by the first LED board 334, and the brightness of the long side can be increased by the end portion side portion 337 of the second LED board 335.
  • the luminance can be made relatively high over the entire circumference of the bottom plate 14a of the chassis 14. That is, the shortage of light amount toward the peripheral end portion of the light emitting portion 12 a can be supplemented by the light reflected by the solder resist layer 332.
  • Embodiment 5 of the present invention will be described with reference to FIG.
  • an LED substrate 418 in which the first LED substrate 334 of the fourth embodiment is changed to the configuration of the second LED substrate 335 is shown.
  • action, and effect similar to above-described embodiment is abbreviate
  • the layer thickness of the solder resist layer 332 on the LED substrate 418 is the length of the LED substrate 418 arranged along the long side direction along the short side direction (Y-axis direction) of the chassis 14.
  • the end portion side portion 437 disposed on both end sides in the side direction is different from the center portion side portion 438 disposed on the center portion side.
  • the end side portion 437 is located in the first row of the diffusion lenses 19 arranged in a matrix of 9 rows and 17 columns, and overlaps with the diffusion lens 19 located at the upper end of the second LED substrate 335, and the ninth row. It is an area that overlaps with the diffuser lens 19 that is positioned and located at the lower end of the second LED substrate 335.
  • the end side portion 437 is a portion adjacent to the long side of the chassis 14 in a state where the LED substrate 418 is disposed on the chassis 14.
  • the central portion side portion 438 is a portion of the LED substrate 418 excluding the end portion side portion 437.
  • the central portion side portion 438 extends from the diffusion lens 19 adjacent to the diffusion lens 19 at the upper end of the LED substrate 418 from the region overlapping the diffusion lens 19 located in the second to eighth rows, that is, the lower end of the LED substrate 418. It is a part to the diffuser lens 19 adjacent to the diffuser lens 19.
  • the layer thickness of the solder resist layer 432 on the LED substrate 418 is 30 ⁇ m at the end side portion 437, and the light reflectance is about 90%.
  • the layer thickness of the central portion 438 is 15 ⁇ m, and the light reflectance is about 83%. That is, the layer thickness of the central side portion 438 of the LED substrate 418 is relatively thinner than the layer thickness of the end side portion 437, and the light reflectance of the end side portion 438 is the central side portion.
  • the light reflectance is relatively higher than 338.
  • the layer thickness of the central side portion 438 of the LED substrate 418 is preferably set to a thickness of 5 ⁇ m to 30 ⁇ m in designing the light reflectance of the LED substrate 418, and a thickness of 5 ⁇ m to 25 ⁇ m. More preferably, it is set.
  • the solder resist layer 432 is exposed from the lens insertion holes 21 d arranged in a matrix of 9 rows and 17 columns in the backlight device 12.
  • the solder resist layers 432 disposed on the end portion 437 are positioned at both ends of the short side direction (Y-axis direction) of the chassis 14 in a plan view among the lens insertion holes 21d arranged in a matrix. It will be exposed from the lens insertion hole 21d located in the row and the ninth row.
  • the solder resist layer 432 disposed in the central portion 438 is exposed from the lens insertion holes 21d located in the second to eighth rows of the lens insertion holes 21d arranged in a matrix. That is, the solder resist layer 332 disposed on the end portion side portion 437 of the LED substrate 418 is dotted along the long side of the chassis 14 and close thereto.
  • the thickness of the solder resist layer 432 is relatively thinner in the central portion side portion 438 than in the end portion side portion 437 in the short side direction (Y-axis direction) of the chassis 14.
  • the light reflectance on the center side of the chassis can be lower than that on the end side, and conversely, the light reflectance on both ends in the short side direction (Y-axis direction) of the chassis 14 can be higher than that on the center side. For this reason, even when the area
  • the change in luminance along the short side direction is more visible than the change in luminance along the long side direction.
  • luminance along a short side direction can be made uniform, and the brightness
  • the plurality of LED boards 418 have the same configuration, it is not necessary to prepare many kinds of boards, which can contribute to a reduction in the number of parts.
  • FIGS. 6 A sixth embodiment of the present invention will be described with reference to FIGS.
  • the sixth embodiment shows a backlight device 512 in which the backlight device 12 is changed to an edge light type from the first embodiment.
  • the liquid crystal display device 10 has a configuration in which a liquid crystal panel 11 and an edge light type backlight device 512 are integrated by a bezel 13 or the like. Note that the configuration of the liquid crystal panel 11 is the same as that of the first embodiment described above, and thus redundant description is omitted. Hereinafter, the configuration of the edge light type backlight device 512 will be described.
  • the backlight device 512 includes a chassis 14 having a substantially box shape having an opening portion 14 b (light emitting portion) that opens to the front side, that is, the light emitting portion 12 a side (the liquid crystal panel 11 side),
  • the optical member 15 is provided so as to cover the opening 14b of the chassis 14, and the frame 16 that presses the light guide member 519 described below from the front side.
  • the light guide member 519 leading to the light emitting part 12a side) is accommodated.
  • the backlight device 512 includes LED substrates 518 having LEDs 17 at both ends on the long side, and a light guide member 519 between the LED substrates 518 disposed on both ends. Is a so-called edge light type (side light type).
  • the chassis 14 is made of a metal plate, and as shown in FIG. 18, the bottom plate 14a has a horizontally long rectangular shape similar to the liquid crystal panel 11, and the sides of the bottom plate 14a (a pair of long sides and a pair of short sides) are outside. Each side plate 14c rises from the end toward the front side. Further, the frame 16 and the bezel 13 can be screwed to the side plate 14c.
  • the optical member 15 has a horizontally long rectangular shape in a plan view, like the liquid crystal panel 11 and the chassis 14.
  • the optical member 15 is placed on the front side (light emitting side) of the light guide member 519 and is interposed between the liquid crystal panel 11 and the light guide member 519.
  • the optical member 15 includes a diffusion plate 15a disposed on the back side (the side opposite to the light guide member 519 side and the light emitting portion 12b side) and an optical disposed on the front side (the liquid crystal panel 11 side and the light emitting portion 12b side). And a sheet 15b.
  • the diffusing plate 15a has a structure in which a large number of diffusing particles are dispersed in a translucent base material made of a substantially transparent synthetic resin having a predetermined thickness, and has a function of diffusing transmitted light.
  • the optical sheet 15b has a sheet shape that is thinner than the diffusion plate 15a, and three optical sheets are laminated.
  • the specific optical sheet 15b for example, a diffusion sheet, a prism sheet, or a reflective polarizing sheet is used.
  • the frame 16 is formed in a frame shape (frame shape) extending along the outer peripheral end portion of the light guide member 519, and the outer peripheral end portion of the light guide member 519 extends substantially over the entire circumference. It can be pressed from the front side. Further, the frame 16 can receive the outer peripheral end of the liquid crystal panel 11 from the back side.
  • the LED 17 has a configuration in which an LED chip is sealed with a resin material on a substrate portion fixed to the LED substrate 518.
  • the LED substrate 518 has a long plate shape extending along the long side direction of the chassis 14, and the plate surface of the liquid crystal panel 11 and the light guide member 519 (optical member 15). And is accommodated in the chassis 14 in a posture orthogonal to each other. That is, the LED substrate 518 has a posture in which the long side direction on the plate surface coincides with the X-axis direction, the short side direction coincides with the Z-axis direction, and the plate thickness direction orthogonal to the plate surface coincides with the Y-axis direction. It is said.
  • the LED substrate 518 is arranged in a pair at a position sandwiching the light guide member 519 in the Y-axis direction. Specifically, each side plate on the long side of the light guide member 519 and the chassis 14 is arranged. 14c, respectively.
  • a plurality (27 in this embodiment) of LEDs 17 are arranged on the inner side, that is, the surface facing the light guide member 519 (a surface facing the light guide member 519) of the LED substrate 518. They are arranged intermittently in parallel along the long side direction (the long side direction of the chassis 14, the X-axis direction).
  • the LED 17 is mounted on the surface of the LED substrate 518 facing the light guide member 519 side, and this surface is referred to as a plate surface 518a (a plate surface on which the light source is mounted) on which the LED 17 is mounted.
  • a pattern wiring 31 made of a metal film (such as a copper foil) is formed that extends along the X-axis direction and connects the LEDs 17 in series. Terminal portions (not shown) are formed at both ends of the pattern wiring 31, and the terminal portions are connected to an external driving circuit, so that driving power can be supplied to each LED 17.
  • a white solder resist layer 532 reflection layer for protecting the wiring is laminated on the surface of the pattern wiring 31.
  • the solder resist layer 532 will be described in detail later. As shown in FIG. 19, the pair of LED substrates 518 are attached so that the plate surface opposite to the plate surface 518 a on which the LED 17 is mounted is in contact with the inner surfaces of the pair of side plates 14 c on the long side of the chassis 14. ing.
  • the light guide member 519 is made of a synthetic resin material (for example, acrylic) having a refractive index sufficiently higher than that of air and substantially transparent (exceeding translucency). As shown in FIG. 18, the light guide member 519 is formed in a plate shape that has a horizontally long rectangular shape when viewed in a plane, like the liquid crystal panel 11 and the chassis 14, and the long side direction on the plate surface is the X-axis direction. In addition, the short side direction coincides with the Y-axis direction, and the plate thickness direction orthogonal to the plate surface coincides with the Z-axis direction. As shown in FIG.
  • the light guide member 519 is disposed in the chassis 14 at a position immediately below the liquid crystal panel 11 and the optical member 15, and forms a pair of LEDs disposed at both ends of the long side of the chassis 14. They are arranged so as to be sandwiched between the substrates 518 in the Y-axis direction. Then, the light guide member 519 introduces the light emitted from the LED 17 in the Y-axis direction, and rises toward the optical member 15 side (front side, light emission side) while propagating the light inside. It has a function to emit light.
  • the surface facing the front side is a light emission surface 519b that emits internal light toward the optical member 15 and the liquid crystal panel 11.
  • a light emission surface 519b that emits internal light toward the optical member 15 and the liquid crystal panel 11.
  • both end surfaces on the long side that are long along the X-axis direction are respectively LED 17 (LED substrate 518) and LED 17, as shown in FIG. These are opposed to each other with a predetermined space therebetween, and these constitute a light incident surface 519a on which light emitted from the LED 17 is incident.
  • the surface 519c opposite to the light exit surface 519b can reflect the light in the light guide member 519 and rise to the front side as shown in FIG.
  • a reflective optical member 25 is provided so as to cover the entire area.
  • a scattering portion (not shown) that scatters light in the light guide member 519 is provided on at least one of the light exit surface 519b and the opposite surface 519c of the light guide member 519, or on the surface of the reflective optical member 25.
  • the like are patterned so as to have a predetermined in-plane distribution, whereby the light emitted from the light emitting surface 519b is controlled to have a uniform distribution in the surface.
  • the solder resist layer 532 is obtained by printing and applying a white solder resist having a light reflectivity superior to that of a commonly used green solder resist to a predetermined thickness. As shown in FIG. 20, the solder resist layer 532 is provided over substantially the entire surface of the base material (not shown) of the LED substrate 518 and the surface of the pattern wiring 31 except for the portion where the LED 17 is mounted. .
  • the solder resist layer 532 faces the light incident surface 519a of the light guide member 519 and is located between the light incident surface 519a of the light guide member 519 and the base material of the LED substrate 518. Therefore, the light returned from the light guide member 519 side to the LED substrate 518 side can be reflected again to the light guide member 519 side by the solder resist layer 532.
  • the layer thickness of the solder resist layer 532 in the LED substrate 518 is such that the end side portion 537 disposed on both end sides in the long side direction of the LED substrate 518 (long side direction of the chassis 14, X-axis direction) and the central portion side.
  • the central portion side portion 538 disposed is different.
  • the layer thickness of the solder resist layer 532 in the end portion 537 is 30 ⁇ m, and the light reflectance is about 90%.
  • the thickness of the solder resist layer 532 in the central portion 538 is 15 ⁇ m, and the light reflectance is about 83%.
  • the layer thickness of the central portion 538 is relatively thinner than the layer thickness of the end portion 537, and the light reflectance of the end portion 537 is the light reflectance of the central portion 538. It is said that it is relatively higher.
  • the layer thickness of the central portion 538 is preferably set to a thickness of 5 ⁇ m to 30 ⁇ m in designing the light reflectivity of the LED substrate 518, and is set to a thickness of 5 ⁇ m to 25 ⁇ m. More preferably.
  • the step of printing and applying the solder resist to the entire LED substrate 518, and the end portion And a step of printing and applying a solder resist only to the side portion 537. That is, the solder resist layer 532 can be easily formed by performing a so-called twice coating process.
  • the LED substrate 518 is disposed such that the plate surface 518a on which the solder resist layer 532 is formed is opposed to the light incident surface 519a of the light guide member, so that the light reflected by the solder resist layer 532 is guided.
  • the light can be made incident on the light member 519, and the luminance of the light emitting portion 12a of the backlight device 512 can be made uniform.
  • the light emitting portion 12a has both ends in the X-axis direction. There is a tendency for the amount of light to go to be small.
  • a solder resist layer 532 having a light reflectance of about 90% is provided on the end side portions 537 of the LED substrate 518 located at both ends in the long side direction (X-axis direction) of the chassis 14.
  • a solder resist layer 532 having a light reflectance of about 83% is provided on the central portion 538.
  • the amount of light reflected by the solder resist layer 532 located on both ends of the long side direction (X-axis direction) of the chassis 14 is changed to the amount of light reflected by the solder resist layer 532 located on the center side of the chassis 14.
  • the white solder resist layers 32 and 232 are exemplified as the reflective layer.
  • the reflective layer may be any layer as long as the reflectance changes depending on the layer thickness, and may be titanium oxide or titanium. It is good also as a soldering resist layer containing highly light reflective materials, such as barium acid or a polycarbonate. Moreover, even if a reflection layer is milky white etc., it can be used conveniently.
  • the first LED substrate 34 and the second LED substrate 235 are exemplified, but a configuration including only the second LED substrate 235 may be employed.
  • the end portion 237 of the second LED substrate 235 can be disposed close to the short side of the bottom plate 14a, and the luminance on the short side of the bottom plate 14a in the light emitting portion 12a of the backlight device 12 can be set. Can be improved.
  • the LED substrate 18 is illustrated as being divided into a plurality of strip-shaped first LED substrates 34 and second LED substrates 35 and 135. It may be configured by one sheet, or may be configured by combining a plurality of rectangular LED substrates on which LEDs are arranged in a matrix.
  • Embodiment 1 to Embodiment 5 described above the LEDs 17 arranged in a matrix are illustrated, but the LEDs 17 may have other arrangement configurations such as a staggered arrangement.
  • the base material 30 of the LED board 18 has been exemplified by a metal such as the same aluminum-based material as the chassis 14, but an insulating material such as ceramic is used. It is also possible.
  • Embodiments 1 to 5 described above the one provided with the reflective sheet is shown, but the one in which the reflective sheet is omitted is also included in the present invention.
  • examples of the optical sheet include a diffusion sheet having a function of diffusing light and a lens sheet having a function of condensing light, but the optical sheet condenses light. It may have both a function and a function of diffusing light.
  • liquid crystal panel and the chassis are illustrated in a vertically placed state in which the short side direction coincides with the vertical direction.
  • the liquid crystal panel and the chassis have the long side direction in the vertical direction.
  • Those that are in a vertically placed state matched with are also included in the present invention.
  • a TFT is used as a switching element of a liquid crystal display device.
  • the present invention can also be applied to a liquid crystal display device using a switching element other than a TFT (for example, a thin film diode (TFD)).
  • a switching element for example, a thin film diode (TFD)
  • the present invention can also be applied to a liquid crystal display device for monochrome display.
  • liquid crystal display device using the liquid crystal panel as the display panel is exemplified, but the present invention is also applicable to a display device using another type of display panel.
  • the television receiver provided with the tuner is exemplified, but the present invention can be applied to a display device not provided with the tuner.
  • SYMBOLS 10 Liquid crystal display device (display device), 11 ... Liquid crystal panel (display panel), 12 ... Backlight device (illuminating device), 14 ... Chassis, 15 ... Optical member, 15a ... Diffusing plate, 15b ... Optical sheet, 17 ... LED (light source), 18, 418, 518 ... LED substrate (light source substrate), 18b, 518a ... plate surface (plate surface on which the light source is mounted), 19 ... diffusion lens (lens member), 20 ... holding member, 21 ... Reflective sheet, 21b ... lens insertion hole (opening), 31 ... pattern wiring, 32, 132, 232, 332, 432, 532 ...
  • solder resist layer (reflective layer), 34, 234, 334 ... first LED substrate (first Light source substrate), 35, 135, 235, 335 ... second LED substrate (second light source substrate), 137, 337, 437, 537 ... end side portion, 138, 338, 438, 5 8 ... central portion, 519 ... light guide member, 519a ... light incident surface, 519b ... light exit surface, TV ... television receiver apparatus

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

本発明に係るバックライト装置12は、LED17と、LED17が実装されてなるLED基板18と、LED基板18が配されてなるシャーシ14と、LED基板18のうちLED17が実装された板面18bに配され、LED17と電気的に接続されたパターン配線31と、LED基板18上においてパターン配線31に積層されてなるソルダーレジスト層32であって、その層厚が、シャーシ14のうち端部側に位置する部分よりも、当該端部側に位置する部分より中央部側に位置する部分において、相対的に薄く形成されているソルダーレジスト層32と、を備える。

Description

照明装置、表示装置、及びテレビ受信装置
 本発明は、照明装置、表示装置、及びテレビ受信装置に関する。
 近年、テレビ受信装置をはじめとする画像表示装置は、従来のブラウン管から液晶パネルやプラズマディスプレイパネルなどの薄型表示素子を適用した薄型表示装置に移行しつつある。表示素子として液晶パネルを用いた場合、液晶パネルは自発光しないため、別途に照明装置としてバックライト装置が必要となる。
 特許文献1には、光源として実装基板の表面上に実装されたLEDを備え、実装基板の表面が光反射部材で覆われているバックライト装置が開示されている。当該光反射部材としては、高い光反射率を有する高光反射材料を白色ソルダーレジストにさらに加えた材料からなっており、その材料を実装基板の実装面上に印刷塗布することによって得られるものが例示されている。このようなバックライト装置によれば、実装基板の表面で光が吸収されることを抑制し、輝度の向上および輝度ムラの発生の低減を図ることができるとのことである。
特開2011-90977号公報
(発明が解決しようとする課題)
 ところで、バックライト装置の光出射部を正面側から視た場合に、光出射部の端部で、光量不足により暗く示される部分があり、問題となっている。これは、バックライト装置の端部においては、中央部に比べて当該領域に光を供給する光源の数が少ないことに起因するものである。
 光出射部の輝度を均一にするために、例えば、LEDを駆動する電流値を変更して、バックライト装置の端部側に配されるLEDの輝度を、中央部側に配されるLEDの輝度より相対的に高くすることが考えられる。しかしながら、このような方法では、特別な電気的な制御が必要となり、より簡便な方法が求められている。
 本発明は上記のような事情に基づいて完成されたものであって、簡便な構成で輝度を均一にすることを目的とする。
(課題を解決するための手段)
 上記課題を解決するために、本発明の照明装置は、光源と、前記光源が実装されてなる光源基板と、前記光源基板が配されてなるシャーシと、前記光源基板のうち前記光源が実装された板面に配され、前記光源と電気的に接続されたパターン配線と、前記光源基板上において前記パターン配線の少なくとも一部に積層されてなる反射層であって、その層厚が、前記シャーシのうち端部側に位置する部分よりも、当該端部側に位置する部分より中央部側に位置する部分において、相対的に薄く形成されている反射層と、を備える。
 本発明においては、反射層の層厚が、シャーシの端部側に位置する部分よりも、当該端部側に位置する部分より中央部側に位置する部分において、相対的に薄く形成されているから、シャーシの中央部側の光反射率を端部側より低く、逆にシャーシの端部側の光反射率を中央部側より高くすることができる。このため、シャーシの端部側に光源を配することができない領域が生じた場合であっても、シャーシの端部側の輝度を相対的に高いものとすることができ、照明装置の輝度を均一にすることができる。
 上記構成において、前記反射層は白色のソルダーレジストからなるものとすることができる。
 このような構成とすれば、反射層として、基板の絶縁性を確保するのに必要なソルダーレジストを流用することが可能なため、構成が簡便で、製造コストも削減可能となる。
 上記構成において、光を拡散するレンズ部材であって、前記光源基板の前記光源が実装された板面上に配され、前記光源の光出射側を覆うレンズ部材を備え、前記反射層は少なくとも前記レンズ部材と重畳する部分に形成されているものとすることができる。
 このような構成とすれば、反射層は少なくともレンズ部材と重畳する部分に形成されているから、反射層で反射した光がレンズ部材に入光し、その一部が光出射部の端部方向に向かって拡散されることとなり、より一層光出射部の端部の輝度を相対的に高いものとすることができる。
 上記構成において、光を反射させる反射シートであって、前記レンズ部材の外形より大きく開口した開口部を有し、前記レンズ部材を前記開口部に挿通させるとともに、前記光源基板の前記光源が実装された板面上に配される反射シートを備え、前記反射層は、少なくとも前記開口部と重畳する部分に形成されているものとすることができる。
 このような構成とすれば、反射シートにおいて、効率的に光を光出射面側に反射層は少なくとも反射シートの開口部と重畳する部分に形成されているから、開口部内に進入した光を反射層により反射することができ、より一層光出射部の端部の輝度を相対的に高いものとすることができる。
 上記構成において、前記光源基板は、前記端部側に配される第1光源基板と前記中央部側に配される第2光源基板とを少なくとも有し、前記第1光源基板に形成された前記反射層の層厚より、前記第2光源基板に形成された前記反射層の層厚が薄く形成されているものとすることができる。
 このように光源基板毎に反射層の層厚を異ならせると、シャーシの端部側と中央部側とにおいて反射層の層厚を容易に異ならせることができる。
 上記構成において、前記シャーシは矩形状の底板を有し、前記第1光源基板と前記第2光源基板とは、短冊状をなし、前記底板の長辺に前記短冊状の長手方向を沿わせるとともに、それぞれ複数が前記短冊状の短手方向に並列して前記底板面に配されているものとすることができる。
 このような構成とすれば、当該底板の長辺に近接して第1光源基板を配置させることができ、光出射部における当該底板の長辺側の輝度を相対的に高いものとすることができる。
 上記構成において、前記シャーシは矩形状の底板を有し、前記第1光源基板と前記第2光源基板とは、短冊状をなし、前記底板の短辺に前記短冊状の長手方向を沿わせるとともに、それぞれ複数が前記短冊状の短手方向に並列して前記底板面に配されているものとすることができる。
 このような構成とすれば、当該底板の短辺に近接して第1光源基板を配置させることができ、光出射部における当該底板の短辺側の輝度を相対的に高いものとすることができる。
 上記構成において、前記第2光源基板は、1つまたは複数が一列に配されており、前記一列に配された前記第2光源基板のうち、前記列の端部側の層厚より中央部側の層厚が薄く形成されているものとすることができる。
 このような構成とすれば、一列に配された第2光源基板のうち、列の端部側の層厚より中央部側の層厚が薄く形成されているから、当該端部側の輝度を相対的に高いものとすることができ、光出射部における当該端部側が配される辺側の輝度を相対的に高いものとすることができる。
 上記構成において、側面に設けられた光入射面と、一方の板面に設けられた光出射面と、を有する導光部材であって、前記光源から出射された光が前記光入射面に入射するととともに、前記光出射面から出射される導光部材、を備え、前記光源基板は、前記光源が実装された板面を前記導光部材の前記光入射面に対向させて配されているものとすることができる。
 このような構成とすれば、光源基板は、光源が実装された板面を導光部材の光入射面に対向させて配されているから、反射層で反射した光を導光部材に入光させることができ、光出射部の輝度を均一にすることができる。
 上記構成において、前記反射層は、前記中央部側に位置する部分の層厚が5μm以上30μm以下とすることができる。
 このような構成とすれば、シャーシの中央部側に位置する部分における、反射層の層厚が5μm以上であるから、当該中央部側に位置する部分において、十分に基板を保護することができる。また、中央部側に位置する部分における、反射層の層厚が30μm以下であるから、端部側に位置する部分と中央部側に位置する部分との反射率を容易に設定できる。
 上記構成において、前記シャーシは、前記光源からの光を出射させる光出射部を有しており、前記光出射部を覆う形で配される光学部材を更に備え、前記光学部材は、前記光源からの光を拡散する機能を有する拡散板と、前記拡散板を透過した光を集光する機能と、前記拡散板を透過した光を拡散する機能との少なくとも一方の機能を有する光学シートとを備えるものとすることができる。
 このような構成とすれば、シャーシの光出射部から出射された光が、拡散板および光学シートを透過することとなり、より一層照明装置の輝度を均一にすることができる。
 上記構成において、前記光源は、発光ダイオードを含むものであるものとすることができる。
 このような構成とすれば、光源として発光ダイオードを用いることで、高輝度化などを図ることができる。
 次に、上記課題を解決するために、本発明の表示装置は、上記記載の照明装置と、前記照明装置からの光を利用して表示を行う表示パネルとを備える。
 このような表示装置によると、表示パネルに対して光を供給する照明装置の輝度が均一なものとされているから、表示品質の優れた表示を実現することが可能となる。
 前記表示パネルとしては液晶パネルを例示することができる。このような表示装置は液晶表示装置として、種々の用途、例えばテレビやパソコンのディスプレイ等に適用でき、特に大型画面用として好適である。
(発明の効果)
 本発明によれば、輝度を均一にすることが可能な照明装置を提供することができる。
本発明の実施形態1に係るテレビ受信装置の概略構成を示す分解斜視図 テレビ受信装置が備える液晶表示装置の概略構成を示す分解斜視図 液晶表示装置に備わるシャーシにおけるLED基板及び拡散部材の配置構成を示す平面図 液晶表示装置における図3のiv-iv線断面図 液晶表示装置における図3のv-v線断面図 ソルダーレジスト層の配置構成を示す拡大平面図 図6のvi-vi線断面図 LED基板の平面図 図8のvii-vii線断面図 第1LED基板および第2LED基板の配置構成を示す平面図(反射シートを省略して示す) ソルダーレジスト層の層厚と光の反射率の関係を示すグラフ 実施形態2に係る第1LED基板および第2LED基板の配置構成を示す平面図(反射シートを省略して示す) 一列に配される3つの第2LED基板のうち、列の端部側に配される第2LED基板を示す平面図 図13の第2LED基板の膜厚を模式的に示すグラフ 実施形態3に係る第1LED基板および第2LED基板の配置構成を示す平面図(反射シートを省略して示す) 実施形態4に係る第1LED基板および第2LED基板の配置構成を示す平面図(反射シートを省略して示す) 実施形態5に係るLED基板の配置構成を示す平面図(反射シートを省略して示す) 実施形態6に係るテレビ受信装置が備える液晶表示装置の概略構成を示す分解斜視図 液晶表示装置を短辺方向に切断して示す断面図 LED基板の平面図 図20のLED基板の膜厚を模式的に示すグラフ
 <実施形態1>
 本発明の実施形態1を図1から図11によって説明する。本実施形態では、液晶表示装置10について例示する。なお、各図面の一部にはX軸、Y軸及びZ軸を示しており、各軸方向が各図面において共通の方向となるように描かれている。また、図4及び図5に示す上側を表側とし、同図下側を裏側とする。
 本実施形態に係るテレビ受信装置TVは、図1に示すように、液晶表示装置10と、当該液晶表示装置10を挟むようにして収容する表裏両キャビネットCa,Cbと、電源Pと、チューナーTと、スタンドSとを備えて構成される。液晶表示装置(表示装置)10は、全体として横長の方形(矩形状)を成し、縦置き状態で収容されている。この液晶表示装置10は、図2に示すように、表示パネルである液晶パネル11と、外部光源であるバックライト装置(照明装置)12とを備え、これらが枠状のベゼル13などにより一体的に保持されるようになっている。
 次に、液晶表示装置10を構成する液晶パネル11及びバックライト装置12について説明する。このうち、液晶パネル(表示パネル)11は、平面視矩形状をなしており、一対のガラス基板が所定のギャップを隔てた状態で貼り合わせられるとともに、両ガラス基板間に液晶が封入された構成とされる。一方のガラス基板には、互いに直交するソース配線とゲート配線とに接続されたスイッチング素子(例えばTFT)と、そのスイッチング素子に接続された画素電極、さらには配向膜等が設けられ、他方のガラス基板には、R(赤色),G(緑色),B(青色)等の各着色部が所定配列で配置されたカラーフィルタや対向電極、さらには配向膜等が設けられている。なお、両基板の外側には偏光板が配されている。
 続いて、バックライト装置12について説明する。バックライト装置12は、図2に示すように、光出射部12a側(液晶パネル11側)に光源からの光を出射させる開口部14b(光出射部)を有した略箱型をなすシャーシ14と、シャーシ14の開口部14bを覆うようにして配される光学部材15群(拡散板15aと、拡散板15aと液晶パネル11との間に配される複数の光学シート15b)、シャーシ14の外縁部に沿って配され光学部材15群の外縁部をシャーシ14との間で挟んで保持するフレーム16とを備える。さらに、シャーシ14内には、図3から図5に示すように、光源であるLED17(Light Emitting Diode:発光ダイオード)と、LED17が実装されたLED基板18(光源基板)と、LED基板18においてLED17に対応した位置に取り付けられる拡散レンズ19(レンズ部材)とが備えられる。その上、シャーシ14内には、LED基板18をシャーシ14との間で保持することが可能な保持部材20と、シャーシ14内の光を光学部材15側に反射させる反射シート21とが備えられる。なお、当該バックライト装置12においては、LED17よりも光学部材15側が光出射部12a側となっている。以下では、バックライト装置12の各構成部品について説明する。
 シャーシ14は、金属製とされ、図3から図5に示すように、液晶パネル11と同様に矩形状をなす底板14aと、底板14aの各辺の外端から立ち上がる側板14cと、各側板14cの立ち上がり端から外向きに張り出す受け板14dとからなり、全体としては表側に向けて開口した浅い略箱型(略浅皿状)をなしている。シャーシ14は、その長辺方向がX軸方向と一致し、短辺方向がY軸方向と一致している。シャーシ14における各受け板14dには、表側からフレーム16及び次述する光学部材15が載置可能とされる。なお、フレーム16は受け板14dに対してねじ止めされている。また、シャーシ14の底板14aには、保持部材20を取り付けるための取付孔が開口して設けられている。
 光学部材15は、図2に示すように、液晶パネル11及びシャーシ14と同様に平面に視て横長の方形(矩形状)をなしている。光学部材15は、図4及び図5に示すように、その外縁部が受け板14dに載せられることで、シャーシ14の開口部14bを覆うとともに、液晶パネル11とLED17との間に介在して配される。光学部材15は、裏側(LED17側、光出射部12a側とは反対側)に配される拡散板15aと、表側(液晶パネル11側、光出射部12a側)に配される光学シート15bとから構成される。拡散板15aは、所定の厚みを持つほぼ透明な樹脂製の基材内に拡散粒子を多数分散して設けた構成とされ、透過する光を拡散させる機能を有する。光学シート15bは、拡散板15aと比べると板厚が薄いシート状をなしており、2枚が積層して配されている。具体的な光学シート15bの種類としては、例えば拡散シート、レンズシート、反射型偏光シートなどがあり、これらの中から適宜に選択して使用することが可能である。
 フレーム16は、図2に示すように、液晶パネル11及び光学部材15の外周縁部に沿う枠状をなしている。このフレーム16と各受け板14dとの間で光学部材15における外縁部を挟持可能とされている(図4及び図5)。また、このフレーム16は、液晶パネル11における外縁部を裏側から受けることができ、表側に配されるベゼル13との間で液晶パネル11の外縁部を挟持可能とされる(図4及び図5)。
 次に、LED17及びLED17が実装されるLED基板18について説明する。LED17は、図7に示すように、LED基板18に固着される基板部上にLEDチップを樹脂材により封止した構成とされる。基板部に実装されるLEDチップは、主発光波長が1種類とされ、具体的には、青色を単色発光するものが用いられている。その一方、LEDチップを封止する樹脂材には、LEDチップから発せられた青色の光を、白色の光に変換する蛍光体が分散配合されている。これにより、このLED17は、白色発光が可能とされる。このLED17は、LED基板18に対する実装面とは反対側の面が発光面17aとなる、いわゆるトップ型とされている。LED17における光軸LAは、Z軸方向(液晶パネル11及び光学部材15の主板面と直交する方向)とほぼ一致する設定とされている。なお、LED17から発せられる光は、光軸LAを中心にして所定の角度範囲内で三次元的にある程度放射状に広がるのであるが、その指向性は冷陰極管などと比べると高くなっている。つまり、LED17の発光強度は、光軸LAに沿った方向が高く、光軸LAに対する傾き角度が大きくなるに連れて低下するような傾向の角度分布を示す。
 LED基板18は、図8及び図9に示すように、平面に視て矩形状(短冊状)をなす基材30を有しており、長辺方向がX軸方向(シャーシ14の底板14aの長辺方向)と一致し、短辺方向がY軸方向(シャーシ14の底板14aの短辺方向)と一致する状態でシャーシ14内において底板14aに沿って延在しつつ収容されている(図3~図5)。LED基板18の基材30は、シャーシ14と同じアルミ系材料などの金属製とされ、その表面に図示しない絶縁層を介して銅箔などの金属膜からなるパターン配線31が形成された構成とされる。パターン配線31は、LED17が実装される板面18b(光源が実装された板面)側に配され、LED17と電気的に接続される。さらに、パターン配線31の表面には、配線を保護する白色のソルダーレジスト層32(反射層)が積層されている。ソルダーレジスト層32については、後に詳述することとする。そして、このLED基板18の基材30の板面のうち、表側を向いた面(光学部材15側を向いた面)には、図7に示すように、上記した構成のLED17が表面実装されている。LED17は、LED基板18における長辺方向(X軸方向)に沿って複数が直線的に並列して配されるとともに、LED基板18に形成されたパターン配線31により直列接続されている。各LED17の配列ピッチは、ほぼ一定となっており、つまり各LED17は、等間隔に配列されている。また、LED基板18における長辺方向の両端部には、コネクタ部18aが設けられている。
 上記した構成のLED基板18は、図3に示すように、シャーシ14内においてX軸方向及びY軸方向にそれぞれ複数ずつ、互いに長辺方向及び短辺方向を揃えた状態で並列して配置されている。つまり、LED基板18及びそこに実装されたLED17は、シャーシ14内において共にX軸方向(シャーシ14及びLED基板18の長辺方向)を行方向とし、Y軸方向(シャーシ14及びLED基板18の短辺方向)を列方向として行列配置(マトリクス状に配置)されている。具体的には、LED基板18は、シャーシ14内においてX軸方向に3枚ずつ、Y軸方向に9枚ずつ、合計27枚が並列して配置されている。そして、本実施形態では、LED基板18として長辺寸法及び実装されるLED17の数が異なる2種類のものが用られている。具体的には、LED基板18としては、6個のLED17が実装され、長辺寸法が相対的に長い6個実装タイプのものと、5個のLED17が実装され、長辺寸法が相対的に短い5個実装タイプのものとが用いられており、シャーシ14におけるX軸方向の両端位置に6個実装タイプのものが1枚ずつ、同方向の中央位置に5個実装タイプのものが1枚、それぞれ配されている。上記したようにX軸方向に沿って並んで1つの行をなす各LED基板18は、隣接するコネクタ部18a同士が嵌合接続されることで相互に電気的に接続されるとともに、シャーシ14におけるX軸方向の両端に対応したコネクタ部18aが図示しない外部の制御回路に対してそれぞれ電気的に接続される。これにより、1つの行をなす各LED基板18に配された各LED17が直列接続されるとともに、その1つの行に含まれる多数のLED17の点灯・消灯を1つの制御回路により一括して制御することができる。なお、長辺寸法及び実装されるLED17の数が異なる種類のLED基板18であっても、短辺寸法及びLED17の配列ピッチは、ほぼ同じとされる。
 このように、長辺寸法及び実装されるLED17の数が異なるLED基板18を複数種類用意し、それら異なる種類のLED基板18を適宜に組み合わせて使用する手法を採用することで、次の効果を得ることができる。すなわち、画面サイズが異なる液晶表示装置10を多品種製造する場合、各画面サイズに合わせて各種類のLED基板18の使用の是非及び種類毎のLED基板18の使用枚数を適宜変更することで容易に対応することができる。このため、仮にシャーシ14の長辺寸法と同等の長辺寸法を有する専用設計のLED基板を画面サイズ毎に用意した場合と比べると、必要なLED基板18の種類を大幅に削減することができ、もって製造コストの低廉化を図ることができる。
 拡散レンズ19は、ほぼ透明で(高い透光性を有し)且つ屈折率が空気よりも高い合成樹脂材料(例えばポリカーボネートやアクリルなど)からなる。拡散レンズ19は、図6及び図7に示すように、平面に視て略円形状に形成されており、LED基板18に対して各LED17を表側から個別に覆うよう、つまり平面に視て各LED17と重畳するようそれぞれ取り付けられている。そして、この拡散レンズ19は、LED17から発せられた指向性の強い光を拡散させつつ出射させることができる。これにより、LED17の設置個数を少なくすることが可能となっている。この拡散レンズ19は、平面に視てLED17とほぼ同心となる位置に配されている。拡散レンズ19は、X軸方向及びY軸方向の寸法が共にLED17よりも十分に大きいものとされる。一方、拡散レンズ19は、X軸方向およびY軸方向の寸法がLED基板18より小さいものとされる。従って、Z軸方向において、拡散レンズ19と重なる領域には、LED基板18が配されることになる。
 この拡散レンズ19のうち、LED基板18と対向する面がLED17からの光が入射される光入射面19aとされるのに対し、光学部材15と対向する面が光を出射する光出射面19bとされる。このうち、光入射面19aは、図7に示すように、全体としてはLED基板18の板面18bに沿って並行する形態とされるものの、平面に視てLED17と重畳する領域に光入射側凹部19cが形成されることで傾斜面を有している。光入射側凹部19cは、略円錐状をなすとともに拡散レンズ19においてほぼ同心位置に配されており、裏側、つまりLED17側に向けて開口する形態とされる。光入射側凹部19cは、断面が略逆V字型をなしており、その周面がZ軸方向に対して傾いた傾斜面とされる。従って、LED17から発せられて光入射側凹部19c内に入った光は、傾斜面を介して拡散レンズ19内に入射するのであるが、そのとき光軸LAに対する傾斜面の傾斜角度の分だけ、中心から遠ざかる方向、つまり広角に屈折されて拡散レンズ19に入射する。
 拡散レンズ19には、LED基板18側に向けて突出するとともに、LED基板18に対する拡散レンズ19の取付構造となる取付脚部19dが設けられている。取付脚部19dは、拡散レンズ19のうち、光入射側凹部19cよりも外周端部に近い位置に3つ配されており、各取付部を結んだ線が平面に視てほぼ正三角形をなす位置に配されている。各取付脚部19dは、その先端部が接着剤などによりLED基板18に固着される。拡散レンズ19は、取付脚部19dを介してLED基板18に固定されることで、その光入射面19aとLED基板18との間に所定の隙間が空けられるようになっている。この隙間には、平面に視て当該拡散レンズ19よりも外側の空間からの光の入射が許容されている。
 拡散レンズ19における光出射面19bは、扁平な略球面状に形成されている。これにより、拡散レンズ19から出射する光を、外部の空気層との界面にて中心から遠ざかる方向、つまり広角に屈折させつつ出射させることが可能となる。この光出射面19bのうち平面に視てLED17と重畳する領域には、光出射側凹部19eが形成されている。光出射側凹部19eは、略擂鉢状をなすとともに、その周面が中心に向かって下り勾配となる扁平な略球面状に形成されている。また、光出射側凹部19eにおける周面の接線がLED17の光軸LAに対してなす角度は、光入射側凹部19cの傾斜面が光軸LAに対してなす角度よりも相対的に大きくなるものとされる。光出射面19bのうち平面に視てLED17と重畳する領域に光出射側凹部19eを形成することにより、LED17からの光の多くを広角に屈折させつつ出射させたり、或いはLED17からの光の一部をLED基板18側に反射させることができる。
 反射シート21は、合成樹脂製とされ、表面が光の反射性に優れた白色を呈するものとされる。反射シート21は、図3に示すように、シャーシ14の内面のほぼ全域にわたって敷設される大きさを有しているので、シャーシ14内に並列して配された全LED基板18を表側から一括して覆うことが可能とされる。この反射シート21によりシャーシ14内の光を光学部材15側に向けて効率的に立ち上げることができる。反射シート21は、シャーシ14の底板14aに沿って延在するとともに底板14aの大部分を覆う大きさの底部21aと、底部21aの各外端から表側に立ち上がるとともに底部21aに対して傾斜状をなす4つの立ち上がり部21bと、各立ち上がり部21bの外端から外向きに延出するとともにシャーシ14の受け板14dに載せられる延出部21cとから構成されている。この反射シート21の底部21aが各LED基板18におけるLED17が実装された板面18bに対して表側に重なるよう配される。また、反射シート21の底部21aには、各拡散レンズ19(各LED17)と平面視重畳する位置に各拡散レンズ19を挿通するレンズ挿通孔21d(開口部)が開口して設けられている。
 レンズ挿通孔21dは、各拡散レンズ19を個別にそれぞれ挿通するものとされており、反射シート21の底部21aに、LED17と同様に9行17列に行列配置されている。レンズ挿通孔21dは、図6に示すように、平面に視て円形状をなしており、その径寸法は拡散レンズ19よりも大きくなる設定とされる。これにより、反射シート21をシャーシ14内に敷設する際、寸法誤差の有無に拘わらず各拡散レンズ19を各レンズ挿通孔21dに対して確実に通すことができる。また、レンズ挿通孔21dの径寸法は、LED基板18の短辺寸法よりも小さくなる設定とされる。これにより、レンズ挿通孔21dには、LED基板18に設けられたソルダーレジスト層32が露出することになり、シャーシ14が露出しないものとすることができる。
 保持部材20は、LED基板18を保持するとともに光学部材15を支持する支持部27を有する保持部材20Bと、LED基板18を保持するものの光学部材15を支持する支持部27を有さない保持部材20Aとの2種類とされる。この支持部27は、光学部材15(直接的には拡散板15a)を裏側から支持することが可能とされ、それによりLED17と光学部材15とのZ軸方向の位置関係を一定に維持することができるとともに光学部材15の不用意な変形を規制することができる。
 次に、ソルダーレジスト層32に係る構成について詳しく説明する。ソルダーレジスト層32は、一般に多用される緑色のソルダーレジストに比べ光反射性に優れた白色のソルダーレジストを、所定の厚さに印刷塗布することにより得られる。ソルダーレジスト層32は、図9に示すように、LED基板18の基材30およびパターン配線31の表面に、LED17が実装される部分を除き、略全面に亘って設けられている。すなわち、ソルダーレジスト層32は、図7に示すように、拡散レンズ19と重畳する部分に形成されている。ソルダーレジスト層32は、Z軸方向においては、拡散レンズ19の光入射面19aと対向し、拡散レンズ19とLED基板18の基材30との間に位置している。従って、拡散レンズ19側からLED基板18側に戻された光や、平面に視て当該拡散レンズ19よりも外側の空間から拡散レンズ19とLED基板18との間の空間に入った光について、ソルダーレジスト層32によって再び拡散レンズ19側に反射させることができる。
 さらに、ソルダーレジスト層32は、図6に示すように、平面に視て、LED17が実装される部分を除き、反射シート21のレンズ挿通孔21dの開口と重畳する部分全体に形成されている。これにより、レンズ挿通孔21dの開口には、ソルダーレジスト層32が露出することになり、シャーシ14、LED基板18の基材30またはパターン配線31が殆ど露出しない。
 ソルダーレジスト層32の層厚は、パターン配線31を外部衝撃や腐食物質から十分に保護するために、5μm以上の厚さとされている。また、ソルダーレジスト層32の層厚は、図11に示すように、少なくとも5μmから30μmまでの範囲では、その層厚が厚くなれば光反射率が高くなることが分かっており、5μmから25μmまでの範囲では、その傾向が顕著であることが分かっている。なお、本実施形態において、ソルダーレジスト層32の光反射率は、コニカミノルタ社製CM-700dにて測定された測定径内の平均光反射率を用いている。また、本実施形態において、ソルダーレジスト層32の層厚は、Fischer社製の膜厚計DUALSCOPE MPOR-FPにて測定したものを用いている。
 ここで、LED基板18のうち、図10に示すように、当該LED基板18の行列配置における1行目と9行目に位置するもの、すなわち、シャーシ14の短辺方向における両端部側に位置するものを第1LED基板34(第1光源基板)とする。また、LED基板18のうち、2行目から8行目に位置するもの、すなわち、第1LED基板34に比べてシャーシ14の中央部側に位置するものを第2LED基板35(第2光源基板)とする。
 第1LED基板34におけるソルダーレジスト層32の層厚は、基板面に亘って略均一であって、30μmとされ、その光反射率は約90%である。一方、第2LED基板35におけるソルダーレジスト層32の層厚は、基板面に亘って略均一であって、15μmとされ、その光反射率は約83%である。すなわち、第2LED基板35の層厚は、第1LED基板34の層厚より相対的に薄いものとされており、第1LED基板34の光反射率が第2LED基板35の光反射率より相対的に高いものとされている。なお、第2LED基板35の層厚は、LED基板18の光反射率を設計する上で、5μmから30μmまでの厚さに設定されることが好ましく、5μmから25μmまでの厚さに設定されることがさらに好ましい。
 ソルダーレジスト層32は、図3に示すように、バックライト装置12内において、9行17列に行列配置されたレンズ挿通孔21dから露出することになる。第1LED基板34に配されたソルダーレジスト層32は、行列配置されたレンズ挿通孔21dのうち、平面視にて、シャーシ14の短辺方向(Y軸方向)の両端部に位置する、1行目と9行目に位置するレンズ挿通孔21dから露出することになる。また、第2LED基板35に配されたソルダーレジスト層32は、行列配置されたレンズ挿通孔21dのうち、2行目から8行目に位置するレンズ挿通孔21dから露出することになる。すなわち、シャーシ14の長辺に沿うとともに近接して、第1LED基板34に配されたソルダーレジスト層32が点在することとなる。
 液晶表示装置10を使用する際には、バックライト装置12に備えられた各LED17を点灯させるとともに、液晶パネル11に画像信号を供給する。それにより液晶パネル11の表示面に所定の画像が表示されるようになっている。各LED17を点灯させるのに伴い発せられた光は、まず拡散レンズ19の光入射面19aに入射する。このとき、光の大半は、光入射面19aのうち光入射側凹部19cにおける傾斜面に入射することで、その傾斜角度に応じて広角に屈折されつつ拡散レンズ19内に入射する。そして、入射した光は、拡散レンズ19内を伝播した後、光出射面19bから出射されるのであるが、この光出射面19bは、扁平な略球面状をなしているので、外部の空気層との界面にて光がさらに広角に屈折されつつ出射される。しかも、光出射面19bのうちLED17からの光量が最も多くなる領域には、略擂鉢状をなす光出射側凹部19eが形成され、且つその周面が扁平な略球面状をなしているので、光出射側凹部19eの周面にて光を広角に屈折させつつ出射させたり、或いはLED基板18側に反射させることができる。
 拡散レンズ19から出射された光のうち、一部は、光学部材15を介して、バックライト装置12の光出射部12a側(液晶パネル11側)に出射される。一方、拡散レンズ19から出射された光のうち、一部は、反射シート21またはソルダーレジスト層32側に向かい、反射シート21またはソルダーレジスト層32で反射され、再度、光出射部12a側(液晶パネル11側)に向かうことになる。
 以上説明したように本実施形態のバックライト装置12は、LED17と、LED17が実装されてなるLED基板18と、LED基板18が配されてなるシャーシ14と、LED基板18のうちLED17が実装された板面30aに配され、LED17と電気的に接続されたパターン配線31と、LED基板18上においてパターン配線31に積層されてなるソルダーレジスト層32であって、その層厚が、シャーシ14のうち端部側に位置する部分よりも、当該端部側に位置する部分より中央部側に位置する部分において、相対的に薄く形成されているソルダーレジスト層32と、を備える。
 本実施形態では、ソルダーレジスト層32の層厚が、シャーシ14の短辺方向(Y軸方向)における両端部側に位置する部分よりも、当該両端部側に位置する部分より中央部側に位置する部分において、相対的に薄く形成されているから、シャーシの中央部側の光反射率を端部側より低く、逆にシャーシ14の短辺方向(Y軸方向)における両端部側の光反射率を中央部側より高くすることができる。このため、シャーシ14の短辺方向(Y軸方向)における端部側にLED17を配することができない領域が生じた場合であっても、シャーシ14の短辺方向(Y軸方向)における端部側の輝度を向上させることができ、バックライト装置12の光出射部12aの輝度を均一にすることができる。
 詳しくは、バックライト装置12を光出射部12a側から視ると、光出射部12aのY軸方向における両端部と重なる領域には、図3に示すように、反射シート21の立ち上がり部21bが配されており、LED17が配されていない。一方、光出射部12aのY軸方向における中央部と重なる領域には、その直下にLED17が配されている。このため、バックライト装置12内において、拡散レンズ19によりLED17から発せられた光が拡散されたとしても、光出射部12aのY軸方向における両端部に向かう光量は少ないものとなってしまう。特に、近年のバックライト装置は、薄型化、狭額縁化傾向にあり、そのようなバックライト装置においては、光出射部の周端部に向かう光量不足が顕著にみられる。
 一方、本実施形態では、行列配置されたレンズ挿通孔21dのうち、平面視にて、シャーシ14の短辺方向(Y軸方向)の両端部に位置する1行目と9行目に位置するレンズ挿通孔21dには光反射率約90%のソルダーレジスト層32が露出し、2行目から8行目に位置するレンズ挿通孔21dには光反射率約83%のソルダーレジスト層32が露出している。このため、シャーシ14の短辺方向(Y軸方向)の両端部側に位置するソルダーレジスト層32で反射される光量を、シャーシ14の中央部側に位置するソルダーレジスト層32で反射される光量に比べて多くすることができる。すなわち、光出射部12aのY軸方向における両端部に向かう光量不足を、ソルダーレジスト層32で反射した光により、補完することができる。
 また、本実施形態では、LED基板18に設ける反射層を、白色のソルダーレジスト層32からなるものとする。この場合、反射層として、基板の絶縁性を確保するのに必要なソルダーレジスト層32を流用することが可能なため、構成が簡便で、製造コストも削減可能となる。
 また、本実施形態では、ソルダーレジスト層32は少なくとも拡散レンズ19と重畳する部分に形成されている。このため、ソルダーレジスト層32で反射した光が拡散レンズ19に入光し、その一部がバックライト装置12の光出射部12aのY軸方向における両端部に向かって拡散されることになり、より一層光出射部12aの端部の輝度を向上させることができる。
 また、本実施形態では、ソルダーレジスト層32は少なくとも反射シート21のレンズ挿通孔21dと重畳する部分に形成されている。このため、レンズ挿通孔21d内に進入した光をソルダーレジスト層32により反射することができ、より一層光出射部12aの端部の輝度を向上させることができる。
 また、本実施形態では、LED基板18は、第1LED基板34と第2LED基板35とを有し、第1LED基板34に形成されたソルダーレジスト層32の層厚より、第2LED基板35に形成されたソルダーレジスト層32の層厚が薄く形成されている。このようにLED基板18毎にソルダーレジスト層32の層厚を異ならせると、シャーシ14の端部側と中央部側とにおいてソルダーレジスト層32の層厚を容易に異ならせることができる。
 具体的には、LED基板18等のプリント基板の製造に際し、1つの基板の層厚は板面内で均一にされるのが一般的である。本実施形態では、一般的なソルダーレジスト層32の形成方法により、それぞれ第1LED基板34と第2LED基板35と個別に製造することができ、構成が簡便で、製造コストも削減可能となる。
 また、本実施形態では、第1LED基板34と第2LED基板35とは、短冊状をなし、シャーシ14の底板14aの長辺に短冊状の長手方向を沿わせるとともに、それぞれ複数が短冊状の短手方向に並列して底板14a面に配されている。このため、底板14aの長辺に近接して第1LED基板34を配置させることができ、バックライト装置12の光出射部12aにおける当該底板14aの長辺側の輝度を向上させることができる。液晶表示装置10においては、短辺方向に沿った輝度の変化が、長辺方向に沿った輝度の変化に比べて視認され易い。本実施形態においては、特に、短辺方向に沿った輝度を均一にすることができ、バックライト装置12の光出射部12aの輝度を効果的に均一にすることができる。
 また、本実施形態では、第2LED基板35の層厚は5μm以上30μm以下とされている。このため、第1LED基板34および第2LED基板35のソルダーレジスト層32の層厚が5μm以上とされることになり、十分に基板を保護することができる。また、第2LED基板35の層厚が30μm以下であるから、第1LED基板34の層厚を第2LED基板35の層厚より厚くすることにより、所望の反射率を容易に設定できる。これは、ソルダーレジスト層32の少なくとも5μmから30μmまでの範囲では、その層厚による光反射率の変化が大きいためである。
 また、本実施形態では、拡散板15aと、光学シート15bとを備えているから、シャーシ14の開口部14bから出射された光が、拡散板15aおよび光学シート15bを透過することとなり、より一層バックライト装置12の光出射部12aの輝度を均一にすることができる。
 また、本実施形態では、光源は、LED17とされ、発光ダイオードを含むものであるから、高輝度化などを図ることができる。
 <実施形態2>
 本発明の実施形態2を図12から図14によって説明する。この実施形態2では、第2LED基板35のソルダーレジスト層32の構成を変更した第2LED基板135及びソルダーレジスト層132を示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 第1LED基板34におけるソルダーレジスト層132の層厚は、基板面に亘って略均一であって、30μmとされ、その光反射率は約90%である。一方、第2LED基板135におけるソルダーレジスト層132の層厚は、シャーシ14の長辺方向(X軸方向)に沿って一列に配された3つの第2LED基板135のうち、当該列の両端部側に配された端部側部分137と中央部側に配された中央部側部分138とで異なるものとされている。
 ここで、シャーシ14の長辺方向(X軸方向)に沿って一列に配される3つの第2LED基板135を、図12に示すように、当該列の並び順に左から第2LED基板135-1、第2LED基板135-2、第2LED基板135-3と呼ぶ。
 端部側部分137は、9行17列に行列配置された拡散レンズ19のうち、1列目に位置し、第2LED基板135-1の左端に位置する拡散レンズ19と重なる領域、および、17列目に位置し、第2LED基板135-3の右端に位置する拡散レンズ19と重なる領域とされる。すなわち、端部側部分137は、第2LED基板135をシャーシ14に配した状態で、シャーシ14の短辺に隣接する部分である。中央部側部分138は、第2LED基板135のうち、端部側部分137を除く部分とされている。すなわち、中央部側部分138は、2列目から16列目に位置する拡散レンズ19と重なる領域、すなわち、第2LED基板135-1の右端の拡散レンズ19に隣接する拡散レンズ19より右側の部分と、第2LED基板135-2の全体と、第2LED基板135-3の左端の拡散レンズ19に隣接する拡散レンズ19より左側の部分とで構成されている。
 第2LED基板135におけるソルダーレジスト層132の層厚は、中央部側部分138の層厚が15μmとされ、その光反射率が約83%である。すなわち、第2LED基板135のうち中央部側部分138の層厚は、第1LED基板34の層厚より相対的に薄いものとされており、第1LED基板34の光反射率が第2LED基板135の中央部側部分138の光反射率より相対的に高いものとされている。なお、第2LED基板135の中央部側部分138の層厚は、LED基板18の光反射率を設計する上で、5μmから30μmまでの厚さに設定されることが好ましく、5μmから25μmまでの厚さに設定されることがさらに好ましい。
 さらに、第2LED基板135におけるソルダーレジスト層132の層厚は、端部側部分137の層厚が30μmとされ、その光反射率は約90%である。すなわち、一列に配される第2LED基板135のうち中央部側部分138の層厚は、端部側部分137の層厚より相対的に薄いものとされており、端部側部分137の光反射率が中央部側部分138の光反射率より相対的に高いものとされている。具体的には、図13及び図14に示すように、第2LED基板135-3のソルダーレジスト層32の層厚および光反射率は、右側に位置する端部側部分137と左側に位置する中央部側部分138とで変化するものとされている。第2LED基板135-1では、第2LED基板135-3と左右対称に、端部側部分137が左側に、中央部側部分138が右側に配されている。なお、端部側部分137の層厚を、中央部側部分138の層厚より厚くするために、ソルダーレジストの印刷塗布工程において、第2LED基板135-1,135-3全体にソルダーレジストを印刷塗布する工程と、端部側部分137にのみソルダーレジストを印刷塗布する工程とを含むものとされる。つまり、いわゆる2度塗りの工程とすることにより、容易にソルダーレジスト層132を形成することができる。
 ソルダーレジスト層132は、図3に示すように、バックライト装置12内において、9行17列に行列配置されたレンズ挿通孔21dから露出することになる。第1LED基板34に配されたソルダーレジスト層132は、行列配置されたレンズ挿通孔21dのうち、平面視にて、シャーシ14の短辺方向(Y軸方向)の両端部に位置する、1行目と9行目に位置するレンズ挿通孔21dから露出することになる。また、第2LED基板135の端部側部分137に配されたソルダーレジスト層132は、行列配置されたレンズ挿通孔21dのうち、シャーシ14の長辺方向(X軸方向)の両端部に位置する、2行目から8行目の1列目と17列目に位置するレンズ挿通孔21dから露出することになる。さらに、第2LED基板135の中央部側部分138に配されたソルダーレジスト層132は、行列配置されたレンズ挿通孔21dのうち、2行目から8行目の2列目から17列目に位置するレンズ挿通孔21dから露出することになる。すなわち、シャーシ14の長辺および短辺に沿うとともに近接して、第1LED基板34に配されたソルダーレジスト層132および第2LED基板135の端部側部分137に配されたソルダーレジスト層132が点在することとなる。
 本実施形態では、第2LED基板135は、3つが一列に配されており、一列に配された第2LED基板135のうち、端部側部分137の層厚より中央部側部分138の層厚が薄く形成されている。このため、端部側部分137の輝度を中央部側部分138比べて相対的に高いものとすることができ、バックライト装置12の光出射部12aにおけるシャーシ14の底板14a短辺側の輝度を相対的に高いものとすることができる。つまり、シャーシ14の底板14aの長辺側については第1LED基板34によりその輝度を高めることができるとともに、短辺側については第2LED基板135の端部側部分137によりその輝度を高めることができ、シャーシ14の底板14aの全周に亘って輝度を相対的に高いものとすることができる。すなわち、光出射部12aの周端部に向かう光量不足を、ソルダーレジスト層132で反射した光により、補完することができる。
 <実施形態3>
 本発明の実施形態3を図15によって説明する。この実施形態3では、第1LED基板34と第2LED基板35の配置構成を変更した第1LED基板234と第2LED基板235を示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 LED基板18は、図15に示すように、平面に視て矩形状(短冊状)をなす基材30を有しており、長辺方向がY軸方向(シャーシ14の底板14aの短辺方向)と一致し、短辺方向がX軸方向(シャーシ14の底板14aの長辺方向)と一致する状態でシャーシ14内において底板14aに沿って延在しつつ収容されている。
 また、LED基板18は、図15に示すように、シャーシ14内においてX軸方向に複数が、互いに長辺方向及び短辺方向を揃えた状態で並列して配置されている。つまり、LED基板18はX軸方向を並び方向と一致させて並列配置されるとともに、LED基板18に実装されたLED17は、シャーシ14内においてX軸方向(シャーシ14の長辺方向及びLED基板18の短辺方向)を行方向とし、Y軸方向(シャーシ14の短辺方向及びLED基板18の長辺方向)を列方向として行列配置(マトリクス状に配置)されている。具体的には、LED基板18は、シャーシ14内においてX軸方向に17枚ずつ、Y軸方向に1枚ずつ、並列して配置されている。そして、本実施形態では、LED基板18としては、9個のLED17が実装されたタイプのものが用いられている。
 ここで、LED基板18のうち、図15に示すように、当該LED基板18の並列配置における1枚目と17枚目に位置するもの、すなわち、シャーシ14の長辺方向における両端部側に位置するものを第1LED基板234(第1光源基板)とする。また、LED基板18のうち、2枚目から16枚目に位置するもの、すなわち、第1LED基板234に比べてシャーシ14の中央部側に位置するものを第2LED基板235(第2光源基板)とする。
 第1LED基板234におけるソルダーレジスト層232の層厚は、基板面に亘って略均一であって、30μmとされ、その光反射率は約90%である。一方、第2LED基板235におけるソルダーレジスト層232の層厚は、基板面に亘って略均一であって、15μmとされ、その光反射率は約83%である。すなわち、第2LED基板235の層厚は、第1LED基板234の層厚より相対的に薄いものとされており、第1LED基板234の光反射率が第2LED基板235の光反射率より相対的に高いものとされている。なお、第2LED基板235の層厚は、LED基板18の光反射率を設計する上で、5μmから30μmまでの厚さに設定されることが好ましく、5μmから25μmまでの厚さに設定されることがさらに好ましい。
 ソルダーレジスト層232は、バックライト装置12内において、9行17列に行列配置されたレンズ挿通孔21dから露出することになる。第1LED基板234に配されたソルダーレジスト層232は、行列配置されたレンズ挿通孔21dのうち、平面視にて、シャーシ14の長辺方向(X軸方向)の両端部に位置する、1列目と17列目に位置するレンズ挿通孔21dから露出することになる。また、第2LED基板235に配されたソルダーレジスト層232は、行列配置されたレンズ挿通孔21dのうち、2列目から16列目に位置するレンズ挿通孔21dから露出することになる。すなわち、シャーシ14の短辺に沿うとともに近接して、第1LED基板234に配されたソルダーレジスト層232が点在することとなる。
 本実施形態では、第1LED基板234と第2LED基板235とは、短冊状をなし、シャーシ14の底板14aの短辺に短冊状の長手方向を沿わせるとともに、それぞれ複数が短冊状の短手方向に並列して底板面に配されている。このため、底板14aの短辺に近接して第1LED基板234を配置させることができ、バックライト装置12の光出射部12aにおける当該底板14aの短辺側の輝度を向上させることができる。
 <実施形態4>
 本発明の実施形態4を図16によって説明する。この実施形態4では、実施形態3の第2LED基板235のソルダーレジスト層232の構成を変更した第2LED基板335及びソルダーレジスト層332を示す。なお、上記した実施形態と同様の構造、作用及び効果について重複する説明は省略する。
 LED基板18は、実施形態3と同様に、9個のLED17が実装されたタイプのものが、17枚並列配置されている。
 ここで、LED基板18のうち、図16に示すように、当該LED基板18の並列配置における1枚目と17枚目に位置するもの、すなわち、シャーシ14の長辺方向における両端部側に位置するものを第1LED基板334(第1光源基板)とする。また、LED基板18のうち、2枚目から16枚目に位置するもの、すなわち、第1LED基板334に比べてシャーシ14の中央部側に位置するものを第2LED基板335(第2光源基板)とする。
 第1LED基板334におけるソルダーレジスト層332の層厚は、基板面に亘って略均一であって、30μmとされ、その光反射率は約90%である。一方、第2LED基板335におけるソルダーレジスト層332の層厚は、シャーシ14の短辺方向(Y軸方向)に長辺方向を沿わせて配された第2LED基板335のうち、当該長辺方向の両端部側に配された端部側部分337と中央部側に配された中央部側部分338とで異なるものとされている。
 端部側部分337は、9行17列に行列配置された拡散レンズ19のうち、1行目に位置し、第2LED基板335の上端に位置する拡散レンズ19と重なる領域、および、9行目に位置し、第2LED基板335の下端に位置する拡散レンズ19と重なる領域とされる。すなわち、端部側部分337は、第2LED基板335をシャーシ14に配した状態で、シャーシ14の長辺に隣接する部分である。中央部側部分338は、第2LED基板335のうち、端部側部分337を除く部分とされている。すなわち、中央部側部分338は、2行目から8行目に位置する拡散レンズ19と重なる領域、すなわち、第2LED基板335の上端の拡散レンズ19に隣接する拡散レンズ19から、第2LED基板335の下端の拡散レンズ19に隣接する拡散レンズ19までの部分とされる。
 第2LED基板335におけるソルダーレジスト層332の層厚は、中央部側部分338の層厚が15μmとされ、その光反射率が約83%である。すなわち、第2LED基板335のうち中央部側部分338の層厚は、第1LED基板334の層厚より相対的に薄いものとされており、第1LED基板334の光反射率が第2LED基板335の中央部側部分338の光反射率より相対的に高いものとされている。なお、第2LED基板335の中央部側部分338の層厚は、LED基板18の光反射率を設計する上で、5μmから30μmまでの厚さに設定されることが好ましく、5μmから25μmまでの厚さに設定されることがさらに好ましい。
 さらに、第2LED基板335におけるソルダーレジスト層332の層厚は、端部側部分337の層厚が30μmとされ、その光反射率は約90%である。すなわち、図16に示すように、第2LED基板335のうち中央部側部分338の層厚は、端部側部分337の層厚より相対的に薄いものとされており、端部側部分337の光反射率が中央部側部分338の光反射率より相対的に高いものとされている。
 ソルダーレジスト層332は、バックライト装置12内において、9行17列に行列配置されたレンズ挿通孔21dから露出することになる。第1LED基板334に配されたソルダーレジスト層332は、行列配置されたレンズ挿通孔21dのうち、平面視にて、シャーシ14の長辺方向(X軸方向)の両端部に位置する、1列目と17列目に位置するレンズ挿通孔21dから露出することになる。また、第2LED基板335の端部側部分337に配されたソルダーレジスト層332は、行列配置されたレンズ挿通孔21dのうち、シャーシ14の短辺方向(Y軸方向)の両端部に位置する、1行目と9行目の2列目から16列目に位置するレンズ挿通孔21dから露出することになる。さらに、第2LED基板335の中央部側部分338に配されたソルダーレジスト層332は、行列配置されたレンズ挿通孔21dのうち、2行目から8行目の2列目から17列目に位置するレンズ挿通孔21dから露出することになる。すなわち、シャーシ14の短辺および長辺に沿うとともに近接して、第1LED基板334に配されたソルダーレジスト層332および第2LED基板335の端部側部分337に配されたソルダーレジスト層332が点在することとなる。
 本実施形態では、第2LED基板335は、一列に配された第2LED基板335のうち、端部側部分337の層厚より中央部側部分338の層厚が薄く形成されている。このため、端部側部分337の輝度を中央部側部分338比べて相対的に高いものとすることができ、バックライト装置12の光出射部12aにおけるシャーシ14の底板14a長辺側の輝度を相対的に高いものとすることができる。つまり、シャーシ14の底板14aの短辺側については第1LED基板334によりその輝度を高めることができるとともに、長辺側については第2LED基板335の端部側部分337によりその輝度を高めることができ、シャーシ14の底板14aの全周に亘って輝度を相対的に高いものとすることができる。すなわち、光出射部12aの周端部に向かう光量不足を、ソルダーレジスト層332で反射した光により、補完することができる。
 <実施形態5>
 本発明の実施形態5を図17によって説明する。この実施形態5では、実施形態4の第1LED基板334を第2LED基板335の構成に変更したLED基板418を示す。なお、上記した実施形態と同様の構造、作用及び効果について重複する説明は省略する。
 LED基板418は、実施形態3と同様に、9個のLED17が実装されたタイプのものが、17枚並列配置されている。
 LED基板418におけるソルダーレジスト層332の層厚は、図17に示すように、シャーシ14の短辺方向(Y軸方向)に長辺方向を沿わせて配されたLED基板418のうち、当該長辺方向の両端部側に配された端部側部分437と中央部側に配された中央部側部分438とで異なるものとされている。
 端部側部分437は、9行17列に行列配置された拡散レンズ19のうち、1行目に位置し、第2LED基板335の上端に位置する拡散レンズ19と重なる領域、および9行目に位置し、第2LED基板335の下端に位置する拡散レンズ19と重なる領域とされる。すなわち、端部側部分437は、LED基板418をシャーシ14に配した状態で、シャーシ14の長辺に隣接する部分である。中央部側部分438は、LED基板418のうち、端部側部分437を除く部分とされている。すなわち、中央部側部分438は、2行目から8行目に位置する拡散レンズ19と重なる領域、すなわち、LED基板418の上端の拡散レンズ19に隣接する拡散レンズ19から、LED基板418の下端の拡散レンズ19に隣接する拡散レンズ19までの部分とされる。
 LED基板418におけるソルダーレジスト層432の層厚は、端部側部分437の層厚が30μmとされ、その光反射率は約90%である。一方、中央部側部分438の層厚が15μmとされ、その光反射率が約83%である。すなわち、LED基板418のうち中央部側部分438の層厚は、端部側部分437の層厚より相対的に薄いものとされており、端部側部分438の光反射率が中央部側部分338の光反射率より相対的に高いものとされている。なお、LED基板418の中央部側部分438の層厚は、LED基板418の光反射率を設計する上で、5μmから30μmまでの厚さに設定されることが好ましく、5μmから25μmまでの厚さに設定されることがさらに好ましい。
 ソルダーレジスト層432は、バックライト装置12内において、9行17列に行列配置されたレンズ挿通孔21dから露出することになる。端部側部分437に配されたソルダーレジスト層432は、行列配置されたレンズ挿通孔21dのうち、平面視にて、シャーシ14の短辺方向(Y軸方向)の両端部に位置する、1行目と9行目に位置するレンズ挿通孔21dから露出することになる。また、中央部側部分438に配されたソルダーレジスト層432は、行列配置されたレンズ挿通孔21dのうち、2行目から8行目に位置するレンズ挿通孔21dから露出することになる。すなわち、シャーシ14の長辺に沿うとともに近接して、LED基板418の端部側部分437に配されたソルダーレジスト層332が点在することとなる。
 本実施形態では、ソルダーレジスト層432の層厚が、シャーシ14の短辺方向(Y軸方向)における端部側部分437よりも、中央部側部分438において、相対的に薄く形成されているから、シャーシの中央部側の光反射率を端部側より低く、逆にシャーシ14の短辺方向(Y軸方向)における両端部側の光反射率を中央部側より高くすることができる。このため、シャーシ14の短辺方向(Y軸方向)における端部側にLED17を配することができない領域が生じた場合であっても、シャーシ14の短辺方向(Y軸方向)における端部側の輝度を向上させることができ、バックライト装置12の光出射部12aの輝度を均一にすることができる。液晶表示装置10においては、短辺方向に沿った輝度の変化が、長辺方向に沿った輝度の変化に比べて視認され易い。本実施形態においては、特に、短辺方向に沿った輝度を均一にすることができ、バックライト装置12の光出射部12aの輝度を効果的に均一にすることができる。さらに、本実施形態においては、複数のLED基板418はすべて同じ構成とされるので、多種類の基板を用意する必要がなく、部品点数削減に寄与することができる。
 <実施形態6>
 本発明の実施形態6を図18から図21によって説明する。この実施形態6では、上記した実施形態1からバックライト装置12をエッジライト型に変更したバックライト装置512を示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る液晶表示装置10は、図18に示すように、液晶パネル11と、エッジライト型のバックライト装置512とをベゼル13などにより一体化した構成とされる。なお、液晶パネル11の構成は、上記した実施形態1と同様であるから、重複する説明は省略する。以下、エッジライト型のバックライト装置512の構成について説明する。
 バックライト装置512は、図18に示すように、表側、つまり光出射部12a側(液晶パネル11側)に開口する開口部14b(光出射部)を有した略箱型をなすシャーシ14と、シャーシ14の開口部14bを覆う形で配される光学部材15と、次述する導光部材519を表側から押さえるフレーム16とを備えている。さらに、シャーシ14内には、光源であるLED(Light Emitting Diode:発光ダイオード)17が実装されたLED基板518(光源基板)と、LED17からの光を導光して光学部材15(液晶パネル11、光出射部12a側)へと導く導光部材519とが収容されている。そして、このバックライト装置512は、その長辺側の両端部に、LED17を有するLED基板518をそれぞれ備えるとともに、両端側に配されたLED基板518間に挟まれた中央側に導光部材519を配置してなる、いわゆるエッジライト型(サイドライト型)とされている。
 シャーシ14は、金属板からなり、図18に示すように、液晶パネル11と同様に横長の方形状をなす底板14aと、底板14aにおける各辺(一対の長辺及び一対の短辺)の外端からそれぞれ表側に向けて立ち上がる側板14cとからなる。また、側板14cには、フレーム16及びベゼル13がねじ止め可能とされる。
 光学部材15は、図18に示すように、液晶パネル11及びシャーシ14と同様に平面に視て横長の方形状をなしている。光学部材15は、導光部材519の表側(光出射側)に載せられていて液晶パネル11と導光部材519との間に介在して配される。光学部材15は、裏側(導光部材519側、光出射部12b側とは反対側)に配される拡散板15aと、表側(液晶パネル11側、光出射部12b側)に配される光学シート15bとから構成される。拡散板15aは、所定の厚みを持つほぼ透明な合成樹脂製で板状をなす透光性基材内に拡散粒子を多数分散して設けた構成とされ、透過する光を拡散させる機能を有する。光学シート15bは、拡散板15aと比べると板厚が薄いシート状をなしており、3枚が積層して配されている。具体的な光学シート15bとしては、例えば拡散シート、プリズムシート、反射型偏光シートが用いられる。
 フレーム16は、図18に示すように、導光部材519の外周端部に沿って延在する枠状(額縁状)に形成されており、導光部材519の外周端部をほぼ全周にわたって表側から押さえることが可能とされる。また、フレーム16は、液晶パネル11における外周端部を裏側から受けることができる。
 LED17は、図19及び図20に示すように、LED基板518に固着される基板部上にLEDチップを樹脂材により封止した構成とされる。LED基板518は、図18に示すように、シャーシ14の長辺方向に沿って延在する、長手の板状をなしており、液晶パネル11及び導光部材519(光学部材15)の板面と直交させた姿勢でシャーシ14内に収容されている。つまり、このLED基板518は、板面における長辺方向がX軸方向と、短辺方向がZ軸方向とそれぞれ一致し、さらには板面と直交する板厚方向がY軸方向と一致した姿勢とされる。
 LED基板518は、図19に示すように、Y軸方向について導光部材519を挟んだ位置に対をなして配されており、詳しくは導光部材519とシャーシ14における長辺側の各側板14cとの間に介在するようそれぞれ配されている。LED基板518の板面のうち、内側、つまり導光部材519側を向いた面(導光部材519との対向面)には、複数(本実施形態では27個)のLED17がLED基板518の長辺方向(シャーシ14の長辺方向、X軸方向)に沿って間欠的に並列して配されている。LED17は、LED基板518における導光部材519側を向いた面に表面実装されており、当該面をLED17が実装された板面518a(光源が実装された板面)と呼ぶ。LED17が実装された板面518aには、X軸方向に沿って延在するとともにLED17同士を直列接続する、金属膜(銅箔など)からなるパターン配線31が形成されている。パターン配線31の両端部には、図示しない端子部が形成され、端子部が外部の駆動回路に接続されることで、駆動電力を各LED17に供給することが可能とされる。さらに、パターン配線31の表面には、配線を保護する白色のソルダーレジスト層532(反射層)が積層されている。ソルダーレジスト層532については、後に詳述することとする。
 一対のLED基板518は、図19に示すように、LED17が実装された板面518aとは反対側の板面がシャーシ14における長辺側の一対の側板14cの内面に接する形でそれぞれ取り付けられている。
 導光部材519は、屈折率が空気よりも十分に高く且つほぼ透明な(透光性に優れた)合成樹脂材料(例えばアクリルなど)からなる。導光部材519は、図18に示すように、液晶パネル11及びシャーシ14と同様に平面に視て横長の方形状をなす板状とされており、その板面における長辺方向がX軸方向と、短辺方向がY軸方向とそれぞれ一致し、且つ板面と直交する板厚方向がZ軸方向と一致している。導光部材519は、図19に示すように、シャーシ14内において液晶パネル11及び光学部材15の直下位置に配されており、シャーシ14における長辺側の両端部に配された対をなすLED基板518間にY軸方向について挟み込まれる形で配されている。そして、導光部材519は、LED17からY軸方向に向けて発せられた光を導入するとともに、その光を内部で伝播させつつ光学部材15側(表側、光出射側)へ向くよう立ち上げて出射させる機能を有する。
 導光部材519の板面のうち、表側を向いた面が内部の光を光学部材15及び液晶パネル11に向けて出射させる光出射面519bとなっている。導光部材519における板面に対して隣り合う外周端面のうち、X軸方向に沿って長手状をなす長辺側の両端面は、図16に示すように、それぞれLED17(LED基板518)と所定の空間を空けて対向状をなしており、これらがLED17から発せられた光が入射される光入射面519aとなっている。
 導光部材519の板面のうち、光出射面519bとは反対側の面519cには、図19に示すように、導光部材519内の光を反射して表側へ立ち上げることが可能な反射性光学部材25がその全域を覆う形で設けられている。なお、導光部材519における光出射面519bと反対側の面519cとの少なくともいずれか一方、または反射性光学部材25の表面には、導光部材519内の光を散乱させる散乱部(図示せず)などが所定の面内分布を持つようパターニングされており、それにより光出射面519bからの出射光が面内において均一な分布となるよう制御されている。
 次に、ソルダーレジスト層532に係る構成について詳しく説明する。ソルダーレジスト層532は、一般に多用される緑色のソルダーレジストに比べ光反射性に優れた白色のソルダーレジストを、所定の厚さに印刷塗布することにより得られる。ソルダーレジスト層532は、図20に示すように、LED基板518の基材(図示せず)およびパターン配線31の表面に、LED17が実装される部分を除き、略全面に亘って設けられている。ソルダーレジスト層532は、導光部材519の光入射面519aと対向し、導光部材519の光入射面519aとLED基板518の基材との間に位置している。従って、導光部材519側からLED基板518側に戻された光について、ソルダーレジスト層532によって再び導光部材519側に反射させることができる。
 LED基板518におけるソルダーレジスト層532の層厚は、LED基板518の長辺方向(シャーシ14の長辺方向、X軸方向)の両端部側に配された端部側部分537と中央部側に配された中央部側部分538とで異なるものとされている。端部側部分537におけるソルダーレジスト層532の層厚は、30μmとされ、その光反射率は約90%である。一方、中央部側部分538におけるソルダーレジスト層532の層厚は、15μmとされ、その光反射率は約83%である。すなわち、中央部側部分538の層厚は、端部側部分537の層厚より相対的に薄いものとされており、端部側部分537の光反射率が中央部側部分538の光反射率より相対的に高いものとされている。なお、中央部側部分538の層厚は、LED基板518の光反射率を設計する上で、5μmから30μmまでの厚さに設定されることが好ましく、5μmから25μmまでの厚さに設定されることがさらに好ましい。
 なお、端部側部分537の層厚を、中央部側部分538の層厚より厚くするために、ソルダーレジストの印刷塗布工程において、LED基板518全体にソルダーレジストを印刷塗布する工程と、端部側部分537にのみソルダーレジストを印刷塗布する工程とを含むものとされる。つまり、いわゆる2度塗りの工程とすることにより、容易にソルダーレジスト層532を形成することができる。
 本実施形態では、LED基板518は、ソルダーレジスト層532が形成された板面518aを導光部材の光入射面519aに対向させて配されているから、ソルダーレジスト層532で反射した光を導光部材519に入射させることができ、バックライト装置512の光出射部12aの輝度を均一にすることができる。
 詳しくは、バックライト装置512内において、導光部材519には所定の面内分布を持つようパターニングされた散乱部などが形成されていたとしても、光出射部12aのX軸方向における両端部に向かう光量は少ないものとなる傾向がある。
 一方、本実施形態では、LED基板518のうち、シャーシ14の長辺方向(X軸方向)の両端部に位置する端部側部分537には光反射率約90%のソルダーレジスト層532が設けられ、中央部側部分538には光反射率約83%のソルダーレジスト層532が設けられている。このため、シャーシ14の長辺方向(X軸方向)の両端部側に位置するソルダーレジスト層532で反射される光量を、シャーシ14の中央部側に位置するソルダーレジスト層532で反射される光量に比べて多くすることができる。すなわち、光出射面のX軸方向における両端部に向かう光量不足を、ソルダーレジスト層532で反射した光により、補完することができる。
 <他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
 (1)上記した実施形態1から実施形態5では、拡散レンズ19を備えるものを例示したが、拡散レンズ19を備えないものも本発明に含まれる。
 (2)上記した各実施形態では、反射層として、白色のソルダーレジスト層32,232を例示したが、反射層は、その層厚によって反射率が変化するものであればよく、酸化チタンやチタン酸バリウム、又はポリカーボネートなどの高光反射性材料を含むソルダーレジスト層としてもよい。また、反射層は乳白色等であっても好適に用いることができる。
 (3)上記した実施形態2では、第1LED基板34と第2LED基板235とを備えるものを例示したが、第2LED基板235のみを備える構成としてもよい。この場合には、底板14aの短辺に近接して第2LED基板235の端部側部分237を配置させることができ、バックライト装置12の光出射部12aにおける当該底板14aの短辺側の輝度を向上させることができる。
 (4)上記した実施形態1から実施形態5では、LED基板18は、複数の短冊状の第1LED基板34と第2LED基板35,135とで分割構成されるものを例示したが、LED基板は1枚で構成されていてもよく、また、LEDが行列配置される矩形状のLED基板を複数組み合わせて構成されていてもよい。
 (5)上記した実施形態1から実施形態5では、行列配置されたLED17を例示したが、LED17は千鳥状配置等の他の配置構成であってもよい。
 (6)上記した実施形態1および実施形態6では、LED基板18の基材30は、シャーシ14と同じアルミ系材料などの金属製とされるものを例示したが、セラミックなどの絶縁材料を用いることも可能である。
 (7)上記した実施形態1から実施形態5では、反射シートを備えたものを示したが、反射シートを省略したものも本発明に含まれる。
 (8)上記した実施形態1では光学シートの種類としては、光を拡散する機能を有する拡散シート、光を集光する機能を有するレンズシートなどを例示したが、光学シートは光を集光する機能と、光を拡散する機能とを併せもつものであってもよい。
 (9)上記した各実施形態では、LED基板として5個実装タイプ、6個実装タイプ及び8個実装タイプのものを適宜に組み合わせて用いる旨を説明したが、5個,6個,8個以外の数のLEDを実装したLED基板を用いるようにしたものも本発明に含まれる。
 (10)上記した各実施形態では、光源としてLEDを用いたものを例示したが、LED以外の光源を用いたものも本発明に含まれる。
 (11)上記した各実施形態では、液晶パネル及びシャーシがその短辺方向を鉛直方向と一致させた縦置き状態とされるものを例示したが、液晶パネル及びシャーシがその長辺方向を鉛直方向と一致させた縦置き状態とされるものも本発明に含まれる。
 (12)上記した各実施形態では、液晶表示装置のスイッチング素子としてTFTを用いたが、TFT以外のスイッチング素子(例えば薄膜ダイオード(TFD))を用いた液晶表示装置にも適用可能であり、カラー表示する液晶表示装置以外にも、白黒表示する液晶表示装置にも適用可能である。
 (13)上記した各実施形態では、表示パネルとして液晶パネルを用いた液晶表示装置を例示したが、他の種類の表示パネルを用いた表示装置にも本発明は適用可能である。
 (14)上記した各実施形態では、チューナーを備えたテレビ受信装置を例示したが、チューナーを備えない表示装置にも本発明は適用可能である。
 10…液晶表示装置(表示装置)、11…液晶パネル(表示パネル)、12…バックライト装置(照明装置)、14…シャーシ、15…光学部材、15a…拡散板、15b…光学シート、17…LED(光源)、18,418,518…LED基板(光源基板)、18b,518a…板面(光源が実装された板面)、19…拡散レンズ(レンズ部材)、20…保持部材、21…反射シート、21b…レンズ挿通孔(開口部)、31…パターン配線、32,132,232,332,432,532…ソルダーレジスト層(反射層)、34,234,334…第1LED基板(第1光源基板)、35,135,235,335…第2LED基板(第2光源基板)、137,337,437,537…端部側部分、138,338,438,538…中央部側部分、519…導光部材、519a…光入射面、519b…光出射面、TV…テレビ受信装置

Claims (15)

  1.  光源と、
     前記光源が実装されてなる光源基板と、
     前記光源基板が配されてなるシャーシと、
     前記光源基板のうち前記光源が実装された板面に配され、前記光源と電気的に接続されたパターン配線と、
     前記光源基板上において前記パターン配線の少なくとも一部に積層されてなる反射層であって、その層厚が、前記シャーシのうち端部側に位置する部分よりも、当該端部側に位置する部分より中央部側に位置する部分において、相対的に薄く形成されている反射層と、
     を備える照明装置。
  2.  前記反射層は白色のソルダーレジストからなる請求項1に記載の照明装置。
  3.  光を拡散するレンズ部材であって、前記光源基板の前記光源が実装された板面上に配され、前記光源の光出射側を覆うレンズ部材を備え、
     前記反射層は、少なくとも前記レンズ部材と重畳する部分に形成されている請求項1または請求項2に記載の照明装置。
  4.  光を反射させる反射シートであって、前記レンズ部材の外形より大きく開口した開口部を有し、前記レンズ部材を前記開口部に挿通させるとともに、前記光源基板の前記光源が実装された板面上に配される反射シートを備え、
     前記反射層は、少なくとも前記開口部と重畳する部分に形成されている請求項3に記載の照明装置。
  5.  前記光源基板は、前記端部側に配される第1光源基板と前記中央部側に配される第2光源基板とを少なくとも有し、前記第1光源基板に形成された前記反射層の層厚より、前記第2光源基板に形成された前記反射層の層厚が薄く形成されている請求項1から請求項4のいずれか1項に記載の照明装置。
  6.  前記シャーシは矩形状の底板を有し、
     前記第1光源基板と前記第2光源基板とは、短冊状をなし、前記底板の長辺に前記短冊状の長手方向を沿わせるとともに、それぞれ複数が前記短冊状の短手方向に並列して前記底板面に配されている請求項5に記載の照明装置。
  7.  前記シャーシは矩形状の底板を有し、
     前記第1光源基板と前記第2光源基板とは、短冊状をなし、前記底板の短辺に前記短冊状の長手方向を沿わせるとともに、それぞれ複数が前記短冊状の短手方向に並列して前記底板面に配されている請求項5に記載の照明装置。
  8.  前記第2光源基板は、1つまたは複数が一列に配されており、前記一列に配された前記第2光源基板のうち、前記列の端部側の層厚より中央部側の層厚が薄く形成されている請求項5から請求項7のいずれか1項に記載の照明装置。
  9.  側面に設けられた光入射面と、一方の板面に設けられた光出射面と、を有する導光部材であって、前記光源から出射された光が前記光入射面に入射するととともに、前記光出射面から出射される導光部材、を備え、
     前記光源基板は、前記光源が実装された板面を前記導光部材の前記光入射面に対向させて配されている請求項1から請求項5のいずれか1項に記載の照明装置。
  10.  前記反射層は、前記中央部側に位置する部分の層厚が5μm以上30μm以下である請求項1から請求項9のいずれか1項に記載の照明装置。
  11.  前記シャーシは、前記光源からの光を出射させる光出射部を有しており、
     前記光出射部を覆う形で配される光学部材を更に備え、
     前記光学部材は、前記光源からの光を拡散する機能を有する拡散板と、前記拡散板を透過した光を集光する機能と、前記拡散板を透過した光を拡散する機能との少なくとも一方の機能を有する光学シートとを備える請求項1から請求項10のいずれか1項に記載の照明装置。
  12.  前記光源は、発光ダイオードを含むものである請求項1から請求項11のいずれか1項に記載の照明装置。
  13.  請求項1から請求項12のいずれか1項に記載の表示装置用照明装置と、この表示装置用照明装置の表側に配される表示パネルとからなる表示装置。
  14.  前記表示パネルは、一対の基板間に液晶を封入してなる液晶パネルとされる請求項13記載の表示装置。
  15.  請求項13または請求項14に記載された表示装置を備えるテレビ受信装置。
PCT/JP2012/069810 2011-08-09 2012-08-03 照明装置、表示装置、及びテレビ受信装置 WO2013021933A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-173952 2011-08-09
JP2011173952 2011-08-09

Publications (1)

Publication Number Publication Date
WO2013021933A1 true WO2013021933A1 (ja) 2013-02-14

Family

ID=47668441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069810 WO2013021933A1 (ja) 2011-08-09 2012-08-03 照明装置、表示装置、及びテレビ受信装置

Country Status (1)

Country Link
WO (1) WO2013021933A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106353922A (zh) * 2016-10-26 2017-01-25 南京华东电子信息科技股份有限公司 直下式LED背光Light‑Bar固定方式
EP3343650A4 (en) * 2015-08-26 2019-07-03 Sony Corporation LIGHT EMITTING DEVICE, DISPLAY DEVICE, AND LIGHTING DEVICE
EP3764154A1 (en) * 2019-07-08 2021-01-13 Samsung Electronics Co., Ltd. Display apparatus
JP2021103613A (ja) * 2019-12-24 2021-07-15 シーシーエス株式会社 面発光装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004031647A1 (ja) * 2002-09-30 2004-04-15 Sharp Kabushiki Kaisha バックライトユニット及びバックライトユニットを用いた液晶表示装置
WO2004038283A1 (ja) * 2002-10-22 2004-05-06 Sharp Kabushiki Kaisha バックライトユニット及びバックライトユニットを用いた液晶表示装置
JP2007080702A (ja) * 2005-09-15 2007-03-29 Nec Lcd Technologies Ltd バックライトユニット
JP2007286360A (ja) * 2006-04-17 2007-11-01 Funai Electric Co Ltd 液晶テレビジョン装置および直下型バックライト装置
WO2011001754A1 (ja) * 2009-07-02 2011-01-06 シャープ株式会社 照明装置、表示装置、及びテレビ受信装置
WO2011001753A1 (ja) * 2009-07-03 2011-01-06 シャープ株式会社 照明装置、表示装置、及びテレビ受信装置
WO2011074334A1 (ja) * 2009-12-15 2011-06-23 シャープ株式会社 照明装置、表示装置、及びテレビ受信装置
JP2011150264A (ja) * 2010-01-25 2011-08-04 Hitachi Displays Ltd 液晶表示装置及び照明装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004031647A1 (ja) * 2002-09-30 2004-04-15 Sharp Kabushiki Kaisha バックライトユニット及びバックライトユニットを用いた液晶表示装置
WO2004038283A1 (ja) * 2002-10-22 2004-05-06 Sharp Kabushiki Kaisha バックライトユニット及びバックライトユニットを用いた液晶表示装置
JP2007080702A (ja) * 2005-09-15 2007-03-29 Nec Lcd Technologies Ltd バックライトユニット
JP2007286360A (ja) * 2006-04-17 2007-11-01 Funai Electric Co Ltd 液晶テレビジョン装置および直下型バックライト装置
WO2011001754A1 (ja) * 2009-07-02 2011-01-06 シャープ株式会社 照明装置、表示装置、及びテレビ受信装置
WO2011001753A1 (ja) * 2009-07-03 2011-01-06 シャープ株式会社 照明装置、表示装置、及びテレビ受信装置
WO2011074334A1 (ja) * 2009-12-15 2011-06-23 シャープ株式会社 照明装置、表示装置、及びテレビ受信装置
JP2011150264A (ja) * 2010-01-25 2011-08-04 Hitachi Displays Ltd 液晶表示装置及び照明装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3982429A1 (en) * 2015-08-26 2022-04-13 Sony Group Corporation Display apparatus comprising light-emitting device
EP3343650A4 (en) * 2015-08-26 2019-07-03 Sony Corporation LIGHT EMITTING DEVICE, DISPLAY DEVICE, AND LIGHTING DEVICE
US11732869B2 (en) 2015-08-26 2023-08-22 Saturn Licensing Llc Light-emitting device, display apparatus and lighting apparatus
US11578851B2 (en) 2015-08-26 2023-02-14 Saturn Licensing Llc Light-emitting device, display apparatus and lighting apparatus
CN113629177A (zh) * 2015-08-26 2021-11-09 索尼公司 发光装置、显示装置和照明装置
US11242975B2 (en) 2015-08-26 2022-02-08 Saturn Licensing Llc Light-emitting device, display apparatus and lighting apparatus
CN106353922B (zh) * 2016-10-26 2019-05-17 南京华东电子信息科技股份有限公司 直下式LED背光Light-Bar固定方式
CN106353922A (zh) * 2016-10-26 2017-01-25 南京华东电子信息科技股份有限公司 直下式LED背光Light‑Bar固定方式
CN113924524A (zh) * 2019-07-08 2022-01-11 三星电子株式会社 显示装置
US11340650B2 (en) 2019-07-08 2022-05-24 Samsung Electronics Co., Ltd. Display apparatus
EP3764154A1 (en) * 2019-07-08 2021-01-13 Samsung Electronics Co., Ltd. Display apparatus
JP7174688B2 (ja) 2019-12-24 2022-11-17 シーシーエス株式会社 面発光装置
JP2021103613A (ja) * 2019-12-24 2021-07-15 シーシーエス株式会社 面発光装置

Similar Documents

Publication Publication Date Title
JP5292476B2 (ja) 照明装置、表示装置、及びテレビ受信装置
JP5050498B2 (ja) 光源装置、バックライト装置、液晶表示装置及びバックライト装置の製造方法
JP5337883B2 (ja) 照明装置、表示装置、及びテレビ受信装置
JP4951152B2 (ja) 照明装置、表示装置、及びテレビ受信装置
US8870401B2 (en) Lighting device, display device and television receiver
US8908122B2 (en) Light source unit, lighting device, display device, television receiver, and method of manufacturing reflection sheet for light source unit
WO2011001749A1 (ja) 照明装置、表示装置、及びテレビ受信装置
WO2010146919A1 (ja) 光源ユニット、照明装置、表示装置、テレビ受信装置、及び光源ユニット用基板の製造方法
JP5138813B2 (ja) 照明装置、表示装置、及びテレビ受信装置
JP5476478B2 (ja) 照明装置、表示装置及びテレビ受信装置
JP2013143217A (ja) 照明装置、表示装置、及びテレビ受信装置
WO2010146917A1 (ja) 照明装置、表示装置、及びテレビ受信装置
WO2012165282A1 (ja) 照明装置、表示装置、及びテレビ受信装置
WO2011055635A1 (ja) 光源ユニット用母材、照明装置、表示装置、及びテレビ受信装置
WO2011148694A1 (ja) 照明装置、表示装置、及びテレビ受信装置
WO2013051437A1 (ja) 照明装置、表示装置、及びテレビ受信装置
JP2008140646A (ja) バックライト装置及び液晶表示装置
WO2013024714A1 (ja) 照明装置、表示装置、及びテレビ受信装置
JP2013143218A (ja) 照明装置、表示装置、及びテレビ受信装置
WO2013021933A1 (ja) 照明装置、表示装置、及びテレビ受信装置
US8657458B2 (en) Lighting device, display device and television receiver
JP2008145655A (ja) 液晶表示装置
WO2013031674A1 (ja) 照明装置、表示装置及びテレビ受信装置
JP2013143220A (ja) 照明装置、表示装置、及びテレビ受信装置
WO2011105147A1 (ja) 照明装置、表示装置及びテレビ受信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12822870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP