WO2013021908A1 - 温度制御システム - Google Patents

温度制御システム Download PDF

Info

Publication number
WO2013021908A1
WO2013021908A1 PCT/JP2012/069692 JP2012069692W WO2013021908A1 WO 2013021908 A1 WO2013021908 A1 WO 2013021908A1 JP 2012069692 W JP2012069692 W JP 2012069692W WO 2013021908 A1 WO2013021908 A1 WO 2013021908A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
water
steam
amount
heat
Prior art date
Application number
PCT/JP2012/069692
Other languages
English (en)
French (fr)
Inventor
讓 加藤
山田 栄一
森田 健太郎
Original Assignee
独立行政法人石油天然ガス・金属鉱物資源機構
国際石油開発帝石株式会社
Jx日鉱日石エネルギー株式会社
石油資源開発株式会社
コスモ石油株式会社
新日鉄エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人石油天然ガス・金属鉱物資源機構, 国際石油開発帝石株式会社, Jx日鉱日石エネルギー株式会社, 石油資源開発株式会社, コスモ石油株式会社, 新日鉄エンジニアリング株式会社 filed Critical 独立行政法人石油天然ガス・金属鉱物資源機構
Priority to US14/236,839 priority Critical patent/US20140157813A1/en
Priority to AU2012293758A priority patent/AU2012293758B2/en
Priority to CN201280037631.XA priority patent/CN103717986B/zh
Priority to CA2843842A priority patent/CA2843842C/en
Priority to EP12822546.3A priority patent/EP2741030A4/en
Priority to EA201490365A priority patent/EA201490365A1/ru
Priority to AP2014007443A priority patent/AP2014007443A0/xx
Priority to BR112014002617A priority patent/BR112014002617A2/pt
Publication of WO2013021908A1 publication Critical patent/WO2013021908A1/ja
Priority to ZA2014/01203A priority patent/ZA201401203B/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D7/00Devices using evaporation effects without recovery of the vapour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/001Controlling catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D1/00Devices using naturally cold air or cold water
    • F25D1/02Devices using naturally cold air or cold water using naturally cold water, e.g. household tap water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B11/00Controlling arrangements with features specially adapted for condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/02Auxiliary systems, arrangements, or devices for feeding steam or vapour to condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/04Auxiliary systems, arrangements, or devices for feeding, collecting, and storing cooling water or other cooling liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00026Controlling or regulating the heat exchange system
    • B01J2208/00035Controlling or regulating the heat exchange system involving measured parameters
    • B01J2208/00044Temperature measurement
    • B01J2208/00061Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00193Sensing a parameter
    • B01J2219/00195Sensing a parameter of the reaction system
    • B01J2219/002Sensing a parameter of the reaction system inside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00211Control algorithm comparing a sensed parameter with a pre-set value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00222Control algorithm taking actions
    • B01J2219/00227Control algorithm taking actions modifying the operating conditions
    • B01J2219/00238Control algorithm taking actions modifying the operating conditions of the heat exchange system
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts

Definitions

  • the present invention relates to a temperature control system that enables precise temperature control of a reactor by making the temperature in a refrigerant drum such as a steam drum uniform.
  • Patent Documents 1 and 2 Conventionally, as a water supply system to a steam drum, for example, there are those described in Patent Documents 1 and 2.
  • water is supplied from an economizer through a water supply pipe to a drum through gas supply, and vapor is generated by gas-liquid separation using an evaporator-gas-liquid separator.
  • the feed water outlet temperature of the economizer rises and becomes higher than the saturation temperature with respect to the drum pressure.
  • the pressure is higher than the internal pressure of the drum. Therefore, in order to prevent steaming in the drum, a steam-liquid separation device is provided to separate the steam and water in the drum. ing.
  • a water supply inner pipe is provided in the drum instead of the gas-liquid separator, and a small hole is formed in the upper half and a through hole having a larger diameter is formed in the lower half. The steam and water supply flow out.
  • the above-described configuration is for a general boiler.
  • the temperature of makeup water is lower than the temperature of the vapor phase in the steam drum, a temperature difference occurs between the vapor phase and the liquid phase.
  • the supply water temperature of the makeup water to the steam drum is low, the liquid phase temperature becomes lower than the saturation temperature. Therefore, when this configuration is applied to the temperature control of an FT (Fischer-Tropsch) reactor, the control becomes unstable.
  • the amount of steam generated becomes unstable because the liquidus temperature is lowered by the amount of water supplied to the steam drum.
  • the reactor converts hydrogen gas and carbon monoxide gas-rich synthesis gas into hydrocarbons using a catalyst. Since the FT synthesis reaction is an exothermic reaction and the temperature range for proper reaction is very narrow, it is necessary to precisely control the reaction temperature in the reactor while recovering the generated reaction heat.
  • the temperature control system 100 sends water stored in a vapor-liquid equilibrium state on the steam drum 101 to a heat removal pipe 104 in a reactor 103 that performs a Fischer-Tropsch synthesis reaction (exothermic reaction) with a pump 102 from the bottom. Then, the water in the heat removal pipe 104 is partially evaporated by the reaction heat accompanying the exothermic reaction generated in the reactor 103 to recover the heat, and the two-phase fluid of the steam and water is returned to the steam drum 101 by the return pipe 105. And returned to the steam drum 101. Then, the steam is supplied to the steam user outside the system through the steam outlet pipe 107.
  • a Fischer-Tropsch synthesis reaction exothermic reaction
  • an amount of make-up water commensurate with the steam supplied to the outside of the system is supplied to the steam drum 101 through the supply pipe 106.
  • the replenishment amount of the replenishing water is adjusted so that the liquid level is constant based on the measurement result of the level measuring unit 108 that measures the water level in the steam drum 101.
  • the temperature control system 100 described above since the opening of the replenishing water supply pipe 106 is submerged below the water surface in the steam drum 101, the relatively low temperature replenishing water having a large specific gravity directly flows into the bottom of the steam drum 101. And a temperature difference is generated between the steam phase and the water phase in the steam drum 101. Then, since the correlation between the vapor phase pressure of the steam drum 101 and the temperature of the aqueous phase is lost, there is a drawback that the control by the temperature control system 100 may not be performed with high accuracy.
  • the present invention has been made in view of the above-described circumstances, and provides a temperature control system capable of performing highly accurate temperature control by maintaining the gas-liquid temperature in the steam drum at a saturation temperature. With the goal.
  • a temperature control system is a temperature control system that recovers reaction heat in a reactor in which an exothermic reaction occurs and controls the temperature in the reactor, in which vapor and liquid refrigerant are in a gas-liquid equilibrium state.
  • a stored refrigerant drum, a heat removal unit that is disposed in the reactor and evaporates a part of the liquid refrigerant supplied from the refrigerant drum by reaction heat, and a mixed phase of vapor and liquid refrigerant generated in the heat removal unit A return pipe for returning the fluid to the refrigerant drum, a steam outlet pipe for supplying the steam in the refrigerant drum to the outside of the system, and a supply pipe for supplying a supply water amount corresponding to the amount of steam discharged outside the system to the return pipe.
  • the amount of reaction heat in the reactor is the heat capacity per unit refrigerant amount determined from the difference between the relatively high temperature in the refrigerant drum and the relatively low temperature of the makeup water and the physical properties of the refrigerant (specific heat, latent heat of vaporization).
  • the amount of makeup water determined by the control means is preferably calculated by the following equation.
  • WL3 Q / ⁇ Cp ⁇ (t1-t3) + r ⁇
  • WL3 Amount of makeup water
  • Q Amount of heat of reaction in the reactor
  • Cp Specific heat of liquid refrigerant
  • t1 Temperature in the heat removal part of the refrigerant drum
  • reactor t3 Temperature of makeup water
  • r Latent latent heat of liquid refrigerant.
  • the supply pipe may be connected to the return pipe at an acute angle along the traveling direction of the multiphase fluid in the return pipe.
  • the refilling pipe may be provided with a seal portion for preventing the backflow of steam.
  • a spray nozzle that sprays supply water into the return pipe may be provided in the supply pipe at the junction of the return pipe and the supply pipe.
  • the temperature control system supplies a supply water amount corresponding to the amount of steam discharged out of the system to a return pipe that returns the mixed phase fluid of the steam and liquid refrigerant generated in the heat removal section of the reactor to the refrigerant drum.
  • Supply water is supplied to the refrigerant drum by merging the amount of makeup water commensurate with the amount of steam discharged out of the system into the return piping and mixing it directly with the steam at the saturation temperature in the return piping. It is possible to heat to the saturation temperature before being performed, and the gas-liquid temperature in the refrigerant drum can always be maintained at the saturation temperature.
  • the temperature in the refrigerant drum can be made uniform while avoiding the complexity of the structure and the size of the equipment.
  • the temperature of the reactor can be controlled with high accuracy and precision.
  • the amount of reaction heat in the reactor is the heat capacity per unit refrigerant amount determined from the difference between the relatively high temperature in the refrigerant drum and the relatively low temperature of the makeup water and the physical properties of the refrigerant (specific heat, latent heat of vaporization).
  • the amount of makeup water determined by the control means is specifically calculated by the following equation, so the amount of makeup water can be accurately calculated to be equal to the steam flow rate supplied to the outside of the system, and the makeup water amount can be calculated as the steam flow rate. It can be limited not to exceed.
  • WL3 Q / ⁇ Cp ⁇ (t1-t3) + r ⁇
  • WL3 Amount of makeup water
  • Q Amount of reaction heat in the reactor
  • Cp Specific heat of the liquid refrigerant
  • t1 Temperature in the heat removal part of the refrigerant drum and the reactor t3: Temperature of makeup water
  • r Latent latent heat of liquid refrigerant.
  • the replenishment pipe is connected to the return pipe at an acute angle along the traveling direction of the multiphase fluid at the junction of the return pipe and the replenishment pipe.
  • the makeup water can be supplied along the flow direction of the mixed phase fluid. Generation of a ring can be prevented.
  • the supply pipe is provided with a seal that prevents the reverse flow of steam, when the supply amount of the supply water is small, the steam in the return pipe flows back into the supply pipe, causing hammering due to condensation. Can be prevented.
  • a spray nozzle for spraying makeup water into the return pipe is provided in the return pipe at the junction between the return pipe and the supply pipe, when supplying makeup water from the supply pipe to the return pipe at the junction, If the make-up water is sprayed and evenly dispersed by the spray nozzle and brought into contact with the vapor of the mixed phase fluid, rapid vapor condensation due to the make-up water bias can be suppressed and occurrence of hammering can be prevented.
  • water is stored at a saturation temperature as a liquid refrigerant in a vapor-liquid equilibrium state in a steam drum 2 that is a refrigerant drum, and steam is saturated above the liquid level of the water. Is filled with.
  • a supply pipe 3 is connected to the bottom of the steam drum 2, and an FT reactor (hereinafter simply referred to as a reactor) 5 in which a Fischer-Tropsch synthesis reaction (exothermic reaction) is performed by a feed water pump 4 through the supply pipe 3.
  • Water is sent to the heat removal pipe (heat removal section) 7. Water is partially evaporated in the heat removal tube 7 by the reaction heat accompanying the exothermic reaction generated by the reactor 5, and this heat of reaction is recovered.
  • a two-phase fluid composed of steam and water from which a part of water has evaporated in the heat removal pipe 7 is returned to the steam drum 2 through the return pipe 8 to the steam drum 2, and discharged from the return pipe 8.
  • the outlet is opened in the steam region above the water surface in the steam drum 2. Then, the steam is supplied to a steam user (not shown) outside the system through the steam outlet pipe 9.
  • the steam outlet pipe 9 is provided with steam discharge measuring means 11 for measuring the amount of steam discharged outside the system.
  • a replenishment pipe 10 is provided for replenishing the steam drum 2 with an amount of liquid refrigerant corresponding to the amount of vapor discharged supplied outside the system. They are connected at section 6. Thereby, the relatively low temperature (for example, temperature t3) makeup water is directly mixed with the relatively high temperature (for example, temperature t1, t1> t3) vapor evaporated in the reactor 5 in the return pipe 8. Heated to a saturation temperature.
  • the supply pipe 10 is provided with a supply temperature measuring unit 16 for measuring the temperature of the supply water. The replenishing water in the replenishing pipe 10 reaches the saturation temperature in the return pipe 8 and is supplied into the steam drum 2.
  • the reactor 5 that performs an exothermic reaction is provided with a reaction heat temperature measurement unit 14 that measures the temperature in the reactor 5 and a reaction heat amount calculation unit 15 that calculates a reaction heat amount Q. Further, based on the measurement result of the reaction heat temperature measurement unit 14 that measures the temperature in the reactor 5 that performs the exothermic reaction, the pressure control unit 18 that controls the pressure in the steam drum 2 is connected to the outside of the system from the steam outlet pipe 9. The temperature of the reactor 5 that performs the exothermic reaction is controlled by adjusting the amount of steam discharged to the reactor by cascade control.
  • reaction heat temperature measurement unit 14 may include, for example, a plurality of temperature sensors (not shown) that are spaced apart from each other in the vertical direction in the reactor 5, and an average value of each temperature measured by these temperature sensors. Can be measured as the temperature in the reactor 5.
  • the steam phase pressure of the steam drum 2 and the temperature of the water phase have a certain correlation. Accordingly, when a deviation occurs in the actual temperature in the reactor 5 measured by the reaction heat temperature measuring unit 14 with respect to the temperature setting value of the reactor 5 that performs the exothermic reaction, the pressure control unit 18 is operated to operate the steam drum. Change the vapor phase pressure of 2.
  • the pressure control unit 18 controls the steam outlet pipe 9, the pressure control valve 19 provided in the steam outlet pipe 9, and the pressure control valve 19 to control the inside of the steam drum 2 through the steam outlet pipe 9.
  • a pressure setting unit 21 for setting the pressure.
  • the temperature setting result of the reaction heat temperature measuring unit 14 is input to the pressure setting unit 21, and the pressure setting unit 21 calculates a deviation of the actual temperature in the reactor 5 from the temperature setting value from the temperature measurement result. Based on this deviation, the pressure control valve 19 is controlled to change the vapor phase pressure of the steam drum 2.
  • the temperature of the water phase in the steam drum 2 (that is, the temperature of water supplied to the heat removal pipe 7 in the reactor 5 that performs the exothermic reaction). And the amount of heat recovered by the heat removal tube 7 can be changed, and the temperature of the reactor 5 performing the exothermic reaction can be brought close to the temperature set value.
  • the temperature of the water phase in the steam drum 2 can be measured by the water phase temperature measurement unit 23 provided at the bottom of the steam drum 2.
  • the steam drum 2, the supply pipe 3, the heat removal pipe 7 and the return pipe 8 constitute a system in which water as a liquid refrigerant circulates.
  • the temperature in the steam drum 2 is always the saturation temperature at any pressure, so that the reactor temperature can be precisely and accurately controlled.
  • the temperature control system 1 is provided with a control means 25 for controlling the amount of makeup water so that the amount of makeup water from the makeup piping 10 does not exceed the amount of steam discharged from the steam outlet discharge pipe 9 to the outside of the system.
  • a control means 25 for controlling the amount of makeup water so that the amount of makeup water from the makeup piping 10 does not exceed the amount of steam discharged from the steam outlet discharge pipe 9 to the outside of the system.
  • each measured value by the water phase temperature measurement part 23 which measures the water phase temperature in the steam drum 2, the reaction heat amount calculation part 15, and the replenishment temperature measurement part 16 which measures the replenishment water temperature in the replenishment piping 10 is measured. Is calculated and determined so that the amount of makeup water does not exceed the amount of steam discharged from the steam discharge pipe 9.
  • the calculated supplementary water amount data is output to the flow rate adjusting means 26 provided in the supplemental piping 10, and the opening amount of the flow rate adjusting valve 13 is adjusted to control the supplemental water amount.
  • the steam drum 2 is provided with a level measuring unit 12 that measures the water level (liquid level) in the steam drum 2. In order to prevent excessive water supply to the steam drum 2 (overflow prevention), the level measuring unit 12 When the valve opening degree of the flow rate control valve 13 output from the measurement result is smaller than the valve opening degree corresponding to the calculated makeup water amount, the opening degree is selected. Thus, the amount of makeup water is controlled so as not to exceed the steam flow rate.
  • the amount of steam discharged from the steam outlet pipe 9 is WV1
  • the temperature is t1
  • the flow rate of water supplied to the reactor 5 by the supply pipe 3 is WL4, the temperature t1, and the return pipe from the reactor 5
  • the amount of steam discharged to 8 is WV2
  • the flow rate of water is WL2
  • each temperature t1 the flow rate of water supplied from the replenishment pipe 10 to the return pipe 8 is WL3, the temperature t3, and the return pipe 8 after joining the steam drum 2
  • the amount of steam returned to WV1 is WV1, the flow rate of water is WL4, and each temperature t1.
  • the flow rate of water is unit kg / h
  • the flow rate of steam is unit kg / h
  • the temperature is ° C.
  • the amount of reaction heat in the reactor 5 is Q (kcal / h)
  • the latent heat of vaporization is r (kcal / kg)
  • the specific heat of water is Cp (kcal / kg / ° C.).
  • the temperature of the makeup water amount WL3 is the low temperature t3, and the other is the high temperature t1 (> t3).
  • the amount of steam agglomeration the amount of preheated water / the latent heat of vaporization.
  • WV2 ⁇ WV1) ⁇ r WL3 ⁇ Cp ⁇ (t1 ⁇ t3) (4) It becomes.
  • the makeup water amount WL3 can be obtained from the relationship between the reaction heat amount Q and the feed water temperatures t1 and t3.
  • the reaction heat quantity Q can be determined from the product of the reaction quantity in the reactor 5 separately measured and calculated or the temperature difference between the steam drum 2 and the reactor 5, the heat transfer area of the heat removal tube, and the overall heat transfer coefficient. .
  • the temperature control system 1 has the above-described configuration, and the control method will be described next.
  • the flow rate WL 4 of water at the temperature t 1 is supplied from the steam drum 2 to the reactor 5.
  • a part of the water flow rate WL4 is evaporated in the heat removal pipe 7 by the reaction heat accompanying the exothermic reaction generated in the reactor 5, and becomes a two-phase of a steam flow rate WV2 at a temperature t1 and a water flow rate WL2, and this two-phase fluid (mixed phase) Fluid) is fed by the return pipe 8.
  • the steam phase and the water phase in the steam drum 2 are such that the water level is lowered by discharging the above-described flow rate WL4 of water toward the reactor 5 by the pump 4, and therefore the amount of makeup water determined by the control means 25 WL3 is adjusted and supplied by the flow control valve 13.
  • the replenishment pipe 10 is replenished with a replenishment water amount WL3 at a relatively low temperature t3 determined by the control means 25, and merges with the two-phase fluid (WV2 + WL2) in the return pipe 8 at the junction 6 with the return pipe 8. .
  • the makeup water amount WL 3 at the temperature t 3 is heated by being directly mixed with the steam WV 2 at the high temperature t 1 in the return pipe 8 and heated to the saturation temperature t 1.
  • the flow rate of water in the return pipe 8 becomes the same as the water flow rate WL4 supplied from the steam drum 2 to the supply pipe 3 by condensing a part of the steam in the junction 6.
  • the steam flow rate WV ⁇ b> 1 at the temperature t ⁇ b> 1 and the water flow rate WL ⁇ b> 4 are discharged above the water surface in the steam drum 2.
  • the temperature t1 measured by the water phase temperature measurement unit 23 that measures the water phase temperature in the steam drum 2, the reaction heat quantity Q calculated by the reaction heat quantity calculation unit 15, and the replenishment measured by the replenishment temperature measurement unit 16 of the replenishment pipe 10 The water temperature t3 is input to the control means 25.
  • the control means 25 calculates the makeup water amount WL3 by the above equation (6).
  • the calculated value of the replenishing water amount WL3 is output to the flow rate adjusting means 26, the flow rate adjusting valve 13 is operated to supply the replenishing water flow rate WL3 to the replenishing pipe 10, and merged with the return pipe 8 at the merging portion 6 and steam drum 2 Will be discharged.
  • the steam outlet pipe 9 supplies the steam flow rate WV1 from the steam drum 2 to the outside of the system, and the makeup water amount WL3 joins the two-phase fluid of steam and water at the junction 6 with the return pipe 8 to steam. It is supplied into the drum 2. Moreover, since the makeup water amount WL3 is controlled to be equal to the steam flow rate WV1 by the control means 25, the water surface in the steam drum 2 becomes constant.
  • the makeup water amount WL3 at a relatively low temperature t3 equal to the steam flow rate WV1 supplied to the outside by the steam outlet pipe 9 is merged from the supplementary pipe 10 to the return pipe 8.
  • the makeup water can be instantaneously heated to the saturation temperature. Therefore, the gas-liquid temperature in the steam drum 2 can always be maintained at the saturation temperature. As a result, the reactor temperature can be controlled precisely and with high accuracy.
  • control means 25 can calculate the makeup water amount WL3 so as to be equal to the steam flow rate WV1 supplied outside the system, and can accurately limit the makeup water amount so that the makeup water amount WL3 does not exceed the steam flow rate WV1. Thus, hammering due to total condensation at the junction 6 can be prevented.
  • the conventional temperature control system is configured to supply makeup water directly to the steam drum 2, the makeup water is heated by heat transfer (condensation of steam) in the steam drum 2, and the temperature of the makeup water is set to the saturation temperature.
  • the temperature of the makeup water is set to the saturation temperature.
  • the cost is increased.
  • the present invention can uniformly control the temperature in the steam drum 2 while avoiding the complexity of the structure and the size of the equipment.
  • FIG. 3 shows a configuration of the junction 6 according to the first modification.
  • the replenishment pipe 10 is connected and joined so as to form an acute angle ⁇ with respect to the flow direction of the two-phase fluid in the return pipe 8.
  • the makeup water smoothly merges with the two-phase fluid of steam and water flowing through the return pipe 8, so that the impact of the makeup water colliding with the mixed phase fluid at the time of merge and the hammering due to the rapid condensation of the mixed phase fluid do not occur.
  • the supply pipe 10 is joined and joined at an acute angle with respect to the flow direction of the two-phase fluid in the return pipe 8, and upstream of the merging section 6.
  • a substantially U-shaped concave portion 10 a is formed, and a water seal portion 27 is provided as a seal portion.
  • a check valve may be provided in place of the water seal portion 27 as a seal portion for preventing the reverse flow of steam.
  • FIG. 5 shows a configuration of the merging portion 6 according to the third modification.
  • the supply pipe 10 is connected so as to form an acute angle with respect to the flow direction of the two-phase fluid in the return pipe 8, and the supply water is dispersed in the return pipe 8 at the tip of the supply pipe 10.
  • a spray nozzle 28 for spraying is formed.
  • the makeup water that joins the steam and water in the return pipe 8 is sprayed widely by the spray nozzle 28, so that rapid steam condensation can be suppressed and hammering can be prevented.
  • any two or three of the configurations of the first to third modifications described above may be combined.
  • the temperature t1 of the water amount WL4 and the water amount WL2 supplied through the supply pipe 3 and the temperature t1 of the steam flow rates WV1 and WV2 are all set to a saturation temperature of 195 ° C.
  • the water temperature t3 of the makeup water amount WL3 is set to 110 ° C.
  • reaction heat quantity Q 8000000 kcal / h
  • Water latent heat of vaporization r 470 kcal / kg (property value (constant))
  • Specific heat of water Cp 1 kcal / kg / ° C. (property value (constant))
  • the control means 25 of the temperature control system 1 replenishes the steam drum 2 with the same amount as the steam flow rate WV1 by making the temperature inside the steam drum 2 uniform and making the liquid level constant.
  • FIG. 6 is a graph of an embodiment showing a change in the steam ratio at the front and rear positions of the junction 6 between the return pipe 8 and the supply pipe 10 in the temperature control system 1.
  • the ratio (WV2 / WL4) of the steam WV2 generated in the reactor 5 to the circulation amount WL4 of water supplied from the steam drum 2 to the reactor 5 is plotted on the horizontal axis, and the return before and after the junction 6
  • the ratio of the amount of steam in the two-phase fluid in the pipe 8 is taken as the ratio of the vapor phase on the vertical axis.
  • the broken line M indicates the ratio (WV2 / (WL2 + WV2)) of the gas phase (steam) at the outlet (return pipe 8) of the reactor 5, and the solid line N indicates the return pipe 8 after the supply pipe 10 joins.
  • the ratio of the evaporation amount WV2 to the circulation flow rate WL4 in the reactor 5 (WV2 / WL4) is normally operated at 30%.
  • hammering may occur if the vapor WV2 in the return pipe 8 is fully condensed, but in the embodiment of the present invention, the steam flow rate If the balance between WV1 and the makeup water amount WL3 is balanced, the change in the ratio of the steam WV1 in the return pipe 8 after the merge of the makeup water amount WL3 is in the range of about 1% to 3% as described above. Does not occur.
  • the present invention relates to a temperature control system that enables precise temperature control of a reactor by making the temperature in a refrigerant drum such as a steam drum uniform. According to the present invention, highly accurate temperature control can be performed by maintaining the gas-liquid temperature in the steam drum at the saturation temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Control Of Temperature (AREA)

Abstract

 本発明の温度制御システムは、内部で発熱反応が生じる反応器内の反応熱を回収して該反応器内の温度を制御する温度制御システムであって、蒸気及び液体冷媒が気液平衡状態で収容された冷媒ドラムと、前記反応器に配設されていて前記冷媒ドラムから供給された前記液体冷媒の一部を前記反応熱で蒸発させる除熱部と、前記除熱部で生じた蒸気と液体冷媒との混相流体を前記冷媒ドラムに戻す戻り配管と、前記冷媒ドラム内の蒸気を系外へ供給する蒸気出口配管と、前記系外に排出される蒸気の量に見合った補給水量を前記戻り配管に供給する補給配管とを備えている。

Description

温度制御システム
 本発明は、スチームドラム等の冷媒ドラム内の温度を均一にすることによって、反応器の緻密な温度制御が可能となる温度制御システムに関する。
 本願は、2011年8月5日に日本に出願された特願2011-171812号について優先権を主張し、その内容をここに援用する。
 従来、スチームドラムへの給水システムとして、例えば特許文献1及び2に記載されたものがある。特許文献1に記載されたものでは、排ガスを受けて節炭器から給水管を経てドラムに水を供給し、蒸発器用の気液分離装置で気液分離して蒸気を発生する。しかし、起動時等の低負荷運転時には、節炭器の給水出口温度が上昇してドラム圧力に対する飽和温度よりも高温になる。このような気水をそのままドラムに供給する場合、ドラム内圧より高圧であるため、ドラム内でのスチーミングを防ぐために気水分離用の気液分離装置を設けてドラム内で気水分離をしている。
 また、特許文献2に記載されたものでは、気液分離装置に変えてドラム内に給水内管を設け、その上半部に小孔を下半部にこれより口径の大きい透孔を形成して蒸気と給水を流出するようにしている。
 しかしながら、上述した構成は一般的なボイラについてのものであり、補給水の温度がスチームドラム内の蒸気相の温度より低い場合、蒸気相と液相とに温度差が発生する。スチームドラムへの補給水の給水温度が低いと液相温度が飽和温度より低くなるため、この構成をFT(フィッシャー・トロプシュ)反応器の温度制御に適用すると制御が不安定になる。また、スチームドラムへの給水量によって液相温度が低下するため蒸気発生量が不安定になるという問題がある。
 ところで、近年、FT反応器で用いるFT合成反応(フィッシャー・トロプシュ合成反応)方法の一つとして、天然ガスを改質して一酸化炭素ガス(CO)と水素ガス(H)とを主成分とする合成ガスを生成し、この合成ガスを原料ガスとしてFT合成反応(フィッシャー・トロプシュ合成反応)により液体炭化水素を合成し、更にこの液体炭化水素を水素化および精製することで、ナフサ(粗ガソリン)、灯油、軽油、ワックス等の液体燃料製品を製造するGTL(Gas To Liquids:液体燃料合成)技術が開発されている。
 このようなFT合成反応において、反応器は、水素ガスおよび一酸化炭素ガスリッチの合成ガスを、触媒を用いて炭化水素に変換する。FT合成反応は発熱反応であり、かつ適正に反応する温度域が非常に狭いため、発生する反応熱を回収しながら反応器内の反応温度を緻密に制御する必要がある。
 上述したFT反応器を用いた温度制御システムとして、例えば図7に示すものが知られている。この温度制御システム100は、スチームドラム101に気液平衡状態で貯えられた水を底部よりポンプ102にてフィッシャー・トロプシュ合成反応(発熱反応)を行なう反応器103内の除熱管104に送る。そして、反応器103にて発生した発熱反応に伴う反応熱により除熱管104内の水を一部蒸発させて熱回収し、この蒸気および水の二相流体は、スチームドラム101への戻り配管105を通ってスチームドラム101に戻される。そして、蒸気は蒸気出口配管107を通って系外の蒸気ユーザーに供給される。
 一方、系外に供給された蒸気に見合った量の補給水が、補給配管106を通してスチームドラム101に補給される。補給水の補給量は、スチームドラム101内の水面レベルを測定するレベル測定部108の測定結果に基づいて液面が一定になるように調節される。
特公平3-53521号公報 特開平6-257703号公報
 しかしながら、上述した温度制御システム100では、補給水の補給配管106は開口がスチームドラム101内の水面下に水没しているため、比重の大きな比較的低温の補給水は、直接スチームドラム101の底部に流れ、スチームドラム101内の蒸気相と水相との間に温度差が生じる。すると、スチームドラム101の蒸気相圧力と水相の温度との相関関係が崩れるため、温度制御システム100による制御が高精度に行われないおそれがあるという欠点がある。
 本発明は、上述した事情に鑑みてなされたものであって、スチームドラム内の気液温度を飽和温度に維持することで、高精度の温度制御ができるようにした温度制御システムを提供することを目的とする。
 本発明による温度制御システムは、内部で発熱反応が生じる反応器内の反応熱を回収して該反応器内の温度を制御する温度制御システムであって、蒸気及び液体冷媒が気液平衡状態で収容された冷媒ドラムと、反応器に配設されていて冷媒ドラムから供給された液体冷媒の一部を反応熱で蒸発させる除熱部と、除熱部で生じた蒸気と液体冷媒との混相流体を冷媒ドラムに戻す戻り配管と、冷媒ドラム内の蒸気を系外へ供給する蒸気出口配管と、系外に排出される蒸気の量に見合った補給水量を戻り配管に供給する補給配管とを備えている。
 また、反応器内の反応熱量を冷媒ドラム内の比較的高い温度と補給水の比較的低い温度との差分および冷媒の物性値(比熱、蒸発潜熱)から決定される単位冷媒量当たりの熱容量で除して補給水量を決定する制御手段と、この制御手段で決定された補給水量に応じて補給配管から戻り配管に供給する補給水量を設定する補給水調整手段と、を更に備えていてもよい。
 また、制御手段で決定する補給水量は次式によって演算されることが好ましい。
  WL3=Q/{Cp×(t1-t3)+r} 
但し、WL3:補給水量
   Q:前記反応器内での反応熱量
   Cp:液体冷媒の比熱
   t1:前記冷媒ドラムおよび反応器の除熱部内の温度
   t3:補給水の温度
   r:液体冷媒の蒸発潜熱。
 また、戻り配管と補給配管との合流部において、補給配管は戻り配管内の混相流体の進行方向に沿って戻り配管と鋭角の角度で接続されていてもよい。
 また、補給配管には、蒸気の逆流を防ぐシール部が設けられていてもよい。
 或いは、戻り配管と補給配管との合流部において、補給配管に補給水を戻り配管内に噴霧するスプレーノズルが設けられていてもよい。
 本発明による温度制御システムは、反応器の除熱部で生じた蒸気と液体冷媒との混相流体を冷媒ドラムに戻す戻り配管に、系外に排出された蒸気の量に見合った補給水量を供給する補給配管を設けたから、系外へ排出された蒸気量に見合った補給水量を戻り配管に合流させて戻り配管内の飽和温度にある蒸気と直接混合させることで、補給水を冷媒ドラムに供給される前に飽和温度まで加熱することができることになり、冷媒ドラム内の気液温度を常に飽和温度に維持できる。
 しかも、補給水を直接冷媒ドラムへ供給する従来の温度制御システムと比較して、構造の複雑化や設備の大型化を避けて冷媒ドラム内の温度を均一にできる。
 以上より、効率よく冷媒ドラム内の温度が均一にできることから、高精度かつ緻密な反応器の温度制御が可能となる。
 また、反応器内の反応熱量を冷媒ドラム内の比較的高い温度と補給水の比較的低い温度との差分および冷媒の物性値(比熱、蒸発潜熱)から決定される単位冷媒量当たりの熱容量で除して補給水量を決定する制御手段と、決定された補給水量に応じて補給配管から戻り配管に補給水を供給する補給水調整手段と、を更に備えているから、補給水量は系外に供給する蒸気流量と同等となるように制御手段によって正確に演算できて補給水量が蒸気流量を超えないように正確に制限することができることになり、合流部での全凝縮によるハンマリングを確実に防止することができる。
 なお、制御手段で決定する補給水量は、具体的には次式によって演算されるから、補給水量は系外に供給する蒸気流量と同等となるように正確に演算できて補給水量が蒸気流量を超えないように制限できる。
  WL3=Q/{Cp×(t1-t3)+r} 
但し、WL3:補給水量
   Q:反応器内での反応熱量
   Cp:液体冷媒の比熱
   t1:冷媒ドラムおよび反応器の除熱部内の温度
   t3:補給水の温度
   r:液体冷媒の蒸発潜熱。
 また、本発明による温度制御システムは、戻り配管と補給配管との合流部において、補給配管は混相流体の進行方向に沿って戻り配管と鋭角の角度で接続されているから、補給配管の補給水を、戻り配管の蒸気と液体冷媒との混相流体に合流させる際、混相流体の流れ方向に沿って補給水の給水を行うことができるため、合流時に補給水が混相流体に衝突した衝撃によるハンマリングの発生を防止できる。
 また、補給配管には、蒸気の逆流を防ぐシール部が設けられているから、補給水の供給量が少ない場合、戻り配管内の蒸気が補給配管内に逆流して凝縮によるハンマリングが生じることを防止できる。
 また、戻り配管と補給配管との合流部において、補給配管に補給水を戻り配管内に噴霧するスプレーノズルが設けられているから、補給水を補給配管から合流部で戻り配管に供給する際、スプレーノズルで補給水を噴霧して均等に分散させて混相流体の蒸気に接触させれば、補給水の偏りによる急激な蒸気凝縮を抑制してハンマリングの発生を防止できる。
本発明の一実施形態による温度制御システムの概略構成を示す図である。 実施形態による温度制御システムにおける水と蒸気の循環路とその流量及び温度とを示す説明図である。 第一変形例による反応器の戻り配管と補給配管との合流部を示す説明図である。 第二変形例による反応器の戻り配管と補給配管との合流部を示す説明図である。 第三変形例による反応器の戻り配管と補給配管との合流部を示す説明図である。 実施例における、反応器の出口と合流後の戻り配管とにおける蒸気の割合の変化を示すグラフである。 従来の温度制御システムの概略構成を示す図である。
 図1に示す温度制御システム1において、冷媒ドラムであるスチームドラム2には気液平衡状態で液体冷媒として例えば水が飽和温度で貯えられており、水の液面より上側には蒸気が飽和状態で満たされている。スチームドラム2の底部には供給配管3が接続され、この供給配管3を通して給水用のポンプ4によってフィッシャー・トロプシュ合成反応(発熱反応)を行なうFT反応器(以下、単に反応器という)5内の除熱管(除熱部)7に水が送られる。反応器5によって発生した発熱反応に伴う反応熱により除熱管7内で水を一部蒸発させ、この反応熱を回収する。
 また、除熱管7で一部の水が蒸発した蒸気および水からなる二相流体(混相流体)は、スチームドラム2への戻り配管8を通ってスチームドラム2に戻され、戻り配管8の吐出口はスチームドラム2内の水面より上方の蒸気の領域に開口している。そして、蒸気は蒸気出口配管9を通って系外の図示しない蒸気ユーザーに供給される。蒸気出口配管9には系外への蒸気排出量を測定する蒸気排出量測定手段11が設けられている。
 さらに、系外に供給された蒸気排出量に見合った量の液体冷媒、例えば補給水をスチームドラム2へ補給するための補給配管10が配設され、補給配管10は戻り配管8の途中の合流部6で接続されている。これにより、比較的低温(例えば温度t3とする)の補給水は、戻り配管8内において反応器5で蒸発させられた比較的高温(例えば温度t1とする。t1>t3)の蒸気と直接混合して加熱され、飽和温度となる。補給配管10には補給水の温度を測定する補給温度測定部16が設けられている。
 補給配管10の補給水は、戻り配管8で飽和温度となってスチームドラム2内へ供給される。
 発熱反応を行なう反応器5には、反応器5内の温度を測定する反応熱温度測定部14と反応熱量Qを計算する反応熱量計算部15が設けられている。
 また、発熱反応を行なう反応器5内の温度を測定する反応熱温度測定部14の測定結果に基づいて、スチームドラム2内の圧力を制御する圧力制御部18が、蒸気出口配管9から系外に排出する蒸気量をカスケード制御にて調節することで、発熱反応を行なう反応器5の温度を制御している。なお反応熱温度測定部14は、例えば反応器5において上下方向に互いに離間して配置された図示しない複数の温度センサを備えていてもよく、これらの温度センサにより測定された各温度の平均値を、反応器5内の温度として測定することができる。
 スチームドラム2内の蒸気相(気相部)と水相(液相部)とは気液平衡状態であるため、スチームドラム2の蒸気相圧力と水相の温度とは一定の相関関係にある。したがって、発熱反応を行なう反応器5の温度設定値に対し、反応熱温度測定部14により測定された反応器5内の実温度に偏差が生じた場合、圧力制御部18を作動させてスチームドラム2の蒸気相圧力を変更する。
 ここで、圧力制御部18は、蒸気出口配管9と、蒸気出口配管9に設けられた圧力調節弁19と、圧力調節弁19を制御することで蒸気出口配管9を介してスチームドラム2内の圧力を設定する圧力設定部21と、を備えている。圧力設定部21には、反応熱温度測定部14の温度測定結果が入力されており、圧力設定部21は、この温度測定結果から反応器5内における実温度の温度設定値に対する偏差を算出し、この偏差に基づいて圧力調節弁19を制御し、スチームドラム2の蒸気相圧力を変更する。
 以上のようにしてスチームドラム2の蒸気相圧力を変更することで、スチームドラム2内の水相の温度(すなわち、発熱反応を行なう反応器5内の除熱管7に給水される水の温度)が変化して除熱管7で回収する熱量を変化させることが可能になり、発熱反応を行なう反応器5の温度を温度設定値に近づけることができる。
 なお本実施形態では、スチームドラム2内の水相の温度は、スチームドラム2の底部に設けられた水相温度測定部23により測定可能となっている。本実施形態では、スチームドラム2、供給配管3、除熱管7および戻り配管8により、液体冷媒としての水が循環する系が構成されている。また、補給水を戻り配管8に供給しているため、スチームドラム2内の温度は、いずれの圧力においても常に飽和温度になることから、反応器温度を緻密かつ高精度で制御できる。
 また、温度制御システム1には、補給配管10からの補給水量が蒸気出口排管9から系外へ排出される蒸気量を超えないように補給水量を制御する制御手段25が設けられている。この制御手段25では、スチームドラム2内の水相温度を測定する水相温度測定部23、反応熱量計算部15、補給配管10内の補給水温度を測定する補給温度測定部16による各測定値が入力され、補給水量が蒸気排出管9から排出される蒸気量を超えないように演算して決定される。
 演算された補給水量のデータは補給配管10に設けた流量調整手段26に出力され、流量調節弁13の開度を調整して補給水量を制御することになる。なお、スチームドラム2にはスチームドラム2内の水面レベル(液面レベル)を測定するレベル測定部12が設けられ、スチームドラム2への過剰給水防止(オーバーフロー防止)のため、レベル測定部12の測定結果から出力される流量調節弁13の弁開度が上記演算された補給水量に該当する弁開度より小さい場合は、その開度が選択される。
 これらによって補給水量が蒸気流量を超えないように制御される。
 つぎに、制御手段25による補給水量の演算方法の一例について説明する。
 図2に示すように、蒸気出口配管9で排出される蒸気量をWV1,温度をt1,供給配管3で反応器5に供給される水の流量をWL4、温度t1、反応器5から戻り管8へ吐出される蒸気量をWV2、水の流量をWL2、各温度t1、補給配管10から戻り配管8へ供給される水の流量をWL3、温度t3、合流後の戻り管8からスチームドラム2へ戻される蒸気量をWV1、水の流量をWL4、各温度t1とする。なお、水の流量は単位kg/h,蒸気の流量は単位kg/hとし、温度は℃とする。
 また、反応器5での反応熱量をQ(kcal/h)、水の蒸発潜熱をr(kcal/kg)、水の比熱をCp(kcal/kg/℃)とする。
 まず、物質収支により、蒸気出口配管9で排出される蒸気発生量WV1と補給水量WL3は等しいため、次式(1)式が成り立つ。
   WV1=WL3  …(1)
 上記(1)式を導き出す手順について以下に説明する。
 図2において、まずスチームドラム2から供給される温度t1の水の流量WL4は反応器5で反応熱を回収することで、温度t1の蒸気流量WV2+水流量WL2となるから、反応器5で相変化する入出の物質収支を示すと下記(2)式になる。
  WL4=WV2+WL2 …(2) 
 更に、補給配管10から補給水量WL3が供給されることで、戻り配管8と補給配管10の合流部6での物質収支(給水+相変化)は次の式(3)になる。
  WV2+WL2+WL3=WV1+WL4  …(3)
 (2)式を(3)式に代入して整理すると次式になる。
  WV1=WL3 …(1)
 また、補給水量WL3の温度は低温t3であり、他は高温t1(>t3)である。戻り配管8と補給配管10の合流部においては、蒸気凝集量=給水予熱量/蒸発潜熱となるから、
  (WV2-WV1)×r=WL3×Cp×(t1-t3) …(4)
 となる。
  反応熱量Qと反応器5での蒸気発生量WV2との関係は以下の通りである。 
   WV2=Q/r  …(5)
 そして、式(1)と(5)を(4)式に代入して整理する。
  WL3=Q/{Cp×(t1-t3)+r}  …(6)
 このようにして、反応熱量Qと給水温度t1,t3との関係から補給水量WL3を求めることができる。
 なお、反応熱量Qは、別途測定・計算される反応器5での反応量またはスチームドラム2と反応器5の温度差と除熱管の伝熱面積と総括伝熱係数の積から求めることができる。
 本実施形態による温度制御システム1は上述の構成を有しており、次にその制御方法について説明する。
 例えば、給水用のポンプ4を駆動することで、スチームドラム2から温度t1の水の流量WL4が反応器5へ供給される。反応器5で発生する発熱反応に伴う反応熱により除熱管7内で水流量WL4は一部が蒸発されて温度t1の蒸気流量WV2と水の流量WL2の二相となり、この二相流体(混相流体)は戻り配管8によって給送される。
 また、スチームドラム2内の蒸気相と水相とは、上述した水の流量WL4をポンプ4により反応器5に向けて排出することで水面が低下するため、制御手段25で決定された補給水量WL3が流量調節弁13によって調整されて供給される。
 一方、補給配管10では、制御手段25で決定された比較的低温t3の補給水量WL3が補給されて、戻り配管8との合流部6で戻り配管8内の二相流体(WV2+WL2)と合流する。すると、合流部6では、温度t3の補給水量WL3が戻り配管8内で高温t1の蒸気WV2と直接混合して加熱され、飽和温度t1まで加熱される。また、合流部6では一部の蒸気が凝縮することで戻り配管8内の水の流量は、スチームドラム2から供給配管3に供給される水流量WL4と同じになる。
 そして、合流部6以降の戻り配管8では、温度t1の蒸気流量WV1と水の流量WL4となってスチームドラム2内の水面の上方に吐出される。
 ここで、制御手段25による補給水量WL3の制御方法について説明する。
 スチームドラム2内の水相温度を測定する水相温度測定部23で測定した温度t1と、反応熱量計算部15で計算した反応熱量Qと、補給配管10の補給温度測定部16で測定した補給水の温度t3とが制御手段25に入力される。そして、制御手段25では上記(6)式により補給水量WL3を演算する。
 この補給水量WL3の演算値を流量調整手段26に出力して流量調節弁13を作動させて補給水流量WL3を補給配管10に供給し、合流部6で戻り配管8に合流させてスチームドラム2へ吐出させることになる。
 そして、スチームドラム2内では、蒸気相圧力と水相の温度とは、気液平衡状態に基づいた相関関係が常に保たれる。
 また、蒸気出口配管9によってスチームドラム2内から蒸気流量WV1が系外に供給されると共に、補給水量WL3が戻り配管8との合流部6で蒸気と水との二相流体と合流してスチームドラム2内に供給される。しかも、制御手段25によって、補給水量WL3は蒸気流量WV1と等しく制御されるため、スチームドラム2内の水面は一定となる。
 上述のように本実施形態による温度制御システム1によれば、蒸気出口配管9によって系外へ供給する蒸気流量WV1に等しい比較的低温t3の補給水量WL3を補給配管10から戻り配管8に合流させて、戻り配管8内の飽和温度t1にある蒸気流量WV2と直接混合させることができるから、補給水を瞬時に加熱して飽和温度にさせることができる。
そのため、スチームドラム2内の気液温度を常に飽和温度に維持できる。その結果、反応器温度を緻密かつ高精度で制御できる。
 更に、制御手段25によって、補給水量WL3が系外に供給する蒸気流量WV1と同等となるように演算でき、補給水量WL3が蒸気流量WV1を超えないように補給水量を正確に制限することができて、合流部6での全凝縮によるハンマリングを防止することができる。
 従来の温度制御システムでは、補給水を直接スチームドラム2へ供給する構成であるため、補給水の加熱はスチームドラム2内の熱移動(蒸気の凝縮)によって行われ、補給水の温度を飽和温度まで加熱するためには補給配管10内で補給水量をできるだけ少量の給水に分割することやスチームドラム2内での十分な滞留時間を確保することが必要になり、構造の複雑化や設備の大型化などを招き高コストになる欠点がある。その点、本発明は、構造の複雑化や設備の大型化を避けてスチームドラム2内の温度を均一に制御できる。
 なお、本発明は上述した実施形態に限定されることなく、その趣旨を逸脱しない範囲で種々の変更が可能である。
 次に、補給配管10が合流部6で戻り配管8に合流する際のハンマリングを防止するための構成について図3から図5により変形例として説明する。
 図3は第一変形例による合流部6の構成を示すものである。図3において、補給配管10は戻り配管8の二相流体の流れ方向に対して鋭角αをなすように連結して合流する。これにより戻り配管8を流れる蒸気と水の二相流体に対して補給水がスムーズに合流するため、合流時に補給水が混相流体に衝突した衝撃や混相流体の急激な凝縮によるハンマリングを生じない。
 次に図4に示す第二変形例による合流部では、補給配管10は戻り配管8の二相流体の流れ方向に対して鋭角をなすように連結して合流すると共に、合流部6の上流側の補給配管10では例えば略U字形状の凹部10aを形成して凹部10a内に水を残留充填させた水シール部27がシール部として設けられている。
 この構成によれば、補給水量WL3が少ない場合、戻り配管8内の蒸気が補給配管10内に逆流しようとしても水シール部27で停止させられる。そのため、戻り配管8内の蒸気が補給配管10内に逆流して凝縮によるハンマリングが発生することを防止できる。
 なお、蒸気の逆流を防ぐシール部として、水シール部27に代えて逆止弁を設けてもよい。
 図5は第三変形例による合流部6の構成を示すものである。図5において、補給配管10は戻り配管8の二相流体の流れ方向に対して鋭角をなすように連結しており、しかも補給配管10の先端部には戻り配管8内で補給水を分散して噴霧するスプレーノズル28が形成されている。これにより、戻り配管8の蒸気と水に合流する補給水は、スプレーノズル28で広く噴霧されるため、急激な蒸気凝縮を抑制してハンマリングを防止できる。
 なお、実施形態による温度制御システム1においては、上述した第一から第三変形例の構成のいずれか二つまたは三つを組み合わせて構成してもよい。
 次に本発明の実施形態による温度制御システム1の実施例について説明する。
 まず、図2において、スチームドラム2内の温度や供給配管3を通して供給する水量WL4や水量WL2の各水温t1、そして蒸気流量WV1、WV2の温度t1をいずれも195℃の飽和温度とする。そして、補給水量WL3の水温t3を110℃とする。
 さらに、反応熱量Q=8000000kcal/h
     水の蒸発潜熱r=470kcal/kg(物性値(定数))
     水の比熱Cp=1kcal/kg/℃(物性値(定数))
     スチームドラム圧力=1.3MPaG
     給水ポンプ4の循環量WL4=68000kg/h
とする。
 上記の条件下において、温度制御システム1の制御手段25において、スチームドラム2内の温度の均一化と液面レベルの一定化を図って、系外への蒸気の流量WV1と同一量になる補給水量WL3を決定するには上記(6)式によって行う。即ち、(6)式に上記の各数値を代入すると、
   WL3=Q/{Cp×(t1-t3)+r} 
      =8000000/{1×(195-110)+470}
      =14400kg/h
となる。
 また、(1)式により蒸気の流量WV1は補給水量WL3と等しいから
   WV1=WL3=14400kg/h
となる。また、(5)式により反応器5内での蒸気発生量WV2を求めると、
   WV2=Q/r
      =8000000/470
      =17000kg/h
となる。また、反応器5の出口における水の流量WL2を(2)式から求めると
   WL2=WL4-WV2
      =68000-17000
      =51000kg/h
となる。
 次に、図6は、温度制御システム1において、戻り配管8と補給配管10との合流部6の前後位置での蒸気割合の変化を示す実施例のグラフである。
  図6において、スチームドラム2から反応器5へ供給される水の循環量WL4に対する反応器5内で生成される蒸気WV2の割合(WV2/WL4)を横軸にとり、合流部6の前後における戻り配管8内の二相流体中の蒸気量の割合を気相部の割合として縦軸にとった。
 そして、水の循環量WL4に対する反応器5内で生成される蒸気WV2の割合(WV2/WL4)を変化させた場合における、戻り配管8中の合流部6の前後における二相液体中の蒸気量(気相部)の割合を計算した。
 図6において、破線Mは、反応器5の出口(戻り配管8)での気相(蒸気)の割合(WV2/(WL2+WV2))、実線Nは、補給配管10が合流した後の戻り配管8での気相(蒸気)の割合(WV1/(WV1+WL4)の変化を示している。
 図6に示すグラフにおいて、スタート時点では反応器5での蒸発割合は0であるが(WV2/WL4=0)、反応器5の温度上昇に伴い蒸気WV2の発生量は増加する。反応器5での循環流量WL4に対する蒸発量WV2の割合(WV2/WL4)は通常30%で運転される。これを通常運転ポイントとする。この状態で、蒸気流量WV1と補給水量WL3のバランスがとれていれば、反応器5の出口で生成された蒸気量WV2の割合(WV2/WL4)から補給水WL3合流後の戻り配管8での蒸気量WV1の割合(WV1/(WV1+WL4))への変化は約1%程度の低下にすぎない。
 また、反応器5での循環流量WL4に対する蒸発量WV2の割合(WV2/WL4)が0を超えて35%までの全範囲において、破線Mで示す蒸気量の割合(WV2/(WL2+WV2))から合流後の戻り配管8における実線Nで示す蒸気量の割合(WV1/(WV1+WL4))に変化しても、蒸気流量WV1と補給水量WL3のバランスがとれていれば、その変化は1%~3%程度の範囲内であり、極めて低いためハンマリングは起こらない。
 ここで、戻り配管8の補給配管10との合流部6において、戻り配管8内の蒸気WV2の全凝縮が起こればハンマリングが生じる可能性があるが、本発明の実施例では、蒸気流量WV1と補給水量WL3のバランスがとれていれば、上記のように補給水量WL3の合流後の戻り配管8内での蒸気WV1の割合の変化は約1%~3%の範囲であり、ハンマリングは生じない。
 また、上述した実施形態では、反応器5内でフィッシャー・トロプシュ合成反応がなされているFT反応器であるとしたが、反応器5内で発熱反応がなされていれば、フィッシャー・トロプシュ合成反応でなくてもよい。
 また上述の実施形態や各変形例や実施例等では、液体冷媒として水を採用したが、水でなくてもよい。
 本発明は、スチームドラム等の冷媒ドラム内の温度を均一にすることによって、反応器の緻密な温度制御が可能となる温度制御システムに関する。
 本発明によれば、スチームドラム内の気液温度を飽和温度に維持することで、高精度の温度制御ができる。
1 温度制御システム
2 スチームドラム
3 供給配管
4 ポンプ
5 反応器
6 合流部
7 除熱管
8 戻り配管
9 蒸気出口配管
10 補給配管
11 蒸気排出量測定手段
12 レベル測定部
13 流量調節弁
14 反応熱温度測定部
15 反応熱量計算部
16 補給温度測定部
23 水相温度測定部
25 制御手段
26 流量調整手段

Claims (6)

  1.  内部で発熱反応が生じる反応器内の反応熱を回収して該反応器内の温度を制御する温度制御システムであって、
     蒸気及び液体冷媒が気液平衡状態で収容された冷媒ドラムと、
     前記反応器に配設されていて前記冷媒ドラムから供給された前記液体冷媒の一部を前記反応熱で蒸発させる除熱部と、
     前記除熱部で生じた蒸気と液体冷媒との混相流体を前記冷媒ドラムに戻す戻り配管と、
     前記冷媒ドラム内の蒸気を系外へ供給する蒸気出口配管と、
     前記系外に排出される蒸気の量に見合った補給水量を前記戻り配管に供給する補給配管と
     を備えている温度制御システム。
  2.  前記反応器内の反応熱量を前記冷媒ドラム内の比較的高い温度と補給水の比較的低い温度および冷媒の物性値(比熱、蒸発潜熱)から決定される単位冷媒熱量で除して前記補給水量を決定する制御手段と、
     前記制御手段で決定された前記補給水量に応じて前記補給配管から戻り配管に供給する補給水量を設定する補給水調整手段と、
     を更に備えている請求項1に記載された温度制御システム。
  3.  前記制御手段で決定する補給水量は次式によって演算されるようにした請求項2に記載された温度制御システム。
      WL3=Q/{Cp×(t1-t3)+r} 
    但し、WL3:補給水量
       Q:前記反応器内での反応熱量
       Cp:液体冷媒の比熱
       t1:前記冷媒ドラムおよび反応器の除熱部内の温度
       t3:補給水の温度
       r:液体冷媒の蒸発潜熱。
  4.  前記戻り配管と補給配管との合流部において、前記補給配管は前記戻り配管内の混相流体の進行方向に沿って前記戻り配管と鋭角の角度で接続されている請求項1から3のいずれか1項に記載された温度制御システム。
  5.  前記補給配管には、蒸気の逆流を防ぐシール部が設けられている請求項1から4のいずれか1項に記載された温度制御システム。
  6.  前記戻り配管と補給配管との合流部において、前記補給配管に補給水を前記戻り配管内に噴霧するスプレーノズルが設けられている請求項1から5のいずれか1項に記載された温度制御システム。
PCT/JP2012/069692 2011-08-05 2012-08-02 温度制御システム WO2013021908A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US14/236,839 US20140157813A1 (en) 2011-08-05 2012-08-02 Temperature control system
AU2012293758A AU2012293758B2 (en) 2011-08-05 2012-08-02 Temperature control system
CN201280037631.XA CN103717986B (zh) 2011-08-05 2012-08-02 温度控制系统
CA2843842A CA2843842C (en) 2011-08-05 2012-08-02 Temperature control system
EP12822546.3A EP2741030A4 (en) 2011-08-05 2012-08-02 TEMPERATURE CONTROL SYSTEM
EA201490365A EA201490365A1 (ru) 2011-08-05 2012-08-02 Система управления температурой
AP2014007443A AP2014007443A0 (en) 2011-08-05 2012-08-02 Temperature control system
BR112014002617A BR112014002617A2 (pt) 2011-08-05 2012-08-02 sistema de controle de temperatura
ZA2014/01203A ZA201401203B (en) 2011-08-05 2014-02-18 Temperature control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-171812 2011-08-05
JP2011171812A JP5815324B2 (ja) 2011-08-05 2011-08-05 温度制御システム

Publications (1)

Publication Number Publication Date
WO2013021908A1 true WO2013021908A1 (ja) 2013-02-14

Family

ID=47668417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069692 WO2013021908A1 (ja) 2011-08-05 2012-08-02 温度制御システム

Country Status (12)

Country Link
US (1) US20140157813A1 (ja)
EP (1) EP2741030A4 (ja)
JP (1) JP5815324B2 (ja)
CN (1) CN103717986B (ja)
AP (1) AP2014007443A0 (ja)
AU (1) AU2012293758B2 (ja)
BR (1) BR112014002617A2 (ja)
CA (1) CA2843842C (ja)
EA (1) EA201490365A1 (ja)
MY (1) MY166929A (ja)
WO (1) WO2013021908A1 (ja)
ZA (1) ZA201401203B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3013430A1 (fr) * 2013-11-20 2015-05-22 Itp Sa Systeme d'apport de frigories

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5802397B2 (ja) * 2011-01-31 2015-10-28 独立行政法人石油天然ガス・金属鉱物資源機構 温度制御システム
US11208993B2 (en) * 2011-08-08 2021-12-28 Joo-Hyuk Yim Energy-saving pump and control system for the pump
US10954824B2 (en) * 2016-12-19 2021-03-23 General Electric Company Systems and methods for controlling drum levels using flow
JP6899256B2 (ja) * 2017-05-12 2021-07-07 株式会社テイエルブイ ドレン回収システム及び配管継手

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54115303A (en) * 1978-02-22 1979-09-07 Didier Eng Method and apparatus for methanizing raw material gas containing carbon monoxide and hydrogen
JPS5524190A (en) * 1978-08-07 1980-02-21 Didier Eng Conversion and apparatus for gas by catalytic reaction
JPS62190307A (ja) * 1986-02-18 1987-08-20 東洋エンジニアリング株式会社 反応熱の回収方法
JPH0353521B2 (ja) 1982-04-24 1991-08-15 Babcock Hitachi Kk
JPH06257703A (ja) 1993-03-05 1994-09-16 Toshiba Corp 排熱回収ボイラ
JP2002528597A (ja) * 1998-10-23 2002-09-03 エクソンモービル リサーチ アンド エンジニアリング カンパニー 第1段蒸気流出物からの非接触的不純物除去を伴う多段アップフロー水素処理
JP2008155178A (ja) * 2006-12-26 2008-07-10 Sumitomo Chemical Co Ltd 反応温度制御方法および反応装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1697341A (en) * 1925-06-13 1929-01-01 Campbell Engineering Company Orifice element and system and apparatus utilizing the same
US4447693A (en) * 1979-09-06 1984-05-08 Litton Systems, Inc. Power controlled microwave oven
JP2580044B2 (ja) * 1989-08-31 1997-02-12 富士写真フイルム株式会社 感光性平版印刷版処理装置
US5156747A (en) * 1991-10-18 1992-10-20 International Environmental Systems, Inc. Separation of liquids with different boiling points with nebulizing chamber
US5869011A (en) * 1994-02-01 1999-02-09 Lee; Jing Ming Fixed-bed catalytic reactor
DE4435839A1 (de) * 1994-10-07 1996-04-11 Bayer Ag Schlammphasenreaktor und dessen Verwendung
FR2768740B1 (fr) * 1997-09-19 2001-07-06 Bp Chem Int Ltd Procede de polymerisation continue d'un monomere vinylique
US6864293B2 (en) * 2001-12-20 2005-03-08 Sasol Technology (Proprietary) Limited Production of liquid and, optionally, gaseous products from gaseous reactants
US6912859B2 (en) * 2002-02-12 2005-07-05 Air Liquide Process And Construction, Inc. Method and apparatus for using a main air compressor to supplement a chill water system
WO2005120225A1 (en) * 2004-06-10 2005-12-22 Steamwand International Pty Ltd Apparatus producing superheated water and/or steam for weed killing and other applications
JP2006214294A (ja) * 2005-02-01 2006-08-17 Honda Motor Co Ltd 蒸発器の制御装置
EP2171362A1 (en) * 2007-06-14 2010-04-07 Muller Industries Australia PTY LTD System and method of wetting adiabatic material
US20100247392A1 (en) * 2007-09-27 2010-09-30 Yasuhiro Onishi Bubble column type hydrocarbon synthesis reacator, and hydrocarbon synthesis reaction system having the same
JP5022853B2 (ja) * 2007-10-03 2012-09-12 株式会社東芝 蒸気弁および発電設備
JP5802397B2 (ja) * 2011-01-31 2015-10-28 独立行政法人石油天然ガス・金属鉱物資源機構 温度制御システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54115303A (en) * 1978-02-22 1979-09-07 Didier Eng Method and apparatus for methanizing raw material gas containing carbon monoxide and hydrogen
JPS5524190A (en) * 1978-08-07 1980-02-21 Didier Eng Conversion and apparatus for gas by catalytic reaction
JPH0353521B2 (ja) 1982-04-24 1991-08-15 Babcock Hitachi Kk
JPS62190307A (ja) * 1986-02-18 1987-08-20 東洋エンジニアリング株式会社 反応熱の回収方法
JPH06257703A (ja) 1993-03-05 1994-09-16 Toshiba Corp 排熱回収ボイラ
JP2002528597A (ja) * 1998-10-23 2002-09-03 エクソンモービル リサーチ アンド エンジニアリング カンパニー 第1段蒸気流出物からの非接触的不純物除去を伴う多段アップフロー水素処理
JP2008155178A (ja) * 2006-12-26 2008-07-10 Sumitomo Chemical Co Ltd 反応温度制御方法および反応装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2741030A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3013430A1 (fr) * 2013-11-20 2015-05-22 Itp Sa Systeme d'apport de frigories

Also Published As

Publication number Publication date
MY166929A (en) 2018-07-24
EP2741030A1 (en) 2014-06-11
JP2013034930A (ja) 2013-02-21
AU2012293758B2 (en) 2015-10-08
US20140157813A1 (en) 2014-06-12
CN103717986B (zh) 2015-11-25
EP2741030A4 (en) 2015-01-14
CN103717986A (zh) 2014-04-09
ZA201401203B (en) 2015-10-28
CA2843842A1 (en) 2013-02-14
BR112014002617A2 (pt) 2017-03-01
JP5815324B2 (ja) 2015-11-17
CA2843842C (en) 2016-05-10
AP2014007443A0 (en) 2014-02-28
EA201490365A1 (ru) 2014-07-30
AU2012293758A1 (en) 2014-02-20

Similar Documents

Publication Publication Date Title
WO2013021908A1 (ja) 温度制御システム
WO2012132942A1 (ja) 温度制御システム、炭化水素合成反応装置、炭化水素合成反応システムおよび温度制御方法
WO2012105311A1 (ja) 温度制御システム
TW200936957A (en) Method to operate a continuous steam generator and a once-through steam generator
KR20120139746A (ko) 충진 레벨 측정 장치 및 그 방법
JP2007098227A (ja) 液体中に気泡または液滴を生成する装置及び液体中に気泡または液滴を生成する方法
US8851024B2 (en) Water reservoir for a steam generation system and method of use thereof
JP6312935B2 (ja) 脱気器(オプション)
JP2005226665A (ja) 液化天然ガスの気化システム
US20200368638A1 (en) System and method for separating components from high pressure co2
JP2005058873A (ja) 低温液体加熱方法及びその装置
JP6249314B2 (ja) 熱回収装置
JP2015025629A (ja) 昇温型吸収ヒートポンプ
JP6416848B2 (ja) 吸収ヒートポンプ
JP3194075B2 (ja) 液位測定装置
US20230043988A1 (en) Assembly comprising a steam saturator and method for operating an assembly of this type
Madyshev et al. Determining Hydraulic Resistance and Volumetric Heat and Mass Transfer Coefficients during Cooling of Circulating Water in a Multistage Vortex Chamber
Hewitt Deviations from classical behaviour in vertical channel convective boiling
WO2021060456A1 (ja) 溶質濃度の決定方法及び蒸気タービンプラントの水質管理方法
KR20240058904A (ko) 액체 수소 기화 장치 및 수소를 생성하는 생성 방법
JP2003214777A (ja) 液化ガス蒸発装置
JPS58207598A (ja) 液体炭化水素の気化方法とその装置
JP2004028364A (ja) 流下液膜式全蒸発器、液体のワンパス全蒸発方法ならびに気体量計測方法
US20070095210A1 (en) Direct injection and vaporization of ammonia
JP2002309276A (ja) 液・液直接接触式lng気化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822546

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2843842

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2012822546

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14236839

Country of ref document: US

Ref document number: 2012822546

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012293758

Country of ref document: AU

Date of ref document: 20120802

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201490365

Country of ref document: EA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014002617

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014002617

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140203