WO2013021865A1 - 有機el用散乱フィルム及びこれを用いた有機el発光装置 - Google Patents

有機el用散乱フィルム及びこれを用いた有機el発光装置 Download PDF

Info

Publication number
WO2013021865A1
WO2013021865A1 PCT/JP2012/069481 JP2012069481W WO2013021865A1 WO 2013021865 A1 WO2013021865 A1 WO 2013021865A1 JP 2012069481 W JP2012069481 W JP 2012069481W WO 2013021865 A1 WO2013021865 A1 WO 2013021865A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
particles
scattering film
light emitting
resin
Prior art date
Application number
PCT/JP2012/069481
Other languages
English (en)
French (fr)
Inventor
雅司 高井
石橋 利明
Original Assignee
株式会社 きもと
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 きもと filed Critical 株式会社 きもと
Priority to KR1020147005173A priority Critical patent/KR101878533B1/ko
Priority to EP12822171.0A priority patent/EP2744301B1/en
Priority to JP2013527974A priority patent/JP6309271B2/ja
Priority to CN201280033748.0A priority patent/CN103650638B/zh
Priority to US14/237,944 priority patent/US9349980B2/en
Publication of WO2013021865A1 publication Critical patent/WO2013021865A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes

Definitions

  • the present invention relates to a scattering film used for an organic EL light emitting device.
  • organic EL light emitting device that emits light by supplying a voltage to an organic electroluminescence (organic EL) element having a light emitting layer sandwiched between an anode (transparent electrode) and a cathode (back electrode).
  • organic EL light-emitting devices have advantages such as light weight, thinness, and low power consumption, and thus are used as backlights for liquid crystal displays and flat illumination devices (Patent Document 1).
  • the organic EL light-emitting device has the above-described excellent features, but also has problems as described below.
  • the refractive index of an organic thin film layer such as an organic light emitting layer constituting the organic EL light emitting device or a support including the organic thin film layer is higher than that of air, total reflection is likely to occur at the interface of emitted light. For this reason, the light utilization efficiency is less than 20% of the total, and there is a problem that most of the light is lost.
  • the organic EL light emitting device has a problem of viewing angle dependency.
  • the light-emitting layer of the organic EL light-emitting device is composed of a combination of a red light-emitting layer, a green light-emitting layer, and a blue light-emitting layer.
  • the light emitting surface of the light emitting device is viewed from an oblique direction, light is separated for each wavelength at the interface between the light emitting layers.
  • the wavelength of light is separated, the optical path length changes between the light emitting layers, and the hue changes depending on the viewing angle. For example, when the organic EL light emitting device is viewed from the front direction, the change in the optical path length is unlikely to occur, and the light emission color of the organic EL light emitting device is unlikely to change. Changes and looks.
  • the present inventors provide a scattering film including a specific scattering layer on the light emitting surface side of the organic EL light emitting device, thereby causing problems of light utilization efficiency, viewing angle dependency, and reflection during extinction. At the same time, it has been found that the problem can be solved, and the present invention has been achieved.
  • the scattering film for organic EL of the present invention is used for an organic EL light-emitting device, and includes a binder resin and a scattering layer containing particles having a refractive index different from that of the binder resin, and the average particle size of the particles
  • the diameter is 10 ⁇ m or less, and the variation coefficient of the average particle diameter is 30% or more.
  • the organic EL scattering film of the present invention is preferably characterized in that the content ratio of the particles is 40 to 300 parts by weight with respect to 100 parts by weight of the binder resin.
  • the organic EL scattering film of the present invention is preferably characterized in that the absolute value of the difference in refractive index between the refractive index of the binder resin and the refractive index of the particles is 0.03 to 0.3. It is.
  • the organic EL light emitting device of the present invention includes a pair of electrodes and a light emitting layer provided between the pair of electrodes, and is scattered on the light emitting side of the electrode serving as the light emitting side of the pair of electrodes.
  • a scattering film is provided, wherein the scattering film is the scattering film of the present invention.
  • the scattering film used in the organic EL light-emitting device comprises a scattering layer containing particles having a refractive index different from that of the binder resin and the binder resin, and the average particle size of the particles is 10 ⁇ m or less.
  • scattering film for organic EL of the present invention
  • the scattering film for organic EL of the present invention includes a scattering layer, but may be composed of a scattering layer alone, or may include a support or other layers.
  • the elements constituting the scattering layer mainly the binder resin and particles will be described.
  • a resin excellent in optical transparency can be used.
  • polyester resin acrylic resin, acrylic urethane resin, polyester acrylate resin, polyurethane acrylate resin, epoxy acrylate resin, urethane resin, epoxy resin, polycarbonate resin, cellulose resin, acetal resin, polyethylene
  • thermoplastic resins, thermosetting resins, ionizing radiation curable resins, and the like such as resin, polystyrene resin, polyamide resin, polyimide resin, melamine resin, phenol resin, and silicone resin.
  • thermosetting resins and ionizing radiation curable resins excellent in coating film brightness and weather resistance are preferable, and acrylic resins are particularly preferably used from the viewpoint of excellent light resistance and optical properties among the above-described resins.
  • the binder resin preferably has a hydroxyl group.
  • the hydroxyl value of the binder resin is preferably 40 mgKOH / g or more, and more preferably 60 mgKOH / g or more.
  • the refractive index of the binder resin is different from the refractive index of the particles described later. By making the refractive index of the binder resin different from that of the particles, a difference in refractive index occurs between the binder resin and the particles, so that the wavelength-separated light can be scattered in the scattering layer and mixed again. Angular dependence can be eliminated.
  • the refractive index of the binder resin is preferably about 1.4 to 1.65.
  • the particles contained in the scattering layer of the present invention form an uneven shape on the surface of the scattering layer, and emits the amount of light that could not be emitted by conventional total reflection, thereby improving the light utilization efficiency. Used for.
  • the uneven shape it is possible to prevent reflection of an outside scenery or the like when the organic EL light emitting device is turned off.
  • particles different from the refractive index of the binder resin are used for the particles contained in the scattering layer of the present invention.
  • a difference in refractive index from the binder resin can be generated, and the wavelength-separated light can be scattered in the scattering layer and mixed again, depending on the viewing angle. Sex can be eliminated.
  • resin particles or inorganic particles can be used.
  • the resin particles include silicone resin particles, acrylic resin particles, nylon resin particles, styrene resin particles, acrylic styrene resin particles, polyethylene particles, benzoguanamine resin particles, urethane resin particles, and melamine resin particles.
  • examples of the inorganic particles include diamond, titanium oxide, zirconium oxide, lead oxide, lead carbonate, zinc oxide, zinc sulfide, antimony oxide, silica, aluminum hydroxide, barium sulfate, and calcium carbonate.
  • resin particles from the viewpoint of particularly excellent light utilization efficiency.
  • benzoguanamine resin particles are preferably used from the viewpoint of easily producing a difference in refractive index between the resin particles and the binder resin and improving the viewing angle dependency without impairing the light utilization efficiency.
  • the particles having a refractive index of about 1.3 to 3.0 are preferably used.
  • the refractive index is more preferably within the range of 1.3 to 1.7.
  • the absolute value of the refractive index difference between the refractive index of the binder resin described above and the refractive index of the particles is preferably 0.03 or more, and more preferably 0.04 or more. When the absolute value of the refractive index difference is 0.03 or more, the viewing angle dependency can be further improved.
  • the absolute value of the refractive index difference is preferably 0.3 or less at the upper limit, and more preferably 0.2 or less.
  • the binder resin and the particles may be higher as long as there is a difference in refractive index.
  • the average particle diameter of the particles is 10 ⁇ m or less.
  • the surface of the scattering layer has a fineness of about a few ⁇ m in combination with a specific coefficient of variation parameter of the average particle size of the particles described later.
  • the average particle diameter of the particles is more preferably in the range of 1 to 5 ⁇ m.
  • the average particle diameter as used in the field of this invention means the value computed by the Coulter counter method.
  • the shape of the particles is preferably an elliptical sphere or a true sphere, and most preferably close to a true sphere.
  • Such particles having an irregular shape are very dispersible when used as a paint, and the particles do not enlarge due to secondary agglomeration, and a good plate or coating film can be obtained.
  • the coefficient of variation of the average particle diameter of the particles is 30% or more. By making the coefficient of variation of the average particle diameter of the particles relatively high in this way, and providing particles with a relatively small average particle diameter in the scattering layer as described above, the light extraction efficiency and the viewing angle dependency can be improved. It is possible to prevent reflection when the organic EL light emitting device is turned off without hindering.
  • the variation coefficient is more preferably 40% or more at the lower limit and 70% or less at the upper limit.
  • the content ratio of the particles to the binder resin is also influenced by the average particle diameter and coefficient of variation of the particles used, the refractive index difference between the binder resin and the particles, the thickness of the scattering layer, etc.
  • the content of particles with respect to 100 parts by weight of the binder resin is 40 parts by weight or more at the lower limit from the viewpoint of preventing reflection when the organic EL light emitting device is turned off while further improving the viewing angle dependency. Is preferable, and 60 parts by weight or more is more preferable.
  • the upper limit of the content of particles with respect to 100 parts by weight of the binder resin is preferably 300 parts by weight or less, and more preferably 200 parts by weight or less.
  • the content of the particles with respect to 100 parts by weight of the binder resin is preferably 40 parts by weight or more at the lower limit, and 150 parts by weight at the upper limit. The following is preferred.
  • the content of the particles with respect to 100 parts by weight of the binder resin is preferably 150 parts by weight or more at the lower limit and 300 parts by weight at the upper limit. The following is preferred.
  • the reflection of the organic EL light emitting device when it is turned off can be performed without impairing the light use efficiency and the viewing angle dependency. It can prevent more suitably.
  • the scattering layer includes a crosslinking agent, a colorant, an antistatic agent, a flame retardant, an antibacterial agent, an antifungal agent, an ultraviolet absorber, and a light stabilizer as long as these functions are not impaired.
  • a crosslinking agent e.g., a crosslinking agent, a colorant, an antistatic agent, a flame retardant, an antibacterial agent, an antifungal agent, an ultraviolet absorber, and a light stabilizer as long as these functions are not impaired.
  • Antioxidants, plasticizers, leveling agents, dispersants, flow regulators, antifoaming agents and the like e.g., antifoaming agents, antifoaming agents, and the like.
  • the thickness of the scattering layer is preferably 3 to 15 ⁇ m from the viewpoint of easily preventing the occurrence of curling when the scattering film is formed.
  • the scattering film of the present invention is provided with a scattering layer, but can also be constituted by laminating the scattering layer on a support.
  • a support There are no particular limitations on the support, and various supports can be used.
  • polyester resin acrylic resin, acrylic urethane resin, polyester acrylate resin, polyurethane acrylate resin, epoxy acrylate resin, urethane resin, epoxy resin, polycarbonate resin, cellulose resin, acetal resin,
  • vinyl resin polyethylene resin, polystyrene resin, polypropylene resin, polyamide resin, polyimide resin, melamine resin, phenol resin, silicone resin, fluorine resin, cyclic olefin, etc.
  • a transparent plastic film mixed with can be used.
  • a stretched polyethylene terephthalate film particularly a biaxially stretched film, is preferred because of its excellent mechanical strength and dimensional stability.
  • the thickness of the support is usually preferably about 10 to 400 ⁇ m.
  • an antireflection treatment may be applied to the surface of the scattering film surface of the present invention opposite to the uneven surface in order to improve the light transmittance.
  • an antistatic layer or an adhesive layer may be provided.
  • a coating solution for a scattering layer in which materials such as the binder resin and particles described above are dissolved in an appropriate solvent is used in a conventionally known method, for example, a bar coater, It can be produced by applying onto a support by a blade coater, spin coater, roll coater, gravure coater, flow coater, die coater, spray, screen printing, etc. and drying.
  • the scattering film which consists of a scattering layer single layer is also producible by peeling and removing the said support body from what formed the scattering layer on the support body.
  • the organic EL light emitting device of the present invention is obtained by attaching the above-described scattering film of the present invention to the light emitting surface side, and the other structure is the same as that of a known organic EL light emitting device.
  • FIG. 1 shows an example of the organic EL light emitting device 10.
  • the organic EL light emitting device 10 includes an anode (transparent electrode) 11 and a cathode (back electrode) 12 on a support 14 made of a transparent polymer resin, glass or the like, and a light emitting layer between the anode 11 and the cathode 12.
  • the scattering layer 15 which is the scattering film of this invention is provided on the support body 14 of the anode 11 which is provided with the organic electroluminescent (organic EL) element 13 on both sides of 13 and becomes a light emission side.
  • a conductive metal oxide such as SnO 2 , In 2 O 3 , or ITO can be used.
  • the cathode 12 can be made of a highly reflective metal such as Al, Ag, or Mo or an alloy. Any of these electrodes 11 and 12 can be formed by a known method such as vapor deposition, sputtering, or ion plating.
  • the light emitting layer 13 As a material constituting the light emitting layer 13, a known organic light emitting material or a doping material is used. In order to obtain white light emission, a plurality of light emitting layers having different emission colors (for example, a red light emitting layer, a blue light emitting layer and a green light emitting layer) are used. Layer) 13 can be combined. As a method of combining the plurality of light emitting layers 13, a plurality of layers may be stacked, or the light emitting surface of the light emitting device may be divided into fine regions, and the plurality of light emitting layers may be arranged in a mosaic pattern.
  • a transparent electrode can be inserted between adjacent light emitting layers, and a voltage can be applied to each light emitting layer. It is also possible to realize white light emission by combining a light emitting layer that emits a single color and a phosphor layer. The present invention can be applied to all these types of light emitting devices.
  • the organic EL element may include a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, a barrier layer, and the like.
  • a known material is used and can be formed by a known method such as vapor deposition.
  • the scattering layer 15 includes particles having different refractive indexes between the binder resin and the binder resin, and the particles have an average particle diameter of 10 ⁇ m or less and an average particle diameter variation coefficient of 30% or more.
  • the scattering film of the present invention described above can be used.
  • Such a scattering layer 15 is preferably provided on the light emitting side so that the surface on which the irregularities are formed by the particles becomes the light emitting surface.
  • the scattering film may be directly attached to the light emitting side through a transparent adhesive layer or an adhesive layer, or the layer that becomes the outermost surface on the light emitting side, It is also possible to directly laminate and form the material constituting the scattering layer by a coating method or the like.
  • the organic EL light-emitting device of the present invention is provided with a specific scattering layer on the light exit surface side, so that the light use efficiency is high and the viewing angle dependency can be improved. Furthermore, it is possible to prevent the outside scenery from being reflected when the organic EL light emitting device is turned off.
  • Example 1 After mixing and stirring the coating solution for the scattering layer of the following formulation, it was applied on a support made of a polyethylene terephthalate film (Lumirror T60: Toray) with a thickness of 100 ⁇ m by a bar coating method so that the thickness after drying was 8 ⁇ m. Then, a scattering layer was formed by drying, and the scattering film of Example 1 was obtained.
  • a polyethylene terephthalate film Limirror T60: Toray
  • Example 2 The scattering film of Example 2 in the same manner as in Example 1 except that, in the scattering layer coating solution used in Example 1, the benzoguanamine resin particles were classified by an air classifier so that the coefficient of variation was 35%. Got.
  • Example 3 The scattering film of Example 3 was obtained in the same manner as in Example 1 except that the amount of benzoguanamine resin particles added to the scattering layer coating solution used in Example 1 was changed to 172 parts by weight.
  • Example 4 Of the coating solution for scattering layer used in Example 1, benzoguanamine resin particles were changed to acrylic styrene resin particles (Gantz Pearl GS-0401: Gantz Kasei Co., Ltd., average particle size 4 ⁇ m, coefficient of variation 43%, refractive index 1.51). A scattering film of Example 4 was obtained in the same manner as Example 1 except for the change.
  • Example 5 Of the coating solution for the scattering layer used in Example 1, benzoguanamine resin particles (53.8 parts by weight) were replaced with silicone resin particles (KMP590: Shin-Etsu Chemical Co., Ltd., average particle size 2 ⁇ m, coefficient of variation 30% or more, refractive index 1 40) (90.4 parts by weight)
  • the scattering film of Example 5 was obtained in the same manner as in Example 1 except that it was changed to 90.4 parts by weight.
  • Comparative Example 1 Of the coating solution for the scattering layer used in Example 1, benzoguanamine resin particles were changed to melamine resin particles (Opto beads 3500M: Nissan Chemical Industries, average particle size 3.5 ⁇ m, coefficient of variation 4%, refractive index 1.65). A scattering film of Comparative Example 1 was obtained in the same manner as Example 1 except for the change.
  • Comparative Example 2 In the scattering layer coating solution used in Example 1, the scattering film of Comparative Example 2 was prepared in the same manner as in Example 1 except that the benzoguanamine resin particles were classified by an air classifier so that the variation coefficient was 28%. Got.
  • Comparative Example 3 In the scattering layer coating solution used in Example 1, the benzoguanamine resin particles were changed to benzoguanamine resin particles (Epester L15: Nippon Shokubai Co., Ltd., average particle size 12.5 ⁇ m, coefficient of variation 43%, refractive index 1.66). A scattering film of Comparative Example 3 was obtained in the same manner as Example 1 except for the above.
  • Comparative Example 4 In the scattering layer coating solution used in Example 1, the benzoguanamine resin particles were changed to acrylic resin particles (Gantz Pearl GM-0407S: Gantz Kasei Co., Ltd., average particle size 4 ⁇ m, coefficient of variation 43%, refractive index 1.49). A scattering film of Comparative Example 4 was obtained in the same manner as Example 1 except that.
  • the scattering film of the present invention comprises a binder resin and a scattering layer containing particles having a refractive index different from that of the binder resin, and the average particle diameter of the particles is 10 ⁇ m or less. Since the variation coefficient of the average particle diameter is 30% or more, the organic EL light emitting device using the scattering film is excellent in light use efficiency, viewing angle dependency, and anti-reflection effect.
  • the variation coefficient of the average particle diameter of the particles of the film is in the range of 40 to 70%, and the content ratio of the particles to the binder resin is 40 to 150 wt.
  • the absolute value of the difference in refractive index between the binder resin and the particles is 0.1 or more, so that it is particularly excellent in the anti-reflection effect without impairing the light utilization efficiency and the viewing angle dependency. It became a thing.
  • the organic EL light-emitting device having the scattering film was inferior in reflection prevention. became.
  • the scattering film of Comparative Example 3 had an average particle diameter of more than 10 ⁇ m, the organic EL light-emitting device having the scattering film was inferior in viewing angle dependency.
  • the scattering film of the comparative example 4 did not have a difference in the refractive index difference of the binder resin and particle

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

従来から問題となっていた光利用効率の向上及び視野角依存性の改善だけでなく、消灯時の写り込みの問題を解消しうる、有機EL発光装置に用いられる散乱フィルムを提供することを目的とする。本発明の有機EL用散乱フィルムは、有機EL発光装置に用いられるものであって、前記散乱フィルムはバインダー樹脂及び前記バインダー樹脂とは屈折率の異なる粒子を含む散乱層を含んでなり、前記粒子の平均粒子径は10μm以下であり、前記粒子の平均粒子径の変動係数は30%以上とするものである。

Description

有機EL用散乱フィルム及びこれを用いた有機EL発光装置
 本発明は、有機EL発光装置に用いられる散乱フィルムに関する。
 従来から、陽極(透明電極)と陰極(背面電極)との間に発光層を挟んだ有機エレクトロルミネッセンス(有機EL)素子に電圧を供給することで発光させる有機EL発光装置が存在している。有機EL発光装置は、軽量、薄型、低消費電力などの利点を有しているため、液晶ディスプレイのバックライトや、平面型照明装置として用いられている(特許文献1)。
 有機EL発光装置は、上述した優れた特徴を有しているが、以下説明するような問題も抱えている。
 即ち、有機EL発光装置を構成する有機発光層などの有機薄膜層もしくはその有機薄膜層を備える支持体の屈折率は空気より高いため、発光した光の界面での全反射が起こり易い。そのため、その光の利用効率は全体の20%に満たず、大部分の光を損失しているという問題が生じている。
 また、有機EL発光装置は視野角依存の問題も抱えている。具体的には、有機EL発光装置の発光層は、赤色発光層、緑色発光層及び青色発光層の組み合わせから構成されてなるものであるが、これら発光層はそれぞれ屈折率が異なるため、有機EL発光装置の発光面を斜め方向から見たときに発光層どうしの界面において光が波長毎に分離してしまう。光が波長分離すると、発光層間において光路長に変化が生じ、見る角度によっては色相が変わって見えてしまうこととなる。例えば、有機EL発光装置を正面方向から見る場合であれば、光路長変化は生じ難く有機EL発光装置の発光色に変化は生じ難いが、斜め方向から見ると、発光層間における光路長変化により色相が変わって見えてしまう。
 光の利用効率が低いという問題に対しては、光取り出し面に低屈折率の材料から成る光取り出し層を設ける、特定の散乱部材を配置するなどの提案がなされている(特許文献2、特許文献3)。しかし、これら技術では光の波長分離については有効な対策になっていない。
 さらには、有機EL発光装置を消灯させた際には、有機EL発光装置の表面に外の景色等が映り込んでしまい、当該表面の見栄えが悪くなるとの問題も生じていた。
特開平8-315985号公報 特開2007-35313号公報 特開2009-110930号公報
 したがって、上述した光利用効率、視野角依存性及び消灯時の写り込みの問題を解消しうる設計が要望されている。
 本発明者らは、かかる問題に対し、有機EL発光装置の光出射面側に特定の散乱層を含む散乱フィルムを設けることにより、光利用効率、視野角依存性及び消灯時の写り込みの問題を同時に解消しうることを見出し、本発明に至ったものである。
 即ち、本発明の有機EL用散乱フィルムは、有機EL発光装置に用いられるものであって、バインダー樹脂及び前記バインダー樹脂とは屈折率の異なる粒子を含む散乱層を含んでなり、粒子の平均粒子径が10μm以下であり、平均粒子径の変動係数が30%以上であることを特徴とするものである。
 また、本発明の有機EL用散乱フィルムは、好ましくは前記粒子の含有割合が前記バインダー樹脂100重量部に対して40~300重量部であることを特徴とするものである。
 また、本発明の有機EL用散乱フィルムは、好ましくは前記バインダー樹脂の屈折率と前記粒子の屈折率との屈折率差の絶対値が0.03~0.3であることを特徴とするものである。
 また、本発明の有機EL発光装置は、一対の電極と、当該一対の電極間に設けられた発光層とを備え、前記一対の電極のうち、光出射側となる電極の光出射側に散乱フィルムを備えたものであって、前記散乱フィルムが本発明の散乱フィルムであることを特徴とするものである。
 上記発明によれば、有機EL発光装置に用いられる散乱フィルムについて、バインダー樹脂及び前記バインダー樹脂とは屈折率の異なる粒子を含む散乱層を含んでなり、前記粒子の平均粒子径を10μm以下とし、平均粒子径の変動係数を30%以上とすることにより、光利用効率を向上させ、視野角依存性を改善しつつ、消灯時における映り込みを防止することができる。
本発明の有機EL発光装置の一例を示す側断面図
 以下、本発明の有機EL用散乱フィルム(以下、「散乱フィルム」という場合もある)の実施の形態について説明する。
 本発明の有機EL用散乱フィルムは散乱層を含むものであるが、構成としては散乱層単独からなるものであってもよく、支持体や他の層を含んでいてもよい。まず、散乱層を構成する要素、主としてバインダー樹脂及び粒子について説明する。
 本発明の散乱層に含まれるバインダー樹脂としては、光学的透明性に優れた樹脂を用いることができる。例えばポリエステル系樹脂、アクリル系樹脂、アクリルウレタン系樹脂、ポリエステルアクリレート系樹脂、ポリウレタンアクリレート系樹脂、エポキシアクリレート系樹脂、ウレタン系樹脂、エポキシ系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、アセタール系樹脂、ポリエチレン系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、メラミン系樹脂、フェノール系樹脂、シリコーン系樹脂などの熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂などを用いることができる。特に塗膜光度と耐候性に優れた熱硬化性樹脂や電離放射線硬化性樹脂が好ましく、上述した樹脂の中でも耐光性や光学特性に優れる観点から、アクリル系樹脂が特に好適に使用される。
 また、バインダー樹脂は水酸基を有するものが好ましい。具体的には、バインダー樹脂の水酸基価は40mgKOH/g以上であることが好ましく、60mgKOH/g以上であることがより好ましい。このように水酸基価が高いものとすることで、塗膜とした際に散乱層の平面形状を保持しつつ塗膜硬度に優れたものとなるため、有機EL発光装置に備える際に光の利用効率、視野角依存性および写り込み防止性の各種性能を阻害することなく、耐久性に優れたものとすることができる。
 バインダー樹脂の屈折率は、後述する粒子の屈折率とは異なるものである。バインダー樹脂と粒子の屈折率を異なるものとすることにより、バインダー樹脂と粒子とで屈折率差が生じるため、波長分離された光を散乱層において散乱させ、再び光を混合することができ、視野角依存性を解消することができる。バインダー樹脂の屈折率としては、1.4~1.65程度が好ましい。
 次に、本発明の散乱層に含まれる粒子は、散乱層表面に凹凸形状を形成し、従来全反射により出射することのできなかった分の光を出射させ、光の利用効率を向上させるために用いられる。また、当該凹凸形状により、有機EL発光装置の消灯時における外の景色等の写り込みも防止することができるものとなる。
 また、本発明の散乱層に含まれる粒子は、バインダー樹脂の屈折率と異なるものを用いる。バインダー樹脂の屈折率と異なるものを用いることで、バインダー樹脂と屈折率差を生じさせることができ、波長分離された光を散乱層において散乱させ、再び光を混合することができ、視野角依存性を解消することができる。
 このような粒子としては、樹脂粒子や無機粒子を用いることができる。樹脂粒子としては、例えばシリコーン樹脂粒子、アクリル樹脂粒子、ナイロン樹脂粒子、スチレン樹脂粒子、アクリルスチレン樹脂粒子、ポリエチレン粒子、ベンゾグアナミン樹脂粒子、ウレタン樹脂粒子、メラミン樹脂粒子等が挙げられる。一方、無機粒子としては、例えばダイアモンド、酸化チタン、酸化ジルコニウム、酸化鉛、炭酸鉛、酸化亜鉛、硫化亜鉛、酸化アンチモン、シリカ、水酸化アルミニウム、硫酸バリウム、炭酸カルシウム等が挙げられる。これらのうち、光の利用効率に特に優れるものとする観点から、樹脂粒子を用いることが好ましい。特に、樹脂粒子の中でもバインダー樹脂との間で屈折率差が出し易く、光の利用効率を阻害することなしに視野角依存性を改善できる観点から、ベンゾグアナミン樹脂粒子が好適に用いられる。
 粒子の屈折率としては、1.3~3.0程度のものが好ましく用いられる。屈折率をかかる範囲内とすることにより、さらに光利用効率を向上させつつ視野角依存性を改善することができる。特に光の利用効率を向上させる観点からは、1.3~1.7の範囲内とすることがより好ましい。
 前述したバインダー樹脂の屈折率と前記粒子の屈折率との屈折率差の絶対値は、下限で0.03以上が好ましく、0.04以上がより好ましい。屈折率差の絶対値が0.03以上であることにより、視野角依存性をより改善することができる。また屈折率差の絶対値は、上限で0.3以下であることが好ましく、0.2以下であることがより好ましい。バインダー樹脂と粒子は、屈折率差があれば、いずれか高くてもよい。
 粒子の平均粒子径は、10μm以下のものを用いる。粒子の平均粒子径がこのように比較的小さな値とすることにより、後述する粒子の平均粒子径の特定の変動係数パラメータと相俟って散乱層の表面に高さが数μm程度の微細な凸部形状が多数備わることになる。これにより、光取出し効率の向上及び視野角依存性を阻害することなく、有機EL発光装置の消灯時における外の景色等の写り込みを効果的に防止することができる。粒子の平均粒子径としては、1~5μmの範囲内とすることがより好ましい。ちなみに、粒子の平均粒子径が10μmを超えるものを用いると、発光層からの光を適切に散乱させることができなくなり、視野角依存性を悪化させることとなるため、好ましくない。また粒子の平均粒子径が、1μm未満の場合にも発光層からの光を適切に散乱させることができなくなり、視野角依存性を悪化させることとなる。なお、本発明でいう平均粒子径とは、コールターカウンター法により算出した値のことをいう。
 粒子の形状としては、楕円球形状ないし真球形状が好ましく、真球形状に近いものがもっとも好ましい。このような形状が不定形でない粒子は、塗料とした場合の分散性が非常に良く、二次凝集により粒子が肥大化することがなく、良好な板状物または塗膜が得られる。
 粒子の平均粒子径の変動係数は、30%以上とする。粒子の平均粒子径の変動係数をこのように比較的高いものとし、かつ、前述したように比較的小さい平均粒子径の粒子を散乱層に設けることで、光の取出し効率や視野角依存性を阻害することなく有機EL発光装置の消灯時における写り込みを防止することができる。変動係数は、下限で40%以上、上限で70%以下がより好ましい。
 本発明の散乱層中における、バインダー樹脂に対する粒子の含有割合は、用いる粒子の平均粒子径や変動係数、バインダー樹脂と粒子との屈折率差、散乱層の厚み等によっても左右されるため一概にはいえないが、より視野角依存性を改善しつつ、有機EL発光装置の消灯時における写り込みを防止しうる観点から、バインダー樹脂100重量部に対する粒子の含有量は、下限で40重量部以上が好ましく、60重量部以上がより好ましい。また光の取出し効率を低下させないために、バインダー樹脂100重量部に対する粒子の含有量は、上限で300重量部以下が好ましく、200重量部以下がより好ましい。
 特に、バインダー樹脂と粒子との屈折率差の絶対値が0.1以上の場合には、バインダー樹脂100重量部に対する粒子の含有量は、下限で40重量部以上が好ましく、上限で150重量部以下が好ましい。一方、バインダー樹脂と粒子との屈折率差の絶対値が0.05以下の場合には、バインダー樹脂100重量部に対する粒子の含有量は、下限で150重量部以上が好ましく、上限で300重量部以下が好ましい。このようにバインダー樹脂と粒子との屈折率差に応じた樹脂粒子比を採用することで、光の利用効率及び視野角依存性を阻害することなく、有機EL発光装置の消灯時における写り込みをより好適に防止することができる。
 散乱層は、上述したバインダー樹脂及び粒子の他に、これらの機能を阻害しない範囲で、架橋剤、着色剤、帯電防止剤、難燃剤、抗菌剤、防カビ剤、紫外線吸収剤、光安定剤、酸化防止剤、可塑剤、レベリング剤、分散剤、流動調整剤、消泡剤等の添加剤を含むことができる。
 散乱層の厚みとしては、散乱フィルムとした際のカールの発生を防止し易くする観点から、3~15μmとすることが好ましい。
 本発明の散乱フィルムは散乱層を備えたものであるが、支持体上に当該散乱層を積層して構成することもできる。支持体としては特に制限されることなく種々のものを使用することができる。例えば、ポリエステル系樹脂、アクリル系樹脂、アクリルウレタン系樹脂、ポリエステルアクリレート系樹脂、ポリウレタンアクリレート系樹脂、エポキシアクリレート系樹脂、ウレタン系樹脂、エポキシ系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、アセタール系樹脂、ビニル系樹脂、ポリエチレン系樹脂、ポリスチレン系樹脂、ポリプロピレン系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、メラミン系樹脂、フェノール系樹脂、シリコーン系樹脂、フッ素系樹脂、環状オレフィンなどの1種もしくは2種以上を混合した透明プラスチックフィルムを使用することができる。このうち、延伸加工、特に二軸延伸加工されたポリエチレンテレフタレートフィルムが、機械的強度や寸法安定性に優れる点で好ましい。また、散乱層との接着性を向上させるために、表面にコロナ放電処理を施したり、易接着層を設けたものも好適に用いられる。なお、支持体の厚みは、通常10~400μm程度であることが好ましい。
 また、本発明の散乱フィルム表面の凹凸面とは反対側の面には、光透過率を向上させるために反射防止処理を施してもよい。さらには、帯電防止層や粘着層を設けてもよい。
 本発明の散乱フィルムについてコーティング法により作製する場合には、上述したバインダー樹脂及び粒子などの材料を適当な溶媒に溶解させた散乱層用塗布液を、従来から公知の方法、例えば、バーコーター、ブレードコーター、スピンコーター、ロールコーター、グラビアコーター、フローコーター、ダイコーター、スプレー、スクリーン印刷等により支持体上に塗布し、乾燥することにより作製することができる。また、散乱層を支持体上に形成したものから、当該支持体を剥離除去することで、散乱層単層からなる散乱フィルムを作製することもできる。
 次に本発明の有機EL発光装置について説明する。本発明の有機EL発光装置は、その光出射面側に、上述した本発明の散乱フィルムを貼着したものであり、それ以外の構造は公知の有機EL発光装置と同様である。
 図1に、有機EL発光装置10の一例を示す。この有機EL発光装置10は、透明高分子樹脂やガラス等からなる支持体14にそれぞれ陽極(透明電極)11と陰極(背面電極)12を備え、当該陽極11と陰極12との間に発光層13を挟んだ有機エレクトロルミネッセンス(有機EL)素子を備え、光出射側となる陽極11の支持体14上に本発明の散乱フィルムである散乱層15が設けられている。
 透明電極11としては、SnO2、In23、ITOなどの導電性金属酸化物を用いることができる。また陰極12としては、Al、Ag、Mo等の高反射率金属や合金を用いることができる。これら電極11、12は、いずれも蒸着、スパッタ、イオンプレーティング等公知の手法で成膜することができる。
 発光層13を構成する材料としては、公知の有機発光材料やドーピング材が用いられ、白色の発光を得るために、発光色の異なる複数の発光層(例えば赤色発光層、青色発光層及び緑色発光層)13を組み合わせることができる。複数の発光層13を組み合わせる方法は、複数の層を積層してもよいし、発光装置の発光面を細かい領域に分割し、複数の発光層をモザイク状に配置してもよい。複数の層を積層する場合には、隣接する発光層間に透明電極を挿入し、各発光層にそれぞれ電圧を印加する構成とすることができる。また単色を発光する発光層と蛍光体層を組み合わせて白色の発光を実現することも可能である。本発明は、これら全てのタイプの発光装置に適用することができる。
 また有機EL素子は、発光層の他に、正孔注入層、正孔輸送層、電子注入層、電子輸送層、バリア層などを備えていてもよい。これら各層を構成する材料としては、公知の材料が用いられ、それぞれ蒸着等公知の手法で形成することができる。
 散乱層15は、バインダー樹脂と当該バインダー樹脂とは屈折率の異なる粒子を含むものであって、当該粒子の平均粒子径が10μm以下であり、平均粒子径の変動係数が30%以上のものであり、上述した本発明の散乱フィルムを用いることができる。このような散乱層15は、粒子によって凹凸が形成された表面が光出射面となるように、光出射側に設けられることが好ましい。光出射側に散乱フィルムを設ける方法としては、透明な粘着層或いは接着層を介して或いは散乱フィルムをそのまま光出射側に貼着してもよいし、光出射側の最表面となる層に、散乱層を構成する材料をコーティング法などにより直接積層して形成することも可能である。
 本発明の有機EL発光装置は、その光出射面側に特定の散乱層を備えることにより、光の利用効率が高く且つ視野角依存性を改善することができる。さらには、有機EL発光装置を消灯させた際に外の景色等が写り込むのを防止することもできる。
 以下、実施例により本発明を更に説明する。なお、「部」、「%」は特に示さない限り、重量基準とする。
1.散乱フィルムの作製
[実施例1]
 下記処方の散乱層用塗布液を混合し撹拌した後、厚み100μmのポリエチレンテレフタレートフィルム(ルミラーT60:東レ社)からなる支持体上に、乾燥後の厚みが8μmとなるようにバーコーティング法により塗布、乾燥して散乱層を形成し、実施例1の散乱フィルムを得た。
<実施例1の散乱層用塗布液>
・アクリルポリオール                   62部
(アクリディック52-666:DIC社、固形分50%)
(水酸基価75mgKOH/g、屈折率1.49)
・イソシアネート系硬化剤                 38部
(タケネートD110N:三井化学社、固形分60%)
・ベンゾグアナミン樹脂粒子              53.8部
(エポスターMS:日本触媒社、屈折率1.66)
(平均粒径3μm、変動係数56%)
・希釈溶剤                       115部
[実施例2]
 実施例1で用いた散乱層用塗布液のうち、ベンゾグアナミン樹脂粒子の変動係数が35%となるように空気式分級機により分級した以外は実施例1と同様にして、実施例2の散乱フィルムを得た。
[実施例3]
 実施例1で用いた散乱層用塗布液のうち、ベンゾグアナミン樹脂粒子の添加量を172重量部に変更した以外は実施例1と同様にして、実施例3の散乱フィルムを得た。 
[実施例4]
 実施例1で用いた散乱層用塗布液のうち、ベンゾグアナミン樹脂粒子をアクリルスチレン樹脂粒子(ガンツパールGS-0401:ガンツ化成社、平均粒径4μm、変動係数43%、屈折率1.51)に変更した以外は実施例1と同様にして、実施例4の散乱フィルムを得た。
[実施例5]
 実施例1で用いた散乱層用塗布液のうち、ベンゾグアナミン樹脂粒子(53.8重量部)をシリコーン樹脂粒子(KMP590:信越化学工業社、平均粒径2μm、変動係数30%以上、屈折率1.40)(90.4重量部)に変更した以外は実施例1と同様にして、実施例5の散乱フィルムを得た。
[比較例1]
 実施例1で用いた散乱層用塗布液のうち、ベンゾグアナミン樹脂粒子をメラミン樹脂粒子(オプトビーズ3500M:日産化学工業社、平均粒径3.5μm、変動係数4%、屈折率1.65)に変更した以外は実施例1と同様にして、比較例1の散乱フィルムを得た。
[比較例2]
 実施例1で用いた散乱層用塗布液のうち、ベンゾグアナミン樹脂粒子の変動係数が28%となるように空気式分級機により分級した以外は実施例1と同様にして、比較例2の散乱フィルムを得た。
[比較例3]
 実施例1で用いた散乱層用塗布液のうち、ベンゾグアナミン樹脂粒子をベンゾグアナミン樹脂粒子(エポスターL15:日本触媒社、平均粒径12.5μm、変動係数43%、屈折率1.66)に変更した以外は実施例1と同様にして、比較例3の散乱フィルムを得た。
[比較例4]
 実施例1で用いた散乱層用塗布液のうち、ベンゾグアナミン樹脂粒子をアクリル樹脂粒子(ガンツパールGM-0407S:ガンツ化成社、平均粒径4μm、変動係数43%、屈折率1.49)に変更した以外は実施例1と同様にして、比較例4の散乱フィルムを得た。
2.有機EL発光装置の作製
 実施例1~5及び比較例1~4で作製した散乱フィルムを、それぞれ有機EL発光装置(ORBEOS CDW-031:オスラム社)の光出射面上に貼り付け、散乱フィルムを有する有機EL発光装置を得た。
3.評価
(1)光利用効率
 実施例1~5及び比較例1~4の散乱フィルムを有する有機EL発光装置について、3.5V、120mAの電圧・電流を印加して発光させることで、発光効率(lm/W)を測定した。なお、比較の基準となる、散乱フィルムを有さない有機EL発光装置における発光効率(lm/W)も、別途測定した。測定結果を表1に示す。
(2)視野角依存性
 散乱フィルムを有する有機EL発光装置について、正面を0度としたときに-85度から+85度まで視野角を変化させた際の色度(CIE表色系(1931))を色彩輝度計(CS-100:コニカミノルタ社)を用いて測定した。色度xと色度yについて、最大値(max)と最小値(min)との差△x、△yを式(1)、(2)により求め、さらに式(3)により色差△Eを算出し、視野角依存性を評価するための指標とした。また、比較の基準となる、散乱フィルムを有さない有機EL発光装置においても、同様に色差△Eを測定・算出した。結果を表1に示す。 
Figure JPOXMLDOC01-appb-M000001
(3)写り込み防止性
 実施例1~5及び比較例1~4の散乱フィルムを有する有機EL発光装置を消灯し、当該有機EL発光装置表面への外の景色の写り込み具合を目視にて観察した。その結果、外の景色をまったく視認することができなかったものを「◎」、ほとんど視認することができなかったものを「○」、外の景色を視認することができたものを「×」とした。結果を表1に示す。 
Figure JPOXMLDOC01-appb-T000002
 表1の結果から分かるように、本発明の散乱フィルムはバインダー樹脂及び前記バインダー樹脂とは屈折率の異なる粒子を含む散乱層を含んでなり、粒子の平均粒子径が10μm以下であり、粒子の平均粒子径の変動係数が30%以上であることから、当該散乱フィルムを用いた有機EL発光装置の光利用効率、視野角依存性及び写り込み防止性に優れるものとなった。
 特に、実施例1の散乱フィルムを有する有機EL発光装置は、当該フィルムの粒子の平均粒子径の変動係数が40~70%の範囲内にあり、バインダー樹脂に対する粒子の含有割合が40~150重量部の範囲内にあり、バインダー樹脂と粒子との屈折率差の絶対値が0.1以上であったことから、光利用効率及び視野角依存性を阻害することなく特に写り込み防止性に優れるものとなった。
 一方、比較例1及び2の散乱フィルムは、用いる粒子の平均粒子径の変動係数が30%未満であったことから、当該散乱フィルムを有する有機EL発光装置は、写り込み防止性に劣るものとなった。また、比較例3の散乱フィルムは、用いる粒子の平均粒子径が10μmを超えるものであったことから、当該散乱フィルムを有する有機EL発光装置は、視野角依存性に劣るものとなった。また、比較例4の散乱フィルムは、用いるバインダー樹脂と粒子との屈折率差に差がなかったため、当該散乱フィルムを有する有機EL発光装置は、視野角依存性に劣るものとなった。
 10・・・本発明の有機EL発光装置
 11・・・陽極(透明電極)
 12・・・陰極(背面電極)
 13・・・発光層
 14・・・支持体
 15・・・本発明の散乱フィルム(散乱層)

Claims (6)

  1.  有機EL発光装置に用いられる散乱フィルムであって、
     前記散乱フィルムは、バインダー樹脂及び前記バインダー樹脂とは屈折率の異なる粒子を含む散乱層を含んでなり、
     前記粒子の平均粒子径は、10μm以下であり、
     前記粒子の平均粒子径の変動係数は、30%以上であることを特徴とする有機EL用散乱フィルム。
  2.  請求項1記載の有機EL用散乱フィルムであって、
     前記粒子の含有割合が、前記バインダー樹脂100重量部に対して40~300重量部であることを特徴とする有機EL用散乱フィルム。
  3.  請求項1又は2記載の有機EL用散乱フィルムであって、
     前記バインダー樹脂の屈折率と前記粒子の屈折率との屈折率差の絶対値が、0.03~0.3であることを特徴とする有機EL用散乱フィルム。
  4.  請求項3に記載の有機EL用散乱フィルムであって、
     前記バインダー樹脂の屈折率と前記粒子との屈折率差の絶対値が0.1以上であり、且つ前記バインダー樹脂100重量部に対する前記粒子の含有量が、40重量部以上、150重量部以下であることを特徴とする有機EL用散乱フィルム。
  5.  請求項1~4何れか一項に記載の有機EL用散乱フィルムであって、
     前記バインダー樹脂がアクリル系樹脂であり、前記粒子がベンゾグアナミン樹脂、アクリルスチレン樹脂及びシリコーン樹脂のいずれかから選択される樹脂粒子であることを特徴とする有機EL用散乱フィルム。
  6.  一対の電極と、当該一対の電極間に設けられた発光層とを備え、前記一対の電極のうち、光出射側となる電極の光出射側に散乱フィルムを備えた有機EL発光装置であって、
     前記散乱フィルムが請求項1~5何れか一項に記載の散乱フィルムであることを特徴とする有機EL発光装置。
PCT/JP2012/069481 2011-08-11 2012-07-31 有機el用散乱フィルム及びこれを用いた有機el発光装置 WO2013021865A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147005173A KR101878533B1 (ko) 2011-08-11 2012-07-31 유기 el용 산란 필름 및 이것을 사용한 유기 el 발광장치
EP12822171.0A EP2744301B1 (en) 2011-08-11 2012-07-31 Scattering film for organic el light emitting device and organic el light emitting device using same
JP2013527974A JP6309271B2 (ja) 2011-08-11 2012-07-31 有機el用散乱フィルム及びこれを用いた有機el発光装置
CN201280033748.0A CN103650638B (zh) 2011-08-11 2012-07-31 有机el用散射膜及使用此的有机el发光装置
US14/237,944 US9349980B2 (en) 2011-08-11 2012-07-31 Scattering film for organic EL and organic EL light emitting device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011175471 2011-08-11
JP2011-175471 2011-08-11

Publications (1)

Publication Number Publication Date
WO2013021865A1 true WO2013021865A1 (ja) 2013-02-14

Family

ID=47668377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069481 WO2013021865A1 (ja) 2011-08-11 2012-07-31 有機el用散乱フィルム及びこれを用いた有機el発光装置

Country Status (7)

Country Link
US (1) US9349980B2 (ja)
EP (1) EP2744301B1 (ja)
JP (1) JP6309271B2 (ja)
KR (1) KR101878533B1 (ja)
CN (1) CN103650638B (ja)
TW (1) TWI635638B (ja)
WO (1) WO2013021865A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218154A (zh) * 2013-05-30 2014-12-17 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
JP2017033908A (ja) * 2015-08-03 2017-02-09 日華化学株式会社 有機el素子

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102297423B1 (ko) * 2015-09-01 2021-09-06 삼성디스플레이 주식회사 유기 발광 표시 장치
CN107403881A (zh) * 2017-08-08 2017-11-28 江苏集萃有机光电技术研究所有限公司 一种增强oled光取出的散射膜及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08315985A (ja) 1995-05-16 1996-11-29 Sanyo Electric Co Ltd 有機エレクトロルミネッセンス素子
JP2005063704A (ja) * 2003-08-20 2005-03-10 Stanley Electric Co Ltd 有機el素子
JP2005190931A (ja) * 2003-12-26 2005-07-14 Nitto Denko Corp エレクトロルミネッセンス素子とこれを用いた面光源および表示装置
JP2006107744A (ja) * 2004-09-30 2006-04-20 Toshiba Corp 有機エレクトロルミネッセンス表示装置
JP2007035313A (ja) 2005-07-22 2007-02-08 Mitsubishi Chemicals Corp 光取出し膜、光取出し膜付き透光体及びエレクトロルミネッセンス素子
JP2007188708A (ja) * 2006-01-12 2007-07-26 Dainippon Printing Co Ltd 表示素子用基板
JP2008243669A (ja) * 2007-03-28 2008-10-09 Toyota Central R&D Labs Inc 有機電界発光素子
JP2009110930A (ja) 2007-08-21 2009-05-21 Fujifilm Corp 散乱部材、及びこれを用いた有機エレクトロルミネッセンス表示装置
JP2009216862A (ja) * 2008-03-10 2009-09-24 Toshiba Corp 発光装置用光取り出し層、およびそれを用いた有機エレクトロルミネッセンス素子
JP2010170726A (ja) * 2009-01-20 2010-08-05 Toshiba Corp 粒子配列構造体の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100475913C (zh) * 2002-01-25 2009-04-08 三洋化成工业株式会社 合成树脂水分散体
KR20050066970A (ko) 2003-12-26 2005-06-30 닛토덴코 가부시키가이샤 전자발광 장치, 이를 사용하는 면광원 및 디스플레이
JP2006107743A (ja) * 2004-09-30 2006-04-20 Toshiba Corp 有機エレクトロルミネッセンス表示装置
KR20070049211A (ko) 2004-09-30 2007-05-10 가부시끼가이샤 도시바 유기 일렉트로루미네센스 표시 장치
KR20080049011A (ko) * 2005-08-05 2008-06-03 마쯔시다덴기산교 가부시키가이샤 반도체 발광장치
US7594839B2 (en) * 2006-02-24 2009-09-29 Eastman Kodak Company OLED device having improved light output
US7851995B2 (en) * 2006-05-05 2010-12-14 Global Oled Technology Llc Electroluminescent device having improved light output
JP4937845B2 (ja) * 2006-08-03 2012-05-23 日立マクセル株式会社 照明装置および表示装置
US7834541B2 (en) * 2006-10-05 2010-11-16 Global Oled Technology Llc OLED device having improved light output
US20090051278A1 (en) * 2007-08-21 2009-02-26 Fujifilm Corporation Organic electroluminescent display device having scattering member
US8089208B2 (en) * 2007-12-21 2012-01-03 Zeon Corporation Planar light source device
JP2010198735A (ja) * 2009-02-20 2010-09-09 Fujifilm Corp 光学部材及び該光学部材を備えた有機エレクトロルミネッセンス表示装置
JP2010205650A (ja) * 2009-03-05 2010-09-16 Fujifilm Corp 有機el表示装置
JP5419625B2 (ja) * 2009-10-06 2014-02-19 株式会社日本触媒 コアシェル型粒子、光拡散剤、および光拡散媒体
JP5937357B2 (ja) * 2009-12-17 2016-06-22 株式会社きもと 光拡散性シート及びこれを用いたバックライト

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08315985A (ja) 1995-05-16 1996-11-29 Sanyo Electric Co Ltd 有機エレクトロルミネッセンス素子
JP2005063704A (ja) * 2003-08-20 2005-03-10 Stanley Electric Co Ltd 有機el素子
JP2005190931A (ja) * 2003-12-26 2005-07-14 Nitto Denko Corp エレクトロルミネッセンス素子とこれを用いた面光源および表示装置
JP2006107744A (ja) * 2004-09-30 2006-04-20 Toshiba Corp 有機エレクトロルミネッセンス表示装置
JP2007035313A (ja) 2005-07-22 2007-02-08 Mitsubishi Chemicals Corp 光取出し膜、光取出し膜付き透光体及びエレクトロルミネッセンス素子
JP2007188708A (ja) * 2006-01-12 2007-07-26 Dainippon Printing Co Ltd 表示素子用基板
JP2008243669A (ja) * 2007-03-28 2008-10-09 Toyota Central R&D Labs Inc 有機電界発光素子
JP2009110930A (ja) 2007-08-21 2009-05-21 Fujifilm Corp 散乱部材、及びこれを用いた有機エレクトロルミネッセンス表示装置
JP2009216862A (ja) * 2008-03-10 2009-09-24 Toshiba Corp 発光装置用光取り出し層、およびそれを用いた有機エレクトロルミネッセンス素子
JP2010170726A (ja) * 2009-01-20 2010-08-05 Toshiba Corp 粒子配列構造体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2744301A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218154A (zh) * 2013-05-30 2014-12-17 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
JP2017033908A (ja) * 2015-08-03 2017-02-09 日華化学株式会社 有機el素子

Also Published As

Publication number Publication date
EP2744301A4 (en) 2015-04-08
TW201312821A (zh) 2013-03-16
US9349980B2 (en) 2016-05-24
EP2744301A1 (en) 2014-06-18
JP6309271B2 (ja) 2018-04-11
EP2744301B1 (en) 2019-02-20
TWI635638B (zh) 2018-09-11
US20140167029A1 (en) 2014-06-19
KR101878533B1 (ko) 2018-07-13
CN103650638B (zh) 2017-11-17
CN103650638A (zh) 2014-03-19
KR20140064804A (ko) 2014-05-28
JPWO2013021865A1 (ja) 2015-03-05

Similar Documents

Publication Publication Date Title
JP5877154B2 (ja) 有機el用散乱フィルムおよびそれを用いた有機el発光装置
US7834528B2 (en) Planar luminous body with improved light-extraction efficiency
JP5703251B2 (ja) 有機電界発光素子、照明装置及び有機電界発光素子の製造方法
US8643259B2 (en) Optical sheet and surface light source apparatus
JP6309271B2 (ja) 有機el用散乱フィルム及びこれを用いた有機el発光装置
US10224379B2 (en) Organic light emitting diode device with different laminated structures
TW201401927A (zh) 透明無機式薄膜電激發光顯示元件及用以製造該顯示元件的方法
US8866130B2 (en) Light-emitting device and lighting apparatus
WO2016140267A1 (ja) 有機el用散乱フィルムおよびそれを用いた有機el発光装置
JP6589463B2 (ja) 量子ドット用バリアフィルムの選択方法、量子ドット用バリアフィルム、量子ドットシート、バックライト及び液晶表示装置
US10094534B2 (en) Surface-emitting unit having dimming regions
US20160312964A1 (en) Surface Emitting Unit
US9109759B2 (en) Light-emitting element
JP2007109575A (ja) エレクトロルミネッセンス素子用基板
CN217484527U (zh) 显示面板及显示模组
CN217484525U (zh) 面板组件及显示模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822171

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013527974

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14237944

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147005173

Country of ref document: KR

Kind code of ref document: A