WO2013021731A1 - トルク制御装置 - Google Patents

トルク制御装置 Download PDF

Info

Publication number
WO2013021731A1
WO2013021731A1 PCT/JP2012/065709 JP2012065709W WO2013021731A1 WO 2013021731 A1 WO2013021731 A1 WO 2013021731A1 JP 2012065709 W JP2012065709 W JP 2012065709W WO 2013021731 A1 WO2013021731 A1 WO 2013021731A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
generator
pulsation
rotational speed
engine
Prior art date
Application number
PCT/JP2012/065709
Other languages
English (en)
French (fr)
Inventor
翔 大野
雄史 勝又
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US14/236,093 priority Critical patent/US8996220B2/en
Priority to CN201280037464.9A priority patent/CN103717467B/zh
Priority to EP12821378.2A priority patent/EP2740642B1/en
Publication of WO2013021731A1 publication Critical patent/WO2013021731A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/461Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/463Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • B60L2240/642Slope of road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/142Emission reduction of noise acoustic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • B60W2030/206Reducing vibrations in the driveline related or induced by the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0008Feedback, closed loop systems or details of feedback error signal
    • B60W2050/0011Proportional Integral Differential [PID] controller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • B60W2050/0037Mathematical models of vehicle sub-units
    • B60W2050/0039Mathematical models of vehicle sub-units of the propulsion unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0042Transfer function lag; delays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • B60W2050/0052Filtering, filters
    • B60W2050/0054Cut-off filters, retarders, delaying means, dead zones, threshold values or cut-off frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • B60W2050/0052Filtering, filters
    • B60W2050/0054Cut-off filters, retarders, delaying means, dead zones, threshold values or cut-off frequency
    • B60W2050/0055High-pass filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0695Inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/088Inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/086Power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/906Motor or generator

Definitions

  • the present invention relates to a torque control device.
  • An internal combustion engine a generator connected to the internal combustion engine, driven to rotate by the internal combustion engine, and generating electric power according to the rotational speed driven based on field control by a field current, and storing electric power generated by the generator
  • a power storage device a travel motor that is rotationally driven based on the electric power supplied from the power storage device, and an internal combustion engine that is rotationally driven based on an optimum torque characteristic, and the amount of power generation that is required based on the current travel state
  • the target rotational speed that is a target for controlling the generator corresponding to the power generation amount is calculated, and the generator is calculated based on the target rotational speed.
  • Patent Document 1 An electric vehicle having a field control and a power generation control device that rotationally drives a generator at a rotational speed that balances the driving torque of the generator with the torque generated by the rotation of the internal combustion engine is known. That (Patent Document 1).
  • the problem to be solved by the present invention is to provide a torque control device that suppresses fluctuations in power generated by a generator.
  • the present invention solves the above problem by providing a pulsation removing filter that removes a rotational speed pulsation value due to engine pulsation from a rotational speed detection value detected by the rotational detection means and calculates a rotational speed calculation value.
  • the torque pulsation of the generator is suppressed in order to control the torque of the generator so that the rotational speed from which the pulsation component due to the torque pulsation of the engine is removed matches the rotational speed command value.
  • the power fluctuation can be suppressed.
  • FIG. 1 is a block diagram of a vehicle including a torque control device according to an embodiment of the present invention.
  • the block diagram of the engine of FIG. 1, an electric generator, an engine controller, an electric generator controller, and an electric power generation control part is shown.
  • (A) is a graph which shows the characteristic of the electric power generated of the generator 2 of FIG. 1
  • (b) is a graph which shows the characteristic of the rotation speed of the generator 2 of FIG. 1
  • (c) is the electric power generation of FIG. 2 is a graph showing the torque characteristics of the machine 2
  • (d) is a graph showing the torque characteristics of the engine 1 of FIG.
  • the block diagram of an engine, a generator, an engine controller, a generator controller, and a power generation control part contained in the torque control apparatus which concerns on other embodiment of this invention is shown.
  • the block diagram of an engine, a generator, an engine controller, a generator controller, and a power generation control part contained in the torque control apparatus which concerns on other embodiment of this invention is shown. It is a graph which shows the gain characteristic in the gain adjustment part of FIG.
  • the block diagram of an engine, a generator, an engine controller, a generator controller, and a power generation control part contained in the torque control apparatus which concerns on other embodiment of this invention is shown.
  • FIG. 1 is a block diagram showing an outline of a vehicle including a torque control device according to an embodiment of the invention.
  • the torque control device of the present example will be described with reference to an example in which the torque control device of the present example is provided to a series type hybrid vehicle.
  • the torque control device of the present example is also applicable to, for example, a parallel type hybrid vehicle having an engine and a motor as drive sources. Is possible.
  • a vehicle including the torque control device of this example includes an engine 1, a generator 2, a rotation angle sensor 3, a generator inverter 4, a battery 5, a drive inverter 6, and a drive motor. 7, a speed reducer 8, a drive wheel 9, an engine controller 21, a generator controller 22, a battery controller 23, a drive motor controller 24, and a system controller 100.
  • the engine 1 burns gasoline, light oil, and other fuels, outputs energy to the output shaft, and controls the valve opening of the throttle valve, the fuel injection amount of the fuel injection valve, and the like based on the control signal from the engine controller 21. Then drive.
  • the generator 2 is connected to the output shaft of the engine 1 and is driven by the engine 1. Further, the generator 2 cranks the engine 1 when the engine 1 is started, or consumes electric power by rotating the engine 1 by powering using the driving force of the generator 2.
  • the rotation angle sensor 3 is configured by a resolver or the like that detects the rotation angle of the rotor of the generator 2, and is a sensor that detects the number of rotations of the generator 2, and outputs a detection value to the system controller 100.
  • the generator inverter 4 includes a plurality of switching elements such as IGBTs, and converts the AC power output from the generator 2 into DC power by switching the switching elements on and off according to a switching signal from the generator controller 22. Or a conversion circuit that performs reverse conversion from DC power to AC power.
  • the generator inverter 4 is connected to a battery 5 and a drive inverter 6.
  • the generator inverter 4 is provided with a current sensor (not shown), and a detection value of the current sensor or the like is output to the generator controller 22.
  • the battery 5 is a secondary battery that is connected between the generator inverter 4 and the drive inverter 6, supplies power to the drive inverter 6, and is charged by the power from the generator inverter 4.
  • the drive inverter 6 is a conversion circuit that converts DC power output from the generator inverter 4 or the battery 5 into AC power and outputs the AC power to the drive motor 7.
  • the drive inverter 6 is controlled based on a control signal from the drive motor controller 24.
  • the drive inverter 6 is provided with a current sensor (not shown), and the detected value of the current sensor or the like is output to the drive motor controller 24.
  • the drive motor 7 is a drive source that is driven by AC power from the drive inverter 6 and drives the vehicle.
  • a rotation angle sensor (not shown) is connected to the drive motor 7, and a detection value of the rotation angle sensor is output to the drive motor controller 24.
  • the output shaft of the drive motor 7 is connected to the left and right drive wheels 9 via a speed reducer 8 and left and right drive shafts.
  • the drive motor 7 regenerates energy by generating a regenerative drive force by the rotation of the drive wheels 9.
  • the engine controller 21 is based on an engine torque command value (T eCMD ) transmitted from the system controller 100, an air-fuel ratio sensor (not shown) provided in the engine 1, a detection value of an oxygen sensor (not shown), a temperature sensor, and the like.
  • a controller for controlling the engine 1 by setting the valve opening of the throttle valve, the fuel injection amount of the fuel injection valve, the ignition timing, and the like.
  • the generator controller 22 controls the generator inverter 4 based on the generator torque command value (T mCMD ) transmitted from the system controller 100 and the detection value of a current sensor (not shown) provided in the generator inverter 4.
  • the generator inverter 4 is controlled by setting a switching signal of the included switching element.
  • the battery controller 23 measures the state of charge (SOC: State of Charge) of the battery 5 from detection values of a voltage sensor that detects the voltage of the battery 5, a current sensor that detects the current of the battery 5, and the like. The amount of power that can be output and the amount of charge that can be charged are managed.
  • the drive motor controller 24 controls the drive inverter based on a control signal from the system controller 100 and a detected value or rotation speed of a current sensor (not shown) provided in the drive motor 7.
  • the system controller 100 includes a power generation control unit 10 and is a controller that controls the entire vehicle, and controls the engine controller 21, the generator controller 22, the battery controller 23, and the drive motor controller 24.
  • the system controller 100 manages the state of the engine via the engine controller 21, manages the control state of the generator inverter 4 via the generator controller 22, manages the state of the battery 5 via the battery controller 23,
  • the drive inverter 6 and the drive motor 7 are managed via the drive motor controller 24.
  • the system controller 100 detects the traveling state of the vehicle from the vehicle speed detected by a vehicle speed sensor (not shown), the accelerator pedal operation amount detected by an accelerator opening sensor (not shown), and the gradient detected by the tilt sensor,
  • the target value of the generated power generated by the generator 2 is set in order to supply power to the drive motor 7 in accordance with the input / output power of the battery 5 and the generated power of the generator 2, which is managed by the battery controller 23.
  • the power generation control unit 10 calculates an engine torque command value (T eCMD ) and a power generation torque command value (T mCMD ) in order to realize a target value (P m (hereinafter referred to as target generated power)) of generated power. To do.
  • FIG. 2 shows a block diagram of the engine 1, the generator 2, the engine controller 21, the generator controller 22, and the power generation control unit 10.
  • the power generation control unit 10 includes an operating point calculation unit 11, a rotation speed control unit 12, and a pulsation removal filter 13.
  • the operating point calculation unit 11 generates an engine torque command value (T eCMD ) and a rotational speed command for the generator 2 so that the engine 1 has an optimum torque for generating the target generated power (P m ) with the generator 2.
  • a value ( ⁇ CMD ) is set and output to the engine controller 21 and the rotation speed control unit 12.
  • the operating point calculation unit 11 stores in advance a map indicating the optimum torque characteristics of the engine 1 with respect to the target generated power (P m ), and the operating point calculating unit 11 calculates the target generated power (P m ). By referring to the map as an input, an engine torque command value (T eCMD ) and a rotation speed command value ( ⁇ CMD ) of the generator 2 are calculated.
  • the rotation speed control unit 12 inputs a rotation speed command value ( ⁇ CMD ) and a rotation speed calculation value ( ⁇ p ) output from a pulsation removal filter 13 described later, and generates a generator torque command value (T mCMD ). Is output to the generator controller 22.
  • the rotation speed control unit 12 includes a PID compensator, and outputs a generator torque command value (T mCMD ) using the following equation (1).
  • K P is a proportional gain
  • K I is an integral gain
  • K D is a differential gain
  • T D is the time constant of the approximate differentiation
  • s is a Laplace operator.
  • the rotational speed calculation value ( ⁇ p ) is a value that is calculated by passing the rotational speed of the generator 2 through the pulsation removal filter 13 and performing feedback control.
  • the generator torque command value (T mCMD ) is calculated so that the rotation speed calculation value ( ⁇ p ) matches the rotation speed command value ( ⁇ CMD ).
  • the pulsation removal filter 13 includes a control target model (Gp) 131, subtracters 132 and 134, and a bandpass filter 133.
  • the controlled object model 131 is represented by a transfer function that models (linearizes) the controlled object in this example, and is represented by the following equation (2). J is the inertia around the output shaft of the generator 2, and D is the viscous friction coefficient of the lubricating oil.
  • the control target model 131 receives the generator torque command value (T mCMD ) as an input and estimates the estimated value (G p ⁇ T mCMD ) using Equation (2).
  • the subtractor 132 subtracts the estimated value of the control target model 131 from the rotation speed detection value ( ⁇ G ) of the generator 2, which corresponds to the detection value of the rotation angle sensor 3, and calculates the rotation speed ( ⁇ 1 ) as a bandpass filter. To 133. That is, the rotation speed ( ⁇ 1 ) is calculated by the following equation (3).
  • the bandpass filter 133 is a filter for filtering pulsation components included in the rotational speed of the generator 2 due to torque pulsation of the engine 1, and is configured by a filter having at least the intermittent combustion frequency of the engine 1 as a passing frequency. And serves as a feedback element for removing the rotational speed pulsation value ( ⁇ s ).
  • the transfer characteristic (G BPF ) of the band pass filter 133 is expressed by the following equation (4).
  • is a damping coefficient.
  • ⁇ n is a natural frequency and corresponds to the center frequency among the pass frequencies of the band pass filter 133.
  • the natural frequency ( ⁇ n ) is a frequency that is adjusted to coincide with the intermittent combustion frequency of the engine 1.
  • the intermittent combustion frequency of the engine 1 is a frequency set by the combustion cycle of the multi-cylinder engine 1.
  • the rotation number ( ⁇ 1 ) that is the output value of the subtractor 132 passes through the bandpass filter 133, and the rotation number ( ⁇ 2 ) is output from the bandpass filter 133.
  • the number of revolutions ( ⁇ 2 ) is expressed by the equation (5).
  • the rotation speed ( ⁇ 2 ) corresponds to the pulsation amount of the rotation speed detection value ( ⁇ G ), and corresponds to the rotation speed pulsation value ( ⁇ s ).
  • the subtractor 134 calculates the rotational speed calculation value ( ⁇ p ) by subtracting the rotational speed ( ⁇ 2 ) from the rotational speed detection value ( ⁇ G ). Then, the rotational speed calculation value ( ⁇ p ) is fed back to the rotational speed control unit 12. Thus, the pulsation component included in the rotation speed detection value ( ⁇ G ) is removed by the pulsation removal filter 13, and the detection value ( ⁇ p ) not including the pulsation component is converted to the rotation speed command value ( ⁇ generator torque command value for matching the CMD) to (T MCMD) computed.
  • FIG. 3 shows the characteristics of the generated power, the characteristics of the rotational speed, and the torque characteristics in the torque control device of this example.
  • graph a shows the characteristics of the torque control device of this example
  • graph b is a comparative example for this example, and shows the characteristics when feedback control using the pulsation removal filter 13 is not performed.
  • Graph c shows the characteristic of the rotational speed calculation value ( ⁇ p ).
  • 3A shows the time characteristic of the generated power of the generator 2
  • FIG. 3B shows the time characteristic of the rotational speed of the generator 2 (or the rotational speed of the engine 1)
  • FIG. Shows the time characteristic of the torque of the generator 2
  • FIG. 3D shows the time characteristic of the torque of the engine 1.
  • the present example includes a rotation speed control unit 12 that calculates a generator torque command value (T mCMD ) for making the rotation speed calculation value ( ⁇ p ) coincide with the rotation speed command value ( ⁇ CMD ), A pulsation removing filter 13 that removes pulsation of the rotational speed due to the pulsation of the engine 1 from the rotational speed detection value ( ⁇ G ) detected by the rotational angle sensor 3 and calculates the rotational speed calculation value ( ⁇ p ).
  • the torque pulsation of the generator 2 can be suppressed and the fluctuation of the generated power can be suppressed.
  • the generator 2 is driven by the torque of the engine 1 during power generation, and continuously generates a regenerative torque that balances the engine torque while maintaining the target rotational speed. Therefore, it is required to design the maximum torque of the generator 2 as small as possible. Therefore, when the generator 2 is designed so as to suppress excessive engine torque pulsation by the generator 2, there is a problem that the size and cost of the generator 2 are increased.
  • a torque fluctuation control device for a hybrid prime mover in which a motor generator is coupled to an output shaft of an internal combustion engine, pulsation compensation torque in the motor generator is calculated by feedforward, and torque pulsation generated on the output shaft is suppressed.
  • the torque fluctuation control device when the engine speed is high, the output torque of the motor generator cannot follow the torque pulsation of the engine due to the response delay of the motor generator, and the torque pulsation cannot be suppressed. There was a problem. Further, even when the engine speed is low, there is a problem that the engine torque pulsation cannot be suppressed when the engine torque pulsation is larger than the maximum torque that can be generated by the motor generator.
  • the pulsation removal filter 13 removes the pulsation of the rotational speed due to the pulsation of the engine 1 and generates power using the rotational speed calculation value ( ⁇ p ) and the rotational speed command value ( ⁇ CMD ) that do not include the pulsation component.
  • a machine torque command value (T mCMD ) is calculated, and the torque of the generator 2 is controlled. That is, in this example, even if the frequency of the pulsation rotational speed due to the engine torque pulsation is high, the pulsation component included in the pulsation rotational speed is removed by the pulsation removal filter 13, so that the torque of the generator 2 Pulsation can be suppressed.
  • the feedback control is not performed with the gain lowered for the purpose of suppressing torque pulsation, the disturbance resistance is not deteriorated.
  • the size of the generator 2 can be reduced, and the cost of the generator 2 can be suppressed.
  • the control for causing the output torque of the generator 2 to follow the output torque of the engine 1 as described above is not performed, and the engine torque is increased due to a response delay of the generator 2 due to a high engine speed. Even when the rotation speed pulsates, the pulsation of the rotation speed is removed using the pulsation removal filter 13 during feedback control, so that the torque pulsation of the generator 2 is suppressed and fluctuations in the generated power occur. Can be suppressed.
  • the rotational speed pulsation value ( ⁇ s ) is calculated from the difference between the estimated value estimated by the control target model 131 and the rotational speed detection value ( ⁇ G ), and the passing frequency of the bandpass filter 133 and the engine 1 are calculated. Based on the band-pass filter 133 having the same intermittent combustion frequency and the difference between the rotation speed detection value ( ⁇ G ) and the rotation speed pulsation value ( ⁇ s ), the rotation speed calculation value ( ⁇ p ) is calculated. And a first subtractor 134 for calculation.
  • this example can suppress the torque pulsation of the generator 2 and push the fluctuation
  • the operating point calculation unit 11 corresponds to “command value calculation means” according to the present invention
  • the rotation speed control unit 12 corresponds to “generator torque command value calculation means” of the present invention
  • the rotation angle sensor 3 corresponds to the present invention.
  • the subtractor 134 corresponds to the “first subtraction means” of the present invention
  • the control model 131 corresponds to the “control model estimation means” of the present invention.
  • FIG. 4 shows a block diagram of the engine 1, the generator 2, the engine controller 21, the generator controller 22, and the power generation control unit 10 in the torque control device according to another embodiment of the invention.
  • the natural frequency ( ⁇ n ) of the bandpass filter 133 is set based on the rotation speed detection value ( ⁇ G ) or the rotation speed command value ( ⁇ CMD ) with respect to the first embodiment described above. Is different. Since the other configuration is the same as that of the first embodiment described above, the description thereof is incorporated.
  • the rotation speed detection value ( ⁇ G ) is input to the band pass filter 133, and the natural frequency ( ⁇ n ) corresponding to the pass frequency of the band pass filter 133 is converted to the rotation speed detection value ( is set based on ⁇ G ).
  • the natural frequency ( ⁇ n ) is expressed by the following equation (6) when the engine 1 is a four-cylinder engine using the rotation speed detection value ( ⁇ G ).
  • the unit of ⁇ n is rad / s
  • the unit of ⁇ G or ⁇ CMD is 1 / min.
  • the intermittent combustion frequency of the engine 1 varies depending on the rotational speed of the engine 1, and the rotational speed of the engine 1 corresponds to the rotational speed of the generator 2.
  • the rotation frequency of the generator 2 is used to adjust the passing frequency of the bandpass filter 133, even when the rotation speed of the engine 1 changes and the intermittent combustion frequency of the engine 1 changes,
  • the intermittent combustion frequency can be included in the band of the pass frequency of the band pass filter 133.
  • the pass frequency of the bandpass filter 133 is set based on the rotation speed detection value ( ⁇ G ).
  • the intermittent combustion frequency of the engine 1 changes according to the rotational speed of the engine 1, and in this example, the passing frequency of the bandpass filter 133 depends on the rotational speed of the engine 1 (corresponding to the rotational speed detection value ( ⁇ G )). Therefore, even when the engine speed changes, torque pulsation of the generator 2 can be suppressed and fluctuations in generated power can be suppressed.
  • the pass frequency of the bandpass filter 133 is set based on the rotation speed detection value ( ⁇ G ), but may be set based on the rotation speed command value ( ⁇ CMD ). That is, in the equation (6), the natural frequency ( ⁇ n ) may be calculated using the rotation speed command value ( ⁇ CMD ) instead of the rotation speed detection value ( ⁇ G ).
  • FIG. 5 shows a block diagram of the engine 1, the generator 2, the engine controller 21, the generator controller 22, and the power generation control unit 10 in the torque control device according to another embodiment of the invention.
  • FIG. 6 is a graph showing gain characteristics with respect to the rotation speed detection value ( ⁇ G ) in the gain adjustment unit 135.
  • a gain adjustment unit 135 is provided in the pulsation suppression filter 13. Since the configuration other than this is the same as that of the second embodiment described above, the description thereof is incorporated.
  • the pulsation removal filter 13 includes a control target model (Gp) 131, subtractors 132 and 134, a bandpass filter 133, and a gain adjustment unit 135.
  • Gain adjusting unit 135 is provided between the band-pass filter 133 and a subtractor 134, to adjust the gain of the rotational speed output from the band pass filter 133 (omega 2), the rotational speed to the subtractor 134 (omega 2 ) Is output.
  • the gain adjustment unit 135 is set with a threshold frequency ( ⁇ 0 ) for adjusting the gain according to the frequency of the rotation speed.
  • a threshold frequency ( ⁇ 0 ) for adjusting the gain according to the frequency of the rotation speed.
  • the gain from the rotation speed detection value (omega G) is zero to ⁇ 0 (k) are proportional with respect to the rotational speed detection value (omega G), rotational speed detection value (omega G ) Is equal to or greater than ⁇ 0 , the gain (k) is 1. That is, when the rotation speed detection value ( ⁇ G ) is less than ⁇ 0 , gain adjustment is performed by setting the gain lower than 1, and when the rotation speed detection value ( ⁇ G ) is ⁇ 0 or more. Set the gain to 1 and do not adjust the gain for the input value.
  • the rotational speed calculation value ( ⁇ p ) output from the subtractor 134 is expressed by the following equation (7).
  • the rotation speed of the engine 1 is in a low rotation region, and the rotation speed detection value ( ⁇ G ) is smaller than ⁇ 0. .
  • the gain (k) is set to a value smaller than 1, the ratio of rotational pulsation removed from the rotational speed detection value ( ⁇ G ) is reduced.
  • this example suppresses the pulsation of the rotation speed in the low rotation region by the torque of the generator 2.
  • the pulsation removal filter 135 is provided with the gain adjustment unit 135 that multiplies the output value of the bandpass filter 133 by the gain that is set based on the rotational speed of the generator 2.
  • the gain adjustment unit 135 is provided on the output side of the bandpass filter 133.
  • the gain adjustment unit 135 is provided on the input side of the bandpass filter 133, and the rotation speed ( ⁇ 1 ) is the same as described above. The gain may be adjusted.
  • FIG. 7 shows a block diagram of the engine 1, the generator 2, the engine controller 21, the generator controller 22, and the power generation control unit 10 in the torque control device according to another embodiment of the invention.
  • This example differs from the second embodiment described above in that high-pass filters 136 and 137 are provided in the pulsation suppression filter 135. Since the configuration other than this is the same as that of the second embodiment described above, the description thereof is incorporated.
  • the pulsation removal filter 13 includes a control target model (Gp) 131, subtractors 132 and 134, a bandpass filter 133, highpass filters 136 and 137, a subtractor 138, and an adder 139.
  • the high-pass filter 136 receives the rotation speed ( ⁇ 1 ) output from the subtractor 132, passes through a filter having filter characteristics described later, and outputs the rotation speed ( ⁇ 3 ) to the subtractor 138.
  • the band pass filter 133 outputs the calculated rotation speed ( ⁇ 2 ) to the high pass filter 137 and the adder 139.
  • the high-pass filter 137 receives the rotation speed ( ⁇ 2 ) output from the band-pass filter 133 as input, passes through a filter having filter characteristics described later, and outputs the rotation speed ( ⁇ 4 ) to the subtractor 138.
  • the subtractor 138 subtracts the rotation speed ( ⁇ 4 ) from the rotation speed ( ⁇ 3 ) and outputs the result to the adder 139.
  • the adder 139 adds the calculated value calculated by the subtracter 138 and the rotation speed ( ⁇ 2 ), and outputs the result to the subtractor 134.
  • the transfer characteristics (G HPF ) of the high-pass filters 136 and 137 are expressed by the following equation (8).
  • ⁇ H is a cutoff frequency of the high-pass filters 136 and 137, and is set to a frequency higher than the intermittent combustion frequency of the engine 1.
  • ⁇ H is expressed by the following equation (9 ).
  • the control frequency band controlled by the generator 2 is a frequency band of 0 or more and ⁇ GN or less
  • the lower limit value of the cutoff frequency ( ⁇ H ) is set to ⁇ GN .
  • the cutoff frequency ( ⁇ H ) of the high-pass filters 136 and 137 is higher than the intermittent combustion frequency of the engine 1 and is equal to or higher than the upper limit frequency of the control frequency band of the generator 2.
  • the high-pass filter 136 is a filter for filtering the pulsation component and the high-frequency noise component of the rotational speed caused by the torque pulsation caused by the reciprocating motion of the piston and the crank mechanism of the engine 1 from the rotational speed detection value ( ⁇ G ). .
  • the rotation speed ( ⁇ 3 ) corresponding to the pulsation component is calculated by the following equation (10).
  • the high-pass filter 137 is a filter that filters the pulsation component of the rotational speed that is included in the rotational speed ( ⁇ 3 ) and is generated by engine torque pulsation caused by intermittent combustion of the engine 1.
  • the rotation speed ( ⁇ 4 ) corresponding to the pulsation component is calculated by the following equation (11).
  • the rotation speed calculation value ( ⁇ p ) output from the subtractor 134 is calculated by subtracting the calculation value of the adder 139 from the rotation speed detection value ( ⁇ G ). Calculated.
  • the rotational speed calculation value ( ⁇ p ) fed back to the rotational speed control unit 12 is derived from the rotational speed detection value ( ⁇ G ) and the pulsation component of the rotational speed caused by intermittent combustion of the engine 1 and the engine 1. This value is obtained by removing the pulsation component of the rotational speed and high-frequency noise caused by the reciprocating motion of the piston and crank mechanism.
  • the high-pass filter 136 that calculates the rotational speed ( ⁇ 3 ) from the difference between the estimated value of the control target model 131 and the detected rotational speed value ( ⁇ G ), and the rotational speed ( ⁇ 2 ) from the rotational speed ( ⁇ 2 ). 4 ), a high-pass filter 137 that calculates the rotational speed ( ⁇ 3 ) and the rotational speed ( ⁇ 4 ), a subtractor 138 that takes the difference between the rotational speed ( ⁇ 4 ), and the calculated value of the subtractor 138 and the rotational speed ( ⁇ 2 ). And an adder 139.
  • this example removes the pulsation component caused by the intermittent combustion of the engine 1, the pulsation component caused by the reciprocation of the piston of the engine 1 and the crank mechanism, and the high frequency noise component from the rotation speed detection value ( ⁇ G ).
  • torque pulsation of the generator 2 can be suppressed and fluctuations in generated power can be suppressed.
  • the cutoff frequency of the high-pass filters 136 and 137 is set to a frequency that is higher than the intermittent combustion frequency of the engine 1 and equal to or higher than the upper limit frequency of the control frequency band of the generator 2.
  • the cut-off frequency of the high-pass filters 136 and 137 is set to a frequency within the control frequency band of the generator 2, the torque responsiveness of the generator 2 may be deteriorated and the disturbance resistance may be deteriorated.
  • the lower limit frequency of the cutoff frequency of the high-pass filters 136 and 137 is set to be equal to or higher than the upper limit frequency of the control frequency band, the torque response of the generator 2 is improved, and the disturbance resistance is deteriorated. While preventing, the pulsation of the rotation speed can be prevented.
  • the high-pass filter 136 corresponds to the “first high-pass filter” according to the present invention
  • the rotational speed ( ⁇ 3 ) corresponds to the “first high-frequency rotational speed pulsation value” of the present invention
  • the high-pass filter 137 It corresponds to the “second high-pass filter” of the invention
  • the rotational speed ( ⁇ 4 ) corresponds to the “second high-frequency rotational speed pulsation value”
  • the subtractor 138 serves as the “second subtracting means”
  • the adder 139 Corresponds to “adding means”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Eletrric Generators (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 エンジン1により駆動される発電機を備えたハイブリッド車両に用いられるトルク制御装置において、ハイブリッド車両の走行状態に応じて設定された発電機2の目標発電電力に基づいて、エンジントルク指令値及び前記発電機の回転数指令値を演算する指令値演算手段と、回転数演算値を回転数指令値に一致させるための発電機トルク指令値を演算する発電機トルク指令値演算手段と、発電機トルク指令値に基づき発電機2を制御する発電機制御手段と、発電機2の回転数を検出する回転数検出手段と、回転数検出手段により検出された回転数検出値から、エンジン1の脈動による回転数の脈動成分を除去し、回転数演算値を演算する脈動除去フィルタとを備える。

Description

トルク制御装置
 本発明は、トルク制御装置に関するものである。
 本出願は、2011年8月5日に出願された日本国特許出願の特願2011―171554に基づく優先権を主張するものであり、文献の参照による組み込みが認められる指定国については、上記の出願に記載された内容を参照により本出願に組み込み、本出願の記載の一部とする。
 内燃機関と、内燃機関に連結され、内燃機関により回転駆動され、界磁電流による界磁制御に基づいて駆動される回転数に応じた電力を発電する発電機と、発電機により発電される電力を蓄える蓄電装置と、蓄電装置から供給される電力に基づいて回転駆動される走行モータと、内燃機関を最適なトルク特性に基づいて回転駆動させるとともに、その時々の走行状態に基づいて必要とする発電量を演算し、その発電量と内燃機関の最適なトルク特性とに基づいて発電量に対応する発電機を制御する目標とする目標回転数を演算し、その目標回転数に基づいて、発電機を界磁制御し、内燃機関の回転による発生トルクとに対して発電機の駆動トルクがバランスする回転数で発電機を回転駆動する発電制御装置とを備えた電気自動車が知られている(特許文献1)。
特開平10-178705号公報
 しかしながら、エンジンのトルク脈動により、発電機で発電される電力が変動する、という問題があった。
 本発明が解決しようとする課題は、発電機で発電される電力の変動を抑制するトルク制御装置を提供することである。
 本発明は、回転検出手段により検出された回転数検出値から、エンジンの脈動による回転数脈動値を除去し、回転数演算値を演算する脈動除去フィルタを備えることによって上記課題を解決する。
 本発明によれば、エンジンのトルク脈動に起因する脈動成分を除去した回転数を回転数指令値に一致させるよう、発電機のトルクを制御するため、発電機のトルク脈動を抑制し、発電機の電力変動を抑制することができる。
本発明の実施形態に係るトルク制御装置を含む車両のブロック図である。 図1のエンジン、発電機、エンジンコントローラ、発電機コントローラ及び発電制御部のブロック図を示す。 (a)は図1の発電機2の発電電力の特性を示すグラフであり、(b)は図1の発電機2の回転数の特性を示すグラフであり、(c)は図1の発電機2のトルク特性を示すグラフであり、(d)は図1のエンジン1のトルク特性を示すグラフである。 本発明の他の実施形態に係るトルク制御装置に含まれる、エンジン、発電機、エンジンコントローラ、発電機コントローラ及び発電制御部のブロック図を示す。 本発明の他の実施形態に係るトルク制御装置に含まれる、エンジン、発電機、エンジンコントローラ、発電機コントローラ及び発電制御部のブロック図を示す。 図5のゲイン調整部におけるゲイン特性を示すグラフである。 本発明の他の実施形態に係るトルク制御装置に含まれる、エンジン、発電機、エンジンコントローラ、発電機コントローラ及び発電制御部のブロック図を示す。
 以下、本発明の実施形態を図面に基づいて説明する。
《第1実施形態》
 図1は、発明の実施形態に係るトルク制御装置を含む車両の概要を示すブロック図である。以下、本例のトルク制御装置をシリーズ型のハイブリッド車両に提供した例を挙げて説明するが、本例のトルク制御装置は、例えばエンジン及びモータを駆動源とするパラレル型のハイブリッド車両にも適用可能である。
 図1に示すように、本例のトルク制御装置を含む車両は、エンジン1と、発電機2と、回転角センサ3と、発電機インバータ4と、バッテリ5と、駆動インバータ6と、駆動モータ7と、減速機8と、駆動輪9と、エンジンコントローラ21と、発電機コントローラ22と、バッテリコントローラ23と、駆動モータコントローラ24と、システムコントローラ100とを備えている。
 エンジン1は、ガソリン、軽油その他の燃料を燃焼させてエネルギを出力軸に出力し、エンジンコントローラ21からの制御信号に基づいて、スロットルバルブのバルブ開度や燃料噴射バルブの燃料噴射量等を制御して駆動する。発電機2は、エンジン1の出力軸に連結され、エンジン1により駆動される。また発電機2はエンジン1の始動時にエンジン1をクランキングしたり、また発電機2の駆動力を利用してエンジン1を力行回転させることで電力を消費させたりする。回転角センサ3は、発電機2のロータの回転角を検出するレゾルバ等で構成され、発電機2の回転数を検出するセンサであり、検出値をシステムコントローラ100に出力する。
 発電機インバータ4は、IGBT等のスイッチング素子を複数備え、発電機コントローラ22からのスイッチング信号により当該スイッチング素子のオン及びオフを切り替えることで、発電機2から出力される交流電力を直流電力に変換し、または直流電力から交流電力に逆変換する変換回路である。発電機インバータ4は、バッテリ5及び駆動インバータ6に接続されている。また発電機インバータ4には、図示しない電流センサが設けられて、電流センサなどの検出値は発電機コントローラ22に出力される。バッテリ5は、発電機インバータ4と駆動インバータ6との間に接続され、駆動インバータ6に電力を供給し、発電機インバータ4からの電力により充電される二次電池である。駆動インバータ6は、発電機インバータ4あるいはバッテリ5から出力される直流電力を交流電力に変換して、駆動モータ7に当該交流電力を出力する変換回路である。駆動インバータ6は、駆動モータコントローラ24の制御信号に基づき制御される。また駆動インバータ6には、図示しない電流センサが設けられて、電流センサなどの検出値は駆動モータコントローラ24に出力される。
 駆動モータ7は、駆動インバータ6からの交流電力により駆動し、車両を駆動する駆動源である。また駆動モータ7には、図示しない回転角センサが接続され、当該回転角センサの検出値は駆動モータコントローラ24に出力される。駆動モータ7の出力軸は、減速機8及び左右のドライブシャフトを介して、左右の駆動輪9に連結されている。また駆動モータ7は、駆動輪9の回転により、回生駆動力を発生させることで、エネルギを回生する。
 エンジンコントローラ21は、システムコントローラ100から送信されるエンジントルク指令値(TeCMD)及びエンジン1に設けられた空燃比センサ(図示しない)、酸素センサ(図示しない)の検出値、温度センサ等に基づいて、スロットルバルブのバルブ開度や燃料噴射バルブの燃料噴射量、点火時期等を設定して、エンジン1を制御するためのコントローラである。発電機コントローラ22は、システムコントローラ100から送信される発電機トルク指令値(TmCMD)及び発電機インバータ4に設けられている電流センサ(図示しない)の検出値に基づいて、発電機インバータ4に含まれるスイッチング素子のスイッチング信号を設定して、発電機インバータ4を制御する。
 バッテリコントローラ23は、バッテリ5の電圧を検出する電圧センサ、バッテリ5の電流を検出する電流センサ等の検出値から、バッテリ5の充電状態(SOC:State of Charge)を計測して、バッテリ5の出力可能な電力量及び充電可能な充電電力量を管理する。駆動モータコントローラ24は、システムコントローラ100からの制御信号及び駆動モータ7に設けられる電流センサ(図示しない)の検出値や回転数に基づいて、駆動インバータを制御する。
 システムコントローラ100は、発電制御部10を有し、車両全体を制御するコントローラであって、エンジンコントローラ21、発電機コントローラ22、バッテリコントローラ23及び駆動モータコントローラ24を制御する。システムコントローラ100は、エンジンコントローラ21を介してエンジンの状態を管理し、発電機コントローラ22を介して発電機インバータ4の制御状態を管理し、バッテリコントローラ23を介してバッテリ5の状態を管理し、駆動モータコントローラ24を介して駆動インバータ6及び駆動モータ7を管理する。
 またシステムコントローラ100は、図示しない車速センサにより検出される車速、図示しないアクセル開度センサにより検出されるアクセルペダル操作量、及び、傾斜センサにより検出される勾配から車両の走行状態を検出して、バッテリコントローラ23で管理され、バッテリ5の入出力可能電力、発電機2の発電電力に応じて、駆動モータ7に電力を供給するために発電機2で発電される発電電力の目標値を設定する。発電制御部10は、発電電力の目標値(P(以下、目標発電電力と称す。))を実現するために、エンジントルク指令値(TeCMD)及び発電トルク指令値(TmCMD)を演算する。
 次に、図2を用いて、発電制御部10の構成を説明する。図2は、エンジン1、発電機2、エンジンコントローラ21、発電機コントローラ22及び発電制御部10のブロック図を示す。発電制御部10は、運転点演算部11と、回転数制御部12と、脈動除去フィルタ13とを備えている。
 運転点演算部11は、目標発電電力(P)を発電機2で発電させるために、エンジン1で最適なトルクになるよう、エンジントルク指令値(TeCMD)及び発電機2の回転数指令値(ωCMD)を設定し、エンジンコントローラ21及び回転数制御部12に出力する。運転点演算部11には、目標発電電力(P)に対してエンジン1の最適なトルク特性を示すマップが予め格納されており、運転点演算部11は、目標発電電力(P)を入力として当該マップを参照することで、エンジントルク指令値(TeCMD)及び発電機2の回転数指令値(ωCMD)を演算する。
 回転数制御部12は、回転数指令値(ωCMD)と後述する脈動除去フィルタ13からの出力される回転数演算値(ω)とを入力して、発電機トルク指令値(TmCMD)を発電機コントローラ22に出力する。回転数制御部12はPID補償器で構成され、以下の式(1)を用いて、発電機トルク指令値(TmCMD)出力する。
Figure JPOXMLDOC01-appb-M000001
 ただし、Kは比例ゲイン、Kは積分ゲイン、Kは微分ゲイン、Tは近似微分の時定数、sはラプラス演算子である。
 後述するように、回転数演算値(ω)は発電機2の回転数を脈動除去フィルタ13に通し、フィードバック制御することで演算される値であるため、回転数制御部12は、式(1)を用いることで、回転数演算値(ω)を回転数指令値(ωCMD)に一致させるように、発電機トルク指令値(TmCMD)を演算する。
 脈動除去フィルタ13は、制御対象モデル(Gp)131と、減算器132、134と、バンドパスフィルタ133とを備えている。制御対象モデル131は、本例における制御対象をモデル化(線形化)した伝達関数によって表され、以下の式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
 Jは発電機2の出力軸の軸周りイナーシャ、Dは潤滑油の粘性摩擦係数である。
 制御対象モデル131は、発電機トルク指令値(TmCMD)を入力として、式(2)を用いて、推定値(G・TmCMD)を推定する。
 減算器132は、回転角センサ3の検出値に相当する、発電機2の回転数検出値(ω)から制御対象モデル131の推定値を減算し、回転数(ω)をバンドパスフィルタ133に出力する。すなわち、回転数(ω)は以下の式(3)により演算される。
Figure JPOXMLDOC01-appb-M000003
 バンドパスフィルタ133は、エンジン1のトルク脈動に起因し、発電機2の回転数に含まれる脈動成分をフィルタリングするためのフィルタであり、少なくともエンジン1の間欠燃焼周波数を通過周波数とするフィルタにより構成され、回転数脈動値(ω)を除去するためのフィードバック要素となる。バンドパスフィルタ133の伝達特性(GBPF)は以下の式(4)により表される。
Figure JPOXMLDOC01-appb-M000004
 ζは減衰係数である。ωnは固有振動数であり、バンドパスフィルタ133の通過周波数のうち、中心周波数に相当する。固有振動数(ωn)は、エンジン1の間欠燃焼周波数と一致するように調整される周波数である。エンジン1の間欠燃焼周波数は、多気筒のエンジン1の燃焼周期により設定される周波数である。
 減算器132の出力値である回転数(ω)がバンドパスフィルタ133を通過し、バンドパスフィルタ133から回転数(ω)が出力される。回転数(ω)は、式(5)により表される。
Figure JPOXMLDOC01-appb-M000005
 回転数(ω)は、回転数検出値(ω)の脈動量に相当し、回転数脈動値(ω)に相当する。
 減算器134は、回転数検出値(ω)から回転数(ω)を減算することで、回転数演算値(ω)を算出する。そして、回転数演算値(ω)を回転数制御部12にフィードバックさせる。これにより、脈動除去フィルタ13により回転数検出値(ω)に含まれる脈動成分を除去し、回転数制御部12により、脈動成分を含まない検出値(ω)を回転数指令値(ωCMD)に一致させるための発電機トルク指令値(TmCMD)を演算する。
 次に、本例のトルク制御装置における、発電電力の特性、回転数の特性及びトルク特性を、シミュレーション結果である図3を用いて説明する。シミュレーションの前提条件として、エンジン1が停止状態で発電機2が一定の回転数で回転している時点から開始し、1秒後の時点でエンジントルク脈動を印加する。また図3のうち、グラフaは本例のトルク制御装置の特性を示し、グラフbは本例に対する比較例であり、脈動除去フィルタ13を用いたフィードバック制御を行わない場合の特性である。またグラフcは回転数演算値(ω)の特性を示す。図3(a)は発電機2の発電電力の時間特性を示し、図3(b)は発電機2の回転数(または、エンジン1の回転数)の時間特性を示し、図3(c)は発電機2のトルクの時間特性を示し、図3(d)はエンジン1のトルクの時間特性を示す。
 時刻1秒の時点で、図3(d)に示すようなエンジントルク脈動を印加すると、図3(b)及び図3(c)に示すように、比較例では発電機トルク及び回転数に脈動が含まれているため、図3(a)に示すように、発電電力が大きく変動している。一方、本例では、図3(b)及び図3(c)に示すように、発電機トルク及び回転数の脈動が抑制され、図3(a)に示すように、発電電力の変動が抑制されている。また図3(b)に示すように、本例における、エンジントルクの入力に対する回転数のオーバーシュート量は比較例と同等であるため、本例は耐外乱性を損なうことなく発電電力の変動を抑制することができる。
 上記のように、本例は、回転数演算値(ω)を回転数指令値(ωCMD)に一致させるための発電機トルク指令値(TmCMD)を演算する回転数制御部12と、回転角センサ3により検出される回転数検出値(ω)から、エンジン1の脈動による回転数の脈動を除去し、回転数演算値(ω)を演算する脈動除去フィルタ13とを備える。これにより、エンジントルク脈動に起因する回転数の脈動を除去した値に基づいてトルクを制御することで、発電機2のトルク脈動を抑制し、発電電力の変動を抑制することができる。
 ところで、本例と異なり脈動除去フィルタ13を用いることなく、回転数指令値と回転数検出値とが一致するように、発電機2のトルクを制御する場合には、エンジン回転数が高い運転領域において、エンジントルク脈動に起因する脈動回転数の周波数が高く、回転数の検出遅れが存在するため、回転数の脈動を抑制することができず、発電機トルクも脈動し、発電電力の変動が大きくなってしまう。このような運転領域では、回転数制御の際のゲインを小さくすることで、発電機トルク脈動を小さくし、発電電力の脈動を抑えることも考えられる。しかし、ゲインを小さくした場合には、耐外乱性が悪化するという問題があった。
 またエンジン回転数が低い運転領域においても、エンジントルク脈動が発電機2の発生可能な最大トルクより大きい場合には、エンジントルク脈動を抑制することができない。発電機2は、発電時にエンジン1のトルクによって駆動し、目標回転数を維持させつつ、エンジントルクと釣り合うような回生トルクを連続的に発生させる。そのため、発電機2の最大トルクはできる限り小さく設計することが求められる。従って、発電機2によって、過大なエンジントルク脈動を抑制するよう、発電機2を設計した場合には、発電機2のサイズやコストが大きくなってしまう、という問題があった。
 さらに、内燃機関の出力軸にモータジェネレータを結合し、フィードフォワードで当該モータジェネレータにおける脈動補償トルクを算出し、出力軸で発生するトルク脈動を抑制するハイブリッド原動機のトルク変動制御装置が知られている。当該トルク変動制御装置において、エンジン回転数が高い場合には、モータジェネレータの応答遅れによって、モータジェネレータの出力トルクがエンジンのトルク脈動に追従することができず、トルク脈動を抑制することができない、という問題があった。また、エンジン回転数が低い場合であっても、エンジントルク脈動がモータジェネレータの発生可能な最大トルクより大きい時には、エンジントルク脈動を抑制することができないという問題があった。
 本例では、脈動除去フィルタ13により、エンジン1の脈動による回転数の脈動を除去し、脈動成分を含まない回転数演算値(ω)と回転数指令値(ωCMD)とを用いて発電機トルク指令値(TmCMD)を演算し、発電機2のトルクを制御する。すなわち、本例では、エンジントルク脈動に起因する脈動回転数の周波数が高い場合であっても、脈動除去フィルタ13により、脈動回転数に含まれる脈動成分が除去されるため、発電機2のトルク脈動を抑制することができる。また、トルク脈動の抑制を目的として、ゲインを下げてフィードバック制御していないため、耐外乱性が悪化することもない。また本例は、発電機2によりエンジントルク脈動を抑制するように、発電機2を設計させる必要がないため、発電機2のサイズを小型化し、発電機2のコストを抑制することができる。
 また本例は、上記の従来のような、エンジン1の出力トルクに発電機2の出力トルクを追随させる制御を行っておらず、エンジン回転数が高く発電機2の応答遅れなどにより、エンジントルクが脈動し回転数が脈動したとしても、フィードバック制御の際には、脈動除去フィルタ13を用いて、回転数の脈動が除去されるため、発電機2のトルク脈動を抑制し、発電電力の変動を抑制することができる。
 また本例は、制御対象モデル131により推定される推定値と回転数検出値(ω)との差から回転数脈動値(ω)を演算し、バンドパスフィルタ133の通過周波数とエンジン1の間欠燃焼周波数とが一致しているバンドパスフィルタ133と、回転数検出値(ω)と前記回転数脈動値(ω)との差に基づいて、回転数演算値(ω)を演算する第1の減算器134とを備えている。これにより、本例は制御の安定性及び耐外乱性を悪化させることなく、発電機2のトルク脈動を抑制し、発電電力の変動を押させることができる。
 すなわち、本例とは異なり、回転数検出値から回転数脈動を除去するために、単純なバンドエリミネーションフィルタ(ノッチフィルタ)を使用した時には、脈動する回転数の周波数帯域と制御周波数帯域が非常に近い場合に、回転数の検出が遅れ、安定性が著しく悪化する問題点があった。一方、本例では、回転数検出値(ω)から脈動成分を含む回転数を演算し、回転数検出値(ω)から演算した回転数を差し引いた演算値をフィードバック要素に用いて制御するため、かかる問題点を解決しつつ、制御の安定性を維持しつつ、耐外乱性の悪化を防ぐことができる。
 なお、上記運転点演算部11は本発明に係る「指令値演算手段」に相当し、回転数制御部12が本発明の「発電機トルク指令値演算手段」に、回転角センサ3が本発明の「回転数検出手段」に、減算器134が本発明の「第1の減算手段」に、制御モデル131が本発明の「制御モデル推定手段」に相当する。
《第2実施形態》
 図4は、発明の他の実施形態に係るトルク制御装置のうち、エンジン1、発電機2、エンジンコントローラ21、発電機コントローラ22及び発電制御部10のブロック図を示す。本例では上述した第1実施形態に対して、バンドパスフィルタ133の固有振動数(ωn)を、回転数検出値(ω)または回転数指令値(ωCMD)に基づいて設定する点が異なる。これ以外の構成は上述した第1実施形態と同じであるため、その記載を援用する。
 図4に示すように、バンドパスフィルタ133には、回転数検出値(ω)が入力され、バンドパスフィルタ133の通過周波数に相当する固有振動数(ωn)が、回転数検出値(ω)に基づいて、設定される。固有振動数(ωn)は、回転数検出値(ω)を用いて、エンジン1が4気筒のエンジンである場合に、以下の式(6)により表される。なお、ωの単位はrad/s、ωまたはωCMDの単位は1/minである。
Figure JPOXMLDOC01-appb-M000006
 エンジン1の間欠燃焼周波数はエンジン1の回転数により変化し、エンジン1の回転数は発電機2の回転数に相当する。そして本例では、発電機2の回転数を用いて、バンドパスフィルタ133の通過周波数を調整するため、エンジン1の回転数が変化しエンジン1の間欠燃焼周波数が変化した場合でも、エンジン1の間欠燃焼周波数をバンドパスフィルタ133の通過周波数の帯域に含めることができる。
 上記のように、本例はバンドパスフィルタ133の通過周波数を、回転数検出値(ω)に基づいて設定する。エンジン1の間欠燃焼周波数はエンジン1の回転数に応じて変化し、本例ではエンジン1の回転数(回転数検出値(ω)に相当)に応じて、バンドパスフィルタ133の通過周波数が調整されるため、エンジン回転数が変化した場合でも発電機2のトルク脈動を抑制し、発電電力の変動を抑制することができる。
 なお、本例は、バンドパスフィルタ133の通過周波数を、回転数検出値(ω)に基づいて設定したが、回転数指令値(ωCMD)に基づいて設定してもよい。すなわち、式(6)において、回転数検出値(ω)の代わりに回転数指令値(ωCMD)用いて、固有振動数(ωn)を算出すればよい。
《第3実施形態》
 図5は、発明の他の実施形態に係るトルク制御装置のうち、エンジン1、発電機2、エンジンコントローラ21、発電機コントローラ22及び発電制御部10のブロック図を示す。図6は、ゲイン調整部135における、回転数検出値(ω)に対するゲイン特性を示すグラフである。本例では上述した第2実施形態に対して、脈動抑制フィルタ13にゲイン調整部135を設ける点が異なる。これ以外の構成は上述した第2実施形態と同じであるため、その記載を援用する。
 図5に示すように、脈動除去フィルタ13は、制御対象モデル(Gp)131と、減算器132、134と、バンドパスフィルタ133と、ゲイン調整部135を備えている。ゲイン調整部135は、バンドパスフィルタ133と減算器134との間に設けられ、バンドパスフィルタ133から出力される回転数(ω)のゲインを調整し、減算器134に回転数(ω)を出力する。
 ゲイン調整部135には、回転数の周波数に応じてゲインを調整するための閾値周波数(ω)が設定されている。図6に示すように、回転数検出値(ω)がゼロからωまではゲイン(k)は回転数検出値(ω)に対して比例関係にあり、回転数検出値(ω)がω以上である場合には、ゲイン(k)1となる。すなわち、回転数検出値(ω)がω未満である場合にはゲインを1より低く設定してゲイン調整が行われ、回転数検出値(ω)がω以上である場合にはゲインを1に設定し入力値に対するゲイン調整は行わない。
 そして、減算器134から出力される回転数演算値(ω)は、以下の式(7)により表される。
Figure JPOXMLDOC01-appb-M000007
 エンジン1が停止状態で発電機2を力行させて、エンジン1の回転数を上昇させる場合に、エンジン1の回転数は低回転領域となり、回転数検出値(ω)はωより小さくなる。このような低回転数領域では、ゲイン(k)が1より小さい値に設定されているため、回転数検出値(ω)から除去される回転脈動の割合が少なくする。これにより、本例は低回転領域における回転数の脈動を発電機2のトルクにより抑制する。
 上記のように、本例は、バンドパスフィルタ133の出力値に、発電機2の回転数に基づいて設定されるゲインを乗算するゲイン調整部135を、脈動除去フィルタ135に設ける。これにより、エンジン1が低回転領域で共振点を有する場合であっても、回転数の脈動を抑制しつつ、当該共振点における振動及び騒音を防ぐことができ、その結果として、発電機2の発電電力の変動を抑制することができる。
 なお、本例ではバンドパスフィルタ133の出力側にゲイン調整部135を設けたが、バンドパスフィルタ133の入力側にゲイン調整部135を設け、回転数(ω)に対して、上記と同様にゲイン調整を行ってもよい。
《第4実施形態》
 図7は、発明の他の実施形態に係るトルク制御装置のうち、エンジン1、発電機2、エンジンコントローラ21、発電機コントローラ22及び発電制御部10のブロック図を示す。本例では上述した第2実施形態に対して、脈動抑制フィルタ135にハイパスフィルタ136、137を設ける点が異なる。これ以外の構成は上述した第2実施形態と同じであるため、その記載を援用する。
 図7に示すように、脈動除去フィルタ13は、制御対象モデル(Gp)131と、減算器132、134と、バンドパスフィルタ133と、ハイパスフィルタ136、137と、減算器138と、加算器139とを備えている。ハイパスフィルタ136は、減算器132から出力される回転数(ω)を入力とし、後述するフィルタ特性を有するフィルタを通過させて、回転数(ω)を減算器138に出力する。バンドパスフィルタ133は、演算された回転数(ω)を、ハイパスフィルタ137及び加算器139に出力する。ハイパスフィルタ137は、バンドパスフィルタ133から出力される回転数(ω)を入力とし、後述するフィルタ特性を有するフィルタを通過させて、回転数(ω)を減算器138に出力する。減算器138は、回転数(ω)から回転数(ω)を減算して加算器139に出力する。加算器139は、減算器138により演算された演算値と、回転数(ω)とを加算して、減算器134に出力する。
 ハイパスフィルタ136、137の伝達特性(GHPF)は以下の式(8)により表される。
Figure JPOXMLDOC01-appb-M000008
 ωはハイパスフィルタ136、137のカットオフ周波数であり、エンジン1の間欠燃焼周波数より高い周波数に設定され、エンジン1が4気筒のエンジンである場合には、ωは、以下の式(9)で表される。
Figure JPOXMLDOC01-appb-M000009
 ただし、発電機2で制御される制御周波数帯域が、0以上ωGN以下の周波数帯域である場合には、カットオフ周波数(ω)の下限値をωGNとする。これにより、ハイパスフィルタ136、137のカットオフ周波数(ω)は、エンジン1の間欠燃焼周波数より高く、かつ、発電機2の制御周波数帯域の上限周波数以上の周波数となる。
 ハイパスフィルタ136は、回転数検出値(ω)から、エンジン1のピストン及びクランク機構の往復動を起因としたトルク脈動によって生じる回転数の脈動成分及び高周波ノイズ成分をフィルタリングするためのフィルタである。当該脈動成分に相当する回転数(ω)は以下の式(10)により算出される。
Figure JPOXMLDOC01-appb-M000010
 ハイパスフィルタ137は、回転数(ω)に含まれ、エンジン1の間欠燃焼を起因としたエンジントルク脈動によって生じる回転数の脈動成分をフィルタリングするフィルタである。当該脈動成分に相当する回転数(ω)は以下の式(11)により算出される。
Figure JPOXMLDOC01-appb-M000011
 そして、減算器134から出力される回転数演算値(ω)は、回転数検出値(ω)から、加算器139の演算値を減算することで算出され、以下の式(12)により算出される。
Figure JPOXMLDOC01-appb-M000012
 これにより、回転数制御部12にフィードバックされる回転数演算値(ω)は、回転数検出値(ω)から、エンジン1の間欠燃焼に起因する回転数の脈動成分と、エンジン1のピストン及びクランク機構の往復動を起因とする回転数の脈動成分及び高周波ノイズとを除去した値となる。
 上記のように、制御対象モデル131の推定値と回転数検出値(ω)との差から回転数(ω)を演算するハイパスフィルタ136と、回転数(ω)から回転数(ω)を演算するハイパスフィルタ137と、回転数(ω)と回転数(ω)との差をとる減算器138と、減算器138の演算値と回転数(ω)とを加算する加算器139とを備える。これにより、本例は、回転数検出値(ω)からエンジン1の間欠燃焼に起因する脈動成分と、エンジン1のピストン及びクランク機構の往復動に起因する脈動成分及び高周波ノイズ成分とを除去した上で、フィードバック制御するため、発電機2のトルク脈動を抑制し、発電電力の変動を抑えることができる。
 また本例において、ハイパスフィルタ136、137のカットオフ周波数は、エンジン1の間欠燃焼周波数より高く、かつ、発電機2の制御周波数帯域の上限周波数以上の周波数に設定される。ハイパスフィルタ136、137のカットオフ周波数を、発電機2の制御周波数帯域内の周波数に設定した場合には、発電機2のトルク応答性が悪くなり、耐外乱性が悪化する場合がある。本例では、ハイパスフィルタ136、137のカットオフ周波数の下限周波数を、当該制御周波数帯域の上限周波数以上に設定しているため、発電機2のトルク応答性をよくし、耐外乱性の悪化を防ぎつつ、回転数の脈動を防ぐことができる。
 上記のハイパスフィルタ136が本発明に係る「第1のハイパスフィルタ」に相当し、回転数(ω)が本発明の「第1の高周波回転数脈動値」に相当し、ハイパスフィルタ137が本発明の「第2のハイパスフィルタ」に相当し、回転数(ω)が「第2の高周波回転数脈動値」に相当し、減算器138が「第2の減算手段」に、加算器139が「加算手段」に相当する。
1…エンジン
2…発電機
3…回転角センサ
4…発電機インバータ
5…バッテリ
6…駆動インバータ
7…駆動モータ
8…減速機
9…駆動輪
21…エンジンコントローラ
22…発電機コントローラ
23…バッテリコントローラ
24…駆動モータコントローラ
100…システムコントローラ
 10…発電制御部
 11…運転点演算部
 12…回転数制御部
 13…脈動除去フィルタ
  131…制御対象モデル
  132、134、138…減算器
  133…バンドパスフィルタ
  135…ゲイン調整部
  136、137…ハイパスフィルタ
  139…加算器

Claims (6)

  1. エンジンにより駆動される発電機を備えたハイブリッド車両に用いられるトルク制御装置において、
     前記ハイブリッド車両の走行状態に応じて設定された前記発電機の目標発電電力に基づいて、エンジントルク指令値及び前記発電機の回転数指令値を演算する指令値演算手段と、
     回転数演算値を前記回転数指令値に一致させるための発電機トルク指令値を演算する発電機トルク指令値演算手段と、
     前記発電機トルク指令値に基づき前記発電機を制御する発電機制御手段と、
    前記発電機の回転数を検出する回転数検出手段と、
     前記回転数検出手段により検出された回転数検出値から、前記エンジンの脈動による回転数の脈動成分を除去し、前記回転数演算値を演算する脈動除去フィルタとを備える
    ことを特徴とするトルク制御装置。
  2. 前記脈動除去フィルタは、
     前記発電機トルク指令値を入力として、制御対象をモデル化した制御対象モデルの出力を推定する制御対象モデル推定手段と、
     前記制御対象モデル推定手段により推定される推定値と前記回転数検出値との差から回転数脈動値を演算するバンドパスフィルタと、
     前記回転数検出値と前記回転数脈動値との差に基づいて、前記回転数演算値を演算する第1の減算手段とを備え、
    前記バンドパスフィルタの通過周波数が前記エンジンの間欠燃焼周波数と一致している
    ことを特徴とする請求項1記載のトルク制御装置。
  3. 前記通過周波数は、前記回転数検出値に基づいて設定される
    ことを特徴とする請求項2記載のトルク制御装置。
  4. 前記脈動除去フィルタは、
     前記バンドパスフィルタへの入力値又は出力値に、前記発電機の回転数に基づいて設定されるゲインを乗算するゲイン調整手段を備え、
    前記第1の減算手段は、
     前記ゲイン調整手段の出力値に基づいて、前記回転数演算値を演算する
    ことを特徴とする請求項2又は3記載のトルク制御装置。
  5. 前記脈動除去フィルタは、
     前記推定値と前記回転数検出値との差から第1の高周波回転数脈動値を演算する第1のハイパスフィルタと、
     前記回転数脈動値から第2の高周波回転数脈動値を演算する第2のハイパスフィルタと、
     前記第1の高周波回転数脈動値と前記第2の高周波回転数脈動値との差をとる第2の減算手段と、
     前記回転数脈動値に、前記第2の減算手段により演算された値を加算する加算手段とを備え、
    前記第1の減算手段は、
     前記加算手段により演算された値に基づいて、前記回転数演算値を演算する
    ことを特徴とする請求項2~4のいずれか一項に記載のトルク制御装置。
  6. 前記第1のハイパスフィルタのカットオフ周波数及び前記第2のハイパスフィルタのカットオフ周波数は、
     前記エンジンの間欠燃焼周波数より高い周波数であり、かつ、前記発電機の制御周波数帯域の上限周波数以上の周波数である
    ことを特徴とする請求項5記載のトルク制御装置。
PCT/JP2012/065709 2011-08-05 2012-06-20 トルク制御装置 WO2013021731A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/236,093 US8996220B2 (en) 2011-08-05 2012-06-20 Torque control device
CN201280037464.9A CN103717467B (zh) 2011-08-05 2012-06-20 扭矩控制装置
EP12821378.2A EP2740642B1 (en) 2011-08-05 2012-06-20 Torque control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011171554A JP5899695B2 (ja) 2011-08-05 2011-08-05 トルク制御装置
JP2011-171554 2011-08-05

Publications (1)

Publication Number Publication Date
WO2013021731A1 true WO2013021731A1 (ja) 2013-02-14

Family

ID=47668252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065709 WO2013021731A1 (ja) 2011-08-05 2012-06-20 トルク制御装置

Country Status (5)

Country Link
US (1) US8996220B2 (ja)
EP (1) EP2740642B1 (ja)
JP (1) JP5899695B2 (ja)
CN (1) CN103717467B (ja)
WO (1) WO2013021731A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105799691A (zh) * 2014-08-25 2016-07-27 现代自动车株式会社 用于控制混合动力车辆的电池soc的装置和方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5962335B2 (ja) * 2012-08-29 2016-08-03 株式会社デンソー ハイブリッド車のモータ制御装置
JP6136896B2 (ja) * 2013-11-28 2017-05-31 トヨタ自動車株式会社 電動機制御装置
JP5850035B2 (ja) * 2013-12-12 2016-02-03 トヨタ自動車株式会社 ハイブリッド車両の制御装置
FR3022586B1 (fr) * 2014-06-24 2019-06-07 Renault S.A.S. Procede d'estimation du couple d'un moteur thermique
DE202015004898U1 (de) * 2015-07-08 2016-10-13 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Hybridantriebssystem mit Regelung zur Kompensation der Motordrehzahlschwingungen
US9885305B2 (en) * 2016-02-24 2018-02-06 Ford Global Technologies, Llc Method for reducing cylinder air-fuel ratio imbalance
CA3026994C (en) * 2016-06-08 2019-04-30 Nissan Motor Co., Ltd. Method for controlling hybrid vehicle and device for controlling hybrid vehicle
WO2018011863A1 (ja) * 2016-07-11 2018-01-18 三菱電機株式会社 インバータ装置
US10994721B2 (en) 2016-09-13 2021-05-04 Ford Global Technologies, Llc Engine and motor control during wheel torque reversal in a hybrid vehicle
DE102017214074A1 (de) * 2017-08-11 2019-02-14 Robert Bosch Gmbh Verfahren zum Betreiben einer elektrischen Maschine, Vorrichtung, Antriebseinrichtung, Kraftfahrzeug
GB2567236B (en) * 2017-10-09 2020-07-22 Ford Global Tech Llc A range extended plug-in hybrid electric vehicle
JP6731010B2 (ja) * 2018-02-23 2020-07-29 本田技研工業株式会社 電動車両
WO2019177979A1 (en) * 2018-03-14 2019-09-19 Cummins Inc. Systems and methods for optimizing engine operations in gensets
JP7006779B2 (ja) * 2018-05-09 2022-01-24 日産自動車株式会社 電動機の制御方法及び電動機の制御装置
JP7322746B2 (ja) * 2020-02-21 2023-08-08 トヨタ自動車株式会社 車両の回転数制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10178705A (ja) 1996-12-19 1998-06-30 Toyota Autom Loom Works Ltd 電気自動車
JPH116449A (ja) * 1997-06-16 1999-01-12 Denso Corp ハイブリッド車制御装置
JP2003020972A (ja) * 2001-07-04 2003-01-24 Hitachi Unisia Automotive Ltd ハイブリッド車両の発電制御装置
JP2005151797A (ja) * 2003-10-22 2005-06-09 Nissan Motor Co Ltd 電動モータ駆動車両の制振制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3189865B2 (ja) * 1995-08-18 2001-07-16 株式会社安川電機 機械振動検出装置および制振制御装置
JP3508742B2 (ja) * 2001-06-18 2004-03-22 日産自動車株式会社 電動モータを用いた車両の制振制御装置
JP2006211872A (ja) * 2005-01-31 2006-08-10 Yaskawa Electric Corp 電動機制御装置とその制御方法
JP4709218B2 (ja) * 2005-07-11 2011-06-22 株式会社日立製作所 界磁巻線型同期モータの制御装置,電動駆動システム,電動4輪駆動車およびハイブリッド自動車
JP5324623B2 (ja) * 2011-06-24 2013-10-23 本田技研工業株式会社 車両用駆動制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10178705A (ja) 1996-12-19 1998-06-30 Toyota Autom Loom Works Ltd 電気自動車
JPH116449A (ja) * 1997-06-16 1999-01-12 Denso Corp ハイブリッド車制御装置
JP2003020972A (ja) * 2001-07-04 2003-01-24 Hitachi Unisia Automotive Ltd ハイブリッド車両の発電制御装置
JP2005151797A (ja) * 2003-10-22 2005-06-09 Nissan Motor Co Ltd 電動モータ駆動車両の制振制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105799691A (zh) * 2014-08-25 2016-07-27 现代自动车株式会社 用于控制混合动力车辆的电池soc的装置和方法

Also Published As

Publication number Publication date
EP2740642A1 (en) 2014-06-11
EP2740642B1 (en) 2017-12-13
CN103717467A (zh) 2014-04-09
JP5899695B2 (ja) 2016-04-06
JP2013038868A (ja) 2013-02-21
EP2740642A4 (en) 2017-03-22
CN103717467B (zh) 2016-01-20
US20140188319A1 (en) 2014-07-03
US8996220B2 (en) 2015-03-31

Similar Documents

Publication Publication Date Title
JP5899695B2 (ja) トルク制御装置
JP5900609B2 (ja) 電動車両の制御装置および電動車両の制御方法
JP6545560B2 (ja) ハイブリッド車両の能動型振動低減制御装置及びその方法
JP4270079B2 (ja) 駆動力制御装置
RU2707471C1 (ru) Способ для управления гибридным транспортным средством и устройство для управления гибридным транспортным средством
JP5862436B2 (ja) 電動車両の制御装置
JP2015058924A (ja) ハイブリッドシステム、ハイブリッド車両、及びハイブリッドシステムの制御方法
EP1439296A2 (en) Torque transmission device and method of reducing effects of torque pulsations
JP6326755B2 (ja) 電動車両の発電制御装置
KR100494919B1 (ko) 병렬형 하이브리드 전기자동차의 모터 제어방법 및 그제어장치
US20150293543A1 (en) Method for controlling the rotational speed of a motor
WO2018155625A1 (ja) ハイブリッド車両の動力制御方法及び動力制御装置
WO2018155623A1 (ja) ハイブリッド車両の動力制御方法及び動力制御装置
WO2018155616A1 (ja) ハイブリッド車両の動力制御方法及び動力制御装置
JP2001037006A (ja) 複数の駆動力源を備えた車両の制振装置
JP6331924B2 (ja) ハイブリッド車両の制御装置
JP6540443B2 (ja) 回転電機制御装置
JP6205935B2 (ja) ハイブリッド車両用駆動装置
JP6007475B2 (ja) トルク制御装置
JPWO2019215847A1 (ja) 電動機の制御方法及び電動機の制御装置
JP2013141359A (ja) 電動車両の制御方法及び電動車両の制御装置
JP2010188859A (ja) ハイブリッド車両の制御装置
JP6489509B2 (ja) ハイブリッド車両の動力制御方法及び動力制御装置
WO2018155617A1 (ja) ハイブリッド車両の動力制御方法及び動力制御装置
JP2015013493A (ja) 電動車両の発電制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12821378

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14236093

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE