WO2013021644A1 - Semiconductor device manufacturing method and film used therein for protecting surface of semiconductor - Google Patents

Semiconductor device manufacturing method and film used therein for protecting surface of semiconductor Download PDF

Info

Publication number
WO2013021644A1
WO2013021644A1 PCT/JP2012/005058 JP2012005058W WO2013021644A1 WO 2013021644 A1 WO2013021644 A1 WO 2013021644A1 JP 2012005058 W JP2012005058 W JP 2012005058W WO 2013021644 A1 WO2013021644 A1 WO 2013021644A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor wafer
film
layer
wafer surface
protecting
Prior art date
Application number
PCT/JP2012/005058
Other languages
French (fr)
Japanese (ja)
Inventor
英司 林下
尾崎 勝敏
充 酒井
哲光 森本
小野 博之
仁志 國重
Original Assignee
三井化学株式会社
三井化学東セロ株式会社
株式会社ディスコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社, 三井化学東セロ株式会社, 株式会社ディスコ filed Critical 三井化学株式会社
Priority to KR1020137015128A priority Critical patent/KR101467718B1/en
Priority to JP2012558117A priority patent/JP5393902B2/en
Priority to CN201280038816.2A priority patent/CN103748664B/en
Priority to SG2013031117A priority patent/SG189515A1/en
Publication of WO2013021644A1 publication Critical patent/WO2013021644A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1808C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/14Semiconductor wafers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/105Esters of polyhydric alcohols or polyhydric phenols of pentaalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/106Esters of polycondensation macromers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/122Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present only on one side of the carrier, e.g. single-sided adhesive tape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/16Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the structure of the carrier layer
    • C09J2301/162Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the structure of the carrier layer the carrier being a laminate constituted by plastic layers only
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • C09J2423/006Presence of polyolefin in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2467/00Presence of polyester
    • C09J2467/006Presence of polyester in the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6834Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device and a semiconductor wafer surface protecting film used in the method.
  • the semiconductor wafer thinning process in the manufacturing process of the semiconductor device is usually performed by grinding the circuit non-formed surface (back surface) of the semiconductor wafer. Protection of the circuit forming surface of the semiconductor wafer during back grinding is performed by various methods.
  • the circuit formation surface of a semiconductor wafer made of a sapphire substrate is protected by the following method (for example, Patent Document 1 and Non-Patent Document 1). That is, a ceramic plate having a wax resin layer on the surface is prepared. Next, the wax resin layer is heated and melted to embed the circuit forming surface of the sapphire substrate in the molten wax resin layer. Then, the wax resin layer is cooled and solidified. Thereby, the entire circuit formation surface of the sapphire substrate is protected by the wax resin layer.
  • the wax resin is usually composed of rosin wax (wax containing rosin, montan wax, phenol resin, etc., melting point of about 50 ° C.).
  • a conventional semiconductor wafer protective film has a base material layer and an adhesive layer. And after sticking the adhesion layer of a semiconductor wafer protective film on the circuit formation surface of a semiconductor wafer, a semiconductor wafer is back ground. Thereafter, the semiconductor wafer protective film is peeled off by a tape peeling machine or the like.
  • the conventional method using a semiconductor wafer protective film has a problem that the end of the sapphire substrate is easily damaged during backside grinding. That is, as shown in FIG. 3, in the wax method, since the entire end portion of the sapphire substrate 1 is embedded in the wax resin layer 2, the end portion of the sapphire substrate 1 is easily held stably. On the other hand, as shown in FIG. 4, in the conventional method using the semiconductor wafer protective film, the end portion of the sapphire substrate 1 is not embedded in the semiconductor wafer protective film 4. Is difficult to hold stably. For this reason, it is considered that the end portion of the sapphire substrate 1 is in contact with the grindstone 3 or the like and easily damaged during back surface grinding.
  • the present invention has been made in view of such circumstances.
  • the present invention relates to a method of manufacturing a semiconductor device that enables backside grinding without damage even in a hard and brittle semiconductor wafer such as a sapphire substrate, and the manufacturing method.
  • An object of the present invention is to provide a suitable film for protecting the surface of a semiconductor wafer.
  • the inventors of the present invention have found that damage to the end portion of the semiconductor wafer can be suppressed by holding the vicinity of the end portion of the semiconductor wafer with a raised portion (rim) during back grinding. Further, after extensive studies, the inventors have found a film structure that can form a raised portion (rim) relatively easily by thermocompression bonding and can maintain the shape of the raised portion (rim) well even at the temperature during back grinding. .
  • the first of the present invention relates to the following semiconductor wafer surface protecting film.
  • the softened layer tensile modulus at 60 ° C.
  • the second of the present invention relates to the following method for manufacturing a semiconductor device.
  • thermocompression bonding temperature TP in the step of forming the raised portion and the softening point temperature TmB of the softening layer (B) satisfy the relationship of the following general formula.
  • the third aspect of the present invention relates to a semiconductor wafer press apparatus for pressing a mount frame.
  • the semiconductor wafer, the ring frame A having a frame surrounding the semiconductor wafer, the semiconductor wafer surface protective film according to claim 1 attached over the circuit forming surface of the semiconductor wafer and the frame A,
  • a semiconductor wafer press apparatus that sandwiches and presses a mount frame provided with an upper press plate having a heating mechanism and a lower press plate facing the upper press plate,
  • the outer diameter DW of the semiconductor wafer and the inner diameter DA IN of the ring frame A satisfy the relationship of formula (1) DW ⁇ DA IN
  • the lower press plate includes a convex portion on a surface facing the upper press plate,
  • the semiconductor wafer press apparatus wherein an outer periphery of a contact surface of the convex portion with the mount frame when pressed is circular.
  • the fourth aspect of the present invention relates to a semiconductor wafer mount apparatus for manufacturing a mount frame and a method for manufacturing a semiconductor device using the same.
  • the outer diameter DW of the semiconductor wafer, and the inner diameter DA IN of the ring frame A, and the ring outer diameter DB OUT of the ring-shaped auxiliary member B, the ring diameter DB IN of the ring-shaped auxiliary member B has the formula (1)
  • the relationship of DW ⁇ DB IN ⁇ DB OU T ⁇ DA IN is satisfied,
  • the fifth of the present invention relates to the following method for manufacturing a semiconductor device.
  • 1 ′ a step of preparing a semiconductor wafer
  • 2 ′ a step of forming a raised portion substantially made of resin on the outer periphery of the semiconductor wafer
  • 3 ′ a circuit forming surface of the semiconductor wafer on the semiconductor wafer surface protective film.
  • 4 ' a step of grinding a non-circuit-formed surface of the semiconductor wafer held by the raised portion, and 5') a step of peeling the semiconductor wafer surface protection film.
  • the storage modulus G B ridges made of resin (40) is not less than 10 MPa, a method of manufacturing a semiconductor device.
  • the film for protecting the surface of a semiconductor wafer of the present invention can enable backside grinding without damaging even a hard and brittle semiconductor wafer such as a sapphire substrate.
  • FIG. 7A is a diagram showing another embodiment of the pressing step
  • FIGS. 7B to 7D are diagrams showing examples of the shape of the convex portion. It is a figure which shows the method of forming the protruding part different from the film for semiconductor surface protections on the outer periphery of a semiconductor wafer.
  • the semiconductor wafer surface protection film of the present invention includes a base material layer (A) and a softening layer (B); if necessary, an adhesive layer (C) (see FIG. 1A) or A light adhesion layer (D) (refer to Drawing 1B) etc. may be further included.
  • the thickness of the film referred to in the present invention is not limited, and may be referred to as a so-called sheet.
  • the base material layer (A) has a function of suppressing the warpage of the semiconductor wafer and maintaining the shape when the semiconductor wafer surface protecting film and the semiconductor wafer are thermocompression bonded. Therefore, the base material layer (A) preferably has a storage elastic modulus of a certain level or higher at the thermocompression bonding temperature (any temperature of about 120 to 180 ° C.). Specifically, the storage elastic modulus G A (150) at 150 ° C. of the base material layer (A) is preferably 1 MPa or more, and more preferably 2 MPa or more.
  • the storage elastic modulus of the base material layer (A) can be measured by the following method. That is, a sample film having a thickness of 500 ⁇ m made of a resin constituting the base material layer (A) is prepared. Next, the sample film was set in a dynamic viscoelasticity measuring apparatus (manufactured by TA Instruments: ARES), and the temperature rising rate was 3 ° C./min from 30 ° C. using a parallel plate attachment having a diameter of 8 mm. The storage elastic modulus is measured while raising the temperature to 200 ° C. The measurement frequency can be 1 Hz. After completion of the measurement, the value of the storage elastic modulus G (Pa) at 150 ° C. is read from the obtained storage elastic modulus-temperature curve of 30 to 200 ° C.
  • a dynamic viscoelasticity measuring apparatus manufactured by TA Instruments: ARES
  • the resin constituting the base material layer (A) only needs to satisfy the aforementioned storage elastic modulus.
  • the resin constituting the base material layer (A) preferably has transparency.
  • resins include polyolefins and polyesters. That is, the base material layer (A) can be a polyolefin film, a polyester film, a laminated film of a polyolefin layer and a polyester layer, or the like.
  • the polyolefin film include a polypropylene film.
  • the polyester film include a polyethylene terephthalate film and a polyethylene naphthalate film.
  • the density of the resin constituting the base material layer (A) is preferably 900 to 1450 kg / m 3 . If the density of the resin constituting the substrate layer (A) is less than 900 kg / m 3 , the shape retention may not be sufficient because the storage elastic modulus is too low.
  • the thickness of the base material layer (A) is, for example, preferably 5 ⁇ m or more, and more preferably 10 ⁇ m or more, from the viewpoint of obtaining rigidity sufficient to suppress warpage of the semiconductor wafer.
  • the upper limit of the thickness of the base material layer (A) is set so that the total thickness of the semiconductor wafer surface protective film is not too thick with respect to the ground finish thickness of the semiconductor wafer from the viewpoint of preventing damage to the semiconductor wafer. Good.
  • the softening layer (B) has a function of forming a raised portion (rim) around the semiconductor wafer in order to stably hold the end portion of the semiconductor wafer.
  • the semiconductor wafer surface protective film and the semiconductor wafer may be thermocompression bonded to form a raised portion (rim), so the softening layer (B) is softened at the thermocompression bonding temperature (120 to 180 ° C.).
  • the softening point temperature TmB of the softening layer (B) is preferably lower than the thermocompression bonding temperature (120 to 180 ° C.).
  • the softening point temperature TmB can be obtained from DSC measurement. Specifically, the melting point (DSC method) of the resin material according to ISO-11357-3 is defined as the softening point temperature.
  • the storage elastic modulus G B (40) at 40 ° C. is preferably 10 MPa or more, more preferably 20 MPa or more, and further preferably 30 MPa or more.
  • the upper limit of the storage elastic modulus G B (40) at 40 ° C. can usually be about 500 MPa or less. In order to set the storage elastic modulus G B (40) at 40 ° C.
  • the resin constituting the softened layer (B) may be a resin that is not an elastomer, as will be described later. preferable.
  • the storage elastic modulus G is about 1/3 of the tensile elastic modulus E.
  • “the storage elastic modulus G B (40) at 40 ° C. of the softened layer (B) is 10 MPa or more” means “the tensile elastic modulus E B (40) of the softened layer (B) at 40 ° C. is 30 MPa or more. Can also be said.
  • the back surface grinding is usually performed by a wet method, but may be further performed by a dry method if necessary.
  • the temperature of the wafer at the time of dry backside grinding (dry polishing) may be around 100 ° C. because the frictional heat between the grindstone and the semiconductor wafer is large.
  • the raised portions even during the dry polishing (rim) to not soften preferably has a storage modulus G B at 100 ° C. of softening layer (B) (100) is 1MPa or more, 3 MPa or more More preferably.
  • the temperature of the semiconductor wafer when the back surface of the semiconductor wafer is ground changes within a range of 25 ° C. to 60 ° C. Therefore, by setting the rate of change of the storage elastic modulus of the softened layer (B) within this temperature range within a certain range, the raised portion made of the softened layer (B) can stably hold the semiconductor wafer.
  • the protruding part which consists of a softening layer (B) deteriorates during the back surface grinding of a semiconductor wafer. Therefore, damage to the semiconductor wafer during back grinding of the semiconductor wafer can be more effectively suppressed.
  • the tensile elastic modulus E of the softened layer (B) can be measured as follows. i) A film having a thickness of 100 ⁇ m is cut to prepare a strip-shaped sample piece having a width (TD direction) of 10 mm and a length (MD direction) of 100 mm. ii) Next, in accordance with JIS K7161, the tensile modulus of the sample piece is measured with a tensile tester under conditions of a distance between chucks of 50 mm and a tensile speed of 300 mm / min. The tensile elastic modulus is measured under conditions of a temperature of 23 ° C. and a relative humidity of 55%. The tensile modulus E is often about three times the storage modulus G.
  • the resin constituting the softened layer (B) is not particularly limited as long as it satisfies the storage elastic modulus, but is preferably not an elastomer. Specifically, a homopolymer or copolymer of a hydrocarbon olefin is preferable, and an ethylene homopolymer, a propylene homopolymer, or a copolymer of ethylene or propylene and another hydrocarbon olefin is more preferable. On the other hand, for example, an ethylene / vinyl acetate copolymer (EVA) is not preferred because it usually has a storage elastic modulus G (40) at 40 ° C. of about 0.01 MPa to 0.1 MPa and less than 10 MPa.
  • EVA ethylene / vinyl acetate copolymer
  • the hydrocarbon olefin other than ethylene or propylene in the copolymer of ethylene or propylene and other hydrocarbon olefins is preferably an ⁇ -olefin having 3 to 12 carbon atoms.
  • ⁇ -olefins having 3 to 12 carbon atoms include propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1 -Pentene, 1-heptene, 1-octene, 1-decene, 1-dodecene and the like are included, and propylene, 1-butene and the like are preferable.
  • Preferred specific examples of the resin constituting the softening layer (B) include linear low density polyethylene (LLDPE), low density polyethylene, high density polyethylene, polypropylene, polystyrene, ABS resin, vinyl chloride resin, methyl methacrylate resin, Nylon, fluororesin, polycarbonate, polyester resin and the like are included, and linear low density polyethylene (LLDPE), low density polyethylene, high density polyethylene, polypropylene and the like are preferable.
  • the density of the resin constituting the softening layer (B) is preferably 880 to 960 kg / m 3 , more preferably 900 to 960 kg / m 3 , and even more preferably 910 to 950 kg / m 3. . If the density of the resin constituting the softened layer (B) is less than 880 kg / m 3 , it may be softened at 40 ° C. On the other hand, if the density of the resin exceeds 960 kg / m 3 , it may be difficult to soften at the thermocompression bonding temperature.
  • the storage elastic modulus of the softened layer (B) is the density of the homopolymer of ethylene or propylene, the type of hydrocarbon olefin other than ethylene or propylene in the copolymer of ethylene or propylene and other hydrocarbon olefins, and the It can be adjusted by the content ratio. For example, in order to increase the storage elastic modulus at 40 ° C. of the softened layer (B), for example, the density of a homopolymer of ethylene or propylene is increased, or the copolymer weight of ethylene or propylene and other hydrocarbon olefins is increased. What is necessary is just to raise the content rate of ethylene or propylene in a coalescence.
  • the thickness of the softening layer (B) may be such that the rim can be formed by thermocompression bonding with the semiconductor wafer and the unevenness on the surface of the semiconductor wafer can be embedded. Therefore, the thickness of the softened layer (B) is preferably larger than the maximum value of the step on the circuit forming surface of the semiconductor wafer, and is preferably 1.1 times or more the maximum value of the step. Specifically, if the step is 50 ⁇ m, it is more preferably 55 ⁇ m or more, and further preferably 60 ⁇ m or more.
  • the thickness of the softened layer (B) is preferably 100 ⁇ m or less, and more preferably 70 ⁇ m or less.
  • the softening layer (B) may further contain other resins and additives as necessary.
  • additives include ultraviolet absorbers, antioxidants, heat stabilizers, lubricants, softeners and the like.
  • the film for semiconductor wafer surface protections of this invention further contains an adhesion layer (C).
  • the pressure-sensitive adhesive layer (C) only needs to have a minimum pressure-sensitive adhesive force. Specifically, the pressure-sensitive adhesive force measured according to JIS Z0237 is 0.1 to 10 N / 25 mm. preferable.
  • the storage elastic modulus of the pressure-sensitive adhesive layer (C) may be a level that does not hinder the formation of the raised portion (rim) of the softened layer (B).
  • the pressure-sensitive adhesive (pressure-sensitive adhesive) constituting the pressure-sensitive adhesive layer (C) can be an acrylic pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, or a rubber-based pressure-sensitive adhesive.
  • an acrylic pressure-sensitive adhesive having an acrylic polymer as a base polymer is preferable in order to facilitate adjustment of adhesive force.
  • the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer (C) may be a radiation curable pressure-sensitive adhesive. This is because the pressure-sensitive adhesive layer composed of the radiation-curable pressure-sensitive adhesive is cured by irradiation with radiation and can be easily peeled off from the wafer.
  • the radiation can be ultraviolet, electron beam, infrared, and the like.
  • the radiation curable pressure-sensitive adhesive may contain the above-mentioned pressure-sensitive adhesive main component, a compound having a carbon-carbon double bond in the molecule, and a radiation polymerization initiator; or a carbon-carbon double in the molecule. It may contain an adhesive main agent having a polymer having a bond as a base polymer and a radiation polymerization initiator.
  • Examples of compounds having a carbon-carbon double bond in the molecule include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tetraethylene glycol di (meth) Acrylate and the like are included.
  • the content of the radiation curable compound can be about 30 parts by weight or less with respect to 100 parts by weight of the pressure-sensitive adhesive.
  • radiation polymerization initiators include: acetophenone photopolymerization initiators such as methoxyacetophenone; ⁇ -ketol compounds such as 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone; benzyldimethyl ketal A benzoin photopolymerization initiator such as benzoin and benzoin methyl ether; and a benzophenone photopolymerization initiator such as benzophenone and benzoylbenzoic acid.
  • acetophenone photopolymerization initiators such as methoxyacetophenone
  • ⁇ -ketol compounds such as 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone
  • benzyldimethyl ketal A benzoin photopolymerization initiator such as benzoin and benzoin methyl ether
  • a benzophenone photopolymerization initiator such as benzophenone and benzoylbenzoic acid.
  • the radiation curable pressure-sensitive adhesive may further contain a crosslinking agent as required.
  • a crosslinking agent include isocyanate crosslinking agents such as diphenylmethane diisocyanate, tolylene diisocyanate, hexamethylene diisocyanate, and polyisocyanate.
  • the thickness of the pressure-sensitive adhesive layer (C) is not limited as long as the rim formation by the softened layer (B) is not hindered, for example, about 1 to 20% with respect to the thickness of the softened layer (B). It can be about 20 ⁇ m.
  • the film for semiconductor wafer surface protections of this invention has the light adhesion layer (D) for adhere
  • Examples of the material of the light pressure-sensitive adhesive layer (D) include an acrylic pressure-sensitive adhesive.
  • the base material layer (A) and the softened layer (B) can be separated from each other. Therefore, the base material layer (A) can be peeled and removed from the semiconductor wafer surface protective film after the semiconductor wafer surface protective film is attached to the semiconductor wafer. For example, after the step (see FIG. 2C) of forming the raised portion of the semiconductor surface protection film on the outer periphery of the semiconductor wafer, before the step of grinding the circuit non-formation surface of the semiconductor wafer (see FIG. 2E), The base material layer (A) may be peeled off from the semiconductor wafer surface protecting film.
  • the semiconductor wafer surface protecting film may be bent or vibrated by the load of the grinding wheel, thereby preventing precise grinding.
  • the semiconductor wafer surface protective film is thinned, bending and vibration of the semiconductor wafer surface protective film are suppressed. Therefore, more precise grinding can be realized.
  • the semiconductor wafer surface protecting film of the present invention may further include other layers as necessary.
  • the other layer may be a release film, for example.
  • the semiconductor wafer surface protecting film includes a base material layer (A) and a softening layer (B).
  • the substrate layer (A) is preferably disposed on the outermost surface of the semiconductor wafer surface protecting film.
  • the semiconductor wafer surface protecting film further includes an adhesive layer (C)
  • the adhesive layer (C) is preferably disposed on the outermost surface opposite to the base material layer (A).
  • the softening layer (B) may be a single layer or a plurality of layers.
  • FIG. 1A and FIG. 1B are diagrams showing an example of the structure of a semiconductor wafer surface protecting film.
  • the semiconductor wafer surface protecting film 10 includes a base material layer (A) 12, a softening layer (B) 14, and an adhesive layer (C) 16.
  • the semiconductor wafer surface protecting film 10 ′ includes a base material layer (A) 12, a light adhesive layer (D) 18, a softening layer (B) 14, and an adhesive layer (C) 16. And have.
  • the semiconductor wafer surface protecting films 10 and 10 ′ are used so that the adhesive layer (C) 16 is in contact with the circuit forming surface of the semiconductor wafer.
  • the semiconductor wafer surface protecting film of the present invention can be produced by any method. For example, 1) a method of coextruding a base material layer (A) and a softening layer (B) to obtain a film for protecting a semiconductor wafer surface (coextrusion forming method); 2) a film-like base material layer (A) And a film-like softening layer (B) are laminated (laminated) to obtain a semiconductor wafer surface protecting film (laminate method).
  • the semiconductor wafer surface protecting film further including the adhesive layer (C) can be produced by coating and forming an adhesive layer coating solution on the laminated film of the base layer (A) and the softened layer (B).
  • An example of a manufacturing method of a semiconductor device using the semiconductor wafer surface protecting film of the present invention is as follows: 1) a step of placing a semiconductor wafer on the semiconductor wafer surface protecting film (mounter step), and 2) A step of forming a raised portion of a semiconductor wafer surface protecting film for holding the semiconductor wafer on the outer periphery of the semiconductor wafer (pressing step); and 3) a step of grinding a non-circuit-formed surface of the semiconductor wafer held by the raised portion; 4) The process of peeling the film for semiconductor wafer surface protections is included.
  • the step of grinding the non-circuit-formed surface of the semiconductor wafer held by the semiconductor wafer surface protection film is a process of thinning the semiconductor wafer to a predetermined thickness without breaking or damaging the semiconductor wafer. Means that. After performing these steps, a step of dicing the semiconductor wafer into chips may be further performed.
  • Another example of a method for manufacturing a semiconductor device using a semiconductor wafer surface protecting film is as follows: 1 ′) a step of preparing a semiconductor wafer; and 2 ′) a raised portion made substantially of resin on the outer periphery of the semiconductor wafer.
  • a step, 3 ′) a step of disposing a circuit forming surface of the semiconductor wafer on the semiconductor wafer surface protecting film, 4 ′) a step of grinding the non-circuit forming surface of the semiconductor wafer held by the raised portions, and 5 ′.
  • a step of peeling the semiconductor wafer surface protecting film Either 2 ′) the step of forming the raised portion or 3 ′) the step of disposing the circuit forming surface of the semiconductor wafer on the semiconductor wafer surface protecting film may be performed first.
  • the raised portion substantially made of resin formed on the outer periphery of the semiconductor wafer may be made of a resin material different from the material constituting the film for protecting the semiconductor wafer surface.
  • the semiconductor wafer surface protective film is not limited to the above-described semiconductor wafer surface protective film of the present invention, and may be a commonly used semiconductor wafer surface protective film.
  • the storage elastic modulus G B (40) of the bulging portion substantially made of resin may be 10 MPa or more; and the storage elastic modulus G B (100) is preferably 1 MPa or more.
  • the combination of the semiconductor wafer formed through the process 2 'and the raised portion (rim) substantially made of resin disposed on the outer periphery thereof is also referred to as a rim-attached semiconductor wafer.
  • the semiconductor wafer with a rim has only to include a semiconductor wafer and a bulge portion substantially made of a resin; it has a bulge portion substantially made of a semiconductor wafer and a resin, and a semiconductor wafer surface protection film that supports them. You may do it.
  • the semiconductor wafer surface protecting film is affixed to the circuit forming surface of the semiconductor wafer.
  • a step of arranging a ring frame (see reference numeral 30 in FIG. 2B) so as to surround the semiconductor wafer may be included.
  • the step of disposing the ring frame may be performed after 1 ′) preparing the semiconductor wafer and before 4 ′) grinding. Further, it is only necessary to have a raised portion in the gap between the ring frame (see reference numeral 30 in FIG. 2B) and the semiconductor wafer.
  • the distance between the raised portion and the edge of the semiconductor wafer is preferably 0 to 1 mm, more preferably 0 to 500 ⁇ m, and the raised portion and the edge of the semiconductor wafer are in contact with each other. Is more preferable. This is because the raised portion holds the semiconductor wafer.
  • the semiconductor wafer is not particularly limited, and may be a silicon substrate or a sapphire substrate on which a circuit such as a wiring, a capacitor, a diode, or a transistor is formed on the surface.
  • a semiconductor wafer including a high-hardness material substrate having a Mohs hardness of 8 or more is formed by forming a raised portion (rim) on the outer periphery of the semiconductor wafer with the film for protecting the surface of the semiconductor wafer of the present invention and polishing the non-circuit-formed surface of the wafer. Even if it exists, damage to the semiconductor wafer can be suppressed.
  • the semiconductor wafer of the present invention may be one in which a semiconductor layer such as GaN is stacked on a sapphire substrate.
  • a sapphire substrate on which a circuit is formed is preferably used.
  • the size of the semiconductor wafer is not particularly limited, and may be 2 inches, 4 inches, 6 inches, 8 inches, or the like.
  • a step of 1 ⁇ m to 50 ⁇ m is provided on the circuit forming surface of the semiconductor wafer.
  • the raised portion (rim) of the semiconductor wafer surface protecting film formed around the semiconductor wafer is a portion formed on the outer periphery of the semiconductor wafer and holding the end portion of the semiconductor wafer.
  • the raised portion of the semiconductor wafer surface protecting film may be composed of the semiconductor wafer surface protecting film itself; or may be composed of a material different from the material constituting the semiconductor wafer surface protecting film.
  • the following method can be used to form the raised portion with a resin material different from the material constituting the semiconductor wafer surface protecting film.
  • the semiconductor wafer may be a semiconductor wafer mounted on a semiconductor wafer surface protecting film, or may be a semiconductor wafer before being mounted.
  • Method 1) As shown in FIG. 8A, a method of applying and curing the liquid adhesive 105 around the semiconductor wafer 20 with a coating apparatus such as a dispenser 100.
  • Method 2) As shown in FIG. 8B, the semiconductor wafer 20 is inserted into a resin ring 110 having a through hole having substantially the same diameter as that of the semiconductor wafer 20.
  • Method 3) As shown in FIG. 8C, in the cavity 125 of the mold 120 into which the semiconductor wafer 20 is inserted. , A method of injecting molten resin, cooling and solidifying, and molding the resin around the semiconductor wafer
  • the viscosity at the time of application of the liquid adhesive 105 is applied by the dispenser 100 may be about 1 ⁇ 500 Pa ⁇ s; the storage modulus of the cured product of the adhesive 105 G B (40)
  • the storage elastic modulus G B (100) is preferably 1 MPa or more. That is, the cured product of the adhesive 105 preferably has an elastic modulus similar to that of the softened layer (B) in the semiconductor wafer surface protecting film described above.
  • the liquid adhesive 105 include epoxy resin, acrylic resin, urethane resin, phenol resin, and the like.
  • the storage elastic modulus G B (40) of the resin ring 110 having a through-hole having the same diameter as that of the semiconductor wafer 20 may be 10 MPa or more: the storage elastic modulus G B (100) Is preferably 1 MPa or more. That is, a material having the same elastic modulus as that of the softened layer (B) in the aforementioned semiconductor wafer surface protecting film is preferable.
  • the resin constituting the resin ring 110 include polyethylene (high density polyethylene, low density polyethylene, etc.), polypropylene (homopolypropylene, random polypropylene, etc.), polystyrene, nylon, and the like.
  • the molten resin to be injected into the cavity 125 of the mold 120 may be an epoxy resin or the like, and the storage elastic modulus G B (40) of the molten resin after cooling and solidification may be 10 MPa or more;
  • the storage elastic modulus G B (100) is preferably 1 MPa or more. That is, a material having the same elastic modulus as that of the softened layer (B) in the aforementioned semiconductor wafer surface protecting film is preferable.
  • the raised portion (rim) formed around the semiconductor wafer can be formed by any method, but the raised portion (rim) can be formed relatively easily and is easy to handle.
  • the semiconductor wafer surface protecting film of the invention is preferably formed by thermocompression bonding.
  • the storage elastic modulus G (100) at 100 ° C. of the raised portion is preferably 1 MPa or more.
  • the storage elastic modulus of the bulge is It becomes the same as the storage elastic modulus of the softened layer (B).
  • the ridge is somewhat flexible so that the grindstone is not easily damaged due to contact with the bulge, and the grindstone can efficiently contact the non-circuit-formed surface of the semiconductor wafer. It is preferably substantially formed of a resin.
  • FIG. 2A is a diagram showing an example of a process (mounting process) for placing a semiconductor wafer on the semiconductor wafer surface protecting film
  • FIG. 2B is a diagram showing a laminate in which the semiconductor wafer is placed on the semiconductor wafer surface protecting film.
  • FIG. 2C is a view showing an example of a step (pressing step) of forming a raised portion of the semiconductor surface protecting film on the outer periphery of the semiconductor wafer;
  • FIG. 2D is an enlarged view showing an example of the raised portion;
  • 2E is a diagram illustrating an example of a process of grinding a circuit non-formation surface of a semiconductor wafer.
  • FIG. 2A The example which arrange
  • the semiconductor wafer surface protecting film 10 cut out to a size larger than the semiconductor wafer 20 is prepared.
  • the semiconductor wafer 20 is placed on the semiconductor wafer surface protecting film 10 (step (1)).
  • the circuit forming surface 20A of the semiconductor wafer 20 is brought into contact with the adhesive layer (C) 16 of the semiconductor wafer surface protecting film 10.
  • the semiconductor wafer 20 and the ring frame 30 surrounding the semiconductor wafer 20 are placed on the hot plate 40. Further, the semiconductor wafer surface protecting film 10 is placed on the semiconductor wafer 20 and the ring frame 30. At this time, the circuit forming surface 20A of the semiconductor wafer 20 and the adhesive layer (C) 16 of the semiconductor wafer surface protecting film 10 are brought into contact with each other.
  • the roll 35 is pressed against the semiconductor wafer 20 from one end of the semiconductor wafer surface protecting film 10 to the other end while rotating the roll 35.
  • the semiconductor wafer surface protective film 10 is in close contact with the circuit forming surface 20A of the semiconductor wafer 20.
  • the hot plate 40 may remain at room temperature; however, the hot plate 40 is heated to remove the semiconductor wafer surface protection film 10 from the hot plate 40. You may heat until it reaches temperature (TM).
  • the temperature (TM) of the semiconductor wafer surface protective film 10 in the mounting step is the temperature (TP) of the semiconductor wafer surface protective film 10 in the step (described later) of forming a raised portion of the semiconductor surface protective film on the outer periphery of the semiconductor wafer. It is preferable that the temperature is the same as or higher than that. Although the details of the reason will be described later, wrinkles occur in the semiconductor wafer surface protective film 10 in the step of forming the raised portions, or the semiconductor wafer 20 is removed from the semiconductor wafer surface protective film 10 after the step of forming the raised portions. This is because they may peel off.
  • the semiconductor wafer 20 is removed from the hot plate 40 together with the semiconductor wafer surface protection film 10 and the ring frame 30, and the semiconductor wafer is disposed on the semiconductor wafer surface protection film as shown in FIG. 2B. Get things.
  • This laminate is referred to as a “mount frame”.
  • the semiconductor wafer 20 and the semiconductor wafer surface protecting film 10 are bonded to a pair of hot plates (upper hot plate 22-1 and lower hot plate 22-2) of a hot press machine.
  • Thermocompression bonding step (2)).
  • the semiconductor wafer 20 is pushed into the melted softened layer (B) 14, and the softened layer (B) 14 pushed out thereby forms a raised portion (rim) 24 near the end of the semiconductor wafer 20.
  • the upper heating plate 22-1 is a heating plate disposed on the semiconductor wafer 20 side;
  • the lower heating plate 22-2 is a heating plate disposed on the semiconductor wafer protection film 10 side.
  • the upper heating plate 22-1 and the semiconductor wafer 20 may be in direct contact with each other or via some member (for example, a jig).
  • the lower heating plate 22-2 and the semiconductor wafer protective film 10 may be in direct contact with each other or via some member (for example, a jig).
  • the height of the raised portion (rim) 24 is preferably about 0.2 to 1 times the thickness of the semiconductor wafer 20 to be back-ground, for example. If the height of the raised portion (rim) 24 is too low, the end portion of the semiconductor wafer 20 may not be stably held. Specifically, when the back surface of the semiconductor wafer 20 having a thickness of 1000 ⁇ m is processed, the height of the raised portion (rim) 24 is preferably 200 ⁇ m or more. Further, FIG. 2B shows a mode in which the corner of the end portion of the semiconductor wafer 20 is not removed, but the end portion of the semiconductor wafer 20 is chamfered (straight) or R-processed (curved) to remove the corner. May be.
  • the height of the raised portion (rim) 24 is the thickness of the end of the semiconductor wafer after chamfering or R-processing. It may be a substantial amount.
  • thermocompression bonding temperature TP thermocompression bonding temperature
  • the press pressure may be any conditions that allow the softened layer (B) 14 to melt and form the raised portion (rim) 24.
  • the pressing pressure is preferably 1 to 10 MPa, and more preferably 3 to 10 MPa.
  • the pressing time can be, for example, about 1 to 5 minutes.
  • the thermocompression bonding temperature TP is preferably in the range of 120 to 180 ° C, more preferably in the range of 130 to 170 ° C, and further preferably 150 ° C.
  • the thermocompression bonding temperature (TP) is an average temperature of a pair of hot plates (upper hot plate 22-1 and lower hot plate 22-2) of the press.
  • thermocompression bonding temperature (TP) is preferably the same as or lower than the temperature (TM) of the semiconductor wafer surface protecting film 10 in the mounting step described above.
  • the semiconductor wafer surface protecting film 10 is about to thermally expand by heating during the pressing process; if the thermocompression bonding temperature (TP) is equal to or lower than the temperature (TM) in the mounting process, the semiconductor wafer surface protecting film is used in the pressing process.
  • the degree of thermal expansion of the film 10 is about the same as or smaller than the degree of thermal expansion of the semiconductor wafer surface protecting film 10 in the mounting step.
  • the semiconductor wafer surface protecting film 10 that has been sufficiently thermally expanded in the mounting process is fixed to the semiconductor wafer, the semiconductor wafer surface protecting film 10 is less likely to thermally expand in the pressing process, and wrinkles are less likely to occur.
  • the thermocompression bonding temperature (TP) and the temperature (TM) are not properly adjusted, wrinkles are likely to occur around the semiconductor wafer 20 of the semiconductor wafer surface protecting film 10.
  • the semiconductor wafer surface protecting film 10 when the semiconductor wafer surface protecting film 10 is cooled after the pressing step, the semiconductor wafer surface protecting film 10 and the semiconductor wafer 20 may be separated (the semiconductor wafer 20 floats from the film 10).
  • This peeling is also suppressed by setting the thermocompression bonding temperature (TP) to be equal to or lower than the temperature (TM) in the mounting process.
  • TP thermocompression bonding temperature
  • TM temperature
  • thermocompression bonding temperature (TP) is preferably higher than the softening temperature (TmB) of the softening layer (B) of the semiconductor wafer surface protecting film 10.
  • TmB softening temperature
  • the thermocompression bonding temperature (TP) is preferably lower than “the softening temperature (TmB) + 40 ° C. of the softening layer (B) of the semiconductor wafer surface protecting film 10”.
  • thermocompression bonding temperature (TP) is excessively high, the shape of the raised portion (rim) 24 formed by softening the softened layer (B) cannot be maintained and may flow and become a flat shape. Thereby, the height of the raised portion (rim) 24 may be lowered.
  • thermocompression bonding temperature (TP) is an average temperature of a pair of hot plates (upper hot plate 22-1 and lower hot plate 22-2) of the press machine.
  • the temperature (TP1) of the upper heating plate 22-1 and the temperature (TP2) of the lower heating plate 22-2 may be the same temperature, but the temperature (TP1) of the upper heating plate 22-1 is set to the lower heating plate 22-1. It is preferably higher than the temperature (TP2) of -2.
  • the temperature of the thermocompression bonding (TP) is higher, the raised portion (rim) 24 can be formed more quickly. However, if the temperature (TP2) of the lower heat plate 22-2 is higher, the shape of the raised portion (rim) 24 cannot be maintained. To flow and flatten.
  • the raised portion (at the TP1) of the upper heating plate 22-1 ( The shape of the rim) 24 is difficult to flatten. Therefore, by setting the temperature (TP1) of the upper heating plate 22-1 to be higher than the temperature (TP2) of the lower heating plate 22-2, it is possible to quickly raise the raised portion while maintaining the shape of the raised portion (rim) 24. A (rim) 24 can be formed.
  • the temperature (TP1) of the upper heating plate 22-1 is higher than “the softening temperature (TmB) + 20 ° C. of the softening layer (B) of the semiconductor wafer surface protection film 10”. It is preferably lower than the “softening temperature (TmB) + 40 ° C. of the softening layer (B) of the film 10”.
  • the temperature (TP2) of the lower heating plate 22-2 is higher than “the temperature (TP1) of the upper heating plate 22-1 ⁇ 40 ° C.” and lower than the “temperature (TP1) of the upper heating plate 22-1”.
  • the thermocompression bonding temperature (TP) is higher than the “temperature of the upper heating plate 22-1 (TP1) ⁇ 20 ° C.” and lower than the “temperature of the upper heating plate 22-1 (TP1)”. preferable.
  • the height of the raised portion (rim) 24 is the height from the surface of the semiconductor wafer surface protection film 10 that contacts the circuit forming surface of the semiconductor wafer 20 to the apex of the raised portion (rim) 24. Is defined as h.
  • the height of the raised portion (rim) 24 can be measured by observing the cross-sectional shape of the semiconductor wafer surface protecting film 10 after the semiconductor wafer 20 is peeled off with a microscope.
  • the raised portion (rim) 24 may not necessarily be in contact with the end portion of the semiconductor wafer 20, but is preferably in contact with the end portion of the semiconductor wafer 20 in order to improve the retention of the semiconductor wafer 20.
  • the semiconductor wafer surface protecting film 10 is set on the chuck table 26 together with the semiconductor wafer 20.
  • the semiconductor wafer surface protecting film may have a light adhesive layer (D) between the base material layer (A) and the softened layer (B) (see FIG. 1B).
  • the semiconductor wafer surface protecting film 10 may be set on the chuck table 26 after removing the base material layer (A).
  • the non-circuit-formed surface (back surface) 20B of the semiconductor wafer is ground with the grindstone 28 until the wafer thickness becomes a certain value or less (step (3)).
  • the thickness of the semiconductor wafer after back grinding can be, for example, 300 ⁇ m or less, preferably 100 ⁇ m or less.
  • the grinding process is a mechanical grinding process using a grindstone.
  • the grinding method is not particularly limited, and may be a known grinding method such as a through-feed method or an in-feed method. The grinding may be performed not only by wet grinding (wet polishing) but also by dry grinding (dry polishing).
  • the semiconductor wafer surface protecting film 10 is peeled off at room temperature (step (4)).
  • the semiconductor wafer surface protecting film 10 can be peeled off by, for example, a known tape peeling machine.
  • the semiconductor wafer surface protecting film 10 includes a radiation curable adhesive layer (C)
  • the semiconductor wafer surface protecting film 10 is irradiated with radiation to cure the adhesive layer (C), thereby protecting the semiconductor wafer surface.
  • the film 10 is peeled from the semiconductor wafer 20.
  • the non-circuit-formed surface (back surface) of the semiconductor wafer is processed between the step (3) of grinding the back surface of the semiconductor wafer and the step (4) of peeling the film for protecting the semiconductor wafer surface from the semiconductor wafer.
  • the process to do may be included.
  • the process of processing the circuit non-formation surface (back surface) of the semiconductor wafer may further perform, for example, a process selected from the group consisting of a metal sputtering process, a plating process, and a heat treatment process.
  • the heat treatment step can be, for example, a step of applying a die bonding tape under heating.
  • the semiconductor wafer is diced.
  • the semiconductor wafer may be diced without peeling off the semiconductor wafer surface protecting film 10.
  • the semiconductor wafer surface protective film of the present invention can be formed on a semiconductor wafer surface protective film with a raised portion (rim) on the outer periphery of the semiconductor wafer by thermocompression bonding with the semiconductor wafer under predetermined conditions. Further, the raised portion (rim) formed by the semiconductor wafer surface protecting film of the present invention does not melt even at the ultimate temperature (about 40 ° C.) of the semiconductor wafer at the time of back grinding, so that the shape can be maintained satisfactorily. Therefore, at the time of grinding the back surface of the semiconductor wafer, the end portion of the semiconductor wafer can be stably held by the raised portion (rim), and damage to the end portion of the semiconductor wafer due to contact with the grindstone can be suppressed. Therefore, even if the semiconductor wafer is a hard and brittle sapphire substrate, the back surface can be ground without damaging the substrate.
  • the semiconductor wafer surface protective film includes an adhesive layer (C) that is cured by radiation
  • the semiconductor wafer surface protective film can be easily peeled by irradiating the semiconductor wafer surface protective film with radiation. .
  • the semiconductor wafer 20 is arranged inside the ring frame 30 having a frame; one surface of the semiconductor wafer 20 (usually a surface on which a circuit is formed). 20A) and the ring frame 30, the semiconductor wafer surface protecting film 10 is attached (see FIG. 2A).
  • the semiconductor wafer protection film may loosen between the semiconductor wafer 20 and the ring frame 30. Therefore, it is preferable to arrange the ring-shaped auxiliary member 50 between the ring frame 30 and the semiconductor wafer 20 (see FIGS. 5A and 5B).
  • the outer diameter DW of the semiconductor wafer 20, the inner diameter DA IN of the ring frame 30, the ring outer diameter DB OUT of the ring-shaped auxiliary member 50, and the ring inner diameter DB IN of the ring-shaped auxiliary member 50 are expressed by the formula (1).
  • the relationship of DW ⁇ DB IN ⁇ DB OU T ⁇ DA IN is satisfied (see FIG. 5A).
  • the mounting process can be performed with a semiconductor wafer mounting apparatus.
  • the semiconductor wafer mount apparatus has a heating unit, a tape applying unit, and a tape cutting mechanism.
  • the heating unit is, for example, a hot plate 40 on which a premount frame is placed.
  • the premount frame means a structure including the semiconductor wafer 20, a ring-shaped auxiliary member 50 surrounding the semiconductor wafer, and a ring frame 30 surrounding the ring-shaped auxiliary member 50 (FIG. 5A).
  • the premount frame is placed on the hot plate 40 such that the surface (circuit non-formed surface) opposite to the circuit forming surface 20 ⁇ / b> A of the semiconductor wafer 20 faces the hot plate 40.
  • the tape application unit includes the circuit forming surface 20A of the semiconductor wafer 20, the ring-shaped auxiliary member 50, the ring frame 30, and the like.
  • the semiconductor wafer surface protecting film 10 is pasted over.
  • the tape applying unit includes, for example, a roller 35; the roller 35 can roll over the circuit forming surface 20A of the semiconductor wafer 20, the ring-shaped auxiliary member 50, and the ring frame 30.
  • the tape cutting mechanism cuts the semiconductor wafer protective film 10 in accordance with the outer diameter of the ring frame before or after the semiconductor wafer protective film 10 is attached to the premount frame.
  • the tape cutting mechanism may be a cutter or the like (not shown). In this way, a mount frame including the semiconductor wafer 20, the ring-shaped auxiliary member 50, the ring frame 30, and the semiconductor wafer protective film 10 is obtained.
  • the mount frame obtained in the mounting process is pressed with a pair of press plates (upper press plate 22-1 and lower press plate 22-2). It is a process (see FIG. 2C).
  • FIG. 6 when the pressure applied by the upper heating plate 22-1 and the lower heating plate 22-2 is released after the pressing process, the outer peripheral portion of the semiconductor wafer surface protection film 10 of the mount frame becomes thinner than the central portion. There was a case. It is inferred that during the pressing process, the outer peripheral portion of the semiconductor wafer surface protective film 10 of the mount frame flows outward while the central portion hardly flows.
  • the lower press plate 22-2 preferably has a convex portion 60 on the surface facing the upper press plate 22-1.
  • the convex portion 60 provided on the lower press plate 22-2 enters the semiconductor wafer protective film 10 during pressing (FIG. 7A). Therefore, the thickness of the semiconductor wafer surface protective film 10 of the mount frame after the pressing process can be made uniform, and the raised portion (rim) 24 can be formed.
  • the convex part 60 may be a cone (FIG. 7B) or a dome (FIG. 7C).
  • the protrusion height of the protrusion 60 of the lower press plate 22-2 is preferably 1 to 100 ⁇ m; more preferably 15 to 100% of the thickness of the softened layer (B) of the semiconductor wafer surface protective film 10 It is preferable to be within the range.
  • the protruding height of the convex portion 60 refers to the maximum height of the convex portion 60.
  • Diameter CD of the projecting portion 60 of the lower press plate 22-2 is larger than the outer diameter DW of the semiconductor wafer mount frame is smaller than the inner diameter DA IN of the ring frame. That is, the relationship of DW ⁇ CD ⁇ DA IN is satisfied.
  • the material of the convex portion 60 is not particularly limited. Any material suitable for grinding for processing into a convex shape may be used, and for example, ceramics such as alumina and cemented carbide such as tungsten carbide may be used.
  • the pressing process can be performed using a semiconductor wafer pressing apparatus.
  • the semiconductor wafer press apparatus includes an upper press plate 22-1 having a heating mechanism, and a lower press plate 22-2 having a convex portion 60 on a surface facing the upper press plate 22-1.
  • the mount frame obtained in the mounting step is arranged between the upper press plate 22-1 and the lower press plate 22-2.
  • the semiconductor wafer 20 of the mount frame is disposed so as to face the upper press plate 22-1 and the semiconductor wafer surface protecting film 10 of the mount frame is disposed to face the lower press plate 22-2.
  • the mount frame to be arranged includes a structure (see FIG. 2B) of the semiconductor wafer 20, the ring frame 30, and the semiconductor wafer surface protecting film 10, as shown in FIG. 7A.
  • the mount frame After placing the mount frame, the mount frame is heated by the heating mechanism of the upper press plate 22-1. Further, the mount frame sandwiched between the upper press plate 22-1 and the lower press plate 22-2 is pressed by the upper press plate 22-1 and the lower press plate 22-2.
  • the mounting frame is peeled from the upper press plate 22-1 and the lower press plate 22-2, thereby forming a raised portion (rim) on the semiconductor wafer protective film and reducing the thickness of the semiconductor wafer protective film after the pressing step. It can be made uniform.
  • Example 1 Preparation of material As a material of the base material layer (A), homopolypropylene (hPP) (manufactured by Prime Polymer Co., Ltd., density: 910 kg / m 3 ) was prepared. As a material for the softened layer (B), linear low density polyethylene (LLDPE) (manufactured by Prime Polymer Co., Ltd., density 918 kg / m 3 ) was prepared. The following adhesive layer coating solution was prepared as a material for the adhesive layer (C).
  • hPP homopolypropylene
  • LLDPE linear low density polyethylene
  • the resulting solution was cooled, and further 100 parts by weight of xylene, 10 parts by weight of acrylic acid, and 0.3 parts by weight of tetradecyldimethylbenzylammonium chloride (Nippon Yushi Co., Ltd., cation M2-100). And reacted at 85 ° C. for 50 hours while blowing air. Thereby, the solution (adhesive main ingredient) of the acrylic adhesive polymer was obtained.
  • Benzyldimethyl ketal [Nippon Ciba Geigy Co., Ltd.] as an intramolecular bond cleavage type photopolymerization initiator was added to the acrylic pressure-sensitive adhesive polymer solution (pressure-sensitive adhesive main component) with respect to 100 parts by weight of the acrylic pressure-sensitive adhesive polymer solid content.
  • UV adhesive a mixture of dipentaerythritol hexaacrylate and dipentaerythritol monohydroxypentaacrylate as a monomer having a polymerizable carbon-carbon double bond in the molecule [manufactured by Toa Gosei Chemical Co., Ltd.] , Aronix M-400] and 0.35 parts by weight of an isocyanate-based cross-linking agent (Mitsui Toatsu Chemical Co., Ltd., Olester P49-75-S) as a thermal cross-linking agent ( 1 part by weight as a thermal crosslinking agent) was added to obtain a UV adhesive. It was 3N / 25mm when the adhesive force of the obtained UV adhesive was measured based on JISZ0237.
  • isocyanate-based cross-linking agent Mitsubishi Chemical Co., Ltd., Olester P49-75-S
  • the storage elastic modulus of these sample films was measured by the following method. That is, the sample film was set in a dynamic viscoelasticity measuring apparatus (manufactured by TA Instruments Inc .: ARES), and using a parallel plate type attachment having a diameter of 8 mm, the heating rate was increased from 30 ° C. to 3 ° C./min. The storage elastic modulus when the temperature was raised to 200 ° C. was measured. The measurement frequency was 1 Hz. After the measurement, for the sample films of the base material layer (A) and the softened layer (B), the obtained storage elastic modulus at 40 ° C., 100 ° C., and 150 ° C. from the storage elastic modulus-temperature curve of 10 to 200 ° C. Each value was read. For the sample film of the adhesive layer (C), the value of the storage elastic modulus at 25 ° C. was read from the obtained storage elastic modulus-temperature curve of 10 to 200 ° C.
  • hPP Semiconductor Wafer Homopolypropylene
  • B linear low density polyethylene
  • B softening layer
  • LLDPE linear low density polyethylene
  • the aforementioned UV adhesive was applied and then dried to form an adhesive layer (C) to obtain a semiconductor wafer surface protecting film.
  • the thickness of the base material layer (A) / softening layer (B) / adhesive layer (C) of the semiconductor wafer surface protecting film was 60 ⁇ m / 70 ⁇ m / 5 ⁇ m, and the total thickness was 135 ⁇ m.
  • the semiconductor wafer surface protective film was peeled off from the semiconductor wafer, and the cross-sectional shape of the obtained semiconductor wafer surface protective film was observed with a microscope.
  • the height of two raised portions (rims) in the cross section of the semiconductor wafer surface protecting film was measured, and the average value thereof was determined.
  • the height of the raised portion (rim) was measured by measuring the height of the apex of the raised portion (rim) with respect to the surface of the semiconductor wafer surface protecting film that was in contact with the circuit forming surface of the semiconductor wafer. Evaluation of the formability of the raised portion (rim) was performed based on the following criteria. ⁇ : The height of the raised portion (rim) is 200 ⁇ m or more. ⁇ : The height of the raised portion (rim) is less than 200 ⁇ m.
  • Backside Grindability A sapphire wafer that had been back-ground until the wafer thickness reached 90 ⁇ m was wet-ground until the wafer thickness reached 70 ⁇ m. And back surface grindability was evaluated based on the following criteria. ⁇ : Backside grinding is possible until the wafer thickness reaches 70 ⁇ m ⁇ : Substrate breaks before the wafer thickness reaches 70 ⁇ m (backside grinding is impossible)
  • Example 2 A film for protecting a semiconductor wafer surface was prepared in the same manner as in Example 1 except that the thicknesses of the base layer (A) and the softened layer (B) were changed to 30 ⁇ m, and the same evaluation was performed.
  • Example 3 A film for protecting the surface of a semiconductor wafer in the same manner as in Example 1 except that the material of the softening layer (B) is changed to an ethylene- ⁇ -olefin copolymer (Tuffmer (manufactured by Mitsui Chemicals), density: 893 kg / m 3 ). The same evaluation was performed.
  • Example 4 The material of the softening layer (B) is changed to linear low density polyethylene (LLDPE) (Prime Polymer, density 938 kg / m 3 ), and the thickness of the base layer (A) and the softening layer (B) is changed.
  • LLDPE linear low density polyethylene
  • a semiconductor wafer surface protective film was prepared and evaluated in the same manner as in Example 1 except that the thickness was changed to 30 ⁇ m.
  • Example 5 The material of the softening layer (B) was changed to random polypropylene (rPP) (manufactured by Prime Polymer Co., Ltd., density: 910 kg / m 3 ), and the thickness of the base layer (A) and the softening layer (B) was changed to 30 ⁇ m.
  • rPP random polypropylene
  • the material of the base material layer (A) is random polypropylene (rPP) (manufactured by Prime Polymer, density: 910 kg / m 3 ), and the material of the softening layer (B) is an ethylene- ⁇ -olefin copolymer (Tafmer (Mitsui Chemicals).
  • rPP random polypropylene
  • Tifmer ethylene- ⁇ -olefin copolymer
  • a semiconductor wafer surface protective film was prepared in the same manner as in Example 1 except that the density was changed to 893 kg / m 3 ) and the same evaluation was performed.
  • the material of the base layer (A) is linear low density polyethylene (LLDPE) (Prime Polymer, density 918 kg / m 3 ), and the material of the softening layer (B) is an ethylene- ⁇ -olefin copolymer (Tuffmer).
  • LLDPE linear low density polyethylene
  • Tuffmer ethylene- ⁇ -olefin copolymer
  • a semiconductor wafer surface protective film was prepared in the same manner as in Example 1 except that the density was changed to (Mitsui Chemicals Co., Ltd.) and density: 893 kg / m 3 ), and the same evaluation was performed.
  • the material of the base layer (A) is linear low density polyethylene (LLDPE) (Prime Polymer, density 918 kg / m 3 ), and the material of the softening layer (B) is an ethylene- ⁇ -olefin copolymer (Tuffmer).
  • LLDPE linear low density polyethylene
  • Tuffmer ethylene- ⁇ -olefin copolymer
  • the material of the softening layer (B) is made of an ethylene- ⁇ -olefin copolymer (Tuffmer (manufactured by Mitsui Chemicals), density: 861 kg / m 3 ), and the thickness of the base material layer (A) and the softening layer (B).
  • a semiconductor wafer surface protective film was prepared and evaluated in the same manner as in Example 1 except that the thickness was changed to 30 ⁇ m.
  • Tables 1 to 3 show the storage elastic modulus of the sample films of Examples 1 to 5 and Comparative Examples 1 to 4 and the evaluation results of the semiconductor wafer surface protective film.
  • the semiconductor wafer surface protection films of Examples 1 to 5 the storage modulus G B (40) is not less than 10MPa at 40 ° C. softening layer (B), heat press
  • the raised portion (rim) can be satisfactorily formed and the wafer is not damaged even during back grinding. This is presumably because the raised portion (rim) does not melt even during back grinding, and the end portion of the wafer can be held stably.
  • the semiconductor wafer surface protective films of Comparative Examples 3 and 4 in which the storage elastic modulus G B (40) at 40 ° C. of the softened layer (B) is less than 10 MPa can form a raised portion (rim) by hot pressing.
  • the wafer is damaged during back grinding. This is thought to be because the raised portion (rim) is softened even during backside grinding, and the end portion of the wafer cannot be stably held.
  • Example 3 the wafer was cracked during 70 ⁇ m grinding, whereas in Example 2, the wafer was not cracked even during 70 ⁇ m grinding.
  • the softening layer (B) in the film for protecting a semiconductor wafer surface of Example 2 has a higher storage elastic modulus G B (40) at 40 ° C. than that for the film for protecting a semiconductor wafer surface of Example 3.
  • G B storage elastic modulus
  • Example 1 the wafer was cracked during the 70 ⁇ m grinding because the semiconductor wafer surface protective film was too thick with respect to the finished thickness of the wafer, and the deformation (deflection, bending) of the semiconductor wafer could not be suppressed. it is conceivable that.
  • the ridges (rims) are not softened even at a high temperature near 100 ° C. during dry polishing (DP), and the end portions of the sapphire wafer can be stably held. I understand.
  • Example 6 A film similar to the film used in Example 2 was attached to a sapphire wafer (mounting process) and thermocompression bonded (pressing process) to form a raised portion (rim).
  • the semiconductor wafer surface protective film was cut into a size larger than that of the sapphire wafer.
  • a sapphire wafer having a thickness of 650 ⁇ m and a size of 4 inches was prepared. As shown to FIG. 2A, it has arrange
  • the hot plate temperature was heated to 140 ° C., and the film for protecting the semiconductor wafer surface was pressed onto the sapphire wafer with a roller to obtain a laminate of the sapphire wafer and the film for protecting the semiconductor wafer surface.
  • the roller pressure was 0.5 MPa, and the roller speed was 10 mm / second.
  • FIG. 2C it was obtained with an upper hot plate (a hot plate placed on the semiconductor wafer surface protecting film) and a lower hot plate (a hot plate placed on the sapphire wafer side) as shown in FIG.
  • the laminate was sandwiched and pressed at 10 MPa for 180 seconds.
  • the temperature of the upper heating plate was 140 ° C.
  • the temperature of the lower heating plate was 120 ° C.
  • the average temperature TP of both was 130 ° C.
  • the semiconductor wafer surface protecting film was peeled off from the sapphire wafer, and the cross-sectional shape of the obtained semiconductor wafer surface protecting film was observed with a microscope. The height of two raised portions (rims) in the cross section of the semiconductor wafer surface protecting film was measured, and the average value thereof was determined.
  • Example 7 A film similar to the film used in Example 2 was attached to a sapphire wafer (mounting process) and thermocompression bonded (pressing process) to form a raised portion (rim). Specifically, the semiconductor wafer surface protective film was cut into a size larger than that of the sapphire wafer. A sapphire wafer having a thickness of 650 ⁇ m and a size of 4 inches was prepared. As shown to FIG. 2A, it has arrange
  • FIG. 2C it was obtained with an upper hot plate (a hot plate placed on the semiconductor wafer surface protecting film) and a lower hot plate (a hot plate placed on the sapphire wafer side) as shown in FIG.
  • the laminate was sandwiched and pressure-bonded at 10 MPa for 180 seconds.
  • the temperature of the upper heating plate was 140 ° C.
  • the temperature of the lower heating plate was 120 ° C.
  • the average temperature TP of both was 130 ° C.
  • Example 8 A film similar to the film used in Example 2 was attached to a sapphire wafer (mounting process) and thermocompression bonded (pressing process) to form a raised portion (rim). Specifically, the semiconductor wafer surface protective film was cut into a size larger than that of the sapphire wafer. A sapphire wafer having a thickness of 650 ⁇ m and a size of 4 inches was prepared. As shown to FIG. 2A, it has arrange
  • FIG. 2C it was obtained with an upper hot plate (a hot plate placed on the semiconductor wafer surface protecting film) and a lower hot plate (a hot plate placed on the sapphire wafer side) as shown in FIG.
  • the laminate was sandwiched and pressed at 10 MPa for 180 seconds.
  • the temperature of the upper heating plate was 140 ° C.
  • the temperature of the lower heating plate was 120 ° C.
  • the average temperature TP of both was 130 ° C.
  • Example 5 A film similar to the film used in Example 2 was attached to a sapphire wafer (mounting process) and thermocompression bonded (pressing process) to form a raised portion (rim). Specifically, the semiconductor wafer surface protective film was cut into a size larger than that of the sapphire wafer. A sapphire wafer having a thickness of 650 ⁇ m and a size of 4 inches was prepared. As shown to FIG. 2A, it has arrange
  • FIG. 2C it was obtained with an upper hot plate (a hot plate placed on the semiconductor wafer surface protecting film) and a lower hot plate (a hot plate placed on the sapphire wafer side) as shown in FIG.
  • the laminate was sandwiched and pressed at 10 MPa for 180 seconds.
  • the temperature of the upper heating plate was 110 ° C.
  • the temperature of the lower heating plate was 90 ° C., that is, the average temperature TP of both was 100 ° C.
  • Example 6 the temperature TM in the mounting process is higher than the temperature TP in the pressing process; and the temperature TP is 14 ° C. higher than the softening point temperature (TmB) of the softening layer (B). Therefore, a rim having a sufficient height was formed, and there was no generation of wrinkles and no peeling between the sapphire substrate and the protective film.
  • Example 7 the temperature TM in the mounting process is 30 ° C. lower than the temperature TP in the pressing process. Therefore, although a rim having a sufficient height could be formed, generation of wrinkles was confirmed. Furthermore, in Example 8, the temperature TM in the mounting process is 105 ° C. lower than the temperature TP in the pressing process. Therefore, although a rim having a sufficient height could be formed, a rim having a sufficient height could be formed, but generation of wrinkles was confirmed, and peeling between the sapphire substrate and the protective film was also confirmed.
  • the temperature TP in the pressing step is lower than the softening point temperature (TmB) of the softening layer (B). Therefore, a sufficient rim could not be formed.
  • Example 9 A film similar to the film used in Example 2 was attached to a sapphire wafer (mounting process) and thermocompression bonded (pressing process) to form a raised portion (rim). Specifically, the semiconductor wafer surface protective film was cut into a size larger than that of the sapphire wafer. A sapphire wafer having a thickness of 650 ⁇ m and a size of 4 inches was prepared. As shown to FIG. 2A, it has arrange
  • FIG. 2C it was obtained with an upper hot plate (a hot plate placed on the semiconductor wafer surface protecting film) and a lower hot plate (a hot plate placed on the sapphire wafer side) as shown in FIG.
  • the laminate was sandwiched and pressed at 10 MPa for 180 seconds.
  • the temperature of the upper heating plate was 140 ° C.
  • the temperature of the lower heating plate was 100 ° C., that is, the average temperature of both was 120 ° C.
  • Example 10 A film similar to the film used in Example 2 was attached to a sapphire wafer (mounting process) and thermocompression bonded (pressing process) to form a raised portion (rim). Specifically, the semiconductor wafer surface protective film was cut into a size larger than that of the sapphire wafer. A sapphire wafer having a thickness of 650 ⁇ m and a size of 4 inches was prepared. As shown to FIG. 2A, it has arrange
  • FIG. 2C it was obtained with an upper hot plate (a hot plate placed on the semiconductor wafer surface protecting film) and a lower hot plate (a hot plate placed on the sapphire wafer side) as shown in FIG.
  • the laminate was sandwiched and pressed at 10 MPa for 180 seconds.
  • the temperature of the upper heating plate was 140 ° C.
  • the temperature of the lower heating plate was 140 ° C., that is, the average of both was 140 ° C.
  • Example 9 the temperature TM in the mounting step is higher than the temperature TP in the pressing step; and the temperature TP is 4 ° C. higher than the softening point temperature (TmB) of the softening layer (B). Furthermore, the upper hot plate temperature TP1 in the pressing step is higher than the lower hot plate temperature TP2. Therefore, a rim having a sufficient height was formed.
  • Example 10 the temperature TM in the mounting process is the same temperature as the temperature TP in the pressing process; and the upper hot plate temperature TP1 in the pressing process is the same temperature as the lower hot plate temperature TP2. Therefore, the rim was slightly flattened, and the height of the rim was lowered as compared with Example 7.
  • Example 11 to 14 A film similar to the film used in Example 2 was attached to a sapphire wafer (mounting process) and thermocompression bonded (pressing process) to form a raised portion (rim). Specifically, the semiconductor wafer surface protective film was cut into a size larger than that of the sapphire wafer. A sapphire wafer having a thickness of 650 ⁇ m and a size of 4 inches was prepared. As shown to FIG. 2A, it has arrange
  • an upper heat plate (a heat plate disposed on the semiconductor wafer surface protecting film) of the heat press machine and a lower heat plate having a conical convex portion as shown in FIG. 7B The obtained laminate was sandwiched with a hot plate disposed on the sapphire wafer side and pressed at 10 MPa for 180 seconds. At this time, the temperature of the upper heating plate was 140 ° C., and the temperature of the lower heating plate was 120 ° C.
  • Example 11 the height of the convex portion is 0 ⁇ m (no convex portion), in Example 12, the height of the convex portion is 5 ⁇ m, in Example 13, the height of the convex portion is 15 ⁇ m, and in Example 14, the convex portion is The height was set to 25 ⁇ m.
  • variation difference of the maximum thickness and the minimum thickness of the film for semiconductor wafer surface protections after a press process was measured, and the height of the protruding part (rim
  • the film for protecting the surface of a semiconductor wafer of the present invention can enable backside grinding without damaging even a hard and brittle semiconductor wafer such as a sapphire substrate.

Abstract

A film for protecting the surface of a semiconductor wafer is provided that makes it possible to back grind without damaging the semiconductor wafer, even when the semiconductor wafer is hard and brittle. Specifically, the present invention provides a film for protecting the surface of a semiconductor wafer that comprises a substrate layer (A) for which the storage elastic modulus GA (150) at 150°C is 1 MPa or higher, and a softening layer (B) for which the storage elastic modulus GB (120-180) at temperatures between 120-180°C is 0.05 MPa or lower and the storage elastic modulus GB (40) at 40°C is 10 MPa or higher.

Description

半導体装置の製造方法およびその方法に用いられる半導体ウエハ表面保護用フィルムSemiconductor device manufacturing method and semiconductor wafer surface protecting film used in the method
 本発明は、半導体装置の製造方法およびその方法に用いられる半導体ウエハ表面保護用フィルムに関する。 The present invention relates to a method for manufacturing a semiconductor device and a semiconductor wafer surface protecting film used in the method.
 半導体装置の製造工程における半導体ウエハの薄化加工は、通常、半導体ウエハの回路非形成面(裏面)を研削することによって行われている。裏面研削時の半導体ウエハの回路形成面の保護は、種々の方法で行われている。 The semiconductor wafer thinning process in the manufacturing process of the semiconductor device is usually performed by grinding the circuit non-formed surface (back surface) of the semiconductor wafer. Protection of the circuit forming surface of the semiconductor wafer during back grinding is performed by various methods.
 例えば、サファイア基板からなる半導体ウエハの回路形成面の保護は、以下の方法によって行われている(例えば特許文献1および非特許文献1)。即ち、表面にワックス樹脂層が設けられたセラミック板を準備する。次いで、ワックス樹脂層を加熱して溶融させて、サファイア基板の回路形成面を溶融状態のワックス樹脂層に埋め込む。そして、ワックス樹脂層を冷却して固化させる。それにより、サファイア基板の回路形成面全体をワックス樹脂層で保護している。ワックス樹脂としては、通常、ロジン系ワックス(ロジン、モンタンワックスおよびフェノール樹脂などを含むワックス、融点50℃程度)で構成されている。 For example, the circuit formation surface of a semiconductor wafer made of a sapphire substrate is protected by the following method (for example, Patent Document 1 and Non-Patent Document 1). That is, a ceramic plate having a wax resin layer on the surface is prepared. Next, the wax resin layer is heated and melted to embed the circuit forming surface of the sapphire substrate in the molten wax resin layer. Then, the wax resin layer is cooled and solidified. Thereby, the entire circuit formation surface of the sapphire substrate is protected by the wax resin layer. The wax resin is usually composed of rosin wax (wax containing rosin, montan wax, phenol resin, etc., melting point of about 50 ° C.).
国際公開第2005/099057号International Publication No. 2005/090957
 しかしながら、上記の方法では、裏面研削後のサファイア基板をワックス樹脂層から剥離するために、ワックス樹脂層を加熱溶融させる必要があった。さらに、サファイア基板の表面に残ったワックス樹脂を溶剤で洗浄して除去する必要があり、工程が煩雑であった。また、裏面研削後のサファイア基板は厚さが非常に薄く、反りやすいために、これらの工程で割れやすいという問題があった。 However, in the above method, it is necessary to heat and melt the wax resin layer in order to peel the sapphire substrate after back grinding from the wax resin layer. Furthermore, the wax resin remaining on the surface of the sapphire substrate needs to be removed by washing with a solvent, and the process is complicated. Further, since the sapphire substrate after back grinding is very thin and easily warps, there is a problem that it is easily cracked in these steps.
 そこで、本発明者らは、剥離が比較的容易である半導体ウエハ保護フィルムによって、サファイア基板の回路形成面を保護する方法を検討した。従来の半導体ウエハ保護フィルムは、基材層と、粘着層とを有する。そして、半導体ウエハ保護フィルムの粘着層を、半導体ウエハの回路形成面に貼り付けた後、半導体ウエハを裏面研削する。その後、半導体ウエハ保護フィルムをテープ剥がし機などによって剥離する。 Therefore, the present inventors examined a method of protecting the circuit formation surface of the sapphire substrate with a semiconductor wafer protective film that is relatively easy to peel. A conventional semiconductor wafer protective film has a base material layer and an adhesive layer. And after sticking the adhesion layer of a semiconductor wafer protective film on the circuit formation surface of a semiconductor wafer, a semiconductor wafer is back ground. Thereafter, the semiconductor wafer protective film is peeled off by a tape peeling machine or the like.
 しかしながら、従来の半導体ウエハ保護フィルムを用いた方法では、裏面研削時にサファイア基板の端部が破損しやすいという問題があった。即ち、図3に示されるように、ワックス工法では、サファイア基板1の端部全体がワックス樹脂層2内に埋めこまれるため、サファイア基板1の端部が安定に保持されやすい。一方、図4に示されるように、従来の半導体ウエハ保護フィルムを用いた方法では、サファイア基板1の端部は、半導体ウエハ保護フィルム4の内部に埋めこまれないため、サファイア基板1の端部が安定に保持されにくい。そのため、裏面研削時にサファイア基板1の端部が砥石3などと接触して破損しやすいと考えられる。 However, the conventional method using a semiconductor wafer protective film has a problem that the end of the sapphire substrate is easily damaged during backside grinding. That is, as shown in FIG. 3, in the wax method, since the entire end portion of the sapphire substrate 1 is embedded in the wax resin layer 2, the end portion of the sapphire substrate 1 is easily held stably. On the other hand, as shown in FIG. 4, in the conventional method using the semiconductor wafer protective film, the end portion of the sapphire substrate 1 is not embedded in the semiconductor wafer protective film 4. Is difficult to hold stably. For this reason, it is considered that the end portion of the sapphire substrate 1 is in contact with the grindstone 3 or the like and easily damaged during back surface grinding.
 本発明はこのような事情に鑑みてなされたものであり、特にサファイア基板などの硬くて脆い半導体ウエハにおいても、破損することなく裏面研削を可能とする半導体装置の製造方法や、前記製造方法に好適な半導体ウエハ表面保護用フィルムを提供することを目的とする。 The present invention has been made in view of such circumstances. In particular, the present invention relates to a method of manufacturing a semiconductor device that enables backside grinding without damage even in a hard and brittle semiconductor wafer such as a sapphire substrate, and the manufacturing method. An object of the present invention is to provide a suitable film for protecting the surface of a semiconductor wafer.
 本発明者らは、裏面研削時において、半導体ウエハの端部近傍を隆起部(リム)で保持することで、半導体ウエハの端部の破損を抑制できることを見出した。そして、熱圧着によって隆起部(リム)を比較的容易に形成でき、かつ裏面研削時の温度においても隆起部(リム)の形状を良好に維持しうるフィルムの構成を鋭意検討の末に見出した。 The inventors of the present invention have found that damage to the end portion of the semiconductor wafer can be suppressed by holding the vicinity of the end portion of the semiconductor wafer with a raised portion (rim) during back grinding. Further, after extensive studies, the inventors have found a film structure that can form a raised portion (rim) relatively easily by thermocompression bonding and can maintain the shape of the raised portion (rim) well even at the temperature during back grinding. .
 即ち、本発明の第一は、以下の半導体ウエハ表面保護用フィルムに関する。
 [1]150℃における貯蔵弾性率G(150)が1MPa以上である基材層(A)と、120~180℃のいずれかの温度における貯蔵弾性率G(120~180)が0.05MPa以下であり、かつ40℃における貯蔵弾性率G(40)が10MPa以上である軟化層(B)と、を含む、半導体ウエハ表面保護用フィルム。
 [2]前記軟化層(B)の100℃における貯蔵弾性率G(100)が、1MPa以上である、[1]に記載の半導体ウエハ表面保護用フィルム。
 [3]前記軟化層(B)の60℃における引張弾性率E(60)と25℃における引張弾性率E(25)とが、1>E(60)/E(25)>0.1の関係を満たす、[1]または[2]に記載の半導体ウエハ表面保護用フィルム。
 [4]前記軟化層(B)を介して前記基材層(A)とは反対側に配置された粘着層(C)をさらに含み、前記粘着層(C)の、JIS Z0237に準拠して測定される粘着力が0.1~10N/25mmである、[1]~[3]のいずれかに記載の半導体ウエハ表面保護用フィルム。
 [5]前記基材層(A)は、最表面に配置されている、[1]~[4]のいずれかに記載の半導体ウエハ表面保護用フィルム。
 [6]前記粘着層(C)は、前記軟化層(B)を介して前記基材層(A)とは反対側の最表面に配置されている、[4]または[5]に記載の半導体ウエハ表面保護用フィルム。
 [7]前記軟化層(B)は、炭化水素オレフィンの単独重合体、炭化水素オレフィンの共重合体、またはそれらの混合物を含む、[1]~[6]のいずれかに記載の半導体ウエハ表面保護用フィルム。
 [8]前記軟化層(B)を構成する樹脂の密度が880~960kg/mである、[1]~[7]のいずれかに記載の半導体ウエハ表面保護用フィルム。
 [9]前記基材層(A)が、ポリオレフィン層、ポリエステル層、またはポリオレフィン層とポリエステル層の積層体である、[1]~[8]のいずれかに記載の半導体ウエハ表面保護用フィルム。
 
That is, the first of the present invention relates to the following semiconductor wafer surface protecting film.
[1] A base material layer (A) having a storage elastic modulus G A (150) at 150 ° C. of 1 MPa or more, and a storage elastic modulus G B (120 to 180) at any temperature of 120 to 180 ° C. And a softening layer (B) having a storage elastic modulus G B (40) at 40 ° C. of 10 MPa or more.
[2] The film for protecting a semiconductor wafer surface according to [1], wherein the softening layer (B) has a storage elastic modulus G B (100) at 100 ° C. of 1 MPa or more.
[3] the softened layer tensile modulus at 60 ° C. of (B) E B (60) and the tensile modulus E B (25) at 25 ° C. but, 1> E B (60) / E B (25)> The film for protecting a semiconductor wafer surface according to [1] or [2], which satisfies a relationship of 0.1.
[4] The adhesive layer (C) further disposed on the side opposite to the base material layer (A) via the softened layer (B), and according to JIS Z0237 of the adhesive layer (C) The film for protecting a semiconductor wafer surface according to any one of [1] to [3], wherein the measured adhesive strength is 0.1 to 10 N / 25 mm.
[5] The semiconductor wafer surface protecting film according to any one of [1] to [4], wherein the base material layer (A) is disposed on the outermost surface.
[6] The adhesive layer (C) according to [4] or [5], wherein the adhesive layer (C) is disposed on the outermost surface opposite to the base material layer (A) through the softening layer (B). Semiconductor wafer surface protection film.
[7] The semiconductor wafer surface according to any one of [1] to [6], wherein the softening layer (B) includes a hydrocarbon olefin homopolymer, a hydrocarbon olefin copolymer, or a mixture thereof. Protective film.
[8] The film for protecting a semiconductor wafer surface according to any one of [1] to [7], wherein the density of the resin constituting the softening layer (B) is 880 to 960 kg / m 3 .
[9] The semiconductor wafer surface protecting film according to any one of [1] to [8], wherein the substrate layer (A) is a polyolefin layer, a polyester layer, or a laminate of a polyolefin layer and a polyester layer.
 本発明の第二は、以下の半導体装置の製造方法に関する。
 [10]半導体ウエハを、半導体ウエハ表面保護用フィルム上に、前記半導体ウエハの回路形成面が半導体ウエハ表面保護用フィルムと接するように配置する工程と、
 前記半導体ウエハの外周に、前記半導体ウエハを保持する前記半導体ウエハ表面保護用フィルムの隆起部を形成する工程と、
 前記隆起部によって保持された前記半導体ウエハの回路非形成面を研削する工程と、
 前記半導体ウエハの回路形成面から前記半導体ウエハ表面保護用フィルムを剥離する工程と、を含み、
 前記隆起部の100℃における貯蔵弾性率G(100)が1MPa以上である、半導体装置の製造方法。
 [11]前記半導体ウエハ表面保護用フィルムが、[1]~[9]のいずれかに記載の半導体ウエハ表面保護用フィルムであって、
 前記隆起部を、前記半導体ウエハ表面保護用フィルムと前記半導体ウエハとを120~180℃の温度、1~10MPaの圧力で熱圧着させて形成する、[10]に記載の半導体装置の製造方法。
 [12]前記[11]に記載の半導体装置の製造方法であって、
 前記半導体ウエハを、前記半導体ウエハ表面保護用フィルム上に、前記半導体ウエハの回路形成面が半導体ウエハ表面保護用フィルムと接するように配置する工程におけるフィルムの温度TMと、前記半導体ウエハ表面保護用フィルムの隆起部を形成する工程における熱圧着温度TPと、前記軟化層(B)の軟化点温度TmBとが、以下の一般式の関係を満たす、半導体装置の製造方法。[式1]  TP≦TM[式2]  TmB<TP<TmB+40℃
 [13]前記半導体ウエハ表面保護用フィルムの軟化層(B)が、基材層(A)よりも前記半導体ウエハの回路形成面側になるように、前記半導体ウエハを前記半導体ウエハ表面保護用フィルム上に配置する、[11]または[12]に記載の半導体装置の製造方法。
 [14]前記半導体ウエハは、モース硬度8以上の高硬度材料基板を含む、[10]~[13]のいずれかに記載の半導体装置の製造方法。
The second of the present invention relates to the following method for manufacturing a semiconductor device.
[10] A step of placing the semiconductor wafer on the semiconductor wafer surface protection film so that the circuit forming surface of the semiconductor wafer is in contact with the semiconductor wafer surface protection film;
Forming a raised portion of the semiconductor wafer surface protecting film for holding the semiconductor wafer on an outer periphery of the semiconductor wafer;
Grinding the non-circuit-formed surface of the semiconductor wafer held by the raised portions;
Peeling the semiconductor wafer surface protective film from the circuit forming surface of the semiconductor wafer,
The manufacturing method of a semiconductor device whose storage elastic modulus G (100) in 100 degreeC of the said protruding part is 1 Mpa or more.
[11] The semiconductor wafer surface protective film according to any one of [1] to [9], wherein the semiconductor wafer surface protective film comprises:
The method for manufacturing a semiconductor device according to [10], wherein the raised portion is formed by thermocompression bonding the semiconductor wafer surface protecting film and the semiconductor wafer at a temperature of 120 to 180 ° C. and a pressure of 1 to 10 MPa.
[12] The method of manufacturing a semiconductor device according to [11],
Film temperature TM in the step of placing the semiconductor wafer on the semiconductor wafer surface protecting film so that the circuit forming surface of the semiconductor wafer is in contact with the semiconductor wafer surface protecting film, and the semiconductor wafer surface protecting film A method for manufacturing a semiconductor device, wherein the thermocompression bonding temperature TP in the step of forming the raised portion and the softening point temperature TmB of the softening layer (B) satisfy the relationship of the following general formula. [Formula 1] TP ≦ TM [Formula 2] TmB <TP <TmB + 40 ° C.
[13] The semiconductor wafer surface protecting film so that the softened layer (B) of the semiconductor wafer surface protecting film is closer to the circuit forming surface side of the semiconductor wafer than the base material layer (A). The method for manufacturing a semiconductor device according to [11] or [12], which is disposed above.
[14] The method for manufacturing a semiconductor device according to any one of [10] to [13], wherein the semiconductor wafer includes a high-hardness material substrate having a Mohs hardness of 8 or more.
 本発明の第3は、マウントフレームをプレスする半導体ウエハプレス装置に関する。
 [15]半導体ウエハと、前記半導体ウエハを囲む枠を有するリングフレームAと、前記半導体ウエハの回路形成面と前記フレームAとにわたって貼り付けられた請求項1に記載の半導体ウエハ表面保護フィルムと、を備えたマウントフレームを、加熱機構を備えた上プレス板と、上プレス板と対向する下プレス板とで挟み込んでプレスする半導体ウエハプレス装置であって、
 前記半導体ウエハの外直径DWと、前記リングフレームAの内直径DAINとが、式(1)DW<DAIN の関係を満たし、
 前記下プレス板は、前記上プレス板と対向する面に凸部を備え、
 前記プレスしたときの、前記凸部の前記マウントフレームとの接触面の外周は、円状である、半導体ウエハプレス装置。
 [16]前記凸部の高さが1~100μmである、[15]に記載の半導体ウエハプレス装置。
 [17]前記凸部の高さが、半導体ウエハ表面保護フィルムの軟化層(B)の厚みに対して15~100%の範囲内にある、[15]または[16]に記載の半導体ウエハプレス装置。
 [18]前記凸部の直径CDが、DW<CD<DAINの関係を満たす、[15]~[17]のいずれかに記載の半導体ウエハプレス装置。
The third aspect of the present invention relates to a semiconductor wafer press apparatus for pressing a mount frame.
[15] The semiconductor wafer, the ring frame A having a frame surrounding the semiconductor wafer, the semiconductor wafer surface protective film according to claim 1 attached over the circuit forming surface of the semiconductor wafer and the frame A, A semiconductor wafer press apparatus that sandwiches and presses a mount frame provided with an upper press plate having a heating mechanism and a lower press plate facing the upper press plate,
The outer diameter DW of the semiconductor wafer and the inner diameter DA IN of the ring frame A satisfy the relationship of formula (1) DW <DA IN ,
The lower press plate includes a convex portion on a surface facing the upper press plate,
The semiconductor wafer press apparatus, wherein an outer periphery of a contact surface of the convex portion with the mount frame when pressed is circular.
[16] The semiconductor wafer press apparatus according to [15], wherein the height of the convex portion is 1 to 100 μm.
[17] The semiconductor wafer press according to [15] or [16], wherein the height of the convex portion is in the range of 15 to 100% with respect to the thickness of the softening layer (B) of the semiconductor wafer surface protective film. apparatus.
[18] The semiconductor wafer press apparatus according to any one of [15] to [17], wherein a diameter CD of the convex portion satisfies a relationship of DW <CD <DA IN .
 本発明の第4は、マウントフレームを作製する半導体ウエハマウント装置と、それを用いた半導体装置の製造方法に関する。
 [19]半導体ウエハと、前記半導体ウエハを囲むリング状補助部材Bと、前記半導体ウエハと前記リング状補助部材Bとを囲むリングフレームAと、前記半導体ウエハの回路形成面と前記リング状補助部材Bと前記リングフレームAにわたって貼り付けられた[1]~[9]のいずれかに記載の半導体ウエハ表面保護フィルムと、を含むマウントフレームを作製する半導体ウエハマウント装置であって、
 前記半導体ウエハの外直径DWと、前記リングフレームAの内直径DAINと、前記リング状補助部材Bのリング外直径DBOUTと、前記リング状補助部材Bのリング内直径DBINとが、式(1) DW<DBIN<DBOUT<DAIN の関係を満たし、
 前記半導体ウエハの回路形成面の反対面を加熱する加熱ユニットと、
 前記半導体ウエハの回路形成面と、前記リングフレームAと、前記リング状補助部材Bとにわたって転動して、前記半導体ウエハ表面保護フィルムを貼り付けるための貼付ローラと、
 前記リングフレームAの外形状に沿って、前記表面保護フィルムを切断するテープ切断機構と、を備える、半導体ウエハマウント装置。
 [20]下記式で表されるΔD1とΔD2のいずれもが、DWの1%以内である、[19]に記載の半導体ウエハマウント装置。
 ΔD1=DBIN-DW・・・(2)
 ΔD2=DAIN-DBOUT・・・(3)
The fourth aspect of the present invention relates to a semiconductor wafer mount apparatus for manufacturing a mount frame and a method for manufacturing a semiconductor device using the same.
[19] A semiconductor wafer, a ring-shaped auxiliary member B surrounding the semiconductor wafer, a ring frame A surrounding the semiconductor wafer and the ring-shaped auxiliary member B, a circuit forming surface of the semiconductor wafer, and the ring-shaped auxiliary member A semiconductor wafer mounting apparatus for producing a mounting frame including B and a semiconductor wafer surface protective film according to any one of [1] to [9] attached over the ring frame A,
Wherein the outer diameter DW of the semiconductor wafer, and the inner diameter DA IN of the ring frame A, and the ring outer diameter DB OUT of the ring-shaped auxiliary member B, the ring diameter DB IN of the ring-shaped auxiliary member B has the formula (1) The relationship of DW <DB IN <DB OU T <DA IN is satisfied,
A heating unit for heating a surface opposite to a circuit forming surface of the semiconductor wafer;
A pasting roller for rolling over the circuit forming surface of the semiconductor wafer, the ring frame A, and the ring-shaped auxiliary member B to paste the semiconductor wafer surface protective film;
And a tape cutting mechanism for cutting the surface protective film along the outer shape of the ring frame A.
[20] The semiconductor wafer mount device according to [19], wherein both ΔD1 and ΔD2 represented by the following formula are within 1% of DW.
ΔD1 = DB IN −DW (2)
ΔD2 = DA IN −DB OUT (3)
 本発明の第5は、以下の半導体装置の製造方法に関する。
 1')半導体ウエハを用意する工程と、2')半導体ウエハの外周に実質的に樹脂からなる隆起部を形成する工程と、3')半導体ウエハ表面保護用フィルム上に半導体ウエハの回路形成面を配置する工程と、4')隆起部によって保持された半導体ウエハの回路非形成面を研削する工程と、5')半導体ウエハ表面保護用フィルムを剥離する工程とを含む、半導体装置の製造方法であって、
 前記樹脂からなる隆起部の貯蔵弾性率G(40)が10MPa以上である、半導体装置の製造方法。
The fifth of the present invention relates to the following method for manufacturing a semiconductor device.
1 ′) a step of preparing a semiconductor wafer, 2 ′) a step of forming a raised portion substantially made of resin on the outer periphery of the semiconductor wafer, and 3 ′) a circuit forming surface of the semiconductor wafer on the semiconductor wafer surface protective film. 4 ') a step of grinding a non-circuit-formed surface of the semiconductor wafer held by the raised portion, and 5') a step of peeling the semiconductor wafer surface protection film. Because
The storage modulus G B ridges made of resin (40) is not less than 10 MPa, a method of manufacturing a semiconductor device.
 本発明の半導体ウエハ表面保護用フィルムは、特にサファイア基板などの硬くて脆い半導体ウエハであっても、破損させることなく裏面研削を可能としうる。 The film for protecting the surface of a semiconductor wafer of the present invention can enable backside grinding without damaging even a hard and brittle semiconductor wafer such as a sapphire substrate.
本発明の半導体ウエハ表面保護フィルムの一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the semiconductor wafer surface protection film of this invention. 本発明の半導体ウエハ表面保護フィルムの他の一実施形態を示す模式図である。It is a schematic diagram which shows another one Embodiment of the semiconductor wafer surface protection film of this invention. 半導体ウエハ表面保護用フィルム上に半導体ウエハを配置する工程(マウント工程)の一例を示す図である。It is a figure which shows an example of the process (mounting process) which arrange | positions a semiconductor wafer on the film for semiconductor wafer surface protections. 半導体ウエハ表面保護用フィルム上に半導体ウエハを配置した積層物を示す図である。It is a figure which shows the laminated body which has arrange | positioned the semiconductor wafer on the film for semiconductor wafer surface protections. 半導体ウエハの外周に半導体表面保護用フィルムの隆起部を形成する工程(プレス工程)の一例を示す図である。It is a figure which shows an example of the process (press process) which forms the protruding part of the film for semiconductor surface protections on the outer periphery of a semiconductor wafer. 隆起部の一例を示す拡大図である。It is an enlarged view which shows an example of a protruding part. 半導体ウエハの回路非形成面を研削する工程の一例を示す図である。It is a figure which shows an example of the process of grinding the circuit non-formation surface of a semiconductor wafer. 従来のワックス工法による半導体ウエハの保護方法の一例を示す図である。It is a figure which shows an example of the protection method of the semiconductor wafer by the conventional wax construction method. 従来の半導体ウエハ表面保護用フィルムを用いた半導体ウエハの保護方法の一例を示す図である。It is a figure which shows an example of the protection method of the semiconductor wafer using the conventional film for semiconductor wafer surface protection. 図5Aおよび図5Bは、マウント工程の他の実施態様を示す図である。5A and 5B are diagrams showing another embodiment of the mounting process. プレス工程によって、半導体ウエハ表面保護用フィルムの厚みが不均一になる状態を示す図である。It is a figure which shows the state from which the thickness of the film for semiconductor wafer surface protections becomes non-uniform | heterogenous by a press process. 図7Aはプレス工程の他の実施態様を示す図であり、図7B~Dは凸部の形状の例を示す図である。FIG. 7A is a diagram showing another embodiment of the pressing step, and FIGS. 7B to 7D are diagrams showing examples of the shape of the convex portion. 半導体ウエハの外周に、半導体表面保護用フィルムとは別の隆起部を形成する方法を示す図である。It is a figure which shows the method of forming the protruding part different from the film for semiconductor surface protections on the outer periphery of a semiconductor wafer.
 1.半導体ウエハ表面保護用フィルム
 本発明の半導体ウエハ表面保護用フィルムは、基材層(A)と、軟化層(B)とを含み;必要に応じて、粘着層(C)(図1A参照)や軽粘着層(D)(図1B参照)などをさらに含んでもよい。本発明でいうフィルムの厚さは限定されず、いわゆるシートとも称されうる。
1. Semiconductor Wafer Surface Protection Film The semiconductor wafer surface protection film of the present invention includes a base material layer (A) and a softening layer (B); if necessary, an adhesive layer (C) (see FIG. 1A) or A light adhesion layer (D) (refer to Drawing 1B) etc. may be further included. The thickness of the film referred to in the present invention is not limited, and may be referred to as a so-called sheet.
 基材層(A)について
 基材層(A)は、半導体ウエハ表面保護用フィルムと半導体ウエハとを熱圧着したときの、半導体ウエハの反りを抑制し、形状を保持する機能を有する。そのため、基材層(A)は、熱圧着温度(約120~180℃のいずれかの温度)において一定以上の貯蔵弾性率を有することが好ましい。具体的には、基材層(A)の150℃における貯蔵弾性率G(150)が、1MPa以上であることが好ましく、2MPa以上であることがより好ましい。
About Base Material Layer (A) The base material layer (A) has a function of suppressing the warpage of the semiconductor wafer and maintaining the shape when the semiconductor wafer surface protecting film and the semiconductor wafer are thermocompression bonded. Therefore, the base material layer (A) preferably has a storage elastic modulus of a certain level or higher at the thermocompression bonding temperature (any temperature of about 120 to 180 ° C.). Specifically, the storage elastic modulus G A (150) at 150 ° C. of the base material layer (A) is preferably 1 MPa or more, and more preferably 2 MPa or more.
 基材層(A)の貯蔵弾性率は、以下の方法で測定することができる。即ち、基材層(A)を構成する樹脂からなる厚み500μmのサンプルフィルムを準備する。次いで、サンプルフィルムを、動的粘弾性測定装置(ティー・エイ・インスツルメント社製:ARES)にセットし、直径8mmのパラレルプレート型アタッチメントを用いて、30℃から昇温速度3℃/分で200℃まで昇温しながら貯蔵弾性率を測定する。測定周波数は1Hzとしうる。測定終了後、得られた30~200℃の貯蔵弾性率-温度曲線から、150℃における貯蔵弾性率G(Pa)の値を読みとる。 The storage elastic modulus of the base material layer (A) can be measured by the following method. That is, a sample film having a thickness of 500 μm made of a resin constituting the base material layer (A) is prepared. Next, the sample film was set in a dynamic viscoelasticity measuring apparatus (manufactured by TA Instruments: ARES), and the temperature rising rate was 3 ° C./min from 30 ° C. using a parallel plate attachment having a diameter of 8 mm. The storage elastic modulus is measured while raising the temperature to 200 ° C. The measurement frequency can be 1 Hz. After completion of the measurement, the value of the storage elastic modulus G (Pa) at 150 ° C. is read from the obtained storage elastic modulus-temperature curve of 30 to 200 ° C.
 基材層(A)を構成する樹脂は、前述の貯蔵弾性率を満たすものであればよい。また、後述するように、粘着層(C)が放射線硬化型粘着剤からなる場合、基材層(A)を構成する樹脂は、透明性を有することが好ましい。そのような樹脂の例には、ポリオレフィンやポリエステルなどが含まれる。即ち、基材層(A)は、ポリオレフィンフィルム、ポリエステルフィルム、ポリオレフィン層とポリエステル層の積層フィルムなどでありうる。ポリオレフィンフィルムの例には、ポリプロピレンフィルムが含まれる。ポリエステルフィルムの例には、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルムなどが含まれる。 The resin constituting the base material layer (A) only needs to satisfy the aforementioned storage elastic modulus. As will be described later, when the pressure-sensitive adhesive layer (C) is made of a radiation curable pressure-sensitive adhesive, the resin constituting the base material layer (A) preferably has transparency. Examples of such resins include polyolefins and polyesters. That is, the base material layer (A) can be a polyolefin film, a polyester film, a laminated film of a polyolefin layer and a polyester layer, or the like. Examples of the polyolefin film include a polypropylene film. Examples of the polyester film include a polyethylene terephthalate film and a polyethylene naphthalate film.
 基材層(A)を構成する樹脂の密度は、900~1450kg/mであることが好ましい。基材層(A)を構成する樹脂の密度が900kg/m未満であると、貯蔵弾性率が低すぎるため、形状保持性が十分でないことがある。 The density of the resin constituting the base material layer (A) is preferably 900 to 1450 kg / m 3 . If the density of the resin constituting the substrate layer (A) is less than 900 kg / m 3 , the shape retention may not be sufficient because the storage elastic modulus is too low.
 基材層(A)の厚みは、半導体ウエハの反りを抑制できる程度の剛性を得る観点から、例えば5μm以上であることが好ましく、10μm以上であることがより好ましい。基材層(A)の厚みの上限は、半導体ウエハの破損を防止する観点から、半導体ウエハ表面保護用フィルムの総厚みが、半導体ウエハの研削仕上げ厚みに対して厚くなりすぎない程度とすればよい。 The thickness of the base material layer (A) is, for example, preferably 5 μm or more, and more preferably 10 μm or more, from the viewpoint of obtaining rigidity sufficient to suppress warpage of the semiconductor wafer. The upper limit of the thickness of the base material layer (A) is set so that the total thickness of the semiconductor wafer surface protective film is not too thick with respect to the ground finish thickness of the semiconductor wafer from the viewpoint of preventing damage to the semiconductor wafer. Good.
 軟化層(B)について
 軟化層(B)は、半導体ウエハの端部を安定に保持するために、半導体ウエハの周囲に隆起部(リム)を形成する機能を有する。後述するように、半導体ウエハ表面保護用フィルムと半導体ウエハとを熱圧着させて隆起部(リム)を形成する場合があるため、熱圧着温度(120~180℃)で軟化層(B)を軟化させる必要がある。つまり、軟化層(B)の軟化点温度TmBは、熱圧着温度(120~180℃)より低温であることが好ましい。軟化点温度TmBは、DSC測定から求めることができ、具体的には、ISO-11357-3による樹脂材料の融点(DSC法)を軟化点温度とする。
Softening layer (B) The softening layer (B) has a function of forming a raised portion (rim) around the semiconductor wafer in order to stably hold the end portion of the semiconductor wafer. As will be described later, the semiconductor wafer surface protective film and the semiconductor wafer may be thermocompression bonded to form a raised portion (rim), so the softening layer (B) is softened at the thermocompression bonding temperature (120 to 180 ° C.). It is necessary to let That is, the softening point temperature TmB of the softening layer (B) is preferably lower than the thermocompression bonding temperature (120 to 180 ° C.). The softening point temperature TmB can be obtained from DSC measurement. Specifically, the melting point (DSC method) of the resin material according to ISO-11357-3 is defined as the softening point temperature.
 120~180℃のいずれかの温度における軟化層(B)の貯蔵弾性率G(120~180)、好ましくは150℃における軟化層(B)の貯蔵弾性率G(150)が、0.05MPa以下であることが好ましく、0.03MPa以下であることがより好ましい。 The storage elastic modulus G B (120 to 180) of the softened layer (B) at any temperature of 120 to 180 ° C., preferably the storage elastic modulus G B (150) of the softened layer (B) at 150 ° C. It is preferably no greater than 05 MPa and more preferably no greater than 0.03 MPa.
 一方、裏面研削時(ウェットポリシング)に隆起部(リム)が軟化しないようにするには、裏面研削時の温度(40℃付近)で軟化層(B)を軟化させないようにする必要がある。そのため、40℃における貯蔵弾性率G(40)が、10MPa以上であることが好ましく、20MPa以上であることがより好ましく、30MPa以上であることがさらに好ましい。40℃における貯蔵弾性率G(40)の上限は、通常、500MPa以下程度としうる。軟化層(B)の40℃における貯蔵弾性率G(40)を10MPa以上とするためには、軟化層(B)を構成する樹脂を、後述するように、エラストマーではない樹脂とすることが好ましい。後述するように、貯蔵弾性率Gは引張弾性率Eの約1/3である。例えば、「軟化層(B)の40℃における貯蔵弾性率G(40)を10MPa以上とする」とは、「軟化層(B)の40℃における引張弾性率E(40)を30MPa以上とする」ということもできる。 On the other hand, in order to prevent the raised portion (rim) from being softened during back grinding (wet polishing), it is necessary to prevent the softened layer (B) from being softened at the temperature (around 40 ° C.) during back grinding. Therefore, the storage elastic modulus G B (40) at 40 ° C. is preferably 10 MPa or more, more preferably 20 MPa or more, and further preferably 30 MPa or more. The upper limit of the storage elastic modulus G B (40) at 40 ° C. can usually be about 500 MPa or less. In order to set the storage elastic modulus G B (40) at 40 ° C. of the softened layer (B) to 10 MPa or more, the resin constituting the softened layer (B) may be a resin that is not an elastomer, as will be described later. preferable. As will be described later, the storage elastic modulus G is about 1/3 of the tensile elastic modulus E. For example, “the storage elastic modulus G B (40) at 40 ° C. of the softened layer (B) is 10 MPa or more” means “the tensile elastic modulus E B (40) of the softened layer (B) at 40 ° C. is 30 MPa or more. Can also be said.
 裏面研削は、通常、湿式で行うが、必要に応じて乾式でさらに行ってもよい。乾式での裏面研削(ドライポリシング)時のウエハの温度は、砥石と半導体ウエハの摩擦熱が大きいことから、約100℃近傍となることがある。そのため、ドライポリシング時においても隆起部(リム)が軟化しないようにするには、軟化層(B)の100℃における貯蔵弾性率G(100)が1MPa以上であることが好ましく、3MPa以上であることがより好ましい。 The back surface grinding is usually performed by a wet method, but may be further performed by a dry method if necessary. The temperature of the wafer at the time of dry backside grinding (dry polishing) may be around 100 ° C. because the frictional heat between the grindstone and the semiconductor wafer is large. In Therefore, the raised portions even during the dry polishing (rim) to not soften preferably has a storage modulus G B at 100 ° C. of softening layer (B) (100) is 1MPa or more, 3 MPa or more More preferably.
 軟化層(B)の60℃における引張弾性率E(60)と25℃における引張弾性率E(25)とが、1>E(60)/E(25)>0.1であることが好ましい。半導体ウエハを裏面研削するときの半導体ウエハの温度は、25℃~60℃の範囲内で変化することが多い。そのため、この温度範囲内における軟化層(B)の貯蔵弾性率の変化率を一定範囲内とすることで、軟化層(B)からなる隆起部が半導体ウエハを安定に保持することができる。また、軟化層(B)からなる隆起部が、半導体ウエハの裏面研削中に劣化することが抑制される。そのため、半導体ウエハの裏面研削中の半導体ウエハの破損をより有効に抑制できる。 Softening layer tensile modulus at 25 ° C. and tensile modulus E B (60) at 60 ° C. of (B) E B (25) but, 1> E B (60) / E B (25)> 0.1 Preferably there is. In many cases, the temperature of the semiconductor wafer when the back surface of the semiconductor wafer is ground changes within a range of 25 ° C. to 60 ° C. Therefore, by setting the rate of change of the storage elastic modulus of the softened layer (B) within this temperature range within a certain range, the raised portion made of the softened layer (B) can stably hold the semiconductor wafer. Moreover, it is suppressed that the protruding part which consists of a softening layer (B) deteriorates during the back surface grinding of a semiconductor wafer. Therefore, damage to the semiconductor wafer during back grinding of the semiconductor wafer can be more effectively suppressed.
 軟化層(B)の引張弾性率Eの測定は、以下の通りに測定することができる。i)厚み100μmのフィルムをカットして、巾(TD方向)10mm、長さ(MD方向)100mmの短冊状の試料片を準備する。ii)次いで、JIS K7161に準拠して、引張試験機によりチャック間距離50mm、引張速度300mm/分の条件で試料片の引張弾性率を測定する。引張弾性率の測定は、温度23℃、相対湿度55%の条件下で行う。引張弾性率Eは貯蔵弾性率Gの3倍程度になることが多い。 The tensile elastic modulus E of the softened layer (B) can be measured as follows. i) A film having a thickness of 100 μm is cut to prepare a strip-shaped sample piece having a width (TD direction) of 10 mm and a length (MD direction) of 100 mm. ii) Next, in accordance with JIS K7161, the tensile modulus of the sample piece is measured with a tensile tester under conditions of a distance between chucks of 50 mm and a tensile speed of 300 mm / min. The tensile elastic modulus is measured under conditions of a temperature of 23 ° C. and a relative humidity of 55%. The tensile modulus E is often about three times the storage modulus G.
 軟化層(B)を構成する樹脂は、前記貯蔵弾性率を満たすものであれば、特に限定されないが、エラストマーではないことが好ましい。具体的には、炭化水素オレフィンの単独重合体または共重合体が好ましく、エチレン単独重合体、プロピレン単独重合体、あるいはエチレンまたはプロピレンとそれ以外の炭化水素オレフィンとの共重合体がより好ましい。一方、例えばエチレン・酢酸ビニル共重合体(EVA)は、通常、40℃の貯蔵弾性率G(40)が0.01MPa~0.1MPa程度であり、10MPa未満であるため好ましくない。 The resin constituting the softened layer (B) is not particularly limited as long as it satisfies the storage elastic modulus, but is preferably not an elastomer. Specifically, a homopolymer or copolymer of a hydrocarbon olefin is preferable, and an ethylene homopolymer, a propylene homopolymer, or a copolymer of ethylene or propylene and another hydrocarbon olefin is more preferable. On the other hand, for example, an ethylene / vinyl acetate copolymer (EVA) is not preferred because it usually has a storage elastic modulus G (40) at 40 ° C. of about 0.01 MPa to 0.1 MPa and less than 10 MPa.
 エチレンまたはプロピレンとそれ以外の炭化水素オレフィンとの共重合体における、エチレンまたはプロピレン以外の炭化水素オレフィンは、炭素原子数3~12のα-オレフィンであることが好ましい。炭素原子数3~12のα-オレフィンの例には、プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン等が含まれ、好ましくはプロピレン、1-ブテンなどである。 The hydrocarbon olefin other than ethylene or propylene in the copolymer of ethylene or propylene and other hydrocarbon olefins is preferably an α-olefin having 3 to 12 carbon atoms. Examples of α-olefins having 3 to 12 carbon atoms include propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1 -Pentene, 1-heptene, 1-octene, 1-decene, 1-dodecene and the like are included, and propylene, 1-butene and the like are preferable.
 軟化層(B)を構成する樹脂の好ましい具体例には、直鎖状低密度ポリエチレン(LLDPE)、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリスチレン、ABS樹脂、塩化ビニル樹脂、メタクリル酸メチル樹脂、ナイロン、フッ素樹脂、ポリカーボネート、ポリエステル樹脂などが含まれ、好ましくは直鎖状低密度ポリエチレン(LLDPE)、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレンなどである。 Preferred specific examples of the resin constituting the softening layer (B) include linear low density polyethylene (LLDPE), low density polyethylene, high density polyethylene, polypropylene, polystyrene, ABS resin, vinyl chloride resin, methyl methacrylate resin, Nylon, fluororesin, polycarbonate, polyester resin and the like are included, and linear low density polyethylene (LLDPE), low density polyethylene, high density polyethylene, polypropylene and the like are preferable.
 軟化層(B)を構成する樹脂の密度は、880~960kg/mであることが好ましく、900~960kg/mであることがより好ましく、910~950kg/mであることがさらに好ましい。軟化層(B)を構成する樹脂の密度が880kg/m未満であると、40℃で軟化することがある。一方、樹脂の密度が960kg/mを超えると、熱圧着温度で軟化しにくいことがある。 The density of the resin constituting the softening layer (B) is preferably 880 to 960 kg / m 3 , more preferably 900 to 960 kg / m 3 , and even more preferably 910 to 950 kg / m 3. . If the density of the resin constituting the softened layer (B) is less than 880 kg / m 3 , it may be softened at 40 ° C. On the other hand, if the density of the resin exceeds 960 kg / m 3 , it may be difficult to soften at the thermocompression bonding temperature.
 軟化層(B)の貯蔵弾性率は、エチレンまたはプロピレンの単独重合体の密度、エチレンまたはプロピレンとそれ以外の炭化水素オレフィンとの共重合体における、エチレンまたはプロピレン以外の炭化水素オレフィンの種類とその含有割合などによって調整されうる。例えば、軟化層(B)の40℃における貯蔵弾性率を高くするためには、例えばエチレンまたはプロピレンの単独重合体の密度を高くしたり、エチレンまたはプロピレンとそれ以外の炭化水素オレフィンとの共重合体におけるエチレンまたはプロピレンの含有割合を高くしたりすればよい。 The storage elastic modulus of the softened layer (B) is the density of the homopolymer of ethylene or propylene, the type of hydrocarbon olefin other than ethylene or propylene in the copolymer of ethylene or propylene and other hydrocarbon olefins, and the It can be adjusted by the content ratio. For example, in order to increase the storage elastic modulus at 40 ° C. of the softened layer (B), for example, the density of a homopolymer of ethylene or propylene is increased, or the copolymer weight of ethylene or propylene and other hydrocarbon olefins is increased. What is necessary is just to raise the content rate of ethylene or propylene in a coalescence.
 軟化層(B)の厚みは、半導体ウエハとの熱圧着によってリムを形成でき、かつ半導体ウエハ表面の凸凹を埋め込むことができる程度であればよい。そのため、軟化層(B)の厚みは、半導体ウエハの回路形成面の段差の最大値よりも大きいことが好ましく、段差の最大値の1.1倍以上であることが好ましい。具体的には、段差が50μmであれば、55μm以上がより好ましく、60μm以上がさらに好ましい。一方で、軟化層(B)が厚すぎると、薄い場合に比べて研削中の半導体ウエハの変形(たわみやしなり)を抑制しにくいため、破損しやすくなると考えられる。そのため、軟化層(B)の厚みは、100μm以下とすることが好ましく、70μm以下とすることがより好ましい。 The thickness of the softening layer (B) may be such that the rim can be formed by thermocompression bonding with the semiconductor wafer and the unevenness on the surface of the semiconductor wafer can be embedded. Therefore, the thickness of the softened layer (B) is preferably larger than the maximum value of the step on the circuit forming surface of the semiconductor wafer, and is preferably 1.1 times or more the maximum value of the step. Specifically, if the step is 50 μm, it is more preferably 55 μm or more, and further preferably 60 μm or more. On the other hand, if the softened layer (B) is too thick, it is difficult to suppress deformation (deflection or bending) of the semiconductor wafer being ground as compared to the case where the softened layer (B) is thin, and it is considered that the softened layer (B) is likely to be damaged. Therefore, the thickness of the softened layer (B) is preferably 100 μm or less, and more preferably 70 μm or less.
 軟化層(B)は、必要に応じて他の樹脂や添加剤をさらに含んでいてもよい。添加剤の例には、紫外線吸収剤、酸化防止剤、耐熱安定剤、滑剤、柔軟剤などが含まれる。 The softening layer (B) may further contain other resins and additives as necessary. Examples of additives include ultraviolet absorbers, antioxidants, heat stabilizers, lubricants, softeners and the like.
 粘着層(C)について
 本発明の半導体ウエハ表面保護用フィルムは、半導体ウエハとの密着性を高めるために、粘着層(C)をさらに含むことが好ましい。一方で、粘着層(C)の粘着力が高すぎると、半導体ウエハから剥離する際に、糊残りしやすい。そのため、粘着層(C)は、最低限の粘着力を有していればよく、具体的には、JIS Z0237に準拠して測定される粘着力が0.1~10N/25mmであることが好ましい。
About adhesion layer (C) In order to improve the adhesiveness with a semiconductor wafer, it is preferable that the film for semiconductor wafer surface protections of this invention further contains an adhesion layer (C). On the other hand, when the adhesive force of the adhesive layer (C) is too high, adhesive residue is easily left when peeling from the semiconductor wafer. Therefore, the pressure-sensitive adhesive layer (C) only needs to have a minimum pressure-sensitive adhesive force. Specifically, the pressure-sensitive adhesive force measured according to JIS Z0237 is 0.1 to 10 N / 25 mm. preferable.
 粘着層(C)の貯蔵弾性率は、軟化層(B)の隆起部(リム)の形成を阻害しない程度であればよい。 The storage elastic modulus of the pressure-sensitive adhesive layer (C) may be a level that does not hinder the formation of the raised portion (rim) of the softened layer (B).
 粘着層(C)を構成する粘着剤(粘着主剤)は、アクリル系粘着剤、シリコーン系粘着剤、またはゴム系粘着剤などでありうる。なかでも、接着力の調整を容易にするためなどから、アクリル系ポリマーをベースポリマーとするアクリル系粘着剤が好ましい。 The pressure-sensitive adhesive (pressure-sensitive adhesive) constituting the pressure-sensitive adhesive layer (C) can be an acrylic pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, or a rubber-based pressure-sensitive adhesive. Among these, an acrylic pressure-sensitive adhesive having an acrylic polymer as a base polymer is preferable in order to facilitate adjustment of adhesive force.
 粘着層(C)を構成する粘着剤は、放射線硬化型粘着剤であってもよい。放射線硬化型粘着剤で構成された粘着層は、放射線の照射により硬化するため、ウエハから容易に剥離できるからである。放射線は、紫外線、電子線、赤外線などでありうる。 The pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer (C) may be a radiation curable pressure-sensitive adhesive. This is because the pressure-sensitive adhesive layer composed of the radiation-curable pressure-sensitive adhesive is cured by irradiation with radiation and can be easily peeled off from the wafer. The radiation can be ultraviolet, electron beam, infrared, and the like.
 放射線硬化型粘着剤は、前述の粘着主剤と、分子内に炭素-炭素二重結合を有する化合物と、放射線重合開始剤とを含むものであってもよいし;分子内に炭素-炭素二重結合を有するポリマーをベースポリマーとする粘着主剤と、放射線重合開始剤とを含むものであってもよい。 The radiation curable pressure-sensitive adhesive may contain the above-mentioned pressure-sensitive adhesive main component, a compound having a carbon-carbon double bond in the molecule, and a radiation polymerization initiator; or a carbon-carbon double in the molecule. It may contain an adhesive main agent having a polymer having a bond as a base polymer and a radiation polymerization initiator.
 分子内に炭素-炭素二重結合を有する化合物の例には、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレートなどが含まれる。放射線硬化性化合物の含有量は、粘着剤100重量部に対して30重量部以下程度としうる。 Examples of compounds having a carbon-carbon double bond in the molecule include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tetraethylene glycol di (meth) Acrylate and the like are included. The content of the radiation curable compound can be about 30 parts by weight or less with respect to 100 parts by weight of the pressure-sensitive adhesive.
 放射線重合開始剤の例には、メトキシアセトフェノン等のアセトフェノン系光重合開始剤;4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトンなどのα-ケトール化合物;ベンジルジメチルケタールなどのケタール系化合物;ベンゾイン、ベンゾインメチルエーテルなどのベンゾイン系光重合開始剤;ベンゾフェノン、ベンゾイル安息香酸などのベンゾフェノン系光重合開始剤が含まれる。 Examples of radiation polymerization initiators include: acetophenone photopolymerization initiators such as methoxyacetophenone; α-ketol compounds such as 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone; benzyldimethyl ketal A benzoin photopolymerization initiator such as benzoin and benzoin methyl ether; and a benzophenone photopolymerization initiator such as benzophenone and benzoylbenzoic acid.
 放射線硬化型粘着剤は、必要に応じて架橋剤をさらに含んでもよい。架橋剤の例には、ジフェニルメタンジイソシアネート、トリレンジイソシアネート、ヘキサメチレンジイソシアネート、ポリイソシアネートなどのイソシアネート系架橋剤が含まれる。 The radiation curable pressure-sensitive adhesive may further contain a crosslinking agent as required. Examples of the crosslinking agent include isocyanate crosslinking agents such as diphenylmethane diisocyanate, tolylene diisocyanate, hexamethylene diisocyanate, and polyisocyanate.
 粘着層(C)の厚みは、軟化層(B)によるリム形成が阻害されない程度であればよく、例えば、軟化層(B)の厚みに対して1~20%程度、具体的には1~20μm程度としうる。 The thickness of the pressure-sensitive adhesive layer (C) is not limited as long as the rim formation by the softened layer (B) is not hindered, for example, about 1 to 20% with respect to the thickness of the softened layer (B). It can be about 20 μm.
 軽粘着層(D)について
 本発明の半導体ウエハ表面保護用フィルムは、基材層(A)と軟化層(B)とを互いに剥離可能に接着させるための軽粘着層(D)を有していてもよい。軽粘着層(D)の材質の例には、アクリル系粘着剤などが含まれる。
About light adhesion layer (D) The film for semiconductor wafer surface protections of this invention has the light adhesion layer (D) for adhere | attaching a base material layer (A) and a softening layer (B) so that peeling is mutually possible. May be. Examples of the material of the light pressure-sensitive adhesive layer (D) include an acrylic pressure-sensitive adhesive.
 本発明の半導体ウエハ表面保護用フィルムが軽粘着層(D)を有していると、基材層(A)と軟化層(B)とが互いに剥離可能となる。従って、半導体ウエハ表面保護用フィルムを半導体ウエハに貼り付けた後に、半導体ウエハ表面保護用フィルムから基材層(A)を剥離除去することができる。例えば、半導体ウエハの外周に半導体表面保護用フィルムの隆起部を形成する工程(図2C参照)の後であって、半導体ウエハの回路非形成面を研削する工程(図2E参照)の前に、基材層(A)を半導体ウエハ表面保護用フィルムから剥離除去してもよい。 If the film for protecting a semiconductor wafer surface of the present invention has a light adhesive layer (D), the base material layer (A) and the softened layer (B) can be separated from each other. Therefore, the base material layer (A) can be peeled and removed from the semiconductor wafer surface protective film after the semiconductor wafer surface protective film is attached to the semiconductor wafer. For example, after the step (see FIG. 2C) of forming the raised portion of the semiconductor surface protection film on the outer periphery of the semiconductor wafer, before the step of grinding the circuit non-formation surface of the semiconductor wafer (see FIG. 2E), The base material layer (A) may be peeled off from the semiconductor wafer surface protecting film.
 基材層(A)を剥離してから半導体ウエハの回路非形成面を研削すると、より精密な研削が実現されうる。半導体ウエハの研削中に、半導体ウエハ表面保護用フィルムが、研削砥石の荷重により撓んだり、振動したりすることで、精密な研削が阻害されることがある。これに対して、基材層(A)を剥離して半導体ウエハ表面保護用フィルムを薄層化してから半導体ウエハを研削すると、半導体ウエハ表面保護用フィルムの撓みや振動が抑制される。そのため、より精密な研削が実現されうる。 If the non-circuit-formed surface of the semiconductor wafer is ground after the substrate layer (A) is peeled off, more precise grinding can be realized. During grinding of the semiconductor wafer, the semiconductor wafer surface protecting film may be bent or vibrated by the load of the grinding wheel, thereby preventing precise grinding. On the other hand, when the semiconductor wafer is ground after the substrate layer (A) is peeled off and the semiconductor wafer surface protective film is thinned, bending and vibration of the semiconductor wafer surface protective film are suppressed. Therefore, more precise grinding can be realized.
 本発明の半導体ウエハ表面保護用フィルムは、必要に応じて他の層をさらに含んでもよい。他の層は、例えば離型フィルムなどであってよい。 The semiconductor wafer surface protecting film of the present invention may further include other layers as necessary. The other layer may be a release film, for example.
 前述の通り、半導体ウエハ表面保護用フィルムは、基材層(A)と、軟化層(B)とを含む。基材層(A)は、半導体ウエハ表面保護用フィルムの最表面に配置されることが好ましい。半導体ウエハ表面保護用フィルムが粘着層(C)をさらに含む場合、粘着層(C)は、基材層(A)とは反対側の最表面に配置されることが好ましい。軟化層(B)は、単層であっても複数の層であってもよい。 As described above, the semiconductor wafer surface protecting film includes a base material layer (A) and a softening layer (B). The substrate layer (A) is preferably disposed on the outermost surface of the semiconductor wafer surface protecting film. When the semiconductor wafer surface protecting film further includes an adhesive layer (C), the adhesive layer (C) is preferably disposed on the outermost surface opposite to the base material layer (A). The softening layer (B) may be a single layer or a plurality of layers.
 図1Aと図1Bは、半導体ウエハ表面保護用フィルムの構成の一例を示す図である。図1Aに示されるように、半導体ウェハ表面保護用フィルム10は、基材層(A)12と、軟化層(B)14と、粘着層(C)16とを有する。図1Bに示されるように、半導体ウェハ表面保護用フィルム10’は、基材層(A)12と、軽粘着層(D)18と、軟化層(B)14と、粘着層(C)16とを有する。半導体ウエハ表面保護用フィルム10および10’は、粘着層(C)16が半導体ウエハの回路形成面に接するようにして用いられる。 FIG. 1A and FIG. 1B are diagrams showing an example of the structure of a semiconductor wafer surface protecting film. As shown in FIG. 1A, the semiconductor wafer surface protecting film 10 includes a base material layer (A) 12, a softening layer (B) 14, and an adhesive layer (C) 16. As shown in FIG. 1B, the semiconductor wafer surface protecting film 10 ′ includes a base material layer (A) 12, a light adhesive layer (D) 18, a softening layer (B) 14, and an adhesive layer (C) 16. And have. The semiconductor wafer surface protecting films 10 and 10 ′ are used so that the adhesive layer (C) 16 is in contact with the circuit forming surface of the semiconductor wafer.
 本発明の半導体ウエハ表面保護用フィルムは、任意の方法で製造することができる。例えば、1)基材層(A)と軟化層(B)とを共押出成形して半導体ウエハ表面保護用フィルムを得る方法(共押出形成法);2)フィルム状の基材層(A)と、フィルム状の軟化層(B)とをラミネート(積層)して半導体ウエハ表面保護用フィルムを得る方法(ラミネート法)などがある。粘着層(C)をさらに含む半導体ウエハ表面保護用フィルムは、基材層(A)と軟化層(B)の積層フィルム上に粘着層用塗布液を塗布形成することによって製造することができる。 The semiconductor wafer surface protecting film of the present invention can be produced by any method. For example, 1) a method of coextruding a base material layer (A) and a softening layer (B) to obtain a film for protecting a semiconductor wafer surface (coextrusion forming method); 2) a film-like base material layer (A) And a film-like softening layer (B) are laminated (laminated) to obtain a semiconductor wafer surface protecting film (laminate method). The semiconductor wafer surface protecting film further including the adhesive layer (C) can be produced by coating and forming an adhesive layer coating solution on the laminated film of the base layer (A) and the softened layer (B).
 2.半導体装置の製造方法
 本発明の半導体ウエハ表面保護用フィルムを用いた半導体装置の製造方法の一例は、1)半導体ウエハ表面保護用フィルム上に半導体ウエハを配置する工程(マウンタ工程)と、2)半導体ウエハの外周に、半導体ウエハを保持する半導体ウエハ表面保護用フィルムの隆起部を形成する工程(プレス工程)と、3)隆起部によって保持された半導体ウエハの回路非形成面を研削する工程と、4)半導体ウエハ表面保護用フィルムを剥離する工程とを含む。本発明における3)半導体ウエハ表面保護用フィルムによって保持された半導体ウエハの回路非形成面を研削する工程とは、半導体ウエハを割ったり、破損したりすることなく、所定の厚みまで薄化加工することを意味する。これらの工程を行った後、半導体ウエハをダイシングしてチップ化する工程などをさらに行ってもよい。
2. 1. Manufacturing Method of Semiconductor Device An example of a manufacturing method of a semiconductor device using the semiconductor wafer surface protecting film of the present invention is as follows: 1) a step of placing a semiconductor wafer on the semiconductor wafer surface protecting film (mounter step), and 2) A step of forming a raised portion of a semiconductor wafer surface protecting film for holding the semiconductor wafer on the outer periphery of the semiconductor wafer (pressing step); and 3) a step of grinding a non-circuit-formed surface of the semiconductor wafer held by the raised portion; 4) The process of peeling the film for semiconductor wafer surface protections is included. In the present invention, 3) the step of grinding the non-circuit-formed surface of the semiconductor wafer held by the semiconductor wafer surface protection film is a process of thinning the semiconductor wafer to a predetermined thickness without breaking or damaging the semiconductor wafer. Means that. After performing these steps, a step of dicing the semiconductor wafer into chips may be further performed.
 半導体ウエハ表面保護用フィルムを用いた半導体装置の製造方法の他の例は、1')半導体ウエハを用意する工程と、2')半導体ウエハの外周に実質的に樹脂からなる隆起部を形成する工程と、3')半導体ウエハ表面保護用フィルム上に半導体ウエハの回路形成面を配置する工程と、4')隆起部によって保持された半導体ウエハの回路非形成面を研削する工程と、5')半導体ウエハ表面保護用フィルムを剥離する工程とを含む。2')隆起部を形成する工程と、3')半導体ウエハ表面保護用フィルム上に半導体ウエハの回路形成面を配置する工程とは、どちらを先に行ってもよい。 Another example of a method for manufacturing a semiconductor device using a semiconductor wafer surface protecting film is as follows: 1 ′) a step of preparing a semiconductor wafer; and 2 ′) a raised portion made substantially of resin on the outer periphery of the semiconductor wafer. A step, 3 ′) a step of disposing a circuit forming surface of the semiconductor wafer on the semiconductor wafer surface protecting film, 4 ′) a step of grinding the non-circuit forming surface of the semiconductor wafer held by the raised portions, and 5 ′. And a step of peeling the semiconductor wafer surface protecting film. Either 2 ′) the step of forming the raised portion or 3 ′) the step of disposing the circuit forming surface of the semiconductor wafer on the semiconductor wafer surface protecting film may be performed first.
 2’)工程において、半導体ウエハの外周に形成される実質的に樹脂からなる隆起部は、半導体ウエハ表面保護用フィルムを構成する材料とは異なる樹脂材料によって構成されていてもよい。この場合に、半導体ウエハ表面保護用フィルムは前述の本発明の半導体ウエハ表面保護用フィルムに限定されず、一般的に用いられる半導体ウエハ表面保護フィルムであってもよい。実質的に樹脂からなる隆起部の貯蔵弾性率G(40)が10MPa以上であればよく;また、貯蔵弾性率G(100)が、1MPa以上であることが好ましい。 In the step 2 ′), the raised portion substantially made of resin formed on the outer periphery of the semiconductor wafer may be made of a resin material different from the material constituting the film for protecting the semiconductor wafer surface. In this case, the semiconductor wafer surface protective film is not limited to the above-described semiconductor wafer surface protective film of the present invention, and may be a commonly used semiconductor wafer surface protective film. The storage elastic modulus G B (40) of the bulging portion substantially made of resin may be 10 MPa or more; and the storage elastic modulus G B (100) is preferably 1 MPa or more.
 また2’)工程を経て形成される半導体ウエハとその外周に配置された実質的に樹脂からなる隆起部(リム)の組み合わせを、リム付き半導体ウエハともいう。リム付き半導体ウエハは、半導体ウエハと実質的に樹脂からなる隆起部とを含んでいればよく;半導体ウエハと実質的に樹脂からなる隆起部と、それらを支持する半導体ウエハ表面保護用フィルムを有していてもよい。半導体ウエハ表面保護用フィルムは、半導体ウエハの回路形成面に貼り付けられている。 Also, the combination of the semiconductor wafer formed through the process 2 'and the raised portion (rim) substantially made of resin disposed on the outer periphery thereof is also referred to as a rim-attached semiconductor wafer. The semiconductor wafer with a rim has only to include a semiconductor wafer and a bulge portion substantially made of a resin; it has a bulge portion substantially made of a semiconductor wafer and a resin, and a semiconductor wafer surface protection film that supports them. You may do it. The semiconductor wafer surface protecting film is affixed to the circuit forming surface of the semiconductor wafer.
 また、6')半導体ウエハを囲むようにリングフレーム(図2Bにおける符号30を参照)を配置する工程を含んでいてもよい。リングフレームを配置する工程は、1')半導体ウエハを用意する工程の後であって、4')研削する工程よりも前であればよい。また、リングフレーム(図2Bにおける符号30を参照)と半導体ウエハとの隙間に、隆起部があればよい。 Further, 6 ′) a step of arranging a ring frame (see reference numeral 30 in FIG. 2B) so as to surround the semiconductor wafer may be included. The step of disposing the ring frame may be performed after 1 ′) preparing the semiconductor wafer and before 4 ′) grinding. Further, it is only necessary to have a raised portion in the gap between the ring frame (see reference numeral 30 in FIG. 2B) and the semiconductor wafer.
 リム付き半導体ウエハにおいて、隆起部と半導体ウエハの縁との間隔は、0~1mmであることが好ましく、0~500μmであることがより好ましく、隆起部と半導体ウエハの縁とが接していることがさらに好ましい。隆起部が半導体ウエハを保持するためである。 In the semiconductor wafer with a rim, the distance between the raised portion and the edge of the semiconductor wafer is preferably 0 to 1 mm, more preferably 0 to 500 μm, and the raised portion and the edge of the semiconductor wafer are in contact with each other. Is more preferable. This is because the raised portion holds the semiconductor wafer.
 半導体ウエハは、特に制限されず、表面に配線、キャパシタ、ダイオードまたはトランジスタなどの回路が形成されたシリコン基板またはサファイア基板などでありうる。本願発明の半導体ウエハ表面保護用フィルムなどで半導体ウエハの外周に隆起部(リム)を形成しウエハの回路非形成面を研磨することにより、モース硬度8以上の高硬度材料基板を含む半導体ウエハであっても、半導体ウエハの破損を抑制することができる。また、本願発明の半導体ウエハは、サファイア基板上にGaNなどの半導体層を積層したものであってもよい。LED素子などの半導体装置を製造する場合には、好ましくは回路が形成されたサファイア基板が用いられる。半導体ウエハのサイズは、特に制限されず、2インチ、4インチ、6インチ、8インチなどでありうる。半導体ウエハの回路形成面には、1μm~50μmの段差が設けられている。 The semiconductor wafer is not particularly limited, and may be a silicon substrate or a sapphire substrate on which a circuit such as a wiring, a capacitor, a diode, or a transistor is formed on the surface. A semiconductor wafer including a high-hardness material substrate having a Mohs hardness of 8 or more is formed by forming a raised portion (rim) on the outer periphery of the semiconductor wafer with the film for protecting the surface of the semiconductor wafer of the present invention and polishing the non-circuit-formed surface of the wafer. Even if it exists, damage to the semiconductor wafer can be suppressed. Further, the semiconductor wafer of the present invention may be one in which a semiconductor layer such as GaN is stacked on a sapphire substrate. When manufacturing a semiconductor device such as an LED element, a sapphire substrate on which a circuit is formed is preferably used. The size of the semiconductor wafer is not particularly limited, and may be 2 inches, 4 inches, 6 inches, 8 inches, or the like. A step of 1 μm to 50 μm is provided on the circuit forming surface of the semiconductor wafer.
 半導体ウエハの周囲に形成される半導体ウエハ表面保護用フィルムの隆起部(リム)とは、半導体ウエハの外周に形成され、かつ半導体ウエハの端部を保持する部位である。半導体ウエハ表面保護用フィルムの隆起部は、半導体ウエハ表面保護用フィルム自体で構成されてもよいし;半導体ウエハ表面保護用フィルムを構成する材料とは異なる材料によって構成されてもよい。 The raised portion (rim) of the semiconductor wafer surface protecting film formed around the semiconductor wafer is a portion formed on the outer periphery of the semiconductor wafer and holding the end portion of the semiconductor wafer. The raised portion of the semiconductor wafer surface protecting film may be composed of the semiconductor wafer surface protecting film itself; or may be composed of a material different from the material constituting the semiconductor wafer surface protecting film.
 半導体ウエハ表面保護用フィルムを構成する材料とは異なる樹脂材料によって隆起部を構成するには、例えば以下の方法がある。各方法において、半導体ウエハは、半導体ウエハ表面保護用フィルムにマウントされた半導体ウエハであってもよし、マウントされる前の半導体ウエハであってもよい。
 方法1)図8Aに示されるように、半導体ウエハ20の周囲に、ディスペンサー100などの塗布装置で、液状接着剤105を塗布して硬化させる方法
 方法2)図8Bに示されるように、半導体ウエハ20を、半導ウエハ20の径とほぼ同じ径の貫通孔を有する樹脂製リング110に挿入する方法
 方法3)図8Cに示されるように、半導体ウエハ20を挿入した金型120のキャビティ125に、溶融樹脂を注入して、冷却固化して半導体ウエハの周囲に樹脂成形する方法
For example, the following method can be used to form the raised portion with a resin material different from the material constituting the semiconductor wafer surface protecting film. In each method, the semiconductor wafer may be a semiconductor wafer mounted on a semiconductor wafer surface protecting film, or may be a semiconductor wafer before being mounted.
Method 1) As shown in FIG. 8A, a method of applying and curing the liquid adhesive 105 around the semiconductor wafer 20 with a coating apparatus such as a dispenser 100. Method 2) As shown in FIG. 8B, the semiconductor wafer 20 is inserted into a resin ring 110 having a through hole having substantially the same diameter as that of the semiconductor wafer 20. Method 3) As shown in FIG. 8C, in the cavity 125 of the mold 120 into which the semiconductor wafer 20 is inserted. , A method of injecting molten resin, cooling and solidifying, and molding the resin around the semiconductor wafer
 方法1)において、ディスペンサー100で塗布する液状接着剤105の塗布時(硬化前)の粘度は約1~500Pa・sであればよく;接着剤105の硬化物の貯蔵弾性率G(40)が10MPa以上であればよく;また、貯蔵弾性率G(100)が、1MPa以上であることが好ましい。つまり、接着剤105の硬化物は、前述の半導体ウエハ表面保護用フィルムにおける軟化層(B)と同様の弾性率を有するものが好ましい。液状接着剤105の例には、エポキシ樹脂、アクリル樹脂、ウレタン樹脂、フェノール樹脂などが含まれる。 In the method 1), the viscosity at the time of application of the liquid adhesive 105 is applied by the dispenser 100 (before curing) may be about 1 ~ 500 Pa · s; the storage modulus of the cured product of the adhesive 105 G B (40) The storage elastic modulus G B (100) is preferably 1 MPa or more. That is, the cured product of the adhesive 105 preferably has an elastic modulus similar to that of the softened layer (B) in the semiconductor wafer surface protecting film described above. Examples of the liquid adhesive 105 include epoxy resin, acrylic resin, urethane resin, phenol resin, and the like.
 方法2)において、半導ウエハ20の径と同径の貫通孔を有する樹脂製リング110の貯蔵弾性率G(40)が10MPa以上であればよく:また、貯蔵弾性率G(100)が、1MPa以上であることが好ましい。つまり、前述の半導体ウエハ表面保護用フィルムにおける軟化層(B)と同様の弾性率を有するものが好ましい。樹脂製リング110を構成する樹脂の例には、ポリエチレン(高密度ポリエチレン、低密度ポリエチレンなど)、ポリプロピレン(ホモポリプロピレン、ランダムポリプロピレンなど)、ポリスチレン、ナイロンなどが含まれる。 In the method 2), the storage elastic modulus G B (40) of the resin ring 110 having a through-hole having the same diameter as that of the semiconductor wafer 20 may be 10 MPa or more: the storage elastic modulus G B (100) Is preferably 1 MPa or more. That is, a material having the same elastic modulus as that of the softened layer (B) in the aforementioned semiconductor wafer surface protecting film is preferable. Examples of the resin constituting the resin ring 110 include polyethylene (high density polyethylene, low density polyethylene, etc.), polypropylene (homopolypropylene, random polypropylene, etc.), polystyrene, nylon, and the like.
 方法3)において、金型120のキャビティ125に注入する溶融樹脂はエポキシ樹脂などであればよく、冷却固化後の溶融樹脂の貯蔵弾性率G(40)が10MPa以上であればよく;また、貯蔵弾性率G(100)が、1MPa以上であることが好ましい。つまり、前述の半導体ウエハ表面保護用フィルムにおける軟化層(B)と同様の弾性率を有するものが好ましい。 In the method 3), the molten resin to be injected into the cavity 125 of the mold 120 may be an epoxy resin or the like, and the storage elastic modulus G B (40) of the molten resin after cooling and solidification may be 10 MPa or more; The storage elastic modulus G B (100) is preferably 1 MPa or more. That is, a material having the same elastic modulus as that of the softened layer (B) in the aforementioned semiconductor wafer surface protecting film is preferable.
 このように、半導体ウエハの周囲に形成される隆起部(リム)は、任意の方法で行うことができるが、比較的容易に隆起部(リム)を形成でき、かつハンドリングしやすいことから、本発明の半導体ウエハ表面保護用フィルムを熱圧着して形成することが好ましい。 As described above, the raised portion (rim) formed around the semiconductor wafer can be formed by any method, but the raised portion (rim) can be formed relatively easily and is easy to handle. The semiconductor wafer surface protecting film of the invention is preferably formed by thermocompression bonding.
 隆起部の100℃における貯蔵弾性率G(100)は、1MPa以上であることが好ましい。隆起部は、後述の通り、半導体ウエハ表面保護用フィルムを用いて隆起部を作る場合は前記フィルムの軟化層(B)で構成されるので;その場合には、隆起部の貯蔵弾性率は、軟化層(B)の貯蔵弾性率と同様になる。また後述する半導体ウエハの裏面研削工程において、砥石が隆起部と接触して破損しにくく、砥石が効率的に半導体ウエハの回路非形成面と接触できるように、隆起部(リム)はある程度柔軟な樹脂で実質的に形成されているのが好ましい。 The storage elastic modulus G (100) at 100 ° C. of the raised portion is preferably 1 MPa or more. As described later, when the bulge is made of a softened layer (B) of the film when the bulge is made using a semiconductor wafer surface protecting film, as described later, in that case, the storage elastic modulus of the bulge is It becomes the same as the storage elastic modulus of the softened layer (B). Further, in the backside grinding process of the semiconductor wafer, which will be described later, the ridge is somewhat flexible so that the grindstone is not easily damaged due to contact with the bulge, and the grindstone can efficiently contact the non-circuit-formed surface of the semiconductor wafer. It is preferably substantially formed of a resin.
 本発明の半導体ウエハ表面保護用フィルムを用いた半導体装置の製造方法の一例を、図を参照しながら説明する。図2Aは半導体ウエハ表面保護用フィルム上に半導体ウエハを配置する工程(マウント工程)の一例を示す図であり;図2Bは半導体ウエハ表面保護用フィルム上に半導体ウエハを配置した積層物を示す図であり;図2Cは半導体ウエハの外周に半導体表面保護用フィルムの隆起部を形成する工程(プレス工程)の一例を示す図であり;図2Dは隆起部の一例を示す拡大図であり;図2Eは半導体ウエハの回路非形成面を研削する工程の一例を示す図である。 An example of a method for manufacturing a semiconductor device using the semiconductor wafer surface protecting film of the present invention will be described with reference to the drawings. FIG. 2A is a diagram showing an example of a process (mounting process) for placing a semiconductor wafer on the semiconductor wafer surface protecting film; FIG. 2B is a diagram showing a laminate in which the semiconductor wafer is placed on the semiconductor wafer surface protecting film. FIG. 2C is a view showing an example of a step (pressing step) of forming a raised portion of the semiconductor surface protecting film on the outer periphery of the semiconductor wafer; FIG. 2D is an enlarged view showing an example of the raised portion; 2E is a diagram illustrating an example of a process of grinding a circuit non-formation surface of a semiconductor wafer.
 マウント工程について
 半導体ウエハ表面保護用フィルム上に半導体ウエハを配置する例が、図2Aに示される。まず、半導体ウエハ20よりも大きいサイズに切り出した半導体ウエハ表面保護用フィルム10を準備する。次いで、半導体ウエハ20を、半導体ウエハ表面保護用フィルム10上に配置する(1)の工程)。このとき、半導体ウエハ20の回路形成面20Aが、半導体ウエハ表面保護用フィルム10の粘着層(C)16と接するようにする。
About a mounting process The example which arrange | positions a semiconductor wafer on the film for semiconductor wafer surface protections is shown by FIG. 2A. First, the semiconductor wafer surface protecting film 10 cut out to a size larger than the semiconductor wafer 20 is prepared. Next, the semiconductor wafer 20 is placed on the semiconductor wafer surface protecting film 10 (step (1)). At this time, the circuit forming surface 20A of the semiconductor wafer 20 is brought into contact with the adhesive layer (C) 16 of the semiconductor wafer surface protecting film 10.
 具体的には、ホットプレート40の上に、半導体ウエハ20と、半導体ウエハ20を囲うリングフレーム30とを載置する。さらに、半導体ウエハ20およびリングフレーム30の上に、半導体ウエハ表面保護用フィルム10を載置する。このとき、半導体ウエハ20の回路形成面20Aと半導体ウエハ表面保護用フィルム10の粘着層(C)16とを接触させる。 Specifically, the semiconductor wafer 20 and the ring frame 30 surrounding the semiconductor wafer 20 are placed on the hot plate 40. Further, the semiconductor wafer surface protecting film 10 is placed on the semiconductor wafer 20 and the ring frame 30. At this time, the circuit forming surface 20A of the semiconductor wafer 20 and the adhesive layer (C) 16 of the semiconductor wafer surface protecting film 10 are brought into contact with each other.
 そして、ロール35を回転させながら半導体ウエハ表面保護用フィルム10の一方の端部からもう一方の端部に亘って、半導体ウエハ20に押し当てる。それにより、半導体ウエハ20の回路形成面20Aに半導体ウエハ表面保護用フィルム10に密着する。ロール35で半導体ウエハ表面保護用フィルム10を半導体ウエハ20に押し当てる間、ホットプレート40は常温のままであってもよいが;ホットプレート40を加温して、半導体ウエハ表面保護用フィルム10を温度(TM)になるまで加熱してもよい。 Then, the roll 35 is pressed against the semiconductor wafer 20 from one end of the semiconductor wafer surface protecting film 10 to the other end while rotating the roll 35. Thereby, the semiconductor wafer surface protective film 10 is in close contact with the circuit forming surface 20A of the semiconductor wafer 20. While the semiconductor wafer surface protection film 10 is pressed against the semiconductor wafer 20 with the roll 35, the hot plate 40 may remain at room temperature; however, the hot plate 40 is heated to remove the semiconductor wafer surface protection film 10 from the hot plate 40. You may heat until it reaches temperature (TM).
 マウント工程における半導体ウエハ表面保護用フィルム10の温度(TM)は、半導体ウエハの外周に半導体表面保護用フィルムの隆起部を形成する工程(後述)における半導体ウエハ表面保護用フィルム10の温度(TP)と同温度であるか、またはそれよりも高温であることが好ましい。その理由の詳細は後述するが、隆起部を形成する工程において半導体ウエハ表面保護用フィルム10に皺が発生したり、隆起部を形成する工程後に、半導体ウエハ表面保護用フィルム10から半導体ウエハ20が剥離したりする場合があるためである。 The temperature (TM) of the semiconductor wafer surface protective film 10 in the mounting step is the temperature (TP) of the semiconductor wafer surface protective film 10 in the step (described later) of forming a raised portion of the semiconductor surface protective film on the outer periphery of the semiconductor wafer. It is preferable that the temperature is the same as or higher than that. Although the details of the reason will be described later, wrinkles occur in the semiconductor wafer surface protective film 10 in the step of forming the raised portions, or the semiconductor wafer 20 is removed from the semiconductor wafer surface protective film 10 after the step of forming the raised portions. This is because they may peel off.
 マウント工程後に、ホットプレート40から、半導体ウエハ20を、半導体ウエハ表面保護用フィルム10とリングフレーム30とともに取り外し、図2Bに示されるような半導体ウエハ表面保護用フィルム上に半導体ウエハが配置された積層物を得る。この積層物を、「マウントフレーム」という。 After the mounting process, the semiconductor wafer 20 is removed from the hot plate 40 together with the semiconductor wafer surface protection film 10 and the ring frame 30, and the semiconductor wafer is disposed on the semiconductor wafer surface protection film as shown in FIG. 2B. Get things. This laminate is referred to as a “mount frame”.
 プレス工程について
 次いで、図2Cに示されるように、半導体ウエハ20と半導体ウエハ表面保護用フィルム10とを、熱プレス機の一対の熱板(上熱板22-1と下熱板22-2)にて熱圧着する((2)の工程)。それにより、半導体ウエハ20を、溶融した軟化層(B)14に押し込み、それにより押し出された軟化層(B)14が、半導体ウエハ20の端部近傍に隆起部(リム)24を形成する。上熱板22-1とは、半導体ウエハ20の側に配置される熱板であり;下熱板22-2とは、半導体ウエハ保護フィルム10の側に配置される熱板である。上熱板22-1と半導体ウエハ20とは、直接接触してもよいし、何らかの部材(例えば治具など)を介していてもよい。同様に、下熱板22-2と半導体ウエハ保護フィルム10とは、直接接触してもよいし、何らかの部材(例えば治具など)を介していてもよい。
Next, as shown in FIG. 2C, the semiconductor wafer 20 and the semiconductor wafer surface protecting film 10 are bonded to a pair of hot plates (upper hot plate 22-1 and lower hot plate 22-2) of a hot press machine. Thermocompression bonding (step (2)). Thereby, the semiconductor wafer 20 is pushed into the melted softened layer (B) 14, and the softened layer (B) 14 pushed out thereby forms a raised portion (rim) 24 near the end of the semiconductor wafer 20. The upper heating plate 22-1 is a heating plate disposed on the semiconductor wafer 20 side; the lower heating plate 22-2 is a heating plate disposed on the semiconductor wafer protection film 10 side. The upper heating plate 22-1 and the semiconductor wafer 20 may be in direct contact with each other or via some member (for example, a jig). Similarly, the lower heating plate 22-2 and the semiconductor wafer protective film 10 may be in direct contact with each other or via some member (for example, a jig).
 隆起部(リム)24の高さは、例えば裏面研削される半導体ウエハ20の厚みの0.2倍~1倍程度であることが好ましい。隆起部(リム)24の高さが低すぎると、半導体ウエハ20の端部を安定に保持できないことがある。具体的には、厚み1000μmの半導体ウエハ20を裏面加工する場合、隆起部(リム)24の高さは、200μm以上であることが好ましい。また、図2Bでは、半導体ウエハ20の端部の角が除去されていない態様を示したが、半導体ウエハ20の端部に面取り加工(直線)やR加工(曲線)が施されて角が除去されていてもよい。半導体ウエハ20の端部に面取り加工(直線)やR加工(曲線)が施されている場合、隆起部(リム)24の高さは、面取り加工またはR加工後の半導体ウエハの端部の厚み相当分としてもよい。 The height of the raised portion (rim) 24 is preferably about 0.2 to 1 times the thickness of the semiconductor wafer 20 to be back-ground, for example. If the height of the raised portion (rim) 24 is too low, the end portion of the semiconductor wafer 20 may not be stably held. Specifically, when the back surface of the semiconductor wafer 20 having a thickness of 1000 μm is processed, the height of the raised portion (rim) 24 is preferably 200 μm or more. Further, FIG. 2B shows a mode in which the corner of the end portion of the semiconductor wafer 20 is not removed, but the end portion of the semiconductor wafer 20 is chamfered (straight) or R-processed (curved) to remove the corner. May be. When the end portion of the semiconductor wafer 20 is chamfered (straight) or R-processed (curved), the height of the raised portion (rim) 24 is the thickness of the end of the semiconductor wafer after chamfering or R-processing. It may be a substantial amount.
 熱圧着温度(熱圧着温度TP)やプレス圧力は、軟化層(B)14が溶融して隆起部(リム)24を形成しうる条件であればよい。具体的には、プレス圧は、1~10MPaであることが好ましく、3~10MPaであることがより好ましい。プレス時間は、例えば1~5分間程度としうる。熱圧着温度TPは、120~180℃の範囲であることが好ましく、130~170℃の範囲がより好ましく、150℃であることがさらに好ましい。熱圧着温度(TP)は、プレス機の一対の熱板(上熱板22-1と下熱板22-2)の平均温度をいう。 The thermocompression bonding temperature (thermocompression bonding temperature TP) and the press pressure may be any conditions that allow the softened layer (B) 14 to melt and form the raised portion (rim) 24. Specifically, the pressing pressure is preferably 1 to 10 MPa, and more preferably 3 to 10 MPa. The pressing time can be, for example, about 1 to 5 minutes. The thermocompression bonding temperature TP is preferably in the range of 120 to 180 ° C, more preferably in the range of 130 to 170 ° C, and further preferably 150 ° C. The thermocompression bonding temperature (TP) is an average temperature of a pair of hot plates (upper hot plate 22-1 and lower hot plate 22-2) of the press.
 さらに、熱圧着温度(TP)は、前述のマウント工程における半導体ウエハ表面保護用フィルム10の温度(TM)と同温度か、それよりも低いことが好ましい。プレス工程中の加熱によって、半導体ウエハ表面保護用フィルム10が熱膨張しようとするが;熱圧着温度(TP)がマウント工程における温度(TM)以下であると、プレス工程での半導体ウエハ表面保護用フィルム10の熱膨張の程度が、マウント工程での半導体ウエハ表面保護用フィルム10の熱膨張の程度と同程度であるか、それよりも小さくなる。マウント工程で十分に熱膨張させた半導体ウエハ表面保護用フィルム10を半導体ウェハに固定しているので、プレス工程において半導体ウエハ表面保護用フィルム10が熱膨張しにくくなり、しわが発生しにくくなる。一方で、熱圧着温度(TP)と温度(TM)とが適切に調整されていないと、半導体ウエハ表面保護用フィルム10の、半導体ウエハ20の周辺にしわが発生しやすい。 Furthermore, the thermocompression bonding temperature (TP) is preferably the same as or lower than the temperature (TM) of the semiconductor wafer surface protecting film 10 in the mounting step described above. The semiconductor wafer surface protecting film 10 is about to thermally expand by heating during the pressing process; if the thermocompression bonding temperature (TP) is equal to or lower than the temperature (TM) in the mounting process, the semiconductor wafer surface protecting film is used in the pressing process. The degree of thermal expansion of the film 10 is about the same as or smaller than the degree of thermal expansion of the semiconductor wafer surface protecting film 10 in the mounting step. Since the semiconductor wafer surface protecting film 10 that has been sufficiently thermally expanded in the mounting process is fixed to the semiconductor wafer, the semiconductor wafer surface protecting film 10 is less likely to thermally expand in the pressing process, and wrinkles are less likely to occur. On the other hand, if the thermocompression bonding temperature (TP) and the temperature (TM) are not properly adjusted, wrinkles are likely to occur around the semiconductor wafer 20 of the semiconductor wafer surface protecting film 10.
 さらには、プレス工程後に半導体ウエハ表面保護用フィルム10を冷却すると、半導体ウエハ表面保護用フィルム10と半導体ウエハ20とが剥離する(フィルム10から半導体ウエハ20が浮く)ことがあった。この剥離も、熱圧着温度(TP)をマウント工程における温度(TM)以下とすることで抑制される。このように半導体表面保護フィルムにしわを抑制することで、半導体ウエハの裏面研磨工程において、半導体ウエハをより割れにくくすることができる。 Furthermore, when the semiconductor wafer surface protecting film 10 is cooled after the pressing step, the semiconductor wafer surface protecting film 10 and the semiconductor wafer 20 may be separated (the semiconductor wafer 20 floats from the film 10). This peeling is also suppressed by setting the thermocompression bonding temperature (TP) to be equal to or lower than the temperature (TM) in the mounting process. Thus, by suppressing wrinkles in the semiconductor surface protective film, the semiconductor wafer can be made more difficult to break in the backside polishing process of the semiconductor wafer.
 また、熱圧着温度(TP)は、半導体ウエハ表面保護用フィルム10の軟化層(B)の軟化温度(TmB)よりも高いことが好ましい。熱圧着温度(TP)を軟化温度(TmB)以上とすることで軟化層(B)を軟化させ、隆起部(リム)24を形成しやすくする。一方で、熱圧着温度(TP)は「半導体ウエハ表面保護用フィルム10の軟化層(B)の軟化温度(TmB)+40℃」よりも低いことが好ましい。熱圧着温度(TP)が過剰に高いと、軟化層(B)を軟化させて形成した隆起部(リム)24の形状が保持できずに流動して扁平な形状になってしまうことがある。それにより、隆起部(リム)24の高さが低くなることがある。 The thermocompression bonding temperature (TP) is preferably higher than the softening temperature (TmB) of the softening layer (B) of the semiconductor wafer surface protecting film 10. By setting the thermocompression bonding temperature (TP) to be equal to or higher than the softening temperature (TmB), the softened layer (B) is softened and the raised portion (rim) 24 is easily formed. On the other hand, the thermocompression bonding temperature (TP) is preferably lower than “the softening temperature (TmB) + 40 ° C. of the softening layer (B) of the semiconductor wafer surface protecting film 10”. If the thermocompression bonding temperature (TP) is excessively high, the shape of the raised portion (rim) 24 formed by softening the softened layer (B) cannot be maintained and may flow and become a flat shape. Thereby, the height of the raised portion (rim) 24 may be lowered.
 また、前述の通り、熱圧着温度(TP)は、プレス機の一対の熱板(上熱板22-1と下熱板22-2)の平均温度をいう。上熱板22-1の温度(TP1)と下熱板22-2の温度(TP2)とは同一の温度としてもよいが、上熱板22-1の温度(TP1)を、下熱板22-2の温度(TP2)よりも高くすることが好ましい。熱圧着温度(TP)の温度が高いほど隆起部(リム)24が迅速に形成できるが、下熱板22-2の温度(TP2)が高いと隆起部(リム)24の形状が保持できずに流動して扁平化する。一方で、上熱板22-1と半導体ウエハ表面保護用フィルム10とは直接接触していない(両者の間に隙間がある)ので、上熱板22-1の温度(TP1)によって隆起部(リム)24の形状が扁平化しにくい。そこで、上熱板22-1の温度(TP1)を、下熱板22-2の温度(TP2)よりも高くすることで、隆起部(リム)24の形状を保持しつつ、迅速に隆起部(リム)24を形成することができる。 As described above, the thermocompression bonding temperature (TP) is an average temperature of a pair of hot plates (upper hot plate 22-1 and lower hot plate 22-2) of the press machine. The temperature (TP1) of the upper heating plate 22-1 and the temperature (TP2) of the lower heating plate 22-2 may be the same temperature, but the temperature (TP1) of the upper heating plate 22-1 is set to the lower heating plate 22-1. It is preferably higher than the temperature (TP2) of -2. As the temperature of the thermocompression bonding (TP) is higher, the raised portion (rim) 24 can be formed more quickly. However, if the temperature (TP2) of the lower heat plate 22-2 is higher, the shape of the raised portion (rim) 24 cannot be maintained. To flow and flatten. On the other hand, since the upper heating plate 22-1 and the semiconductor wafer surface protecting film 10 are not in direct contact (there is a gap between them), the raised portion (at the TP1) of the upper heating plate 22-1 ( The shape of the rim) 24 is difficult to flatten. Therefore, by setting the temperature (TP1) of the upper heating plate 22-1 to be higher than the temperature (TP2) of the lower heating plate 22-2, it is possible to quickly raise the raised portion while maintaining the shape of the raised portion (rim) 24. A (rim) 24 can be formed.
 具体的には、上熱板22-1の温度(TP1)は「半導体ウエハ表面保護用フィルム10の軟化層(B)の軟化温度(TmB)+20℃」よりも高く、「半導体ウエハ表面保護用フィルム10の軟化層(B)の軟化温度(TmB)+40℃」よりも低いことが好ましい。そして、下熱板22-2の温度(TP2)は「上熱板22-1の温度(TP1)-40℃」よりも高く、「上熱板22-1の温度(TP1)よりも低いことが好ましい。そうすると、熱圧着温度(TP)は「上熱板22-1の温度(TP1)-20℃」よりも高く、「上熱板22-1の温度(TP1)」よりも低いことが好ましい。 Specifically, the temperature (TP1) of the upper heating plate 22-1 is higher than “the softening temperature (TmB) + 20 ° C. of the softening layer (B) of the semiconductor wafer surface protection film 10”. It is preferably lower than the “softening temperature (TmB) + 40 ° C. of the softening layer (B) of the film 10”. The temperature (TP2) of the lower heating plate 22-2 is higher than “the temperature (TP1) of the upper heating plate 22-1−40 ° C.” and lower than the “temperature (TP1) of the upper heating plate 22-1”. In this case, the thermocompression bonding temperature (TP) is higher than the “temperature of the upper heating plate 22-1 (TP1) −20 ° C.” and lower than the “temperature of the upper heating plate 22-1 (TP1)”. preferable.
 隆起部(リム)24の高さは、図2Dに示されるように、半導体ウエハ表面保護用フィルム10の、半導体ウエハ20の回路形成面が接する面から隆起部(リム)24の頂点までの高さhとして定義される。隆起部(リム)24の高さは、半導体ウエハ20を剥がした後の半導体ウエハ表面保護用フィルム10の断面形状を、マイクロスコープで観察することによって測定することができる。 As shown in FIG. 2D, the height of the raised portion (rim) 24 is the height from the surface of the semiconductor wafer surface protection film 10 that contacts the circuit forming surface of the semiconductor wafer 20 to the apex of the raised portion (rim) 24. Is defined as h. The height of the raised portion (rim) 24 can be measured by observing the cross-sectional shape of the semiconductor wafer surface protecting film 10 after the semiconductor wafer 20 is peeled off with a microscope.
 隆起部(リム)24は、半導体ウエハ20の端部と必ずしも接していなくてもよいが、半導体ウエハ20の保持性を高めるためには、半導体ウエハ20の端部と接していることが好ましい。 The raised portion (rim) 24 may not necessarily be in contact with the end portion of the semiconductor wafer 20, but is preferably in contact with the end portion of the semiconductor wafer 20 in order to improve the retention of the semiconductor wafer 20.
 次いで、図2Eに示されるように、半導体ウェハ20とともに、半導体ウエハ表面保護用フィルム10をチャックテーブル26上にセットする。前述の通り、半導体ウエハ表面保護用フィルムは、基材層(A)と軟化層(B)との間に、軽粘着層(D)を有していてもよい(図1B参照)。軽粘着層(D)がある場合には、基材層(A)を除去してから、半導体ウエハ表面保護用フィルム10をチャックテーブル26上にセットしてもよい。 Next, as shown in FIG. 2E, the semiconductor wafer surface protecting film 10 is set on the chuck table 26 together with the semiconductor wafer 20. As described above, the semiconductor wafer surface protecting film may have a light adhesive layer (D) between the base material layer (A) and the softened layer (B) (see FIG. 1B). When the light adhesive layer (D) is present, the semiconductor wafer surface protecting film 10 may be set on the chuck table 26 after removing the base material layer (A).
 そして、半導体ウエハの回路非形成面(裏面)20Bを、ウエハの厚みが一定以下になるまで砥石28で研削する((3)の工程)。裏面研削後の半導体ウエハの厚みは、例えば300μm以下、好ましくは100μm以下としうる。研削加工は、砥石による機械的な研削加工である。研削方式は、特に制限されず、スルーフィード式、インフィード式等の公知の研削方式であってよい。研削加工は、湿式研削(ウェットポリシング)だけでなく、乾式研削(ドライポリシング)をさらに行ってもよい。 Then, the non-circuit-formed surface (back surface) 20B of the semiconductor wafer is ground with the grindstone 28 until the wafer thickness becomes a certain value or less (step (3)). The thickness of the semiconductor wafer after back grinding can be, for example, 300 μm or less, preferably 100 μm or less. The grinding process is a mechanical grinding process using a grindstone. The grinding method is not particularly limited, and may be a known grinding method such as a through-feed method or an in-feed method. The grinding may be performed not only by wet grinding (wet polishing) but also by dry grinding (dry polishing).
 次いで、半導体ウエハ表面保護用フィルム10を常温で剥離する((4)の工程)。半導体ウエハ表面保護用フィルム10の剥離は、例えば公知のテープ剥がし機によって行うことができる。そして、半導体ウエハ表面保護用フィルム10が、放射線硬化型の粘着層(C)を含む場合、半導体ウエハ表面保護用フィルム10に放射線を照射して粘着層(C)を硬化させ、半導体ウエハ表面保護用フィルム10を半導体ウエハ20から剥離する。 Next, the semiconductor wafer surface protecting film 10 is peeled off at room temperature (step (4)). The semiconductor wafer surface protecting film 10 can be peeled off by, for example, a known tape peeling machine. When the semiconductor wafer surface protecting film 10 includes a radiation curable adhesive layer (C), the semiconductor wafer surface protecting film 10 is irradiated with radiation to cure the adhesive layer (C), thereby protecting the semiconductor wafer surface. The film 10 is peeled from the semiconductor wafer 20.
 半導体ウエハの裏面研削を行う工程(3)と、半導体ウエハから半導体ウエハ表面保護用フィルムを剥離する工程(4)との間において、必要に応じて半導体ウエハの回路非形成面(裏面)を加工する工程が含まれていてもよい。半導体ウエハの回路非形成面(裏面)を加工する工程は、例えばメタルスパッタリング工程、メッキ処理工程および加熱処理工程からなる群より選ばれる工程をさらに行ってもよい。加熱処理工程は、例えばダイボンディングテープを加温下で貼り付ける工程などでありうる。そして、半導体ウエハをダイシングする。あるいは、半導体ウエハ表面保護用フィルム10を剥離することなく、半導体ウエハをダイシングしてもよい。 If necessary, the non-circuit-formed surface (back surface) of the semiconductor wafer is processed between the step (3) of grinding the back surface of the semiconductor wafer and the step (4) of peeling the film for protecting the semiconductor wafer surface from the semiconductor wafer. The process to do may be included. The process of processing the circuit non-formation surface (back surface) of the semiconductor wafer may further perform, for example, a process selected from the group consisting of a metal sputtering process, a plating process, and a heat treatment process. The heat treatment step can be, for example, a step of applying a die bonding tape under heating. Then, the semiconductor wafer is diced. Alternatively, the semiconductor wafer may be diced without peeling off the semiconductor wafer surface protecting film 10.
 本発明の半導体ウエハ表面保護用フィルムは、半導体ウエハと所定の条件で熱圧着させることで、半導体ウエハの外周に、半導体ウエハ表面保護用フィルムの隆起部(リム)を形成することができる。また、本発明の半導体ウエハ表面保護用フィルムによって形成された隆起部(リム)は、裏面研削時の半導体ウエハの到達温度(約40℃程度)においても溶融しないため、良好に形状を維持できる。そのため、半導体ウエハの裏面研削時において、半導体ウエハの端部を隆起部(リム)によって安定に保持し続けることができ、砥石との接触による半導体ウエハの端部の破損を抑制することができる。そのため、半導体ウエハが硬くて脆いサファイア基板であっても、基板を破損することなく裏面研削できる。 The semiconductor wafer surface protective film of the present invention can be formed on a semiconductor wafer surface protective film with a raised portion (rim) on the outer periphery of the semiconductor wafer by thermocompression bonding with the semiconductor wafer under predetermined conditions. Further, the raised portion (rim) formed by the semiconductor wafer surface protecting film of the present invention does not melt even at the ultimate temperature (about 40 ° C.) of the semiconductor wafer at the time of back grinding, so that the shape can be maintained satisfactorily. Therefore, at the time of grinding the back surface of the semiconductor wafer, the end portion of the semiconductor wafer can be stably held by the raised portion (rim), and damage to the end portion of the semiconductor wafer due to contact with the grindstone can be suppressed. Therefore, even if the semiconductor wafer is a hard and brittle sapphire substrate, the back surface can be ground without damaging the substrate.
 さらに、半導体ウエハ表面保護用フィルムが放射線により硬化する粘着層(C)を含む場合、半導体ウエハ表面保護用フィルムに放射線を照射することで、半導体ウエハ表面保護用フィルムを容易に剥離することができる。このように、従来のワックス工法のように、ワックス樹脂が付着した半導体ウエハを洗浄する必要がないため、工程を簡略化することができる。 Further, when the semiconductor wafer surface protective film includes an adhesive layer (C) that is cured by radiation, the semiconductor wafer surface protective film can be easily peeled by irradiating the semiconductor wafer surface protective film with radiation. . In this manner, unlike the conventional wax method, it is not necessary to clean the semiconductor wafer to which the wax resin is attached, so that the process can be simplified.
 マウント工程の他の実施形態について
 前述のように、マウント工程では、枠を有するリングフレーム30の内部に半導体ウエハ20を配置し;半導体ウエハ20の一方の面(通常は回路が形成されている面20A)と、リングフレーム30とにわたって、半導体ウエハ表面保護用フィルム10を貼り付ける(図2A参照)。このとき、リングフレーム30と、リングフレーム30の内部に配置される半導体ウエハ20との隙間が大きいと、半導体ウエハ20とリングフレーム30との間で半導体ウエハ保護用フィルムが弛むことがある。そのため、リングフレーム30と半導体ウエハ20との間に、リング状補助部材50を配置することが好ましい(図5AおよびB参照)。
Other Embodiments of Mounting Process As described above, in the mounting process, the semiconductor wafer 20 is arranged inside the ring frame 30 having a frame; one surface of the semiconductor wafer 20 (usually a surface on which a circuit is formed). 20A) and the ring frame 30, the semiconductor wafer surface protecting film 10 is attached (see FIG. 2A). At this time, if the gap between the ring frame 30 and the semiconductor wafer 20 disposed inside the ring frame 30 is large, the semiconductor wafer protection film may loosen between the semiconductor wafer 20 and the ring frame 30. Therefore, it is preferable to arrange the ring-shaped auxiliary member 50 between the ring frame 30 and the semiconductor wafer 20 (see FIGS. 5A and 5B).
 半導体ウエハ20の外直径DWと、リングフレーム30の内直径DAINと、リング状補助部材50のリング外直径DBOUTと、リング状補助部材50のリング内直径DBINとが、式(1) DW<DBIN<DBOUT<DAIN の関係を満たす(図5A参照)。 The outer diameter DW of the semiconductor wafer 20, the inner diameter DA IN of the ring frame 30, the ring outer diameter DB OUT of the ring-shaped auxiliary member 50, and the ring inner diameter DB IN of the ring-shaped auxiliary member 50 are expressed by the formula (1). The relationship of DW <DB IN <DB OU T <DA IN is satisfied (see FIG. 5A).
 さらに、半導体ウエハ20とリング状補助部材50との隙間も、リング状補助部材50とリングフレーム30との隙間も、できるだけ小さくすることが好ましい。貼付けられた半導体ウエハ保護用フィルム10の緩みを、さらに防止するためである。すなわち、半導体ウエハ20の外直径DWとリング状補助部材50のリング内直径DBINとの差ΔD1は、半導体ウエハ20の外直径DWの1%以内であることが好ましい。同様に、リング状補助部材50のリング外直径DBOUTと、リングフレーム30の内直径DAINとの差ΔD2は、半導体ウエハ20の外直径DWの1%以内であることが好ましい。
 ΔD1=DBIN-DW・・・(2)
 ΔD2=DAIN-DBOUT・・・(3)
Furthermore, it is preferable to make the gap between the semiconductor wafer 20 and the ring-shaped auxiliary member 50 and the gap between the ring-shaped auxiliary member 50 and the ring frame 30 as small as possible. This is for further preventing loosening of the stuck semiconductor wafer protection film 10. That is, the difference ΔD1 between ring diameter DB IN outer diameter DW and the ring-shaped auxiliary member 50 of the semiconductor wafer 20 is preferably within 1% of the outer diameter DW of the semiconductor wafer 20. Similarly, the difference ΔD2 between the ring outer diameter DB OUT of the ring-shaped auxiliary member 50 and the inner diameter DA IN of the ring frame 30 is preferably within 1% of the outer diameter DW of the semiconductor wafer 20.
ΔD1 = DB IN −DW (2)
ΔD2 = DA IN −DB OUT (3)
 マウント工程は、半導体ウエハマウント装置で行うことができる。半導体ウエハマウント装置は、加熱ユニットと、テープ貼付ユニットと、テープ切断機構とを有する。 The mounting process can be performed with a semiconductor wafer mounting apparatus. The semiconductor wafer mount apparatus has a heating unit, a tape applying unit, and a tape cutting mechanism.
 加熱ユニットは、例えば、プレマウントフレームが載置されるホットプレート40である。プレマウントフレームとは、半導体ウエハ20と、半導体ウエハを囲むリング状補助部材50と、リング状補助部材50を囲むリングフレーム30と、を含む構造体を意味する(図5A)。プレマウントフレームは、半導体ウエハ20の回路形成面20Aとは反対面(回路非形成面)が、ホットプレート40と対向するように、ホットプレート40に載置される。 The heating unit is, for example, a hot plate 40 on which a premount frame is placed. The premount frame means a structure including the semiconductor wafer 20, a ring-shaped auxiliary member 50 surrounding the semiconductor wafer, and a ring frame 30 surrounding the ring-shaped auxiliary member 50 (FIG. 5A). The premount frame is placed on the hot plate 40 such that the surface (circuit non-formed surface) opposite to the circuit forming surface 20 </ b> A of the semiconductor wafer 20 faces the hot plate 40.
 ホットプレート40に載置されたプレマウントフレームの半導体ウエハ20をホットプレート40で加熱しながら、テープ貼付ユニットが、半導体ウエハ20の回路形成面20Aと、リング状補助部材50と、リングフレーム30とにわたって半導体ウエハ表面保護用フィルム10を貼り付ける。テープ貼付ユニットとは、例えばローラ35を含み;ローラ35は、半導体ウエハ20の回路形成面20Aと、リング状補助部材50と、リングフレーム30にわたって転動することができる。 While the pre-mount frame semiconductor wafer 20 placed on the hot plate 40 is heated by the hot plate 40, the tape application unit includes the circuit forming surface 20A of the semiconductor wafer 20, the ring-shaped auxiliary member 50, the ring frame 30, and the like. The semiconductor wafer surface protecting film 10 is pasted over. The tape applying unit includes, for example, a roller 35; the roller 35 can roll over the circuit forming surface 20A of the semiconductor wafer 20, the ring-shaped auxiliary member 50, and the ring frame 30.
 テープ切断機構は、プレマウントフレームに半導体ウエハ保護フィルム10を貼り付ける前、または貼り付けた後に、半導体ウエハ保護フィルム10を、リングフレームの外径に合わせて切断する。テープ切断機構は、カッターなどであればよい(不図示)。このようにして、半導体ウエハ20と、リング状補助部材50と、リングフレーム30と、半導体ウエハ保護フィルム10とを含むマウントフレームが得られる。 The tape cutting mechanism cuts the semiconductor wafer protective film 10 in accordance with the outer diameter of the ring frame before or after the semiconductor wafer protective film 10 is attached to the premount frame. The tape cutting mechanism may be a cutter or the like (not shown). In this way, a mount frame including the semiconductor wafer 20, the ring-shaped auxiliary member 50, the ring frame 30, and the semiconductor wafer protective film 10 is obtained.
 プレス工程の他の実施態様について
 前述のように、プレス工程は、マウント工程で得られたマウントフレームを、一対のプレス板(上プレス板22-1と下プレス板22-2)とでプレスする工程である(図2C参照)。ところが図6に示すように、プレス工程後に上熱板22-1と下熱板22-2による圧力を解除すると、マウントフレームの半導体ウエハ表面保護フィルム10の外周部が、中央部よりも薄くなってしまうことがあった。プレス工程中に、マウントフレームの半導体ウエハ表面保護フィルム10の外周部は、外側に流動するのに対して、中央部は流動しにくいためであると推察される。
Other Embodiments of Pressing Process As described above, in the pressing process, the mount frame obtained in the mounting process is pressed with a pair of press plates (upper press plate 22-1 and lower press plate 22-2). It is a process (see FIG. 2C). However, as shown in FIG. 6, when the pressure applied by the upper heating plate 22-1 and the lower heating plate 22-2 is released after the pressing process, the outer peripheral portion of the semiconductor wafer surface protection film 10 of the mount frame becomes thinner than the central portion. There was a case. It is inferred that during the pressing process, the outer peripheral portion of the semiconductor wafer surface protective film 10 of the mount frame flows outward while the central portion hardly flows.
 そこで、一対のプレス板のうち、下プレス板22-2は、上プレス板22-1と対向する面に、凸部60を有していることが好ましい。下プレス板22-2に設けられた凸部60が、プレス中に半導体ウエハ保護フィルム10に侵入する(図7A)。そのため、プレス工程後のマウントフレームの半導体ウエハ表面保護フィルム10の厚みを均一にすることができ、かつ隆起部(リム)24の形成もできる。 Therefore, of the pair of press plates, the lower press plate 22-2 preferably has a convex portion 60 on the surface facing the upper press plate 22-1. The convex portion 60 provided on the lower press plate 22-2 enters the semiconductor wafer protective film 10 during pressing (FIG. 7A). Therefore, the thickness of the semiconductor wafer surface protective film 10 of the mount frame after the pressing process can be made uniform, and the raised portion (rim) 24 can be formed.
 下プレス板22-2の凸部60の、半導体ウエハ保護フィルムとの接触面の外周(周縁)が、円状であることが好ましい。従って、凸部60は、円錐(図7B)であったり、ドーム(図7C)であったりしてもよい。 It is preferable that the outer periphery (periphery) of the contact surface of the convex portion 60 of the lower press plate 22-2 with the semiconductor wafer protective film is circular. Therefore, the convex part 60 may be a cone (FIG. 7B) or a dome (FIG. 7C).
 下プレス板22-2の凸部60の突出高さは、1~100μmであることが好ましく;より好ましくは、半導体ウエハ表面保護用フィルム10の軟化層(B)の厚みの15~100%の範囲内にあることが好ましい。凸部60の突出高さは、凸部60の最大高さをいう。 The protrusion height of the protrusion 60 of the lower press plate 22-2 is preferably 1 to 100 μm; more preferably 15 to 100% of the thickness of the softened layer (B) of the semiconductor wafer surface protective film 10 It is preferable to be within the range. The protruding height of the convex portion 60 refers to the maximum height of the convex portion 60.
 下プレス板22-2の凸部60の直径CDは、マウントフレームの半導体ウエハの外直径DWよりも大きく、リングフレームの内直径DAINよりも小さい。つまり、DW<CD<DAINの関係を満たす。 Diameter CD of the projecting portion 60 of the lower press plate 22-2 is larger than the outer diameter DW of the semiconductor wafer mount frame is smaller than the inner diameter DA IN of the ring frame. That is, the relationship of DW <CD <DA IN is satisfied.
 凸部60の材質は特に制限されない。凸状に加工するための研削に適したものであればよく、例えば、アルミナなどのセラミクス、炭化タングステンなどの超硬合金などでありうる。 The material of the convex portion 60 is not particularly limited. Any material suitable for grinding for processing into a convex shape may be used, and for example, ceramics such as alumina and cemented carbide such as tungsten carbide may be used.
 プレス工程は、半導体ウエハプレス装置を用いて行うことができる。半導体ウエハプレス装置は、加熱機構を有する上プレス板22-1と、上プレス板22-1と対向する面に凸部60を有する下プレス板22-2とを有する。プレス工程では、まず、上プレス板22-1と下プレス板22-2との間に、マウント工程で得られたマウントフレームを配置する。このとき、マウントフレームの半導体ウェハ20が上プレス板22-1と対向し、マウントフレームの半導体ウエハ表面保護用フィルム10が下プレス板22-2と対向するように配置する。 The pressing process can be performed using a semiconductor wafer pressing apparatus. The semiconductor wafer press apparatus includes an upper press plate 22-1 having a heating mechanism, and a lower press plate 22-2 having a convex portion 60 on a surface facing the upper press plate 22-1. In the pressing step, first, the mount frame obtained in the mounting step is arranged between the upper press plate 22-1 and the lower press plate 22-2. At this time, the semiconductor wafer 20 of the mount frame is disposed so as to face the upper press plate 22-1 and the semiconductor wafer surface protecting film 10 of the mount frame is disposed to face the lower press plate 22-2.
 配置されるマウントフレームは、図7Aに示されるように半導体ウエハ20と、リングフレーム30と、半導体ウエハ表面保護用フィルム10との構造体(図2B参照)とを含む。 The mount frame to be arranged includes a structure (see FIG. 2B) of the semiconductor wafer 20, the ring frame 30, and the semiconductor wafer surface protecting film 10, as shown in FIG. 7A.
 マウントフレームを配置後、上プレス板22-1の加熱機構でマウントフレームを加熱する。さらに、上プレス板22-1と下プレス板22-2とで挟まれたマウントフレームを、上プレス板22-1と下プレス板22-2とでプレスする。 After placing the mount frame, the mount frame is heated by the heating mechanism of the upper press plate 22-1. Further, the mount frame sandwiched between the upper press plate 22-1 and the lower press plate 22-2 is pressed by the upper press plate 22-1 and the lower press plate 22-2.
 上プレス板22-1と下プレス板22-2とから、マウントフレームを剥離することで、半導体ウエハ保護フィルムに隆起部(リム)を形成しつつ、プレス工程後の半導体ウエハ保護フィルムの厚みを均一にすることができる。 The mounting frame is peeled from the upper press plate 22-1 and the lower press plate 22-2, thereby forming a raised portion (rim) on the semiconductor wafer protective film and reducing the thickness of the semiconductor wafer protective film after the pressing step. It can be made uniform.
 (実施例1)
 材料の準備
 基材層(A)の材料として、ホモポリプロピレン(hPP)(プライムポリマー社製、密度:910kg/m)を準備した。軟化層(B)の材料として、直鎖状低密度ポリエチレン(LLDPE)(プライムポリマー社製、密度918kg/m)を準備した。粘着層(C)の材料として、以下の粘着層用塗布液を調製した。
(Example 1)
Preparation of material As a material of the base material layer (A), homopolypropylene (hPP) (manufactured by Prime Polymer Co., Ltd., density: 910 kg / m 3 ) was prepared. As a material for the softened layer (B), linear low density polyethylene (LLDPE) (manufactured by Prime Polymer Co., Ltd., density 918 kg / m 3 ) was prepared. The following adhesive layer coating solution was prepared as a material for the adhesive layer (C).
 粘着層用塗布液の調製
 アクリル酸エチル30重量部、アクリル酸2-エチルヘキシル40重量部、アクリル酸メチル10重量部、およびメタクリル酸グリシジル20重量部のモノマー混合物を、ベンゾイルパーオキサイド系重合開始剤〔日本油脂(株)製、ナイパーBMT-K40〕0.8重量部(開始剤として0.32重量部)を用いて、トルエン65重量部、酢酸エチル50重量部中にて80℃で10時間反応させた。反応終了後、得られた溶液を冷却し、さらにキシレン100重量部と、アクリル酸10重量部と、テトラデシルジメチルベンジルアンモニウムクロライド〔日本油脂(株)製、カチオンM2-100〕0.3重量部とを加えて、空気を吹き込みながら85℃で50時間反応させた。これにより、アクリル系粘着剤ポリマーの溶液(粘着剤主剤)を得た。
Preparation of Coating Solution for Adhesive Layer A monomer mixture of 30 parts by weight of ethyl acrylate, 40 parts by weight of 2-ethylhexyl acrylate, 10 parts by weight of methyl acrylate, and 20 parts by weight of glycidyl methacrylate was added to a benzoyl peroxide polymerization initiator [ Nippon Oil & Fats Co., Ltd., Nyper BMT-K40] Using 0.8 parts by weight (0.32 parts by weight as an initiator), reaction was carried out at 80 ° C. for 10 hours in 65 parts by weight of toluene and 50 parts by weight of ethyl acetate. I let you. After completion of the reaction, the resulting solution was cooled, and further 100 parts by weight of xylene, 10 parts by weight of acrylic acid, and 0.3 parts by weight of tetradecyldimethylbenzylammonium chloride (Nippon Yushi Co., Ltd., cation M2-100). And reacted at 85 ° C. for 50 hours while blowing air. Thereby, the solution (adhesive main ingredient) of the acrylic adhesive polymer was obtained.
 得られたアクリル系粘着剤ポリマーの溶液(粘着剤主剤)に、アクリル系粘着剤ポリマー固形分100重量部に対して、分子内結合開裂型光重合開始剤としてベンジルジメチルケタール〔日本チバガイギー(株)、イルガキュアー651〕を2重量部、分子内に重合性炭素-炭素二重結合を有するモノマーとしてジペンタエリスリトールヘキサアクリレートとジペンタエリスリトールモノヒドロキシペンタアクリレートとの混合物〔東亜合成化学工業(株)製、アロニックスM-400〕を0.3重量部添加し、さらに熱架橋剤としてイソシアナート系架橋剤〔三井東圧化学(株)製、オレスターP49-75-S〕を1.35重量部(熱架橋剤として1重量部)添加して、UV粘着剤を得た。得られたUV粘着剤の粘着力を、JIS Z0237に準拠して測定したところ、3N/25mmであった。 Benzyldimethyl ketal [Nippon Ciba Geigy Co., Ltd.] as an intramolecular bond cleavage type photopolymerization initiator was added to the acrylic pressure-sensitive adhesive polymer solution (pressure-sensitive adhesive main component) with respect to 100 parts by weight of the acrylic pressure-sensitive adhesive polymer solid content. , Irgacure 651], a mixture of dipentaerythritol hexaacrylate and dipentaerythritol monohydroxypentaacrylate as a monomer having a polymerizable carbon-carbon double bond in the molecule [manufactured by Toa Gosei Chemical Co., Ltd.] , Aronix M-400] and 0.35 parts by weight of an isocyanate-based cross-linking agent (Mitsui Toatsu Chemical Co., Ltd., Olester P49-75-S) as a thermal cross-linking agent ( 1 part by weight as a thermal crosslinking agent) was added to obtain a UV adhesive. It was 3N / 25mm when the adhesive force of the obtained UV adhesive was measured based on JISZ0237.
 1)貯蔵弾性率の測定
 基材層(A)となるホモポリプロピレン(hPP)(プライムポリマー社製、密度:910kg/m)を押出成形して、厚み500μmのサンプルフィルムを作製した。同様に、軟化層(B)となる直鎖状低密度ポリエチレン(LLDPE)(プライムポリマー社製、密度918kg/m)を押出成形し、厚み500μmのサンプルフィルムを作製した。粘着層(C)となる前述のUV粘着剤を、ガラス基板上に塗布および乾燥させた後、剥離して、厚み300μmのサンプルフィルムを作製した。
1) Measurement of storage elastic modulus Homopolypropylene (hPP) (manufactured by Prime Polymer Co., Ltd., density: 910 kg / m 3 ) to be the base material layer (A) was extruded to prepare a sample film having a thickness of 500 μm. Similarly, a linear low density polyethylene (LLDPE) (Prime Polymer Co., Ltd., density 918 kg / m 3 ) to be the softened layer (B) was extruded to prepare a sample film having a thickness of 500 μm. The above-mentioned UV pressure-sensitive adhesive serving as the pressure-sensitive adhesive layer (C) was applied on a glass substrate and dried, and then peeled to prepare a sample film having a thickness of 300 μm.
 これらのサンプルフィルムの貯蔵弾性率を、以下の方法で測定した。即ち、サンプルフィルムを動的粘弾性測定装置(ティー・エイ・インスツルメント社製:ARES)にセットし、直径8mmのパラレルプレート型アタッチメントを用いて、30℃から昇温速度3℃/分で200℃まで昇温したときの貯蔵弾性率を測定した。測定周波数は1Hzとした。測定終了後、基材層(A)と軟化層(B)のサンプルフィルムについては、得られた10~200℃の貯蔵弾性率-温度曲線から40℃、100℃、および150℃における貯蔵弾性率の値をそれぞれ読みとった。粘着層(C)のサンプルフィルムについては、得られた10~200℃の貯蔵弾性率-温度曲線から25℃における貯蔵弾性率の値を読みとった。 The storage elastic modulus of these sample films was measured by the following method. That is, the sample film was set in a dynamic viscoelasticity measuring apparatus (manufactured by TA Instruments Inc .: ARES), and using a parallel plate type attachment having a diameter of 8 mm, the heating rate was increased from 30 ° C. to 3 ° C./min. The storage elastic modulus when the temperature was raised to 200 ° C. was measured. The measurement frequency was 1 Hz. After the measurement, for the sample films of the base material layer (A) and the softened layer (B), the obtained storage elastic modulus at 40 ° C., 100 ° C., and 150 ° C. from the storage elastic modulus-temperature curve of 10 to 200 ° C. Each value was read. For the sample film of the adhesive layer (C), the value of the storage elastic modulus at 25 ° C. was read from the obtained storage elastic modulus-temperature curve of 10 to 200 ° C.
 半導体ウエハ表面保護用フィルムの作製
 基材層(A)となるホモポリプロピレン(hPP)(プライムポリマー社製、密度:910kg/m)と、軟化層(B)となる直鎖状低密度ポリエチレン(LLDPE)(プライムポリマー社製、密度918kg/m)とを共押出して、2層の共押出フィルムを得た。得られた共押出フィルムの軟化層(B)上に、前述のUV粘着剤を塗布した後、乾燥させて粘着層(C)を形成し、半導体ウエハ表面保護用フィルムを得た。半導体ウエハ表面保護用フィルムの基材層(A)/軟化層(B)/粘着層(C)の厚みは、60μm/70μm/5μmであり、合計厚みは135μmであった。
Production of Film for Surface Protection of Semiconductor Wafer Homopolypropylene (hPP) (Prime Polymer Co., Density: 910 kg / m 3 ) to be used as a base material layer (A) and linear low density polyethylene (B) to be used as a softening layer (B) LLDPE) (manufactured by Prime Polymer, density 918 kg / m 3 ) was coextruded to obtain a two-layer coextruded film. On the softened layer (B) of the obtained coextruded film, the aforementioned UV adhesive was applied and then dried to form an adhesive layer (C) to obtain a semiconductor wafer surface protecting film. The thickness of the base material layer (A) / softening layer (B) / adhesive layer (C) of the semiconductor wafer surface protecting film was 60 μm / 70 μm / 5 μm, and the total thickness was 135 μm.
 2)隆起部(リム)の形成性の評価
 得られた半導体ウエハ表面保護用フィルムを、サファイアウエハよりも大きいサイズに切り出した。次いで、厚み650μm、4インチサイズのサファイアウエハを、半導体ウエハ表面保護用フィルム上に配置した。このとき、サファイアウエハの回路形成面が、半導体ウエハ表面保護用フィルムの粘着層(C)と接するようにした。これらを熱プレス機にセットして、140℃、10MPaの圧力で2分間熱圧着させた。
2) Evaluation of formability of raised portion (rim) The obtained semiconductor wafer surface protecting film was cut into a size larger than that of the sapphire wafer. Subsequently, a sapphire wafer having a thickness of 650 μm and a size of 4 inches was placed on the semiconductor wafer surface protecting film. At this time, the circuit forming surface of the sapphire wafer was in contact with the adhesive layer (C) of the semiconductor wafer surface protecting film. These were set in a hot press machine and thermocompression bonded at 140 ° C. and a pressure of 10 MPa for 2 minutes.
 次いで、半導体ウエハ表面保護用フィルムに紫外線を約1000mJ照射した後、半導体ウエハ表面保護用フィルムを半導体ウエハから剥がして、得られた半導体ウエハ表面保護用フィルムの断面形状をマイクロスコープにて観察した。半導体ウエハ表面保護用フィルムの断面における2箇所の隆起部(リム)の高さを測定し、それらの平均値を求めた。隆起部(リム)の高さは、半導体ウエハ表面保護用フィルムの半導体ウエハの回路形成面と接していた表面に対する隆起部(リム)の頂点の高さを測定した。隆起部(リム)の形成性の評価は、以下の基準に基づいて行った。
 ○:隆起部(リム)の高さが200μm以上
 ×:隆起部(リム)の高さが200μm未満
Next, after irradiating the semiconductor wafer surface protective film with ultraviolet rays of about 1000 mJ, the semiconductor wafer surface protective film was peeled off from the semiconductor wafer, and the cross-sectional shape of the obtained semiconductor wafer surface protective film was observed with a microscope. The height of two raised portions (rims) in the cross section of the semiconductor wafer surface protecting film was measured, and the average value thereof was determined. The height of the raised portion (rim) was measured by measuring the height of the apex of the raised portion (rim) with respect to the surface of the semiconductor wafer surface protecting film that was in contact with the circuit forming surface of the semiconductor wafer. Evaluation of the formability of the raised portion (rim) was performed based on the following criteria.
○: The height of the raised portion (rim) is 200 μm or more. ×: The height of the raised portion (rim) is less than 200 μm.
 3)裏面研削性の評価
 前述と同様に、得られた半導体ウエハ表面保護用フィルムを、サファイアウエハよりも大きいサイズに切り出した。次いで、厚み650μm、4インチサイズのサファイアウエハを、半導体ウエハ表面保護用フィルム上に配置した。これらを熱プレス機にセットして、140℃、10MPaの圧力で2分間熱圧着させた。
3) Evaluation of back surface grindability In the same manner as described above, the obtained semiconductor wafer surface protecting film was cut into a size larger than that of the sapphire wafer. Subsequently, a sapphire wafer having a thickness of 650 μm and a size of 4 inches was placed on the semiconductor wafer surface protecting film. These were set in a hot press machine and thermocompression bonded at 140 ° C. and a pressure of 10 MPa for 2 minutes.
 90μm裏面研削性
 サファイアウエハが熱圧着された半導体ウエハ表面保護用フィルムを、ディスコDGP8761のチャックテーブル上にセットし、サファイアウエハの回路非形成面(裏面)を、ウエハ厚みが90μmとなるまで湿式で研削した。研削時のウエハの温度は約40℃であった。そして、裏面研削性を以下の基準に基づいて評価した。
 ○:ウエハの厚みが90μmとなるまで裏面研削が可能
 ×:ウエハの厚みが90μmとなる前に基板が割れる(裏面研削が不可能)
90 μm backside grindability A semiconductor wafer surface protection film, to which a sapphire wafer is thermocompression bonded, is set on the chuck table of Disco DGP8761, and the circuit non-formation surface (backside) of the sapphire wafer is wetted until the wafer thickness reaches 90 μm. Grinded. The wafer temperature during grinding was about 40 ° C. And back surface grindability was evaluated based on the following criteria.
○: Backside grinding is possible until the wafer thickness reaches 90 μm ×: Substrate breaks before the wafer thickness reaches 90 μm (backside grinding is impossible)
 70μm裏面研削性
 ウエハの厚みが90μmとなるまで裏面研削したサファイアウエハを、さらにウエハ厚みが70μmとなるまで湿式で研削した。そして、裏面研削性を、以下の基準に基づいて評価した。
 ○:ウエハの厚みが70μmとなるまで裏面研削が可能
 ×:ウエハの厚みが70μmとなる前に基板が割れる(裏面研削が不可能)
70 μm Backside Grindability A sapphire wafer that had been back-ground until the wafer thickness reached 90 μm was wet-ground until the wafer thickness reached 70 μm. And back surface grindability was evaluated based on the following criteria.
○: Backside grinding is possible until the wafer thickness reaches 70 μm ×: Substrate breaks before the wafer thickness reaches 70 μm (backside grinding is impossible)
 4)DP(ドライポリッシング)後の隆起部の形状の評価
 前記3)の湿式での裏面研削終了後のサンプルについて、さらに5分間、乾式で研削加工(ドライポリッシング)を行った。ドライポリッシング時のウエハの温度は約100℃であった。そして、半導体ウエハ表面保護用フィルムに紫外線を約1000mJ照射した後、半導体ウエハ表面保護用フィルムからサファイアウエハを剥がした。得られた半導体ウエハ表面保護用フィルムの断面形状を、マイクロスコープで観察し、隆起部(リム)の高さを測定した。DP耐熱性の評価は、以下の基準に基づいて行った。
 ○:隆起部(リム)の高さがウエハの研削後の厚み程度ある(リムが溶融せずに残っている)
 ×:隆起部(リム)の高さがウエハの研削厚みよりも低い(リムが溶融して消失している)
4) Evaluation of the shape of the raised part after DP (dry polishing) The sample after completion of the wet back grinding in 3) was further subjected to dry grinding (dry polishing) for 5 minutes. The temperature of the wafer during dry polishing was about 100 ° C. Then, after irradiating the semiconductor wafer surface protecting film with ultraviolet rays of about 1000 mJ, the sapphire wafer was peeled off from the semiconductor wafer surface protecting film. The cross-sectional shape of the obtained semiconductor wafer surface protecting film was observed with a microscope, and the height of the raised portion (rim) was measured. DP heat resistance was evaluated based on the following criteria.
○: The height of the raised portion (rim) is about the thickness after grinding of the wafer (the rim remains without melting)
X: The height of the raised portion (rim) is lower than the grinding thickness of the wafer (the rim has melted and disappeared)
 5)研削後の基材層(A)の表面平滑性
 前記4)のDP(ドライポリッシング)後の基材層(A)の表面平滑性を、触針式表面形状測定機(Veeco社 Dektac3)により評価した。表面平滑性の評価は、以下の基準に基づいて行った。
 ○:チャックテーブルの表面形状の転写による基材層(A)表面の凸凹のRaが1μm未満である
 ×:チャックテーブルの表面形状の転写による基材層(A)表面の凸凹のRaが1μm以上である
5) Surface smoothness of the base material layer (A) after grinding The surface smoothness of the base material layer (A) after DP (dry polishing) in the above 4) is measured using a stylus type surface shape measuring instrument (Veeco Dektac 3). It was evaluated by. The evaluation of the surface smoothness was performed based on the following criteria.
○: Ra of unevenness on the surface of the base material layer (A) due to transfer of the surface shape of the chuck table is less than 1 μm ×: Ra of the unevenness of the surface of the base material layer (A) due to transfer of the surface shape of the chuck table is 1 μm or more Is
 (実施例2)
 基材層(A)と軟化層(B)の厚みをそれぞれ30μmに変更した以外は実施例1と同様にして半導体ウエハ表面保護用フィルムを作製し、同様の評価を行った。
(Example 2)
A film for protecting a semiconductor wafer surface was prepared in the same manner as in Example 1 except that the thicknesses of the base layer (A) and the softened layer (B) were changed to 30 μm, and the same evaluation was performed.
 (実施例3)
 軟化層(B)の材料をエチレン-α-オレフィン共重合体(タフマー(三井化学社製)、密度:893kg/m)に変更した以外は実施例1と同様にして半導体ウエハ表面保護用フィルムを作製し、同様の評価を行った。
(Example 3)
A film for protecting the surface of a semiconductor wafer in the same manner as in Example 1 except that the material of the softening layer (B) is changed to an ethylene-α-olefin copolymer (Tuffmer (manufactured by Mitsui Chemicals), density: 893 kg / m 3 ). The same evaluation was performed.
 (実施例4)
 軟化層(B)の材料を、直鎖状低密度ポリエチレン(LLDPE)(プライムポリマー社製、密度938kg/m)に変更し、基材層(A)と軟化層(B)の厚みをそれぞれ30μmに変更した以外は、実施例1と同様にして、半導体ウエハ表面保護用フィルムを作製し、同様の評価を行った。
(Example 4)
The material of the softening layer (B) is changed to linear low density polyethylene (LLDPE) (Prime Polymer, density 938 kg / m 3 ), and the thickness of the base layer (A) and the softening layer (B) is changed. A semiconductor wafer surface protective film was prepared and evaluated in the same manner as in Example 1 except that the thickness was changed to 30 μm.
 (実施例5)
 軟化層(B)の材料を、ランダムポリプロピレン(rPP)(プライムポリマー社製、密度:910kg/m)に変更し、基材層(A)と軟化層(B)の厚みをそれぞれ30μmに変更した以外は、実施例1と同様にして、半導体ウエハ表面保護用フィルムを作製し、同様の評価を行った。
(Example 5)
The material of the softening layer (B) was changed to random polypropylene (rPP) (manufactured by Prime Polymer Co., Ltd., density: 910 kg / m 3 ), and the thickness of the base layer (A) and the softening layer (B) was changed to 30 μm. A semiconductor wafer surface protective film was produced in the same manner as in Example 1 except that the above evaluation was performed.
 (比較例1)
 基材層(A)の材料をランダムポリプロピレン(rPP)(プライムポリマー社製、密度:910kg/m)に、軟化層(B)の材料をエチレン-α-オレフィン共重合体(タフマー(三井化学社製)、密度:893kg/m)にそれぞれ変更した以外は実施例1と同様にして半導体ウエハ表面保護用フィルムを作製し、同様の評価を行った。
(Comparative Example 1)
The material of the base material layer (A) is random polypropylene (rPP) (manufactured by Prime Polymer, density: 910 kg / m 3 ), and the material of the softening layer (B) is an ethylene-α-olefin copolymer (Tafmer (Mitsui Chemicals). A semiconductor wafer surface protective film was prepared in the same manner as in Example 1 except that the density was changed to 893 kg / m 3 ) and the same evaluation was performed.
 (比較例2)
 基材層(A)の材料を直鎖状低密度ポリエチレン(LLDPE)(プライムポリマー社製、密度918kg/m)に、軟化層(B)の材料をエチレン-α-オレフィン共重合体(タフマー(三井化学社製)、密度:893kg/m)にそれぞれ変更した以外は実施例1と同様にして半導体ウエハ表面保護用フィルムを作製し、同様の評価を行った。
(Comparative Example 2)
The material of the base layer (A) is linear low density polyethylene (LLDPE) (Prime Polymer, density 918 kg / m 3 ), and the material of the softening layer (B) is an ethylene-α-olefin copolymer (Tuffmer). A semiconductor wafer surface protective film was prepared in the same manner as in Example 1 except that the density was changed to (Mitsui Chemicals Co., Ltd.) and density: 893 kg / m 3 ), and the same evaluation was performed.
 (比較例3)
 基材層(A)の材料を直鎖状低密度ポリエチレン(LLDPE)(プライムポリマー社製、密度918kg/m)に、軟化層(B)の材料をエチレン-α-オレフィン共重合体(タフマー(三井化学社製)、密度:861kg/m)にそれぞれ変更した以外は実施例1と同様にして半導体ウエハ表面保護用フィルムを作製し、同様の評価を行った。
(Comparative Example 3)
The material of the base layer (A) is linear low density polyethylene (LLDPE) (Prime Polymer, density 918 kg / m 3 ), and the material of the softening layer (B) is an ethylene-α-olefin copolymer (Tuffmer). A film for protecting a semiconductor wafer surface was prepared in the same manner as in Example 1 except that the density was changed to (Mitsui Chemicals Co., Ltd.) and density: 861 kg / m 3 ), and the same evaluation was performed.
 (比較例4)
 軟化層(B)の材料を、エチレン-α-オレフィン共重合体(タフマー(三井化学社製)、密度:861kg/m)に、基材層(A)と軟化層(B)の厚みをそれぞれ30μmに変更した以外は、実施例1と同様にして、半導体ウエハ表面保護用フィルムを作製し、同様の評価を行った。
(Comparative Example 4)
The material of the softening layer (B) is made of an ethylene-α-olefin copolymer (Tuffmer (manufactured by Mitsui Chemicals), density: 861 kg / m 3 ), and the thickness of the base material layer (A) and the softening layer (B). A semiconductor wafer surface protective film was prepared and evaluated in the same manner as in Example 1 except that the thickness was changed to 30 μm.
 実施例1~5および比較例1~4のサンプルフィルムの貯蔵弾性率、および半導体ウエハ表面保護用フィルムの評価結果を表1~表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Tables 1 to 3 show the storage elastic modulus of the sample films of Examples 1 to 5 and Comparative Examples 1 to 4 and the evaluation results of the semiconductor wafer surface protective film.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1および表2に示されるように、軟化層(B)の40℃での貯蔵弾性率G(40)が10MPa以上である実施例1~5の半導体ウエハ表面保護用フィルムは、熱プレスによって隆起部(リム)を良好に形成でき、かつ裏面研削時においてもウエハが破損しないことがわかる。これは、裏面研削時においても隆起部(リム)が溶融せず、ウエハの端部を安定に保持できるためと考えられる。 Table 1 and as shown in Table 2, the semiconductor wafer surface protection films of Examples 1 to 5 the storage modulus G B (40) is not less than 10MPa at 40 ° C. softening layer (B), heat press Thus, it can be seen that the raised portion (rim) can be satisfactorily formed and the wafer is not damaged even during back grinding. This is presumably because the raised portion (rim) does not melt even during back grinding, and the end portion of the wafer can be held stably.
 一方、軟化層(B)の40℃での貯蔵弾性率G(40)が10MPa未満である比較例3および4の半導体ウエハ表面保護用フィルムは、熱プレスによって隆起部(リム)を形成できるものの、裏面研削時においてウエハが破損することがわかる。これは、裏面研削時においても隆起部(リム)が軟化し、ウエハの端部を安定に保持できないためと考えられる。 On the other hand, the semiconductor wafer surface protective films of Comparative Examples 3 and 4 in which the storage elastic modulus G B (40) at 40 ° C. of the softened layer (B) is less than 10 MPa can form a raised portion (rim) by hot pressing. However, it can be seen that the wafer is damaged during back grinding. This is thought to be because the raised portion (rim) is softened even during backside grinding, and the end portion of the wafer cannot be stably held.
 実施例1~5のなかでも、実施例3では70μm研削時にウエハが割れたのに対し、実施例2では70μm研削時でもウエハが割れなかった。これは、実施例2の半導体ウエハ表面保護用フィルムにおける軟化層(B)の40℃での貯蔵弾性率G(40)が、実施例3の半導体ウエハ表面保護用フィルムよりも高いためであると考えられる。また、実施例1において70μm研削時にウエハが割れるのは、ウエハの仕上げ厚みに対して半導体ウエハ表面保護用フィルムが厚過ぎて、半導体ウエハの変形(たわみ、しなり)を抑制できなかったためであると考えられる。 Among Examples 1 to 5, in Example 3, the wafer was cracked during 70 μm grinding, whereas in Example 2, the wafer was not cracked even during 70 μm grinding. This is because the softening layer (B) in the film for protecting a semiconductor wafer surface of Example 2 has a higher storage elastic modulus G B (40) at 40 ° C. than that for the film for protecting a semiconductor wafer surface of Example 3. it is conceivable that. In Example 1, the wafer was cracked during the 70 μm grinding because the semiconductor wafer surface protective film was too thick with respect to the finished thickness of the wafer, and the deformation (deflection, bending) of the semiconductor wafer could not be suppressed. it is conceivable that.
 さらに、実施例1および2の半導体ウエハ表面保護用フィルムでは、ドライポリッシング(DP)時の100℃近い高温においても、隆起部(リム)が軟化せず、サファイアウエハの端部を安定に保持できることがわかる。 Further, in the semiconductor wafer surface protective films of Examples 1 and 2, the ridges (rims) are not softened even at a high temperature near 100 ° C. during dry polishing (DP), and the end portions of the sapphire wafer can be stably held. I understand.
 さらに、比較例1~3では、研削後の基材層(A)の表面平滑性が低いことがわかる。これは、比較例1~3の半導体ウエハ表面保護用フィルムの基材層(A)は、150℃での貯蔵弾性率G(150)が1MPa未満であり、裏面研削時にチャックテーブルの表面形状が転写されたためと考えられる。このように、裏面研削時に基材層(A)の表面にチャックテーブルの表面形状が転写されると、その後のダイシング工程において半導体ウエハ表面保護用フィルムを別のチャックテーブル上に固定させる際に、チャックテーブルと半導体ウエハ表面保護用フィルムの基材層(A)との間でエアリークが生じやすい。このようなエアリークが生じると、半導体ウエハ表面保護用フィルムがチャックテーブル上に固定されなくなるため、好ましくない。 Further, it can be seen that in Comparative Examples 1 to 3, the surface smoothness of the base material layer (A) after grinding is low. This is because the base layer (A) of the semiconductor wafer surface protecting film of Comparative Examples 1 to 3 has a storage elastic modulus G A (150) at 150 ° C. of less than 1 MPa, and the surface shape of the chuck table during back grinding. This is probably due to the fact that was transferred. Thus, when the surface shape of the chuck table is transferred to the surface of the base material layer (A) during back surface grinding, when fixing the semiconductor wafer surface protection film on another chuck table in the subsequent dicing step, Air leaks easily occur between the chuck table and the base layer (A) of the semiconductor wafer surface protecting film. When such an air leak occurs, the semiconductor wafer surface protecting film is not fixed on the chuck table, which is not preferable.
 (実施例6)
 実施例2で用いたフィルムと同様のフィルムを、サファイアウエハに貼り付けて(マウント工程)、熱圧着(プレス工程)することで隆起部(リム)を形成した。
(Example 6)
A film similar to the film used in Example 2 was attached to a sapphire wafer (mounting process) and thermocompression bonded (pressing process) to form a raised portion (rim).
 具体的には、半導体ウエハ表面保護用フィルムを、サファイアウエハよりも大きいサイズに切り出した。また、厚み650μm、4インチサイズのサファイアウエハを用意した。図2Aに示すように、半導体ウエハ表面保護用フィルム上に配置した。ホットプレート温度を140℃に加熱して、ローラで半導体ウエハ表面保護用フィルムをサファイアウエハに圧着させて、サファイアウエハと半導体ウエハ表面保護用フィルムとの積層物を得た。ローラ圧力は0.5MPa,ローラ速度は10mm/秒とした。 Specifically, the semiconductor wafer surface protective film was cut into a size larger than that of the sapphire wafer. A sapphire wafer having a thickness of 650 μm and a size of 4 inches was prepared. As shown to FIG. 2A, it has arrange | positioned on the film for semiconductor wafer surface protections. The hot plate temperature was heated to 140 ° C., and the film for protecting the semiconductor wafer surface was pressed onto the sapphire wafer with a roller to obtain a laminate of the sapphire wafer and the film for protecting the semiconductor wafer surface. The roller pressure was 0.5 MPa, and the roller speed was 10 mm / second.
 次に、図2Cに示すように、熱プレス機の上熱板(半導体ウエハ表面保護用フィルムに配置する熱板)と下熱板(サファイアウエハ側に配置する熱板)とで、得られた積層物を挟み込み、180秒間、10MPaで圧着した。このとき、上熱板の温度を140℃とし、下熱板の温度を120℃とし、すなわち両者の平均温度TPを130℃とした。 Next, as shown in FIG. 2C, it was obtained with an upper hot plate (a hot plate placed on the semiconductor wafer surface protecting film) and a lower hot plate (a hot plate placed on the sapphire wafer side) as shown in FIG. The laminate was sandwiched and pressed at 10 MPa for 180 seconds. At this time, the temperature of the upper heating plate was 140 ° C., the temperature of the lower heating plate was 120 ° C., that is, the average temperature TP of both was 130 ° C.
 次いで、半導体ウエハ表面保護用フィルムに紫外線を約1000mJ照射した後、半導体ウエハ表面保護用フィルムをサファイアウエハから剥がして、得られた半導体ウエハ表面保護用フィルムの断面形状をマイクロスコープにて観察した。半導体ウエハ表面保護用フィルムの断面における2箇所の隆起部(リム)の高さを測定し、それらの平均値を求めた。 Next, after irradiating the semiconductor wafer surface protecting film with ultraviolet rays of about 1000 mJ, the semiconductor wafer surface protecting film was peeled off from the sapphire wafer, and the cross-sectional shape of the obtained semiconductor wafer surface protecting film was observed with a microscope. The height of two raised portions (rims) in the cross section of the semiconductor wafer surface protecting film was measured, and the average value thereof was determined.
1.半径方向の張力の有無
 プレス工程後に、リングフレームに半導体ウエハ表面保護用フィルムを貼り付けた状態で、サファイアウエハ中央に150gの錘をのせて、フィルムの沈み込み量を測定した。2mm以上沈み込んだものを、張力がないものとして×と評価した。
1. Presence / absence of radial tension After the pressing step, a 150 g weight was placed on the center of the sapphire wafer with the semiconductor wafer surface protecting film attached to the ring frame, and the amount of film sinking was measured. The thing which sank 2 mm or more was evaluated as x as what does not have tension | tensile_strength.
2.しわ
 プレス工程後に、目視にて、サファイアウエハの周囲の半導体ウエハ表面保護用フィルムに、放射状のシワが10本以上発生したものを×とした。
2. Wrinkle After the pressing step, a film in which 10 or more radial wrinkles were generated on the semiconductor wafer surface protecting film around the sapphire wafer was visually rated as x.
3.48時間後の剥離
 プレス工程後、サファイアウエハに半導体ウエハ表面保護用フィルムを貼り付けたまま室温にて48時間放置した。その後に、ウエハ表面保護用フィルムとサファイアウエハ端部とに1mm以上の剥離が見られたものを×とした。
3. Peeling after 48 hours After the pressing step, the semiconductor wafer surface protective film was stuck on the sapphire wafer and left at room temperature for 48 hours. After that, a film in which peeling of 1 mm or more was observed between the wafer surface protective film and the sapphire wafer edge was rated as x.
 (実施例7)
 実施例2で用いたフィルムと同様のフィルムを、サファイアウエハに貼り付けて(マウント工程)、熱圧着(プレス工程)することで隆起部(リム)を形成した。具体的には、半導体ウエハ表面保護用フィルムを、サファイアウエハよりも大きいサイズに切り出した。また、厚み650μm、4インチサイズのサファイアウエハを用意した。図2Aに示すように、半導体ウエハ表面保護用フィルム上に配置した。ホットプレート温度を100℃に加熱して、ローラで半導体ウエハ表面保護用フィルムをサファイアウエハに圧着させて、サファイアウエハと半導体ウエハ表面保護用フィルムとの積層物を得た。ローラ圧力は0.5MPa,ローラ速度は10mm/秒とした。
(Example 7)
A film similar to the film used in Example 2 was attached to a sapphire wafer (mounting process) and thermocompression bonded (pressing process) to form a raised portion (rim). Specifically, the semiconductor wafer surface protective film was cut into a size larger than that of the sapphire wafer. A sapphire wafer having a thickness of 650 μm and a size of 4 inches was prepared. As shown to FIG. 2A, it has arrange | positioned on the film for semiconductor wafer surface protections. The hot plate temperature was heated to 100 ° C., and the film for protecting the semiconductor wafer surface was pressed onto the sapphire wafer with a roller to obtain a laminate of the sapphire wafer and the film for protecting the semiconductor wafer surface. The roller pressure was 0.5 MPa, and the roller speed was 10 mm / second.
 次に、図2Cに示すように、熱プレス機の上熱板(半導体ウエハ表面保護用フィルムに配置する熱板)と下熱板(サファイアウエハ側に配置する熱板)とで、得られた積層物を挟み込み、180秒間,10MPaで圧着した。このとき、上熱板の温度を140℃とし、下熱板の温度を120℃とし、すなわち両者の平均温度TPを130℃とした。 Next, as shown in FIG. 2C, it was obtained with an upper hot plate (a hot plate placed on the semiconductor wafer surface protecting film) and a lower hot plate (a hot plate placed on the sapphire wafer side) as shown in FIG. The laminate was sandwiched and pressure-bonded at 10 MPa for 180 seconds. At this time, the temperature of the upper heating plate was 140 ° C., the temperature of the lower heating plate was 120 ° C., that is, the average temperature TP of both was 130 ° C.
 実施例6と同様に、隆起部(リム)の高さを求め、「半径方向の張力の有無」「しわの有無」「48時間後の浮き(剥離)の有無」を評価した。 In the same manner as in Example 6, the height of the raised portion (rim) was determined, and “existence of radial tension”, “existence of wrinkles”, “existence of floating (peeling) after 48 hours” was evaluated.
 (実施例8)
 実施例2で用いたフィルムと同様のフィルムを、サファイアウエハに貼り付けて(マウント工程)、熱圧着(プレス工程)することで隆起部(リム)を形成した。具体的には、半導体ウエハ表面保護用フィルムを、サファイアウエハよりも大きいサイズに切り出した。また、厚み650μm、4インチサイズのサファイアウエハを用意した。図2Aに示すように、半導体ウエハ表面保護用フィルム上に配置した。ホットプレート温度を25℃として、ローラで半導体ウエハ表面保護用フィルムをサファイアウエハに圧着させて、サファイアウエハと半導体ウエハ表面保護用フィルムとの積層物を得た。ローラ圧力は0.5MPa,ローラ速度は10mm/秒とした。
(Example 8)
A film similar to the film used in Example 2 was attached to a sapphire wafer (mounting process) and thermocompression bonded (pressing process) to form a raised portion (rim). Specifically, the semiconductor wafer surface protective film was cut into a size larger than that of the sapphire wafer. A sapphire wafer having a thickness of 650 μm and a size of 4 inches was prepared. As shown to FIG. 2A, it has arrange | positioned on the film for semiconductor wafer surface protections. The hot plate temperature was set to 25 ° C., and the semiconductor wafer surface protective film was pressed onto the sapphire wafer with a roller to obtain a laminate of the sapphire wafer and the semiconductor wafer surface protective film. The roller pressure was 0.5 MPa, and the roller speed was 10 mm / second.
 次に、図2Cに示すように、熱プレス機の上熱板(半導体ウエハ表面保護用フィルムに配置する熱板)と下熱板(サファイアウエハ側に配置する熱板)とで、得られた積層物を挟み込み、180秒間、10MPaで圧着した。このとき、上熱板の温度を140℃とし、下熱板の温度を120℃とし、すなわち両者の平均温度TPを130℃とした。 Next, as shown in FIG. 2C, it was obtained with an upper hot plate (a hot plate placed on the semiconductor wafer surface protecting film) and a lower hot plate (a hot plate placed on the sapphire wafer side) as shown in FIG. The laminate was sandwiched and pressed at 10 MPa for 180 seconds. At this time, the temperature of the upper heating plate was 140 ° C., the temperature of the lower heating plate was 120 ° C., that is, the average temperature TP of both was 130 ° C.
 実施例6と同様に、隆起部(リム)の高さを求め、「半径方向の張力の有無」「しわの有無」「48時間後の浮き(剥離)の有無」を評価した。 In the same manner as in Example 6, the height of the raised portion (rim) was determined, and “existence of radial tension”, “existence of wrinkles”, “existence of floating (peeling) after 48 hours” was evaluated.
 (参考例5)
 実施例2で用いたフィルムと同様のフィルムを、サファイアウエハに貼り付けて(マウント工程)、熱圧着(プレス工程)することで隆起部(リム)を形成した。具体的には、半導体ウエハ表面保護用フィルムを、サファイアウエハよりも大きいサイズに切り出した。また、厚み650μm、4インチサイズのサファイアウエハを用意した。図2Aに示すように、半導体ウエハ表面保護用フィルム上に配置した。ホットプレート温度を100℃として、ローラで半導体ウエハ表面保護用フィルムをサファイアウエハに圧着させて、サファイアウエハと半導体ウエハ表面保護用フィルムとの積層物を得た。ローラ圧力は0.5MPa,ローラ速度は10mm/秒とした。
(Reference Example 5)
A film similar to the film used in Example 2 was attached to a sapphire wafer (mounting process) and thermocompression bonded (pressing process) to form a raised portion (rim). Specifically, the semiconductor wafer surface protective film was cut into a size larger than that of the sapphire wafer. A sapphire wafer having a thickness of 650 μm and a size of 4 inches was prepared. As shown to FIG. 2A, it has arrange | positioned on the film for semiconductor wafer surface protections. The hot plate temperature was set to 100 ° C., and the semiconductor wafer surface protective film was pressed onto the sapphire wafer with a roller to obtain a laminate of the sapphire wafer and the semiconductor wafer surface protective film. The roller pressure was 0.5 MPa, and the roller speed was 10 mm / second.
 次に、図2Cに示すように、熱プレス機の上熱板(半導体ウエハ表面保護用フィルムに配置する熱板)と下熱板(サファイアウエハ側に配置する熱板)とで、得られた積層物を挟み込み、180秒間、10MPaで圧着した。このとき、上熱板の温度を110℃とし、下熱板の温度を90℃とし、すなわち両者の平均温度TPを100℃とした。 Next, as shown in FIG. 2C, it was obtained with an upper hot plate (a hot plate placed on the semiconductor wafer surface protecting film) and a lower hot plate (a hot plate placed on the sapphire wafer side) as shown in FIG. The laminate was sandwiched and pressed at 10 MPa for 180 seconds. At this time, the temperature of the upper heating plate was 110 ° C., the temperature of the lower heating plate was 90 ° C., that is, the average temperature TP of both was 100 ° C.
 実施例6と同様に、隆起部(リム)の高さを求め、「半径方向の張力の有無」「しわの有無」「48時間後の浮き(剥離)の有無」を評価した。
Figure JPOXMLDOC01-appb-T000004
In the same manner as in Example 6, the height of the raised portion (rim) was determined, and “existence of radial tension”, “existence of wrinkles”, “existence of float (peeling) after 48 hours” were evaluated.
Figure JPOXMLDOC01-appb-T000004
 実施例6では、マウント工程における温度TMが、プレス工程における温度TPよりも高く;かつ温度TPが、軟化層(B)の軟化点温度(TmB)よりも14℃高い。そのため、十分な高さを有するリムが形成され、しわの発生も、サファイア基板と保護フィルムとの剥離もなかった。 In Example 6, the temperature TM in the mounting process is higher than the temperature TP in the pressing process; and the temperature TP is 14 ° C. higher than the softening point temperature (TmB) of the softening layer (B). Therefore, a rim having a sufficient height was formed, and there was no generation of wrinkles and no peeling between the sapphire substrate and the protective film.
 実施例7では、マウント工程における温度TMが、プレス工程における温度TPよりも30℃低い。そのため、十分な高さを有するリムが形成できたものの、しわの発生が確認された。さらに実施例8では、マウント工程における温度TMが、プレス工程における温度TPよりも105℃低い。そのため、十分な高さを有するリムが形成できたものの、十分な高さを有するリムが形成できたものの、しわの発生が確認され、サファイア基板と保護フィルムとの剥離も確認された。 In Example 7, the temperature TM in the mounting process is 30 ° C. lower than the temperature TP in the pressing process. Therefore, although a rim having a sufficient height could be formed, generation of wrinkles was confirmed. Furthermore, in Example 8, the temperature TM in the mounting process is 105 ° C. lower than the temperature TP in the pressing process. Therefore, although a rim having a sufficient height could be formed, a rim having a sufficient height could be formed, but generation of wrinkles was confirmed, and peeling between the sapphire substrate and the protective film was also confirmed.
 参考例5では、プレス工程における温度TPが、軟化層(B)の軟化点温度(TmB)よりも低い。そのため、十分なリムを形成することができなかった。 In Reference Example 5, the temperature TP in the pressing step is lower than the softening point temperature (TmB) of the softening layer (B). Therefore, a sufficient rim could not be formed.
 (実施例9)
 実施例2で用いたフィルムと同様のフィルムを、サファイアウエハに貼り付けて(マウント工程)、熱圧着(プレス工程)することで隆起部(リム)を形成した。具体的には、半導体ウエハ表面保護用フィルムを、サファイアウエハよりも大きいサイズに切り出した。また、厚み650μm、4インチサイズのサファイアウエハを用意した。図2Aに示すように、半導体ウエハ表面保護用フィルム上に配置した。ホットプレート温度を140℃に加熱して、ローラで半導体ウエハ表面保護用フィルムをサファイアウエハに圧着させて、サファイアウエハと半導体ウエハ表面保護用フィルムとの積層物を得た。ローラ圧力は0.5MPa,ローラ速度は10mm/秒とした。
Example 9
A film similar to the film used in Example 2 was attached to a sapphire wafer (mounting process) and thermocompression bonded (pressing process) to form a raised portion (rim). Specifically, the semiconductor wafer surface protective film was cut into a size larger than that of the sapphire wafer. A sapphire wafer having a thickness of 650 μm and a size of 4 inches was prepared. As shown to FIG. 2A, it has arrange | positioned on the film for semiconductor wafer surface protections. The hot plate temperature was heated to 140 ° C., and the film for protecting the semiconductor wafer surface was pressed onto the sapphire wafer with a roller to obtain a laminate of the sapphire wafer and the film for protecting the semiconductor wafer surface. The roller pressure was 0.5 MPa, and the roller speed was 10 mm / second.
 次に、図2Cに示すように、熱プレス機の上熱板(半導体ウエハ表面保護用フィルムに配置する熱板)と下熱板(サファイアウエハ側に配置する熱板)とで、得られた積層物を挟み込み、180秒間、10MPaで圧着した。このとき、上熱板の温度を140℃とし、下熱板の温度を100℃とし、すなわち両者の平均温度を120℃とした。 Next, as shown in FIG. 2C, it was obtained with an upper hot plate (a hot plate placed on the semiconductor wafer surface protecting film) and a lower hot plate (a hot plate placed on the sapphire wafer side) as shown in FIG. The laminate was sandwiched and pressed at 10 MPa for 180 seconds. At this time, the temperature of the upper heating plate was 140 ° C., the temperature of the lower heating plate was 100 ° C., that is, the average temperature of both was 120 ° C.
 次いで、実施例6と同様に、隆起部(リム)の高さを求めた。 Next, as in Example 6, the height of the raised portion (rim) was determined.
 (実施例10)
 実施例2で用いたフィルムと同様のフィルムを、サファイアウエハに貼り付けて(マウント工程)、熱圧着(プレス工程)することで隆起部(リム)を形成した。具体的には、半導体ウエハ表面保護用フィルムを、サファイアウエハよりも大きいサイズに切り出した。また、厚み650μm、4インチサイズのサファイアウエハを用意した。図2Aに示すように、半導体ウエハ表面保護用フィルム上に配置した。ホットプレート温度を140℃に加熱して、ローラで半導体ウエハ表面保護用フィルムをサファイアウエハに圧着させて、サファイアウエハと半導体ウエハ表面保護用フィルムとの積層物を得た。ローラ圧力は0.5MPa,ローラ速度は10mm/秒とした。
(Example 10)
A film similar to the film used in Example 2 was attached to a sapphire wafer (mounting process) and thermocompression bonded (pressing process) to form a raised portion (rim). Specifically, the semiconductor wafer surface protective film was cut into a size larger than that of the sapphire wafer. A sapphire wafer having a thickness of 650 μm and a size of 4 inches was prepared. As shown to FIG. 2A, it has arrange | positioned on the film for semiconductor wafer surface protections. The hot plate temperature was heated to 140 ° C., and the film for protecting the semiconductor wafer surface was pressed onto the sapphire wafer with a roller to obtain a laminate of the sapphire wafer and the film for protecting the semiconductor wafer surface. The roller pressure was 0.5 MPa, and the roller speed was 10 mm / second.
 次に、図2Cに示すように、熱プレス機の上熱板(半導体ウエハ表面保護用フィルムに配置する熱板)と下熱板(サファイアウエハ側に配置する熱板)とで、得られた積層物を挟み込み、180秒間、10MPaで圧着した。このとき、上熱板の温度を140℃とし、下熱板の温度を140℃とし、すなわち両者の平均を140℃とした。 Next, as shown in FIG. 2C, it was obtained with an upper hot plate (a hot plate placed on the semiconductor wafer surface protecting film) and a lower hot plate (a hot plate placed on the sapphire wafer side) as shown in FIG. The laminate was sandwiched and pressed at 10 MPa for 180 seconds. At this time, the temperature of the upper heating plate was 140 ° C., the temperature of the lower heating plate was 140 ° C., that is, the average of both was 140 ° C.
 次いで、実施例6と同様に、隆起部(リム)の高さを求めた。
Figure JPOXMLDOC01-appb-T000005
Next, in the same manner as in Example 6, the height of the raised portion (rim) was obtained.
Figure JPOXMLDOC01-appb-T000005
 実施例9は、マウント工程における温度TMが、プレス工程における温度TPよりも高く;かつ温度TPが、軟化層(B)の軟化点温度(TmB)よりも4℃高い。さらに、プレス工程における上熱板温度TP1が、下熱板温度TP2よりも高い。そのため、十分な高さを有するリムが形成された。 In Example 9, the temperature TM in the mounting step is higher than the temperature TP in the pressing step; and the temperature TP is 4 ° C. higher than the softening point temperature (TmB) of the softening layer (B). Furthermore, the upper hot plate temperature TP1 in the pressing step is higher than the lower hot plate temperature TP2. Therefore, a rim having a sufficient height was formed.
 一方、実施例10は、マウント工程における温度TMが、プレス工程における温度TPと同温度であり;さらに、プレス工程における上熱板温度TP1が、下熱板温度TP2と同温度である。そのため、リムがやや扁平化してしまい、リムの高さがが、実施例7と比較すると低下した。 On the other hand, in Example 10, the temperature TM in the mounting process is the same temperature as the temperature TP in the pressing process; and the upper hot plate temperature TP1 in the pressing process is the same temperature as the lower hot plate temperature TP2. Therefore, the rim was slightly flattened, and the height of the rim was lowered as compared with Example 7.
 (実施例11~14)
 実施例2で用いたフィルムと同様のフィルムを、サファイアウエハに貼り付けて(マウント工程)、熱圧着(プレス工程)することで隆起部(リム)を形成した。具体的には、半導体ウエハ表面保護用フィルムを、サファイアウエハよりも大きいサイズに切り出した。また、厚み650μm、4インチサイズのサファイアウエハを用意した。図2Aに示すように、半導体ウエハ表面保護用フィルム上に配置した。ホットプレート温度を140℃に加熱して、ローラで半導体ウエハ表面保護用フィルムをサファイアウエハに圧着させて、サファイアウエハと半導体ウエハ表面保護用フィルムとの積層物を得た。ローラ圧力は0.5MPa,ローラ速度は10mm/秒とした。
(Examples 11 to 14)
A film similar to the film used in Example 2 was attached to a sapphire wafer (mounting process) and thermocompression bonded (pressing process) to form a raised portion (rim). Specifically, the semiconductor wafer surface protective film was cut into a size larger than that of the sapphire wafer. A sapphire wafer having a thickness of 650 μm and a size of 4 inches was prepared. As shown to FIG. 2A, it has arrange | positioned on the film for semiconductor wafer surface protections. The hot plate temperature was heated to 140 ° C., and the film for protecting the semiconductor wafer surface was pressed onto the sapphire wafer with a roller to obtain a laminate of the sapphire wafer and the film for protecting the semiconductor wafer surface. The roller pressure was 0.5 MPa, and the roller speed was 10 mm / second.
 次に、図7Aに示すように、熱プレス機の上熱板(半導体ウエハ表面保護用フィルムに配置する熱板)と、図7Bに示されるような円錐状の凸部を有する下熱板(サファイアウエハ側に配置する熱板)とで、得られた積層物を挟み込み、180秒間、10MPaで圧着した。このとき、上熱板の温度を140℃とし、下熱板の温度を120℃とした。実施例11では凸部の高さを0μm(凸部なし)とし、実施例12では凸部の高さを5μmとし、実施例13では凸部の高さを15μmとし、実施例14では凸部の高さを25μmとした。それぞれについて、プレス工程後の半導体ウエハ表面保護用フィルムの厚みばらつき(最大厚みと最小厚みとの差)を測定し、実施例6と同様に隆起部(リム)の高さを求めた。
Figure JPOXMLDOC01-appb-T000006
Next, as shown in FIG. 7A, an upper heat plate (a heat plate disposed on the semiconductor wafer surface protecting film) of the heat press machine and a lower heat plate having a conical convex portion as shown in FIG. 7B ( The obtained laminate was sandwiched with a hot plate disposed on the sapphire wafer side and pressed at 10 MPa for 180 seconds. At this time, the temperature of the upper heating plate was 140 ° C., and the temperature of the lower heating plate was 120 ° C. In Example 11, the height of the convex portion is 0 μm (no convex portion), in Example 12, the height of the convex portion is 5 μm, in Example 13, the height of the convex portion is 15 μm, and in Example 14, the convex portion is The height was set to 25 μm. About each, the thickness dispersion | variation (difference of the maximum thickness and the minimum thickness) of the film for semiconductor wafer surface protections after a press process was measured, and the height of the protruding part (rim | limb) was calculated | required similarly to Example 6. FIG.
Figure JPOXMLDOC01-appb-T000006
 表6に示されるように、下熱板に凸部を設けることで、プレス工程後の半導体ウエハ表面保護用フィルムの厚みばらつきを抑制し、隆起部(リム)も形成できることがわかる。 As shown in Table 6, it can be seen that by providing a convex portion on the lower heating plate, variation in the thickness of the semiconductor wafer surface protecting film after the pressing step can be suppressed, and a raised portion (rim) can also be formed.
 本発明の半導体ウエハ表面保護用フィルムは、特にサファイア基板などの硬くて脆い半導体ウエハであっても、破損させることなく裏面研削を可能としうる。 The film for protecting the surface of a semiconductor wafer of the present invention can enable backside grinding without damaging even a hard and brittle semiconductor wafer such as a sapphire substrate.
 1 サファイア基板
 2 ワックス樹脂層
 3 砥石
 4 従来の半導体ウエハ保護フィルム
 10 半導体ウェハ表面保護用フィルム
 12 基材層(A)
 14 軟化層(B)
 16 粘着層(C)
 18 軽粘着層(D)
 20 半導体ウエハ
 20A 半導体ウエハの回路形成面
 20B 半導体ウエハの回路非形成面(裏面)
 22-1 上熱板
 22-2 下熱板
 24 隆起部(リム)
 26 チャックテーブル
 28 砥石
 
 
DESCRIPTION OF SYMBOLS 1 Sapphire substrate 2 Wax resin layer 3 Grinding stone 4 Conventional semiconductor wafer protective film 10 Film for semiconductor wafer surface protection 12 Base material layer (A)
14 Softening layer (B)
16 Adhesive layer (C)
18 Light adhesion layer (D)
20 Semiconductor wafer 20A Semiconductor wafer circuit formation surface 20B Semiconductor wafer circuit non-formation surface (back surface)
22-1 Upper heat plate 22-2 Lower heat plate 24 Raised part (rim)
26 Chuck table 28 Grinding wheel

Claims (20)

  1.  150℃における貯蔵弾性率G(150)が1MPa以上である基材層(A)と、
     120~180℃のいずれかの温度における貯蔵弾性率G(120~180)が0.05MPa以下であり、かつ40℃における貯蔵弾性率G(40)が10MPa以上である軟化層(B)と、を含む、半導体ウエハ表面保護用フィルム。
    A base material layer (A) having a storage elastic modulus G A (150) at 150 ° C. of 1 MPa or more;
    Softening layer (B) having a storage elastic modulus G B (120 to 180) at a temperature of 120 to 180 ° C. of 0.05 MPa or less and a storage elastic modulus G B (40) at 40 ° C. of 10 MPa or more. And a film for protecting a surface of a semiconductor wafer.
  2.  前記軟化層(B)の100℃における貯蔵弾性率G(100)が、1MPa以上である、請求項1に記載の半導体ウエハ表面保護用フィルム。 The softened layer is storage modulus at 100 ° C. of (B) G B (100) , it is 1MPa or more, the semiconductor wafer surface protection film according to claim 1.
  3.  前記軟化層(B)の60℃における引張弾性率E(60)と25℃における引張弾性率E(25)とが、1>E(60)/E(25)>0.1の関係を満たす、請求項1に記載の半導体ウエハ表面保護用フィルム。 The softened layer and tensile modulus Tensile at a 25 ° C. modulus E B (60) at 60 ° C. of (B) E B (25) but, 1> E B (60) / E B (25)> 0.1 The film for protecting a semiconductor wafer surface according to claim 1, satisfying the relationship:
  4.  前記軟化層(B)を介して前記基材層(A)とは反対側に配置された粘着層(C)をさらに含み、
     前記粘着層(C)の、JIS Z0237に準拠して測定される粘着力が0.1~10N/25mmである、請求項1に記載の半導体ウエハ表面保護用フィルム。
    An adhesive layer (C) disposed on the opposite side of the base material layer (A) via the softening layer (B);
    The film for protecting a semiconductor wafer surface according to claim 1, wherein the adhesive strength of the adhesive layer (C) measured in accordance with JIS Z0237 is 0.1 to 10 N / 25 mm.
  5.  前記基材層(A)は、最表面に配置されている、請求項1に記載の半導体ウエハ表面保護用フィルム。 The film for protecting a semiconductor wafer surface according to claim 1, wherein the base material layer (A) is disposed on the outermost surface.
  6.  前記粘着層(C)は、前記軟化層(B)を介して前記基材層(A)とは反対側の最表面に配置されている、請求項4に記載の半導体ウエハ表面保護用フィルム。 The film for protecting a semiconductor wafer surface according to claim 4, wherein the adhesive layer (C) is disposed on the outermost surface opposite to the base material layer (A) through the softening layer (B).
  7.  前記軟化層(B)は、炭化水素オレフィンの単独重合体、炭化水素オレフィンの共重合体、またはそれらの混合物を含む、請求項1に記載の半導体ウエハ表面保護用フィルム。 2. The semiconductor wafer surface protecting film according to claim 1, wherein the softening layer (B) contains a homopolymer of hydrocarbon olefin, a copolymer of hydrocarbon olefin, or a mixture thereof.
  8.  前記軟化層(B)を構成する樹脂の密度が880~960kg/mである、請求項1に記載の半導体ウエハ表面保護用フィルム。 The semiconductor wafer surface protecting film according to claim 1, wherein the density of the resin constituting the softened layer (B) is 880 to 960 kg / m 3 .
  9.  前記基材層(A)が、ポリオレフィン層、ポリエステル層、またはポリオレフィン層とポリエステル層の積層体である、請求項1に記載の半導体ウエハ表面保護用フィルム。 The semiconductor wafer surface protecting film according to claim 1, wherein the base material layer (A) is a polyolefin layer, a polyester layer, or a laminate of a polyolefin layer and a polyester layer.
  10.  半導体ウエハを、半導体ウエハ表面保護用フィルム上に、前記半導体ウエハの回路形成面が半導体ウエハ表面保護用フィルムと接するように配置する工程と、
     前記半導体ウエハの外周に、前記半導体ウエハを保持する前記半導体ウエハ表面保護用フィルムの隆起部を形成する工程と、
     前記隆起部によって保持された前記半導体ウエハの回路非形成面を研削する工程と、
     前記半導体ウエハの回路形成面から前記半導体ウエハ表面保護用フィルムを剥離する工程と、を含み、
     前記隆起部の100℃における貯蔵弾性率G(100)が1MPa以上である、半導体装置の製造方法。
    Placing the semiconductor wafer on the semiconductor wafer surface protecting film such that the circuit forming surface of the semiconductor wafer is in contact with the semiconductor wafer surface protecting film;
    Forming a raised portion of the semiconductor wafer surface protecting film for holding the semiconductor wafer on an outer periphery of the semiconductor wafer;
    Grinding the non-circuit-formed surface of the semiconductor wafer held by the raised portions;
    Peeling the semiconductor wafer surface protective film from the circuit forming surface of the semiconductor wafer,
    The manufacturing method of a semiconductor device whose storage elastic modulus G (100) in 100 degreeC of the said protruding part is 1 Mpa or more.
  11.  前記半導体ウエハ表面保護用フィルムが、請求項1に記載の半導体ウエハ表面保護用フィルムであって、
     前記隆起部を、前記半導体ウエハ表面保護用フィルムと前記半導体ウエハとを120~180℃の温度、1~10MPaの圧力で熱圧着させて形成する、請求項10に記載の半導体装置の製造方法。
    The film for protecting a semiconductor wafer surface is the film for protecting a semiconductor wafer surface according to claim 1,
    11. The method of manufacturing a semiconductor device according to claim 10, wherein the raised portion is formed by thermocompression bonding the semiconductor wafer surface protecting film and the semiconductor wafer at a temperature of 120 to 180 ° C. and a pressure of 1 to 10 MPa.
  12.  請求項11に記載の半導体装置の製造方法であって、
     前記半導体ウエハを、前記半導体ウエハ表面保護用フィルム上に、前記半導体ウエハの回路形成面が半導体ウエハ表面保護用フィルムと接するように配置する工程におけるフィルムの温度TMと、前記半導体ウエハ表面保護用フィルムの隆起部を形成する工程における熱圧着温度TPと、前記軟化層(B)の軟化点温度TmBとが、以下の一般式の関係を満たす、半導体装置の製造方法。
    [式1]  TP≦TM
    [式2]  TmB<TP<TmB+40℃
    A method for manufacturing a semiconductor device according to claim 11, comprising:
    Film temperature TM in the step of placing the semiconductor wafer on the semiconductor wafer surface protecting film so that the circuit forming surface of the semiconductor wafer is in contact with the semiconductor wafer surface protecting film, and the semiconductor wafer surface protecting film A method for manufacturing a semiconductor device, wherein the thermocompression bonding temperature TP in the step of forming the raised portion and the softening point temperature TmB of the softening layer (B) satisfy the relationship of the following general formula.
    [Formula 1] TP ≦ TM
    [Formula 2] TmB <TP <TmB + 40 ° C.
  13.  前記半導体ウエハ表面保護用フィルムの軟化層(B)が、基材層(A)よりも前記半導体ウエハの回路形成面側になるように、前記半導体ウエハを前記半導体ウエハ表面保護用フィルム上に配置する、請求項11に記載の半導体装置の製造方法。 The semiconductor wafer is arranged on the semiconductor wafer surface protection film so that the softening layer (B) of the semiconductor wafer surface protection film is closer to the circuit forming surface side of the semiconductor wafer than the base material layer (A). A method for manufacturing a semiconductor device according to claim 11.
  14.  前記半導体ウエハは、モース硬度8以上の高硬度材料基板を含む、請求項10に記載の半導体装置の製造方法。 11. The method of manufacturing a semiconductor device according to claim 10, wherein the semiconductor wafer includes a high-hardness material substrate having a Mohs hardness of 8 or more.
  15.  半導体ウエハと、前記半導体ウエハを囲む枠を有するリングフレームAと、前記半導体ウエハの回路形成面と前記フレームAとにわたって貼り付けられた請求項1に記載の半導体ウエハ表面保護フィルムと、を備えたマウントフレームを、加熱機構を備えた上プレス板と、上プレス板と対向する下プレス板とで挟み込んでプレスする半導体ウエハプレス装置であって、
     前記半導体ウエハの外直径DWと、前記リングフレームAの内直径DAINとが、式(1)DW<DAIN の関係を満たし、
     前記下プレス板は、前記上プレス板と対向する面に凸部を備え、
     前記プレスしたときの、前記凸部の前記マウントフレームとの接触面の外周は、円状である、半導体ウエハプレス装置。
    A semiconductor wafer, a ring frame A having a frame surrounding the semiconductor wafer, and a semiconductor wafer surface protection film according to claim 1 attached over a circuit forming surface of the semiconductor wafer and the frame A. A semiconductor wafer press device for sandwiching and pressing a mount frame between an upper press plate provided with a heating mechanism and a lower press plate facing the upper press plate,
    The outer diameter DW of the semiconductor wafer and the inner diameter DA IN of the ring frame A satisfy the relationship of formula (1) DW <DA IN ,
    The lower press plate includes a convex portion on a surface facing the upper press plate,
    The semiconductor wafer press apparatus, wherein an outer periphery of a contact surface of the convex portion with the mount frame when pressed is circular.
  16.  前記凸部の高さが1~100μmである、請求項15に記載の半導体ウエハプレス装置。 The semiconductor wafer press apparatus according to claim 15, wherein the height of the convex portion is 1 to 100 μm.
  17.  前記凸部の高さが、半導体ウエハ表面保護フィルムの軟化層(B)の厚みに対して15~100%の範囲内にある、請求項15に記載の半導体ウエハプレス装置。 The semiconductor wafer press apparatus according to claim 15, wherein the height of the convex portion is in the range of 15 to 100% with respect to the thickness of the softened layer (B) of the semiconductor wafer surface protective film.
  18.  前記凸部の直径CDが、DW<CD<DAINの関係を満たす、請求項15に記載の半導体ウエハプレス装置。 The semiconductor wafer press apparatus according to claim 15, wherein a diameter CD of the convex portion satisfies a relationship of DW <CD <DA IN .
  19.  半導体ウエハと、前記半導体ウエハを囲むリング状補助部材Bと、前記半導体ウエハと前記リング状補助部材Bとを囲むリングフレームAと、前記半導体ウエハの回路形成面と前記リング状補助部材Bと前記リングフレームAにわたって貼り付けられた請求項1に記載の半導体ウエハ表面保護フィルムと、を含むマウントフレームを作製する半導体ウエハマウント装置であって、
     前記半導体ウエハの外直径DWと、前記リングフレームAの内直径DAINと、前記リング状補助部材Bのリング外直径DBOUTと、前記リング状補助部材Bのリング内直径DBINとが、式(1) DW<DBIN<DBOUT<DAIN の関係を満たし、
     前記半導体ウエハの回路形成面の反対面を加熱する加熱ユニットと、
     前記半導体ウエハの回路形成面と、前記リングフレームAと、前記リング状補助部材Bとにわたって転動して、前記半導体ウエハ表面保護フィルムを貼り付けるための貼付ローラと、
     前記リングフレームAの外形状に沿って、前記表面保護フィルムを切断するテープ切断機構と、を備える、半導体ウエハマウント装置。
    A semiconductor wafer; a ring-shaped auxiliary member B surrounding the semiconductor wafer; a ring frame A surrounding the semiconductor wafer and the ring-shaped auxiliary member B; a circuit forming surface of the semiconductor wafer; the ring-shaped auxiliary member B; A semiconductor wafer mounting apparatus for producing a mounting frame including the semiconductor wafer surface protective film according to claim 1 attached over the ring frame A,
    Wherein the outer diameter DW of the semiconductor wafer, and the inner diameter DA IN of the ring frame A, and the ring outer diameter DB OUT of the ring-shaped auxiliary member B, the ring diameter DB IN of the ring-shaped auxiliary member B has the formula (1) The relationship of DW <DB IN <DB OU T <DA IN is satisfied,
    A heating unit for heating a surface opposite to a circuit forming surface of the semiconductor wafer;
    A pasting roller for rolling over the circuit forming surface of the semiconductor wafer, the ring frame A, and the ring-shaped auxiliary member B to paste the semiconductor wafer surface protective film;
    And a tape cutting mechanism for cutting the surface protective film along the outer shape of the ring frame A.
  20.  下記式で表されるΔD1とΔD2のいずれもが、DWの1%以内である、請求項19に記載の半導体ウエハマウント装置。
     ΔD1=DBIN-DW・・・(2)
     ΔD2=DAIN-DBOUT・・・(3)
     
    20. The semiconductor wafer mount device according to claim 19, wherein both ΔD1 and ΔD2 represented by the following formulas are within 1% of DW.
    ΔD1 = DB IN −DW (2)
    ΔD2 = DA IN −DB OUT (3)
PCT/JP2012/005058 2011-08-09 2012-08-09 Semiconductor device manufacturing method and film used therein for protecting surface of semiconductor WO2013021644A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137015128A KR101467718B1 (en) 2011-08-09 2012-08-09 Semiconductor device manufacturing method and film used therein for protecting surface of semiconductor
JP2012558117A JP5393902B2 (en) 2011-08-09 2012-08-09 Semiconductor device manufacturing method and semiconductor wafer surface protecting film used in the method
CN201280038816.2A CN103748664B (en) 2011-08-09 2012-08-09 The semiconductor wafer surface protection film used in the manufacture method of semiconductor device and the method
SG2013031117A SG189515A1 (en) 2011-08-09 2012-08-09 Method of manufacturing semiconductor device and semiconductor wafer surface protection film used therein

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011173948 2011-08-09
JP2011-173948 2011-08-09
JP2012117631 2012-05-23
JP2012-117631 2012-05-23

Publications (1)

Publication Number Publication Date
WO2013021644A1 true WO2013021644A1 (en) 2013-02-14

Family

ID=47668179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005058 WO2013021644A1 (en) 2011-08-09 2012-08-09 Semiconductor device manufacturing method and film used therein for protecting surface of semiconductor

Country Status (6)

Country Link
JP (1) JP5393902B2 (en)
KR (1) KR101467718B1 (en)
CN (1) CN103748664B (en)
SG (1) SG189515A1 (en)
TW (1) TWI544533B (en)
WO (1) WO2013021644A1 (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087131A (en) * 2011-10-13 2013-05-13 Lintec Corp Pressure-sensitive adhesive sheet and method for using the same
CN107851602A (en) * 2015-06-29 2018-03-27 三井化学东赛璐株式会社 Semiconductor device manufacture film
JP2019212710A (en) * 2018-06-01 2019-12-12 株式会社ディスコ Processing method of resin package substrate
JP2019212783A (en) * 2018-06-06 2019-12-12 株式会社ディスコ Wafer processing method
JP2019212784A (en) * 2018-06-06 2019-12-12 株式会社ディスコ Wafer processing method
JP2019212782A (en) * 2018-06-06 2019-12-12 株式会社ディスコ Wafer processing method
JP2019220550A (en) * 2018-06-19 2019-12-26 株式会社ディスコ Processing method for wafer
JP2020064959A (en) * 2018-10-17 2020-04-23 株式会社ディスコ Wafer processing method
JP2020064957A (en) * 2018-10-17 2020-04-23 株式会社ディスコ Wafer processing method
JP2020064956A (en) * 2018-10-17 2020-04-23 株式会社ディスコ Wafer processing method
JP2020064962A (en) * 2018-10-17 2020-04-23 株式会社ディスコ Wafer processing method
JP2020064961A (en) * 2018-10-17 2020-04-23 株式会社ディスコ Wafer processing method
JP2020064960A (en) * 2018-10-17 2020-04-23 株式会社ディスコ Wafer processing method
JP2020064958A (en) * 2018-10-17 2020-04-23 株式会社ディスコ Wafer processing method
JP2020064963A (en) * 2018-10-17 2020-04-23 株式会社ディスコ Wafer processing method
JP2020064964A (en) * 2018-10-17 2020-04-23 株式会社ディスコ Wafer processing method
JP2020113728A (en) * 2019-01-17 2020-07-27 株式会社ディスコ Wafer processing method
JP2020145251A (en) * 2019-03-05 2020-09-10 株式会社ディスコ Wafer processing method
JP2020145249A (en) * 2019-03-05 2020-09-10 株式会社ディスコ Wafer processing method
JP2020145250A (en) * 2019-03-05 2020-09-10 株式会社ディスコ Wafer processing method
WO2020196794A1 (en) * 2019-03-27 2020-10-01 三井化学東セロ株式会社 Protection film, method for affixing same, and method for manufacturing semiconductor component
JP2020202230A (en) * 2019-06-07 2020-12-17 株式会社ディスコ Wafer processing method
JP2021013035A (en) * 2018-11-22 2021-02-04 リンテック株式会社 Thermosetting protective film forming film, protective film forming composite sheet, and manufacturing method of chip
JP2021015823A (en) * 2019-07-10 2021-02-12 株式会社ディスコ Wafer processing method
JP2021015840A (en) * 2019-07-10 2021-02-12 株式会社ディスコ Wafer processing method
JP2021027214A (en) * 2019-08-07 2021-02-22 株式会社ディスコ Wafer processing method
JP2021027218A (en) * 2019-08-07 2021-02-22 株式会社ディスコ Wafer processing method
JP2021027213A (en) * 2019-08-07 2021-02-22 株式会社ディスコ Wafer processing method
JP2021027217A (en) * 2019-08-07 2021-02-22 株式会社ディスコ Wafer processing method
JP2021027216A (en) * 2019-08-07 2021-02-22 株式会社ディスコ Wafer processing method
JP2021027215A (en) * 2019-08-07 2021-02-22 株式会社ディスコ Wafer processing method
JP2021027220A (en) * 2019-08-07 2021-02-22 株式会社ディスコ Wafer processing method
JP2021027221A (en) * 2019-08-07 2021-02-22 株式会社ディスコ Wafer processing method
JP2021027219A (en) * 2019-08-07 2021-02-22 株式会社ディスコ Wafer processing method
JP2021030336A (en) * 2019-08-21 2021-03-01 株式会社ディスコ Wafer processing method
JP2021030321A (en) * 2019-08-19 2021-03-01 株式会社ディスコ Wafer processing method
JP2021064751A (en) * 2019-10-17 2021-04-22 株式会社ディスコ Wafer processing method
JP2021068742A (en) * 2019-10-18 2021-04-30 株式会社ディスコ Ring frame
JP2021082631A (en) * 2019-11-14 2021-05-27 株式会社ディスコ Method for installing protective member, method for processing workpiece, and method for manufacturing protective member

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2551732B (en) * 2016-06-28 2020-05-27 Disco Corp Method of processing wafer
DE102018202254A1 (en) * 2018-02-14 2019-08-14 Disco Corporation Method for processing a wafer
JP2018100423A (en) * 2018-03-20 2018-06-28 リンテック株式会社 Adhesive tape and method of manufacturing semiconductor device
TWI825080B (en) * 2018-03-30 2023-12-11 日商琳得科股份有限公司 Method for manufacturing semiconductor chip
JP7214364B2 (en) * 2018-05-01 2023-01-30 株式会社ディスコ Wafer processing method
JP7181020B2 (en) * 2018-07-26 2022-11-30 株式会社ディスコ Wafer processing method
TWI725785B (en) * 2020-03-19 2021-04-21 碩正科技股份有限公司 Protective sheets for semiconductor wafer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069396A (en) * 2000-08-29 2002-03-08 Mitsui Chemicals Inc Adhesive film for protecting semiconductor wafer and method for processing back of semiconductor wafer using the same
JP2005340796A (en) * 2004-04-28 2005-12-08 Mitsui Chemicals Inc Surface protecting film for semiconductor wafer and protecting method of semiconductor wafer using the protecting film
JP2006222231A (en) * 2005-02-09 2006-08-24 Tsubaki Seiko:Kk Tape bonding device and tape bonding method
JP2006229076A (en) * 2005-02-18 2006-08-31 Sekisui Chem Co Ltd Process for manufacturing ic chip
JP2007096115A (en) * 2005-09-29 2007-04-12 Fujitsu Ltd Manufacturing method of semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050099057A (en) * 2004-04-08 2005-10-13 주식회사 해피베드 System for unfolding and rotating of washing table of patient bed
KR20110128863A (en) * 2009-02-12 2011-11-30 스미토모 베이클리트 컴퍼니 리미티드 Semiconductor protection film-forming film with dicing sheet, method for manufacturing semiconductor device using same, and semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069396A (en) * 2000-08-29 2002-03-08 Mitsui Chemicals Inc Adhesive film for protecting semiconductor wafer and method for processing back of semiconductor wafer using the same
JP2005340796A (en) * 2004-04-28 2005-12-08 Mitsui Chemicals Inc Surface protecting film for semiconductor wafer and protecting method of semiconductor wafer using the protecting film
JP2006222231A (en) * 2005-02-09 2006-08-24 Tsubaki Seiko:Kk Tape bonding device and tape bonding method
JP2006229076A (en) * 2005-02-18 2006-08-31 Sekisui Chem Co Ltd Process for manufacturing ic chip
JP2007096115A (en) * 2005-09-29 2007-04-12 Fujitsu Ltd Manufacturing method of semiconductor device

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087131A (en) * 2011-10-13 2013-05-13 Lintec Corp Pressure-sensitive adhesive sheet and method for using the same
CN107851602A (en) * 2015-06-29 2018-03-27 三井化学东赛璐株式会社 Semiconductor device manufacture film
JP2019212710A (en) * 2018-06-01 2019-12-12 株式会社ディスコ Processing method of resin package substrate
JP7114176B2 (en) 2018-06-01 2022-08-08 株式会社ディスコ Processing method of resin package substrate
JP2019212783A (en) * 2018-06-06 2019-12-12 株式会社ディスコ Wafer processing method
JP2019212784A (en) * 2018-06-06 2019-12-12 株式会社ディスコ Wafer processing method
JP2019212782A (en) * 2018-06-06 2019-12-12 株式会社ディスコ Wafer processing method
JP7154686B2 (en) 2018-06-06 2022-10-18 株式会社ディスコ Wafer processing method
JP2019220550A (en) * 2018-06-19 2019-12-26 株式会社ディスコ Processing method for wafer
JP7175565B2 (en) 2018-10-17 2022-11-21 株式会社ディスコ Wafer processing method
JP7204294B2 (en) 2018-10-17 2023-01-16 株式会社ディスコ Wafer processing method
JP2020064961A (en) * 2018-10-17 2020-04-23 株式会社ディスコ Wafer processing method
JP2020064960A (en) * 2018-10-17 2020-04-23 株式会社ディスコ Wafer processing method
JP2020064958A (en) * 2018-10-17 2020-04-23 株式会社ディスコ Wafer processing method
JP2020064963A (en) * 2018-10-17 2020-04-23 株式会社ディスコ Wafer processing method
JP2020064964A (en) * 2018-10-17 2020-04-23 株式会社ディスコ Wafer processing method
JP2020064959A (en) * 2018-10-17 2020-04-23 株式会社ディスコ Wafer processing method
TWI813794B (en) * 2018-10-17 2023-09-01 日商迪思科股份有限公司 Wafer processing method
JP2020064956A (en) * 2018-10-17 2020-04-23 株式会社ディスコ Wafer processing method
JP2020064957A (en) * 2018-10-17 2020-04-23 株式会社ディスコ Wafer processing method
JP2020064962A (en) * 2018-10-17 2020-04-23 株式会社ディスコ Wafer processing method
JP7204296B2 (en) 2018-10-17 2023-01-16 株式会社ディスコ Wafer processing method
JP7166719B2 (en) 2018-10-17 2022-11-08 株式会社ディスコ Wafer processing method
JP7204295B2 (en) 2018-10-17 2023-01-16 株式会社ディスコ Wafer processing method
JP7166718B2 (en) 2018-10-17 2022-11-08 株式会社ディスコ Wafer processing method
JP7175567B2 (en) 2018-10-17 2022-11-21 株式会社ディスコ Wafer processing method
JP7175566B2 (en) 2018-10-17 2022-11-21 株式会社ディスコ Wafer processing method
JP7166720B2 (en) 2018-10-17 2022-11-08 株式会社ディスコ Wafer processing method
JP7014875B2 (en) 2018-11-22 2022-02-01 リンテック株式会社 Method for manufacturing a film for forming a thermosetting protective film, a composite sheet for forming a protective film, and a chip
JP2021013035A (en) * 2018-11-22 2021-02-04 リンテック株式会社 Thermosetting protective film forming film, protective film forming composite sheet, and manufacturing method of chip
JP7224719B2 (en) 2019-01-17 2023-02-20 株式会社ディスコ Wafer processing method
JP2020113728A (en) * 2019-01-17 2020-07-27 株式会社ディスコ Wafer processing method
JP2020145249A (en) * 2019-03-05 2020-09-10 株式会社ディスコ Wafer processing method
JP7242136B2 (en) 2019-03-05 2023-03-20 株式会社ディスコ Wafer processing method
JP2020145251A (en) * 2019-03-05 2020-09-10 株式会社ディスコ Wafer processing method
JP2020145250A (en) * 2019-03-05 2020-09-10 株式会社ディスコ Wafer processing method
JP7242134B2 (en) 2019-03-05 2023-03-20 株式会社ディスコ Wafer processing method
JP7242135B2 (en) 2019-03-05 2023-03-20 株式会社ディスコ Wafer processing method
CN113614888A (en) * 2019-03-27 2021-11-05 三井化学东赛璐株式会社 Protective film, method for attaching protective film, and method for manufacturing semiconductor component
CN113632207A (en) * 2019-03-27 2021-11-09 三井化学东赛璐株式会社 Pasting device
US20220153009A1 (en) * 2019-03-27 2022-05-19 Mitsui Chemicals Tohcello, Inc. Protection film, method for affixing same, and method for manufacturing semiconductor component
WO2020196794A1 (en) * 2019-03-27 2020-10-01 三井化学東セロ株式会社 Protection film, method for affixing same, and method for manufacturing semiconductor component
JP7286245B2 (en) 2019-06-07 2023-06-05 株式会社ディスコ Wafer processing method
JP2020202230A (en) * 2019-06-07 2020-12-17 株式会社ディスコ Wafer processing method
JP2021015840A (en) * 2019-07-10 2021-02-12 株式会社ディスコ Wafer processing method
JP2021015823A (en) * 2019-07-10 2021-02-12 株式会社ディスコ Wafer processing method
JP2021027220A (en) * 2019-08-07 2021-02-22 株式会社ディスコ Wafer processing method
JP7345973B2 (en) 2019-08-07 2023-09-19 株式会社ディスコ Wafer processing method
JP2021027218A (en) * 2019-08-07 2021-02-22 株式会社ディスコ Wafer processing method
JP2021027214A (en) * 2019-08-07 2021-02-22 株式会社ディスコ Wafer processing method
JP2021027217A (en) * 2019-08-07 2021-02-22 株式会社ディスコ Wafer processing method
JP2021027216A (en) * 2019-08-07 2021-02-22 株式会社ディスコ Wafer processing method
JP2021027215A (en) * 2019-08-07 2021-02-22 株式会社ディスコ Wafer processing method
JP2021027219A (en) * 2019-08-07 2021-02-22 株式会社ディスコ Wafer processing method
JP2021027221A (en) * 2019-08-07 2021-02-22 株式会社ディスコ Wafer processing method
JP7350431B2 (en) 2019-08-07 2023-09-26 株式会社ディスコ Wafer processing method
JP7350433B2 (en) 2019-08-07 2023-09-26 株式会社ディスコ Wafer processing method
JP7350432B2 (en) 2019-08-07 2023-09-26 株式会社ディスコ Wafer processing method
JP7345974B2 (en) 2019-08-07 2023-09-19 株式会社ディスコ Wafer processing method
JP2021027213A (en) * 2019-08-07 2021-02-22 株式会社ディスコ Wafer processing method
JP7334009B2 (en) 2019-08-07 2023-08-28 株式会社ディスコ Wafer processing method
JP7334012B2 (en) 2019-08-07 2023-08-28 株式会社ディスコ Wafer processing method
JP7334011B2 (en) 2019-08-07 2023-08-28 株式会社ディスコ Wafer processing method
JP7334010B2 (en) 2019-08-07 2023-08-28 株式会社ディスコ Wafer processing method
JP2021030321A (en) * 2019-08-19 2021-03-01 株式会社ディスコ Wafer processing method
JP7461118B2 (en) 2019-08-19 2024-04-03 株式会社ディスコ Wafer processing method
JP2021030336A (en) * 2019-08-21 2021-03-01 株式会社ディスコ Wafer processing method
JP7374657B2 (en) 2019-08-21 2023-11-07 株式会社ディスコ Wafer processing method
JP7301480B2 (en) 2019-10-17 2023-07-03 株式会社ディスコ Wafer processing method
JP2021064751A (en) * 2019-10-17 2021-04-22 株式会社ディスコ Wafer processing method
JP2021068742A (en) * 2019-10-18 2021-04-30 株式会社ディスコ Ring frame
JP2021082631A (en) * 2019-11-14 2021-05-27 株式会社ディスコ Method for installing protective member, method for processing workpiece, and method for manufacturing protective member
JP7418184B2 (en) 2019-11-14 2024-01-19 株式会社ディスコ How to install a protective member, how to process a workpiece, and how to manufacture a protective member

Also Published As

Publication number Publication date
JPWO2013021644A1 (en) 2015-03-05
TW201316393A (en) 2013-04-16
KR20130084695A (en) 2013-07-25
CN103748664B (en) 2016-04-20
TWI544533B (en) 2016-08-01
KR101467718B1 (en) 2014-12-01
JP5393902B2 (en) 2014-01-22
CN103748664A (en) 2014-04-23
SG189515A1 (en) 2013-05-31

Similar Documents

Publication Publication Date Title
JP5393902B2 (en) Semiconductor device manufacturing method and semiconductor wafer surface protecting film used in the method
JP4549239B2 (en) Dicing adhesive sheet
TWI413672B (en) Processing of processed materials
TWI427134B (en) Pressure-sensitive adhesive sheet for dicing and dicing method
JP5391158B2 (en) Wafer sticking adhesive sheet and wafer processing method using the same
TWI568825B (en) A backing substrate for a polishing film and a sheet for bonding, a method for manufacturing the substrate and the sheet, and a method of manufacturing the workpiece
CN110272696B (en) Adhesive tape for back grinding
JP2007220694A (en) Adhseive sheet and method of processing workpiece using the same
TW201117279A (en) Adhesive sheet for supporting and protecting semiconductor wafer and method for grinding back of semiconductor wafer
JP2011054939A (en) Adhesive sheet for holding and protecting semiconductor wafer, and method for grinding back of semiconductor wafer
TW200934699A (en) Wafer processing tape
TW201908438A (en) Dicing tape, dicing die attach film, and method of manufacturing semiconductor device for breaking a die attach film on a dicing tape favorably in an expanding step performed using a dicing die attach film
JP6423242B2 (en) Dicing film and method for manufacturing semiconductor device
KR101280648B1 (en) Adhesive sheet for dicing and method for dicing using the same
JP2010092945A (en) Adhesive film for semiconductor wafer protection and method of protecting semiconductor wafer using the same
JP2012209386A (en) Film-shaped semiconductor chip adhesive agent, semiconductor processing adhesive sheet, and semiconductor device manufacturing method
JP2010212310A (en) Method of dicing element
JP4234630B2 (en) Method of manufacturing thin film circuit board having penetrating structure and protective adhesive tape
WO2019208378A1 (en) Pressure-sensitive adhesive film and method for producing electronic device
JP2011077235A (en) Pressure-sensitive adhesive sheet for retaining element, and method of manufacturing element
JP6995612B2 (en) Adhesive sheet with integrated dicing tape
JP7224231B2 (en) Dicing die bond film
JP2020205415A (en) Dicing tape and dicing die bond film
JP2014060201A (en) Dicing-die bonding tape and manufacturing method of semiconductor chip with adhesive layer
KR20200143258A (en) Dicing tape and dicing die-bonding film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280038816.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012558117

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12821486

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137015128

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12821486

Country of ref document: EP

Kind code of ref document: A1