WO2013018699A1 - マイクロレンズアレイ及びそれを使用したスキャン露光装置 - Google Patents

マイクロレンズアレイ及びそれを使用したスキャン露光装置 Download PDF

Info

Publication number
WO2013018699A1
WO2013018699A1 PCT/JP2012/069146 JP2012069146W WO2013018699A1 WO 2013018699 A1 WO2013018699 A1 WO 2013018699A1 JP 2012069146 W JP2012069146 W JP 2012069146W WO 2013018699 A1 WO2013018699 A1 WO 2013018699A1
Authority
WO
WIPO (PCT)
Prior art keywords
microlens
microlens array
rows
substrate
microlenses
Prior art date
Application number
PCT/JP2012/069146
Other languages
English (en)
French (fr)
Inventor
水村 通伸
渡辺 由雄
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Priority to CN201280038389.8A priority Critical patent/CN103907061B/zh
Priority to KR1020147005147A priority patent/KR101884045B1/ko
Priority to US14/236,319 priority patent/US9121986B2/en
Publication of WO2013018699A1 publication Critical patent/WO2013018699A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70308Optical correction elements, filters or phase plates for manipulating imaging light, e.g. intensity, wavelength, polarisation, phase or image shift
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography

Definitions

  • the present invention relates to an exposure apparatus that exposes a mask pattern onto a substrate by a microlens array in which microlenses are two-dimensionally arranged, and a microlens array used therefor.
  • the thin film transistor liquid crystal substrate, the color filter substrate, and the like form a predetermined pattern by overlaying and exposing a resist film formed on a glass substrate several times.
  • a scanning exposure apparatus using a microlens array in which microlenses are two-dimensionally arranged has been proposed (Patent Document 1).
  • a plurality of microlens arrays are arranged in one direction, and the microlens array and the exposure light source are moved relative to the substrate and the mask in a direction perpendicular to the arrangement direction.
  • the exposure light scans the mask and forms an exposure pattern formed in the mask hole on the substrate.
  • microlenses on convex lenses are formed on the front and back surfaces of four glass plates having a thickness of, for example, 4 mm, and the four unit microlens arrays configured in this way are arranged on each microlens.
  • FIG. 4 is a longitudinal sectional view showing an exposure apparatus using a microlens array
  • FIG. 5 is a sectional view showing an exposure state by the microlens array
  • FIG. 6 is a perspective view showing an arrangement mode of the microlens array
  • FIG. 7 is a unit.
  • FIG. 8 is a diagram showing a hexagonal field stop of the microlens
  • FIG. 9 is a plan view showing the arrangement of the hexagonal field stop of the microlens
  • FIG. 10 is a diagram showing spherical aberration. It is.
  • the exposure light emitted from the exposure light source 4 is guided to the mask 3 through an optical system 21 including a plane mirror, and the exposure light transmitted through the mask 3 is applied to the microlens array 2. Then, the pattern formed on the mask 3 is imaged on the substrate 1 by the microlens array 2.
  • a dichroic mirror 22 is disposed on the optical path of the optical system 21, and the observation light from the camera 23 is reflected by the dichroic mirror 22 and is directed to the mask 3 coaxially with the exposure light from the exposure light source 4.
  • the observation light converges on the substrate 1 by the microlens array 2 and reflects the reference pattern already formed on the substrate 1, and the reflected light of the reference pattern is reflected by the microlens array 2, the mask 3 and the dichroic.
  • the light enters the camera 23 via the mirror 22.
  • the camera 23 detects the reflected light of the reference pattern and outputs this detection signal to the image processing unit 24.
  • the image processing unit 24 performs image processing on the reference pattern detection signal to obtain a reference pattern detection image.
  • the control unit 25 aligns the substrate 1, the microlens array 2, the mask 3, and the exposure light source 4 based on the detected image.
  • the microlens array 2, the exposure light source 4, and the optical system 21 can move together in a certain direction, and the substrate 1 and the mask 3 are fixedly arranged. Then, when the substrate 1 and the mask 3 are moved in one direction, the exposure light is scanned on the substrate, and in the case of a so-called single-chip substrate in which one substrate is manufactured from a glass substrate, The entire surface of the substrate is exposed.
  • the glass substrate 1 and the mask 3 may be fixed, and the microlens array 2 and the light source 4 may be integrated to move in a certain direction. In this case, the exposure light moves on the substrate and scans the substrate surface.
  • a microlens array 2 configured by two-dimensionally arranging microlenses 2 a is arranged above a substrate 1 to be exposed such as a glass substrate, and further on the microlens array 2.
  • a mask 3 is disposed on the mask 3 and an exposure light source 4 is disposed above the mask 3.
  • the mask 3 is formed with a light shielding film made of a Cr film 3b on the lower surface of the transparent substrate 3a, and the exposure light passes through the holes formed in the Cr film 3b and is converged on the substrate by the microlens array 2.
  • the substrate 1 and the mask 3 are fixed, and the microlens array 2 and the exposure light source 4 are moved in the direction of the arrow 5 in synchronization, whereby exposure from the exposure light source 4 is performed.
  • Light passes through the mask 3 and is scanned on the substrate 1 in the direction of arrow 5.
  • the movement of the microlens array 2 and the exposure light source 4 is driven by a driving source of an appropriate moving device.
  • microlens arrays 2 are arranged in two rows on the support substrate 6 in a direction perpendicular to the scanning direction 5, and these microlens arrays 2 are arranged in the scanning direction 5.
  • three of the four microlens arrays 2 in the rear stage are respectively arranged between the four microlens arrays 2 in the front stage, and the two rows of microlens arrays 2 are arranged in a staggered manner. ing. Thereby, the entire region of the exposure region in the direction perpendicular to the scanning direction 5 on the substrate 1 is exposed by the two rows of microlens arrays 2.
  • each microlens 2a of each microlens array 2 has, for example, a four-lens eight-lens configuration, and four unit microlens arrays 2-1, 2-2, 2-3, 2- 4 has a laminated structure.
  • Each unit microlens array 2-1 or the like is composed of an optical system expressed by two convex lenses. As a result, the exposure light once converges between the unit microlens array 2-2 and the unit microlens array 2-3, and further forms an image on the substrate below the unit microlens array 2-4.
  • a hexagonal field stop 12 is disposed between the unit microlens array 2-2 and the unit microlens array 2-3, and a circular shape is formed between the unit microlens array 2-3 and the unit microlens array 2-4.
  • the aperture stop 10 is arranged.
  • the aperture stop 10 limits the NA (numerical aperture) of each microlens 2a, and the hexagonal field stop 12 narrows the field to a hexagonal shape near the imaging position.
  • the hexagonal field stop 12 and the aperture stop 10 are provided for each microlens 2a.
  • the light transmission region of the microlens 2a is shaped into a circle by the aperture stop 10 and the exposure light substrate.
  • the upper exposure area is shaped into a hexagon. For example, as shown in FIG.
  • the hexagonal field stop 12 is formed as a hexagonal opening in the aperture stop 10 of the microlens 2a. Therefore, the exposure light transmitted through the microlens array 2 by this hexagonal field stop 12 is irradiated only on the area surrounded by the hexagon shown in FIG. .
  • the hexagonal field stop 12 and the circular aperture stop 10 can be patterned with a Cr film as a film that does not transmit light.
  • FIG. 9 is a diagram showing the arrangement of the microlenses 2a as the position of the hexagonal field stop 12 of the microlenses 2a in order to show the arrangement of the microlenses 2a in each microlens array 2.
  • the microlenses 2 a are sequentially shifted in the horizontal direction (direction perpendicular to the scan direction 5) with respect to the scan direction 5.
  • the hexagonal field stop 12 is divided into a central rectangular portion 12 a and triangular portions 12 b and 12 c on both sides when viewed in the scanning direction 5.
  • the broken line is a line segment that connects each corner of the hexagon of the hexagonal field stop 12 in the scanning direction 5.
  • FIG. 9 is a diagram showing the arrangement of the microlenses 2a as the position of the hexagonal field stop 12 of the microlenses 2a in order to show the arrangement of the microlenses 2a in each microlens array 2.
  • the microlenses 2 a are sequentially shifted in the horizontal direction (direction perpendic
  • the fourth row of microlenses 2 a are arranged at the same position as the first row of microlenses 2 a in the direction perpendicular to the scan direction 5.
  • the three rows of hexagonal field stops 12 when the area of the triangular portion 12 b and the area of the triangular portion 12 c of the two adjacent rows of hexagonal field stops 12 are added, two triangles overlapping in the scanning direction 5 are obtained.
  • the linear density of the total area of the portions 12b and 12c is the same as the linear density of the area of the central rectangular portion 12a.
  • the linear density is the opening area of the hexagonal field stop 12 per unit length in the direction perpendicular to the scanning direction 5.
  • the total area of the triangular portions 12b and 12c is the area of a rectangular portion whose length is the base of the triangular portions 12b and 12c and whose width is the height of the triangular portions 12b and 12c. Since the rectangular portion has the same length as the rectangular portion 12a, the linear density of the triangular portions 12b and 12c is compared with the opening area (linear density) per unit length in the direction perpendicular to the scanning direction 5. The linear density of the rectangular portion 12a is the same. For this reason, when the substrate 1 is scanned by the three rows of microlenses 2a, it is exposed to a uniform amount of light in the entire area in the direction perpendicular to the scanning direction 5. Therefore, in each microlens array 2, microlenses 2a in an integer multiple of 3 are arranged in the scanning direction 5, so that the substrate can be exposed with a uniform amount of light over the entire area by one scan. Will receive.
  • this conventional scanning exposure apparatus has the following problems. As shown in FIG. 10, in each microlens 2a, spherical aberration exists in the peripheral portion of the lens, and the amount of light transmitted through the peripheral portion is lower than the amount of light transmitted through the central portion. For this reason, a hexagonal field stop 12 is provided between the second unit microlens array 2-2 and the third unit microlens array 2-3, and the light transmitted through the periphery of the microlens 2a. And spherical aberration at the peripheral portion of the microlens 2a is prevented.
  • the spherical aberration at the lens periphery can be removed to some extent by the hexagonal field stop 12, even in the light transmitted through the hexagonal field stop 12, the amount of light from the center of the hexagonal field stop 12 toward the peripheral part Has a light quantity distribution that decreases.
  • This light quantity distribution is averaged because the micro lens 2a moves relatively in the scanning direction 5 of the micro lens array 2, and the influence of the light quantity distribution on a specific position on the substrate is affected.
  • the microlens 2a does not move relatively, so that the distribution of the amount of light is caused by the spherical aberration of one microlens 2a. Will remain. For this reason, the conventional technique has a problem that uneven exposure occurs in a direction perpendicular to the scan direction.
  • the present invention has been made in view of such a problem, and in an exposure apparatus using a microlens array, a microlens array that can prevent occurrence of exposure unevenness in a direction perpendicular to the scanning direction. It is another object of the present invention to provide a scanning exposure apparatus using the same.
  • the microlens array according to the present invention is a microlens array formed by laminating a plurality of unit microlens arrays in which a plurality of microlenses are two-dimensionally arranged, A polygonal field stop having a polygonal aperture is disposed at the reversal imaging position between the unit microlens arrays, A plurality of the microlenses are arranged in the first direction with an appropriate length interval to form a row, and the plurality of microlens rows have an appropriate length interval in a second direction orthogonal to the first direction.
  • the triangle part on one side, the rectangular part, and the triangle part on the other side are in the first direction. It is connected to For each of the plurality of microlens rows, In the microlens, the triangular portion on one side thereof overlaps the triangular portion on the other side of the other microlens adjacent to the microlens in the second direction with respect to the second direction.
  • a group of microlens rows composed of the plurality of microlens rows, The other microlens array group adjacent to the second direction is arranged so as to be deviated by a distance shorter than the length of the visual field region in the first direction in the first direction.
  • a scanning exposure apparatus using a microlens array according to the present invention is arranged above a substrate to be exposed, and a plurality of unit microlens arrays each having a plurality of microlenses arranged two-dimensionally are stacked on each other.
  • a microlens array configured above, a mask disposed above the microlens array and having a predetermined exposure pattern formed thereon, an exposure light source for irradiating the mask with exposure light, and the microlens array or the substrate
  • a moving device for moving the mask relatively in one direction
  • a polygonal field stop having a polygonal aperture is disposed at the reversal imaging position between the unit microlens arrays
  • a plurality of the microlenses are arranged in the first direction with a suitable length interval to form a row, and the plurality of microlens rows are spaced in a second direction orthogonal to the first direction.
  • the triangle part on one side, the rectangular part, and the triangle part on the other side are in the first direction. It is connected to For each of the plurality of microlens rows, In the microlens, the triangular portion on one side thereof overlaps the triangular portion on the other side of the other microlens adjacent to the microlens in the second direction with respect to the second direction.
  • a group of microlens rows composed of the plurality of microlens rows, The other microlens array group adjacent to the second direction is arranged so as to be deviated by a distance shorter than the length of the visual field region in the first direction in the first direction.
  • the moving device can be configured to move the microlens array and the light source in the second direction with respect to the substrate and the mask.
  • the microlens rows are shorter in the first direction than the length of the visual field region in the first direction. Since the arrangement is deviated by the distance, the distribution of the light quantity in the first direction generated in the microlens can be slightly shifted in the first direction for each of the three microlens array groups. When the scan is received, the light amount distribution in the first direction on the substrate can be eliminated, and uneven exposure can be prevented.
  • FIG. 1 is a plan view showing the arrangement of the microlenses 2a of the microlens array 2 according to the embodiment of the present invention.
  • One microlens 2 a has a hexagonal field stop 12 disposed in a circular aperture stop 10, and the exposure light is transmitted only through the region of the hexagonal field stop 12.
  • a plurality of microlenses 2 a are arranged at a lens pitch P in a direction perpendicular to the scanning direction 5 to constitute a microlens array.
  • microlens rows extending in the direction perpendicular to the scan direction 5
  • adjacent microlens rows are biased in a direction perpendicular to the scan direction 5 by the shift amount S.
  • a microlens array group composed of three microlens arrays is disposed at a pitch P5 in the scan direction 5, and the arrangement of the microlenses 2a in each microlens array group is the same.
  • the overlap amount L of the adjacent microlens arrays in the scanning direction 5 corresponds to the heights of the triangular portions 12b and 12c in the hexagonal field stop 12 as described with reference to FIG. . Therefore, when each microlens array group (three microlens arrays) scans the substrate in the scan direction 5, the substrate is nominally (in the absence of spherical aberration), uniform light quantity in the direction perpendicular to the scan direction 5. Receive exposure.
  • the microlens is biased by a minute shift amount F with respect to the direction perpendicular to the scan direction 5.
  • the microlens row groups at both ends in the scan direction 5 are biased in the direction perpendicular to the scan direction 5 with the total shift amount TF.
  • the shift amount TF is n ⁇ F. It becomes.
  • R is the maximum length in the direction perpendicular to the scanning direction 5 of the hexagonal field stop 12.
  • PP is the pitch between the microlens array groups at both ends in the scanning direction 5.
  • the deviation S in the direction perpendicular to the scanning direction 5 of the microlenses between adjacent microlens rows is, for example, 150 ⁇ m
  • the deviation between the last microlens array and the adjacent microlens array is also 150 ⁇ m, so one microlens array group.
  • the microlens is biased by a total of 450 ⁇ m.
  • microlens array 2 and the exposure apparatus other than the arrangement of the microlenses 2a of the microlens array 2 can be configured in the same manner as shown in FIGS.
  • the substrate 1 and the mask 3 are fixed, and the microlens array 2 and the light source 4 are moved in the scanning direction 5 with respect to the substrate 1 and the mask 3. Then, on the substrate 1, with respect to the direction perpendicular to the scanning direction 5, first, the exposure that has passed through the hexagonal field stop 12 of one microlens row in which microlenses are arranged in the direction perpendicular to the scanning direction 5.
  • the exposure light irradiated through the hexagonal field stop 12 of the microlens row in the subsequent row is irradiated with the light, and further, the hexagonal field stop 12 in the microlens row in the subsequent row is further received.
  • Receive irradiation At this time, in the substrate, with respect to the direction perpendicular to the scanning direction 5, the three microlens rows make one rectangular portion, two triangular portions, one rectangular portion, and two triangular portions. These portions are continuously irradiated with exposure light, such as a portion, one rectangular portion, and so on.
  • the substrate is eventually scanned in the scanning direction by three microlens rows (microlens row groups). In the direction perpendicular to 5, exposure with a uniform amount of light is continuously received. Conventionally, as shown in FIG. 9, all the microlens array groups including these three microlens arrays have exposed the same substrate position in the direction perpendicular to the scan direction 5.
  • each microlens has a spherical aberration as shown in FIG. That is, the amount of transmitted light decreases from the center of the hexagonal field stop 12 toward the periphery in the direction perpendicular to the scanning direction 5.
  • the triangular portion of the hexagonal field stop 12 exposes the same portion of the substrate in an overlapping manner. Therefore, as shown in FIG.
  • FIG. 11 is a light amount distribution obtained by adding the triangular portion in which the exposure light amount decreases and the triangular portion in which the exposure light amount increases in the direction perpendicular to the scanning direction 5, the change in the exposure light amount is slightly canceled, and FIG. As shown in a), although the magnitude of the change in the amount of light is slightly smaller, the light amount distribution is undulating in the direction perpendicular to the scan direction 5.
  • the microlens array groups in each group are exposed by overlapping the same light amount distribution as the light amount distribution of FIG. Finally, the light amount distribution of the exposure light on the substrate remains as it is.
  • the adjacent microlens array groups are biased by a minute shift amount F, so that the light quantity distribution of the exposure light by each group is as follows.
  • FIG. 11B the light amount distribution in FIG. 11A is shifted from the first group, the second group, the third group,... By F in the direction perpendicular to the scanning direction 5. Therefore, when all of the 75 microlens array groups in FIG.
  • the unevenness of the light amount distribution of the exposure light is smoothed and made uniform. . Therefore, a uniform exposure light quantity distribution in the direction perpendicular to the scan direction 5 can be obtained, and uneven exposure can be prevented.
  • the scan direction 5 although there is a distribution of exposure light quantity in each microlens, the light quantity distribution moves in the scan direction 5, so that the unevenness of the light quantity distribution is leveled, so the substrate after scanning There is no unevenness of the light distribution on the top.
  • FIG. 3 is a graph simulating the relationship between the total shift amount TF and the unevenness ratio, with the total shift amount TF on the horizontal axis and the exposure unevenness ratio (unevenness ratio) on the vertical axis.
  • the numerical values of the unevenness ratio shown in FIG. 2 are for the case where the arrangement relationship of the microlenses is the dimension illustrated in FIG.
  • the distribution of the exposure light amount becomes almost zero, and exposure unevenness can be prevented. This is because the distribution of the exposure light amount existing within the maximum exposure width R of the microlens is canceled by the deviation of the position of the microlens by the maximum exposure width R of the microlens or an integral multiple thereof in the entire scanning direction 5. Because it is. If the total shift amount TF is further increased from the arrangement of the microlenses where the exposure light quantity distribution has reached a value close to 0, that is, when the number of microlens array groups is increased, only the increased number of microlens array groups. Since the exposure light quantity distribution newly appears, the unevenness rate increases. Therefore, it is preferable to determine the arrangement of the microlens so that the total shift amount TF matches the maximum exposure width R of the microlens.
  • the polygonal field stop is the hexagonal field stop 12, and the microlens rows form microlens row groups every three rows.
  • the present invention is not limited to this, and various aspects are possible.
  • the polygonal field stop that defines the field on the substrate by the microlens is not limited to the hexagonal field stop, and may have, for example, a rhombus, a parallelogram, or a trapezoidal opening.
  • the field area can be decomposed into a central rectangular portion and triangular portions on both sides thereof.
  • the number of microlens rows constituting one group of microlens rows is not limited to three.
  • the arrangement of the microlenses shown in FIG. 9 constitutes one group of three rows in the scanning direction 5, and the fourth row of microlens rows is the first row of microlenses.
  • the lens size and field width differ depending on the designed lens performance. The ratio may be changed.
  • FIG. 12B when the lens pitch is adjusted to be an integral multiple of the field width, there may be a case where the three-row configuration is not achieved.
  • Substrate 2 Micro lens array 2a: Micro lens 2-1 to 2-4: Unit micro lens array 3: Mask 3a: Transparent substrate 3b: Cr film 4: Exposure light source 5: Scanning direction 6: Support substrate 10: Circular Aperture stop (Lens field of view) 12: hexagonal field stop 12a: rectangular portion 12b, 12c: triangular portion

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

マイクロレンズアレイにおいては、その反転結像位置の6角視野絞りの配置、即ち、マイクロレンズの配置が、スキャン方向に垂直の方向に多数配置されて、マイクロレンズ列が構成されている。そして、その3列のマイクロレンズ列に関して、マイクロレンズ列は、6角視野絞りの三角形部分がスキャン方向に重なるように、夫々スキャン方向に垂直の方向に(長さS)だけ偏倚させて配置されている。更に、この3列のマイクロレンズ列から構成されるマイクロレンズ列群に関して、マイクロレンズ列群は、例えば、微小シフト量F(例えば、2μm)づつ、スキャン方向に垂直の方向に偏倚させて配置されている。これにより、マイクロレンズアレイを使用した露光装置において、スキャン方向に垂直の方向についても、露光ムラが発生することを防止することができる。

Description

マイクロレンズアレイ及びそれを使用したスキャン露光装置
 本発明は、マイクロレンズを2次元的に配列したマイクロレンズアレイによりマスクパターンを基板上に露光する露光装置、及びそれに使用するマイクロレンズアレイに関する。
 薄膜トランジスタ液晶基板及びカラーフィルタ基板等は、ガラス基板上に形成されたレジスト膜等を、数回、重ね合わせ露光して、所定のパターンを形成する。また、近時、マイクロレンズを2次元的に配置したマイクロレンズアレイを使用したスキャン露光装置が提案されている(特許文献1)。このスキャン露光装置においては、複数個のマイクロレンズアレイを一方向に配列し、この配列方向に垂直の方向にマイクロレンズアレイ及び露光光源を、基板及びマスクに対して、相対的に移動させることにより、露光光がマスクをスキャンして、マスクの孔に形成された露光パターンを基板上に結像させる。マイクロレンズアレイは、厚さが例えば4mmの4枚のガラス板の夫々表面及び裏面に凸レンズ上のマイクロレンズを形成し、このように構成された4枚の単位マイクロレンズアレイを、各マイクロレンズの光軸が一致するように重ね、光軸方向に8個のレンズを配置することにより、正立等倍像を基板に露光するようになっている。
 図4はマイクロレンズアレイを使用した露光装置を示す縦断面図、図5はこのマイクロレンズアレイによる露光状態を示す断面図、図6はマイクロレンズアレイの配置態様を示す斜視図、図7は単位マイクロレンズアレイの一部を示す断面図、図8はマイクロレンズの6角視野絞りを示す図、図9はマイクロレンズの6角視野絞りの配置を示す平面図、図10は球面収差を示す図である。
 図4に示すように、露光光源4から出射された露光光は、平面ミラーを含む光学系21を介して、マスク3に導かれ、マスク3を透過した露光光は、マイクロレンズアレイ2に照射され、マスク3に形成されたパターンがマイクロレンズアレイ2により、基板1上に結像する。この光学系21の光路上にダイクロイックミラー22が配置されており、カメラ23からの観察光が、ダイクロイックミラー22で反射して、露光光源4からの露光光と同軸的にマスク3に向かう。また、この観察光はマイクロレンズアレイ2にて基板1上に収束し、基板1に既に形成されている基準パターンを反射して、この基準パターンの反射光がマイクロレンズアレイ2、マスク3及びダイクロイックミラー22を介してカメラ23に入射するようになっている。カメラ23は、この基準パターンの反射光を検出し、この検出信号を画像処理部24に出力する。画像処理部24は基準パターンの検出信号を画像処理し、基準パターンの検出画像を得る。制御部25はこの検出画像を基に基板1、マイクロレンズアレイ2、マスク3及び露光光源4の位置合わせを行う。マイクロレンズアレイ2と露光光源4及び光学系21は、一体となって一定の方向に移動することができ、基板1とマスク3は、固定的に配置されている。そして、基板1及びマスク3が一方向に移動することにより、露光光が基板上で走査され、ガラス基板から1枚の基板が製造される所謂1枚取りの基板の場合は、上記一走査により、基板の全面が露光される。又は、ガラス基板1とマスク3が固定されていて、マイクロレンズアレイ2と光源4とが一体となって、一定の方向に移動するように構成することもできる。この場合は、露光光が基板上を移動して、基板面を走査する。
 次に、マイクロレンズアレイによる露光態様について、更に詳細に説明する。図5に示すように、ガラス基板等の被露光基板1の上方に、マイクロレンズ2aが2次元的に配置されて構成されたマイクロレンズアレイ2が配置され、更に、このマイクロレンズアレイ2の上にマスク3が配置され、マスク3の上方に露光光源4が配置されている。マスク3は透明基板3aの下面にCr膜3bからなる遮光膜が形成されていて、露光光はこのCr膜3bに形成された孔を透過してマイクロレンズアレイ2により基板上に収束する。上述のごとく、本実施形態においては、例えば、基板1及びマスク3が固定されていて、マイクロレンズアレイ2及び露光光源4が同期して矢印5方向に移動することにより、露光光源4からの露光光がマスク3を透過して基板1上を矢印5方向にスキャンされる。このマイクロレンズアレイ2及び露光光源4の移動は、適宜の移動装置の駆動源により駆動される。
 図6に示すように、マイクロレンズアレイ2は、支持基板6に、スキャン方向5に垂直の方向に例えば4個ずつ2列に配置されており、これらのマイクロレンズアレイ2は、スキャン方向5にみて、前段の4個のマイクロレンズアレイ2の相互間に、後段の4個のマイクロレンズアレイ2のうち3個が夫々配置されて、2列のマイクロレンズアレイ2が千鳥になるように配列されている。これにより、2列のマイクロレンズアレイ2により、基板1におけるスキャン方向5に垂直の方向の露光領域の全域が露光される。
 図7に示すように、各マイクロレンズアレイ2の各マイクロレンズ2aは、例えば、4枚8レンズ構成であり、4枚の単位マイクロレンズアレイ2-1,2-2,2-3,2-4が積層された構造を有する。各単位マイクロレンズアレイ2-1等は2個の凸レンズにより表現される光学系から構成されている。これにより、露光光は単位マイクロレンズアレイ2-2と単位マイクロレンズアレイ2-3との間で一旦収束し、更に単位マイクロレンズアレイ2-4の下方の基板上で結像する。そして、単位マイクロレンズアレイ2-2と単位マイクロレンズアレイ2-3との間に6角視野絞り12が配置され、単位マイクロレンズアレイ2-3と単位マイクロレンズアレイ2-4との間に円形の開口絞り10が配置されている。開口絞り10が各マイクロレンズ2aのNA(開口数)を制限すると共に、6角視野絞り12が結像位置に近いところで6角形に視野を絞る。これらの6角視野絞り12及び開口絞り10はマイクロレンズ2a毎に設けられており、各マイクロレンズ2aについて、マイクロレンズ2aの光透過領域を開口絞り10により円形に整形すると共に、露光光の基板上の露光領域を6角形に整形している。6角視野絞り12は、例えば、図8に示すように、マイクロレンズ2aの開口絞り10の中に6角形状の開口として形成される。よって、この6角視野絞り12により、マイクロレンズアレイ2を透過した露光光は、スキャンが停止しているとすると、基板1上で図9に示す6角形に囲まれた領域にのみ照射される。なお、6角視野絞り12及び円形開口絞り10は、光を透過しない膜として、Cr膜によりパターン形成することができる。
 図9は、各マイクロレンズアレイ2における各マイクロレンズ2aの配置態様を示すために、マイクロレンズ2aの配置態様を、マイクロレンズ2aの6角視野絞り12の位置として示す図である。この図9に示すように、マイクロレンズ2aは、スキャン方向5について、順次、若干横方向(スキャン方向5に垂直の方向)にずれて配置されている。6角視野絞り12は、中央の矩形部分12aと、そのスキャン方向5に見て両側の三角形部分12b、12cとに分かれる。図9において、破線は、6角視野絞り12の6角形の各角部をスキャン方向5に結ぶ線分である。この図9に示すように、スキャン方向5に垂直の方向の各列に関し、スキャン方向5について3列の6角視野絞り12の列をみると、ある特定の1列目の6角視野絞り12の右側の三角形部分12cが、スキャン方向後方に隣接する2列目の6角視野絞り12の左側の三角形部分12bと重なり、1列目の6角視野絞り12の左側の三角形部分12bが、3列目の6角視野絞り12の右側の三角形部分12cと重なるように、これらのマイクロレンズ2aが配置されている。このようにして、スキャン方向5に関し、3列のマイクロレンズ2aが1セットとなって配置される。つまり、4列目のマイクロレンズ2aは、スキャン方向5に垂直の方向に関し、1列目のマイクロレンズ2aと同一位置に配置される。このとき、3列の6角視野絞り12において、隣接する2列の6角視野絞り12の三角形部分12bの面積と三角形部分12cの面積とを加算すると、このスキャン方向5に重なる2個の三角形部分12b、12cの合計面積の線密度は、中央の矩形部分12aの面積の線密度と同一になる。なお、この線密度とは、スキャン方向5に垂直の方向における単位長あたりの6角視野絞り12の開口面積である。つまり、三角形部分12b、12cの合計面積は、三角形部分12b、12cの底辺を長さとし、三角形部分12b、12cの高さを幅とする矩形部分の面積になる。この矩形部分は、矩形部分12aの長さと同一の長さであるから、スキャン方向5に垂直の方向に関する単位長あたりの開口面積(線密度)で比べると、三角形部分12b、12cの線密度と、矩形部分12aの線密度とは同一になる。このため、基板1が3列のマイクロレンズ2aのスキャンを受けると、このスキャン方向5に垂直の方向に関し、その全域で均一な光量の露光を受けたことになる。従って、各マイクロレンズアレイ2には、スキャン方向5に関し、3の整数倍の列のマイクロレンズ2aが配置されており、これにより、基板は、1回のスキャンによりその全域で均一な光量の露光を受けることになる。
特開2007-3829
 しかしながら、この従来のスキャン露光装置においては、以下に示す問題点がある。図10に示すように、各マイクロレンズ2aにおいては、そのレンズの周辺部分に球面収差が存在し、周辺部分を透過する光の光量が中心部分を透過する光の光量よりも低下する。このため、2枚目の単位マイクロレンズアレイ2-2と3枚目の単位マイクロレンズアレイ2-3との間に、6角視野絞り12を設けて、マイクロレンズ2aの周辺部を透過する光を遮断し、マイクロレンズ2aの周辺部の球面収差を防止している。
 しかしながら、レンズ周辺部の球面収差は6角視野絞り12によりある程度除去することができるものの、この6角視野絞りを透過した光においても、6角視野絞り12の中心から周辺部に向けて、光量が低下するような光量分布を有する。この光量分布は、マイクロレンズアレイ2のスキャン方向5については、マイクロレンズ2aが相対的に移動するため、光量分布が平均化されてならされてしまい、基板上の特定の位置に光量分布の影響が残ることはないが、マイクロレンズアレイ2のスキャン方向5に垂直の方向については、マイクロレンズ2aが相対的に移動しないため、1個のマイクロレンズ2aの球面収差により光量の分布が、基板1に残ってしまう。このため、従来技術においては、このスキャン方向に垂直の方向について、露光ムラが生じるという問題点がある。
 本発明はかかる問題点に鑑みてなされたものであって、マイクロレンズアレイを使用した露光装置において、スキャン方向に垂直の方向についても、露光ムラが発生することを防止することができるマイクロレンズアレイ及びそれを使用したスキャン露光装置を提供することを目的とする。
 本発明に係るマイクロレンズアレイは、複数個のマイクロレンズが2次元的に配置された単位マイクロレンズアレイが複数枚相互に積層されて構成されたマイクロレンズアレイにおいて、
前記単位マイクロレンズアレイ間の反転結像位置には、多角形の開口を有する多角視野絞りが配置され、
前記マイクロレンズは、第1の方向に複数個適長間隔をおいて配列されて列を構成し、この複数個のマイクロレンズ列が第1の方向に直交する第2の方向に適長間隔をおいて配置されており、
前記多角視野絞りにより規定される視野領域を矩形とその両側の三角形とに分解したとき、この一方の側の三角形の部分と矩形の部分と他方の側の三角形の部分とは前記第1の方向に連なっており、
複数個の前記マイクロレンズ列毎に、
前記マイクロレンズは、その一方の側の前記三角形部分が、このマイクロレンズに対して第2の方向に隣接する他のマイクロレンズの他方の側の前記三角形部分と、前記第2の方向に関して重なるように、前記第1の方向に偏倚して配置されており、
前記複数個のマイクロレンズ列から構成されるマイクロレンズ列群は、
その前記第2の方向に隣接する他のマイクロレンズ列群に対し、前記第1の方向に前記視野領域の前記第1の方向の長さよりも短い距離だけ偏倚して配置されていることを特徴とする。
 本発明に係るマイクロレンズアレイを使用したスキャン露光装置は、露光すべき基板の上方に配置され、夫々複数個のマイクロレンズが2次元的に配置された単位マイクロレンズアレイが複数枚相互に積層されて構成されたマイクロレンズアレイと、このマイクロレンズアレイの上方に配置され所定の露光パターンが形成されたマスクと、このマスクに対して露光光を照射する露光光源と、前記マイクロレンズアレイ又は前記基板及び前記マスクを相対的に一方向に移動させる移動装置と、を有し、
前記単位マイクロレンズアレイ間の反転結像位置には、多角形の開口を有する多角視野絞りが配置され、
前記マイクロレンズは、第1の方向に複数個適長間隔をおいて配列されて列を構成し、この複数個のマイクロレンズ列が第1の方向に直交する第2の方向に適長間隔をおいて配置されており、
前記多角視野絞りにより規定される視野領域を矩形とその両側の三角形とに分解したとき、この一方の側の三角形の部分と矩形の部分と他方の側の三角形の部分とは前記第1の方向に連なっており、
複数個の前記マイクロレンズ列毎に、
前記マイクロレンズは、その一方の側の前記三角形部分が、このマイクロレンズに対して第2の方向に隣接する他のマイクロレンズの他方の側の前記三角形部分と、前記第2の方向に関して重なるように、前記第1の方向に偏倚して配置されており、
前記複数個のマイクロレンズ列から構成されるマイクロレンズ列群は、
その前記第2の方向に隣接する他のマイクロレンズ列群に対し、前記第1の方向に前記視野領域の前記第1の方向の長さよりも短い距離だけ偏倚して配置されていることを特徴とする。
 このマイクロレンズアレイを使用したスキャン露光装置において、例えば、前記移動装置は、前記マイクロレンズアレイ及び光源を、前記基板及び前記マスクに対し、前記第2方向に移動させるように構成することができる。
 本発明によれば、マイクロレンズアレイを使用した露光装置において、例えば、3列のマイクロレンズ列群毎に、マイクロレンズ列を第1方向に前記視野領域の前記第1の方向の長さよりも短い距離だけ偏倚して配置したので、マイクロレンズに生じる第1方向の光量の分布を、3列のマイクロレンズ列群毎に、第1方向に若干ずらすことができるため、複数のマイクロレンズ列群によるスキャンを受けると、基板上の第1方向の光量分布を解消することができ、露光ムラを防止することができる。
本発明の実施形態に係るマイクロレンズアレイのマイクロレンズの配置を示す平面図である。 同じくマイクロレンズの配置を示す平面図である。 本発明の効果を示すグラフ図である。 マイクロレンズアレイを使用した露光装置を示す模式図である。 同じくこの露光装置のマイクロレンズアレイの部分を示す縦断面図である。 このマイクロレンズアレイが複数個配列されている状態を示す斜視図である。 4枚構成のマイクロレンズを示す図である。 マイクロレンズの絞り形状を示す図である。 マイクロレンズの6角視野絞りの配置を示す平面図である。 マイクロレンズの球面収差を示す図である。 本発明の効果を示す図であり、(a)は2個の6角視野絞りにおける光量変化を示し、(b)は複数群のマイクロレンズ列における光量変化を示す。 (a)は3列構成、(b)は4列構成のマイクロレンズ配置を示す図である。
 以下、本発明の実施形態について、添付の図面を参照して具体的に説明する。図1は本発明の実施形態のマイクロレンズアレイ2のマイクロレンズ2aの配置を示す平面図である。1個のマイクロレンズ2aは円形の開口絞り10内に、6角視野絞り12が配置され、この6角視野絞り12の領域のみを露光光が透過する。このマイクロレンズアレイ2においては、スキャン方向5に垂直の方向にレンズピッチPで複数個のマイクロレンズ2aが配置され、マイクロレンズ列を構成している。このスキャン方向5に垂直の方向に延びるマイクロレンズ列は、隣接するマイクロレンズ列同士が、シフト量Sでこのスキャン方向5に垂直の方向に偏倚している。3列のマイクロレンズ列から構成されるマイクロレンズ列群は、スキャン方向5について、ピッチP5で配置されており、各マイクロレンズ列群におけるマイクロレンズ2aの配置態様は同一である。
 各マイクロレンズ列群において、隣接するマイクロレンズ列同士のスキャン方向5に関する重なり量Lは、図9で説明したように、6角視野絞り12の中の三角形部分12bと12cの高さに該当する。従って、各マイクロレンズ列群(3列のマイクロレンズ列)が基板をスキャン方向5にスキャンすると、スキャン方向5に垂直の方向に関し、基板は、名目上(球面収差がない場合)、均一な光量の露光を受ける。
 そして、本実施形態においては、マイクロレンズ列群(3列のマイクロレンズ列)毎に、マイクロレンズはスキャン方向5に垂直の方向に関して微小シフト量Fで偏倚している。スキャン方向5の両端部のマイクロレンズ列群同士は、全シフト量TFでスキャン方向5に垂直の方向に偏倚するが、マイクロレンズ列群の数をnとすると、このシフト量TFはn×Fとなる。なお、図1において、Rは、6角視野絞り12のスキャン方向5に垂直の方向の最大長である。また、PPはスキャン方向5の両端部のマイクロレンズ列群同士のピッチである。
 この場合に、各マイクロレンズの最大露光領域Rが150μm程度であるとすると、マイクロレンズ列群毎に(3列のマイクロレンズ列毎に)スキャン方向5に垂直の方向に偏倚する微小シフト量Fは、例えば、2μm程度であることが好ましい。マイクロレンズ列群は、通常のマイクロレンズアレイ2において、スキャン方向5に、例えば75群配置される。そうすると、スキャン方向5の両端部のマイクロレンズ列群の間のスキャン方向5に垂直の方向の偏倚は、2(μm)×75=150(μm)となる。よって、各マイクロレンズの最大露光領域Rと同程度の寸法だけ、マイクロレンズ列群の全体で偏倚させることになる。ちなみに、各マイクロレンズ列群のピッチP5は例えば1.35mmであるから、スキャン方向5の両端部のマイクロレンズ列群間のピッチPPは、1.35(mm)×75=101.25(mm)であるので、マイクロレンズアレイ2のスキャン方向5の長さは、PP+P5=102.6mmとなる。
 そして、隣接するマイクロレンズ列同士のマイクロレンズのスキャン方向5に垂直の方向の偏倚Sが、例えば、150μmである場合、1個のマイクロレンズ列群において、隣接するマイクロレンズ列は2組存在するのでその間の偏倚は、150(μm)×2=300(μm)となり、最後のマイクロレンズ列と、隣接するマイクロレンズ列群との間の偏倚も150μmであるので、1個のマイクロレンズ列群で、マイクロレンズは合計450μmだけ偏倚する。そして、隣接するマイクロレンズ列群同士で、マイクロレンズは微少偏倚F(例えば、2μm)だけスキャン方向5に垂直の方向に偏倚しているので、隣接するマイクロレンズ列群間では、マイクロレンズは450+2=452(μm)だけ偏倚する。
 なお、このマイクロレンズアレイ2のマイクロレンズ2aの配置態様以外のマイクロレンズアレイ2及び露光装置の構成は、図4乃至図9に示すものと同様に構成することができる。
 次に、上述のごとく構成された本実施形態のマイクロレンズアレイ及び露光装置の動作について説明する。例えば、基板1及びマスク3を固定しておき、マイクロレンズアレイ2及び光源4を基板1及びマスク3に対してスキャン方向5に移動させる。そうすると、基板1上においては、スキャン方向5に垂直の方向に関し、まず、このスキャン方向5に垂直の方向にマイクロレンズが配列された1列のマイクロレンズ列の6角視野絞り12を透過した露光光の照射を受け、次いで、その後列のマイクロレンズ列の6角視野絞り12を透過した露光光の照射を受け、更に、その後列のマイクロレンズ列の6角視野絞り12を透過した露光光の照射を受ける。このとき、基板においては、スキャン方向5に垂直の方向に関し、この3列のマイクロレンズ列により、1個の矩形部分と、2個の三角形部分と、1個の矩形部分と、2個の三角形部分と、1個の矩形部分と・・・というように、これらの部分が連続して露光光の照射を受ける。2個の三角形部分の合計面積はその三角形部分の高さに相当する幅を有する矩形部分の面積に等しいから、結局、基板は、3列のマイクロレンズ列(マイクロレンズ列群)により、スキャン方向5に垂直の方向に関して、連続して均一な光量の露光を受けることになる。従来は図9に示すように、この3列のマイクロレンズ列からなる全てのマイクロレンズ列群が、スキャン方向5に垂直の方向に関し、同一の基板位置を露光していた。
 従来の図9に示すマイクロレンズの配置態様は、マイクロレンズに球面収差が存在しなければ、基板の全域を隙間無く均一に露光することができる。しかし、前述したように、各マイクロレンズには、図10に示すような球面収差が存在する。即ち、6角視野絞り12の中心からスキャン方向5に垂直の方向の周辺部に向かうにつれて透過光量が低下する。スキャン方向5に隣接するマイクロレンズ列において、6角視野絞り12の三角形部分が基板の同一部分を重複して露光するので、図11(a)に示すように、この6角視野絞り12の周縁部で、スキャン方向5に垂直の方向に関して、露光光量が低下する三角形部分と、露光光量が増大する三角形部分とを加算した光量分布となるため、露光光量の変化が若干打ち消され、図11(a)に示すように、その光量の変化の大きさが若干小さくなるものの、スキャン方向5に垂直の方向に関して波打つような光量分布となる。
 従来の図9のように、マイクロレンズが配列されている場合は、各群のマイクロレンズ列群は、図11(a)の光量分布と同一の光量分布をそのまま重ねて露光することになり、最終的に基板上の露光光の光量分布はそのまま残る。しかしながら、本発明は、図1及び図2に示すように、各群のマイクロレンズ列群は、隣接するもの同士が微小シフト量Fだけ偏倚しているので、各群による露光光の光量分布は、図11(b)のように、図11(a)の光量分布が、第1群、第2群,第3群・・・と、スキャン方向5に垂直の方向にFづつずれていく。このため、図1の例えば75群のマイクロレンズ列群が全て基板上を露光した場合には、図11(b)に示すように、露光光の光量分布の凹凸がならされ、均一化される。よって、スキャン方向5に垂直の方向に均一な露光光量分布が得られ、露光ムラを防止できる。なお、スキャン方向5については、各マイクロレンズにおいては露光光量の分布が存在するが、その光量分布がスキャン方向5に移動していくので、光量分布の凹凸がならされるため、スキャン後の基板上には光量分布の凹凸は残らない。
 図3は横軸に全シフト量TFをとり、縦軸に露光ムラの割合(ムラ率)をとって,全シフト量TFとムラ率との関係をシミュレートしたグラフ図である。なお、図2に示すムラ率の数値は、マイクロレンズの配置関係が、図1において、例示した寸法の場合についてのものである。図3に示すように、マイクロレンズ列群がシフトされていない場合(全シフト量TFが0の場合)、6%以上の露光ムラ率が存在するのに対し、全シフト量TFが150μmの場合、即ち、全シフト量TFが各マイクロレンズの最大露光幅R(=150μm)に近い場合、露光光量の分布の凹凸はほぼ0となり、露光光量のムラ率が0%に極めて近づく。
 また、全シフト量TFが150μmの整数倍である場合も、露光光量の分布がほぼ0となり、露光ムラも防止できる。これは、マイクロレンズの最大露光幅R内に存在する露光光量の分布が、スキャン方向5の全体でマイクロレンズの最大露光幅R又はその整数倍だけマイクロレンズの位置が偏倚していることにより打ち消されるからである。この露光光量分布が0に近い値に至ったマイクロレンズの配置から、更に全シフト量TFが増える状態、即ち,マイクロレンズ列群を増やした状態になると、その増えたマイクロレンズ列群の分だけ露光光量の分布が新たに出現するため、ムラ率が増えていく。よって、全シフト量TFがマイクロレンズの最大露光幅Rと一致するように、マイクロレンズの配置を決めることが好ましい。
 なお、上記実施形態においては、多角視野絞りは6角視野絞り12であり、マイクロレンズ列が3列毎にマイクロレンズ列群を構成しているが、本発明は、これに限らず種々の態様が可能である。例えば、マイクロレンズにより基板上の視野を規定する多角視野絞りは、6角視野絞りに限らず、例えば、菱形、平行四辺形又は台形状等の開口を有するものでもよい。例えば、この台形状(4角形)の視野絞りにおいても、中央の矩形の部分と、その両側の三角形の部分とに視野領域を分解することができる。また、1群のマイクロレンズ列群を構成するマイクロレンズ列は3列に限らず、例えば、上述の台形及び平行四辺形(横長)の開口の場合は、3列毎に1群を構成するが、菱形及び平行四辺形(縦長)の場合は、2列毎に1群を構成することになる。更に、図9に示すマイクロレンズの配列は、図12(a)に示すように、スキャン方向5に関して3列で1群を構成して、4列目のマイクロレンズ列は1列目のマイクロレンズ列とスキャン方向5に垂直の方向に関して同一の位置に配置されているが、設計したレンズ性能によっては、レンズサイズ及び視野幅(6角視野絞り幅)が異なるために、レンズピッチ間隔と視野幅の比率が変更される場合がある。その場合、図12(b)に示すように、レンズピッチを視野幅の整数倍になるように調整すると、3列構成にならない場合も生じる。
 本発明は、薄膜トランジスタ液晶基板及びカラーフィルタ基板等のスキャン露光のように、ガラス基板上に形成されたレジスト膜等を、数回、重ね合わせ露光して、所定のパターンを形成する必要がある場合に、スキャン方向に垂直の方向についても、露光ムラが発生することを防止することができるので、重ね合わせ露光に適用することができる。
1:基板
2:マイクロレンズアレイ
2a:マイクロレンズ
2-1~2-4:単位マイクロレンズアレイ
3:マスク
3a:透明基板
3b:Cr膜
4:露光光源
5:スキャン方向
6:支持基板
10:円形開口絞り(レンズ視野領域)
12:6角視野絞り
12a:矩形部分
12b、12c:三角形部分

Claims (3)

  1. 複数個のマイクロレンズが2次元的に配置された単位マイクロレンズアレイが複数枚相互に積層されて構成されたマイクロレンズアレイにおいて、
    前記単位マイクロレンズアレイ間の反転結像位置には、多角形の開口を有する多角視野絞りが配置され、
    前記マイクロレンズは、第1の方向に複数個適長間隔をおいて配列されて列を構成し、この複数個のマイクロレンズ列が第1の方向に直交する第2の方向に適長間隔をおいて配置されており、
    前記多角視野絞りにより規定される視野領域を矩形とその両側の三角形とに分解したとき、この一方の側の三角形の部分と矩形の部分と他方の側の三角形の部分とは前記第1の方向に連なっており、
    複数個の前記マイクロレンズ列毎に、
    前記マイクロレンズは、その一方の側の前記三角形部分が、このマイクロレンズに対して第2の方向に隣接する他のマイクロレンズの他方の側の前記三角形部分と、前記第2の方向に関して重なるように、前記第1の方向に偏倚して配置されており、
    前記複数個のマイクロレンズ列から構成されるマイクロレンズ列群は、
    その前記第2の方向に隣接する他のマイクロレンズ列群に対し、前記第1の方向に前記視野領域の前記第1の方向の長さよりも短い距離だけ偏倚して配置されていることを特徴とするマイクロレンズアレイ。
  2. 露光すべき基板の上方に配置され、夫々複数個のマイクロレンズが2次元的に配置された単位マイクロレンズアレイが複数枚相互に積層されて構成されたマイクロレンズアレイと、このマイクロレンズアレイの上方に配置され所定の露光パターンが形成されたマスクと、このマスクに対して露光光を照射する露光光源と、前記マイクロレンズアレイ又は前記基板及び前記マスクを相対的に一方向に移動させる移動装置と、を有し、
    前記単位マイクロレンズアレイ間の反転結像位置には、多角形の開口を有する多角視野絞りが配置され、
    前記マイクロレンズは、第1の方向に複数個適長間隔をおいて配列されて列を構成し、この複数個のマイクロレンズ列が第1の方向に直交する第2の方向に適長間隔をおいて配置されており、
    前記多角視野絞りにより規定される視野領域を矩形とその両側の三角形とに分解したとき、この一方の側の三角形の部分と矩形の部分と他方の側の三角形の部分とは前記第1の方向に連なっており、
    複数個の前記マイクロレンズ列毎に、
    前記マイクロレンズは、その一方の側の前記三角形部分が、このマイクロレンズに対して第2の方向に隣接する他のマイクロレンズの他方の側の前記三角形部分と、前記第2の方向に関して重なるように、前記第1の方向に偏倚して配置されており、
    前記複数個のマイクロレンズ列から構成されるマイクロレンズ列群は、
    その前記第2の方向に隣接する他のマイクロレンズ列群に対し、前記第1の方向に前記視野領域の前記第1の方向の長さよりも短い距離だけ偏倚して配置されていることを特徴とするマイクロレンズアレイを使用したスキャン露光装置。
  3. 前記移動装置は、前記マイクロレンズアレイ及び光源を、前記基板及び前記マスクに対し、前記第2方向に移動させることを特徴とする請求項2に記載のマイクロレンズアレイを使用したスキャン露光装置。
PCT/JP2012/069146 2011-08-03 2012-07-27 マイクロレンズアレイ及びそれを使用したスキャン露光装置 WO2013018699A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280038389.8A CN103907061B (zh) 2011-08-03 2012-07-27 微透镜阵列以及使用该微透镜阵列的扫描曝光装置
KR1020147005147A KR101884045B1 (ko) 2011-08-03 2012-07-27 마이크로렌즈 어레이 및 그것을 사용한 스캔 노광 장치
US14/236,319 US9121986B2 (en) 2011-08-03 2012-07-27 Microlens array and scanning exposure device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011170206A JP5760250B2 (ja) 2011-08-03 2011-08-03 マイクロレンズアレイ及びそれを使用したスキャン露光装置
JP2011-170206 2011-08-03

Publications (1)

Publication Number Publication Date
WO2013018699A1 true WO2013018699A1 (ja) 2013-02-07

Family

ID=47629223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069146 WO2013018699A1 (ja) 2011-08-03 2012-07-27 マイクロレンズアレイ及びそれを使用したスキャン露光装置

Country Status (6)

Country Link
US (1) US9121986B2 (ja)
JP (1) JP5760250B2 (ja)
KR (1) KR101884045B1 (ja)
CN (1) CN103907061B (ja)
TW (1) TWI544290B (ja)
WO (1) WO2013018699A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014182372A (ja) * 2013-03-15 2014-09-29 Palo Alto Research Center Inc 光学アレイを使用して微細構造を形成するためのフローリソグラフィ技法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104520745B (zh) * 2012-08-06 2016-09-28 富士胶片株式会社 摄像装置
CN106488148B (zh) * 2016-11-01 2019-09-17 首都师范大学 一种超分辨率图像传感器及其构造方法
US10503076B1 (en) * 2018-08-29 2019-12-10 Applied Materials, Inc. Reserving spatial light modulator sections to address field non-uniformities
CN110032010A (zh) * 2019-04-23 2019-07-19 南京奥谱依电子科技有限公司 电控液晶仿生成像微镜、制备方法及光学显微镜

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09244255A (ja) * 1996-03-13 1997-09-19 Nikon Corp 液晶用露光装置
JP2010128361A (ja) * 2008-11-28 2010-06-10 Nippon Sheet Glass Co Ltd 正立等倍レンズアレイプレート、イメージセンサユニットおよび画像読取装置
WO2011068014A1 (ja) * 2009-12-03 2011-06-09 株式会社ブイ・テクノロジー 露光装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4219645B2 (ja) * 2002-09-12 2009-02-04 シャープ株式会社 マイクロレンズアレイの露光方法
US7187399B2 (en) * 2003-07-31 2007-03-06 Fuji Photo Film Co., Ltd. Exposure head with spatial light modulator
JP2007003829A (ja) 2005-06-23 2007-01-11 Fujifilm Holdings Corp 画像露光装置
JP4193893B2 (ja) * 2006-09-29 2008-12-10 セイコーエプソン株式会社 露光装置および画像形成装置
JP2009139487A (ja) * 2007-12-04 2009-06-25 Nippon Sheet Glass Co Ltd 正立等倍レンズアレイプレート
JP2009190397A (ja) * 2008-01-18 2009-08-27 Seiko Epson Corp 露光ヘッドおよび画像形成装置
JP5515120B2 (ja) * 2010-10-29 2014-06-11 株式会社ブイ・テクノロジー マイクロレンズアレイを使用したスキャン露光装置
KR101931402B1 (ko) * 2011-07-29 2018-12-20 브이 테크놀로지 씨오. 엘티디 마이크로 렌즈 어레이 및 그것을 사용한 스캔 노광 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09244255A (ja) * 1996-03-13 1997-09-19 Nikon Corp 液晶用露光装置
JP2010128361A (ja) * 2008-11-28 2010-06-10 Nippon Sheet Glass Co Ltd 正立等倍レンズアレイプレート、イメージセンサユニットおよび画像読取装置
WO2011068014A1 (ja) * 2009-12-03 2011-06-09 株式会社ブイ・テクノロジー 露光装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014182372A (ja) * 2013-03-15 2014-09-29 Palo Alto Research Center Inc 光学アレイを使用して微細構造を形成するためのフローリソグラフィ技法
EP2778786A3 (en) * 2013-03-15 2016-04-06 Palo Alto Research Center Incorporated A flow lithography technique to form microstructures using optical arrays
US9829798B2 (en) 2013-03-15 2017-11-28 Palo Alto Research Center Incorporated Flow lithography technique to form microstructures using optical arrays

Also Published As

Publication number Publication date
JP2013037022A (ja) 2013-02-21
US9121986B2 (en) 2015-09-01
TWI544290B (zh) 2016-08-01
KR101884045B1 (ko) 2018-07-31
CN103907061B (zh) 2015-11-25
TW201308030A (zh) 2013-02-16
JP5760250B2 (ja) 2015-08-05
US20140168622A1 (en) 2014-06-19
CN103907061A (zh) 2014-07-02
KR20140056299A (ko) 2014-05-09

Similar Documents

Publication Publication Date Title
KR101761976B1 (ko) 마이크로 렌즈 어레이를 사용한 스캔 노광 장치
WO2013021985A1 (ja) 露光装置用のアライメント装置及びアライメントマーク
JP6023952B2 (ja) マイクロレンズアレイ及びそれを使用したスキャン露光装置
JP5760250B2 (ja) マイクロレンズアレイ及びそれを使用したスキャン露光装置
JP5515120B2 (ja) マイクロレンズアレイを使用したスキャン露光装置
WO2012046540A1 (ja) マイクロレンズアレイを使用したスキャン露光装置
JP5895275B2 (ja) アライメントマーク及び露光装置
JP5704527B2 (ja) マイクロレンズアレイを使用した露光装置
JP2012128193A (ja) マイクロレンズアレイ及びそれを使用したスキャン露光装置
JP5953037B2 (ja) マイクロレンズアレイの貼り合わせ装置
JP2013033071A (ja) マイクロレンズアレイを使用したスキャン露光装置
JP5874966B2 (ja) マイクロレンズアレイ及びその貼り合わせ方法
JP2013057894A (ja) 露光装置用のアライメント装置
JP5953038B2 (ja) マイクロレンズアレイの焦点距離測定装置及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12820057

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14236319

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147005147

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12820057

Country of ref document: EP

Kind code of ref document: A1