WO2013021985A1 - 露光装置用のアライメント装置及びアライメントマーク - Google Patents

露光装置用のアライメント装置及びアライメントマーク Download PDF

Info

Publication number
WO2013021985A1
WO2013021985A1 PCT/JP2012/070046 JP2012070046W WO2013021985A1 WO 2013021985 A1 WO2013021985 A1 WO 2013021985A1 JP 2012070046 W JP2012070046 W JP 2012070046W WO 2013021985 A1 WO2013021985 A1 WO 2013021985A1
Authority
WO
WIPO (PCT)
Prior art keywords
alignment
substrate
mask
alignment mark
mark
Prior art date
Application number
PCT/JP2012/070046
Other languages
English (en)
French (fr)
Inventor
和重 橋本
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011175410A external-priority patent/JP6002898B2/ja
Priority claimed from JP2011197402A external-priority patent/JP5874900B2/ja
Priority claimed from JP2011241674A external-priority patent/JP5895276B2/ja
Priority claimed from JP2011241634A external-priority patent/JP5895275B2/ja
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Priority to KR1020147006420A priority Critical patent/KR101941323B1/ko
Priority to US14/237,987 priority patent/US9297642B2/en
Priority to CN201280039116.5A priority patent/CN103858208B/zh
Publication of WO2013021985A1 publication Critical patent/WO2013021985A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0272Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers for lift-off processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/028Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring lateral position of a boundary of the object
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7069Alignment mark illumination, e.g. darkfield, dual focus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7088Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection

Definitions

  • the present invention relates to an alignment apparatus and an alignment mark for an exposure apparatus for aligning a substrate and a mask in an exposure apparatus using a microlens array.
  • Patent Document 1 discloses an exposure apparatus of a proximity exposure method in which a wafer to be exposed is disposed close to a mask. A mark is provided on both the mask and the wafer, and the mask and the wafer are relative to each other using the mark. It is comprised so that it may align.
  • FIG. 44 is a schematic view showing an exposure apparatus using a microlens array.
  • a mask 2 on which a pattern to be exposed on the substrate 1 is formed is disposed above the substrate 1 to be exposed with an appropriate distance from the substrate 1.
  • a microlens array 3 in which microlenses 4 are two-dimensionally arranged is disposed between the substrate 1 and the mask 2, and exposure light is irradiated from above the mask 2 to the mask 2. 2 is projected onto the substrate 1 by the microlens array 3, and the pattern formed on the mask 2 is transferred by the microlens array 3 as an erecting equal-magnification image to a resist or the like on the substrate surface. .
  • the mask 2 and the substrate 1 are usually fixed, and the exposure light scans the substrate 1 by moving the microlens array 3 and the exposure light source and optical system integrally in a direction perpendicular to the paper surface. It is supposed to be.
  • the alignment marks 1a and 2a are the same. It is necessary to observe with the same camera. That is, if the alignment marks 1a and 2a are observed separately with different cameras, the relative positions of the alignment marks 1a and 2a cannot be guaranteed.
  • the mask and the substrate are close to each other at about 200 ⁇ m, and this distance is within the depth of focus of the camera. Therefore, the mask alignment mark and the substrate alignment mark are simultaneously displayed on the camera. Can be observed.
  • the distance between the substrate 1 and the mask 2 that is, alignment.
  • the gap G between the marks 1a and 2a is about 5 to 15 mm. This interval of 5 to 15 mm cannot be observed simultaneously with a normal camera lens system.
  • an optical path difference is provided between the reflected light from the alignment mark 1a of the substrate 1 and the reflected light from the alignment mark 2a of the mask 2, and the alignment mark 1a of the substrate 1 and the mask It is also conceivable to correct the focus difference from the second alignment mark 2a.
  • the gap G between the substrate 1 and the mask 2 is 5 to 15 mm.
  • the light from the light source 20 is converged by the lens 21, reflected by the reflecting mirror 22, and incident on the beam splitter 17 through the lens 23.
  • the light from the beam splitter 17 enters the mask 2 via the lenses 18 and 19, is reflected by the alignment mark 2 a of the mask 2, enters the substrate 1, and is reflected by the alignment mark 1 a of the substrate 1. .
  • the light reflected by these alignment marks 1 a and 2 a is directed to the beam splitter 17, passes through the beam splitter 17, and then enters the beam splitter 14 through the lenses 16 and 15.
  • the reflected light from the alignment marks 1 a and 2 a is separated by the beam splitter 14 into light directed to the beam splitter 11 and light directed to the mirror 13, and the light directed to the mirror 13 is transmitted to the beam splitter 11 by the mirror 12. Head. Then, the beam splitter 11 transmits the light from the beam splitter 14 as it is, and the light from the mirror 12 is reflected toward the camera 10. In this way, the light that has passed through the mirrors 13 and 12 from the beam splitter 14 and the light that has reached directly from the beam splitter 14 are detected by the camera 10.
  • the total length of the optical path from the beam splitter 14 to the mirror 13, the optical path from the mirror 13 to the mirror 12, and the optical path from the mirror 12 to the beam splitter 11 is directly incident on the beam splitter 11 from the beam splitter 14.
  • the length of the optical path is set to be longer by a focus difference of 80 to 240 mm.
  • Both of the light traveling in the optical path incident on the laser beam form an image on a CCD (charge coupled device) of the camera 10, and the alignment marks 1 a and 2 a can be simultaneously observed by the camera 10.
  • CCD charge coupled device
  • the focus difference (equivalent to 80 to 240 mm) between the patterns of the alignment marks 1a and 2a on the substrate 1 and the mask 2 can be corrected by dividing them into different optical paths.
  • the focus difference is corrected by another optical path as described above, there is a problem that the relative positions of both patterns of the alignment marks 1a and 2a are shifted when an optical axis shift occurs in each optical path. For this reason, this method reduces the alignment accuracy.
  • the alignment accuracy is lowered, the exposure pattern accuracy is also lowered, which becomes a fatal problem for the recent exposure of a high-definition liquid crystal panel.
  • the present invention has been made in view of such problems, and an object thereof is to provide an alignment apparatus and an alignment mark for an exposure apparatus that can perform alignment between a substrate and a mask with high accuracy.
  • An alignment apparatus for an exposure apparatus includes a light source that emits exposure light, a mask in which exposure light from the light source is incident and a pattern that exposes the substrate is formed, and the substrate and the mask.
  • a first microlens array that is provided with exposure light that has passed through the mask and forms an erecting equal-magnification image of the pattern on the substrate, relative to the mask and the substrate of the exposure apparatus.
  • An alignment light source that irradiates alignment light on the substrate alignment mark provided on the substrate and the mask alignment mark provided on the mask from above the mask, and between the substrate alignment mark and the mask alignment mark A second microlens array that is disposed and forms reflected light reflected from the substrate alignment mark as an erecting equal-magnification image on the mask; reflected light from the substrate alignment mark; reflected light from the mask alignment mark; And a control device for adjusting the position of the mask and / or the substrate so that the substrate alignment mark detected by the camera and the mask alignment mark coincide with each other. It is characterized by that.
  • An alignment apparatus for another exposure apparatus comprises: a light source that emits exposure light; a mask on which exposure light from the light source is incident and a pattern that exposes the substrate; and the substrate and the mask A first microlens array that is provided in between and receives exposure light transmitted through the mask to form an erecting equal-magnification image of the pattern on the substrate; and the mask of the exposure apparatus and the substrate
  • An alignment light source for irradiating alignment light on the substrate alignment mark provided on the substrate and the mask alignment mark provided on the mask from below the substrate, and between the substrate alignment mark and the mask alignment mark A second microlens array that is disposed and forms reflected light reflected from the mask alignment mark as an erecting equal-magnification image on the substrate; reflected light from the substrate alignment mark; and reflected light from the mask alignment mark; And a control device that adjusts the position of the mask and / or the substrate so that the substrate alignment mark detected by the camera and the mask alignment
  • the first microlens array and the second microlens array are constituted by a single shared microlens array, and the alignment light Is irradiated with the shared microlens array moved between the substrate alignment mark and the mask alignment mark.
  • the first microlens array and the second microlens array are formed by a single shared microlens array including an exposure position irradiated with exposure light and an alignment position irradiated with alignment light. It is configured.
  • the first microlens array and the second microlens array are configured separately.
  • one of the substrate alignment mark and the mask alignment mark forms a frame shape, and the other is a rectangular shape positioned at the center of the frame during alignment. Can be configured.
  • the alignment light source can be configured to emit alignment light coaxially with an optical axis of light detected by the camera, for example.
  • the alignment light source and the camera are separate, and the optical axis of light from the alignment light source and the optical axis of reflected light detected by the camera can be configured not to be coaxial. .
  • the alignment mark according to the present invention is: A plurality of unit microlens arrays in which a plurality of microlenses are two-dimensionally arranged and stacked on each other, and a polygon having a polygonal opening disposed at a reversal imaging position between the unit microlens arrays
  • a microlens array having a field stop and an aperture stop that is arranged at least in a part of the maximum magnification portion of the exposure light between the unit microlens arrays and has a circular aperture and defines the numerical aperture of each microlens is used.
  • the microlens array is disposed between a substrate to be exposed and a mask provided with a pattern to be exposed on the substrate, and used to relatively align the mask and the substrate.
  • Alignment mark Formed on the substrate or the mask; A plurality of linear mark pieces extending in directions inclined with respect to all sides of the opening of the polygonal field stop, and the mark pieces are a plurality of first group mark pieces extending radially from the alignment center; And a plurality of second group mark pieces extending on the sides of the polygon centered on the alignment center, and the plurality of mark pieces among the mark pieces are located in any one of the polygonal field stops. The positions of the polygonal field stop and the mark piece are determined so as to exist.
  • the second group of mark pieces is preferably arranged continuously on a plurality of polygonal sides having different sizes with the alignment center as a common center.
  • the mark pieces of the second group are intermittently arranged so as to include corner portions of the polygon on sides of a plurality of polygons having different sizes with the alignment center as a common center.
  • it is.
  • the thicknesses of the mark pieces of the second group located on different polygons are different.
  • alignment marks are: An alignment mark formed on a substrate or a mask provided for an exposure apparatus for adjusting the position thereof, and made of a line-symmetric polygonal figure, A polygonal shape portion arranged so as not to be parallel to any one of the edges constituting the opening of the polygonal field stop of each of the plurality of lenses arranged in a matrix between the substrate and the mask; A radiation part composed of at least six radiations traversing the polygonal shape part from the center of the polygonal shape part; Have The whole of the polygonal shape part and the radiation part is larger than the size of the lens and smaller than the whole size of four adjacent lenses.
  • Alignment apparatus for other exposure apparatus In an alignment apparatus for an exposure apparatus that transfers an exposure pattern formed on a mask to a substrate, An alignment light source for emitting exposure light or for emitting independent alignment light; A microlens array that is disposed between the mask and the substrate and forms reflected light of alignment light reflected from a substrate alignment mark provided on the substrate as an erecting equal-magnification image on the mask; When the alignment light is simultaneously irradiated from the mask side to the substrate alignment mark and the mask alignment mark provided on the mask, the reflected light reflected from the mask alignment mark and the substrate alignment mark imaged on the mask A camera that detects an erect life-size image from the mask side; A control device that adjusts the position of the mask and / or the substrate so that the substrate alignment mark detected by the camera and the mask alignment mark coincide; Have The microlens array is A plurality of unit microlens arrays in which a plurality of microlenses are two-dimensionally arranged and stacked on each other, and
  • Alignment apparatus for other exposure apparatus In an alignment apparatus for an exposure apparatus that transfers an exposure pattern formed on a mask to a substrate, An alignment light source for emitting exposure light or for emitting independent alignment light; A microlens array that is arranged between the mask and the substrate and forms reflected light of alignment light reflected from a mask alignment mark provided on the mask as an erecting equal-magnification image on the substrate; When the mask alignment mark and the substrate alignment mark provided on the substrate are simultaneously irradiated with alignment light from the substrate side, the reflected light reflected from the substrate alignment mark and the mask alignment mark imaged on the substrate A camera that detects an erect life-size image from the substrate side; A control device that adjusts the position of the mask and / or the substrate so that the substrate alignment mark detected by the camera and the mask alignment mark coincide; Have The mask alignment mark is A plurality of linear mark pieces extending in directions inclined with respect to all sides of the opening of the polygonal field stop, and the mark pieces are a plurality of first group mark
  • the second group of mark pieces is preferably arranged continuously on a plurality of polygonal sides having different sizes with the alignment center as a common center.
  • the mark pieces of the second group are intermittently arranged so as to include corner portions of the polygon on sides of a plurality of polygons having different sizes with the alignment center as a common center.
  • it is.
  • the thicknesses of the mark pieces of the second group located on different polygons are different.
  • Another alignment mark includes a plurality of unit microlens arrays in which a plurality of microlenses are two-dimensionally arranged and stacked on each other, and an inverted imaging position between the unit microlens arrays.
  • a polygonal field stop having a polygonal aperture disposed therein, and an aperture stop having a circular aperture and defining the numerical aperture of each microlens disposed in at least a part of the maximum magnification portion of the exposure light between the unit microlens arrays
  • a microlens array having a light shielding film that shields a portion other than the microlens on the upper surface of the microlens array, and the microlens array has a substrate to be exposed and a pattern to be exposed on the substrate.
  • an alignment element used when the mask and the substrate are relatively aligned with each other A mark put, Formed on the substrate or the mask; All sides constituting the mark are inclined with respect to a first direction in which the microlenses are arranged on a straight line.
  • the microlenses are arranged in a line in a direction perpendicular to the scanning direction of the exposure apparatus, and the first direction is a direction perpendicular to the scanning direction and constitutes a mark. It is preferable that all sides to be inclined are inclined with respect to a direction perpendicular to the scanning direction. All sides constituting the mark preferably form an angle of 45 ° with respect to a direction perpendicular to the scanning direction.
  • Alignment apparatus for other exposure apparatus In an alignment apparatus for an exposure apparatus that transfers an exposure pattern formed on a mask to a substrate, An alignment light source for emitting exposure light or for emitting independent alignment light; A microlens array that is disposed between the mask and the substrate and forms reflected light of alignment light reflected from a substrate alignment mark provided on the substrate as an erecting equal-magnification image on the mask; When the alignment light is simultaneously irradiated from the mask side to the substrate alignment mark and the mask alignment mark provided on the mask, the reflected light reflected from the mask alignment mark and the substrate alignment mark imaged on the mask A camera that detects an erect life-size image from the mask side; A control device that adjusts the position of the mask and / or the substrate so that the substrate alignment mark detected by the camera and the mask alignment mark coincide; Have The microlens array is A plurality of unit microlens arrays in which a plurality of microlenses are two-dimensionally arranged and stacked on each other, and
  • Alignment apparatus for other exposure apparatus In an alignment apparatus for an exposure apparatus that transfers an exposure pattern formed on a mask to a substrate, An alignment light source for emitting exposure light or for emitting independent alignment light; A microlens array that is arranged between the mask and the substrate and forms reflected light of alignment light reflected from a mask alignment mark provided on the mask as an erecting equal-magnification image on the substrate; When the mask alignment mark and the substrate alignment mark provided on the substrate are simultaneously irradiated with alignment light from the substrate side, the reflected light reflected from the substrate alignment mark and the mask alignment mark imaged on the substrate A camera that detects an erect life-size image from the substrate side; A control device that adjusts the position of the mask and / or the substrate so that the substrate alignment mark detected by the camera and the mask alignment mark coincide; Have The microlens array is A plurality of unit microlens arrays in which a plurality of microlenses are two-dimensionally arranged and stacked on each other, and a
  • the microlenses are arranged in a line in a direction perpendicular to the scanning direction of the exposure apparatus, and the first direction is a direction perpendicular to the scanning direction and constitutes a mark. It is preferable that all sides to be inclined are inclined with respect to a direction perpendicular to the scanning direction. Moreover, it is preferable that all the pieces constituting the mark form an angle of 45 ° with respect to a direction perpendicular to the scanning direction.
  • Alignment apparatus for other exposure apparatus In an alignment apparatus for an exposure apparatus that is provided in a scan exposure apparatus using a microlens array that transfers a mask pattern to a substrate by scan exposure, and relatively aligns the mask and the substrate, An alignment light source for irradiating alignment light to a substrate alignment mark provided on the substrate and a mask alignment mark provided on the mask; A microlens array interposed between the substrate and the mask to form the substrate alignment mark or the mask alignment mark on the mask or the substrate as an erect life-size image, respectively, A camera that captures the substrate alignment mark and the mask alignment mark, one as an image of reflected light and the other as an erect life-size image; A control device that adjusts the position of the mask and / or the substrate based on the substrate alignment mark and the mask alignment mark imaged by the camera; Have The microlens array is A plurality of unit microlens arrays in which a plurality of microlenses are two-dimensionally arranged and stacked on each other; A
  • the control device moves the microlens array relative to the substrate and the mask in the scan exposure direction, and the substrate alignment mark by the camera at an interval that is not an integral multiple of the arrangement pitch of the microlens rows.
  • the mask alignment mark image and the mask alignment mark image are captured a plurality of times, the captured plurality of images are superimposed, and the superimposed substrate alignment mark image and mask alignment mark image are used for alignment.
  • Alignment apparatus for other exposure apparatus In an alignment apparatus for an exposure apparatus that is provided in a scan exposure apparatus using a microlens array that transfers a mask pattern to a substrate by scan exposure, and relatively aligns the mask and the substrate, An alignment light source for irradiating alignment light to a substrate alignment mark provided on the substrate and a mask alignment mark provided on the mask; A microlens array interposed between the substrate and the mask to form the substrate alignment mark or the mask alignment mark on the mask or the substrate as an erect life-size image, respectively, A camera that captures the substrate alignment mark and the mask alignment mark, one as an image of reflected light and the other as an erect life-size image; A control device that adjusts the position of the mask and / or the substrate based on the substrate alignment mark and the mask alignment mark imaged by the camera; Have The microlens array is A plurality of unit microlens arrays in which a plurality of microlenses are two-dimensionally arranged and stacked on each other; A
  • the control device moves the microlens array relative to the substrate and the mask in a scanning exposure direction, and continuously moves the image of the substrate alignment mark and the image of the mask alignment mark by the camera.
  • the image of the substrate alignment mark and the image of the mask alignment mark that are continuously imaged are used for alignment.
  • one of the substrate alignment mark and the mask alignment mark has a frame shape, and the other has a rectangular shape positioned at the center of the frame during alignment.
  • the alignment light source preferably emits alignment light coaxially with an optical axis of light detected by the camera.
  • the microlens array can be shared with a microlens array for exposure.
  • an alignment light source irradiates the mask and the substrate with alignment light from above the mask
  • the alignment light passes through the mask and is irradiated onto the substrate.
  • the reflected light is formed on the mask as an erecting equal-magnification image of the substrate alignment mark by the second microlens array. Therefore, the substrate alignment mark and the mask alignment mark can be detected on the mask by the camera, and the focus difference on the camera side caused by the gap G between the substrate and the mask becomes zero. Therefore, even when the optical axis of the alignment light is tilted, the relative position between the alignment marks detected by the camera does not change, and the alignment between the substrate and the mask can be performed with high accuracy.
  • the control device adjusts the position of the mask and / or the substrate so that the substrate alignment mark detected by the camera matches the mask alignment mark. Can be done with precision.
  • the substrate is light transmissive such as PI (polyimide) and ITO (tin-doped indium oxide).
  • the alignment light is transmitted through the substrate, irradiated onto the mask, reflected by the mask alignment mark on the mask, and then reflected by the second microlens array on the substrate.
  • An image is formed as an erecting equal-magnification image of the mask alignment mark. Therefore, the substrate alignment mark and the mask alignment mark can be detected on the substrate by the camera, and the focus difference on the camera side due to the gap G between the substrate and the mask becomes zero. Therefore, even when the optical axis of the alignment light is inclined, the relative position between the alignment marks detected by the camera does not change, and the alignment between the substrate and the mask can be performed with high accuracy.
  • (A) is a figure which shows the alignment apparatus for exposure apparatuses which concerns on 1st Embodiment of this invention
  • (b) is a figure which shows the relative positional relationship of the alignment mark detected.
  • (A), (b) is a figure which shows the case where the optical path of alignment light inclines in the exposure apparatus shown in FIG. It is a figure which shows the alignment apparatus for exposure apparatuses which concerns on the comparative example of this invention. It is a figure which shows the optical path of alignment light in the alignment apparatus which concerns on the comparative example of this invention.
  • or (d) is a figure which shows the case where the 2nd micro lens array 7 is not provided in the alignment apparatus which concerns on 1st Embodiment.
  • (A) is a figure which shows the alignment apparatus for exposure apparatuses which concerns on 2nd Embodiment of this invention
  • (b) is a figure which shows the relative positional relationship of the alignment mark detected.
  • (A) is a figure which shows the alignment apparatus for exposure apparatuses which concerns on 3rd Embodiment of this invention
  • (b) is a figure which shows the relative positional relationship of the alignment mark detected.
  • (A), (b) is a figure which shows the case where the optical path of alignment light inclines in the exposure apparatus shown in FIG.
  • (A) is a figure which shows the alignment apparatus for exposure apparatuses which concerns on 4th Embodiment of this invention
  • (b) is a figure which shows the relative positional relationship of the alignment mark detected.
  • (A) is a figure which shows the alignment apparatus for exposure apparatuses which concerns on 5th Embodiment of this invention
  • (b) is a figure which shows the relative positional relationship of the alignment mark detected.
  • (A) is a figure which shows the alignment method of the board
  • (b) is a figure which shows the board
  • (A) is a figure which shows a substrate alignment mark with a microlens array
  • (b) is the enlarged view.
  • FIG. 1 It is a figure which shows the board
  • A is a figure which shows a substrate alignment mark with a microlens array,
  • (b) is the enlarged view.
  • A) is a figure which shows a substrate alignment mark with a microlens array,
  • (b) is the enlarged view.
  • A) is a figure which shows a substrate alignment mark with a microlens array, (b) is the enlarged view.
  • (A), (b) is a figure which shows the case where the optical path of alignment light inclines in the exposure apparatus shown in FIG.
  • or (d) is a figure which shows the alignment apparatus of the exposure apparatus which concerns on the comparative example of this invention. It is a figure which shows the modification of the board
  • (A) is a figure which shows the substrate alignment mark which concerns on 7th Embodiment of this invention
  • (b) is a figure which shows a substrate alignment mark with a micro lens array. It is a figure which shows the modification of the board
  • (A), (b) is a figure which shows the board
  • (A) is a figure which shows the alignment method of the board
  • (b) is a figure which shows a mask alignment mark. It is a figure which shows the exposure apparatus which uses a micro lens array. It is sectional drawing which shows arrangement
  • (A) shows the hexagonal field stop 12
  • (b) is a schematic plan view showing a circular stop. It is a figure explaining the function of a hexagonal field stop.
  • It is a figure which shows the mask alignment mark of the comparative example of this invention (a) shows the relationship of the mask alignment mark with respect to a micro lens array, (b) shows the shape of one mask alignment mark, (c) is It is a figure which shows the image detected by the sensor of a camera.
  • It is a figure which shows the mask alignment mark of embodiment of this invention (a) shows the relationship of the mask alignment mark with respect to a micro lens array, (b) shows the shape of one mask alignment mark,
  • (c) is It is a figure which shows the image detected by the sensor of a camera.
  • or (c) were the image which showed the image of the board
  • (A) is a figure which shows the alignment apparatus for exposure apparatuses which concerns on 11th Embodiment of this invention
  • (b) is a figure which shows the relative positional relationship of the alignment mark detected.
  • (b) is a figure which shows the case where the optical path of alignment light inclines in the exposure apparatus shown in FIG.
  • or (d) are the board
  • (A) is a figure which shows the alignment apparatus for exposure apparatuses which concerns on 13th Embodiment of this invention,
  • (b) is a figure which shows the relative positional relationship of the alignment mark detected.
  • (A) is a figure which shows the alignment apparatus for exposure apparatuses which concerns on 14th Embodiment of this invention, (b) is a figure which shows the relative positional relationship of the alignment mark detected.
  • (A), (b) is a figure which shows the case where the optical path of alignment light inclines in the exposure apparatus shown in FIG.
  • (A) is a figure which shows the alignment apparatus for exposure apparatuses which concerns on 15th Embodiment of this invention
  • (b) is a figure which shows the relative positional relationship of the alignment mark detected.
  • (A) is a figure which shows the alignment apparatus for exposure apparatuses which concerns on 16th Embodiment of this invention
  • (b) is a figure which shows the relative positional relationship of the alignment mark detected.
  • It is a figure which shows the exposure apparatus which uses a micro lens array.
  • FIG. 1A is a view showing an alignment apparatus for an exposure apparatus according to the first embodiment of the present invention
  • FIG. 1B is a view showing a relative positional relationship of detected alignment marks.
  • an exposure apparatus provided with an alignment apparatus has a microlens array 3 between a substrate 1 and a mask 2 as in a conventional exposure apparatus using a microlens array.
  • the exposure light emitted from the exposure light source 8 is transmitted through the pattern formed on the mask 2, and an erecting equal-magnification image of the pattern is formed on the substrate by the microlens array 3.
  • the alignment apparatus is used for relative alignment between the substrate 1 and the mask 2.
  • the alignment apparatus irradiates alignment light from above the mask 2 onto the substrate alignment mark 1 a provided on the substrate 1 and the mask alignment mark 2 a provided on the mask 2 above the mask 2.
  • An alignment light source 5 is provided.
  • the microlens array 3 for exposure is moved between the substrate alignment mark 1a and the mask alignment mark 2a when the relative alignment between the substrate 1 and the mask 2 is performed.
  • the single microlens array 3 is moved during exposure and alignment.
  • an erecting equal-magnification image reflected from the substrate alignment mark 1 a is formed on the mask 2 by the microlens array 3.
  • a camera 6 is provided above the mask 2, and the camera 6 detects reflected light reflected from the mask alignment mark 2 a and an erecting equal-magnification image of the substrate alignment mark 1 a formed on the mask 2. It is configured as follows.
  • the camera 6 is, for example, a single focus type coaxial episcopic microscope, and the alignment light source 5 is built therein.
  • the alignment light source 5 is configured to emit alignment light coaxially with the optical axis of the light detected by the camera 6.
  • laser light or lamp light transmitted through an interference filter can be used.
  • the lamp light source for example, a halogen lamp is preferably used because the cost can be reduced.
  • the alignment light source 5 may be provided separately from the camera 6. The light emitted from the alignment light source 5 is applied to the mask 2 and the substrate 1 through an optical system such as a reflecting mirror and a beam splitter.
  • the mask 2 is provided with, for example, a frame-shaped mask alignment mark 2a
  • the substrate 1 is provided with, for example, a rectangular substrate alignment mark 1a that is smaller than the mask alignment mark 2a.
  • the substrate alignment mark 1a detected by the camera 6 is positioned at the center of the mask alignment mark 2a. To do.
  • the alignment light applied to the mask 2 and the substrate 1 is reflected by the alignment marks 1a and 2a and detected by the camera 6, respectively.
  • the camera 6 is connected to a control device 9 that controls the position of the mask 2, and the control device 9 aligns the substrate 1 and the mask 2 based on the detection result by the camera 6. Is necessary, the mask 2 is moved. For example, when the position of the substrate alignment mark 1a detected by the camera 6 is shifted from the center of the frame-shaped mask alignment mark 2a, the control device 9 positions the substrate alignment mark 1a at the center of the mask alignment mark 2a. The mask 2 is moved so that As shown by a two-dot chain line in FIG.
  • control device 9 is connected to, for example, a stage on which the substrate 1 is placed, and moves the substrate 1 so that the substrate 1 and the mask 2 are moved. You may be comprised so that alignment may be performed. Alternatively, the control device 9 may be configured to align the substrate 1 and the mask 2 by moving both the substrate 1 and the mask 2.
  • the reflected light reflected by the substrate alignment mark 1a is transmitted through the microlens array 3 by the microlens array 3 between the mask alignment mark 2a and the substrate alignment mark 1a.
  • An erecting equal-magnification image of the substrate alignment mark 1a is formed. Therefore, a gap G of 5 to 15 mm actually exists between the substrate 1 and the mask 2, but the focus difference on the camera 6 side caused by this gap G becomes zero. Therefore, the alignment marks 1a and 2a of the substrate 1 and the mask 2 having different distances from the sensor of the camera 6 can be simultaneously imaged on the camera 6, and the positions of the substrate 1 and the mask 2 are adjusted using each alignment mark as an index. Then, the alignment between the substrate 1 and the mask 2 can be performed with high accuracy. Further, by setting the focus difference on the camera side to 0, even when the optical axis of the alignment light is tilted as shown in FIG. Accuracy can be obtained.
  • the microlens array 3 is positioned below the pattern area provided on the mask 2 during exposure. First, the microlens array 3 is moved rightward in FIG. 1, and is moved between the substrate alignment mark 1a and the mask alignment mark 2a. Next, alignment light is emitted from an alignment light source 5 such as a halogen lamp built in the camera 6. The alignment light is first applied to the mask 2 via an optical system such as a reflecting mirror and a beam splitter. The alignment light irradiated on the mask 2 is reflected by the mask alignment mark 2a. On the other hand, the alignment light transmitted through the mask 2 is transmitted through the microlens array 3 disposed below the mask 2 and irradiated onto the substrate 1.
  • an alignment light source 5 such as a halogen lamp built in the camera 6.
  • the alignment light is first applied to the mask 2 via an optical system such as a reflecting mirror and a beam splitter.
  • the alignment light irradiated on the mask 2 is reflected by the mask alignment mark 2a.
  • the reflected light reflected by the substrate alignment mark 1 a passes through the microlens array 3 and is incident on the mask 2 again, and an erecting equal-magnification image of the substrate alignment mark 1 a is formed on the mask 2. Then, each reflected light is incident on the sensor of the camera 6 and an erecting equal-magnification image of the mask alignment mark 2a and the substrate alignment mark 1a formed on the mask 2 is detected.
  • the camera 6 since the camera 6 detects an erecting equal-magnification image of the substrate alignment mark 1a imaged on the mask 2, in practice, between the substrate 1 and the mask 2, There is a gap G of 5 to 15 mm, but on the camera 6 side, the focus difference due to this gap G is zero.
  • the substrate 1 and the mask 2 are aligned by the alignment marks 1a and 2a of the substrate and the mask detected by the camera 6.
  • the control device 9 causes the substrate alignment mark 1a to be positioned at the center of the mask alignment.
  • the substrate 2 and the mask 2 are aligned by moving the mask 2.
  • the alignment marks 1a and 2a of the substrate 1 and the mask 2 are used as indices, and The alignment with the mask 2 can be performed with high accuracy.
  • FIG. 3 is a view showing an alignment apparatus for an exposure apparatus according to a comparative example of the present invention
  • FIG. 4 is a view showing an optical path of alignment light in the alignment apparatus according to the comparative example of the present invention.
  • this alignment apparatus is an alignment apparatus that uses a bifocal type coaxial epi-illumination.
  • a first light source 27 that emits long-wavelength light and a short-wavelength light are emitted.
  • the long-wavelength light from the first light source 27 is reflected by the reflecting mirror 29, then travels toward the beam splitter 28, and the short-wavelength light from the second light source 26 is reflected by the second light source 26. With this beam splitter 28, it gathers with the long wavelength light from the first light source 27.
  • These collective lights are converged by the lens 30, reflected by the beam splitter 24, pass through the lens 25, and then travel toward the mask 2 and the substrate 1.
  • the collective light is incident on the mask 2 and the substrate 1 perpendicularly to the surface thereof, reflected by the alignment mark 2a of the mask 2 and the alignment mark 1a of the substrate 1, and returns to the same optical path as the incident optical path.
  • the reflected light passes through the beam splitter 24, enters the camera 20 through the lenses 23 and 22 and the filter 21. Therefore, the reflecting mirror 29 and the beam splitter 28 constitute a first optical system that collects the long wavelength light and the short wavelength light emitted from the first and second light sources 27 and 26 in the same optical path, and the lens 30.
  • the beam splitter 24 and the lens 25 constitute a second optical system that irradiates the collective light from the first optical system onto the mask 2 and the substrate 1 perpendicularly to the surfaces thereof.
  • the lens 25, the beam splitter 24, and the lens 23, the lens 22 constitutes a third optical system that guides the reflected light reflected by the mask 2 and the alignment marks 2a, 1a of the substrate 1 to the camera 20 after returning the same optical path as the second optical system.
  • the reflected light of the collective light reflected by the alignment mark 2a of the mask 2 and the alignment mark 1a of the substrate 1 passes through the same beam path as the incident light, goes straight through the beam splitter 24, passes through the filter 21, and passes through the filter 21. Incident on the sensor.
  • the collective light passes through the optical system composed of the same lenses 25, 23, and 22. Therefore, in the case of such the same lens, the blue light (wavelength 405 nm) has a short focal length, and the red light (wavelength 670 nm) is the focal point. The distance is long.
  • the optical constants and the like of the lenses 25, 23, and 22 are appropriately set, the blue light component of the light incident on the sensor of the camera 20 and reflected by the alignment mark of the mask 2 is the sensor of the camera 20.
  • the light reflected by the alignment mark on the substrate 1 farther from the camera 20 can be focused at the sensor of the camera 20.
  • the gap G between the substrate 1 and the mask 2 is about 5 to 15 mm, but the red light and the blue light of the incident light to the camera 20 are different.
  • the focal point is focused on the sensor through the length, for example, 5 mm of the gap G is absorbed, and the alignment marks 1a and 2a of both the substrate 1 and the mask 2 can be focused on the sensor of the camera 20, and Both the alignment pattern and the alignment pattern on the mask 2 can be simultaneously observed by focusing the sensor.
  • FIG. 5A when the alignment light is irradiated perpendicularly to the substrate 1 and the mask 2, as shown in FIG.
  • a predetermined alignment accuracy is obtained.
  • FIG. 5C when the optical axis of the alignment light is tilted, the optical path of the reflected light changes, and the substrate 1 and the mask 2 are caused by the gap G between the substrate 1 and the mask 2.
  • FIG. 5D Even in a predetermined positional relationship, as shown in FIG. 5D, the positions of the alignment marks 1a and 2a detected on the camera 6 side are shifted.
  • the alignment mark 2a and the alignment mark 1a are coincident in position, and the camera 6 is not aligned even though the mask 2 and the substrate 1 are aligned. It will be mistakenly observed. In other words, although the substrate 1 and the mask 2 are not aligned, the camera 6 may cause the alignment mark 1a to be observed as being in the center of the alignment mark 2a. If the mask 2 is aligned, it will be mistakenly observed.
  • an erecting equal-magnification image of the substrate alignment mark 1a is formed on the mask 2 by the microlens array 3, and as shown in FIG. 2 (b), the relative positions of the substrate and mask alignment marks 1a and 2a detected by the camera 6 do not change, and extremely high alignment accuracy can be obtained. Can do.
  • the alignment apparatus it is necessary to provide two alignment light sources having different wavelengths, and the structure and the alignment method are slightly complicated.
  • an exposure micro light is used during alignment. By simply moving the lens array 3 between the substrate alignment mark 1a and the mask alignment mark 2a, the focus difference on the camera 6 side caused by the gap G between the substrate 1 and the mask 2 is reduced to 0, and high alignment accuracy is achieved. As a result, only one alignment light source is required.
  • the microlens array 3 After alignment between the substrate 1 and the mask 2, the microlens array 3 is moved in the left direction in FIG. 1 and moved below the pattern area provided on the mask 2, and then exposure light is emitted, Scan exposure by the microlens array 3 is started.
  • the exposure accuracy in scan exposure can be kept extremely high.
  • the shape of the alignment marks 1a and 2a of the substrate and the mask in this embodiment is an example, and the alignment between the substrate 1 and the mask 2 can be performed by detecting each alignment mark 1a and 2a with the camera 6. As long as the present invention is not limited by the shape of the alignment marks 1a and 2a.
  • the alignment light source 5 is built in the camera 6, and the case where the alignment light is configured to be emitted coaxially with the optical axis of the light detected by the camera 6 has been described.
  • the optical axis of the light emitted from the alignment light source 5 is determined by the camera.
  • the optical axis of the detected reflected light may not be coaxial.
  • FIG. 6A is a view showing an alignment apparatus for an exposure apparatus according to the second embodiment of the present invention
  • FIG. 6B is a view showing a relative positional relationship of detected alignment marks.
  • the exposure microlens array 3 is moved during exposure and during alignment, and one microlens array is shared for both exposure and alignment.
  • the microlens array 3 is provided in a size that includes an exposure position irradiated with exposure light and an alignment position irradiated with alignment light.
  • the microlens array 3 is provided in a size that includes an exposure position irradiated with exposure light and an alignment position irradiated with alignment light.
  • the microlens array 3 is provided in a size that includes an exposure position irradiated with exposure light and an alignment position irradiated with alignment light.
  • 1st Embodiment it is the same as that of 1st Embodiment.
  • one shared microlens array 3 is composed of a microlens array having a size including an exposure position and an alignment position, so that the microlens array 3 can be used during exposure and during alignment. No need to move Other effects are the same as those of the first embodiment.
  • FIG. 7A is a view showing an alignment apparatus for an exposure apparatus according to the third embodiment of the present invention
  • FIG. 7B is a view showing the relative positional relationship of detected alignment marks
  • FIG. (B) is a figure which shows the case where the optical path of alignment light inclines in the exposure apparatus shown in FIG.
  • the microlens array is provided with two (first) microlens arrays 3 for exposure and second microlens arrays 7 for alignment.
  • the second microlens array 7 has the same optical characteristics as the (first) microlens array 3.
  • Other configurations are the same as those of the first embodiment.
  • an erecting equal-magnification image of the substrate alignment mark 1a can be formed on the mask 2, and the camera 6 side caused by the gap G of 5 to 15 mm between the substrate 1 and the mask 2
  • alignment between the substrate 1 and the mask 2 can be performed with high accuracy.
  • the relative positions of the alignment marks do not change, and extremely high alignment accuracy can be obtained.
  • the microlens array since the microlens array 3 for exposure and the microlens array 7 for alignment are configured separately, in the same way as in the second embodiment, at the time of exposure and at the time of alignment, There is no need to move the microlens array 3.
  • FIG. 9A is a view showing an alignment apparatus for an exposure apparatus according to the fourth embodiment of the present invention
  • FIG. 9B is a view showing the relative positional relationship of detected alignment marks.
  • the alignment light source 5 and the camera 6 are disposed below the substrate 1 and irradiate alignment light from below the substrate.
  • the substrate alignment mark 1b has a frame shape
  • the mask alignment mark 2b has a rectangular shape.
  • the substrate 1 to be exposed is made of a light-transmitting material such as PI (polyimide) and ITO (tin-doped indium oxide), for example, and alignment light is transmitted through the substrate 1 and mask 2 Is irradiated. That is, in the present embodiment, when the substrate 1 is made of a light transmissive material, the irradiation direction of the alignment light and the shapes of the alignment marks 1b and 2b of the substrate 1 and the mask 2 are different from those of the first embodiment. The configuration of is the same as that of the first embodiment.
  • the microlens array 3 for exposure is moved between the mask alignment mark 2b and the substrate alignment mark 1b when the relative alignment between the substrate 1 and the mask 2 is performed.
  • the microlens array 3 is used by being moved during exposure and alignment.
  • the reflected light reflected from the mask alignment mark 2b by the microlens array 3 is transmitted through the microlens array 3, and an erecting equal-magnification image of the mask alignment mark 2b is formed on the substrate 1.
  • Imaged. Therefore, a gap G of 5 to 15 mm exists between the substrate 1 and the mask 2, but the focus difference on the camera 6 side caused by this gap G becomes zero.
  • the alignment between the substrate 1 and the mask 2 is performed with high accuracy using the substrate alignment mark 1b of the substrate 1 and the mask alignment mark 2b of the mask 2 as indexes. Can be done. For example, when the position of the mask alignment mark 2b detected by the camera 6 is deviated from the center of the frame-shaped substrate alignment mark 1b, the controller 9 positions the mask alignment mark 2b at the center of the substrate alignment mark 1b. Thus, the mask 2 is moved so that the substrate 1 and the mask 2 are aligned.
  • the alignment marks 1b and 2b of the substrate and the mask detected by the camera 6 are detected.
  • the relative position does not change from the case where the alignment light is irradiated perpendicularly to the substrate 1 and the mask 2, and extremely high alignment accuracy can be obtained.
  • the microlens array 3 is provided in a size including the exposure position irradiated with the exposure light and the alignment position irradiated with the alignment light. It is not necessary to move the microlens array 3 during exposure and during alignment.
  • FIG. 10A is a view showing an alignment apparatus for an exposure apparatus according to the fifth embodiment of the present invention
  • FIG. 10B is a view showing the relative positional relationship of detected alignment marks.
  • the microlens array includes an exposure (first) microlens array 3 and an alignment second microlens array 7. Are provided.
  • the second microlens array 7 has the same optical characteristics as the (first) microlens array 3. Thereby, in the present embodiment, it is not necessary to move the microlens array 3 during exposure and during alignment, as in the second embodiment.
  • FIG. 11A is a diagram showing a substrate and mask alignment method according to a sixth embodiment of the present invention.
  • FIG. 11B is a diagram showing a substrate alignment mark imaged on the mask together with a microlens array.
  • 12 is a view showing a substrate alignment mark according to the sixth embodiment of the present invention
  • FIG. 13A is a view showing the substrate alignment mark together with the microlens array
  • FIG. 13B is an enlarged view thereof.
  • the exposure apparatus is provided with a microlens array 3 between the substrate 1 and the mask 2 in the same manner as an exposure apparatus using a conventional microlens array.
  • the exposure light emitted from the exposure light source 8 is transmitted through the pattern formed on the mask 2, and an erecting equal-magnification image of the pattern is formed on the substrate by the microlens array 3.
  • the mask 2 is provided with, for example, a frame-shaped mask alignment mark 2a, and the substrate 1 to be exposed is provided with a substrate alignment mark 11 having a predetermined shape.
  • the microlens array 3 is moved between, for example, the substrate alignment mark 11 and the mask alignment mark 2a, and one microlens array 3 is moved during exposure and alignment.
  • the light reflected from the substrate alignment mark 11 is formed on the mask as an erecting equal-magnification image by the microlens array 3.
  • the alignment light source 5 irradiates alignment light from above the mask 2 onto the substrate alignment mark 11 provided on the substrate 1 and the mask alignment mark 2 a provided on the mask 2 above the mask 2.
  • an erecting equal-magnification image reflected from the substrate alignment mark 11 is formed on the mask 2 by the microlens array 3.
  • a camera 6 is provided above the mask 2, and the camera 6 detects the reflected light reflected from the mask alignment mark 2 a and the upright equivalent image of the substrate alignment mark 11 formed on the mask 2. It is configured as follows. During alignment, when the substrate 1 and the mask 2 are in a predetermined positional relationship, the alignment center of the mask alignment mark 2 a detected by the camera 6 coincides with the alignment center of the substrate alignment mark 11.
  • the camera 6 is connected to a control device 9 that controls the position of the mask 2, and the control device 9 aligns the substrate 1 and the mask 2 based on the detection result by the camera 6. Is necessary, the mask 2 is moved. For example, when the position of the alignment center of the substrate alignment mark 11 detected by the camera 6 is shifted from the alignment center of the mask alignment mark 2a, the control device 9 determines that the alignment center of the substrate alignment mark 11 is the mask alignment mark 2a. The mask 2 is moved so as to coincide with the alignment center. Note that, as shown by a two-dot chain line in FIG.
  • control device 9 is connected to, for example, a stage on which the substrate 1 is placed, and moves the substrate 1 so that the substrate 1 and the mask 2 are moved. You may be comprised so that alignment may be performed. Alternatively, the control device 9 may be configured to align the substrate 1 and the mask 2 by moving both the substrate 1 and the mask 2.
  • the camera 6 is, for example, a single focus type coaxial episcopic microscope, and the alignment light source 5 is incorporated therein.
  • the alignment light source 5 is configured to emit alignment light coaxially with the optical axis of the light detected by the camera 6.
  • laser light or lamp light transmitted through an interference filter can be used.
  • the lamp light source for example, a halogen lamp is preferably used because the cost can be reduced.
  • the alignment light source 5 may be provided separately from the camera 6. The light emitted from the alignment light source 5 is applied to the mask 2 and the substrate 1 through an optical system such as a reflecting mirror and a beam splitter.
  • the microlens array 3 is provided with a polygonal field stop 42 and an aperture stop 41 for each microlens.
  • the polygonal field stop is configured as a hexagonal field stop 42 formed as a hexagonal opening in the aperture stop 41 of the microlens. Therefore, as shown in FIG. 11B, the reflected light of the substrate 1 is transmitted only by the hexagonal field stop 42 from the substrate region corresponding to the region surrounded by the hexagon. An erecting equal-magnification image is formed on the mask 2.
  • FIG. 25 is a schematic view showing an exposure apparatus using a microlens array.
  • a mask 2 on which a pattern to be exposed on the substrate 1 is formed is disposed above the substrate 1 to be exposed with an appropriate distance from the substrate 1.
  • a microlens array 3 in which microlenses 4 are two-dimensionally arranged is disposed between the substrate 1 and the mask 2, and exposure light is irradiated from above the mask 2 to the mask 2. 2 is projected onto the substrate 1 by the microlens array 3, and the pattern formed on the mask 2 is transferred by the microlens array 3 as an erecting equal-magnification image to a resist or the like on the substrate surface. .
  • FIG. 26 is a view showing the microlens array 3 used in the exposure apparatus.
  • the microlens array 3 has, for example, a four-lens eight-lens configuration, and a structure in which four unit microlens arrays 3-1, 3-2, 3-3, and 3-4 are stacked.
  • Each unit microlens array 3-1 to 3-4 includes an optical system represented by two convex lenses on the front and back sides.
  • the exposure light once converges between the unit microlens array 3-2 and the unit microlens array 3-3, and further forms an image on the substrate below the unit microlens array 3-4.
  • an inverted equal magnification image of the mask 2 is formed between the unit micro lens array 3-2 and the unit micro lens array 3-3, and an erect equal magnification image of the mask 2 is formed on the substrate.
  • a polygonal field stop (for example, a hexagonal field stop 42) is disposed between the unit microlens array 3-2 and the unit microlens array 3-3, and the unit microlens array 3-3 and the unit microlens array 3- 4, a circular aperture stop 41 is disposed.
  • the aperture stop 41 limits the NA (numerical aperture) of each microlens, and the hexagonal field stop 42 narrows the field of view to a hexagon near the image forming position.
  • the hexagonal field stop 42 and the aperture stop 41 are provided for each microlens.
  • the light transmission region of the microlens is shaped into a circle by the aperture stop 41 and exposure light is exposed on the substrate.
  • the area is shaped into a hexagon.
  • the hexagonal field stop 42 is formed as a hexagonal opening in the aperture stop 41 of the microlens. Therefore, if the scanning is stopped by the hexagonal field stop 42, the exposure light transmitted through the microlens array 3 is irradiated only on the region surrounded by the hexagon shown in FIG. .
  • the mask 2 and the substrate 1 are usually fixed, and the microlens array 3, the exposure light source, and the optical system are moved integrally in a direction perpendicular to the paper surface.
  • Light scans the substrate 1.
  • the alignment marks provided on the substrate 1 are, for example, two linear mark pieces 111A and 111B as shown in FIG.
  • the substrate alignment mark 111 may be positioned between the microlenses of the microlens array 3 and the alignment mark may not be detected.
  • the detected mark piece 111B constitutes the opening of the hexagonal field stop 42.
  • the image detected by the camera 6 is an image of the side 42d constituting the opening of the hexagonal field stop 42 or an image of the mark piece 111B of the substrate alignment mark 111. It is difficult to identify.
  • the substrate alignment mark 11 in the present embodiment has a plurality of linear mark pieces 11 ⁇ / b> A to 11 ⁇ / b> K extending in a direction inclined with respect to all the sides 42 a to 42 f of the opening of the hexagonal field stop 42. It is comprised by. Therefore, the direction in which the detected mark extends when detected by the camera 6 is inclined with respect to the side of the hexagonal field stop 42. Thereby, the mark piece detected by the camera 6 can be clearly identified with respect to the opening of the hexagonal field stop 42.
  • the substrate alignment mark 11 in the present embodiment includes a plurality of first mark pieces 11A to 11C extending radially from the alignment center 110 and a plurality of sides extending on a polygonal (for example, octagonal) centered on the alignment center 110.
  • the 1st mark piece and the 2nd mark piece cross in multiple places. That is, the first mark piece 11B intersects with the two second mark pieces 11E and 11I, and the first mark piece 11C intersects with the two second mark pieces 11F and 11J.
  • the mark piece 11A intersects with the two second mark pieces 11D and 11K at one point, and also intersects with the two second mark pieces 11G and 11H at one point.
  • the positions of the hexagonal field stop 42 and the mark pieces are determined so that a plurality of mark pieces are present in any one of the polygonal field stops.
  • the alignment center 110 where the first mark pieces 11A to 11C intersect can be detected through the opening of the hexagonal field stop 42
  • the alignment center 110 is used as an index. 1 and the mask 2 can be aligned.
  • the alignment center 110 of the substrate alignment mark 11 is 2
  • the alignment center 110 cannot be detected through the opening of the hexagonal field stop 42 because it is located in a region that does not transmit light between the two-dimensionally arranged microlenses.
  • the substrate alignment mark 11 is provided in such a shape that, for example, the intersection of the mark pieces is detected through the opening of the hexagonal field stop 42, and the mark pieces 11A to 11K intersect each other.
  • the alignment center 110 of the substrate alignment mark 11 is detected.
  • FIG. 15 when the relative position of the substrate alignment mark 11 with respect to the microlens array 3 is shifted in the left-right direction from the state shown in FIG. 13, the intersection between the second mark pieces 11 ⁇ / b> E and 11 ⁇ / b> F. And the intersection of the second mark pieces 11I and 11J is detected through the opening of the hexagonal field stop 31. In this case, as shown in FIG.
  • the midpoint of the detected intersection is detected as the alignment center 110 of the substrate alignment mark.
  • FIG. 16 when the relative position of the substrate alignment mark 11 with respect to the microlens array 3 is deviated obliquely from the state shown in FIG. 13, the second mark pieces 11D and 11E intersect each other. And the intersection of the second mark pieces 11H and 11I is detected through the opening of the hexagonal field stop 31. In this case, as shown in FIG. 16B, the midpoint of the detected intersection is detected as the alignment center 110 of the substrate alignment mark. Further, as shown in FIG. 17, when the relative position of the substrate alignment mark 11 with respect to the microlens array 3 is shifted in the vertical direction from the state shown in FIG.
  • the second mark pieces 11J and 11K intersect each other. And the intersection of the first mark piece 11A and the second mark pieces 11G and 11H are detected through the opening of the hexagonal field stop 31.
  • the position separated by a predetermined distance with respect to the intersection between the first mark piece 11A and the second mark pieces 11G and 11H is the alignment of the substrate alignment mark. Detected as center 110.
  • the intersection between the second mark pieces 11J and 11K is also detected, and is used for detecting the alignment center 110 of the substrate alignment mark as necessary.
  • the microlens array 3 is positioned below the pattern area provided on the mask 2 during exposure. First, the microlens array 3 is moved in the right direction in FIG. 11, and is moved between the substrate alignment mark 11 and the mask alignment mark 2a. Next, alignment light is emitted from an alignment light source 5 such as a halogen lamp built in the camera 6. The alignment light is first applied to the mask 2 via an optical system such as a reflecting mirror and a beam splitter. The alignment light irradiated on the mask 2 is reflected by the mask alignment mark 2a. On the other hand, the alignment light transmitted through the mask 2 is transmitted through the microlens array 3 disposed below the mask 2 and irradiated onto the substrate 1.
  • an alignment light source 5 such as a halogen lamp built in the camera 6.
  • the alignment light is first applied to the mask 2 via an optical system such as a reflecting mirror and a beam splitter.
  • the alignment light irradiated on the mask 2 is reflected by the mask alignment mark 2a.
  • the reflected light reflected by the substrate alignment mark 11 passes through the microlens array 3 and enters the mask 2 again, and an erecting equal-magnification image of the substrate alignment mark 11 is formed on the mask 2.
  • an erecting equal-magnification image of the substrate alignment mark 11 is formed on the mask 2.
  • Each reflected light is incident on the sensor of the camera 6 to detect the mask alignment mark 2a and an erecting equal-magnification image of the substrate alignment mark 11 formed on the mask 2.
  • the substrate alignment mark 11 is composed of a plurality of linear mark pieces 11A to 11K extending in a direction inclined with respect to all the sides 42a to 42f of the opening of the hexagonal field stop 42. . Therefore, when detected by the camera 6, it can be clearly identified with respect to the opening of the hexagonal field stop 42 by the direction in which the detected mark extends.
  • the alignment center 110 of the substrate alignment mark 11 at which the first mark pieces 11A to 11C intersect with each other passes through the opening of the hexagonal field stop 42. If it can be detected, the substrate 1 and the mask 2 can be aligned using the alignment center 110 of the substrate alignment mark as an index. For example, when the position of the alignment center of the substrate alignment mark 11 detected by the camera 6 is shifted from the center of the frame-shaped mask alignment mark 2a, the control device 9 causes the alignment center 110 of the substrate alignment mark to be mask alignment. The mask 2 is moved so as to be positioned at the center of the mark 2a, and the substrate 1 and the mask 2 are aligned.
  • the alignment marks 11 and 2a of the substrate 1 and the mask 2 are used as indices, and The alignment with the mask 2 can be performed with high accuracy.
  • the alignment center 110 of the substrate alignment mark is two-dimensionally arranged.
  • the alignment center 110 cannot be detected through the opening of the hexagonal field stop 42 because it is located in a region that does not transmit light between the formed microlenses.
  • the substrate alignment mark 11 extends on the first mark pieces 11A to 11C extending radially from the alignment center 110 and the sides of a polygon (eg, octagon) centered on the alignment center 110.
  • the hexagonal field stop 42 and the mark pieces are positioned such that the plurality of second mark pieces 11D to 11K are present, and the plurality of mark pieces are present in any one of the polygonal field stops. That is, the substrate alignment mark 11 is provided in such a shape that the intersection of the mark pieces is detected through the opening of the hexagonal field stop 42, and the substrate alignment mark 11A to 11K are crossed by the point where the mark pieces 11A to 11K intersect.
  • the alignment center 110 of the mark 11 is detected.
  • the camera 6 detects the intersection between the second mark pieces 11E and 11F and the intersection between the second mark pieces 11I and 11J through the opening of the hexagonal field stop 42. Then, as shown in FIG.
  • the midpoint of the detected intersection is detected as the alignment center 110 of the substrate alignment mark.
  • the intersection between the second mark pieces 11D and 11E and the intersection between the second mark pieces 11H and 11I are detected through the opening of the hexagonal field stop 42, and FIG. As shown in (b), the midpoint of the detected intersection is detected as the alignment center 110 of the substrate alignment mark.
  • FIG. 17 when the intersection of the first mark piece 11A and the second mark pieces 11G and 11H is detected through the opening of the hexagonal field stop 42, FIG. As shown, a position separated by a predetermined distance with respect to the intersection between the first mark piece 11A and the second mark pieces 11G and 11H is detected as the alignment center 110 of the substrate alignment mark. Therefore, the substrate 1 and the mask 2 are aligned so that the alignment center 110 of the substrate alignment mark is positioned at the center of the frame-shaped mask alignment mark 2a.
  • each alignment line 110 of the substrate alignment mark 11 is arranged even when the alignment center 110 of the substrate alignment mark 11 is located in a region that does not transmit light between two-dimensionally arranged microlenses.
  • the alignment center 110 can be detected by the intersections of the mark pieces 11A to 11K, and the alignment accuracy can be maintained high by the detected alignment marks.
  • the microlens array 3 is used to form an erecting equal-magnification image of the substrate alignment mark 11 on the mask 2, whereby a camera caused by the gap G between the substrate and the mask.
  • the alignment light is irradiated perpendicularly to the substrate 1 and the mask 2.
  • FIG. 19B a predetermined alignment accuracy is obtained.
  • FIG. 19C when the optical axis of the alignment light is tilted, the optical path of the reflected light changes, and the substrate 1 and the mask 2 due to the gap G between the substrate 1 and the mask 2.
  • FIG. 19D Even in a predetermined positional relationship, as shown in FIG. 19D, the positions of the alignment marks 1a and 2a detected on the camera 6 side are shifted.
  • the alignment mark 2a and the alignment mark 1a are coincident in position, and the camera 6 is not aligned even though the mask 2 and the substrate 1 are aligned. It will be mistakenly observed. In other words, although the substrate 1 and the mask 2 are not aligned, the camera 6 may cause the alignment mark 1a to be observed as being in the center of the alignment mark 2a. If the mask 2 is aligned, it will be mistakenly observed.
  • the microlens array 3 forms an erecting equal-magnification image of the substrate alignment mark 11 on the mask 2, so that the optical axis of the alignment light as shown in FIG. Even when is tilted, the relative positions of the alignment marks 11 and 2a of the substrate and the mask detected by the camera 6 do not change, and extremely high alignment accuracy can be obtained.
  • the microlens array 3 After alignment between the substrate 1 and the mask 2, the microlens array 3 is moved leftward in FIG. 11 and moved below the pattern area provided in the mask 2, and then exposure light is emitted. Scan exposure by the microlens array 3 is started.
  • the exposure accuracy in scan exposure can be kept extremely high.
  • the alignment light source 5 is built in the camera 6, and the case where it is configured to emit alignment light coaxially with the optical axis of the light detected by the camera 6 has been described.
  • FIG. 20 is a view showing a modification of the substrate alignment mark according to the sixth embodiment.
  • the substrate alignment mark 12 in the present embodiment includes three first mark pieces 12A to 12C extending radially from the alignment center 120 and a plurality of first marks extending on a polygonal side centered on the alignment center 120. 2 mark pieces 12D to 12W. And the 1st mark piece and the 2nd mark piece cross in multiple places.
  • the first mark piece 12B intersects with the two second mark pieces 12G and 12Q
  • the first mark piece 12C intersects with the two second mark pieces 12J and 12T
  • the mark piece 12A intersects with the two second mark pieces 12D and 12W at one point, and also intersects with the two second mark pieces 12M and 12N at one point.
  • the number of intersections between mark pieces constituting the substrate alignment mark is the same as that in the sixth embodiment. Therefore, the same effect can be obtained by the same alignment method as in the sixth embodiment.
  • FIG. 21A is a view showing a substrate alignment mark according to the seventh embodiment of the present invention
  • FIG. 21B is a view showing the substrate alignment mark together with a microlens array.
  • the substrate alignment mark 13 according to the present embodiment is an octagonal side having the alignment center as a common center on the alignment center 130 side in the substrate alignment mark 11 of the sixth embodiment. It has linear mark pieces 13d to 13k arranged in series.
  • the other mark pieces 13A to 13C are the same as the mark pieces 11A to 11C of the sixth embodiment, and the mark pieces 13D to 13K are the same as the mark pieces 11D to 11K of the sixth embodiment.
  • the substrate alignment mark can be modified in the same manner as in the sixth embodiment.
  • the mark pieces 13D to 13K and 13d to 13k formed so as to surround the alignment center 130 may be divided into two, and a gap may be formed at the center.
  • a substrate alignment mark 14 as shown in FIG. 22 can be used.
  • the alignment mark 13 is composed of a line-symmetric polygonal figure and is arranged so as not to be parallel to any of the edges constituting the opening of the polygonal field stop.
  • a polygonal part, and a radiation part composed of at least six radiations traversing the polygonal part from the center of the polygonal part, and the whole of the polygonal part and the radiation part Is larger than the size of the lens and smaller than the overall size of four adjacent lenses. Therefore, as described above, the line segment of the alignment mark 13 can be distinguished from the edge of the polygonal field stop 42, and further, since any line segment exists in the polygonal field stop 42, The center can be detected with high accuracy.
  • FIGS. 23A and 23B are views showing substrate alignment marks according to the eighth embodiment of the present invention.
  • the substrate alignment mark 15 according to the present embodiment includes a mark piece on the alignment center 130 side and a mark piece arranged on the outside in the substrate alignment mark 13 of the seventh embodiment.
  • the line thickness is different. Therefore, in this embodiment, it is easy to distinguish between the linear mark on the alignment center 130 side and the outer mark piece.
  • Other configurations and effects are the same as those of the sixth and seventh embodiments.
  • the substrate alignment mark 15 can be modified in the same manner as in the sixth and seventh embodiments.
  • a linear mark formed so as to surround the alignment center may be divided into two and a gap may be formed at the center, as shown in FIG.
  • Such a substrate alignment mark 16 can be used.
  • the case where the erecting equal-magnification image of the substrate alignment mark is formed on the mask has been described.
  • the mask alignment mark is composed of a first group of mark pieces extending radially from the alignment center and a second group of mark pieces extending on a polygonal side centered on the alignment center. If the positions of the hexagonal field stop and the mark pieces are determined so that a plurality of mark pieces are present in any one of the polygonal field stops, the same effect as in the sixth to eighth embodiments can be obtained. can get.
  • FIG. 24A is a diagram showing a substrate and mask alignment method according to the ninth embodiment of the present invention
  • FIG. 24B is a diagram showing a mask alignment mark.
  • the alignment light source 5 and the camera 6 are arranged below the substrate 1 and irradiate alignment light from below the substrate.
  • the substrate alignment mark 1b has a frame shape
  • the mask alignment mark 2B is provided in the same shape as the substrate alignment mark 11 in the sixth embodiment, as shown in FIG.
  • the substrate 1 to be exposed is made of a light-transmitting material such as PI (polyimide) and ITO (tin-doped indium oxide), for example, and alignment light is transmitted through the substrate 1 and mask 2 Is irradiated. That is, in this embodiment, when the substrate 1 is made of a light transmissive material, the irradiation direction of the alignment light and the shapes of the alignment marks 1b and 2B of the substrate 1 and the mask 2 are different from those of the sixth embodiment. The configuration of is the same as that of the sixth embodiment. Even when the alignment light is irradiated from below the substrate as in the present embodiment, high-precision alignment can be realized by the same alignment method as in the sixth embodiment.
  • PI polyimide
  • ITO titanium-doped indium oxide
  • FIG. 28 is a view showing an exposure apparatus according to an embodiment of the present invention
  • FIG. 29 is a view showing the arrangement of microlenses of the microlens array
  • FIG. 30 is a view showing the structure of the microlens array
  • FIG. 31 is an opening shape.
  • FIG. 32 and FIG. 32 are diagrams showing the principle of exposure using a microlens array.
  • a microlens array 3 is disposed between the substrate 1 and a mask 2 on which an exposure pattern to be transferred to the substrate 1 is formed. In order to dispose the microlens array 3 therebetween, the gap between the substrate 1 and the mask 2 is 5 to 15 mm as described above.
  • the microlens array 3 forms an erecting equal-magnification image of the pattern provided on the mask 2 on the substrate 1 as described later.
  • a substrate alignment mark 32 is arranged on the surface of the upper surface of the substrate 1 facing the mask 2, and a mask alignment mark 31 is arranged on the surface of the lower surface of the mask 2 facing the substrate 1.
  • the microlens array 3 is configured by two-dimensionally arranging a large number of microlenses 4, and each microlens 4 has a hexagonal hexagonal field stop 42. Is arranged, and only the light transmitted through the hexagonal field stop 42 is irradiated onto the substrate 1.
  • the microlens array 3 is configured by stacking, for example, four unit microlens arrays 3-1, 3-2, 3-3, 3-4, and each unit microlens.
  • the arrays 3-1, 3-2, 3-3, 3-4 have a structure in which microlenses 4 as convex lenses are formed on the upper and lower surfaces of a glass plate.
  • a light shielding film 43 such as a Cr film is formed in a region other than the microlens 4 on the upper surface of the uppermost unit microlens array 3-1, and a circular opening 40 provided in the light shielding film 43 is formed. Inside, a microlens 2a as a convex lens is arranged. In order to prevent stray light, the light shielding film 43 reflects the exposure light irradiated to the area other than the microlens 4 and prevents the exposure light from entering the area other than the microlens 4.
  • a hexagonal field stop 42 is disposed between the unit microlens array 3-2 and the unit microlens array 3-3, and the unit microlens array 3-3 and the unit microlens array 3-4 are connected to each other.
  • a circular aperture stop 41 that defines the numerical aperture is disposed between them.
  • the hexagonal field stop 42 is provided as a hexagonal opening in the opening 40 of the light-shielding film 43 having a lens shape.
  • the opening 40 is provided as a circular opening.
  • the exposure light transmitted through the mask 2 is first inverted between the unit microlens array 3-2 and the unit microlens array 3-3 by four unit microlens arrays.
  • the maximum magnification is made between the unit microlens array 3-3 and the unit microlens array 3-4, and then the light is emitted from the unit microlens array 3-4 and erects on the substrate 1 or the like. Formed as a double image.
  • the hexagonal field stop 42 is disposed at a position where the inverted equal magnification image is formed, the mask pattern is shaped into this hexagonal shape and transferred to the substrate 1.
  • the circular diaphragm 41 shapes the maximum enlarged portion of the exposure light into a circle, and defines the NA (numerical aperture) of the microlens.
  • the substrate 1 and the mask 2 are fixed, and the microlens 3 and the light source (not shown) move in the scanning direction S in synchronism with each other.
  • the pattern of the mask 2 is scan-exposed on, for example, a resist film on the surface, or the microlens array 3 and the light source are fixed, and the substrate 1 and the mask 2 move in the scanning direction S in synchronization with each other,
  • the resist film on the surface of the substrate 1 is scan-exposed with the pattern of the mask 2.
  • the microlenses are arranged side by side in a direction perpendicular to the scanning direction S, and are adjacent to the scanning direction S with respect to the microlens array arranged in the direction perpendicular to the scanning direction S.
  • the microlens rows are arranged slightly shifted in the direction perpendicular to the scanning direction S.
  • the hexagonal field stop 42 of the microlens has a hexagonal shape, and is composed of a left triangular portion 45b, an intermediate rectangular portion 45a, and a right triangular portion 45c with respect to the direction perpendicular to the scanning direction S. ing.
  • a plurality of microlens rows are arranged in the scan direction S so that the left triangle portion 45b of the microlens row and the right triangle portion 45c of the microlens row adjacent to the scan direction S overlap with each other in the scan direction S.
  • the microlenses 4 are arranged on a straight line in the direction perpendicular to the scanning direction S, and are slightly shifted in the scanning direction S.
  • microlens rows are arranged so as to form one group of three rows in the scanning direction S, and the fourth microlens row is arranged at the same position as the first microlens row. ing. That is, the first and fourth microlens rows have the same position in the direction perpendicular to the scanning direction S of the microlens 4.
  • the first row of microarrays is firstly observed on the substrate 1 in the direction perpendicular to the scanning direction S.
  • the region that receives the right triangular portion 45c of the hexagonal field stop of the lens row then passes through the left triangular portion 45b of the hexagonal field stop of the second microlens row, and then the third microlens row. Then there is no passage through the opening.
  • the region that receives the rectangular portion 45a of the hexagonal field stop of the first microlens row does not pass through the opening in the second and third microlens rows.
  • the region that receives the left triangular portion 45b of the hexagonal field stop of the first microlens row does not pass through the opening in the second microlens row, and then the third microlens. Passes through the right triangular portion 45c of the hexagonal field stop of the row.
  • the region on the substrate 1 receives the two triangular portions 45b and 45c of the hexagonal field stop 42 each time three microlens rows pass, or one region.
  • the rectangular portion 45a is passed through. Since the opening areas of the triangular portions 45b and 45c are 1 ⁇ 2 of the opening area of the rectangular portion 45a, each time the three microlens rows pass, exposure with a uniform amount of light is received in the scanning direction S.
  • the third microlens array is the same as the third array in one group.
  • the exposure is repeated. Therefore, as the microlens array 3, 3n (n is a natural number) microlens rows are provided in the scanning direction S, and the substrate 1 is scanned over the entire scan region by scanning the 3n microlens rows. , Receive uniform exposure with uniform light quantity.
  • the microlens array 3 and the light source move relative to the substrate 1 and the mask 2 in the scanning direction S, so that the pattern formed on the mask 2 is exposed on the substrate 1. In this manner, an erecting equal-magnification image of the mask pattern of the mask 2 is transferred to the substrate 1 by the microlens array 3.
  • the microlens array 3 is used to form an erecting equal-magnification image of the mask pattern of the mask 2 on the substrate 1 in the exposure process, as shown in FIG.
  • the microlens array 3 is used for alignment of the substrate 1 and the mask 2 in the alignment step. That is, in the alignment step, the microlens array 3 is moved between the substrate alignment mark 32 and the mask alignment mark 31, and the mask alignment mark 31 and the substrate alignment mark 32 are detected by the camera 51 from above the mask 2. .
  • the camera 51 is, for example, a single focus type coaxial episcopic microscope, and includes a light source for alignment and a sensor for taking an image. That is, the alignment light is emitted from the camera 51, and the reflected light of the alignment light is incident coaxially with the optical axis of the alignment light to detect the reflected light.
  • the control unit 52 controls the irradiation of the alignment light by the camera 51 and the detection of the reflected light of the alignment light. Further, the control unit 52 controls a drive source (not shown) for relative alignment between the mask 2 and the substrate 1 based on the detection results of the mask alignment mark 31 and the substrate alignment mark 32.
  • the alignment light source is configured to emit alignment light coaxially with the optical axis of the light detected by the camera 51.
  • the alignment light source laser light or lamp light transmitted through an interference filter can be used. It can.
  • a lamp light source for example, a halogen lamp is preferably used because the cost can be reduced.
  • the alignment light source may be provided separately from the camera 51. The light emitted from the alignment light source is applied to the mask 2 and the substrate 1 through an optical system such as a reflecting mirror and a beam splitter.
  • FIG. 33B shows the shape of the mask alignment mark 31 of the comparative example. That is, the mask alignment mark 31 is formed by forming a mouth-shaped pattern on a glass substrate 34 with a metal film 33 that reflects light, such as a Cr film. The central portion of the alignment mark 31 is a so-called punched portion 35 where the metal film 33 does not exist, and the exposure light is transmitted therethrough. Therefore, in the mask alignment mark 31, the mark shape is defined by the sides 3 a, 3 b, 3 c, and 3 d that are boundaries between the metal film 33 and the cutout portion 35.
  • the microlens array 3 is detected as shown in FIG. That is, when the alignment light from the camera 51 is applied to the microlens array 3, the reflected light from the light shielding film 43 on the uppermost layer of the microlens array 3 appears white due to the large amount of light.
  • the microlens 4 is provided in the opening 40 where the light shielding film 43 does not exist, and the light incident on the microlens 4 is shaped into a hexagon by the hexagonal field stop 42 and irradiated onto the substrate 1.
  • the light reflected by one substrate alignment mark 32 returns to the camera 51 through the microlens 4, and the substrate alignment mark 32 is detected by the sensor of the camera 51.
  • the light transmitted through the hexagonal field stop 42 and reflected by the substrate 1 has a large amount of light and appears white.
  • light that is transmitted through the opening 40 of the light shielding film 43 but not transmitted through the hexagonal field stop 42 is reflected by the hexagonal field stop 12, returns to the camera 51, and is detected by the sensor of the camera 51.
  • the reflected light of the hexagonal field stop 42 appears gray in the sensor of the camera 51 as shown in FIG.
  • FIG. 33A shows the mask alignment mark 31 superimposed on the microlens array 2.
  • the sides 3d of the mask alignment mark 31 may be located between two microlens rows. .
  • the reflected light when the alignment light from the camera 51 is reflected by the mask alignment mark 31 has a large amount of light and appears white by the sensor of the camera 51, it is reflected by the light shielding film 43 of the microlens array 3. It is assimilated with the reflected light of the time and is indistinguishable. Therefore, as shown in FIG. 33C, an image detected by the sensor of the camera 51, the side 3d of the mask alignment mark 31 is assimilated with the reflected light from the light shielding film 43, and its position cannot be detected.
  • FIG. 34B shows a configuration of the mask alignment mark 31 according to the embodiment of the present invention.
  • the mask alignment mark 31 of the embodiment of the present invention has a square cut portion 35 formed on a glass substrate 34 by a metal film 33 which is a light-reflective reflection film such as a Cr film.
  • a metal film 33 which is a light-reflective reflection film such as a Cr film.
  • sides 3e, 3f, 3g, and 3h are formed at the boundary between the metal film 33 and the punched portion 35, and the shape of the mask alignment mark 31 is formed by the sides 3e, 3f, 3g, and 3h. It is prescribed.
  • none of these sides 3e, 3f, 3g, and 3h extend in a direction that coincides with the arrangement direction of the microlenses 4 in the microlens array 3. That is, each of the sides 3e, 3f, 3g, and 3h is inclined with respect to the first direction in which the microlenses 2a are arranged on a straight line.
  • the direction perpendicular to the scanning direction S is the first direction, and all the sides 3e, 3f, 3g, and 3h are scanned. Inclined with respect to the direction S.
  • the sides 3e, 3f, 3g, and 3h intersect the scan direction S at an angle of 45 °.
  • the microlens array 2 is disposed between the substrate alignment mark 32 of the substrate 1 and the mask alignment mark 31 of the mask 2, and the alignment light is emitted from above the mask 2 by the camera 51 that is an episcopic microscope. Irradiate vertically downward toward the substrate alignment mark 32. Then, as shown in FIG. 34 (a), the sensor of the camera 51 uses white light for the reflected light from the metal film 33 of the mask alignment mark 31 and the reflected light from the light shielding film 43 of the microlens array 3.
  • the reflected light reflected by the hexagonal field stop 42 is detected as gray light, and the alignment light transmitted through the hexagonal field stop 42 detects the reflected light reflected by the substrate alignment mark 32 of the substrate 1. .
  • the alignment light transmitted through the hexagonal field stop 42 by the microlens array 2 forms an image on the substrate 1, reflects off the substrate alignment mark 32, and then forms an image on the mask 2 by the microlens array 3.
  • the mask alignment mark 31 is detected by the sensor of the camera 51 with the sides 3e, 3f, 3g, and 3h of the mask alignment mark 31 superimposed on the microlens array 3.
  • the sides 3e, 3f, 3g, and 3h of the mask alignment mark 31 do not coincide with the arrangement direction of the microlenses, they are not positioned between the microlens rows, as shown in FIG.
  • all the sides 3e, 3f, 3g, and 3h are detected on the reflected light (gray light) reflected by the hexagonal field stop 42.
  • the sensor of the camera 51 detects the contour (all sides 3e, 3f, 3g, 3h) of the mask alignment mark 31 on the reflected light reflected by the hexagonal field stop 42 on the lower surface of the mask 2. Can do.
  • the substrate alignment mark 32 can be detected as reflected light from the substrate alignment mark 32 imaged on the lower surface of the mask 2 by the microlens array 3. Since any mark can be detected on the lower surface of the mask 2, the camera 51 can simultaneously detect both marks within the range of the depth of focus.
  • the mask alignment mark 31 and the substrate alignment mark 32 can be detected simultaneously on the same surface (mask lower surface).
  • the substrate 1 and the mask 2 can be aligned with high accuracy.
  • the camera 51 detects the substrate alignment mark 32 and the mask alignment mark 31 on the same plane, even when the optical axis of the camera 51 is inclined with respect to the mask 2, the substrate 1 and the mask 2 When the alignment is taken, the mask alignment mark 31 and the substrate alignment mark 32 are always detected at the aligned positions, so that the alignment between the mask 2 and the substrate 1 is not erroneously detected.
  • FIG. 34 in the case of the present invention (FIG. 34), there is no edge extending in the arrangement direction of the microlens in the side indicating the outline of the mask alignment mark 31. All sides can be detected from the reflected light, and the mask alignment mark 31 can be detected with high accuracy. Therefore, the alignment accuracy between the mask 3 and the substrate 1 can be further improved.
  • the present invention is not limited to the above embodiment.
  • the alignment light is irradiated onto the mask and the substrate from above the mask, and the alignment light is detected above the mask.
  • the alignment light is irradiated and detected from below the substrate 1.
  • the camera 51 is arranged below the substrate 1 with its alignment light irradiation direction facing upward, the substrate alignment mark 32 is detected on the upper surface of the substrate 1, and the mask alignment mark 31 is placed on the upper surface of the substrate 1 by the microlens array 3.
  • An image may be formed and detected on the upper surface of the substrate 1.
  • the substrate alignment mark 32 may be formed as shown in FIG. In other words, it is necessary to form each side of the outline of the substrate alignment mark 32 so as not to coincide with the arrangement direction of the microlens array.
  • the polygonal field stop is the hexagonal field stop 42, and the microlens rows form microlens row groups every three rows.
  • the present invention is not limited to this, and various aspects are possible.
  • the polygonal field stop that defines the field on the substrate by the microlens is not limited to the hexagonal field stop, and may have, for example, a rhombus, a parallelogram, or a trapezoidal opening.
  • the field area can be decomposed into a central rectangular portion and triangular portions on both sides thereof.
  • the number of microlens rows constituting one group of microlens rows is not limited to three.
  • the arrangement of the microlenses shown in FIG. 32 constitutes one group with three rows in the scanning direction S, and the fourth microlens row is related to the first microlens row and the direction perpendicular to the scanning direction S.
  • the lens size and the field width are different, so the ratio between the lens pitch interval and the field width may be changed. In that case, if the lens pitch is adjusted to be an integral multiple of the visual field width, there may be a case where the three-row configuration is not achieved.
  • the microlens array 3 for exposure is moved between the mask alignment mark 31 and the substrate alignment mark 32 to project the image of the substrate alignment mark 32 on the mask.
  • a dedicated microlens array may be provided, or a large microlens array having both exposure and alignment functions may be disposed.
  • FIGS. 35 (a) to 35 (c) are diagrams showing an image of a substrate alignment mark detected through a polygonal field stop together with a microlens array and a camera in the alignment apparatus according to the eleventh embodiment of the present invention.
  • FIG. 36A is a view showing a state in which the images of the substrate alignment marks imaged in FIG. 36 are superimposed
  • FIG. 36A is a view showing the alignment apparatus for an exposure apparatus according to the eleventh embodiment of the present invention
  • FIG. It is a figure which shows the relative positional relationship of the alignment mark made. As shown in FIG.
  • an exposure apparatus provided with an alignment apparatus is a microlens array 3 between a substrate 1 and a mask 2 as in a conventional scan exposure apparatus using a microlens array.
  • the exposure light emitted from the exposure light source 8 is transmitted through the pattern formed on the mask 2, and an erecting equal-magnification image of the pattern is formed on the substrate by the microlens array 3.
  • the microlens array 3, the exposure light source, and the optical system are integrally moved relative to the mask 2 and the substrate 1 in a direction perpendicular to the paper surface in FIG. 36 (hereinafter referred to as a scan exposure direction).
  • the exposure light scans on the substrate 1 and the pattern of the mask 2 is transferred onto the substrate 1.
  • the alignment apparatus is used for relative alignment between the substrate 1 and the mask 2.
  • the alignment apparatus irradiates alignment light from above the mask 2 onto the substrate alignment mark 1 a provided on the substrate 1 and the mask alignment mark 2 a provided on the mask 2 above the mask 2.
  • An alignment light source 5 is provided. As shown in FIG. 36 (a), in the present embodiment, the alignment light source 5 is incorporated in a single focus type coaxial episcopic microscope together with the camera 6 that detects the substrate alignment mark 1a and the mask alignment mark 2a. .
  • the alignment light source 5 is configured to emit alignment light coaxially with the optical axis of the light detected by the camera 6.
  • laser light or lamp light transmitted through an interference filter can be used.
  • the lamp light source for example, a halogen lamp is preferably used because the cost can be reduced.
  • the alignment light source 5 may be provided separately from the camera 6. The light emitted from the alignment light source 5 is applied to the mask 2 and the substrate 1 through an optical system such as a reflecting mirror and a beam splitter.
  • the microlens array 3 has, for example, a four-lens configuration, and four unit microlens arrays 3-1, 3-2, 3-3, 3-4 It has a laminated structure.
  • Each unit microlens array 3-1 to 3-4 includes a plurality of microlenses 4 arranged two-dimensionally.
  • a plurality of microlens rows in which a plurality of microlenses are arranged are arranged in a direction orthogonal to the arrangement direction. The microlenses of the adjacent microlens rows are offset from each other in the row direction.
  • one microlens row group is configured by three rows of microlens rows.
  • the microlens array 3 is arranged in the exposure apparatus and the alignment apparatus so that the arrangement direction of the microlenses in each microlens array is perpendicular to the relative scan exposure direction with respect to the substrate 1 and the mask 2. .
  • the microlens array 3 is moved between the substrate alignment mark 1a and the mask alignment mark 2a when the relative alignment between the substrate 1 and the mask 2 is performed. 3 is moved during exposure and during alignment, and the microlens array 3 for exposure is shared and used for alignment.
  • the exposure apparatus is provided with a drive device (not shown) for moving the microlens array 3, for example, and is controlled by a control device.
  • the control device controls the microlens array 3 to move in the scan exposure direction integrally with the light source 8.
  • the control device controls the microlens array 3 to move in the scan exposure direction in a state in which the alignment light is irradiated, so that the light reflected from the substrate 1 is microlens.
  • the moving direction of the microlens array 3 is the same direction during exposure and during alignment.
  • the mask 2 is provided with, for example, a frame-shaped mask alignment mark 2a
  • the substrate 1 is provided with, for example, a rectangular substrate alignment mark 1a that is smaller than the mask alignment mark 2a.
  • the substrate alignment mark 1a detected by the camera 6 is positioned at the center of the mask alignment mark 2a. To do.
  • the microlens array 3 when the substrate 1 and the mask 2 are aligned, the microlens array 3 forms an erecting equal-magnification image reflected from the substrate alignment mark 1 a on the mask 2 and above the mask 2.
  • the reflected light reflected from the mask alignment mark 2a and the erecting equal-magnification image of the substrate alignment mark 1a imaged on the mask 2 are simultaneously detected by the camera 6 provided in FIG.
  • the camera 6 is connected to a second control device 9 that controls the position of the mask 2, and the second control device 9 determines the substrate 1 based on the detection result by the camera 6.
  • the mask 2 is moved. For example, when the position of the substrate alignment mark 1a detected by the camera 6 is deviated from the center of the frame-shaped mask alignment mark 2a, the second controller 9 determines that the substrate alignment mark 1a is the mask alignment mark 2a.
  • the mask 2 is moved so as to be positioned at the center. As shown by a two-dot chain line in FIG.
  • the second control device 9 is connected to, for example, a stage on which the substrate 1 is placed, and moves the substrate 1 so that the substrate 1 and the mask are moved. 2 may be configured. Alternatively, the second control device 9 may be configured to align the substrate 1 and the mask 2 by moving both the substrate 1 and the mask 2.
  • the reflected light reflected from the substrate alignment mark 1a by the microlens array 3 arranged between the mask alignment mark 2a and the substrate alignment mark 1a is transmitted through the microlens array 3 and the mask 2
  • An erecting equal-magnification image of the substrate alignment mark 1a is formed on the top. Therefore, a gap G of 5 to 15 mm actually exists between the substrate 1 and the mask 2, but the focus difference on the camera 6 side caused by this gap G becomes zero. Therefore, the alignment marks 1a and 2a of the substrate 1 and the mask 2 having different distances from the sensor of the camera 6 can be simultaneously imaged on the camera 6, and the positions of the substrate 1 and the mask 2 are adjusted using each alignment mark as an index.
  • the alignment between the substrate 1 and the mask 2 can be performed with high accuracy. Also, by setting the focus difference on the camera side to 0, as shown in FIG. 37A, the relative positions of the alignment marks do not change even when the optical axis of the alignment light is inclined (FIG. 37 ( b)) An extremely high alignment accuracy can be obtained.
  • a hexagonal field stop 42 as shown in FIG. 27 is disposed at the reversal imaging position between the unit microlens arrays of the microlens array 3. Therefore, the image of the substrate alignment mark 1 a formed on the mask 2 is an image corresponding to the opening of the hexagonal field stop 42. Therefore, instantaneously, the edge of the substrate alignment mark 1a may not be located at a position corresponding to the opening of the hexagonal field stop 42, and the edge of the substrate alignment mark 1a cannot be detected from the camera 6 side. There are cases where the center position of the mark 1a cannot be specified and the detected image cannot be used for alignment between the substrate 1 and the mask 2.
  • the microlens array 3 includes a plurality of microlenses arranged in a direction orthogonal to the scan exposure direction to form a microlens row, and a plurality of microlens rows are arranged in the scan exposure direction.
  • the two microlens rows adjacent to each other in the scan exposure direction are arranged so as to be deviated in a direction perpendicular to the scan exposure direction.
  • the controller performs scan exposure. Controlled to move in the direction. Then, the control device captures the images of both alignment marks with the camera a plurality of times at intervals that are not an integral multiple of the arrangement pitch of each microlens array of the microlens array 3, and superimposes the captured images.
  • the images of the superimposed substrate alignment mark 1a and mask alignment mark 2a are used for alignment. Therefore, even when the polygonal field stop is provided, the edge of the substrate alignment mark 1a can be reliably identified. That is, as shown in FIGS. 35A to 35C, the edge of the image of the substrate alignment mark 1a detected by the camera 6 may not be detected instantaneously. For example, as shown in FIG. 35A, the left edge of the alignment mark 1a cannot be detected by the camera 6. However, while the control device moves the microlens array 3 in the scan exposure direction, the camera 6 causes the image of the substrate alignment mark 1a to be multiple times at intervals that are not an integral multiple of the arrangement pitch of the microlens rows of the microlens array 3.
  • the edge of the substrate alignment mark 1a can be reliably detected by superimposing a plurality of captured images. And the mask 2 can be aligned.
  • the alignment marks 1a and 2a are imaged by the camera 6 at an interval that is an integral multiple of the arrangement pitch of the microlens rows
  • the image of the substrate alignment mark 1a is orthogonal to the scan exposure direction by multiple imaging. It is detected so that it may line up in the direction. Therefore, when the edge in the scanning direction of the substrate alignment mark 1a cannot be detected by the first imaging, the edge in the scanning exposure direction of the substrate alignment mark 1a cannot be detected even in the second and subsequent imaging.
  • the number of times of imaging by the camera 6 is preferably equal to or greater than the number of rows of microlens rows constituting the microlens row group.
  • the microlens array 3 is positioned below the pattern area provided on the mask 2 during exposure. First, the microlens array 3 moves to the right in FIG. 36 and moves between the substrate alignment mark 1a and the mask alignment mark 2a. Next, alignment light is emitted from an alignment light source 5 such as a halogen lamp built in the camera 6 and the control device controls the microlens array 3 to move in the scan exposure direction.
  • the alignment light is first applied to the mask 2 via an optical system such as a reflecting mirror and a beam splitter.
  • the alignment light irradiated on the mask 2 is reflected by the mask alignment mark 2a.
  • the alignment light transmitted through the mask 2 is transmitted through the microlens array 3 disposed below the mask 2 and irradiated onto the substrate 1.
  • the reflected light reflected by the substrate alignment mark 1 a passes through the microlens array 3 and is incident on the mask 2 again, and an erecting equal-magnification image of the substrate alignment mark 1 a is formed on the mask 2. Then, each reflected light is incident on the sensor of the camera 6 and an erecting equal-magnification image of the mask alignment mark 2a and the substrate alignment mark 1a formed on the mask 2 is detected.
  • the camera 6 since the camera 6 detects an erecting equal-magnification image of the substrate alignment mark 1a imaged on the mask 2, in practice, between the substrate 1 and the mask 2, There is a gap G of 5 to 15 mm, but on the camera 6 side, the focus difference due to this gap G is zero.
  • the control device causes the camera 6 to pick up an image of the substrate alignment mark 1a formed on the mask 2 a plurality of times together with the mask alignment mark 2a (FIG. 35). That is, since the hexagonal field stop 42 is provided in the inversion imaging position between the unit microlens arrays in the microlens array 3, the image of the substrate alignment mark 1a imaged on the mask 2 is hexagonal. An image corresponding to the opening of the field stop 42 is obtained, and in some cases, the edge of the substrate alignment mark 1a cannot be detected instantaneously from the camera 6 side. For example, as shown in FIG. 35A, the left edge of the substrate alignment mark 1a cannot be detected, and the center position of the substrate alignment mark 1a cannot be specified.
  • the substrate alignment marks are spaced at intervals that are not an integral multiple of the arrangement pitch of each microlens array of the microlens array 3 by the camera 6 while the microlens array 3 is moved in the scan exposure direction by the control device.
  • the image of 1a is taken a plurality of times.
  • the control device superimposes the plurality of captured images and uses the superimposed images of the alignment marks 1a and 2a for alignment.
  • the edge of the substrate alignment mark 1a can be reliably detected. Therefore, the center position of the substrate alignment mark 1a can be reliably specified, and can be used for highly accurate alignment.
  • the substrate 1 and the mask 2 are aligned by the alignment marks 1a and 2a of the substrate and the mask detected by the camera 6.
  • the second control device 9 sets the substrate alignment mark 1a to the mask alignment mark 2a.
  • the mask 2 is moved so as to be positioned at the center, and the substrate 1 and the mask 2 are aligned.
  • the alignment marks 1a and 2a of the substrate 1 and the mask 2 are used as indices, and The alignment with the mask 2 can be performed with high accuracy.
  • the alignment accuracy is high, and at the time of alignment, the substrate 1 and the mask 2 are simply moved by moving the exposure microlens array 3 between the substrate alignment mark 1a and the mask alignment mark 2a.
  • a high alignment accuracy can be obtained by setting the focus difference on the camera 6 side caused by the gap G to 0 to 0, and only one alignment light source is required.
  • the microlens array 3 After alignment between the substrate 1 and the mask 2, the microlens array 3 is moved to the left in FIG. 36 and moved below the pattern area provided on the mask 2, and then exposure light is emitted, Scan exposure by the microlens array 3 is started.
  • the exposure accuracy in scan exposure can be kept extremely high.
  • the shape of the alignment marks 1a and 2a of the substrate and the mask in this embodiment is an example, and the alignment between the substrate 1 and the mask 2 can be performed by detecting each alignment mark 1a and 2a with the camera 6. As long as the present invention is not limited by the shape of the alignment marks 1a and 2a.
  • the alignment light source 5 is built in the microscope together with the camera 6, and the case where the alignment light is configured to be emitted coaxially with the optical axis of the light detected by the camera 6 will be described.
  • an erecting equal-magnification image of one of the substrate 1 and the mask 2 is formed on the other, and this is detected by the camera 6, so that the optical axis of the light emitted from the alignment light source 5 is the camera
  • the optical axis of the reflected light detected at 1 may not be coaxial.
  • 38 (a) to 38 (d) are images of the substrate alignment mark detected through the polygonal field stop and continuously captured as a moving image by the camera in the alignment apparatus according to the twelfth embodiment of the present invention. It is a figure which shows the image of the done substrate alignment mark. This embodiment is different from the eleventh embodiment in that the camera 6 continuously captures erecting equal-magnification images of the substrate alignment marks 1a formed on the mask 2 during alignment.
  • FIG. 38 shows, as an example, a state in which the microlens rows of the microlens array 3 arranged in the scan exposure direction are moved by the arrangement pitch in the scan exposure direction.
  • the control device continuously captures erecting equal-magnification images of the substrate alignment marks 1a formed on the mask 2 by the camera 6 while moving the microlens array 3.
  • the image of the substrate alignment mark 1a formed on the mask 2 corresponding to the opening of the hexagonal field stop 42 is obtained by scanning.
  • the image is detected so as to extend in a strip shape.
  • the imaging time by the camera 6 is set.
  • the center position of the substrate alignment mark 1a can be detected with higher accuracy than in the eleventh embodiment.
  • FIG. 39A is a view showing an alignment apparatus for an exposure apparatus according to the thirteenth embodiment of the present invention
  • FIG. 39B is a view showing the relative positional relationship of detected alignment marks.
  • the microlens array 3 for exposure is moved during exposure and during alignment, and one microlens array is shared for exposure and alignment.
  • the microlens array 3 is provided in a size that includes an exposure position irradiated with exposure light and an alignment position irradiated with alignment light. Yes.
  • 11th Embodiment it is the same as that of 11th Embodiment.
  • one shared microlens array 3 is composed of a microlens array having a size including an exposure position and an alignment position, so that the microlens array 3 can be used during exposure and during alignment. No need to move Further, it is possible to share a configuration in which the microlens array 3 is moved during exposure and alignment, for example, a driving device. Other effects are the same as those of the eleventh embodiment.
  • the image of the substrate alignment mark 1a formed on the mask 2 by the camera 6 is continuously moved together with the image of the mask alignment mark 2a while moving the microlens array 3 during alignment.
  • FIG. 40A is a view showing an alignment apparatus for an exposure apparatus according to a fourteenth embodiment of the present invention
  • FIG. 40B is a view showing the relative positional relationship of detected alignment marks
  • FIG. , (B) is a view showing a case where the optical path of the alignment light is inclined in the exposure apparatus shown in FIG.
  • the microlens array includes two (first) microlens arrays 3 for exposure and two (second) microlens arrays 7 for alignment. Yes.
  • the second microlens array 7 has the same optical characteristics as the (first) microlens array 3.
  • Other configurations are the same as those in the eleventh embodiment.
  • an erecting equal-magnification image of the substrate alignment mark 1a can be formed on the mask 2, and the camera 6 side caused by the gap G of 5 to 15 mm between the substrate 1 and the mask 2
  • the alignment between the substrate 1 and the mask 2 can be performed with high accuracy.
  • the microlens array is configured such that the exposure microlens array 3 and the alignment microlens array 7 are configured separately, so that, similarly to the thirteenth embodiment, during exposure and alignment, There is no need to move the microlens array 3.
  • the control device moves the micro lens array 7 while the micro lens array 7 is moved, and the image of the substrate alignment mark 1a formed on the mask 2 by the camera 6 together with the mask alignment mark 2a.
  • the same effect as that of the eleventh embodiment can be obtained by imaging a plurality of times at intervals that are not an integral multiple of the arrangement pitch of each microlens array of the lens array 3 and using the captured alignment mark images for alignment. It is done.
  • the substrate alignment mark 1a imaged on the mask 2 by the camera 6 is continuously imaged together with the image of the mask alignment mark 2a. The same effect as the embodiment can be obtained.
  • the microlens array 3 for exposure and the microlens array 7 for alignment are provided, so that the scan exposure direction of the microlens array 3 during exposure and the microlens array 7 during alignment are aligned.
  • the moving direction can be different. That is, the effect of the present invention can be obtained if the movement direction of the microlens array 7 by the second driving device is a direction orthogonal to the arrangement direction of the microlenses constituting the microlens array.
  • FIG. 42A is a view showing an alignment apparatus for an exposure apparatus according to the fifteenth embodiment of the present invention
  • FIG. 42B is a view showing the relative positional relationship of detected alignment marks.
  • the alignment light source 5 and the camera 6 are arranged below the substrate 1 and irradiate alignment light from below the substrate.
  • the substrate alignment mark 1b has a frame shape
  • the mask alignment mark 2b has a rectangular shape.
  • the substrate 1 to be exposed is made of a light-transmitting material such as PI (polyimide) and ITO (tin-doped indium oxide), for example, and alignment light is transmitted through the substrate 1 and mask 2 Is irradiated. That is, in this embodiment, when the substrate 1 is made of a light transmissive material, the irradiation direction of the alignment light and the shapes of the alignment marks 1b and 2b of the substrate 1 and the mask 2 are different from those of the eleventh embodiment. The configuration of is the same as that of the eleventh embodiment.
  • the microlens array 3 for exposure is moved between the mask alignment mark 2b and the substrate alignment mark 1b when the relative alignment between the substrate 1 and the mask 2 is performed.
  • the microlens array 3 is used by being moved during exposure and alignment.
  • the reflected light reflected from the mask alignment mark 2b by the microlens array 3 is transmitted through the microlens array 3, and an erecting equal-magnification image of the mask alignment mark 2b is formed on the substrate 1.
  • Imaged the image of the mask alignment mark 2b formed on the substrate 1 by the hexagonal field stop 42 provided at the reversal imaging position between the unit microlens arrays of the microlens array 3 is converted into the hexagonal field stop 42.
  • the edge of the mask alignment mark 2b cannot be detected from the camera 6 side, the center position of the mask alignment mark 2b cannot be specified, and the image of the captured alignment mark 2b is used as the substrate 1 and the mask 2 In some cases, it cannot be used for alignment.
  • the microlens array 3 a plurality of microlenses are arranged in a direction orthogonal to the scan exposure direction to form a microlens row, and the microlens row is arranged in a plurality of rows in the scan exposure direction.
  • the two microlens rows adjacent to each other in the scan exposure direction are arranged so as to be deviated in a direction perpendicular to the scan exposure direction, and are moved in the scan exposure direction by the controller during alignment. Be controlled. Therefore, also in the present embodiment, the control device displays the image of the mask alignment mark 2b imaged on the substrate 1 by the camera 6 together with the substrate alignment mark 1b of the arrangement pitch of each microlens array of the microlens array 3.
  • a multi-view field stop is provided by imaging a plurality of times at intervals that are not an integral multiple, superimposing a plurality of captured images, and using the superimposed images of the substrate alignment mark 1b and the mask alignment mark 2b for alignment. Even in this case, the edge of the mask alignment mark 1b can be reliably identified and used for alignment between the substrate 1 and the mask 2.
  • the alignment between the substrate 1 and the mask 2 can be performed with high accuracy using the alignment marks 1b and 2b of the substrate 1 and the mask 2 as indices. it can.
  • the second control device 9 sets the mask alignment mark 2b to the position of the substrate alignment mark 1b. The mask 2 is moved so as to be positioned at the center, and the substrate 1 and the mask 2 are aligned.
  • the substrate alignment mark 1b and the mask alignment mark 2b detected by the camera 6 can be detected even when the optical axis of the alignment light is inclined.
  • the relative position does not change from the case where the alignment light is irradiated perpendicularly to the substrate 1 and the mask 2, and extremely high alignment accuracy can be obtained.
  • the image of the mask alignment mark 2b formed on the substrate 1 by the camera 6 is continuously moved together with the image of the substrate alignment mark 1b while the micro lens array 3 is moved during alignment.
  • microlens array 3 with a size that includes the exposure position irradiated with the exposure light and the alignment position irradiated with the alignment light, as in the thirteenth embodiment, during the exposure and during the alignment. Thus, there is no need to move the microlens array 3.
  • FIG. 43A is a view showing an alignment apparatus for an exposure apparatus according to the sixteenth embodiment of the present invention
  • FIG. 43B is a view showing the relative positional relationship of detected alignment marks.
  • the microlens array is provided with two microlens arrays 3 for exposure and two microlens arrays 7 for alignment.
  • the alignment microlens array 7 has the same optical characteristics as the exposure microlens array 3. Thereby, in this embodiment, the effect similar to 14th Embodiment is acquired.
  • the scanning exposure direction of the microlens array 3 during exposure and the moving direction (first direction) of the microlens array 7 during alignment are different. Can do. That is, the effect of the present invention can be obtained if the movement direction of the microlens array 7 by the control device is a direction orthogonal to the arrangement direction of the microlenses constituting the microlens array.
  • the camera mistakenly observes that the alignment is not achieved or the substrate and the mask are not aligned.
  • the substrate and the mask are aligned with high accuracy using the substrate alignment mark and the mask alignment mark detected by the camera. be able to.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

アライメント装置には、アライメント用の光を出射するアライメント光源が設けられており、例えばカメラに内蔵されている。そして、アライメント光源は、例えばカメラが検出する光の光軸と同軸的にアライメント光を出射する。アライメント光は、基板及びマスクに照射され、反射光がカメラにより検出される。露光用のマイクロレンズアレイは、マスクアライメントマークと基板アライメントマークとの間にも存在し、これにより、基板アライメントマークから反射した正立等倍像がマスク上に結像される。そして、カメラにより検出されたマスクアライメントマークの反射光及び基板アライメントマークにより、制御装置は基板とマスクとのアライメントを行う。これにより、基板とマスクとのアライメントを高精度で行うことができる。

Description

露光装置用のアライメント装置及びアライメントマーク
 本発明は、マイクロレンズアレイを使用した露光装置において、基板とマスクとをアライメントする露光装置用のアライメント装置及びアライメントマークに関する。
 従来、露光装置においては、光源から露光光を出射し、この露光光を所定形状のパターンが形成されたマスクを介して基板に照射し、基板上にマスクのパターンを露光している。よって、基板上の所定位置にパターンを高精度で露光するためには、マスクと基板との相対的位置合わせが重要である。例えば特許文献1には、露光対象のウエハをマスクに近接して配置する近接露光方式の露光装置が開示されており、マスク及びウエハの双方にマークを設け、このマークによりマスクとウエハとを相対的に位置合わせするように構成されている。
 一方、近時、マイクロレンズアレイにより、マスクパターンを基板上に投影する露光装置が使用されるようになってきている。図44は、マイクロレンズアレイを使用した露光装置を示す模式図である。露光対象の基板1の上方に、基板1に露光されるパターンが形成されたマスク2が、基板1に対して適長間隔をおいて配置されている。そして、この基板1とマスク2との間に、マイクロレンズ4を2次元的に配列したマイクロレンズアレイ3が配置されており、マスク2の上方から露光光がマスク2に対して照射され、マスク2を透過した露光光がマイクロレンズアレイ3により基板1上に投影され、マスク2に形成されたパターンが、マイクロレンズアレイ3により正立等倍像として、基板表面上のレジスト等に転写される。
 この場合に、通常、マスク2及び基板1を固定し、マイクロレンズアレイ3と露光光源及び光学系を、一体的に、紙面に垂直の方向に移動させることにより、露光光が基板1上をスキャンするようになっている。この場合に、基板1の上面及びマスク2の下面に、夫々、アライメントマーク1a及び2aを設け、これらのアライメントマーク1a及び2aを指標として、基板1とマスク2とを相対的に位置合わせする必要がある。
特開2004-103644号公報
 しかしながら、アライメントマーク1a,2aにより、基板1とマスク2との位置合わせをする場合、±1μm程度の高精度で基板1とマスク2とを位置合わせしようとすると、両アライメントマーク1a,2aを同一のカメラにより同時に観察する必要がある。即ち、異なるカメラで別々にアライメントマーク1a,2aを観察すると、両アライメントマーク1a,2aの相対的な位置を保証できない。
 特許文献1のような近接露光の場合は、マスクと基板とが200μm程度で近接しており、この間隔はカメラの焦点深度内に収まるので、マスクのアライメントマークと基板のアライメントマークとを同時にカメラで観察することが可能である。しかし、マイクロレンズアレイ3を使用した露光装置においては、基板1とマスク2との間にマイクロレンズアレイ3を介装する必要があるため、基板1とマスク2との間の距離、即ち、アライメントマーク1a,2a間の間隔Gは、5乃至15mm程度存在する。この5乃至15mmの間隔は、通常のカメラのレンズ系では、同時に観察することができない。
 なお、図44及び図45に示すように、基板1のアライメントマーク1aからの反射光と、マスク2のアライメントマーク2aからの反射光とで、光路差を設け、基板1のアライメントマーク1aとマスク2のアライメントマーク2aとのフォーカス差を補正することも考えられる。
 図44に示すように、基板1とマスク2との間のギャップGは5乃至15mmである。この場合に、視野とアライメント精度とを考慮すると、レンズ倍率は4倍程度が必要である。よって、アライメントのパターンギャップG(=5~15mm)は、カメラ側でみると、5~15mm×4=80~240mmに相当する。この80乃至240mmのフォーカス差を補正する必要がある。
 そこで、図45においては、光源20からの光をレンズ21で収束して反射鏡22により反射させ、レンズ23を介してビームスプリッタ17に入射させる。そして、ビームスプリッタ17からの光は、レンズ18及び19を経由してマスク2に入射し、マスク2のアライメントマーク2aで反射すると共に、基板1に入射し、基板1のアライメントマーク1aで反射する。これらのアライメントマーク1a、2aで反射した光は、ビームスプリッタ17に向かい、このビームスプリッタ17を透過した後、レンズ16,15を介して、ビームスプリッタ14に入射する。アライメントマーク1a,2aからの反射光は、ビームスプリッタ14で、ビームスプリッタ11に向かう光と、ミラー13に向かう光とに分離され、ミラー13に向かった光は、ミラー12により、ビームスプリッタ11に向かう。そして、ビームスプリッタ11にて、ビームスプリッタ14からの光はそのまま透過し、ミラー12からの光は反射して、カメラ10に向かう。このようにして、ビームスプリッタ14からミラー13,12を経由した光と、ビームスプリッタ14から直接到達した光とは、カメラ10により検出される。このとき、ビームスプリッタ14からミラー13までの光路と、ミラー13からミラー12までの光路と、ミラー12からビームスプリッタ11までの光路との総長が、ビームスプリッタ14からビームスプリッタ11に直接入射する光の光路の長さよりも、80乃至240mmのフォーカス差だけ長くなるように設定されている。従って、マスク2のアライメントマーク2aからの反射光であってミラー12,13を経由する光路を進行した光と、基板1のアライメントマーク1aからの反射光であってビームスプリッタ14から直接ビームスプリッタ11に入射する光路を進行した光とがいずれもカメラ10のCCD(電荷結合素子)に結像し、アライメントマーク1a,2aをカメラ10で同時に観察することができる。
 これにより、基板1とマスク2のアライメントマーク1a,2aのパターンのフォーカス差(80乃至240mm相当)を、別光路に分けて補正することができる。しかしながら、このように、フォーカス差を別光路で補正すると、各光路での光軸ずれが生じた場合に、アライメントマーク1a,2aの両パターンの相対位置がずれてしまうという問題点がある。このため、この方法では、アライメント精度が低下する。アライメント精度が低下すると、露光パターン精度も低下し、近時の高精細液晶パネルの露光にとって、致命的な問題となる。
 本発明はかかる問題点に鑑みてなされたものであって、基板とマスクとのアライメントを高精度で行うことができる露光装置用のアライメント装置及びアライメントマークを提供することを目的とする。
 本発明に係る露光装置用のアライメント装置は、露光光を出射する光源と、この光源からの露光光が入射され基板に露光するパターンが形成されたマスクと、前記基板と前記マスクとの間に設けられこのマスクを透過した露光光が入射されて前記基板に前記パターンの正立等倍像を結像させる第1のマイクロレンズアレイと、を有する露光装置の前記マスクと前記基板とを相対的位置合わせする露光装置用のアライメント装置において、
前記基板に設けられた基板アライメントマークと前記マスクに設けられたマスクアライメントマークに、前記マスクの上方からアライメント用の光を照射するアライメント光源と、前記基板アライメントマークと前記マスクアライメントマークとの間に配置され、前記基板アライメントマークから反射した反射光を前記マスク上に正立等倍像として結像させる第2のマイクロレンズアレイと、前記基板アライメントマークの反射光と前記マスクアライメントマークの反射光とを前記マスク側から検出するカメラと、このカメラにより検出される前記基板アライメントマークと前記マスクアライメントマークとが一致するように、前記マスク及び/又は前記基板の位置を調節する制御装置と、を有することを特徴とする。
 本発明に係る他の露光装置用のアライメント装置は、露光光を出射する光源と、この光源からの露光光が入射され基板に露光するパターンが形成されたマスクと、前記基板と前記マスクとの間に設けられこのマスクを透過した露光光が入射されて前記基板に前記パターンの正立等倍像を結像させる第1のマイクロレンズアレイと、を有する露光装置の前記マスクと前記基板とを相対的位置合わせする露光装置用のアライメント装置において、
前記基板に設けられた基板アライメントマークと前記マスクに設けられたマスクアライメントマークに、前記基板の下方からアライメント用の光を照射するアライメント光源と、前記基板アライメントマークと前記マスクアライメントマークとの間に配置され、前記マスクアライメントマークから反射した反射光を前記基板上に正立等倍像として結像させる第2のマイクロレンズアレイと、前記基板アライメントマークの反射光と前記マスクアライメントマークの反射光とを前記基板側から検出するカメラと、このカメラにより検出される前記基板アライメントマークと前記マスクアライメントマークとが一致するように、前記マスク及び/又は前記基板の位置を調節する制御装置と、を有することを特徴とする。
 これらの本発明に係る露光装置用のアライメント装置において、例えば、前記第1のマイクロレンズアレイと前記第2のマイクロレンズアレイとは、1枚の共有マイクロレンズアレイにより構成され、前記アライメント用の光は前記共有マイクロレンズアレイを前記基板アライメントマークと前記マスクアライメントマークとの間に移動させた状態で照射される。又は、前記第1のマイクロレンズアレイと前記第2のマイクロレンズアレイとは、露光光が照射される露光位置と、アライメント光が照射されるアライメント位置とを包含する1枚の共有マイクロレンズアレイにより構成されている。又は、前記第1のマイクロレンズアレイと前記第2のマイクロレンズアレイとは、別体で構成されている。
 また、これらの本発明に係る露光装置用のアライメント装置においては、例えば、前記基板アライメントマーク及び前記マスクアライメントマークの一方が、枠状をなし、他方がアライメント時に前記枠の中心に位置する矩形状をなすように構成できる。
 前記アライメント光源は、例えば前記カメラが検出する光の光軸と同軸的にアライメント光を出射するように構成できる。又は、前記アライメント光源と、前記カメラとは、別体であり、前記アライメント光源からの光の光軸と、前記カメラにて検出される反射光の光軸とは、同軸ではないように構成できる。
 本発明に係るアライメントマークは、
複数個のマイクロレンズが2次元的に配置されて構成され相互に積層された複数枚の単位マイクロレンズアレイと、この単位マイクロレンズアレイ間の反転結像位置に配置され多角形の開口を有する多角視野絞りと、前記単位マイクロレンズアレイ間の露光光の最大拡大部の少なくとも一部に配置され円形の開口を有し各マイクロレンズの開口数を規定する開口絞りと、を有するマイクロレンズアレイを使用し、このマイクロレンズアレイを、露光対象の基板と、この基板に露光するパターンが設けられたマスクとの間に配置して、前記マスクと前記基板とを相対的に位置合わせする際に使用されるアライメントマークであって、
前記基板又は前記マスクに形成され、
前記多角視野絞りの開口の全ての辺に対して夫々傾斜する方向に延びる複数本の線状のマーク片を有し、前記マーク片はアライメント中心から放射状に延びる複数個の第1群のマーク片と、前記アライメント中心を中心とする多角形の辺上に延びる複数個の第2群のマーク片とからなり、前記マーク片のうち、複数個のマーク片がいずれかの前記多角視野絞りの中に存在するように、前記多角視野絞り及び前記マーク片の位置が決められていることを特徴とする。
 このアライメントマークにおいて、
前記第2群のマーク片は、前記アライメント中心を共通の中心とする異なる大きさの複数個の多角形の辺上に連なって配置されていることが好ましい。又は、前記第2群のマーク片は、前記アライメント中心を共通の中心とする異なる大きさの複数個の多角形の辺上に、前記多角形の角部を含むようにして、断続的に配置されていることが好ましい。また、前記第2群のマーク片は、異なる多角形上に位置するものの太さが、相違することが好ましい。
 本発明に係る他のアライメントマークは、
露光装置に供される基板又はマスクに、それらの位置調整のために形成され、線対称の多角形形状の図形からなるアライメントマークであって、
前記基板と前記マスクとの間にマトリクス状に配置された複数個のレンズの夫々多角視野絞りの開口部を構成するいずれかの縁辺と平行にならないように配置された多角形形状部と、
前記多角形形状部の中心から、前記多角形形状部を横断する少なくとも6本の放射線からなる放射線部と、
を有し、
前記多角形形状部及び前記放射線部の全体が、前記レンズの大きさより大きく、4個の隣接するレンズの全体の大きさより小さいことを特徴とする。
 本発明に係る他の露光装置用のアライメント装置は、
マスクに形成された露光パターンを基板に転写する露光装置用のアライメント装置において、
露光光の出射と兼用又は独立のアライメント光の出射用のアライメント光源と、
前記マスクと前記基板との間に配置され、前記基板に設けられた基板アライメントマークから反射したアライメント光の反射光を前記マスク上に正立等倍像として結像させるマイクロレンズアレイと、
前記基板アライメントマーク及び前記マスクに設けられたマスクアライメントマークに前記マスク側からアライメント光を同時に照射したときに、前記マスクアライメントマークから反射した反射光及び前記マスク上に結像した前記基板アライメントマークの正立等倍像を前記マスク側から検出するカメラと、
このカメラにより検出される前記基板アライメントマークと前記マスクアライメントマークとが一致するように、前記マスク及び/又は前記基板の位置を調節する制御装置と、
を有し、
前記マイクロレンズアレイは、
複数個のマイクロレンズが2次元的に配置されて構成され相互に積層された複数枚の単位マイクロレンズアレイと、この単位マイクロレンズアレイ間の反転結像位置に配置され多角形の開口を有する多角視野絞りと、前記単位マイクロレンズアレイ間の露光光の最大拡大部の少なくとも一部に配置され円形の開口を有し各マイクロレンズの開口数を規定する開口絞りと、を有し、
前記基板アライメントマークは、
前記多角視野絞りの開口の全ての辺に対して夫々傾斜する方向に延びる複数本の線状のマーク片を有し、前記マーク片はアライメント中心から放射状に延びる複数個の第1群のマーク片と、前記アライメント中心を中心とする多角形の辺上に延びる複数個の第2群のマーク片とからなり、前記マーク片のうち、複数個のマーク片がいずれかの前記多角視野絞りの中に存在するように、前記多角視野絞り及び前記マーク片の位置が決められていることを特徴とする。
 本発明に係る他の露光装置用のアライメント装置は、
マスクに形成された露光パターンを基板に転写する露光装置用のアライメント装置において、
露光光の出射と兼用又は独立のアライメント光の出射用のアライメント光源と、
前記マスクと前記基板との間に配置され、前記マスクに設けられたマスクアライメントマークから反射したアライメント光の反射光を前記基板上に正立等倍像として結像させるマイクロレンズアレイと、
前記マスクアライメントマーク及び前記基板に設けられた基板アライメントマークに前記基板側からアライメント光を同時に照射したときに、前記基板アライメントマークから反射した反射光及び前記基板上に結像した前記マスクアライメントマークの正立等倍像を前記基板側から検出するカメラと、
このカメラにより検出される前記基板アライメントマークと前記マスクアライメントマークとが一致するように、前記マスク及び/又は前記基板の位置を調節する制御装置と、
を有し、
前記マスクアライメントマークは、
前記多角視野絞りの開口の全ての辺に対して夫々傾斜する方向に延びる複数本の線状のマーク片を有し、前記マーク片はアライメント中心から放射状に延びる複数個の第1群のマーク片と、前記アライメント中心を中心とする多角形の辺上に延びる複数個の第2群のマーク片とからなり、前記マーク片のうち、複数個のマーク片がいずれかの前記多角視野絞りの中に存在するように、前記多角視野絞り及び前記マーク片の位置が決められていることを特徴とする。
 この露光装置用のアライメント装置において、
前記第2群のマーク片は、前記アライメント中心を共通の中心とする異なる大きさの複数個の多角形の辺上に連なって配置されていることが好ましい。又は、前記第2群のマーク片は、前記アライメント中心を共通の中心とする異なる大きさの複数個の多角形の辺上に、前記多角形の角部を含むようにして、断続的に配置されていることが好ましい。また、前記第2群のマーク片は、異なる多角形上に位置するものの太さが、相違することが好ましい。
 本発明に係る他のアライメントマークは
複数個のマイクロレンズが2次元的に配置されて構成され相互に積層された複数枚の単位マイクロレンズアレイと、この単位マイクロレンズアレイ間の反転結像位置に配置され多角形の開口を有する多角視野絞りと、前記単位マイクロレンズアレイ間の露光光の最大拡大部の少なくとも一部に配置され円形の開口を有し各マイクロレンズの開口数を規定する開口絞りと、前記マイクロレンズアレイの上面における前記マイクロレンズ以外の部分を遮光する遮光膜と、を有するマイクロレンズアレイを使用し、このマイクロレンズアレイを、露光対象の基板と、この基板に露光するパターンが設けられたマスクとの間に配置して、前記マスクと前記基板とを相対的に位置合わせする際に使用されるアライメントマークであって、
前記基板又は前記マスクに形成され、
前記マイクロレンズが直線上に配列される第1の方向に対し、マークを構成する全ての辺が傾斜していることを特徴とする。
 このアライメントマークにおいて、
前記マイクロレンズアレイは、そのマイクロレンズが露光装置のスキャン方向に垂直の方向に1列に整列して配置されており、前記第1の方向はこのスキャン方向に垂直の方向であり、マークを構成する全ての辺は、前記スキャン方向に垂直の方向に対して傾斜していることが好ましい。前記マークを構成する全ての辺は、前記スキャン方向に垂直の方向に対し45°の角度をなすことが好ましい。
 本発明に係る他の露光装置用のアライメント装置は、
マスクに形成された露光パターンを基板に転写する露光装置用のアライメント装置において、
露光光の出射と兼用又は独立のアライメント光の出射用のアライメント光源と、
前記マスクと前記基板との間に配置され、前記基板に設けられた基板アライメントマークから反射したアライメント光の反射光を前記マスク上に正立等倍像として結像させるマイクロレンズアレイと、
前記基板アライメントマーク及び前記マスクに設けられたマスクアライメントマークに前記マスク側からアライメント光を同時に照射したときに、前記マスクアライメントマークから反射した反射光及び前記マスク上に結像した前記基板アライメントマークの正立等倍像を前記マスク側から検出するカメラと、
このカメラにより検出される前記基板アライメントマークと前記マスクアライメントマークとが一致するように、前記マスク及び/又は前記基板の位置を調節する制御装置と、
を有し、
前記マイクロレンズアレイは、
複数個のマイクロレンズが2次元的に配置されて構成され相互に積層された複数枚の単位マイクロレンズアレイと、この単位マイクロレンズアレイ間の反転結像位置に配置され多角形の開口を有する多角視野絞りと、前記単位マイクロレンズアレイ間の露光光の最大拡大部の少なくとも一部に配置され円形の開口を有し各マイクロレンズの開口数を規定する開口絞りと、前記マイクロレンズアレイの上面における前記マイクロレンズ以外の部分を遮光する遮光膜と、を有し、
前記マスクアライメントマーク又は前記基板アライメントマークは、前記マイクロレンズが直線上に配列される第1の方向に対し、マークを構成する全ての辺が傾斜していることを特徴とする。
 本発明に係る他の露光装置用のアライメント装置は、
マスクに形成された露光パターンを基板に転写する露光装置用のアライメント装置において、
露光光の出射と兼用又は独立のアライメント光の出射用のアライメント光源と、
前記マスクと前記基板との間に配置され、前記マスクに設けられたマスクアライメントマークから反射したアライメント光の反射光を前記基板上に正立等倍像として結像させるマイクロレンズアレイと、
前記マスクアライメントマーク及び前記基板に設けられた基板アライメントマークに前記基板側からアライメント光を同時に照射したときに、前記基板アライメントマークから反射した反射光及び前記基板上に結像した前記マスクアライメントマークの正立等倍像を前記基板側から検出するカメラと、
このカメラにより検出される前記基板アライメントマークと前記マスクアライメントマークとが一致するように、前記マスク及び/又は前記基板の位置を調節する制御装置と、
を有し、
前記マイクロレンズアレイは、
複数個のマイクロレンズが2次元的に配置されて構成され相互に積層された複数枚の単位マイクロレンズアレイと、この単位マイクロレンズアレイ間の反転結像位置に配置され多角形の開口を有する多角視野絞りと、前記単位マイクロレンズアレイ間の露光光の最大拡大部の少なくとも一部に配置され円形の開口を有し各マイクロレンズの開口数を規定する開口絞りと、前記マイクロレンズアレイの上面における前記マイクロレンズ以外の部分を遮光する遮光膜と、を有し、
前記マスクアライメントマーク又は前記基板アライメントマークは、前記マイクロレンズが直線上に配列される第1の方向に対し、マークを構成する全ての辺が傾斜していることを特徴とする。
 この露光装置用のアライメント装置において、
前記マイクロレンズアレイは、そのマイクロレンズが露光装置のスキャン方向に垂直の方向に1列に整列して配置されており、前記第1の方向はこのスキャン方向に垂直の方向であり、マークを構成する全ての辺は、前記スキャン方向に垂直の方向に対して傾斜していることが好ましい。また、前記マークを構成する全ての片は、前記スキャン方向に垂直の方向に対し45°の角度をなすことが好ましい。
 本発明に係る他の露光装置用のアライメント装置は、
スキャン露光によりマスクのパターンを基板に転写するマイクロレンズアレイを使用したスキャン露光装置に設けられ、前記マスクと前記基板とを相対的位置合わせする露光装置用のアライメント装置において、
前記基板に設けられた基板アライメントマークと前記マスクに設けられたマスクアライメントマークに、アライメント用の光を照射するアライメント光源と、
前記基板と前記マスクとの間に介在して、前記基板アライメントマーク又は前記マスクアライメントマークを夫々前記マスク又は前記基板に正立等倍像として結像させるマイクロレンズアレイと、
前記基板アライメントマーク及び前記マスクアライメントマークを、一方は反射光の像及び他方は正立等倍像として撮像するカメラと、
このカメラにより撮像された前記基板アライメントマークと前記マスクアライメントマークとに基づいて、前記マスク及び/又は前記基板の位置を調節する制御装置と、
を有し、
前記マイクロレンズアレイは、
複数個のマイクロレンズが2次元的に配置されて構成され相互に積層された複数枚の単位マイクロレンズアレイと、
この単位マイクロレンズアレイ間の反転結像位置に配置され多角形の開口を有する多角視野絞りと、
前記単位マイクロレンズアレイ間の開口数を制限する開口絞りと、を有し、
前記複数個のマイクロレンズがスキャン露光方向に直交する方向に配列されてマイクロレンズ列を構成し、このマイクロレンズ列が前記スキャン露光方向に複数列配置されると共に、前記スキャン露光方向に隣接する2列のマイクロレンズ列の相互間は前記スキャン露光方向に直交する方向に偏倚するように配置されたものであり、
前記制御装置は、前記マイクロレンズアレイを前記基板及び前記マスクに対して相対的に前記スキャン露光方向に移動させると共に、前記マイクロレンズ列の配列ピッチの整数倍でない間隔で前記カメラにより前記基板アライメントマークの像及び前記マスクアライメントマークの像を複数回撮像し、撮像された複数個の像を重ね合わせて、この重ね合わされた基板アライメントマークの像及びマスクアライメントマークの像をアライメントに使用することを特徴とする。
 本発明に係る他の露光装置用のアライメント装置は、
スキャン露光によりマスクのパターンを基板に転写するマイクロレンズアレイを使用したスキャン露光装置に設けられ、前記マスクと前記基板とを相対的位置合わせする露光装置用のアライメント装置において、
前記基板に設けられた基板アライメントマークと前記マスクに設けられたマスクアライメントマークに、アライメント用の光を照射するアライメント光源と、
前記基板と前記マスクとの間に介在して、前記基板アライメントマーク又は前記マスクアライメントマークを夫々前記マスク又は前記基板に正立等倍像として結像させるマイクロレンズアレイと、
前記基板アライメントマーク及び前記マスクアライメントマークを、一方は反射光の像及び他方は正立等倍像として撮像するカメラと、
このカメラにより撮像された前記基板アライメントマークと前記マスクアライメントマークとに基づいて、前記マスク及び/又は前記基板の位置を調節する制御装置と、
を有し、
前記マイクロレンズアレイは、
複数個のマイクロレンズが2次元的に配置されて構成され相互に積層された複数枚の単位マイクロレンズアレイと、
この単位マイクロレンズアレイ間の反転結像位置に配置され多角形の開口を有する多角視野絞りと、
前記単位マイクロレンズアレイ間の開口数を制限する開口絞りと、を有し、
前記複数個のマイクロレンズがスキャン露光方向に直交する方向に配列されてマイクロレンズ列を構成し、このマイクロレンズ列が前記スキャン露光方向に複数列配置されると共に、前記スキャン露光方向に隣接する2列のマイクロレンズ列の相互間は前記スキャン露光方向に直交する方向に偏倚するように配置されたものであり、
前記制御装置は、前記マイクロレンズアレイを前記基板及び前記マスクに対して相対的にスキャン露光方向に移動させると共に、前記カメラにより前記基板アライメントマークの像及び前記マスクアライメントマークの像を連続的に動画として撮像し、連続的に撮像された基板アライメントマークの像及びマスクアライメントマークの像をアライメントに使用することを特徴とする。
 この露光装置用のアライメント装置において、
前記基板アライメントマーク及び前記マスクアライメントマークの一方が、枠状をなし、他方がアライメント時に前記枠の中心に位置する矩形状をなすことが好ましい。また、前記アライメント光源は、前記カメラが検出する光の光軸と同軸的にアライメント光を出射することが好ましい。前記マイクロレンズアレイは、露光用のマイクロレンズアレイと共用することができる。
 本発明に係る他の露光装置用のアライメント装置は、アライメント光源によりマスクの上方からアライメント光をマスク及び基板に照射すると、このアライメント光はマスクを透過し、基板上に照射され、基板上の基板アライメントマークで反射した後、反射光は、第2のマイクロレンズアレイにより、マスク上に、基板アライメントマークの正立等倍像として結像する。よって、基板アライメントマーク及びマスクアライメントマークを、カメラにより、マスク上で検出することができ、基板とマスクとの間のギャップGに起因するカメラ側のフォーカス差が0となる。よって、アライメント光の光軸が傾斜した場合においても、カメラにより検出される両アライメントマーク同士の相対位置は変化せず、基板とマスクとのアライメントを高精度で行うことができる。例えば、基板とマスクとのアライメントがとれているにも拘わらず、カメラにおいては、アライメントがとれていないと誤観察されたり、基板とマスクとのアライメントがとれていないにも拘わらず、カメラにおいては、アライメントがとれていると誤観察されることを防止できる。そして、本発明においては、制御装置は、カメラにより検出される基板アライメントマークとマスクアライメントマークとが一致するように、マスク及び/又は基板の位置を調節するので、基板とマスクとのアライメントを高精度で行うことができる。
 本発明に係る他の露光装置用のアライメント装置は、アライメント光源により基板の下方からアライメント光を基板及びマスクに照射すると、基板が例えばPI(ポリイミド)及びITO(スズドープ酸化インジウム)等の光透過性の材料からなる場合には、このアライメント光は基板を透過し、マスク上に照射され、マスク上のマスクアライメントマークで反射した後、反射光は、第2のマイクロレンズアレイにより、基板上に、マスクアライメントマークの正立等倍像として結像する。よって、基板アライメントマーク及びマスクアライメントマークを、カメラにより、基板上で検出することができ、基板とマスクとの間のギャップGに起因するカメラ側のフォーカス差が0となる。従って、アライメント光の光軸が傾斜した場合においても、カメラにより検出される両アライメントマーク同士の相対位置は変化せず、基板とマスクとのアライメントを高精度で行うことができる。
(a)は本発明の第1実施形態に係る露光装置用のアライメント装置を示す図、(b)は検出されるアライメントマークの相対的位置関係を示す図である。 (a),(b)は図1に示す露光装置において、アライメント光の光路が傾斜した場合を示す図である。 本発明の比較例に係る露光装置用のアライメント装置を示す図である。 本発明の比較例に係るアライメント装置において、アライメント光の光路を示す図である。 (a)乃至(d)は、第1実施形態に係るアライメント装置において、第2のマイクロレンズアレイ7が設けられていない場合を示す図である。 (a)は本発明の第2実施形態に係る露光装置用のアライメント装置を示す図、(b)は検出されるアライメントマークの相対的位置関係を示す図である。 (a)は本発明の第3実施形態に係る露光装置用のアライメント装置を示す図、(b)は検出されるアライメントマークの相対的位置関係を示す図である。 (a),(b)は図7に示す露光装置において、アライメント光の光路が傾斜した場合を示す図である。 (a)は本発明の第4実施形態に係る露光装置用のアライメント装置を示す図、(b)は検出されるアライメントマークの相対的位置関係を示す図である。 (a)は本発明の第5実施形態に係る露光装置用のアライメント装置を示す図、(b)は検出されるアライメントマークの相対的位置関係を示す図である。 (a)は本発明の第6実施形態に係る基板及びマスクのアライメント方法を示す図、(b)はマスク上に結像される基板アライメントマークをマイクロレンズアレイと共に示す図である。 本発明の第6実施形態に係る基板アライメントマークを示す図である。 (a)は基板アライメントマークをマイクロレンズアレイと共に示す図、(b)はその拡大図である。 6角視野絞りの辺と平行の線状成分を有する基板アライメントマークを示す図である。 (a)は基板アライメントマークをマイクロレンズアレイと共に示す図、(b)はその拡大図である。 (a)は基板アライメントマークをマイクロレンズアレイと共に示す図、(b)はその拡大図である。 (a)は基板アライメントマークをマイクロレンズアレイと共に示す図、(b)はその拡大図である。 (a),(b)は図11に示す露光装置において、アライメント光の光路が傾斜した場合を示す図である。 (a)乃至(d)は、本発明の比較例に係る露光装置のアライメント装置を示す図である。 第6実施形態に係る基板アライメントマークの変形例を示す図である。 (a)は本発明の第7実施形態に係る基板アライメントマークを示す図、(b)は基板アライメントマークをマイクロレンズアレイと共に示す図である。 第7実施形態に係る基板アライメントマークの変形例を示す図である。 (a),(b)は本発明の第8実施形態に係る基板アライメントマークを示す図である。 (a)は本発明の第9実施形態に係る基板及びマスクのアライメント方法を示す図、(b)はマスクアライメントマークを示す図である。 マイクロレンズアレイを使用した露光装置を示す図である。 単位マイクロレンズアレイの配置を示す断面図である。 マイクロレンズの絞り形状を示す図である。 本発明の第10実施形態に係る露光装置における基板及びマスクとマイクロレンズアレイを示す断面図である。 同じく、マイクロレンズアレイの各マイクロレンズの配置を示す図である。 同じく、マイクロレンズアレイの構造を示す模式的断面図である。 (a)は6角視野絞り12を示し、(b)は円形絞りを示す模式的平面図である。 6角視野絞りの機能を説明する図である。 本発明の比較例のマスクアライメントマークを示す図であり、(a)はマイクロレンズアレイに対するマスクアライメントマークの関係を示し、(b)は1個のマスクアライメントマークの形状を示し、(c)はカメラのセンサにより検出される像を示す図である。 本発明の実施形態のマスクアライメントマークを示す図であり、(a)はマイクロレンズアレイに対するマスクアライメントマークの関係を示し、(b)は1個のマスクアライメントマークの形状を示し、(c)はカメラのセンサにより検出される像を示す図である。 (a)乃至(c)は、本発明の第11実施形態に係るアライメント装置において、多角視野絞りを介して検出される基板アライメントマークの像をマイクロレンズアレイと共に示す図、及びカメラにより撮像された基板アライメントマークの像を重ね合わせた状態を示す図である。 (a)は本発明の第11実施形態に係る露光装置用のアライメント装置を示す図、(b)は検出されるアライメントマークの相対的位置関係を示す図である。 (a),(b)は図36に示す露光装置において、アライメント光の光路が傾斜した場合を示す図である。 (a)乃至(d)は、本発明の第12実施形態に係るアライメント装置において、多角視野絞りを介して検出される基板アライメントマークの像、及びカメラにより連続的に動画として撮像された基板アライメントマークの像を示す図である。 (a)は本発明の第13実施形態に係る露光装置用のアライメント装置を示す図、(b)は検出されるアライメントマークの相対的位置関係を示す図である。 (a)は本発明の第14実施形態に係る露光装置用のアライメント装置を示す図、(b)は検出されるアライメントマークの相対的位置関係を示す図である。 (a),(b)は図40に示す露光装置において、アライメント光の光路が傾斜した場合を示す図である。 (a)は本発明の第15実施形態に係る露光装置用のアライメント装置を示す図、(b)は検出されるアライメントマークの相対的位置関係を示す図である。 (a)は本発明の第16実施形態に係る露光装置用のアライメント装置を示す図、(b)は検出されるアライメントマークの相対的位置関係を示す図である。 マイクロレンズアレイを使用した露光装置を示す図である。 光路差を設けて基板とマスクとの間のギャップを吸収するアライメント装置を示す図である。
 以下、本発明の実施形態について、添付の図面を参照して具体的に説明する。図1(a)は本発明の第1実施形態に係る露光装置用のアライメント装置を示す図、図1(b)は検出されるアライメントマークの相対的位置関係を示す図である。図1に示すように、本実施形態においては、アライメント装置が設けられる露光装置は、従来のマイクロレンズアレイを使用した露光装置と同様に、基板1とマスク2との間にマイクロレンズアレイ3が設けられており、露光光源8から出射された露光光をマスク2に形成されたパターンに透過させ、マイクロレンズアレイ3により、パターンの正立等倍像を基板上に結像させる。この露光装置において、アライメント装置は、基板1とマスク2との相対的位置合わせに使用される。
本実施形態に係るアライメント装置には、マスク2の上方に、基板1に設けられた基板アライメントマーク1aとマスク2に設けられたマスクアライメントマーク2aに、マスク2の上方からアライメント用の光を照射するアライメント光源5が設けられている。図1に示すように、露光用の上記マイクロレンズアレイ3は、基板1とマスク2との相対的位置合わせの際には、基板アライメントマーク1aとマスクアライメントマーク2aとの間に移動され、1枚のマイクロレンズアレイ3を露光時とアライメント時で移動させて使用される。そして、アライメントの際には、マイクロレンズアレイ3により、基板アライメントマーク1aから反射した正立等倍像をマスク2上に結像させるように構成されている。また、マスク2の上方には、カメラ6が設けられており、マスクアライメントマーク2aから反射した反射光及びマスク2上に結像した基板アライメントマーク1aの正立等倍像をカメラ6により検出するように構成されている。
 図1(a)に示すように、本実施形態においては、カメラ6は、例えば1焦点型の同軸落射式顕微鏡であり、アライメント光源5が内蔵されている。そして、アライメント光源5は、カメラ6が検出する光の光軸と同軸的にアライメント光を出射するように構成されている。このアライメント光源5としては、レーザ光又は干渉フィルタを透過したランプ光を使用することができる。ランプ光源としては、例えばハロゲンランプを使用すれば、コストを低減でき、好ましい。なお、アライメント光源5は、カメラ6とは別体的に設けられていてもよい。アライメント光源5から出射された光は、例えば反射鏡及びビームスプリッタ等の光学系を介して、マスク2及び基板1に照射される。
 マスク2には、例えば枠状のマスクアライメントマーク2aが設けられており、基板1には、例えばマスクアライメントマーク2aよりも大きさが小さく、矩形の基板アライメントマーク1aが設けられている。そして、アライメント時に、基板1とマスク2とが所定の位置関係にあるときには、図1(b)に示すように、カメラ6により検出される基板アライメントマーク1aは、マスクアライメントマーク2aの中心に位置する。
 マスク2及び基板1に照射されたアライメント光は、夫々、各アライメントマーク1a,2aにより反射されて、カメラ6により検出されるように構成されている。図1(a)に示すように、カメラ6は、マスク2の位置を制御する制御装置9に接続されており、制御装置9は、カメラ6による検出結果によって、基板1とマスク2とのアライメントが必要な場合には、マスク2を移動させるように構成されている。例えば、カメラ6により検出される基板アライメントマーク1aの位置が枠状のマスクアライメントマーク2aの中心からずれている場合には、制御装置9は、基板アライメントマーク1aがマスクアライメントマーク2aの中心に位置するようにマスク2を移動させる。なお、図1(a)に二点鎖線で示すように、制御装置9は、例えば基板1が載置されるステージ等に接続され、基板1を移動させることにより、基板1とマスク2とのアライメントを行うように構成されていてもよい。又は、制御装置9は、基板1及びマスク2の双方を移動させることにより、基板1とマスク2とのアライメントを行うように構成されていてもよい。
 アライメントの際には、マスクアライメントマーク2aと基板アライメントマーク1aとの間のマイクロレンズアレイ3により、基板アライメントマーク1aにより反射された反射光は、マイクロレンズアレイ3を透過し、マスク2上には、基板アライメントマーク1aの正立等倍像が結像される。よって、基板1とマスク2との間には、実際には、5乃至15mmのギャップGが存在するが、このギャップGに起因するカメラ6側のフォーカス差が0となる。よって、カメラ6のセンサに対する距離が異なる基板1及びマスク2のアライメントマーク1a,2aをカメラ6に同時に結像させることができ、各アライメントマークを指標として、基板1とマスク2との位置を調整すれば、基板1とマスク2とのアライメントを高精度で行うことができる。また、カメラ側のフォーカス差を0にすることにより、図2(a)に示すように、アライメント光の光軸が傾斜した場合においても、アライメントマーク同士の相対位置は変化せず、極めて高いアライメント精度を得ることができる。
 次に、上述のごとく構成された本実施形態に係るアライメント装置の動作について説明する。マイクロレンズアレイ3は、露光時には、マスク2に設けられたパターン領域の下方に位置する。先ず、このマイクロレンズアレイ3が、図1における右方向に移動されて、基板アライメントマーク1aとマスクアライメントマーク2aとの間に移動される。次に、カメラ6に内蔵されたハロゲンランプ等のアライメント光源5からアライメント光を出射させる。このアライメント光は、例えば反射鏡及びビームスプリッタ等の光学系を介して、先ず、マスク2に照射される。マスク2に照射されたアライメント光は、マスクアライメントマーク2aにより反射される。一方、マスク2に透過されたアライメント光は、マスク2の下方に配置されたマイクロレンズアレイ3に透過され、基板1上に照射される。
 そして、基板アライメントマーク1aに反射された反射光は、マイクロレンズアレイ3を透過して、再度マスク2に入射され、マスク2上に基板アライメントマーク1aの正立等倍像が結像される。そして、各反射光は、カメラ6のセンサに入射され、マスクアライメントマーク2a及びマスク2上に結像した基板アライメントマーク1aの正立等倍像が検出される。このように、本実施形態においては、マスク2上に結像した基板アライメントマーク1aの正立等倍像をカメラ6により検出するため、基板1とマスク2との間には、実際には、5乃至15mmのギャップGが存在するが、カメラ6側では、このギャップGに起因するフォーカス差が0となる。
 そして、カメラ6により検出される基板及びマスクの各アライメントマーク1a,2aにより、基板1とマスク2とのアライメントを行う。例えば、カメラ6により検出される基板アライメントマーク1aの位置が枠状のマスクアライメントマーク2aの中心からずれている場合には、制御装置9により、基板アライメントマーク1aがマスクアライメントの中心に位置するようにマスク2を移動させて基板1とマスク2とのアライメントを行う。本実施形態においては、基板1とマスク2との間のギャップGに起因するカメラ6側のフォーカス差が0となるため、基板1及びマスク2のアライメントマーク1a,2aを指標として、基板1とマスク2とのアライメントを高精度で行うことができる。
 また、マスク2上に基板アライメントマーク1aの正立等倍像を結像させるため、図2(a)に示すように、アライメント光の光軸が傾斜した場合においても、カメラ6により検出される基板及びマスクのアライメントマーク1a及び2aの相対位置は、図2(b)に示すように、アライメント光が基板1及びマスク2に垂直に照射される図1(b)の場合から変化せず、アライメント光の光軸の傾斜によりアライメント精度が低下することもない。
 以下、アライメント光の光軸が傾斜した場合における上記効果について、比較例と比較して詳細に説明する。図3は、本発明の比較例に係る露光装置用のアライメント装置を示す図、図4は本発明の比較例に係るアライメント装置において、アライメント光の光路を示す図である。図3及び図4に示すように、このアライメント装置は、2焦点型の同軸落射照明を使用したアライメント装置であり、例えば、長波長光を出射する第1の光源27と、短波長光を出射する第2の光源26とが設けられており、第1の光源27からの長波長光は、反射鏡29で反射した後、ビームスプリッタ28に向かい、第2の光源26からの短波長光がこのビームスプリッタ28で、第1の光源27からの長波長光と集合する。そして、これらの集合光は、レンズ30で収束された後、ビームスプリッタ24にて反射して、レンズ25を経た後、マスク2及び基板1に向かう。この集合光は、マスク2及び基板1にその面に垂直に入射し、マスク2のアライメントマーク2a及び基板1のアライメントマーク1aで反射して、入射光路と同一の光路を戻ってくる。この反射光は、ビームスプリッタ24を通過し、レンズ23,22と、フィルタ21を経て、カメラ20に入射する。よって、反射鏡29及びビームスプリッタ28が、第1及び第2の光源27,26から出射した長波長光と短波長光とを同一光路に集合させる第1の光学系を構成し、レンズ30、ビームスプリッタ24、レンズ25が、この第1の光学系からの集合光をマスク2及び基板1にそれらの面に垂直に照射する第2の光学系を構成し、レンズ25、ビームスプリッタ24、レンズ23、レンズ22が、マスク2及び基板1のアライメントマーク2a,1aで反射した反射光を第2の光学系と同一の光路を戻した後カメラ20まで導く第3の光学系を構成する。
 この比較例において、第1の光源27から例えば波長が670nmの赤色光を出射し、第2の光源26から例えば波長が405nmの青色光を出射すると、これらの光は、ビームスプリッタ28で集合した後、カメラ20まで同一光路を進行する。即ち、集合光は、図4に示すように、ビームスプリッタ24からマスク2及び基板1に向かい、このマスク2及び基板1に対し、その面に垂直に入射する。
 その後、マスク2のアライメントマーク2a及び基板1のアライメントマーク1aで反射した集合光の反射光は、入射光と同一光路をとおり、ビームスプリッタ24を直進して、フィルタ21を透過し、カメラ20のセンサに入射する。このとき、集合光は同一レンズ25,23,22からなる光学系を通過するので、このような同一レンズの場合、青色光(波長405nm)は焦点距離が短く、赤色光(波長670nm)は焦点距離が長い。よって、レンズ25、23,22の光学定数等を適切に設定すれば、カメラ20のセンサに入射する光のうち、マスク2のアライメントマークで反射した光は、青色光の成分がカメラ20のセンサで合焦点となり、カメラ20からより遠い基板1のアライメントマークで反射した光は、赤色光の成分がカメラ20のセンサで合焦点となるようにすることができる。このように構成された比較例のアライメント装置において、基板1とマスク2との間のギャップGは5乃至15mm程度であるが、カメラ20に対する入射光のうち、赤色光と青色光とが異なる光路長を経てセンサに合焦点となるので、ギャップGの例えば5mmを吸収して、基板1及びマスク2の双方のアライメントマーク1a、2aをカメラ20のセンサ上でフォーカスすることができ、基板1上のアライメントパターンと、マスク2上のアライメントパターンとの双方をセンサにフォーカスさせて、同時に観察することができる。
 このように構成された比較例のアライメント装置においては、図5(a)に示すように、アライメント光が基板1及びマスク2に垂直に照射される場合には、図5(b)に示すように、所定のアライメント精度が得られる。しかし、図5(c)に示すように、アライメント光の光軸が傾斜した場合においては、反射光の光路が変化し、基板1とマスク2との間のギャップGにより、基板1とマスク2とが所定の位置関係にある場合においても、図5(d)に示すように、カメラ6側で検出するアライメントマーク1a,2aの位置がずれてしまう。そうすると、実際上、アライメントマーク2aとアライメントマーク1aとはその位置が一致しており、マスク2と基板1とはアライメントがとれているにも拘わらず、カメラ6においては、アライメントがとれていないと誤観察されてしまう。換言すれば、基板1とマスク2とでアライメントがとれていないにも拘わらず、カメラ6にて、アライメントマーク1aがアライメントマーク2aの中心にあるように観察されてしまうことが生じ、基板1とマスク2とがアライメントがとれていると誤観察されてしまう。
 これに対して、本実施形態においては、マイクロレンズアレイ3により、基板アライメントマーク1aの正立等倍像を、マスク2上に結像させるため、図2(a)に示すように、アライメント光の光軸が傾斜した場合においても、図2(b)に示すように、カメラ6により検出される基板及びマスクのアライメントマーク1a及び2aの相対位置は変化せず、極めて高いアライメント精度を得ることができる。
 また、上記比較例においては、波長が異なる2個のアライメント光源を設ける必要があり、構造及びアライメント方法が若干複雑であるが、本実施形態に係るアライメント装置においては、アライメント時には、露光用のマイクロレンズアレイ3を基板アライメントマーク1aとマスクアライメントマーク2aとの間に移動させるだけで、基板1とマスク2との間のギャップGに起因するカメラ6側のフォーカス差を0にして高いアライメント精度が得られ、アライメント光源も1個だけでよい。
 基板1とマスク2とのアライメント後には、マイクロレンズアレイ3は、図1における左方向に移動されて、マスク2に設けられたパターン領域の下方に移動され、その後、露光光が出射されて、マイクロレンズアレイ3によるスキャン露光が開始される。本実施形態においては、上記のように、高いアライメント精度が得られるため、スキャン露光における露光精度を極めて高く維持することができる。
 なお、本実施形態における基板及びマスクのアライメントマーク1a,2aの形状は、一例であり、各アライメントマーク1a,2aをカメラ6で検出して、基板1とマスク2とのアライメントを行うことができる限り、本発明は、アライメントマーク1a,2aの形状により限定されるものではない。
 また、本実施形態においては、アライメント光源5は、カメラ6に内蔵されており、カメラ6が検出する光の光軸と同軸的にアライメント光を出射するように構成されている場合について説明したが、本発明においては、基板1及びマスク2の一方の正立等倍像を他方に結像させ、これをカメラ6により検出するため、アライメント光源5が出射する光の光軸は、カメラにて検出される反射光の光軸とが同軸でなくてもよい。
 次に、本発明の第2実施形態に係る露光装置用のアライメント装置について説明する。図6(a)は本発明の第2実施形態に係る露光装置用のアライメント装置を示す図、図6(b)は検出されるアライメントマークの相対的位置関係を示す図である。第1実施形態においては、露光用のマイクロレンズアレイ3を露光時とアライメント時とで移動させて、1枚のマイクロレンズアレイを露光用とアライメント用とで共用した場合を説明したが、図6に示すように、本実施形態においては、マイクロレンズアレイ3は、露光光が照射される露光位置と、アライメント光が照射されるアライメント位置とを包含する大きさで設けられている。その他の構成については、第1実施形態と同様である。
 本実施形態のように、1枚の共有マイクロレンズアレイ3を、露光位置とアライメント位置とを包含する大きさのマイクロレンズアレイで構成することにより、露光時とアライメント時とで、マイクロレンズアレイ3を移動させる必要がなくなる。その他の効果は、第1実施形態と同様である。
 次に、本発明の第3実施形態に係る露光装置用のアライメント装置について説明する。図7(a)は本発明の第3実施形態に係る露光装置用のアライメント装置を示す図、図7(b)は検出されるアライメントマークの相対的位置関係を示す図、図8(a),(b)は図7に示す露光装置において、アライメント光の光路が傾斜した場合を示す図である。図7に示すように、本実施形態においては、マイクロレンズアレイは、露光用の(第1の)マイクロレンズアレイ3とアライメント用の第2のマイクロレンズアレイ7とが2枚設けられている。そして、第2のマイクロレンズアレイ7は、光学特性が(第1の)マイクロレンズアレイ3と同一である。その他の構成は、第1実施形態と同様である。
 本実施形態においても、基板アライメントマーク1aの正立等倍像を、マスク2上に結像させることができ、基板1とマスク2との間の5乃至15mmのギャップGに起因するカメラ6側のフォーカス差を0とすることができ、第1実施形態と同様に、基板1とマスク2とのアライメントを高精度で行うことができる。また、図8に示すように、アライメント光の光軸が傾斜した場合においても、アライメントマーク同士の相対位置は変化せず、極めて高いアライメント精度を得ることができる。また、マイクロレンズアレイは、露光用のマイクロレンズアレイ3とアライメント用のマイクロレンズアレイ7とが別体で構成されていることにより、第2実施形態と同様に、露光時とアライメント時とで、マイクロレンズアレイ3を移動させる必要がなくなる。
 次に、本発明の第4実施形態に係る露光装置用のアライメント装置について説明する。図9(a)は本発明の第4実施形態に係る露光装置用のアライメント装置を示す図、図9(b)は検出されるアライメントマークの相対的位置関係を示す図である。図9に示すように、本実施形態においては、アライメント光源5及びカメラ6は、基板1の下方に配置されており、基板の下方からアライメント用の光を照射する。また、基板アライメントマーク1bが枠状をなし、マスクアライメントマーク2bは矩形状をなしている。本実施形態においては、露光対象の基板1は、例えばPI(ポリイミド)及びITO(スズドープ酸化インジウム)等の光透過性の材料からなり、アライメント用の光は、基板1を透過して、マスク2に照射される。即ち、本実施形態においては、基板1が光透過性の材料からなる場合において、アライメント光の照射方向並びに基板1及びマスク2の各アライメントマーク1b,2bの形状が第1実施形態と異なり、その他の構成は、第1実施形態と同様である。
 本実施形態においても、露光用のマイクロレンズアレイ3は、基板1とマスク2との相対的位置合わせの際には、マスクアライメントマーク2bと基板アライメントマーク1bとの間に移動され、1枚のマイクロレンズアレイ3を露光時とアライメント時で移動させて使用される。そして、アライメントの際には、マイクロレンズアレイ3により、マスクアライメントマーク2bにより反射された反射光は、マイクロレンズアレイ3を透過し、基板1上にマスクアライメントマーク2bの正立等倍像が結像される。よって、基板1とマスク2との間には、5乃至15mmのギャップGが存在するが、このギャップGに起因するカメラ6側のフォーカス差が0となる。よって、本実施形態においても、上記第1乃至第3実施形態と同様に、基板1の基板アライメントマーク1b及びマスク2のマスクアライメントマーク2bを指標として、基板1とマスク2とのアライメントを高精度で行うことができる。例えば、カメラ6により検出されるマスクアライメントマーク2bの位置が枠状の基板アライメントマーク1bの中心からずれている場合には、制御装置9により、マスクアライメントマーク2bが基板アライメントマーク1bの中心に位置するようにマスク2を移動させて基板1とマスク2とのアライメントを行う。また、基板1上にマスクアライメントマーク2bの正立等倍像を結像させるため、アライメント光の光軸が傾斜した場合においても、カメラ6により検出される基板及びマスクのアライメントマーク1b及び2bの相対位置は、アライメント光が基板1及びマスク2に垂直に照射される場合から変化せず、極めて高いアライメント精度を得ることができる。
 なお、本実施形態においても、第2実施形態と同様に、マイクロレンズアレイ3を、露光光が照射される露光位置と、アライメント光が照射されるアライメント位置とを包含する大きさで設けることにより、露光時とアライメント時とで、マイクロレンズアレイ3を移動させる必要がなくなる。
 次に、本発明の第5実施形態に係る露光装置用のアライメント装置について説明する。図10(a)は本発明の第5実施形態に係る露光装置用のアライメント装置を示す図、図10(b)は検出されるアライメントマークの相対的位置関係を示す図である。図10に示すように、本実施形態においては、第3実施形態と同様に、マイクロレンズアレイは、露光用の(第1の)マイクロレンズアレイ3とアライメント用の第2のマイクロレンズアレイ7とが2枚設けられている。そして、第2のマイクロレンズアレイ7は、光学特性が(第1の)マイクロレンズアレイ3と同一である。これにより、本実施形態においては、第2実施形態と同様に、露光時とアライメント時とで、マイクロレンズアレイ3を移動させる必要がなくなる。
 次に、本発明の第6実施形態について説明する。図11(a)は本発明の第6実施形態に係る基板及びマスクのアライメント方法を示す図、図11(b)はマスク上に結像される基板アライメントマークをマイクロレンズアレイと共に示す図、図12は、本発明の第6実施形態に係る基板アライメントマークを示す図、図13(a)は基板アライメントマークをマイクロレンズアレイと共に示す図、図13(b)はその拡大図である。図11(a)に示すように、本実施形態においては、露光装置は、従来のマイクロレンズアレイを使用した露光装置と同様に、基板1とマスク2との間にマイクロレンズアレイ3が設けられており、露光光源8から出射された露光光をマスク2に形成されたパターンに透過させ、マイクロレンズアレイ3により、パターンの正立等倍像を基板上に結像させる。この露光装置において、マスク2には、例えば枠状のマスクアライメントマーク2aが設けられており、露光対象の基板1には、所定形状の基板アライメントマーク11が設けられている。そして、アライメント時には、マイクロレンズアレイ3は、例えば基板アライメントマーク11とマスクアライメントマーク2aとの間に移動され、1枚のマイクロレンズアレイ3を露光時とアライメント時で移動させて使用される。そして、アライメント時には、マイクロレンズアレイ3により、基板アライメントマーク11から反射した光をマスク上に正立等倍像として結像させる。
 本実施形態においては、マスク2の上方に、基板1に設けられた基板アライメントマーク11とマスク2に設けられたマスクアライメントマーク2aに、マスク2の上方からアライメント用の光を照射するアライメント光源5が設けられており、アライメントの際には、マイクロレンズアレイ3により、基板アライメントマーク11から反射した正立等倍像をマスク2上に結像させるように構成されている。また、マスク2の上方には、カメラ6が設けられており、マスクアライメントマーク2aから反射した反射光及びマスク2上に結像した基板アライメントマーク11の正立等倍像をカメラ6により検出するように構成されている。そして、アライメント時に、基板1とマスク2とが所定の位置関係にあるときには、カメラ6により検出されるマスクアライメントマーク2aのアライメント中心が、基板アライメントマーク11のアライメント中心に一致する。
 図11(a)に示すように、カメラ6は、マスク2の位置を制御する制御装置9に接続されており、制御装置9は、カメラ6による検出結果によって、基板1とマスク2とのアライメントが必要な場合には、マスク2を移動させるように構成されている。例えば、カメラ6により検出される基板アライメントマーク11のアライメント中心の位置がマスクアライメントマーク2aのアライメント中心からずれている場合には、制御装置9は、基板アライメントマーク11のアライメント中心がマスクアライメントマーク2aのアライメント中心に一致するようにマスク2を移動させる。なお、図11(a)に二点鎖線で示すように、制御装置9は、例えば基板1が載置されるステージ等に接続され、基板1を移動させることにより、基板1とマスク2とのアライメントを行うように構成されていてもよい。又は、制御装置9は、基板1及びマスク2の双方を移動させることにより、基板1とマスク2とのアライメントを行うように構成されていてもよい。
 図11(a)に示すように、本実施形態においては、カメラ6は、例えば1焦点型の同軸落射式顕微鏡であり、アライメント光源5が内蔵されている。そして、アライメント光源5は、カメラ6が検出する光の光軸と同軸的にアライメント光を出射するように構成されている。このアライメント光源5としては、レーザ光又は干渉フィルタを透過したランプ光を使用することができる。ランプ光源としては、例えばハロゲンランプを使用すれば、コストを低減でき、好ましい。なお、アライメント光源5は、カメラ6とは別体的に設けられていてもよい。アライメント光源5から出射された光は、例えば反射鏡及びビームスプリッタ等の光学系を介して、マスク2及び基板1に照射される。
 マイクロレンズアレイ3には、各マイクロレンズ毎に、多角視野絞り42及び開口絞り41が設けられている。本実施形態においては、図27に示すように、多角視野絞りは、マイクロレンズの開口絞り41の中に6角形状の開口として形成された6角視野絞り42として構成されている。よって、図11(b)に示すように、基板1の反射光は、6角視野絞り42により、6角形に囲まれた領域に対応する基板領域からの反射光のみが透過され、この領域の正立等倍像がマスク2上に結像される。
 図25はマイクロレンズアレイを使用した露光装置を示す模式図である。露光対象の基板1の上方に、基板1に露光されるパターンが形成されたマスク2が、基板1に対して適長間隔をおいて配置されている。そして、この基板1とマスク2との間に、マイクロレンズ4を2次元的に配列したマイクロレンズアレイ3が配置されており、マスク2の上方から露光光がマスク2に対して照射され、マスク2を透過した露光光がマイクロレンズアレイ3により基板1上に投影され、マスク2に形成されたパターンが、マイクロレンズアレイ3により正立等倍像として、基板表面上のレジスト等に転写される。
 図26は露光装置に使用されるマイクロレンズアレイ3を示す図である。図26に示すように、マイクロレンズアレイ3は、例えば、4枚8レンズ構成であり、4枚の単位マイクロレンズアレイ3-1,3-2,3-3,3-4が積層された構造を有する。各単位マイクロレンズアレイ3-1乃至3-4は表裏2個の凸レンズにより表現される光学系から構成されている。これにより、露光光は単位マイクロレンズアレイ3-2と単位マイクロレンズアレイ3-3との間で一旦収束し、更に単位マイクロレンズアレイ3-4の下方の基板上で結像する。即ち、単位マイクロレンズアレイ3-2と単位マイクロレンズアレイ3-3との間には、マスク2の倒立等倍像が結像し、基板上には、マスク2の正立等倍像が結像する。単位マイクロレンズアレイ3-2と単位マイクロレンズアレイ3-3との間には、多角視野絞り(例えば6角視野絞り42)が配置され、単位マイクロレンズアレイ3-3と単位マイクロレンズアレイ3-4との間には、円形の開口絞り41が配置されている。開口絞り41が各マイクロレンズのNA(開口数)を制限すると共に、6角視野絞り42が結像位置に近いところで6角形に視野を絞る。これらの6角視野絞り42及び開口絞り41はマイクロレンズ毎に設けられており、各マイクロレンズについて、マイクロレンズの光透過領域を開口絞り41により円形に整形すると共に、露光光の基板上の露光領域を6角形に整形している。6角視野絞り42は、例えば、図27に示すように、マイクロレンズの開口絞り41の中に6角形状の開口として形成される。よって、この6角視野絞り42により、マイクロレンズアレイ3を透過した露光光は、スキャンが停止しているとすると、基板1上で図13に示す6角形に囲まれた領域にのみ照射される。
 マイクロレンズアレイを使用したスキャン露光においては、通常、マスク2及び基板1を固定し、マイクロレンズアレイ3と露光光源及び光学系を、一体的に、紙面に垂直の方向に移動させることにより、露光光が基板1上をスキャンするようになっている。この場合に、基板1の上面及びマスク2の下面に、夫々、アライメントマーク1a及び2aを設け、これらのアライメントマーク1a及び2aを指標として、基板1とマスク2とを相対的に位置合わせする必要がある。
 このように、マイクロレンズアレイ3には、多角視野絞りが設けられているため、基板1に設けられたアライメントマークが、例えば図14に示すように、2本の線状のマーク片111A,111Bにより構成された十字形状の基板アライメントマーク111であるような場合においては、基板アライメントマーク111がマイクロレンズアレイ3のマイクロレンズ間に位置して、アライメントマークの検出ができない場合が生じる。また、図14に示すように、基板アライメントマーク111の一部が6角視野絞り42の開口をとおして検出できた場合においても、検出されたマーク片111Bが6角視野絞り42の開口を構成する辺に平行である場合には、カメラ6により検出された像が、6角視野絞り42の開口を構成する辺42dの像であるか、又は基板アライメントマーク111のマーク片111Bの像であるかを識別することが難しい。
 図12に示すように、本実施形態における基板アライメントマーク11は、6角視野絞り42の開口の全ての辺42a乃至42fに対して傾斜する方向に延びる複数本の線状のマーク片11A乃至11Kにより構成されている。よって、カメラ6により検出された際に、検出されたマークが延びる方向は、6角視野絞り42の辺に対して傾斜する。これにより、カメラ6により検出されるマーク片を6角視野絞り42の開口に対して明確に識別できる。即ち、本実施形態における基板アライメントマーク11は、アライメント中心110から放射状に延びる第1のマーク片11A乃至11Cと、アライメント中心110を中心とする多角形(例えば8角形)の辺上に延びる複数個の第2のマーク片11D乃至11Kとからなる。そして、第1のマーク片及び第2のマーク片は、複数箇所で交差している。即ち、第1のマーク片11Bは、2本の第2のマーク片11E,11Iと交差し、第1のマーク片11Cは、2本の第2のマーク片11F,11Jと交差し、第1のマーク片11Aは、2本の第2のマーク片11D及び11Kと1点で交差し、また、2本の第2のマーク片11G及び11Hと1点で交差している。そして、これらのマーク片のうち、複数個のマーク片がいずれかの多角視野絞りの中に存在するように6角視野絞り42及びマーク片の位置が決められている。
 図13に示すように、第1のマーク片11A乃至11Cが交差しているアライメント中心110が6角視野絞り42の開口をとおして検出できた場合においては、このアライメント中心110を指標として、基板1及びマスク2のアライメントを行うことができる。しかし、図15乃至図17に示すように、マイクロレンズアレイ3に対して、基板アライメントマーク11の相対的位置が図13に示す状態からずれた場合、基板アライメントマーク11のアライメント中心110は、2次元的に配置されたマイクロレンズ間の光を透過しない領域に位置するため、アライメント中心110は、6角視野絞り42の開口をとおして検出できない。
 本発明においては、基板アライメントマーク11は、例えばマーク片同士の交差部が6角視野絞り42の開口をとおして検出される形状で設けられており、このマーク片11A乃至11K同士が交差した点により、基板アライメントマーク11のアライメント中心110が検出される。例えば図15に示すように、マイクロレンズアレイ3に対する基板アライメントマーク11の相対的位置が、図13に示す状態から左右方向にずれた場合においては、第2のマーク片11E,11F同士の交差部及び第2のマーク片11I,11J同士の交差部が6角視野絞り31の開口をとおして検出される。この場合においては、図15(b)に示すように、検出された交差部の中点が基板アライメントマークのアライメント中心110として検出される。また、図16に示すように、マイクロレンズアレイ3に対する基板アライメントマーク11の相対的位置が、図13に示す状態から斜め方向にずれた場合においては、第2のマーク片11D,11E同士の交差部及び第2のマーク片11H,11I同士の交差部が6角視野絞り31の開口をとおして検出される。この場合においては、図16(b)に示すように、検出された交差部の中点が基板アライメントマークのアライメント中心110として検出される。更に、図17に示すように、マイクロレンズアレイ3に対する基板アライメントマーク11の相対的位置が、図13に示す状態から上下方向にずれた場合においては、第2のマーク片11J,11K同士の交差部、及び第1のマーク片11Aと第2のマーク片11G,11Hとの交差部が6角視野絞り31の開口をとおして検出される。この場合においては、図17(b)に示すように、第1のマーク片11Aと第2のマーク片11G,11Hとの交差部を基準として、所定距離だけ離隔した位置が基板アライメントマークのアライメント中心110として検出される。この図17に示す例においては、更に、第2のマーク片11J,11K同士の交差部も検出され、必要に応じて、基板アライメントマークのアライメント中心110の検出に利用される。
 次に、上述のごとく構成された本実施形態に係るアライメント装置の動作について説明する。マイクロレンズアレイ3は、露光時には、マスク2に設けられたパターン領域の下方に位置する。先ず、このマイクロレンズアレイ3が、図11における右方向に移動されて、基板アライメントマーク11とマスクアライメントマーク2aとの間に移動される。次に、カメラ6に内蔵されたハロゲンランプ等のアライメント光源5からアライメント光を出射させる。このアライメント光は、例えば反射鏡及びビームスプリッタ等の光学系を介して、先ず、マスク2に照射される。マスク2に照射されたアライメント光は、マスクアライメントマーク2aにより反射される。一方、マスク2に透過されたアライメント光は、マスク2の下方に配置されたマイクロレンズアレイ3に透過され、基板1上に照射される。
 そして、基板アライメントマーク11に反射された反射光は、マイクロレンズアレイ3を透過して、再度マスク2に入射され、マスク2上に基板アライメントマーク11の正立等倍像が結像される。このとき、マスク2上には、6角視野絞り31の開口に対応する基板領域からの反射光のみが透過され、この領域の正立等倍像がマスク2上に結像される。そして、各反射光は、カメラ6のセンサに入射され、マスクアライメントマーク2a及びマスク2上に結像した基板アライメントマーク11の正立等倍像が検出される。このように、マスク2上に結像した基板アライメントマーク11の正立等倍像をカメラ6によって検出することにより、基板1とマスク2との間には、実際には、5乃至15mmのギャップGが存在するが、カメラ6側では、このギャップGに起因するフォーカス差が0となる。
 本実施形態においては、基板アライメントマーク11は、6角視野絞り42の開口の全ての辺42a乃至42fに対して傾斜する方向に延びる複数本の線状のマーク片11A乃至11Kにより構成されている。よって、カメラ6により検出された際に、検出されたマークが延びる方向により、これを6角視野絞り42の開口に対して明確に識別できる。
 カメラ6による基板アライメントマーク11の検出の際、図13に示すように、第1のマーク片11A乃至11C同士が交差する基板アライメントマーク11のアライメント中心110が6角視野絞り42の開口をとおして検出できた場合においては、この基板アライメントマークのアライメント中心110を指標として、基板1及びマスク2のアライメントを行うことができる。例えば、カメラ6により検出される基板アライメントマーク11のアライメント中心の位置が枠状のマスクアライメントマーク2aの中心からずれている場合には、制御装置9により、基板アライメントマークのアライメント中心110がマスクアライメントマーク2aの中心に位置するようにマスク2を移動させて、基板1とマスク2とのアライメントを行う。本実施形態においては、基板1とマスク2との間のギャップGに起因するカメラ6側のフォーカス差が0となるため、基板1及びマスク2のアライメントマーク11,2aを指標として、基板1とマスク2とのアライメントを高精度で行うことができる。
 しかし、図15乃至図17に示すように、マイクロレンズアレイ3に対する基板アライメントマーク11の相対的位置が図13に示す状態からずれた場合、基板アライメントマークのアライメント中心110は、2次元的に配置されたマイクロレンズ間の光を透過しない領域に位置するため、アライメント中心110は、6角視野絞り42の開口をとおして検出できない。しかし、本実施形態においては、基板アライメントマーク11は、アライメント中心110から放射状に延びる第1のマーク片11A乃至11Cと、アライメント中心110を中心とする多角形(例えば8角形)の辺上に延びる複数個の第2のマーク片11D乃至11Kとからなり、複数個のマーク片がいずれかの多角視野絞りの中に存在するように6角視野絞り42及びマーク片の位置が決められている。即ち、基板アライメントマーク11は、マーク片同士の交差部が6角視野絞り42の開口をとおして検出される形状で設けられており、このマーク片11A乃至11K同士が交差した点により、基板アライメントマーク11のアライメント中心110が検出される。例えば、図15に示すように、カメラ6により、第2のマーク片11E,11F同士の交差部及び第2のマーク片11I,11J同士の交差部が6角視野絞り42の開口をとおして検出され、図15(b)に示すように、検出された交差部の中点が基板アライメントマークのアライメント中心110として検出される。又は、図16に示すように、第2のマーク片11D,11E同士の交差部及び第2のマーク片11H,11I同士の交差部が6角視野絞り42の開口をとおして検出され、図16(b)に示すように、検出された交差部の中点が基板アライメントマークのアライメント中心110として検出される。図17に示すように、第1のマーク片11Aと第2のマーク片11G,11Hとの交差部が6角視野絞り42の開口をとおして検出された場合においては、図17(b)に示すように、第1のマーク片11Aと第2のマーク片11G,11Hとの交差部を基準として、所定距離だけ離隔した位置が基板アライメントマークのアライメント中心110として検出される。よって、この基板アライメントマークのアライメント中心110が枠状のマスクアライメントマーク2aの中心に位置するように、基板1とマスク2とのアライメントを行う。
 以上のように、本実施形態においては、基板アライメントマーク11のアライメント中心110は、2次元的に配置されたマイクロレンズ間の光を透過しない領域に位置する場合においても、基板アライメントマーク11の各線状のマーク片11A乃至11K同士の交差点により、アライメント中心110を検出でき、検出されたアライメントマークにより、位置合わせ精度を高く維持できる。
 本実施形態のようにマイクロレンズアレイ3を使用して、マスク2上に基板アライメントマーク11の正立等倍像を結像させ、これにより、基板とマスクとの間のギャップGに起因するカメラ側のフォーカス差を0にすることにより、図18(a)に示すように、アライメント光の光軸が傾斜した場合においても、アライメントマーク11,2a間の相対位置は図11に示す場合から変化せず、極めて高いアライメント精度を得ることができる。
 即ち、基板1及びマスク2の相対的位置合わせにマイクロレンズアレイ3を使用しない場合においては、図19(a)に示すように、アライメント光が基板1及びマスク2に垂直に照射される場合には、図19(b)に示すように、所定のアライメント精度が得られる。しかし、図19(c)に示すように、アライメント光の光軸が傾斜した場合においては、反射光の光路が変化し、基板1とマスク2との間のギャップGにより、基板1とマスク2とが所定の位置関係にある場合においても、図19(d)に示すように、カメラ6側で検出するアライメントマーク1a,2aの位置がずれてしまう。そうすると、実際上、アライメントマーク2aとアライメントマーク1aとはその位置が一致しており、マスク2と基板1とはアライメントがとれているにも拘わらず、カメラ6においては、アライメントがとれていないと誤観察されてしまう。換言すれば、基板1とマスク2とでアライメントがとれていないにも拘わらず、カメラ6にて、アライメントマーク1aがアライメントマーク2aの中心にあるように観察されてしまうことが生じ、基板1とマスク2とがアライメントがとれていると誤観察されてしまう。
 これに対して、本実施形態においては、マイクロレンズアレイ3により、基板アライメントマーク11の正立等倍像を、マスク2上に結像させるため、図18に示すように、アライメント光の光軸が傾斜した場合においても、カメラ6により検出される基板及びマスクのアライメントマーク11及び2aの相対位置は変化せず、極めて高いアライメント精度を得ることができる。
 基板1とマスク2とのアライメント後には、マイクロレンズアレイ3は、図11における左方向に移動されて、マスク2に設けられたパターン領域の下方に移動され、その後、露光光が出射されて、マイクロレンズアレイ3によるスキャン露光が開始される。本実施形態においては、上記のように、高いアライメント精度が得られるため、スキャン露光における露光精度を極めて高く維持することができる。
 本実施形態においては、アライメント光源5は、カメラ6に内蔵されており、カメラ6が検出する光の光軸と同軸的にアライメント光を出射するように構成されている場合について説明したが、本発明においては、基板1及びマスク2の一方の正立等倍像を他方に結像させ、これをカメラ6により検出できるように構成されていればよく、アライメント光源5が出射する光の光軸は、カメラにて検出される反射光の光軸と同軸でなくてもよい。
 次に、本実施形態の変形例に係る基板アライメントマークについて説明する。図20は第6実施形態に係る基板アライメントマークの変形例を示す図である。図20に示すように、この基板アライメントマーク12は、第6実施形態における第2のマーク片11D乃至11Kが2分割され、中央に隙間が形成されている。即ち、本実施形態における基板アライメントマーク12は、アライメント中心120から放射状に延びる3本の第1のマーク片12A乃至12Cと、アライメント中心120を中心とする多角形の辺上に延びる複数個の第2のマーク片12D乃至12Wとからなる。そして、第1のマーク片及び第2のマーク片は、複数箇所で交差している。即ち、第1のマーク片12Bは、2本の第2のマーク片12G,12Qと交差し、第1のマーク片12Cは、2本の第2のマーク片12J,12Tと交差し、第1のマーク片12Aは、2本の第2のマーク片12D及び12Wと1点で交差し、また、2本の第2のマーク片12M及び12Nと1点で交差している。しかし、本実施形態においても、基板アライメントマークを構成するマーク片同士の交差点の数は、第6実施形態と同一である。よって、第6実施形態と同様のアライメント方法により、同様の効果が得られる。
 次に、本発明の第7実施形態に係る基板アライメントマークについて説明する。図21(a)は本発明の第7実施形態に係る基板アライメントマークを示す図、図21(b)は基板アライメントマークをマイクロレンズアレイと共に示す図である。図21(a)に示すように、本実施形態に係る基板アライメントマーク13は、第6実施形態の基板アライメントマーク11において、アライメント中心130側にこのアライメント中心を共通の中心とする8角形の辺上に連なって配置された線状のマーク片13d乃至13kを有している。その他のマーク片13A乃至13Cは、第6実施例のマーク片11A乃至11Cと同様であり、マーク片13D乃至13Kも、第6実施例のマーク片11D乃至11Kと同様である。
 このように、アライメント中心130を共通の中心とするマーク片13d乃至13kを設けることにより、第6実施形態で上記した場合に加えて、図21(b)に示すように、アライメント中心130側のマーク片13d,13eの交差点及び外側のマーク片13D,13Eの交差点の双方が、1個の6角視野絞り42の開口をとおしてマスク2上に結像される場合が生じる。この場合には、交差点同士の延長線上に所定距離だけ離隔した位置が基板アライメントマーク13のアライメント中心130として検出される。そして、この検出されたアライメント中心130の位置を指標として、基板1及びマスク2のアライメントを行うことができる。
 本実施形態においても、第6実施形態と同様の効果が得られる。なお、本実施形態においても、基板アライメントマークは、第6実施形態と同様の変形が可能である。例えば、第7実施形態に係る基板アライメントマーク13において、アライメント中心130を取り囲むように形成されたマーク片13D乃至13K,13d乃至13kが2分割され、中央に隙間が形成されていてもよく、図22に示すような基板アライメントマーク14を使用することができる。
 なお、図21(b)に示すように、このアライメントマーク13は、線対称の多角形形状の図形からなり、多角視野絞りの開口部を構成するいずれかの縁辺と平行にならないように配置された多角形形状部と、前記多角形形状部の中心から、前記多角形形状部を横断する少なくとも6本の放射線からなる放射線部と、を有し、前記多角形形状部及び前記放射線部の全体が、前記レンズの大きさより大きく、4個の隣接するレンズの全体の大きさより小さいものである。従って、前述のごとく、アライメントマーク13の線分を、多角視野絞り42の縁辺と区別することができ、更に、いずれかの線分が多角視野絞り42の中に存在するので、アライメントマーク13の中心を精度良く検出することができる。
 次に、本発明の第8実施形態に係る基板アライメントマークについて説明する。図23(a),(b)は本発明の第8実施形態に係る基板アライメントマークを示す図である。図23(a)に示すように、本実施形態に係る基板アライメントマーク15は、第7実施形態の基板アライメントマーク13において、アライメント中心130側のマーク片と、外側に配置されたマーク片とは、線の太さが異なっている。よって本実施形態においては、アライメント中心130側の線状マークと外側のマーク片との識別が容易である。その他の構成及び効果は第6及び第7実施形態と同様である。
 なお、本実施形態においても、基板アライメントマーク15は、第6及び第7実施形態と同様の変形が可能である。例えば、第8実施形態に係る基板アライメントマーク15において、アライメント中心を取り囲むように形成された線状のマークが2分割され、中央に隙間が形成されていてもよく、図23(b)に示すような基板アライメントマーク16を使用することができる。
 上記第6乃至第8実施形態においては、基板アライメントマークの正立等倍像をマスク上に結像させる場合について説明したが、マスクアライメントマークの正立等倍像を基板上に結像させる場合においても、マスクアライメントマークを、アライメント中心から放射状に延びる第1群のマーク片と、アライメント中心を中心とする多角形の辺上に延びる第2群のマーク片とにより構成し、これらのマーク片のうち、複数個のマーク片がいずれかの多角視野絞りの中に存在するように6角視野絞り及びマーク片の位置が決められていれば、第6乃至第8実施形態と同様の効果が得られる。
 次に、本発明の第9実施形態に係る露光装置について説明する。図24(a)は本発明の第9実施形態に係る基板及びマスクのアライメント方法を示す図、(b)はマスクアライメントマークを示す図である。図24(a)に示すように、本実施形態においては、アライメント光源5及びカメラ6は、基板1の下方に配置されており、基板の下方からアライメント用の光を照射する。また、基板アライメントマーク1bが枠状をなし、マスクアライメントマーク2Bは、図24(b)に示すように、第6実施形態における基板アライメントマーク11と同様の形状で設けられている。本実施形態においては、露光対象の基板1は、例えばPI(ポリイミド)及びITO(スズドープ酸化インジウム)等の光透過性の材料からなり、アライメント用の光は、基板1を透過して、マスク2に照射される。即ち、本実施形態においては、基板1が光透過性の材料からなる場合において、アライメント光の照射方向並びに基板1及びマスク2の各アライメントマーク1b,2Bの形状が第6実施形態と異なり、その他の構成は、第6実施形態と同様である。本実施形態のように、アライメント光を基板の下方から照射する場合においても、第6実施形態と同様のアライメント方法により、高精度のアライメントを実現できる。
 次に、本発明の第10実施形態について説明する。図28は本発明の実施形態に係る露光装置を示す図、図29はマイクロレンズアレイのマイクロレンズの配置を示す図、図30はマイクロレンズアレイの構造を示す図、図31は開口形状を示す図、図32はマイクロレンズアレイによる露光原理を示す図である。基板1と、この基板1に転写すべき露光パターンが形成されたマスク2との間に、マイクロレンズアレイ3が配置されている。このマイクロレンズアレイ3を間に配設するために、基板1とマスク2との間のギャップは、前述のごとく、5乃至15mmである。マイクロレンズアレイ3は、後述するようにして、マスク2に設けられたパターンの正立等倍像を基板1に結像させる。
 そして、基板1の上面のマスク2に対する対向面には、基板アライメントマーク32が配置されており、マスク2の下面の基板1に対する対向面には、マスクアライメントマーク31が配置されている。
 また、図29及び図30に示すように、マイクロレンズアレイ3は多数のマイクロレンズ4が2次元的に配置されて構成されており、各マイクロレンズ4には6角形状の6角視野絞り42が配置されており、この6角視野絞り42を透過した光のみが基板1に照射される。マイクロレンズアレイ3は、図30に示すように、例えば,4枚の単位マイクロレンズアレイ3-1,3-2,3-3,3-4が積層されて構成されており、各単位マイクロレンズアレイ3-1,3-2,3-3,3-4はガラス板の上面及び下面に凸レンズとしてのマイクロレンズ4が形成された構造を有している。そして、最上層の単位マイクロレンズアレイ3-1の上面には、マイクロレンズ4以外の領域に、Cr膜等の遮光膜43が形成されており、この遮光膜43に設けられた円形の開口40内に凸レンズとしてのマイクロレンズ2aが配置されている。この遮光膜43は、迷光を防止するために、マイクロレンズ4以外の領域に照射された露光光を反射して、マイクロレンズ4以外の領域に露光光が入射することを防止している。
 また、単位マイクロレンズアレイ3-2と、単位マイクロレンズアレイ3-3との間には、6角視野絞り42が配置され、単位マイクロレンズアレイ3-3と単位マイクロレンズアレイ3-4との間には、開口数を規定する円形の開口絞り41が配置されている。6角視野絞り42は、図31(a)に示すように、レンズ形状を示す遮光膜43の開口40内に、6角形状の開口として設けられており、円形の開口絞り41は、図31(b)に示すように、開口40内に、円形の開口として設けられている。そして、図30に示すように、マスク2を透過した露光光は、4枚の単位マイクロレンズアレイにより、先ず、単位マイクロレンズアレイ3-2と単位マイクロレンズアレイ3-3との間で倒立等倍像として一旦結像し、単位マイクロレンズアレイ3-3と単位マイクロレンズアレイ3-4との間で最大拡大した後、単位マイクロレンズアレイ3-4から出射して基板1上に正立等倍像として結像する。このとき、倒立等倍像として結像する位置には、6角視野絞り42が配置されているので、マスクパターンは、この6角形の形状に整形されて基板1に転写される。円形絞り41は、露光光の最大拡大部の形状を円形に整形するものであり、マイクロレンズのNA(開口数)を規定する。
 本実施形態の露光装置においては、基板1とマスク2とは固定されていて、マイクロレンズ3及び光源(図示せず)が一体的に同期してスキャン方向Sに移動することにより、基板1の表面の例えばレジスト膜にマスク2のパターンをスキャン露光するか、又はマイクロレンズアレイ3及び光源が固定されていて、基板1及びマスク2が一体的に同期してスキャン方向Sに移動することにより、基板1の表面のレジスト膜にマスク2のパターンをスキャン露光する。
 このとき、基板1の表面においては、瞬間的に、図32示すように6角視野絞り42の6角形の部分に露光光が照射される。この図32及び図29に示すように、マイクロレンズは、スキャン方向Sに垂直の方向に並んで配置されており、スキャン方向Sに垂直の方向に並ぶマイクロレンズ列に関し、スキャン方向Sに隣接するマイクロレンズ列は、スキャン方向Sに垂直の方向に若干ずれて配置されている。即ち、マイクロレンズの6角視野絞り42は6角形状をなし、スキャン方向Sに垂直の方向に対し、左側の三角形部分45bと、中間の矩形部分45aと、右側の三角形部分45cとから構成されている。そして、マイクロレンズ列の左側の三角形部分45bと、スキャン方向Sに隣接するマイクロレンズ列の右側の三角形部分45cとがスキャン方向Sに関して重なるように、複数個のマイクロレンズ列がスキャン方向Sに配置されている。よって、マイクロレンズ4はスキャン方向Sに垂直の方向については1直線上にならび、スキャン方向Sについては若干ずれて配置されている。そして、これらのマイクロレンズ列は、スキャン方向Sに関し、3列で1群となるように配置されており、4列目のマイクロレンズ列は1列目のマイクロレンズ列と同一の位置に配置されている。即ち、1列目と4列目のマイクロレンズ列は、マイクロレンズ4のスキャン方向Sに垂直の方向の位置が同一である。
 そして、マイクロレンズアレイ3及び光源と、基板1及びマスク2とが、相対的にスキャン方向Sに移動すると、基板1上においては、スキャン方向Sに垂直の方向に関して、先ず、1列目のマイクロレンズ列の6角視野絞りの右側三角形部分45cの通過を受ける領域は、その後、2列目のマイクロレンズ列の6角視野絞りの左側三角形部分45bの通過を受け、3列目のマイクロレンズ列では開口部の通過はない。一方、1列目のマイクロレンズ列の6角視野絞りの矩形部分45aの通過を受ける領域は、その後、2列目及び3列目のマイクロレンズ列では開口部の通過はない。更に、1列目のマイクロレンズ列の6角視野絞りの左側三角形部分45bの通過を受ける領域は、その後、2列目のマイクロレンズ列では開口部の通過を受けず、3列目のマイクロレンズ列の6角視野絞りの右側三角形部分45cの通過を受ける。このようにして、スキャンの際、基板1上の領域は、3列のマイクロレンズ列が通過する都度、6角視野絞り42の2個の三角形部分45b、45cの通過を受けるか、又は1個の矩形部分45aの通過を受ける。三角形部分45b、45cの開口面積は、矩形部分45aの開口面積の1/2であるから、マイクロレンズ列が3列通過する都度、スキャン方向Sに関して均一な光量の露光を受けることになる。4列目のマイクロレンズ列は、スキャン方向Sに垂直の方向に関して1列目のマイクロレンズ列と同一の位置にマイクロレンズが配置されているので、以後、3列1群となって、同一の露光が繰り返される。従って、マイクロレンズアレイ3として、スキャン方向Sについて3n(nは自然数)列のマイクロレンズ列を設け、この3n列のマイクロレンズ列をスキャンさせることにより、基板1は、そのスキャン領域の全域にて、均一な光量の均等な露光を受ける。これにより、マイクロレンズアレイ3及び光源が、基板1及びマスク2に対してスキャン方向Sに相対的に移動することにより、マスク2に形成されたパターンが基板1上に露光される。このようにして、マイクロレンズアレイ3により、マスク2のマスクパターンの正立等倍像が基板1に転写される。
 本実施形態においては、マイクロレンズアレイ3は、図25に示すように、露光工程において、マスク2のマスクパターンの正立等倍像を基板1に結像させるために使用すると共に、図28に示すように、アライメント工程において、マイクロレンズアレイ3を基板1とマスク2との位置合わせに使用する。即ち、アライメント工程においては、マイクロレンズアレイ3を基板アライメントマーク32とマスクアライメントマーク31との間に移動させ、マスク2の上方から、カメラ51によりマスクアライメントマーク31と基板アライメントマーク32とを検出する。
 このカメラ51は、例えば、1焦点型の同軸落射式顕微鏡であり、アライメント用の光源と、像撮影用のセンサとが内蔵されている。即ち、カメラ51から、アライメント光を照射すると共に、アライメント光の反射光を、アライメント光の光軸と同軸的に入射させて、この反射光を検出する。カメラ51によるアライメント光の照射及びアライメント光の反射光の検出は、制御部52により制御される。また、制御部52は、マスクアライメントマーク31及び基板アライメントマーク32の検出結果に基づいて、マスク2と基板1との相対的位置合わせのための駆動源(図示せず)を制御する。アライメント光源は、カメラ51が検出する光の光軸と同軸的にアライメント光を出射するように構成されており、このアライメント光源としては、レーザ光又は干渉フィルタを透過したランプ光を使用することができる。ランプ光源として、例えばハロゲンランプを使用すれば、コストを低減でき、好ましい。なお、アライメント光源は、カメラ51とは別体的に設けられていてもよい。アライメント光源から出射された光は、例えば反射鏡及びビームスプリッタ等の光学系を介して、マスク2及び基板1に照射される。
 図33(b)は、比較例のマスクアライメントマーク31の形状を示す。即ち、このマスクアライメントマーク31は、ガラス基板34上に、Cr膜のように光を反射する金属膜33により口の形のパターンが形成されたものである。アライメントマーク31の中心部は、金属膜33が存在しない所謂抜き部35であり、露光光が透過する。よって、このマスクアライメントマーク31においては、金属膜33と抜き部35との境界である辺3a,3b、3c、3dにより、マーク形状が規定される。
 ところで、カメラ51のセンサがこのマスクアライメントマーク31を検出した場合、マイクロレンズアレイ3については図29に示すように検出される。即ち、カメラ51からのアライメント光がマイクロレンズアレイ3に照射されると、マイクロレンズアレイ3の最上層の遮光膜43からの反射光は、その光量が多いために、白く見える。そして、遮光膜43が存在しない開口40にはマイクロレンズ4が設けられており、このマイクロレンズ4に入射した光は、6角視野絞り42で6角形に整形されて基板1に照射され、基板1の基板アライメントマーク32で反射した光がマイクロレンズ4を介してカメラ51に戻り、基板アライメントマーク32がカメラ51のセンサで検出される。このとき、6角視野絞り42を透過して基板1で反射する光は光量が多く、白く見える。一方、遮光膜43の開口40は透過するが、6角視野絞り42は透過しない光は、この6角視野絞り12で反射して、カメラ51に戻り、カメラ51のセンサに検出される。この6角視野絞り42の反射光は、図29に示すように、カメラ51のセンサでは灰色に見える。
 図33(a)はこのマスクアライメントマーク31をマイクロレンズアレイ2に重ねて表示した図である。マスクアライメントマーク31の各辺3a,3b、3c、3dは、マスク2とマイクロレンズアレイ3との相対的位置関係によっては、辺3dが2個のマイクロレンズ列の間に位置する場合が存在する。この場合に、カメラ51からのアライメント光がマスクアライメントマーク31で反射したときの反射光は、その光量が多く、カメラ51のセンサにて白く見えるため、マイクロレンズアレイ3の遮光膜43で反射したときの反射光と、同化してしまい、区別がつかない。このため、図33(c)にカメラ51のセンサにて検出する画像を示すように、マスクアライメントマーク31の辺3dは、遮光膜43における反射光と同化して、その位置を検出できない。
 一方,図34(b)は本発明の実施形態のマスクアライメントマーク31の構成を示す。本発明の実施形態のマスクアライメントマーク31は、図33と同様に、ガラス基板34の上に、Cr膜等の遮光反射膜である金属膜33により正方形の抜き部35が形成されたものである。このマスクアライメントマーク31は、金属膜33と抜き部35との境界に、辺3e,3f、3g、3hが形成されており、この辺3e,3f、3g、3hにより、マスクアライメントマーク31の形状が規定されている。これらの辺3e,3f、3g、3hは、いずれも、マイクロレンズアレイ3におけるマイクロレンズ4の配列方向に一致する方向に延びるものはない。即ち、各辺3e,3f、3g、3hは、いずれも、マイクロレンズ2aが直線上に配列された第1方向に対し、傾斜している。本実施形態においては、マイクロレンズはスキャン方向Sに垂直の方向に配列されているので、このスキャン方向Sに垂直の方向が第1方向であり、全ての辺3e,3f、3g、3hはスキャン方向Sに対して傾斜している。本実施形態においては、辺3e,3f、3g、3hはスキャン方向Sに対して45°の角度で交差している。
 本発明においては、このように、マスクアライメントマーク31の各辺3e,3f、3g、3hは、マイクロレンズの配列方向に対して一致していないので、図34(a)に示すように、マイクロレンズ列間に位置する辺は存在しない。このため、図34(c)に示すように、カメラ4のセンサにて、6角視野絞り42で反射した光(灰色光)と、金属膜33で反射した光(白色光)との境界として、全ての辺3e,3f、3g、3hが検出される。
 次に、上述のごとく構成された本発明の実施形態の動作について説明する。マイクロレンズアレイ2を、基板1の基板アライメントマーク32とマスク2のマスクアライメントマーク31との間に配置し、マスク2の上方から、落射顕微鏡であるカメラ51により、アライメント光をマスクアライメントマーク31及び基板アライメントマーク32に向けて垂直下方に照射する。そうすると、図34(a)に示すように、カメラ51のセンサは、マスクアライメントマーク31の金属膜33からの反射光と、マイクロレンズアレイ3の遮光膜43からの反射光を、いずれも白色光として検出し、6角視野絞り42で反射した反射光を、灰色光として検出すると共に、6角視野絞り42を透過したアライメント光が、基板1の基板アライメントマーク32で反射した反射光を検出する。マイクロレンズアレイ2により、6角視野絞り42を透過したアライメント光は、基板1上に結像し、基板アライメントマーク32で反射した後、マイクロレンズアレイ3により、マスク2に結像する。
 一方、マスクアライメントマーク31は、図34(c)に示すように、マスクアライメントマーク31の各辺3e,3f、3g、3hが、マイクロレンズアレイ3上に重なって、カメラ51のセンサにより検出される。このとき、マスクアライメントマーク31の各辺3e,3f、3g、3hは、マイクロレンズの配列方向に一致していないので、マイクロレンズ列間に位置することはなく、図34(c)に示すように、全ての辺3e,3f、3g、3hが6角視野絞り42で反射した反射光(灰色光)の上に検出される。
 よって、カメラ51のセンサは、マスク2の下面において、マスクアライメントマーク31の輪郭(全ての辺3e,3f、3g、3h)を、6角視野絞り42で反射した反射光の上に検出することができる。また、基板アライメントマーク32は、マイクロレンズアレイ3によりマスク2の下面に結像した基板アライメントマーク32からの反射光として検出することができる。いずれのマークも、マスク2の下面で検出することができるので、カメラ51はその焦点深度の範囲内で、双方のマークを同時に検出することができる。
 このため、マイクロレンズアレイを使用した露光装置において、基板1とマスク2とのギャップが大きい場合にも、同一面(マスク下面)でマスクアライメントマーク31と基板アライメントマーク32とを同時に検出することができ、基板1とマスク2とを高精度でアライメントをとることができる。
 また、カメラ51が、基板アライメントマーク32とマスクアライメントマーク31とを同一面で検出しているので、カメラ51の光軸がマスク2に対して傾斜した場合にも、基板1とマスク2とのアライメントがとれている場合には、必ず、マスクアライメントマーク31と基板アライメントマーク32とが整合した位置に検出されるので、マスク2と基板1とのアライメントを誤検出することがない。
 更に、図33と図34との対比からわかるように、本発明の場合(図34)は、マスクアライメントマーク31の輪郭を示す辺の中に、マイクロレンズの配列方向に延びるものが存在しないので、全ての辺を、反射光の中から検出することができ、マスクアライメントマーク31を高精度で検出することができる。よって、マスク3と基板1とのアライメント精度を一層向上させることができる。
 本発明は、上記実施形態に限定されないことは勿論である。例えば、上記実施形態では、アライメント光をマスクの上方からマスク及び基板に照射し、マスクの上方でアライメント光を検出しているが、このアライメント光の照射及び検出は、基板1の下方から行ってもよい。基板1の下方にカメラ51をそのアライメント光照射方向を上方に向けて配置し、基板アライメントマーク32を基板1の上面で検出し、マスクアライメントマーク31を、マイクロレンズアレイ3により基板1の上面に結像させて基板1の上面で検出してもよい。この場合は、基板アライメントマーク32を図34に示すように形成すればよい。則ち、基板アライメントマーク32の輪郭の各辺を、マイクロレンズアレイの配列方向に一致させないように形成することが必要である。
 なお、上記実施形態においては、多角視野絞りは6角視野絞り42であり、マイクロレンズ列が3列毎にマイクロレンズ列群を構成しているが、本発明は、これに限らず種々の態様が可能である。例えば、マイクロレンズにより基板上の視野を規定する多角視野絞りは、6角視野絞りに限らず、例えば、菱形、平行四辺形又は台形状等の開口を有するものでもよい。例えば、この台形状(4角形)の視野絞りにおいても、中央の矩形の部分と、その両側の三角形の部分とに視野領域を分解することができる。また、1群のマイクロレンズ列群を構成するマイクロレンズ列は3列に限らず、例えば、上述の台形及び平行四辺形(横長)の開口の場合は、3列毎に1群を構成するが、菱形及び平行四辺形(縦長)の場合は、2列毎に1群を構成することになる。更に、図32に示すマイクロレンズの配列は、スキャン方向Sに関して3列で1群を構成して、4列目のマイクロレンズ列は1列目のマイクロレンズ列とスキャン方向Sに垂直の方向に関して同一の位置に配置されているが、設計したレンズ性能によっては、レンズサイズ及び視野幅(6角視野絞り幅)が異なるために、レンズピッチ間隔と視野幅の比率が変更される場合がある。その場合、レンズピッチを視野幅の整数倍になるように調整すると、3列構成にならない場合も生じる。
 また、上記実施形態では、露光用のマイクロレンズアレイ3をマスクアライメントマーク31と基板アライメントマーク32との間に移動させて、基板アライメントマーク32の像をマスク上に投影しているが、アライメント用に専用のマイクロレンズアレイを設けたり、露光用とアライメント用の双方の機能を持つ大型のマイクロレンズアレイを配置してもよい。
 次に、本発明の第11実施形態について説明する。図35(a)乃至図35(c)は、本発明の第11実施形態に係るアライメント装置において、多角視野絞りを介して検出される基板アライメントマークの像をマイクロレンズアレイと共に示す図、及びカメラにより撮像された基板アライメントマークの像を重ね合わせた状態を示す図、図36(a)は本発明の第11実施形態に係る露光装置用のアライメント装置を示す図、図36(b)は検出されるアライメントマークの相対的位置関係を示す図である。図36に示すように、本実施形態においては、アライメント装置が設けられる露光装置は、従来のマイクロレンズアレイを使用したスキャン露光装置と同様に、基板1とマスク2との間にマイクロレンズアレイ3が設けられており、露光光源8から出射された露光光をマスク2に形成されたパターンに透過させ、マイクロレンズアレイ3により、パターンの正立等倍像を基板上に結像させる。そして、マスク2及び基板1に対して、マイクロレンズアレイ3と露光光源及び光学系を、一体的に、図36における紙面に垂直の方向(以下、スキャン露光方向とよぶ)に相対移動させることにより、露光光が基板1上をスキャンし、マスク2のパターンが基板1上に転写されるように構成されている。この露光装置において、アライメント装置は、基板1とマスク2との相対的位置合わせに使用される。
 本実施形態に係るアライメント装置には、マスク2の上方に、基板1に設けられた基板アライメントマーク1aとマスク2に設けられたマスクアライメントマーク2aに、マスク2の上方からアライメント用の光を照射するアライメント光源5が設けられている。図36(a)に示すように、本実施形態においては、アライメント光源5は、基板アライメントマーク1a及びマスクアライメントマーク2aを検出するカメラ6と共に、1焦点型の同軸落射式顕微鏡に内蔵されている。そして、アライメント光源5は、カメラ6が検出する光の光軸と同軸的にアライメント光を出射するように構成されている。このアライメント光源5としては、レーザ光又は干渉フィルタを透過したランプ光を使用することができる。ランプ光源としては、例えばハロゲンランプを使用すれば、コストを低減でき、好ましい。なお、アライメント光源5は、カメラ6とは別体的に設けられていてもよい。アライメント光源5から出射された光は、例えば反射鏡及びビームスプリッタ等の光学系を介して、マスク2及び基板1に照射される。
 マイクロレンズアレイ3は、図26に示すマイクロレンズアレイと同様に、例えば、4枚8レンズ構成であり、4枚の単位マイクロレンズアレイ3-1,3-2,3-3,3-4が積層された構造を有する。各単位マイクロレンズアレイ3-1乃至3-4は、複数個のマイクロレンズ4が2次元的に配置されて構成されている。例えば単位マイクロレンズアレイ3-1乃至3-4は、複数個のマイクロレンズが配列されたマイクロレンズ列が、その配列方向に直交する方向に複数列配置されたものである。そして、隣接するマイクロレンズ列のマイクロレンズ同士は、相互に列方向に偏倚しており、例えば3列のマイクロレンズ列により、1マイクロレンズ列群が構成されている。そして、マイクロレンズアレイ3は、各マイクロレンズ列におけるマイクロレンズの配列方向が、基板1及びマスク2に対する相対的スキャン露光方向に直交する方向となるように、露光装置及びアライメント装置に配置されている。本実施形態においては、マイクロレンズアレイ3は、基板1とマスク2との相対的位置合わせの際には、基板アライメントマーク1aとマスクアライメントマーク2aとの間に移動され、1枚のマイクロレンズアレイ3を露光時とアライメント時で移動させ、露光用のマイクロレンズアレイ3をアライメント用に共用して使用される。
 露光装置には、例えばマイクロレンズアレイ3を移動させる駆動装置(図示せず)が設けられており、制御装置により制御されている。そして、露光時には、制御装置は、マイクロレンズアレイ3を光源8と一体的にスキャン露光方向に移動させるように制御する。また、アライメント時においては、アライメント光が照射された状態で、制御装置は、マイクロレンズアレイ3をスキャン露光方向に移動させるように制御し、これにより、基板1から反射された光が、マイクロレンズアレイ3の6角視野絞り42の6角形の開口に対応して、カメラ6側から検出されるように構成されている。本実施形態においては、マイクロレンズアレイ3の移動方向は、露光時とアライメント時とで同一の方向である。
 マスク2には、例えば枠状のマスクアライメントマーク2aが設けられており、基板1には、例えばマスクアライメントマーク2aよりも大きさが小さく、矩形の基板アライメントマーク1aが設けられている。そして、アライメント時に、基板1とマスク2とが所定の位置関係にあるときには、図36(b)に示すように、カメラ6により検出される基板アライメントマーク1aは、マスクアライメントマーク2aの中心に位置する。
 本実施形態においては、基板1とマスク2とのアライメントの際には、マイクロレンズアレイ3により、基板アライメントマーク1aから反射した正立等倍像がマスク2上に結像され、マスク2の上方に設けられたカメラ6により、マスクアライメントマーク2aから反射した反射光及びマスク2上に結像した基板アライメントマーク1aの正立等倍像を同時に検出するように構成されている。
 図36(a)に示すように、カメラ6は、マスク2の位置を制御する第2の制御装置9に接続されており、第2の制御装置9は、カメラ6による検出結果によって、基板1とマスク2とのアライメントが必要な場合には、マスク2を移動させるように構成されている。例えば、カメラ6により検出される基板アライメントマーク1aの位置が枠状のマスクアライメントマーク2aの中心からずれている場合には、第2の制御装置9は、基板アライメントマーク1aがマスクアライメントマーク2aの中心に位置するようにマスク2を移動させる。なお、図36(a)に二点鎖線で示すように、第2の制御装置9は、例えば基板1が載置されるステージ等に接続され、基板1を移動させることにより、基板1とマスク2とのアライメントを行うように構成されていてもよい。又は、第2の制御装置9は、基板1及びマスク2の双方を移動させることにより、基板1とマスク2とのアライメントを行うように構成されていてもよい。
 アライメントの際には、マスクアライメントマーク2aと基板アライメントマーク1aとの間に配置されたマイクロレンズアレイ3により、基板アライメントマーク1aから反射された反射光は、マイクロレンズアレイ3を透過し、マスク2上には、基板アライメントマーク1aの正立等倍像が結像される。よって、基板1とマスク2との間には、実際には、5乃至15mmのギャップGが存在するが、このギャップGに起因するカメラ6側のフォーカス差が0となる。よって、カメラ6のセンサに対する距離が異なる基板1及びマスク2のアライメントマーク1a,2aをカメラ6に同時に結像させることができ、各アライメントマークを指標として、基板1とマスク2との位置を調整すれば、基板1とマスク2とのアライメントを高精度で行うことができる。また、カメラ側のフォーカス差を0にすることにより、図37(a)に示すように、アライメント光の光軸が傾斜した場合においても、アライメントマーク同士の相対位置は変化せず(図37(b))、極めて高いアライメント精度を得ることができる。
 マイクロレンズアレイ3の単位マイクロレンズアレイ間の反転結像位置には、例えば図27に示すような6角視野絞り42が配置されている。よって、マスク2上に結像される基板アライメントマーク1aの像は、6角視野絞り42の開口に対応した像となる。従って、瞬間的には、基板アライメントマーク1aの端縁が6角視野絞り42の開口に対応する位置にない場合が生じ、カメラ6側から基板アライメントマーク1aの端縁を検出できず、基板アライメントマーク1aの中心位置が特定できずに、検出した像を基板1とマスク2とのアライメントに使用できない場合が生じる。
 しかし、本実施形態においては、マイクロレンズアレイ3は、複数個のマイクロレンズがスキャン露光方向に直交する方向に配列されてマイクロレンズ列を構成し、このマイクロレンズ列が、そのスキャン露光方向に複数列配置されると共に、スキャン露光方向に隣接する2列のマイクロレンズ列の相互間は、スキャン露光方向に直交する方向に偏倚するように配置されたものであり、アライメント時には、制御装置によりスキャン露光方向に移動するように制御される。そして、制御装置は、カメラにより、両アライメントマークの像を、マイクロレンズアレイ3の各マイクロレンズ列の配列ピッチの整数倍でない間隔で複数回撮像し、撮像された複数個の像を重ね合わせて、この重ね合わされた基板アライメントマーク1a及びマスクアライメントマーク2aの像をアライメントに使用する。よって、多角視野絞りが設けられている場合においても、基板アライメントマークの1aの端縁を確実に特定できる。即ち、図35(a)乃至図35(c)に示すように、カメラ6により検出される基板アライメントマーク1aの像は、瞬間的には、その端縁が検出できない場合がある。例えば図35(a)に示すように、アライメントマーク1aの左側の端縁は、カメラ6により検出できない。しかし、制御装置が、マイクロレンズアレイ3をスキャン露光方向に移動させながら、カメラ6により、基板アライメントマーク1aの像を、マイクロレンズアレイ3のマイクロレンズ列の配列ピッチの整数倍でない間隔で複数回撮像し、図35(a)乃至図35(c)の右側の図に示すように、撮像した複数枚の像を重ね合わせることにより、基板アライメントマーク1aの端縁を確実に検出でき、基板1とマスク2とのアライメントを行うことができる。このとき、カメラ6によるアライメントマーク1a,2aの撮像が、マイクロレンズ列の配列ピッチの整数倍の間隔で行われると、基板アライメントマーク1aの像は、複数回の撮像により、スキャン露光方向に直交する方向に並ぶように検出される。よって、基板アライメントマーク1aのスキャン方向における端縁が1回目の撮像で検出できなかった場合、2回目以降の撮像においても、基板アライメントマーク1aのスキャン露光方向における端縁を検出できない。このカメラ6による撮像回数は、マイクロレンズ列群を構成するマイクロレンズ列の列数以上であることが好ましい。
 次に、上述のごとく構成された本実施形態に係るアライメント装置の動作について説明する。マイクロレンズアレイ3は、露光時には、マスク2に設けられたパターン領域の下方に位置する。先ず、このマイクロレンズアレイ3が、図36における右方向に移動して、基板アライメントマーク1aとマスクアライメントマーク2aとの間に移動する。次に、カメラ6に内蔵されたハロゲンランプ等のアライメント光源5からアライメント光を出射させると共に、制御装置により、マイクロレンズアレイ3がスキャン露光方向に移動するように制御する。このアライメント光は、例えば反射鏡及びビームスプリッタ等の光学系を介して、先ず、マスク2に照射される。マスク2に照射されたアライメント光は、マスクアライメントマーク2aにより反射される。一方、マスク2に透過されたアライメント光は、マスク2の下方に配置されたマイクロレンズアレイ3に透過され、基板1上に照射される。
 そして、基板アライメントマーク1aに反射された反射光は、マイクロレンズアレイ3を透過して、再度マスク2に入射され、マスク2上に基板アライメントマーク1aの正立等倍像が結像される。そして、各反射光は、カメラ6のセンサに入射され、マスクアライメントマーク2a及びマスク2上に結像した基板アライメントマーク1aの正立等倍像が検出される。このように、本実施形態においては、マスク2上に結像した基板アライメントマーク1aの正立等倍像をカメラ6により検出するため、基板1とマスク2との間には、実際には、5乃至15mmのギャップGが存在するが、カメラ6側では、このギャップGに起因するフォーカス差が0となる。
 制御装置は、カメラ6により、マスク2上に結像した基板アライメントマーク1aの像を、マスクアライメントマーク2aと共に複数回撮像させる(図35)。即ち、マイクロレンズアレイ3には、単位マイクロレンズアレイ間の反転結像位置に6角視野絞り42が設けられているため、マスク2上に結像される基板アライメントマーク1aの像は、6角視野絞り42の開口に対応した像となり、瞬間的には、カメラ6側から基板アライメントマーク1aの端縁を検出できない場合が生じる。例えば図35(a)に示すように、基板アライメントマーク1aの左側の端縁が検出できず、基板アライメントマーク1aの中心位置が特定できずに、撮像されたアライメントマーク1aの像を基板1とマスク2とのアライメントに使用できない場合が生じる。しかし、本実施形態においては、制御装置により、マイクロレンズアレイ3をスキャン露光方向に移動させながら、カメラ6により、マイクロレンズアレイ3の各マイクロレンズ列の配列ピッチの整数倍でない間隔で基板アライメントマーク1aの像を複数回撮像する。そして、制御装置は、撮像された複数枚の像を重ね合わせて、この重ね合わされたアライメントマーク1a,2aの像をアライメントに使用する。これにより、基板アライメントマーク1aの端縁を確実に検出できる。よって、基板アライメントマーク1aの中心位置を確実に特定することができ、高精度のアライメントに使用できる。
 そして、カメラ6により検出される基板及びマスクの各アライメントマーク1a,2aにより、基板1とマスク2とのアライメントを行う。例えば、カメラ6により検出される基板アライメントマーク1aの位置が枠状のマスクアライメントマーク2aの中心からずれている場合には、第2の制御装置9により、基板アライメントマーク1aがマスクアライメントマーク2aの中心に位置するようにマスク2を移動させて基板1とマスク2とのアライメントを行う。本実施形態においては、基板1とマスク2との間のギャップGに起因するカメラ6側のフォーカス差が0となるため、基板1及びマスク2のアライメントマーク1a,2aを指標として、基板1とマスク2とのアライメントを高精度で行うことができる。
 また、マスク2上に基板アライメントマーク1aの正立等倍像を結像させるため、図37(a)に示すように、アライメント光の光軸が傾斜した場合においても、カメラ6により検出される基板及びマスクのアライメントマーク1a及び2aの相対位置は、図37(b)に示すように、アライメント光が基板1及びマスク2に垂直に照射される図36(b)の場合から変化せず、アライメント光の光軸の傾斜によりアライメント精度が低下することもない。
 これに対し、マイクロレンズアレイ3により、基板アライメントマーク1aをマスク2に結像させない場合は、図5を参照して説明したように、アライメントマークの位置を誤検知してしまう。本実施形態に係るアライメント装置においては、アライメント精度が高い共に、アライメント時には、露光用のマイクロレンズアレイ3を基板アライメントマーク1aとマスクアライメントマーク2aとの間に移動させるだけで、基板1とマスク2との間のギャップGに起因するカメラ6側のフォーカス差を0にして高いアライメント精度が得られ、アライメント光源も1個だけでよい。
 基板1とマスク2とのアライメント後には、マイクロレンズアレイ3は、図36における左方向に移動されて、マスク2に設けられたパターン領域の下方に移動され、その後、露光光が出射されて、マイクロレンズアレイ3によるスキャン露光が開始される。本実施形態においては、上記のように、高いアライメント精度が得られるため、スキャン露光における露光精度を極めて高く維持することができる。
 なお、本実施形態における基板及びマスクのアライメントマーク1a,2aの形状は、一例であり、各アライメントマーク1a,2aをカメラ6で検出して、基板1とマスク2とのアライメントを行うことができる限り、本発明は、アライメントマーク1a,2aの形状により限定されるものではない。
 また、本実施形態においては、アライメント光源5は、カメラ6と共に顕微鏡に内蔵されており、カメラ6が検出する光の光軸と同軸的にアライメント光を出射するように構成されている場合について説明したが、本発明においては、基板1及びマスク2の一方の正立等倍像を他方に結像させ、これをカメラ6により検出するため、アライメント光源5が出射する光の光軸は、カメラにて検出される反射光の光軸とが同軸でなくてもよい。
 次に、本発明の第12実施形態に係る露光装置用のアライメント装置について説明する。図38(a)乃至図38(d)は、本発明の第12実施形態に係るアライメント装置において、多角視野絞りを介して検出される基板アライメントマークの像、及びカメラにより連続的に動画として撮像された基板アライメントマークの像を示す図である。本実施形態が第11実施形態と異なるのは、アライメント時に、カメラ6は、マスク2上に結像した基板アライメントマーク1aの正立等倍像を連続的に撮像する点にある。なお、図38においては、一例として、スキャン露光方向に並ぶマイクロレンズアレイ3の各マイクロレンズ列を、スキャン露光方向における配列ピッチずつ移動させた状態を示している。
 本実施形態においては、アライメント時には、制御装置は、マイクロレンズアレイ3を移動させながら、カメラ6により、マスク2上に結像した基板アライメントマーク1aの正立等倍像を所定時間連続的に撮像することにより、図38(b)乃至図38(d)に示すように、6角視野絞り42の開口に対応してマスク2上に結像された基板アライメントマーク1aの像は、スキャンにより、その像が帯状に延びていくように検出される。そして、例えば図32に示すように、マイクロレンズアレイ3が、スキャン露光方向にマイクロレンズ列が3列配置されて1マイクロレンズ群を構成しているものである場合においては、カメラ6による撮像時間を、マイクロレンズアレイ3がマイクロレンズ列の配列ピッチの3ピッチだけ移動される時間以上とすることにより、図38(d)に示すように、基板アライメントマーク1aの全体をカメラ6側で検出することができる。よって、本実施形態においては、基板アライメントマーク1aの中心位置を第11実施形態よりも高精度で検出できる。
 次に、本発明の第13実施形態に係る露光装置用のアライメント装置について説明する。図39(a)は本発明の第13実施形態に係る露光装置用のアライメント装置を示す図、図39(b)は検出されるアライメントマークの相対的位置関係を示す図である。第11実施形態及び第12実施形態においては、露光用のマイクロレンズアレイ3を露光時とアライメント時とで移動させて、1枚のマイクロレンズアレイを露光用とアライメント用とで共用した場合を説明したが、図39に示すように、本実施形態においては、マイクロレンズアレイ3は、露光光が照射される露光位置と、アライメント光が照射されるアライメント位置とを包含する大きさで設けられている。その他の構成については、第11実施形態と同様である。
 本実施形態のように、1枚の共有マイクロレンズアレイ3を、露光位置とアライメント位置とを包含する大きさのマイクロレンズアレイで構成することにより、露光時とアライメント時とで、マイクロレンズアレイ3を移動させる必要がなくなる。また、露光時及びアライメント時に夫々マイクロレンズアレイ3を移動させる構成、例えば駆動装置を共用することもできる。その他の効果は、第11実施形態と同様である。
 なお、第12実施形態と同様に、アライメント時に、マイクロレンズアレイ3を移動させながら、カメラ6により、マスク2上に結像した基板アライメントマーク1aの像を、マスクアライメントマーク2aの像と共に連続的に撮像するように構成することにより、第12実施形態と同様の効果が得られる。
 次に、本発明の第14実施形態に係る露光装置用のアライメント装置について説明する。図40(a)は本発明の第14実施形態に係る露光装置用のアライメント装置を示す図、図40(b)は検出されるアライメントマークの相対的位置関係を示す図、図41(a),(b)は図40に示す露光装置において、アライメント光の光路が傾斜した場合を示す図である。図40に示すように、本実施形態においては、マイクロレンズアレイは、露光用の(第1の)マイクロレンズアレイ3とアライメント用の(第2の)マイクロレンズアレイ7とが2枚設けられている。そして、第2のマイクロレンズアレイ7は、光学特性が(第1の)マイクロレンズアレイ3と同一である。その他の構成は、第11実施形態と同様である。
 本実施形態においても、基板アライメントマーク1aの正立等倍像を、マスク2上に結像させることができ、基板1とマスク2との間の5乃至15mmのギャップGに起因するカメラ6側のフォーカス差を0とすることができ、第11実施形態と同様に、基板1とマスク2とのアライメントを高精度で行うことができる。また、図41に示すように、アライメント光の光軸が傾斜した場合においても、アライメントマーク同士の相対位置は変化せず、極めて高いアライメント精度を得ることができる。また、マイクロレンズアレイは、露光用のマイクロレンズアレイ3とアライメント用のマイクロレンズアレイ7とが別体で構成されていることにより、第13実施形態と同様に、露光時とアライメント時とで、マイクロレンズアレイ3を移動させる必要がなくなる。
 そして、本実施形態においても、アライメント時に、制御装置が、マイクロレンズアレイ7を移動させながら、カメラ6により、マスク2上に結像した基板アライメントマーク1aの像を、マスクアライメントマーク2aと共に、マイクロレンズアレイ3の各マイクロレンズ列の配列ピッチの整数倍でない間隔で複数回撮像し、撮像されたアライメントマークの像を重ね合わせてアライメントに使用することにより、第11実施形態と同様の効果が得られる。また、マイクロレンズアレイ7を移動させながら、カメラ6によりマスク2上に結像した基板アライメントマーク1aの像を、マスクアライメントマーク2aの像と共に連続的に撮像するように構成することにより、第12実施形態と同様の効果が得られる。
 本実施形態においては、露光用のマイクロレンズアレイ3とアライメント用のマイクロレンズアレイ7とが設けられていることにより、露光時のマイクロレンズアレイ3のスキャン露光方向とアライメント時のマイクロレンズアレイ7の移動方向とを異なる方向にすることができる。即ち、第2の駆動装置によるマイクロレンズアレイ7の移動方向が、マイクロレンズ列を構成するマイクロレンズの配列方向に直交する方向であれば、本発明の効果が得られる。
 次に、本発明の第15実施形態に係る露光装置用のアライメント装置について説明する。図42(a)は本発明の第15実施形態に係る露光装置用のアライメント装置を示す図、図42(b)は検出されるアライメントマークの相対的位置関係を示す図である。図42に示すように、本実施形態においては、アライメント光源5及びカメラ6は、基板1の下方に配置されており、基板の下方からアライメント用の光を照射する。また、基板アライメントマーク1bが枠状をなし、マスクアライメントマーク2bは矩形状をなしている。本実施形態においては、露光対象の基板1は、例えばPI(ポリイミド)及びITO(スズドープ酸化インジウム)等の光透過性の材料からなり、アライメント用の光は、基板1を透過して、マスク2に照射される。即ち、本実施形態においては、基板1が光透過性の材料からなる場合において、アライメント光の照射方向並びに基板1及びマスク2の各アライメントマーク1b,2bの形状が第11実施形態と異なり、その他の構成は、第11実施形態と同様である。
 本実施形態においても、露光用のマイクロレンズアレイ3は、基板1とマスク2との相対的位置合わせの際には、マスクアライメントマーク2bと基板アライメントマーク1bとの間に移動され、1枚のマイクロレンズアレイ3を露光時とアライメント時で移動させて使用される。そして、アライメントの際には、マイクロレンズアレイ3により、マスクアライメントマーク2bにより反射された反射光は、マイクロレンズアレイ3を透過し、基板1上にマスクアライメントマーク2bの正立等倍像が結像される。このとき、マイクロレンズアレイ3の単位マイクロレンズアレイ間の反転結像位置に設けられた6角視野絞り42により、基板1上に結像されるマスクアライメントマーク2bの像は、6角視野絞り42の開口に対応した像となる。よって、瞬間的には、カメラ6側からマスクアライメントマーク2bの端縁を検出できず、マスクアライメントマーク2bの中心位置が特定できずに、撮像されたアライメントマーク2bの像を基板1とマスク2とのアライメントに使用できない場合が生じる。しかし、マイクロレンズアレイ3は、複数個のマイクロレンズがスキャン露光方向に直交する方向に配列されてマイクロレンズ列を構成し、このマイクロレンズ列が、そのスキャン露光方向に複数列配置されると共に、スキャン露光方向に隣接する2列のマイクロレンズ列の相互間は、スキャン露光方向に直交する方向に偏倚するように配置されたものであり、アライメント時には、制御装置によりスキャン露光方向に移動するように制御される。よって、本実施形態においても、制御装置が、カメラ6により、基板1上に結像したマスクアライメントマーク2bの像を、基板アライメントマーク1bと共に、マイクロレンズアレイ3の各マイクロレンズ列の配列ピッチの整数倍でない間隔で複数回撮像し、撮像した複数枚の像を重ね合わせて、この重ね合わされた基板アライメントマーク1b及びマスクアライメントマーク2bの像をアライメントに使用することにより、多角視野絞りが設けられている場合においても、マスクアライメントマーク1bの端縁を確実に特定でき、基板1とマスク2とのアライメントに使用することができる。
 また、基板1とマスク2との間には、5乃至15mmのギャップGが存在するが、このギャップGに起因するカメラ6側のフォーカス差が0となる。よって、本実施形態においても、上記第11乃至第14実施形態と同様に、基板1及びマスク2のアライメントマーク1b,2bを指標として、基板1とマスク2とのアライメントを高精度で行うことができる。例えば、カメラ6により検出されるマスクアライメントマーク2bの位置が枠状の基板アライメントマーク1bの中心からずれている場合には、第2の制御装置9により、マスクアライメントマーク2bが基板アライメントマーク1bの中心に位置するようにマスク2を移動させて基板1とマスク2とのアライメントを行う。また、基板1上にマスクアライメントマーク2bの正立等倍像を結像させるため、アライメント光の光軸が傾斜した場合においても、カメラ6により検出される基板アライメントマーク1b及びマスクアライメントマーク2bの相対位置は、アライメント光が基板1及びマスク2に垂直に照射される場合から変化せず、極めて高いアライメント精度を得ることができる。
 なお、本実施形態においても、アライメント時に、制御装置が、マイクロレンズアレイ3を移動させながら、カメラ6により基板1上に結像したマスクアライメントマーク2bの像を、基板アライメントマーク1bの像と共に連続的に撮像するように構成することにより、第12実施形態と同様の効果が得られる。
 また、マイクロレンズアレイ3を、露光光が照射される露光位置と、アライメント光が照射されるアライメント位置とを包含する大きさで設けることにより、第13実施形態と同様に、露光時とアライメント時とで、マイクロレンズアレイ3を移動させる必要がなくなる。
 次に、本発明の第16実施形態に係る露光装置用のアライメント装置について説明する。図43(a)は本発明の第16実施形態に係る露光装置用のアライメント装置を示す図、図43(b)は検出されるアライメントマークの相対的位置関係を示す図である。図43に示すように、本実施形態においては、第14実施形態と同様に、マイクロレンズアレイは、露光用のマイクロレンズアレイ3とアライメント用のマイクロレンズアレイ7とが2枚設けられている。そして、アライメント用のマイクロレンズアレイ7は、光学特性が露光用のマイクロレンズアレイ3と同一である。これにより、本実施形態においては、第14実施形態と同様の効果が得られる。
 なお、本実施形態においても、第14実施形態と同様に、露光時のマイクロレンズアレイ3のスキャン露光方向とアライメント時のマイクロレンズアレイ7の移動方向(第1方向)とを異なる方向にすることができる。即ち、制御装置によるマイクロレンズアレイ7の移動方向が、マイクロレンズ列を構成するマイクロレンズの配列方向に直交する方向であれば、本発明の効果が得られる。
 本発明によれば、基板とマスクとのアライメントがとれているにも拘わらず、カメラにおいては、アライメントがとれていないと誤観察されたり、基板とマスクとのアライメントがとれていないにも拘わらず、カメラにおいては、アライメントがとれていると誤観察されることを防止できるので、カメラにより検出される基板アライメントマークとマスクアライメントマークとを使用して、基板とマスクとのアライメントを高精度で行うことができる。
1:基板、2:マスク、3:(第1の)マイクロレンズアレイ、4:マイクロレンズ、5:アライメント光源、7:第2のマイクロレンズアレイ、1a、1b:基板アライメントマーク、2a,2b:マスクアライメントマーク、6,20:カメラ、21:フィルタ、22,23,25,30:レンズ、24,28:ビームスプリッタ、29:反射鏡、9:制御装置、40:開口、41:開口絞り、42:6角視野絞り、43:遮光膜

Claims (30)

  1. 露光光を出射する光源と、この光源からの露光光が入射され基板に露光するパターンが形成されたマスクと、前記基板と前記マスクとの間に設けられこのマスクを透過した露光光が入射されて前記基板に前記パターンの正立等倍像を結像させる第1のマイクロレンズアレイと、を有する露光装置の前記マスクと前記基板とを相対的位置合わせする露光装置用のアライメント装置において、
    前記基板に設けられた基板アライメントマークと前記マスクに設けられたマスクアライメントマークに、前記マスクの上方からアライメント用の光を照射するアライメント光源と、
    前記基板アライメントマークと前記マスクアライメントマークとの間に配置され、前記基板アライメントマークから反射した反射光を前記マスク上に正立等倍像として結像させる第2のマイクロレンズアレイと、
    前記基板アライメントマークの反射光と前記マスクアライメントマークの反射光とを前記マスク側から検出するカメラと、
    このカメラにより検出される前記基板アライメントマークと前記マスクアライメントマークとが一致するように、前記マスク及び/又は前記基板の位置を調節する制御装置と、
    を有することを特徴とする露光装置用のアライメント装置。
  2. 露光光を出射する光源と、この光源からの露光光が入射され基板に露光するパターンが形成されたマスクと、前記基板と前記マスクとの間に設けられこのマスクを透過した露光光が入射されて前記基板に前記パターンの正立等倍像を結像させる第1のマイクロレンズアレイと、を有する露光装置の前記マスクと前記基板とを相対的位置合わせする露光装置用のアライメント装置において、
    前記基板に設けられた基板アライメントマークと前記マスクに設けられたマスクアライメントマークに、前記基板の下方からアライメント用の光を照射するアライメント光源と、
    前記基板アライメントマークと前記マスクアライメントマークとの間に配置され、前記マスクアライメントマークから反射した反射光を前記基板上に正立等倍像として結像させる第2のマイクロレンズアレイと、
    前記基板アライメントマークの反射光と前記マスクアライメントマークの反射光とを前記基板側から検出するカメラと、
    このカメラにより検出される前記基板アライメントマークと前記マスクアライメントマークとが一致するように、前記マスク及び/又は前記基板の位置を調節する制御装置と、
    を有することを特徴とする露光装置用のアライメント装置。
  3. 前記第1のマイクロレンズアレイと前記第2のマイクロレンズアレイとは、1枚の共有マイクロレンズアレイにより構成され、前記アライメント用の光は前記共有マイクロレンズアレイを前記基板アライメントマークと前記マスクアライメントマークとの間に移動させた状態で照射されることを特徴とする請求項1又は2に記載の露光装置用のアライメント装置。
  4. 前記第1のマイクロレンズアレイと前記第2のマイクロレンズアレイとは、露光光が照射される露光位置と、アライメント光が照射されるアライメント位置とを包含する1枚の共有マイクロレンズアレイにより構成されていることを特徴とする請求項1又は2に記載の露光装置用のアライメント装置。
  5. 前記第1のマイクロレンズアレイと前記第2のマイクロレンズアレイとは、別体で構成されていることを特徴とする請求項1又は2に記載の露光装置用のアライメント装置。
  6. 前記基板アライメントマーク及び前記マスクアライメントマークの一方が、枠状をなし、他方がアライメント時に前記枠の中心に位置する矩形状をなすことを特徴とする請求項1乃至5のいずれか1項に記載の露光装置用のアライメント装置。
  7. 前記アライメント光源は、前記カメラが検出する光の光軸と同軸的にアライメント光を出射することを特徴とする請求項1乃至6のいずれか1項に記載の露光装置用のアライメント装置。
  8. 前記アライメント光源と、前記カメラとは、別体であり、前記アライメント光源からの光の光軸と、前記カメラにて検出される反射光の光軸とは、同軸ではないことを特徴とする請求項1乃至6のいずれか1項に記載の露光装置用のアライメント装置。
  9. 複数個のマイクロレンズが2次元的に配置されて構成され相互に積層された複数枚の単位マイクロレンズアレイと、この単位マイクロレンズアレイ間の反転結像位置に配置され多角形の開口を有する多角視野絞りと、前記単位マイクロレンズアレイ間の露光光の最大拡大部の少なくとも一部に配置され円形の開口を有し各マイクロレンズの開口数を規定する開口絞りと、を有するマイクロレンズアレイを使用し、このマイクロレンズアレイを、露光対象の基板と、この基板に露光するパターンが設けられたマスクとの間に配置して、前記マスクと前記基板とを相対的に位置合わせする際に使用されるアライメントマークであって、
    前記基板又は前記マスクに形成され、
    前記多角視野絞りの開口の全ての辺に対して夫々傾斜する方向に延びる複数本の線状のマーク片を有し、前記マーク片はアライメント中心から放射状に延びる複数個の第1群のマーク片と、前記アライメント中心を中心とする多角形の辺上に延びる複数個の第2群のマーク片とからなり、前記マーク片のうち、複数個のマーク片がいずれかの前記多角視野絞りの中に存在するように、前記多角視野絞り及び前記マーク片の位置が決められていることを特徴とするアライメントマーク。
  10. 前記第2群のマーク片は、前記アライメント中心を共通の中心とする異なる大きさの複数個の多角形の辺上に連なって配置されていることを特徴とする請求項9に記載のアライメントマーク。
  11. 前記第2群のマーク片は、前記アライメント中心を共通の中心とする異なる大きさの複数個の多角形の辺上に、前記多角形の角部を含むようにして、断続的に配置されていることを特徴とする請求項9に記載のアライメントマーク。
  12. 前記第2群のマーク片は、異なる多角形上に位置するものの太さが、相違することを特徴とする請求項10又は11に記載のアライメントマーク。
  13. 露光装置に供される基板又はマスクに、それらの位置調整のために形成され、線対称の多角形形状の図形からなるアライメントマークであって、
    前記基板と前記マスクとの間にマトリクス状に配置された複数個のレンズの夫々多角視野絞りの開口部を構成するいずれかの縁辺と平行にならないように配置された多角形形状部と、
    前記多角形形状部の中心から、前記多角形形状部を横断する少なくとも6本の放射線からなる放射線部と、
    を有し、
    前記多角形形状部及び前記放射線部の全体が、前記レンズの大きさより大きく、4個の隣接するレンズの全体の大きさより小さいことを特徴とするアライメントマーク。
  14. マスクに形成された露光パターンを基板に転写する露光装置用のアライメント装置において、
    露光光の出射と兼用又は独立のアライメント光の出射用のアライメント光源と、
    前記マスクと前記基板との間に配置され、前記基板に設けられた基板アライメントマークから反射したアライメント光の反射光を前記マスク上に正立等倍像として結像させるマイクロレンズアレイと、
    前記基板アライメントマーク及び前記マスクに設けられたマスクアライメントマークに前記マスク側からアライメント光を同時に照射したときに、前記マスクアライメントマークから反射した反射光及び前記マスク上に結像した前記基板アライメントマークの正立等倍像を前記マスク側から検出するカメラと、
    このカメラにより検出される前記基板アライメントマークと前記マスクアライメントマークとが一致するように、前記マスク及び/又は前記基板の位置を調節する制御装置と、
    を有し、
    前記マイクロレンズアレイは、
    複数個のマイクロレンズが2次元的に配置されて構成され相互に積層された複数枚の単位マイクロレンズアレイと、この単位マイクロレンズアレイ間の反転結像位置に配置され多角形の開口を有する多角視野絞りと、前記単位マイクロレンズアレイ間の露光光の最大拡大部の少なくとも一部に配置され円形の開口を有し各マイクロレンズの開口数を規定する開口絞りと、を有し、
    前記基板アライメントマークは、
    前記多角視野絞りの開口の全ての辺に対して夫々傾斜する方向に延びる複数本の線状のマーク片を有し、前記マーク片はアライメント中心から放射状に延びる複数個の第1群のマーク片と、前記アライメント中心を中心とする多角形の辺上に延びる複数個の第2群のマーク片とからなり、前記マーク片のうち、複数個のマーク片がいずれかの前記多角視野絞りの中に存在するように、前記多角視野絞り及び前記マーク片の位置が決められていることを特徴とする露光装置用のアライメント装置。
  15. マスクに形成された露光パターンを基板に転写する露光装置用のアライメント装置において、
    露光光の出射と兼用又は独立のアライメント光の出射用のアライメント光源と、
    前記マスクと前記基板との間に配置され、前記マスクに設けられたマスクアライメントマークから反射したアライメント光の反射光を前記基板上に正立等倍像として結像させるマイクロレンズアレイと、
    前記マスクアライメントマーク及び前記基板に設けられた基板アライメントマークに前記基板側からアライメント光を同時に照射したときに、前記基板アライメントマークから反射した反射光及び前記基板上に結像した前記マスクアライメントマークの正立等倍像を前記基板側から検出するカメラと、
    このカメラにより検出される前記基板アライメントマークと前記マスクアライメントマークとが一致するように、前記マスク及び/又は前記基板の位置を調節する制御装置と、
    を有し、
    前記マスクアライメントマークは、
    前記多角視野絞りの開口の全ての辺に対して夫々傾斜する方向に延びる複数本の線状のマーク片を有し、前記マーク片はアライメント中心から放射状に延びる複数個の第1群のマーク片と、前記アライメント中心を中心とする多角形の辺上に延びる複数個の第2群のマーク片とからなり、前記マーク片のうち、複数個のマーク片がいずれかの前記多角視野絞りの中に存在するように、前記多角視野絞り及び前記マーク片の位置が決められていることを特徴とする露光装置用のアライメント装置。
  16. 前記第2群のマーク片は、前記アライメント中心を共通の中心とする異なる大きさの複数個の多角形の辺上に連なって配置されていることを特徴とする請求項14又は15に記載の露光装置。
  17. 前記第2群のマーク片は、前記アライメント中心を共通の中心とする異なる大きさの複数個の多角形の辺上に、前記多角形の角部を含むようにして、断続的に配置されていることを特徴とする請求項14又は15に記載の露光装置。
  18. 前記第2群のマーク片は、異なる多角形上に位置するものの太さが、相違することを特徴とする請求項16又は17に記載の露光装置。
  19. 複数個のマイクロレンズが2次元的に配置されて構成され相互に積層された複数枚の単位マイクロレンズアレイと、この単位マイクロレンズアレイ間の反転結像位置に配置され多角形の開口を有する多角視野絞りと、前記単位マイクロレンズアレイ間の露光光の最大拡大部の少なくとも一部に配置され円形の開口を有し各マイクロレンズの開口数を規定する開口絞りと、前記マイクロレンズアレイの上面における前記マイクロレンズ以外の部分を遮光する遮光膜と、を有するマイクロレンズアレイを使用し、このマイクロレンズアレイを、露光対象の基板と、この基板に露光するパターンが設けられたマスクとの間に配置して、前記マスクと前記基板とを相対的に位置合わせする際に使用されるアライメントマークであって、
    前記基板又は前記マスクに形成され、
    前記マイクロレンズが直線上に配列される第1の方向に対し、マークを構成する全ての辺が傾斜していることを特徴とするアライメントマーク。
  20. 前記マイクロレンズアレイは、そのマイクロレンズが露光装置のスキャン方向に垂直の方向に1列に整列して配置されており、前記第1の方向はこのスキャン方向に垂直の方向であり、マークを構成する全ての辺は、前記スキャン方向に垂直の方向に対して傾斜していることを特徴とする請求項19記載のアライメントマーク。
  21. 前記マークを構成する全ての辺は、前記スキャン方向に垂直の方向に対し45°の角度をなすことを特徴とする請求項20に記載のアライメントマーク。
  22. マスクに形成された露光パターンを基板に転写する露光装置用のアライメント装置において、
    露光光の出射と兼用又は独立のアライメント光の出射用のアライメント光源と、
    前記マスクと前記基板との間に配置され、前記基板に設けられた基板アライメントマークから反射したアライメント光の反射光を前記マスク上に正立等倍像として結像させるマイクロレンズアレイと、
    前記基板アライメントマーク及び前記マスクに設けられたマスクアライメントマークに前記マスク側からアライメント光を同時に照射したときに、前記マスクアライメントマークから反射した反射光及び前記マスク上に結像した前記基板アライメントマークの正立等倍像を前記マスク側から検出するカメラと、
    このカメラにより検出される前記基板アライメントマークと前記マスクアライメントマークとが一致するように、前記マスク及び/又は前記基板の位置を調節する制御装置と、
    を有し、
    前記マイクロレンズアレイは、
    複数個のマイクロレンズが2次元的に配置されて構成され相互に積層された複数枚の単位マイクロレンズアレイと、この単位マイクロレンズアレイ間の反転結像位置に配置され多角形の開口を有する多角視野絞りと、前記単位マイクロレンズアレイ間の露光光の最大拡大部の少なくとも一部に配置され円形の開口を有し各マイクロレンズの開口数を規定する開口絞りと、前記マイクロレンズアレイの上面における前記マイクロレンズ以外の部分を遮光する遮光膜と、を有し、
    前記マスクアライメントマーク又は前記基板アライメントマークは、前記マイクロレンズが直線上に配列される第1の方向に対し、マークを構成する全ての辺が傾斜していることを特徴とする露光装置用のアライメント装置。
  23. マスクに形成された露光パターンを基板に転写する露光装置用のアライメント装置において、
    露光光の出射と兼用又は独立のアライメント光の出射用のアライメント光源と、
    前記マスクと前記基板との間に配置され、前記マスクに設けられたマスクアライメントマークから反射したアライメント光の反射光を前記基板上に正立等倍像として結像させるマイクロレンズアレイと、
    前記マスクアライメントマーク及び前記基板に設けられた基板アライメントマークに前記基板側からアライメント光を同時に照射したときに、前記基板アライメントマークから反射した反射光及び前記基板上に結像した前記マスクアライメントマークの正立等倍像を前記基板側から検出するカメラと、
    このカメラにより検出される前記基板アライメントマークと前記マスクアライメントマークとが一致するように、前記マスク及び/又は前記基板の位置を調節する制御装置と、
    を有し、
    前記マイクロレンズアレイは、
    複数個のマイクロレンズが2次元的に配置されて構成され相互に積層された複数枚の単位マイクロレンズアレイと、この単位マイクロレンズアレイ間の反転結像位置に配置され多角形の開口を有する多角視野絞りと、前記単位マイクロレンズアレイ間の露光光の最大拡大部の少なくとも一部に配置され円形の開口を有し各マイクロレンズの開口数を規定する開口絞りと、前記マイクロレンズアレイの上面における前記マイクロレンズ以外の部分を遮光する遮光膜と、を有し、
    前記マスクアライメントマーク又は前記基板アライメントマークは、前記マイクロレンズが直線上に配列される第1の方向に対し、マークを構成する全ての辺が傾斜していることを特徴とする露光装置用のアライメント装置。
  24. 前記マイクロレンズアレイは、そのマイクロレンズが露光装置のスキャン方向に垂直の方向に1列に整列して配置されており、前記第1の方向はこのスキャン方向に垂直の方向であり、マークを構成する全ての辺は、前記スキャン方向に垂直の方向に対して傾斜していることを特徴とする請求項22又は23に記載の露光装置。
  25. 前記マークを構成する全ての片は、前記スキャン方向に垂直の方向に対し45°の角度をなすことを特徴とする請求項24に記載の露光装置。
  26. スキャン露光によりマスクのパターンを基板に転写するマイクロレンズアレイを使用したスキャン露光装置に設けられ、前記マスクと前記基板とを相対的位置合わせする露光装置用のアライメント装置において、
    前記基板に設けられた基板アライメントマークと前記マスクに設けられたマスクアライメントマークに、アライメント用の光を照射するアライメント光源と、
    前記基板と前記マスクとの間に介在して、前記基板アライメントマーク又は前記マスクアライメントマークを夫々前記マスク又は前記基板に正立等倍像として結像させるマイクロレンズアレイと、
    前記基板アライメントマーク及び前記マスクアライメントマークを、一方は反射光の像及び他方は正立等倍像として撮像するカメラと、
    このカメラにより撮像された前記基板アライメントマークと前記マスクアライメントマークとに基づいて、前記マスク及び/又は前記基板の位置を調節する制御装置と、
    を有し、
    前記マイクロレンズアレイは、
    複数個のマイクロレンズが2次元的に配置されて構成され相互に積層された複数枚の単位マイクロレンズアレイと、
    この単位マイクロレンズアレイ間の反転結像位置に配置され多角形の開口を有する多角視野絞りと、
    前記単位マイクロレンズアレイ間の開口数を制限する開口絞りと、を有し、
    前記複数個のマイクロレンズがスキャン露光方向に直交する方向に配列されてマイクロレンズ列を構成し、このマイクロレンズ列が前記スキャン露光方向に複数列配置されると共に、前記スキャン露光方向に隣接する2列のマイクロレンズ列の相互間は前記スキャン露光方向に直交する方向に偏倚するように配置されたものであり、
    前記制御装置は、前記マイクロレンズアレイを前記基板及び前記マスクに対して相対的に前記スキャン露光方向に移動させると共に、前記マイクロレンズ列の配列ピッチの整数倍でない間隔で前記カメラにより前記基板アライメントマークの像及び前記マスクアライメントマークの像を複数回撮像し、撮像された複数個の像を重ね合わせて、この重ね合わされた基板アライメントマークの像及びマスクアライメントマークの像をアライメントに使用することを特徴とする露光装置用のアライメント装置。
  27. スキャン露光によりマスクのパターンを基板に転写するマイクロレンズアレイを使用したスキャン露光装置に設けられ、前記マスクと前記基板とを相対的位置合わせする露光装置用のアライメント装置において、
    前記基板に設けられた基板アライメントマークと前記マスクに設けられたマスクアライメントマークに、アライメント用の光を照射するアライメント光源と、
    前記基板と前記マスクとの間に介在して、前記基板アライメントマーク又は前記マスクアライメントマークを夫々前記マスク又は前記基板に正立等倍像として結像させるマイクロレンズアレイと、
    前記基板アライメントマーク及び前記マスクアライメントマークを、一方は反射光の像及び他方は正立等倍像として撮像するカメラと、
    このカメラにより撮像された前記基板アライメントマークと前記マスクアライメントマークとに基づいて、前記マスク及び/又は前記基板の位置を調節する制御装置と、
    を有し、
    前記マイクロレンズアレイは、
    複数個のマイクロレンズが2次元的に配置されて構成され相互に積層された複数枚の単位マイクロレンズアレイと、
    この単位マイクロレンズアレイ間の反転結像位置に配置され多角形の開口を有する多角視野絞りと、
    前記単位マイクロレンズアレイ間の開口数を制限する開口絞りと、を有し、
    前記複数個のマイクロレンズがスキャン露光方向に直交する方向に配列されてマイクロレンズ列を構成し、このマイクロレンズ列が前記スキャン露光方向に複数列配置されると共に、前記スキャン露光方向に隣接する2列のマイクロレンズ列の相互間は前記スキャン露光方向に直交する方向に偏倚するように配置されたものであり、
    前記制御装置は、前記マイクロレンズアレイを前記基板及び前記マスクに対して相対的にスキャン露光方向に移動させると共に、前記カメラにより前記基板アライメントマークの像及び前記マスクアライメントマークの像を連続的に動画として撮像し、連続的に撮像された基板アライメントマークの像及びマスクアライメントマークの像をアライメントに使用することを特徴とする露光装置用のアライメント装置。
  28. 前記基板アライメントマーク及び前記マスクアライメントマークの一方が、枠状をなし、他方がアライメント時に前記枠の中心に位置する矩形状をなすことを特徴とする請求項26又は27に記載の露光装置用のアライメント装置。
  29. 前記アライメント光源は、前記カメラが検出する光の光軸と同軸的にアライメント光を出射することを特徴とする請求項26乃至28のいずれか1項に記載の露光装置用のアライメント装置。
  30. 前記マイクロレンズアレイは、露光用のマイクロレンズアレイと共用することを特徴とする請求項26乃至29のいずれか1項に記載の露光装置用のアライメント装置。
PCT/JP2012/070046 2011-08-10 2012-08-07 露光装置用のアライメント装置及びアライメントマーク WO2013021985A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147006420A KR101941323B1 (ko) 2011-08-10 2012-08-07 노광 장치용 얼라인먼트 장치 및 얼라인먼트 마크
US14/237,987 US9297642B2 (en) 2011-08-10 2012-08-07 Alignment device for exposure device, and alignment mark
CN201280039116.5A CN103858208B (zh) 2011-08-10 2012-08-07 曝光装置用的对准装置以及对准标记

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011-175410 2011-08-10
JP2011175410A JP6002898B2 (ja) 2011-08-10 2011-08-10 露光装置用のアライメント装置
JP2011197402A JP5874900B2 (ja) 2011-09-09 2011-09-09 露光装置用のアライメント装置
JP2011-197402 2011-09-09
JP2011241674A JP5895276B2 (ja) 2011-11-02 2011-11-02 アライメントマーク及び露光装置
JP2011241634A JP5895275B2 (ja) 2011-11-02 2011-11-02 アライメントマーク及び露光装置
JP2011-241674 2011-11-02
JP2011-241634 2011-11-02

Publications (1)

Publication Number Publication Date
WO2013021985A1 true WO2013021985A1 (ja) 2013-02-14

Family

ID=47668492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070046 WO2013021985A1 (ja) 2011-08-10 2012-08-07 露光装置用のアライメント装置及びアライメントマーク

Country Status (5)

Country Link
US (1) US9297642B2 (ja)
KR (1) KR101941323B1 (ja)
CN (1) CN103858208B (ja)
TW (3) TWI598702B (ja)
WO (1) WO2013021985A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9921482B2 (en) 2013-07-01 2018-03-20 V Technology Co., Ltd. Exposure device and lighting unit
WO2023158194A1 (ko) * 2022-02-15 2023-08-24 삼성디스플레이 주식회사 마스크 및 이의 제조 방법

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5424267B2 (ja) * 2010-08-06 2014-02-26 株式会社ブイ・テクノロジー マイクロレンズ露光装置
JP5842251B2 (ja) * 2012-01-06 2016-01-13 株式会社ブイ・テクノロジー 露光装置及び露光済み材製造方法
CN103412428B (zh) * 2013-07-24 2016-01-27 北京京东方光电科技有限公司 一种对位系统
JP6447148B2 (ja) * 2015-01-09 2019-01-09 株式会社ブイ・テクノロジー 投影露光装置
TW202041978A (zh) * 2015-03-31 2020-11-16 日商尼康股份有限公司 曝光裝置、平面顯示器之製造方法、元件製造方法、及曝光方法
JP6744588B2 (ja) * 2015-03-31 2020-08-19 株式会社ニコン 露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び露光方法
CN104714375B (zh) * 2015-04-02 2017-09-29 安徽三安光电有限公司 一种晶片曝光设备及其曝光方法
US10048473B2 (en) * 2015-08-06 2018-08-14 Qualcomm Incorporated Submicron wafer alignment
US9939605B2 (en) * 2015-08-06 2018-04-10 Qualcomm Incorporated Submicron wafer alignment
DE102015219810A1 (de) * 2015-10-13 2017-04-13 Dr. Johannes Heidenhain Gmbh X-Y-Tisch mit einer Positionsmesseinrichtung
CN110036256B (zh) * 2016-12-12 2020-10-27 国立研究开发法人产业技术综合研究所 标记器和标记器的制造方法
CN106910444B (zh) * 2017-02-28 2020-11-27 京东方科技集团股份有限公司 点灯装置和点灯测试方法
CN111699440A (zh) * 2018-02-08 2020-09-22 株式会社V技术 接近式曝光装置、接近式曝光方法以及接近式曝光装置用光照射装置
CN108803264B (zh) * 2018-06-08 2020-06-16 上海华虹宏力半导体制造有限公司 晶圆上多个对准标记的集中放置和光刻位置的确定方法
JP7220030B2 (ja) * 2018-07-25 2023-02-09 株式会社ジャパンディスプレイ マスクユニットの製造装置
CN110232867B (zh) * 2019-05-13 2022-01-04 Tcl华星光电技术有限公司 显示面板的母板曝光结构
KR20210051039A (ko) * 2019-10-29 2021-05-10 엘지디스플레이 주식회사 도너 기판 및 이를 이용한 led 전사 방법
CN111025799B (zh) * 2019-12-02 2021-07-27 苏州华星光电技术有限公司 显示面板及显示装置
WO2022040226A1 (en) * 2020-08-17 2022-02-24 Tokyo Electron Limited Coaxial see-through inspection system
CN114428444B (zh) * 2020-10-29 2024-01-26 中芯国际集成电路制造(上海)有限公司 套刻量测系统矫正方法
CN114518660A (zh) * 2020-11-19 2022-05-20 京东方科技集团股份有限公司 一种裸眼3d器件的制备方法、裸眼3d器件
NL2029773B1 (en) * 2021-11-16 2022-12-30 Univ Xihua Composite lithography alignment system and method based on super-resolution imaging of dielectric microspheres
CN115031626B (zh) * 2022-05-05 2023-08-18 智慧星空(上海)工程技术有限公司 一种基片坐标测量方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09244254A (ja) * 1996-03-13 1997-09-19 Nikon Corp 液晶用露光装置
JP2004103644A (ja) * 2002-09-05 2004-04-02 Sumitomo Heavy Ind Ltd 近接したマスクとウエハの位置検出装置と方法
JP2007102094A (ja) * 2005-10-07 2007-04-19 V Technology Co Ltd 露光装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5850276A (en) * 1995-11-06 1998-12-15 Sony Corporation Method of making LCD device having alignment mark made of same material and formed at same time as microlenses
US6016185A (en) * 1997-10-23 2000-01-18 Hugle Lithography Lens array photolithography
JP2007042858A (ja) * 2005-08-03 2007-02-15 Mejiro Precision:Kk 投影露光装置
JP5382412B2 (ja) * 2008-10-24 2014-01-08 株式会社ブイ・テクノロジー 露光装置及びフォトマスク
WO2010070988A1 (ja) * 2008-12-16 2010-06-24 株式会社ブイ・テクノロジー 凸状パターン形成方法、露光装置及びフォトマスク
CN102597881B (zh) * 2009-11-12 2015-07-08 株式会社V技术 曝光装置及其使用的光掩模
JP5294488B2 (ja) * 2009-12-03 2013-09-18 株式会社ブイ・テクノロジー 露光装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09244254A (ja) * 1996-03-13 1997-09-19 Nikon Corp 液晶用露光装置
JP2004103644A (ja) * 2002-09-05 2004-04-02 Sumitomo Heavy Ind Ltd 近接したマスクとウエハの位置検出装置と方法
JP2007102094A (ja) * 2005-10-07 2007-04-19 V Technology Co Ltd 露光装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9921482B2 (en) 2013-07-01 2018-03-20 V Technology Co., Ltd. Exposure device and lighting unit
WO2023158194A1 (ko) * 2022-02-15 2023-08-24 삼성디스플레이 주식회사 마스크 및 이의 제조 방법

Also Published As

Publication number Publication date
CN103858208B (zh) 2016-08-24
TW201706730A (zh) 2017-02-16
TW201308026A (zh) 2013-02-16
KR101941323B1 (ko) 2019-01-22
TWI570518B (zh) 2017-02-11
US9297642B2 (en) 2016-03-29
CN103858208A (zh) 2014-06-11
US20140168648A1 (en) 2014-06-19
KR20140054219A (ko) 2014-05-08
TWI606316B (zh) 2017-11-21
TW201714027A (zh) 2017-04-16
TWI598702B (zh) 2017-09-11

Similar Documents

Publication Publication Date Title
WO2013021985A1 (ja) 露光装置用のアライメント装置及びアライメントマーク
JP5515120B2 (ja) マイクロレンズアレイを使用したスキャン露光装置
WO2012046540A1 (ja) マイクロレンズアレイを使用したスキャン露光装置
JP2013050709A (ja) マイクロレンズアレイ及びそれを使用したスキャン露光装置
KR101428864B1 (ko) 초점 위치 변경 장치 및 이를 이용한 공초점 광학 장치
CN103907061B (zh) 微透镜阵列以及使用该微透镜阵列的扫描曝光装置
JP5895275B2 (ja) アライメントマーク及び露光装置
KR102026107B1 (ko) 노광 장치 및 노광재 제조 방법
JP5895276B2 (ja) アライメントマーク及び露光装置
JP5874900B2 (ja) 露光装置用のアライメント装置
JP2006184777A (ja) 焦点検出装置
JP5747306B2 (ja) 露光装置のアライメント装置
TW202235195A (zh) 觀察裝置及觀察方法
JP6002898B2 (ja) 露光装置用のアライメント装置
JP6228420B2 (ja) 検出装置、リソグラフィ装置、および物品の製造方法
JP5853343B2 (ja) マイクロレンズアレイを使用したスキャン露光装置
TWI542957B (zh) 曝光裝置之對準裝置
JP2012128193A (ja) マイクロレンズアレイ及びそれを使用したスキャン露光装置
JP5953038B2 (ja) マイクロレンズアレイの焦点距離測定装置及び方法
CN114391246A (zh) 图像读取装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12821956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14237987

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147006420

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12821956

Country of ref document: EP

Kind code of ref document: A1