KR101931402B1 - 마이크로 렌즈 어레이 및 그것을 사용한 스캔 노광 장치 - Google Patents

마이크로 렌즈 어레이 및 그것을 사용한 스캔 노광 장치 Download PDF

Info

Publication number
KR101931402B1
KR101931402B1 KR1020147004602A KR20147004602A KR101931402B1 KR 101931402 B1 KR101931402 B1 KR 101931402B1 KR 1020147004602 A KR1020147004602 A KR 1020147004602A KR 20147004602 A KR20147004602 A KR 20147004602A KR 101931402 B1 KR101931402 B1 KR 101931402B1
Authority
KR
South Korea
Prior art keywords
microlens array
microlens
unit
arrays
glass plate
Prior art date
Application number
KR1020147004602A
Other languages
English (en)
Other versions
KR20140058572A (ko
Inventor
미찌노부 미즈무라
마꼬또 하따나까
Original Assignee
브이 테크놀로지 씨오. 엘티디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 브이 테크놀로지 씨오. 엘티디 filed Critical 브이 테크놀로지 씨오. 엘티디
Publication of KR20140058572A publication Critical patent/KR20140058572A/ko
Application granted granted Critical
Publication of KR101931402B1 publication Critical patent/KR101931402B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0961Lens arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0075Arrays characterized by non-optical structures, e.g. having integrated holding or alignment means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Abstract

마이크로 렌즈 어레이는, 유리판의 상면 및 하면에, 각각 단위 마이크로 렌즈 어레이가 적층되어, 상판 및 하판에 의해 각 단위 마이크로 렌즈 어레이가 보유 지지되어 있다. 각 단위 마이크로 렌즈 어레이와, 유리판에는, 위치 정렬용의 마크가 형성되어 있고, 단위 마이크로 렌즈 어레이와 유리판은, 이들의 마크에 의해 위치 정렬되어 서로 적층되어 있다. 이에 의해, 복수매의 마이크로 렌즈 어레이를 사용한 스캔 노광에 있어서, 노광 불균일을 방지할 수 있다.

Description

마이크로 렌즈 어레이 및 그것을 사용한 스캔 노광 장치{MICROLENS ARRAY AND SCANNING EXPOSURE DEVICE USING SAME}
본 발명은, 마이크로 렌즈를 2차원적으로 배열한 마이크로 렌즈 어레이에 의해 마스크 패턴을 기판 위에 노광하는 노광 장치, 및 그것에 사용하는 마이크로 렌즈 어레이에 관한 것이다.
최근, 마이크로 렌즈를 2차원적으로 배치한 마이크로 렌즈 어레이를 사용한 스캔 노광 장치가 제안되어 있다(특허문헌 1). 이 스캔 노광 장치에 있어서는, 복수개의 마이크로 렌즈 어레이를 일방향으로 배열하고, 이 배열 방향에 수직인 방향으로 기판 및 마스크를, 마이크로 렌즈 어레이 및 노광 광원에 대하여, 상대적으로 이동시킴으로써, 노광광이 마스크를 스캔하여, 마스크의 구멍에 형성된 노광 패턴을 기판 위에 결상시킨다.
도 8은, 종래의 노광 장치에 있어서의 마이크로 렌즈 어레이를 도시하는 도면이다. 도 8에 도시한 바와 같이, 종래의 노광 장치에 있어서는, 마이크로 렌즈 어레이(2)는, 복수매의 마이크로 렌즈 어레이 칩(20)이, 차광성의 지지 기판(6)에, 스캔 방향(5)에 수직인 방향으로 예를 들어 4개씩 2열로 배치되어 있고, 이들의 마이크로 렌즈 어레이(2)는, 스캔 방향(5)에서 볼 때, 전단의 4개의 마이크로 렌즈 어레이 칩(20)의 상호간에, 후단의 4개의 마이크로 렌즈 어레이 칩(20) 중 3개가 각각 배치되고, 2열의 마이크로 렌즈 어레이 칩(20)이 지그재그로 되도록 배열되어 있다. 이에 의해, 2열의 마이크로 렌즈 어레이 칩(20)에 의해, 기판(4)에 있어서의 스캔 방향(5)에 수직인 방향의 노광 영역의 전역이 노광된다.
도 9에 도시한 바와 같이, 각 마이크로 렌즈 어레이 칩(20)은, 예를 들어 4매 8렌즈 구성이며, 4매의 단위 마이크로 렌즈 어레이(20-1, 20-2, 20-3, 20-4)가 적층된 구조를 갖는다. 각 단위 마이크로 렌즈 어레이(20-1 내지 20-4)는 2개의 렌즈로 구성되어 있고, 도 10에 도시한 바와 같이, 각 마이크로 렌즈 어레이 칩(20)의 단위 마이크로 렌즈 어레이(20-1 내지 20-4) 사이는, 테두리부에서 서로 접착되어 있다. 이에 의해, 노광광은 단위 마이크로 렌즈 어레이(20-2)와 단위 마이크로 렌즈 어레이(20-3)와의 사이에서 일단 수속하고, 다시 단위 마이크로 렌즈 어레이(20-4)의 하방의 기판 위에서 결상한다. 즉, 단위 마이크로 렌즈 어레이(20-2)와 단위 마이크로 렌즈 어레이(20-3)간에는, 마스크(3)의 도립(倒立) 등배상이 결상되고, 기판 위에는, 마스크(3)의 정립(正立) 등배상이 결상된다.
일본 특허 출원 공개 제2007-3829호 공보
그러나, 상기 종래의 스캔 노광 장치에 있어서는, 이하에 나타내는 문제점이 있다. 상술한 바와 같이, 종래의 마이크로 렌즈 어레이를 사용한 스캔 노광에 있어서는, 노광 광원 및 마이크로 렌즈 어레이(2)를 마스크(3) 및 기판(4)에 대하여 상대적으로 스캔함으로써, 기판(4) 위에 마스크(3)의 정립 등배상을 결상시키고 있다. 따라서, 각 마이크로 렌즈 어레이 칩(20)은, 4매의 단위 마이크로 렌즈 어레이(20-1 내지 20-4) 상호간의 테두리부에 있어서의 접착 위치가 어긋난 경우, 기판(4) 위로의 마스크 패턴의 결상 위치가 변화되거나, 기판(4)에 조사되는 노광광의 광량이 변화되어, 노광 불균일의 원인이 된다. 또한, 종래의 마이크로 렌즈 어레이 칩(20)은, 단위 마이크로 렌즈 어레이가 복수매 적층되는 구조인 것에 의해, 접착 위치의 어긋남이 적산되기 쉽다.
또한, 최근의 스캔 노광 공정의 고효율화에의 요구로부터, 마스크(3)는, 그 폭이 예를 들어 1500㎜ 정도까지 길게 되어 있다. 그러나, 광폭의 마스크(3)의 크기에 맞추어, 마이크로 렌즈 어레이 칩(20)을 대형화할 수는 없고, 또한, 이러한 폭이 넓은 마이크로 렌즈 어레이 칩의 제조가 가능했다고 하여도, 그 제조 비용은 극히 높아진다. 따라서, 도 8에 도시하는 종래의 스캔 노광에 있어서는, 마스크(3)의 폭에 대응시켜 복수매의 마이크로 렌즈 어레이 칩(20)을 배치하고 있다. 이러한 복수매의 마이크로 렌즈 어레이 칩(20)을 사용한 노광 장치에 있어서는, 지그재그 형상으로 배치되어 인접하는 마이크로 렌즈 어레이 칩(20)끼리는, 스캔 방향(5)에서 볼 때, 상호간에 간극이 형성되면, 이 간극에 의해, 기판 위에 미노광 또는 노광광의 광량이 적은 영역이 남겨지는 한편, 스캔 방향(5)에서 볼 때, 마이크로 렌즈 어레이 칩(20)끼리가 서로 겹치도록 배치된 경우에는, 겹쳐진 부분에 있어서의 기판에의 조사광의 광량이 많아져, 과노광의 영역이 발생되어, 마찬가지로 노광 불균일의 원인이 된다.
본 발명의 목적은, 복수매의 마이크로 렌즈 어레이를 사용한 스캔 노광에 있어서, 노광 불균일을 방지할 수 있는 마이크로 렌즈 어레이 및 그것을 사용한 스캔 노광 장치를 제공하는 데 있다.
본 발명에 관한 마이크로 렌즈 어레이는, 노광광을 출사하는 광원과 함께 이동되고, 상기 광원으로부터의 노광광을 마스크의 패턴에 투과시켜, 이 마스크의 투과광에 의해 상기 마스크에 형성된 패턴의 정립 등배상을 결상시키는 마이크로 렌즈 어레이에 있어서,
유리판과,
이 유리판의 상면 및 하면에 적층되어 복수개의 마이크로 렌즈가 2차원적으로 배치되어 구성되어 서로 적층된 복수매의 단위 마이크로 렌즈 어레이
를 갖고,
상기 단위 마이크로 렌즈 어레이는, 복수개의 마이크로 렌즈가 제1 방향으로 배열되어 구성된 마이크로 렌즈열이 상기 제1 방향에 직교하는 제2 방향으로 복수열 배치되어 구성되어 있고, 소정수의 마이크로 렌즈열에 의해 마이크로 렌즈열군이 구성되고, 각 마이크로 렌즈열군에 있어서는, 복수열의 상기 마이크로 렌즈열이 상기 제1 방향으로 일정 거리씩 치우쳐 배치되어 있고, 이 마이크로 렌즈열군이 상기 제2 방향으로 복수개 배치되어 구성된 것이며,
각 상기 단위 마이크로 렌즈 어레이와, 상기 유리판에는, 위치 정렬용의 마크가 형성되어 있고, 상기 단위 마이크로 렌즈 어레이와 상기 유리판은, 이들의 마크에 의해 위치 정렬되어 서로 적층되어 있는 것을 특징으로 한다.
본 발명에 관한 마이크로 렌즈 어레이에 있어서, 예를 들어 상기 각 단위 마이크로 렌즈 어레이의 상기 제1 방향에 있어서의 단부 테두리는, 상기 제2 방향에 인접하는 마이크로 렌즈열끼리에서, 상기 마이크로 렌즈열이 상기 제1 방향으로 상기 일정 거리 치우쳐 있는 것에 대응하여, 상기 제2 방향에 대하여 경사져 있다. 이 경우에, 상기 단위 마이크로 렌즈 어레이 및 상기 유리판에 의해 마이크로 렌즈 어레이 칩이 구성되어, 복수개의 상기 마이크로 렌즈 어레이 칩이 상기 제1 방향으로 배열되어 있고, 상기 제1 방향에 인접하는 마이크로 렌즈 어레이 칩끼리는, 그 마이크로 렌즈열이 상기 제2 방향으로 1열 또는 복수열 어긋나 있고, 이 어긋남에 의해, 마이크로 렌즈 어레이 칩의 상호간에 간극이 형성되어 있다.
또한, 예를 들어 상기 단위 마이크로 렌즈 어레이간의 반전 결상 위치에는, 다각형의 개구를 갖는 다각 시야 조리개가 배치되고, 상기 단위 마이크로 렌즈 어레이간의 노광광의 최대 확대부에는, 그 적어도 일부에, 원형의 개구를 갖고 각 마이크로 렌즈의 개구수를 제한하는 개구 조리개가 배치되어 있다. 상술한 마이크로 렌즈 어레이는, 예를 들어 상기 단위 마이크로 렌즈 어레이를 보유 지지하는 홀더를 더 갖는다.
본 발명에 관한 마이크로 렌즈 어레이를 사용한 스캔 노광 장치는, 노광광을 출사하는 광원과, 상기 광원으로부터의 노광광이 입사되어, 기판에 노광해야 할 패턴이 형성된 마스크와, 상기 마스크의 투과광이 입사되어 상기 패턴의 정립 등배상을 기판에 결상시키는 마이크로 렌즈 어레이와, 상기 광원 및 마이크로 렌즈 어레이를 상기 마스크 및 기판에 대하여 상대적으로 이동시키는 이동 장치를 갖는 스캔 노광 장치로서,
상기 마이크로 렌즈 어레이는,
유리판과,
이 유리판의 상면 및 하면에 적층되어 복수개의 마이크로 렌즈가 2차원적으로 배치되어 구성된 복수매의 단위 마이크로 렌즈 어레이
를 갖고,
상기 단위 마이크로 렌즈 어레이는, 복수개의 마이크로 렌즈가 상기 이동 방향에 직교하는 방향의 제1 방향으로 배열되어 구성된 마이크로 렌즈열이 상기 이동 방향인 제2 방향으로 복수열 배치되어 구성되어 있고, 소정수의 마이크로 렌즈열에 의해 마이크로 렌즈열군이 구성되고, 각 마이크로 렌즈열군에 있어서는, 복수열의 상기 마이크로 렌즈열이 상기 제1 방향으로 일정 거리씩 치우쳐 배치되어 있고, 이 마이크로 렌즈열군이 상기 제2 방향으로 복수개 배치되어 구성된 것이며,
각 상기 단위 마이크로 렌즈 어레이와, 상기 유리판에는, 위치 정렬용의 마크가 형성되어 있고, 상기 단위 마이크로 렌즈 어레이와 상기 유리판은, 이들의 마크에 의해 위치 정렬되어 서로 적층되어 있는 것을 특징으로 한다.
본 발명에 있어서는, 복수매의 단위 마이크로 렌즈 어레이가 각각 유리판의 상면 및 하면에 적층되어 있으므로, 단위 마이크로 렌즈 어레이의 적층 위치의 어긋남이 적산되기 어렵다. 또한, 단위 마이크로 렌즈 어레이와, 유리판에는, 위치 정렬용의 마크가 형성되어 있고, 단위 마이크로 렌즈 어레이와 유리판은, 마크에 의해 위치 정렬되어 서로 적층되어 있다. 따라서, 각 단위 마이크로 렌즈 어레이의 적층 위치에 어긋남이 발생하는 것을 확실하게 방지할 수 있고, 스캔 노광 시에 있어서의 노광 불균일의 발생을 방지할 수 있다.
도 1은 본 발명의 실시 형태에 따른 마이크로 렌즈 어레이의 구성을 도시하는 도면이다.
도 2의 (a) 내지 (c)는, 본 발명의 실시 형태에 따른 마이크로 렌즈 어레이에 있어서, 유리판 위로의 단위 마이크로 렌즈 어레이의 접착 방법을 도시하는 도면이다.
도 3은 마이크로 렌즈의 조리개 형상을 도시하는 도면이다.
도 4는 마이크로 렌즈 어레이의 반전 결상 위치의 조리개를 통해서 본 기판 위의 패턴을 도시하는 도면이다.
도 5는 본 발명의 제2 실시 형태에 따른 마이크로 렌즈 어레이에 있어서, 복수매의 마이크로 렌즈 어레이 칩의 단부의 배치를 도시하는 평면도이다.
도 6은 본 발명의 제3 실시 형태에 따른 마이크로 렌즈 어레이에 있어서, 복수매의 마이크로 렌즈 어레이 칩의 단부의 배치를 도시하는 평면도이다.
도 7은 제3 실시 형태의 변형예에 따른 마이크로 렌즈 어레이를 도시하는 평면도이다.
도 8은 노광 장치에 있어서의 마스크, 마이크로 렌즈 어레이 및 기판의 배치를 도시하는 도면이다.
도 9는 단위 마이크로 렌즈 어레이의 배치를 도시하는 단면도이다.
도 10은 단위 마이크로 렌즈 어레이끼리의 접착부를 도시하는 단면도이다.
이하, 본 발명의 실시 형태에 대해서, 첨부의 도면을 참조하여 구체적으로 설명한다. 도 1은, 본 발명의 실시 형태에 따른 마이크로 렌즈 어레이의 구성을 도시하는 도면, 도 2의 (a) 내지 도 2의 (c)는, 본 발명의 실시 형태에 따른 마이크로 렌즈 어레이에 있어서, 유리판 위로의 단위 마이크로 렌즈 어레이의 접착 방법을 도시하는 도면, 도 3은 마이크로 렌즈의 조리개 형상을 도시하는 도면, 도 4는, 마이크로 렌즈 어레이의 반전 결상 위치의 조리개를 통해서 본 기판 위의 패턴을 도시하는 도면이다. 본 제1 실시 형태에 있어서는, 마이크로 렌즈 어레이(1)에 있어서의 각 마이크로 렌즈 어레이 칩(12)은, 평면에서 볼 때 직사각형으로 형성되어 있다.
본 실시 형태의 마이크로 렌즈 어레이(1)는, 도 8에 나타내는 종래의 노광 장치와 마찬가지로, 노광 광원으로부터 출사된 후, 마스크(3)에 투과된 노광광이 입사되어, 마스크(3)의 정립 등배상을 기판(4)에 결상하는 것이며, 노광 광원과 함께, 마스크(3) 및 기판(4)에 대하여 상대적으로 일방향[스캔 방향(5)]으로 이동되어, 노광광을 기판(4)에 스캔한다. 즉, 노광 광원으로부터 출사된 노광광은, 평면 미러 등의 광학계를 통해, 마스크(3)로 유도되고, 마스크(3)를 투과한 노광광은, 마이크로 렌즈 어레이(1)에 조사되어, 마스크(3)에 형성된 패턴이 마이크로 렌즈 어레이(1)에 의해, 기판(4) 위에 결상한다. 노광 광원 및 광학계와 마이크로 렌즈 어레이(1)는, 일체로 되어 일정한 방향으로 이동할 수 있고, 기판(4) 및 마스크(3)는, 고정적으로 배치되어 있다. 그리고, 노광 광원 및 마이크로 렌즈 어레이(1)가, 기판(4) 및 마스크(3)에 대하여, 상대적으로 일방향으로 이동함으로써, 노광광이 기판(4) 위에서 주사되고, 유리 기판으로부터 1매의 기판이 제조되는 소위 1매 취득의 기판의 경우는, 상기 1주사에 의해, 기판의 전체면이 노광된다.
다음으로, 본 실시 형태의 마이크로 렌즈 어레이에 의한 노광 형태에 대해서, 더욱 상세하게 설명한다. 도 8에 도시하는 종래의 노광 장치와 마찬가지로, 유리 기판 등의 피노광 기판(4)의 상방에, 마이크로 렌즈가 2차원적으로 배치되어 구성된 마이크로 렌즈 어레이(1)가 마이크로 렌즈 어레이(2) 대신에 배치되어 있다. 또한, 이 마이크로 렌즈 어레이(1) 위에 마스크(3)가 배치되고, 마스크(3)의 상방에 노광 광원이 배치되어 있다. 마스크(3)는 투명 기판의 하면에 Cr막으로 이루어지는 차광막이 형성되어 있고, 노광광은 이 Cr막에 형성된 구멍을 투과하여 마이크로 렌즈 어레이(1)에 의해 기판 위에 수속한다. 상술한 바와 같이, 본 실시 형태에 있어서는, 예를 들어 기판(4) 및 마스크(3)가 고정되어 있고, 노광 광원 및 마이크로 렌즈 어레이(1)가 동기하여 스캔 방향(5)으로 이동함으로써, 노광 광원으로부터의 노광광이 마스크(3)를 투과하여 기판(4) 위를 스캔 방향(5)으로 스캔된다. 이 노광 광원 및 마이크로 렌즈 어레이(1)의 이동은, 적당한 이동 장치의 구동원에 의해 구동된다. 또한, 노광 광원 및 마이크로 렌즈 어레이(1)를 고정하여, 기판(4) 및 마스크(3)를 이동시키는 것으로 하여도 된다.
도 1에 도시한 바와 같이, 본 실시 형태의 마이크로 렌즈 어레이(1)는, 복수매의 단위 마이크로 렌즈 어레이가 유리판(11)의 상면 및 하면 위에 각각, 복수개 적층되어 예를 들어 접착에 의해 고정된 것이다. 즉, 유리판(11) 위에 적층된 단위 마이크로 렌즈 어레이 및 유리판(11)에 의해 마이크로 렌즈 어레이 칩(12)이 구성되어 있다. 도 1에 도시한 바와 같이, 본 실시 형태에 있어서는, 마이크로 렌즈 어레이 칩(12)은, 9개 형성되어 있고, 스캔 방향(5)에서 볼 때, 전단의 5개의 마이크로 렌즈 어레이 칩(12)의 상호간에, 후단의 4개의 마이크로 렌즈 어레이 칩(12)이 배치되어 있다. 그리고, 유리판(11) 위에 적층된 상층 및 하층의 각각 2매의 단위 마이크로 렌즈 어레이(12a, 12b)는, 각각, 개구(10a, 13a)가 형성된 상판(10) 및 하판(13)에 보유 지지되어 있다. 즉, 단위 마이크로 렌즈 어레이(12a, 12b)를 각각 개구(10a, 13a) 내에 끼워 맞춘 상태에서, 상판(10) 및 하판(13)이 유리판(11)을 끼워 지지함으로써, 단위 마이크로 렌즈 어레이(12a, 12b)가 보유 지지되어 있다. 상판(10) 및 하판(13) 중 적어도 한쪽은, 예를 들어 차광성의 재료에 의해 구성되어 있고, 이들의 각 보유 지지판에는, 마이크로 렌즈 어레이 칩(12)에 있어서의 마이크로 렌즈의 위치에 대응하여, 개구(10a, 13a)가 형성되어 있다.
본 실시 형태에 있어서는, 도 2의 (c)에 도시한 바와 같이, 유리판(11)의 상면에는, 2매의 단위 마이크로 렌즈 어레이[12a(2-1, 2-2)]가 적층되어 있고, 유리판(11)의 하면에는, 2매의 단위 마이크로 렌즈 어레이[12b(2-3, 2-4)]가 적층되어 있다. 도 2의 (a)에 도시한 바와 같이, 유리판(11)에는, 각 단위 마이크로 렌즈 어레이(2-1 내지 2-4)를 적층해야 할 위치의 지표가 되는 복수개의 위치 정렬 마크(11a)가 형성되어 있고, 각 단위 마이크로 렌즈 어레이(2-1 내지 2-4)에는, 광투과 영역이 되지 않는 테두리부의 네 구석에, 마찬가지로, 위치 정렬 마크(2a)가 형성되어 있다. 그리고, 유리판(11)의 위치 정렬 마크(11a)와 단위 마이크로 렌즈 어레이의 위치 정렬 마크(2a)에 의해 위치 정렬되고, 각 단위 마이크로 렌즈 어레이(2-1 내지 2-4)가 유리판(11)의 상면 및 하면에 각각 2매씩 적층되어 있어[도 2의 (b)], 이에 의해, 1개의 마이크로 렌즈 어레이 칩(12)이 구성되어 있다[도 2의 (c)]. 또한, 본 실시 형태에 있어서는, 각 마이크로 렌즈 어레이 칩(12)에 대해서, 유리판(11) 및 단위 마이크로 렌즈 어레이(2-1 내지 2-4)에는, 각각 위치 정렬 마크(11a, 2a)가, 각각 4군데에 형성되어 있지만, 이것으로 한정되지 않고, 이들의 위치 정렬 마크(11a, 2a)는, 각각 2군데 이상 형성되어 있으면 된다.
도 9에 도시하는 종래의 마이크로 렌즈 어레이 칩과 마찬가지로, 본 실시 형태에 있어서도, 각 마이크로 렌즈 어레이 칩(12)의 각 마이크로 렌즈는, 예를 들어 4매 8렌즈 구성이며, 각 단위 마이크로 렌즈 어레이(2-1) 등은 2개의 볼록 렌즈에 의해 표현되는 광학계로 구성되어 있다. 이에 의해, 노광광은 단위 마이크로 렌즈 어레이(2-2)와 단위 마이크로 렌즈 어레이(2-3) 사이에서 일단 수속하고, 다시 단위 마이크로 렌즈 어레이(2-4)의 하방의 기판 위에서 결상한다. 그리고, 단위 마이크로 렌즈 어레이(2-2)와 단위 마이크로 렌즈 어레이(2-3) 사이에 6각 시야 조리개(2b)가 배치되고, 단위 마이크로 렌즈 어레이(2-3)와 단위 마이크로 렌즈 어레이(2-4) 사이에 원형의 개구 조리개(2c)가 배치되어 있다. 개구 조리개(2c)가 각 마이크로 렌즈의 NA(개구수)를 제한함과 함께, 6각 시야 조리개(2b)가 결상 위치에 가까운 곳에서 6각형으로 시야를 좁힌다. 또한, 도 2에 있어서는 도시를 생략하고 있지만, 본 실시 형태에 있어서는, 6각 시야 조리개(2b)는, 도 2의 (c)에 도시하는 단위 마이크로 렌즈 어레이(2-2)와 유리판(11) 사이, 유리판(11)과 단위 마이크로 렌즈 어레이(2-3) 사이, 또는 유리판(11) 내에 형성되어 있다. 이들의 6각 시야 조리개(2b) 및 개구 조리개(2c)는 마이크로 렌즈마다 형성되어 있고, 각 마이크로 렌즈에 대해서, 마이크로 렌즈의 광투과 영역을 개구 조리개(2c)에 의해 원형으로 정형함과 함께, 노광광의 기판 위의 노광 영역을 6각형으로 정형하고 있다. 6각 시야 조리개(2b)는, 예를 들어 도 3에 도시한 바와 같이, 마이크로 렌즈의 개구 조리개(2c) 중에 6각형 형상의 개구로서 형성된다. 따라서, 이 6각 시야 조리개(2b)에 의해, 마이크로 렌즈 어레이(1)를 투과한 노광광은, 스캔이 정지되어 있다고 하면, 기판(4) 위에서 도 4에 도시하는 6각형으로 둘러싸인 영역에만 조사된다. 또한, 6각 시야 조리개(2b) 및 원형 개구 조리개(2c)는, 광을 투과하지 않는 막으로서, Cr막에 의해 패턴 형성할 수 있다.
각 단위 마이크로 렌즈 어레이(2-1 내지 2-4)는, 복수개의 마이크로 렌즈가 스캔 방향(5)에 직교하는(제1) 방향으로 배열되어 구성된 마이크로 렌즈열이 스캔 방향[(5)(제2 방향)]으로 복수열 배치되어 구성되어 있고, 소정수의 마이크로 렌즈열에 의해 마이크로 렌즈열군이 구성되어 있다. 각 마이크로 렌즈열군에 있어서는, 복수열의 마이크로 렌즈열이 제1 방향으로 일정 거리씩 치우쳐 배치되어 있고, 이 마이크로 렌즈열군이 스캔 방향[(5)(제2 방향)]으로 복수개 배치되어 구성된 것이다. 본 실시 형태에 있어서는, 스캔 방향으로 배치된 3열의 마이크로 렌즈열에 의해 마이크로 렌즈열군이 구성되어 있다.
이 마이크로 렌즈의 배치 형태에 대해서, 도 4를 참조하여 설명한다. 도 4는, 각 마이크로 렌즈 어레이 칩(12)에 있어서의 각 마이크로 렌즈의 배치 형태를 나타내기 위해서, 마이크로 렌즈의 배치 형태를, 마이크로 렌즈의 6각 시야 조리개(2b)의 위치로서 도시하는 도면이다. 이 도 4에 도시한 바와 같이, 마이크로 렌즈는, 스캔 방향(5)에 대해서, 순차, 약간 가로 방향으로 어긋나 배치되어 있다. 6각 시야 조리개(2b)는, 중앙의 직사각형 부분(A)과, 그 스캔 방향(5)에서 볼 때 양측의 삼각형 부분(B, C)으로 나뉘어진다. 도 4에 있어서, 파선은, 6각 시야 조리개(2b)의 6각형의 각 코너부를 스캔 방향(5)으로 연결하는 선분이다. 이 도 4에 도시한 바와 같이, 스캔 방향(5)에 수직인 방향의 각 열에 관하여, 스캔 방향(5)에 대해서 3열의 6각 시야 조리개(2b)의 열을 보면, 어떤 특정한 1열째의 6각 시야 조리개(2b)의 우측의 삼각형 부분(C)이, 스캔 방향 후방(화살표의 반대측)에 인접하는 2열째의 6각 시야 조리개(2b)의 좌측의 삼각형 부분(B)과 겹치고, 1열째의 6각 시야 조리개(2b)의 좌측의 삼각형 부분(B)이, 3열째의 6각 시야 조리개(2b)의 우측의 삼각형 부분(C)과 겹치도록, 이들의 마이크로 렌즈가 배치되어 있다. 이와 같이 하여, 스캔 방향(5)에 관하여, 3열의 마이크로 렌즈가 1세트가 되어 배치된다. 즉, 4열째의 마이크로 렌즈는, 스캔 방향(5)에 수직인 방향에 관하여, 1열째의 마이크로 렌즈와 동일 위치에 배치된다. 이때, 3열의 6각 시야 조리개(2b)에 있어서, 인접하는 2열의 6각 시야 조리개(2b)의 삼각형 부분(B)의 면적과 삼각형 부분(C)의 면적을 각각 가산하면, 이 스캔 방향(5)에 겹치는 2개의 삼각형 부분(B, C)의 각 합계 면적의 선밀도는, 중앙의 직사각형 부분(A)의 면적의 선밀도와 동일하게 된다. 또한, 이 선밀도라함은, 스캔 방향(5)에 수직인 방향에 있어서의 단위 길이당 6각 시야 조리개(2b)의 개구 면적이다. 즉, 삼각형 부분(B, C)의 각 합계 면적은, 삼각형 부분(B, C)의 저변을 길이로 하고, 삼각형 부분(B, C)의 높이를 폭으로 하는 직사각형 부분의 면적이 된다. 이 직사각형 부분은, 직사각형 부분(A)의 길이와 동일한 길이이므로, 스캔 방향(5)에 수직인 방향에 관한 단위 길이당의 개구 면적(선밀도)으로 비교하면, 3열의 마이크로 렌즈열에 대해서, 삼각형 부분(B, C)의 각 선밀도와, 직사각형 부분(A)의 선밀도는 동일해진다. 이 때문에, 기판(4)이 3열의 마이크로 렌즈의 스캔을 받으면, 이 스캔 방향(5)에 수직인 방향에 관하여, 그 전역에서 균일한 광량의 노광을 받게 된다. 따라서, 각 마이크로 렌즈 어레이 칩(12)에는, 스캔 방향(5)에 관하여, 3의 정수 배의 열의 마이크로 렌즈가 배치되어 있고, 이에 의해, 기판은, 1회의 스캔에 의해 그 전역에서 균일한 광량의 노광을 받게 된다.
이와 같이 구성된 마이크로 렌즈 어레이(1)에 있어서는, 노광 광원으로부터 노광광이 조사되고 있는 동안에, 기판(4)을 마이크로 렌즈 어레이(1)에 대하여 상대적으로 이동시켜, 노광광에 의해 기판(4)을 주사함으로써, 기판(4)의 노광 대상 영역의 전역에서, 기판(4)은 균일한 광량의 노광을 받는다. 즉, 기판(4)은 마이크로 렌즈의 위치에 따라서 스폿적인 노광을 받는 것은 아니고, 1열의 마이크로 렌즈의 상호간의 영역은, 다른 열의 마이크로 렌즈에 의해 노광되어, 기판(4)은, 마치, 평면 노광을 받은 경우와 마찬가지로, 노광 대상 영역의 전역에서 균일한 노광을 받는다. 그리고, 기판(4) 위에 투영되는 패턴은, 마이크로 렌즈의 6각 시야 조리개(2b) 및 개구 조리개(2c)의 형상이 아니라, 마스크(3)의 Cr막(차광막)의 구멍에 형성된 마스크 패턴(노광 패턴)에 의해 결정되는 패턴이다.
본 실시 형태에 있어서는, 각 마이크로 렌즈 어레이 칩(12)의 단부에는, 마이크로 렌즈가 배치되어 있지 않은 영역이 존재하고, 스캔 방향(5)에서 볼 때, 마이크로 렌즈 어레이 칩(12)의 단부에 있어서의 마이크로 렌즈의 수는, 다른 영역보다도 적어진다. 따라서, 마이크로 렌즈 어레이 칩(12)을 지그재그 형상으로 배치할 때에는, 마이크로 렌즈 어레이 칩(12)의 단부끼리를, 스캔 방향(5)에서 볼 때, 겹치도록 배치할 필요가 있다. 즉, 스캔 방향(5)에서 볼 때, 마이크로 렌즈 어레이 칩(12)의 단부에 있어서의 마이크로 렌즈의 부족을, 인접하는 마이크로 렌즈 어레이 칩 상호간에서 보간하고, 또한, 각 마이크로 렌즈의 스캔 방향(5)에 직교하는 방향의 피치를, 인접하는 마이크로 렌즈 어레이 칩(12) 사이에 대해서도 정렬시킴으로써, 복수매의 마이크로 렌즈 어레이 칩에 걸쳐, 스캔 방향으로 배치되는 마이크로 렌즈의 수가 동등해진다. 따라서, 복수매의 마이크로 렌즈 어레이 칩이 배열된 마이크로 렌즈 어레이에 있어서도, 투과광의 선밀도가 일정하게 되고, 이에 의해, 조사광의 광량이 불균일하게 되는 것을 방지할 수 있다.
다음으로, 상술한 바와 같이 구성된 본 실시 형태의 노광 장치의 동작에 대하여 설명한다. 우선, 노광 장치의 소정의 노광 위치에 기판(4)이 반입된다. 이 상태에서, 노광 광원으로부터 노광광을 출사시킨다. 노광 광원으로부터 출사된 노광광은, 평면 미러 등의 광학계를 통해, 마스크(3)로 유도된다. 그리고, 마스크(3)를 투과한 노광광은, 마이크로 렌즈 어레이(1)에 조사된다.
마이크로 렌즈 어레이(1)로 유도된 노광광은, 우선, 상판(10)의 개구(10a)를 투과하여 마이크로 렌즈 어레이 칩(12)에 입사된다. 이때, 마이크로 렌즈 어레이(1)로의 입사광의 일부는, 상판(10)에 의해 차광된다. 각 마이크로 렌즈 어레이 칩(12)으로의 입사광은, 유리판(11)의 상면에 적층된 단위 마이크로 렌즈 어레이(2-1, 2-2)를 투과하여, 단위 마이크로 렌즈 어레이(2-2)와 단위 마이크로 렌즈 어레이(2-3) 사이에 마스크(3)의 도립 등배상이 결상된다. 이 결상 위치에는, 6각 시야 조리개(2b)가 배치되어 있고, 이 6각 시야 조리개(2b)에 의해, 투과광이 6각으로 정형된다. 그리고, 6각 시야 조리개(2c) 및 유리판(11)을 투과한 노광광이, 유리판(11)의 하면에 적층된 단위 마이크로 렌즈 어레이(2-3), 개구 조리개(2c) 및 단위 마이크로 렌즈 어레이(2-4)에 투과되고, 그 후, 하판(13)의 개구(13a)를 투과하여, 기판(4) 위에 마스크(3)의 정립 등배상이 결상된다. 이 상은, 각 마이크로 렌즈 어레이 칩(12)의 각 마이크로 렌즈의 위치에 대응하여 결상하고 있고, 6각형으로 정형되어 있다. 본 실시 형태의 마이크로 렌즈 어레이(1)는, 마스크(3)의 정립 등배상을 결상시키는 마이크로 렌즈 어레이 칩(12)이, 각각 유리판(11)의 상면 및 하면에 적층되어 구성되어 있으므로, 4매의 단위 마이크로 렌즈 어레이를 적층한 경우에 비하여, 단위 마이크로 렌즈 어레이의 적층 위치의 어긋남이 적산되기 어렵다. 또한, 단위 마이크로 렌즈 어레이(2-1 내지 2-4)와, 유리판(11)에는, 각각 위치 정렬용의 마크(2a, 11a)가 형성되어 있고, 단위 마이크로 렌즈 어레이(2-1 내지 2-4)와 유리판(11)은, 마크에 의해 위치 정렬되어 서로 적층되어 있다. 따라서, 각 단위 마이크로 렌즈 어레이의 접착 위치의 정밀도가 높다. 이에 의해, 기판(4) 위에는, 마스크(3)의 패턴의 정립 등배상이 높은 위치 정밀도로 결상된다.
이 상태에서, 예를 들어 기판(4) 및 마스크(3)를 고정하고, 마이크로 렌즈 어레이(1) 및 노광 광원을 스캔 방향(5)으로 이동시킨다. 이 노광광의 스캔에 수반하여, 마스크(3)에 있어서의 노광광의 투과 영역이 순차 이동해 가고, 각 마이크로 렌즈 어레이 칩(12)의 투과광에 의해, 기판(4) 위에 띠 형상의 노광 영역이 형성되어 간다. 이때, 각 마이크로 렌즈 어레이 칩(12)을 구성하는 복수매의 단위 마이크로 렌즈 어레이는, 그 접착된 위치에 어긋남이 없고, 따라서, 스캔 방향(5)에서 볼 때, 인접하는 마이크로 렌즈 어레이 칩(12)의 단부에 위치하는 마이크로 렌즈간의 피치에도 어긋남이 발생되지 않는다. 따라서, 스캔 방향(5)에 직교하는 방향의 모든 마이크로 렌즈 어레이 칩(12)의 마이크로 렌즈의 피치가 동일하고, 또한, 스캔 방향(5)에 대해서는, 마이크로 렌즈의 수가, 마이크로 렌즈 칩(12)의 단부와 그 밖의 영역에서 동일하다. 따라서, 마이크로 렌즈 어레이를 복수매(도 1에 있어서는 9매)의 마이크로 렌즈 어레이 칩(12)으로 분할한 본 실시 형태와 같은 경우에 있어서도, 스캔 방향(5)에서 볼 때, 인접하는 마이크로 렌즈 어레이 칩(12)끼리를 연결하는 부분에는, 투과광의 광량의 차이가 발생되지 않아, 노광 불균일이 발생되지 않는다.
다음으로, 본 발명의 제2 실시 형태에 따른 마이크로 렌즈 어레이에 대하여 설명한다. 도 5는, 본 발명의 제2 실시 형태에 따른 마이크로 렌즈 어레이 칩에 있어서, 복수매의 마이크로 렌즈 어레이 칩의 단부의 배치를 도시하는 평면도이다. 제1 실시 형태에 있어서는, 각 마이크로 렌즈 어레이 칩(12)이 평면에서 볼 때 직사각형으로 형성되어 있는 경우를 설명했지만, 이러한 직사각형의 단위 마이크로 렌즈 어레이의 제조는 어렵다. 즉, 각 단위 마이크로 렌즈 어레이는, 기제의 판 형상의 마이크로 렌즈 어레이를 절단함으로써 제조하는 쪽이, 그 제조 비용은 낮다. 그러나, 도 4에 도시한 바와 같이, 마이크로 렌즈 어레이 칩의 각 마이크로 렌즈가 스캔 방향(5)에 직교하는 방향으로 배열되고, 또한, 스캔 방향(5)에 인접하는 마이크로 렌즈열간에서는, 마이크로 렌즈가 스캔 방향에 대하여 경사져 배치되어 있는 경우에 있어서는, 기제의 마이크로 렌즈 어레이가 직사각형으로 절단되면, 단부에 위치하는 마이크로 렌즈가 분단되어 버린다. 즉, 마이크로 렌즈 어레이 칩에 있어서의 각 마이크로 렌즈의 렌즈 시야 영역은, 6각형의 6각 시야 조리개(2b)에 의해 정해지고, 각 마이크로 렌즈의 투과광의 NA(개구수)는, 6각 시야 조리개(2b)보다도 큰 원형의 개구 조리개(2c)에 의해 제한되어 있지만, 마이크로 렌즈 어레이가 직사각형으로 절단될 경우에는, 6각 시야 조리개(2b) 및 개구 조리개(2c)의 양쪽이 분단되게 된다. 이에 의해, 절단 후의 마이크로 렌즈 어레이의 단부 테두리에는, 분단된 마이크로 렌즈가 남겨진다. 따라서, 이 절단 후의 마이크로 렌즈 어레이를 배치하여 마이크로 렌즈 어레이를 구성한 경우, 스캔 방향(5)에서 볼 때, 인접하는 마이크로 렌즈 어레이 칩끼리를 연결하는 부분에는, 분단된 마이크로 렌즈가 존재하고, 이 부분을 투과한 노광광에 의해, 투과광의 광량에 차이가 발생하여, 노광 불균일이 발생되어 버린다.
마이크로 렌즈 어레이 칩을 구성하는 각 단위 마이크로 렌즈 어레이는, 예를 들어 기제의 마이크로 렌즈 어레이를 절단함으로써 제조되지만, 기제의 마이크로 렌즈 어레이판에 있어서는, 예를 들어 마이크로 렌즈가 긴 변과 평행해지도록 배치되어 마이크로 렌즈열이 구성되고, 인접하는 마이크로 렌즈열간에서는, 각 마이크로 렌즈가 긴 변의 방향으로 소정 피치로 치우쳐 있다. 즉, 각 마이크로 렌즈는, 인접하는 마이크로 렌즈열간에서, 마이크로 렌즈 어레이판의 긴 변에 대하여 경사지는 방향으로 배치되어 있다. 따라서, 마이크로 렌즈 어레이가 노광 장치에 설치될 때에는, 각 마이크로 렌즈 어레이 칩의 긴 변이 스캔 방향에 대하여 직교하는 방향이 되도록 배치되고, 마이크로 렌즈 어레이 칩의 각 마이크로 렌즈는, 스캔 방향(5)에 직교하는 방향 및 이에 경사지는 방향으로 각각 동일한 피치로 배치된다. 본 실시 형태에 있어서는, 마이크로 렌즈 어레이 칩의 절단에 의해 발생하는 노광 불균일을 해소하기 위해서, 도 5에 도시한 바와 같이, 스캔 방향(5)에 인접하는 마이크로 렌즈열에서는, 각 마이크로 렌즈열이 긴 변이 연장되는 방향으로 어긋나 배치되어 있는 것에 대응하여, 기제의 마이크로 렌즈 어레이를 상기 긴 변에 대하여 경사지는 방향으로 절단하고 있다. 예를 들어, 기제의 마이크로 렌즈 어레이가 이하와 같이 절단되어 단위 마이크로 렌즈 어레이가 제조되고, 이 단위 마이크로 렌즈 어레이가 적층되어 마이크로 렌즈 어레이 칩(21)이 구성된다. 즉, 도 5에 도시한 바와 같이, 기제의 마이크로 렌즈 어레이가, 평면에서 볼 때, 인접하는 마이크로 렌즈열에 있어서의 원형의 개구 조리개(2c)의 공통 접선과 평행하게 절단되어, 기제의 마이크로 렌즈 어레이의 긴 변에 대하여 경사진 단부 테두리를 갖는 단위 마이크로 렌즈 어레이가 얻어지고, 이 단위 마이크로 렌즈 어레이가 적층되어 마이크로 렌즈 어레이 칩이 구성된다. 이에 의해, 인접하는 마이크로 렌즈열에 있어서의 마이크로 렌즈의 배치와, 마이크로 렌즈 어레이의 절단선이 평행해져, 절단선 위에는, 분단된 마이크로 렌즈가 존재하지 않게 된다. 따라서, 분단된 마이크로 렌즈의 투과광에 의한 노광 불균일은 발생하지 않는다.
이와 같이, 마이크로 렌즈 어레이 칩의 단부 테두리가 경사져서 형성되어 있음으로써, 도 5에 도시한 바와 같이, 마이크로 렌즈 어레이 칩(21)끼리를 근접하여 배치할 수 있다. 따라서, 각 마이크로 렌즈 어레이 칩이 직사각형으로 형성된 제1 실시 형태에 비하여, 마이크로 렌즈 어레이 전체의 스캔 방향에 있어서의 길이를 극히 짧게 할 수 있다. 이 경우에, 마이크로 렌즈 어레이 전체의 스캔 방향에 있어서의 길이는, 인접하는 마이크로 렌즈 어레이 칩 사이에서, 모든 마이크로 렌즈열이 스캔 방향에 직교하는 방향으로 정렬되도록 배치된 경우가 가장 짧아져, 바람직하다. 그러나, 이 경우, 인접하는 마이크로 렌즈 어레이 칩은, 상호간이 접촉하도록 배치되므로, 단위 마이크로 렌즈 어레이 칩의 적층 시에, 인접하는 단위 마이크로 렌즈 어레이끼리가 간섭하는 등의 문제가 발생되는 경우가 있다. 그러나, 본 실시 형태에 있어서는, 도 5에 도시한 바와 같이, 스캔 방향(5)에 직교하는 방향에 인접하는 마이크로 렌즈 어레이 칩(21)끼리는, 각 마이크로 렌즈열이 스캔 방향(5)으로 1열 또는 복수열 어긋나 배치되어 있다. 이에 의해, 인접하는 마이크로 렌즈 어레이 칩간에는 간극이 형성된다. 따라서, 상기 단위 마이크로 렌즈 어레이끼리의 간섭 등의 문제도 발생하지 않고, 마이크로 렌즈 어레이를 용이하게 제조할 수 있다.
본 실시 형태에 있어서도, 마이크로 렌즈 어레이 칩(21)을 구성하는 복수매의 단위 마이크로 렌즈 어레이의 접착 위치는, 유리판(11)에 형성된 위치 정렬 마크(11a)와 각 단위 마이크로 렌즈 어레이에 형성된 마크(2a)에 의해 결정된다. 본 실시 형태에 있어서는, 유리판의 위치 정렬용의 마크(11a)는, 도 5에 도시하는 마이크로 렌즈 어레이 칩(21)의 배치에 대응하여 형성되어 있고, 예를 들어 인접하는 마이크로 렌즈 어레이 칩(21)에 있어서의 마이크로 렌즈 어레이 열끼리의 스캔 방향(5)의 어긋남에 대응하여, 각 마이크로 렌즈열의 스캔 방향(5)의 피치의 1 또는 복수배만큼 스캔 방향(5)으로 어긋난 위치에 형성되어 있다. 그리고, 마이크로 렌즈 어레이 칩의 형상이 직사각형인 경우에 비하여, 인접하는 마이크로 렌즈 어레이 칩에 대응하는 마크(11a)는, 상호간의 거리가 극히 가깝다. 이 유리판의 마크(11a)에 맞춰, 경사진 단부 테두리를 갖는 단위 마이크로 렌즈 어레이가, 그 테두리부에 형성된 마크(2a)에 의해 위치 정렬되어, 유리판(11)에 접착된다. 그러나, 단위 마이크로 렌즈 어레이는, 인접하는 단위 마이크로 렌즈 어레이간에 간극을 남겨 접착되므로, 복수매의 단위 마이크로 렌즈 어레이가, 서로 간섭하지 않고, 고정밀도로 위치 정렬되어 유리판(11) 위에 적층된다. 그리고, 도 5에 도시한 바와 같이, 스캔 방향(5)에서 볼 때, 마이크로 렌즈 어레이의 수가 일정한 마이크로 렌즈 어레이 칩(21)을 구성할 수 있고, 인접하는 마이크로 렌즈 어레이 칩끼리를 연결하는 부분에 있어서의 투과광의 광량에 차이가 발생하지 않아, 노광 불균일의 발생을 확실하게 방지할 수 있다. 즉, 도 5의 예에 있어서는, 우측의 마이크로 렌즈 어레이 칩(21)에 있어서의 최상단의 가장 좌측의 마이크로 렌즈는, 그 좌측의 삼각형 부분이, 좌측의 마이크로 렌즈 어레이 칩(21)에 있어서의 위로부터 3단째의 가장 우측의 마이크로 렌즈에 있어서, 우측의 삼각형 부분과 대응하고, 이들의 합계 면적의 선밀도가, 다른 영역의 선밀도와 동등해진다. 따라서, 스캔 방향(5)에서 볼 때, 인접하는 마이크로 렌즈 어레이 칩끼리를 연결하는 부분에 있어서, 투과광의 광량에 차이가 발생하는 것에 의한 노광 불균일은 발생하지 않는다.
다음으로, 본 발명의 제3 실시 형태에 따른 마이크로 렌즈 어레이에 대하여 설명한다. 도 6은, 본 발명의 제3 실시 형태에 따른 마이크로 렌즈 어레이 칩에 있어서, 복수매의 마이크로 렌즈 어레이 칩의 단부의 배치를 도시하는 평면도이다. 도 5에 도시한 바와 같이, 제2 실시 형태에 있어서는, 기제의 마이크로 렌즈 어레이의 한쪽의 단부만이 경사져 절단된 마이크로 렌즈 어레이 칩을 사용하는 경우에 대하여 설명했지만, 본 실시 형태에 있어서는, 도 6에 도시한 바와 같이, 중앙의 마이크로 렌즈 어레이 칩(22)은, 기제의 마이크로 렌즈 어레이의 양단부가 경사져 절단되어 있다. 즉, 마이크로 렌즈 어레이 칩(22)은, 기제의 마이크로 렌즈 어레이의 양단부가, 긴 변에 대하여 경사지는 2 방향으로 절단되어 사다리꼴 형상으로 형성되어 있다. 이 경우에 있어서도, 기제의 마이크로 렌즈 어레이의 양단부가, 평면에서 볼 때, 예를 들어 인접하는 마이크로 렌즈열에 있어서의 원형의 개구 조리개(2c)의 공통 접선과 평행해지도록 절단되고, 경사진 단부 테두리를 갖는 단위 마이크로 렌즈 어레이가 제조되고, 이 단위 마이크로 렌즈 어레이가 적층되어 마이크로 렌즈 어레이 칩이 구성된다. 이에 의해, 인접하는 마이크로 렌즈열에 있어서의 마이크로 렌즈의 배치와, 마이크로 렌즈 어레이의 절단선이 평행해져, 절단선 위에는, 분단된 마이크로 렌즈가 존재하지 않는다. 따라서, 분단된 마이크로 렌즈의 투과광에 의한 노광 불균일은 발생하지 않는다. 또한, 도 6에 도시한 바와 같이, 본 실시 형태에 있어서는, 마이크로 렌즈 어레이 칩(22)의 타단부측에는, 단부 테두리의 경사 방향이 마이크로 렌즈 어레이 칩(22)의 타단부와 동일 방향이 되도록 구성된 마이크로 렌즈 어레이 칩(23)이 배치되어 있다. 이 마이크로 렌즈 어레이 칩(22)의 타단부측에 있어서도, 마이크로 렌즈 어레이 칩(23)과 마이크로 렌즈 어레이 칩(22)에서는, 각 마이크로 렌즈열이 스캔 방향으로 1열 또는 복수열 어긋나 배치되어 있다. 이에 의해, 인접하는 마이크로 렌즈 어레이 칩간에는 간극이 형성된다. 따라서, 상기 단위 마이크로 렌즈 어레이끼리의 간섭 등의 문제도 발생되지 않아, 마이크로 렌즈 어레이를 용이하게 제조할 수 있다.
본 실시 형태에 있어서도, 기제의 마이크로 렌즈 어레이를 긴 변에 대하여 경사져 절단하여 단위 마이크로 렌즈 어레이를 제조하고, 이것을 적층하여 마이크로 렌즈 어레이 칩(21 내지 23)을 구성함으로써, 경사진 단부 테두리를 갖는 마이크로 렌즈 어레이 칩(21 내지 23)을 구성할 수 있다. 따라서, 각 마이크로 렌즈 어레이 칩끼리를 극히 근접하여 배치할 수 있고, 각 마이크로 렌즈 어레이 칩을 직사각형으로 해서, 지그재그 형상으로 배치한 경우에 비하여, 마이크로 렌즈 어레이 전체의 스캔 방향에 있어서의 길이를 극히 짧게 할 수 있다.
그리고, 각 마이크로 렌즈 어레이 칩(21 내지 23)을 구성하는 복수매의 단위 마이크로 렌즈 어레이의 접착 위치는, 유리판(11)에 형성된 위치 정렬 마크(11a)와 각 단위 마이크로 렌즈 어레이에 형성된 마크(2a)에 의해 결정된다. 즉, 유리판의 위치 정렬용의 마크(11a)는, 도 6에 나타내는 마이크로 렌즈 어레이 칩(21 내지 23)의 배치에 대응하여 형성되어 있고, 예를 들어 인접하는 마이크로 렌즈 어레이 칩(21 내지 23)에 있어서의 마이크로 렌즈 어레이 열끼리의 스캔 방향(5)의 어긋남에 대응하여, 각 마이크로 렌즈열의 스캔 방향의 피치의 1 또는 복수배만큼 스캔 방향(5)으로 어긋난 위치에 형성되어 있다. 본 실시 형태에 있어서도, 인접하는 마이크로 렌즈 어레이 칩에 대응하는 마크(11a)는, 마이크로 렌즈 어레이 칩의 형상이 직사각형인 경우에 비하여, 상호간의 거리가 극히 가깝지만, 단위 마이크로 렌즈 어레이는, 인접하는 단위 마이크로 렌즈 어레이간에 간극을 남겨서 접착되므로, 복수매의 단위 마이크로 렌즈 어레이가, 서로 간섭하지 않고, 고정밀도로 위치 정렬되어 유리판(11) 위에 적층된다. 그리고, 도 6에 도시한 바와 같이, 스캔 방향(5)에서 볼 때, 마이크로 렌즈 어레이의 수가 일정한 마이크로 렌즈 어레이 칩(21 내지 23)을 구성할 수 있고, 인접하는 마이크로 렌즈 어레이 칩끼리를 연결하는 부분에 있어서의 투과광의 광량에 차이가 발생하지 않아, 노광 불균일의 발생을 확실하게 방지할 수 있다. 즉, 이 도 6의 예에 있어서는, 좌측의 마이크로 렌즈 어레이 칩(23)에 있어서의 최상단의 가장 우측의 마이크로 렌즈는, 그 우측의 삼각형 부분이, 우측의 마이크로 렌즈 어레이 칩(22)에 있어서의 위로부터 2단째의 가장 좌측의 마이크로 렌즈에 있어서, 좌측의 삼각형 부분과 대응하고, 이들의 합계 면적의 선밀도가, 다른 영역의 선밀도와 동등해진다.
다음으로, 이 제3 실시 형태에 따른 마이크로 렌즈 어레이의 변형예에 대하여 설명한다. 제3 실시 형태에 있어서는, 마이크로 렌즈 어레이 칩(22)은, 그 양단부가 다른 방향으로 경사져 절단된 단위 마이크로 렌즈 어레이에 의해 구성된 것이지만, 예를 들어 도 7에 도시한 바와 같이, 마이크로 렌즈 어레이의 양단부의 절단 방향을 동일하게 하여, 평행 사변형의 단위 마이크로 렌즈 어레이를 제조하고, 이것을 복수매 적층하여 평행 사변형의 마이크로 렌즈 어레이 칩(220)을 구성하여, 이것을 복수매 배열한 마이크로 렌즈 어레이를 구성할 수 있다.
이 경우에 있어서는, 홀더는, 스캔 방향(5)에 대하여 경사져 배열된 각 마이크로 렌즈 어레이 칩(220)을 보유 지지하기 위해서, 도 7에 이점 쇄선으로 나타낸 약간 대형의 홀더(110a)를 사용할 필요가 있다. 그러나, 마이크로 렌즈 어레이에 대한 노광광의 조사 영역을 이러한 홀더(110a)의 크기에 맞춰서 넓게 했을 경우에는, 도 7의 해칭부(100a)에 조사된 노광광은, 항상 차광되어 버려 낭비된다.
이 노광광의 낭비를 방지하기 위해서는, 예를 들어 도 7에 실선으로 나타낸 바와 같이, 홀더로서, 외측 테두리부가 마이크로 렌즈 어레이 칩(220)의 배열 방향과 평행한 홀더(100)를 사용하면 된다. 그리고, 홀더(100)의 형상에 대응시켜, 광원을 스캔 방향에 대하여 경사져 배치하면, 노광광의 조사 면적을 홀더(100)에 맞춰서 작게 할 수 있다.
또한, 상기 실시 형태에 있어서는, 다각 시야 조리개는 6각 시야 조리개(2b)이며, 마이크로 렌즈열이 3열마다 마이크로 렌즈열군을 구성하고 있지만, 본 발명은, 이것으로 한정하지 않고 다양한 형태가 가능하다. 예를 들어, 마이크로 렌즈에 의해 기판 위의 시야를 규정하는 다각 시야 조리개는, 6각 시야 조리개로 한정하지 않고, 예를 들어 마름모형, 평행 사변형 또는 사다리꼴 형상 등의 개구를 갖는 것이어도 된다. 예를 들어, 이 사다리꼴 형상(4각형)의 시야 조리개에 있어서도, 중앙의 직사각형의 부분과, 그 양측의 삼각형의 부분으로 시야 영역을 분해할 수 있다. 또한, 1군의 마이크로 렌즈열군을 구성하는 마이크로 렌즈열은 3열로 한정하지 않고, 예를 들어 상술한 사다리꼴 및 평행 사변형(수평 길이)의 개구인 경우에는, 3열마다 1군을 구성하지만, 마름모형 및 평행 사변형(수직 길이)인 경우에는, 2열마다 1군을 구성하게 된다.
본 발명은, 복수매의 단위 마이크로 렌즈 어레이를 적층한 마이크로 렌즈 어레이에 있어서, 노광 불균일이 발생되는 것을 방지할 수 있으므로, 스캔 노광 기술의 향상에 기여한다.
1, 2 : 마이크로 렌즈 어레이
2-1 내지 2-4, 12a, 12b, 20-1 내지 20-4 : 단위 마이크로 렌즈 어레이
2a : 마크
2b : 6각 시야 조리개
2c : 개구 조리개
3 : 마스크
5 : 스캔 방향
10 : 상판
11 : 유리판
12, 20, 21, 22, 23, 220 : 마이크로 렌즈 어레이 칩
13 : 하판
A : 직사각형 부분
B, C : 삼각형 부분

Claims (7)

  1. 노광광을 출사하는 광원과 함께 이동되고, 상기 광원으로부터의 노광광을 마스크의 패턴에 투과시켜, 이 마스크의 투과광에 의해 상기 마스크에 형성된 패턴의 정립 등배상을 결상시키는 마이크로 렌즈 어레이로서,
    유리판과,
    이 유리판의 상면 및 하면에 적층되어 복수개의 마이크로 렌즈가 2차원적으로 배치되어 구성되어 서로 적층된 복수매의 단위 마이크로 렌즈 어레이
    를 갖고,
    상기 단위 마이크로 렌즈 어레이는, 상기 복수개의 마이크로 렌즈가 제1 방향으로 배열되어 구성된 마이크로 렌즈열이 상기 제1 방향에 직교하는 제2 방향으로 복수열 배치되어 구성되어 있고, 소정수의 상기 마이크로 렌즈열에 의해 마이크로 렌즈열군이 구성되고, 각 상기 마이크로 렌즈열군에 있어서는, 복수열의 상기 마이크로 렌즈열이 상기 제1 방향으로 일정 거리씩 치우쳐 배치되어 있고, 이 마이크로 렌즈열군이 상기 제2 방향으로 복수개 배치되어 구성된 것이며,
    상기 각 단위 마이크로 렌즈 어레이의 상기 제1 방향에 있어서의 단부 테두리는, 상기 제2 방향에 인접하는 마이크로 렌즈열끼리에서, 상기 마이크로 렌즈열이 상기 제1 방향으로 상기 일정 거리 치우쳐 있는 것에 대응하여, 상기 제2 방향에 대하여 경사져 있고,
    각 상기 단위 마이크로 렌즈 어레이와, 상기 유리판에는, 위치 정렬용의 마크가 형성되어 있고, 상기 단위 마이크로 렌즈 어레이와 상기 유리판은, 이들의 마크에 의해 위치 정렬되어 서로 적층되어 있는 것을 특징으로 하는 마이크로 렌즈 어레이.
  2. 제1항에 있어서,
    상기 단위 마이크로 렌즈 어레이 및 상기 유리판에 의해 마이크로 렌즈 어레이 칩이 구성되고, 복수개의 상기 마이크로 렌즈 어레이 칩이 상기 제1 방향으로 배열되어 있고, 상기 제1 방향에 인접하는 마이크로 렌즈 어레이 칩끼리는, 그 마이크로 렌즈열이 상기 제2 방향으로 1열 또는 복수열 어긋나 있고, 이 어긋남에 의해, 마이크로 렌즈 어레이 칩의 상호간에 간극이 형성되어 있는 것을 특징으로 하는 마이크로 렌즈 어레이.
  3. 제1항 또는 제2항에 있어서,
    상기 단위 마이크로 렌즈 어레이간의 반전 결상 위치에는, 다각형의 개구를 갖는 다각 시야 조리개가 배치되고, 상기 단위 마이크로 렌즈 어레이간의 노광광의 최대 확대부에는, 그 적어도 일부에, 원형의 개구를 갖고 각 마이크로 렌즈의 개구수를 제한하는 개구 조리개가 배치되어 있는 것을 특징으로 하는 마이크로 렌즈 어레이.
  4. 제1항 또는 제2항에 있어서,
    상기 단위 마이크로 렌즈 어레이를 보유 지지하는 홀더를 더 갖는 것을 특징으로 하는 마이크로 렌즈 어레이.
  5. 노광광을 출사하는 광원과,
    상기 광원으로부터의 노광광이 입사되어, 기판에 노광해야 할 패턴이 형성된 마스크와,
    상기 마스크의 투과광이 입사되어 상기 패턴의 정립 등배상을 기판에 결상시키는 마이크로 렌즈 어레이와,
    상기 광원 및 상기 마이크로 렌즈 어레이를 상기 마스크 및 기판에 대하여 상대적으로 이동시키는 이동 장치
    를 갖고,
    상기 마이크로 렌즈 어레이는,
    유리판과,
    이 유리판의 상면 및 하면에 적층되어 복수개의 마이크로 렌즈가 2차원적으로 배치되어 구성된 복수매의 단위 마이크로 렌즈 어레이
    를 갖고,
    상기 단위 마이크로 렌즈 어레이는, 상기 복수개의 마이크로 렌즈가 상기 이동 방향에 직교하는 방향의 제1 방향으로 배열되어 구성된 마이크로 렌즈열이 상기 이동 방향인 제2 방향으로 복수열 배치되어 구성되어 있고, 소정수의 상기 마이크로 렌즈열에 의해 마이크로 렌즈열군이 구성되고, 각 상기 마이크로 렌즈열군에 있어서는, 복수열의 상기 마이크로 렌즈열이 상기 제1 방향으로 일정 거리씩 치우쳐 배치되어 있고, 이 마이크로 렌즈열군이 상기 제2 방향으로 복수개 배치되어 구성된 것이며,
    상기 각 단위 마이크로 렌즈 어레이의 상기 제1 방향에 있어서의 단부 테두리는, 상기 제2 방향에 인접하는 마이크로 렌즈열끼리에서, 상기 마이크로 렌즈열이 상기 제1 방향으로 상기 일정 거리 치우쳐 있는 것에 대응하여, 상기 제2 방향에 대하여 경사져 있고,
    각 상기 단위 마이크로 렌즈 어레이와, 상기 유리판에는, 위치 정렬용의 마크가 형성되어 있고, 상기 단위 마이크로 렌즈 어레이와 상기 유리판은, 이들의 마크에 의해 위치 정렬되어 서로 적층되어 있는 것을 특징으로 하는 마이크로 렌즈 어레이를 사용한 스캔 노광 장치.
  6. 제3항에 있어서,
    상기 단위 마이크로 렌즈 어레이를 보유 지지하는 홀더를 더 갖는 것을 특징으로 하는 마이크로 렌즈 어레이.
  7. 삭제
KR1020147004602A 2011-07-29 2012-07-23 마이크로 렌즈 어레이 및 그것을 사용한 스캔 노광 장치 KR101931402B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011167819 2011-07-29
JPJP-P-2011-167819 2011-07-29
PCT/JP2012/068624 WO2013018572A1 (ja) 2011-07-29 2012-07-23 マイクロレンズアレイ及びそれを使用したスキャン露光装置

Publications (2)

Publication Number Publication Date
KR20140058572A KR20140058572A (ko) 2014-05-14
KR101931402B1 true KR101931402B1 (ko) 2018-12-20

Family

ID=47629099

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147004602A KR101931402B1 (ko) 2011-07-29 2012-07-23 마이크로 렌즈 어레이 및 그것을 사용한 스캔 노광 장치

Country Status (6)

Country Link
US (1) US9001425B2 (ko)
JP (1) JP6023952B2 (ko)
KR (1) KR101931402B1 (ko)
CN (1) CN103718066B (ko)
TW (1) TWI544284B (ko)
WO (1) WO2013018572A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6023952B2 (ja) * 2011-07-29 2016-11-09 株式会社ブイ・テクノロジー マイクロレンズアレイ及びそれを使用したスキャン露光装置
JP5760250B2 (ja) * 2011-08-03 2015-08-05 株式会社ブイ・テクノロジー マイクロレンズアレイ及びそれを使用したスキャン露光装置
US9454004B2 (en) * 2012-10-03 2016-09-27 The United States Of America As Represented By The Secretary Of The Army Apparatus for coherent beam combining in an array of laser collimators
KR101644929B1 (ko) * 2014-10-01 2016-08-02 홍익대학교 산학협력단 마이크로 렌즈 어레이 설계 방법 및 장치
CN106355620B (zh) * 2016-08-31 2020-03-24 张家港康得新光电材料有限公司 标记的校正方法与校正系统
CN107843966B (zh) 2016-09-18 2021-05-04 中芯国际集成电路制造(上海)有限公司 用于装配微透镜阵列组件的方法和系统
CN109817843B (zh) * 2019-01-30 2021-10-08 武汉华星光电半导体显示技术有限公司 在oled显示器中形成微透镜阵列的方法和微透镜阵列
JP7267761B2 (ja) * 2019-01-31 2023-05-02 キヤノン株式会社 光源装置、照明装置、露光装置及び物品の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039867A (ja) 2006-08-02 2008-02-21 Hitachi Metals Ltd マイクロミラー、マイクロミラーアレイおよびそれを用いた光スイッチ
WO2010101465A1 (en) * 2009-03-06 2010-09-10 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Illumination system for use in a stereolithography apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09244255A (ja) * 1996-03-13 1997-09-19 Nikon Corp 液晶用露光装置
JPH10104405A (ja) * 1996-09-30 1998-04-24 Sony Corp 光学基板およびその製造方法
US20020045028A1 (en) * 2000-10-10 2002-04-18 Takayuki Teshima Microstructure array, mold for forming a microstructure array, and method of fabricating the same
JP5034632B2 (ja) * 2007-04-12 2012-09-26 株式会社ニコン パターンジェネレータ、パターン形成装置及びパターン生成方法
JP4888241B2 (ja) * 2007-06-18 2012-02-29 セイコーエプソン株式会社 マイクロレンズアレイ付き部品の製造方法
WO2009133756A1 (ja) * 2008-04-28 2009-11-05 コニカミノルタオプト株式会社 ウエハレンズ集合体の製造方法及びウエハレンズの製造方法
JP5294488B2 (ja) * 2009-12-03 2013-09-18 株式会社ブイ・テクノロジー 露光装置
JP5294490B2 (ja) * 2009-12-22 2013-09-18 株式会社ブイ・テクノロジー フォトマスク
JP5376379B2 (ja) * 2010-08-30 2013-12-25 株式会社ブイ・テクノロジー マイクロレンズアレイを使用した露光装置及び光学部材
JP6023952B2 (ja) * 2011-07-29 2016-11-09 株式会社ブイ・テクノロジー マイクロレンズアレイ及びそれを使用したスキャン露光装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039867A (ja) 2006-08-02 2008-02-21 Hitachi Metals Ltd マイクロミラー、マイクロミラーアレイおよびそれを用いた光スイッチ
WO2010101465A1 (en) * 2009-03-06 2010-09-10 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Illumination system for use in a stereolithography apparatus

Also Published As

Publication number Publication date
US20140152968A1 (en) 2014-06-05
JP6023952B2 (ja) 2016-11-09
JP2013050709A (ja) 2013-03-14
CN103718066B (zh) 2016-04-27
CN103718066A (zh) 2014-04-09
WO2013018572A1 (ja) 2013-02-07
KR20140058572A (ko) 2014-05-14
TW201305744A (zh) 2013-02-01
US9001425B2 (en) 2015-04-07
TWI544284B (zh) 2016-08-01

Similar Documents

Publication Publication Date Title
KR101931402B1 (ko) 마이크로 렌즈 어레이 및 그것을 사용한 스캔 노광 장치
US9069251B2 (en) Scanning exposure apparatus using a plurality of microlens arrays with adjustable inclination
KR101777442B1 (ko) 마이크로 렌즈 어레이를 사용한 스캔 노광 장치
JP2007180653A (ja) 複眼撮像装置
TWI542953B (zh) 曝光裝置
TWI544290B (zh) 微透鏡陣列及使用該微透鏡陣列之掃描曝光裝置
JP5825470B2 (ja) 露光装置及び遮光板
JP5895275B2 (ja) アライメントマーク及び露光装置
JP5704527B2 (ja) マイクロレンズアレイを使用した露光装置
US20100085646A1 (en) Erect equal-magnification lens array, scanning optical system, exposing optical system and image forming apparatus
JP5953037B2 (ja) マイクロレンズアレイの貼り合わせ装置
JP5874966B2 (ja) マイクロレンズアレイ及びその貼り合わせ方法
JP5953038B2 (ja) マイクロレンズアレイの焦点距離測定装置及び方法
JP2020097198A (ja) プリントヘッド

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right