WO2013016950A1 - 一种电触头及其制备方法 - Google Patents
一种电触头及其制备方法 Download PDFInfo
- Publication number
- WO2013016950A1 WO2013016950A1 PCT/CN2012/070044 CN2012070044W WO2013016950A1 WO 2013016950 A1 WO2013016950 A1 WO 2013016950A1 CN 2012070044 W CN2012070044 W CN 2012070044W WO 2013016950 A1 WO2013016950 A1 WO 2013016950A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrical contact
- substrate
- nano
- diamond film
- hot wire
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/06—Contacts characterised by the shape or structure of the contact-making surface, e.g. grooved
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H11/00—Apparatus or processes specially adapted for the manufacture of electric switches
- H01H11/04—Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
- C23C16/27—Diamond only
- C23C16/271—Diamond only using hot filaments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
- C23C16/27—Diamond only
- C23C16/277—Diamond only using other elements in the gas phase besides carbon and hydrogen; using other elements besides carbon, hydrogen and oxygen in case of use of combustion torches; using other elements besides carbon, hydrogen and inert gas in case of use of plasma jets
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
- C23C16/27—Diamond only
- C23C16/278—Diamond only doping or introduction of a secondary phase in the diamond
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/02—Contacts characterised by the material thereof
- H01H1/021—Composite material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2300/00—Orthogonal indexing scheme relating to electric switches, relays, selectors or emergency protective devices covered by H01H
- H01H2300/036—Application nanoparticles, e.g. nanotubes, integrated in switch components, e.g. contacts, the switch itself being clearly of a different scale, e.g. greater than nanoscale
Definitions
- the invention relates to an electrical contact, in particular to an electrical contact with high arc erosion resistance and a preparation method thereof.
- the electrical contact is a contact component of electrical equipment, electrical switch, instrumentation, etc.; mainly bears the function of connecting and disconnecting the circuit and load current; its performance is good, mainly affecting the reliable operation of electrical equipment, electrical switch and instrumentation Sex and service life.
- power system accidents in China have occurred frequently.
- the equipment failure rate has reached 15%-30%, which greatly affects the safety of power transmission and transformation and hinders national economic production.
- Chinese patent 200810017440.2 adding a rare earth metal oxide Ce0 2 with lower electron emission work on the basis of copper and tungsten materials, dispersing the movement of the arc and reducing the concentrated ablation of the contact material by the arc.
- Chinese Patent No. 200810018223.5 discloses the addition of rare earth elemental tantalum or niobium and nickel powder on the basis of tungsten copper material to improve the arc erosion resistance. These copper-tungsten materials have the advantage of reducing arc ablation to some extent. In the arcing state, the low-melting copper is melted and adsorbed in the capillary pores of the high-melting tungsten skeleton due to capillary action.
- Diamond is the material with the highest thermal conductivity in nature. Its thermal conductivity is 138.16Wm-lK-l. It has a high melting point (about 3700 degrees Celsius), is resistant to wear, and is also the hardest substance in the world. It is based on metallurgy in powder metallurgy. The addition of a small amount of fine diamond particles, in addition to the dispersion strengthening effect, also has the advantages of improving hardness and wear resistance, lowering the surface temperature due to good thermal conductivity, and resisting melting and electric ablation.
- copper-based materials with diamond particles added may be added with other rare earth elemental elements or oxides (Chinese Patent 200610046594.5, 01127933.8, 200410155250.9, 200610046594.5, 200610115204.5, 2005 ⁇ 0555.5, 200710045008.X), adding other metal compounds (Chinese patents) 03143970.5, 94102452.0, 200710071995.0), one or several combinations of improved powder metallurgy processes (Chinese Patent 201010207589.4) to prepare electrical contact materials.
- the electrical contact material can be similarly prepared by a combination of diamond particles and/or other substances (for example, Chinese Patent No.
- the technical solutions of the present invention have the following problems: First, Under the action of high voltage and large current, such electrical contact materials are easy to melt and stick to cause serious ablation pits on the contact surface and cause premature failure, which cannot meet the demand of large load, especially under load.
- the electrical contact materials are all prepared by the traditional powder metallurgy method, that is, the metal powder, the diamond powder and the other additive powders are first mixed by the mechanical mixing method, and then sequentially sintered by isostatic pressing, vacuum or special atmosphere. , extrusion molding, and finally mechanical forming.
- the diamond particles mixed by the mechanical mixing process tend to be unevenly distributed in the metal matrix, and the ability to consolidate the diamond is weakened, thereby affecting the anti-fuse properties and arc burning resistance of the electrical contacts.
- this type of material is prone to component segregation, that is, copper after sintering.
- the rare earth element or its oxide added may exist in a simple state. This is because, on the one hand, the rare earth element or the like is difficult to be completely alloyed with the metal base; in addition, the electrical resistivity of the electrical contact is also affected. Therefore, the overall electrical performance of the electrical contact material of the technical solution is not high.
- An electrical contact material synthesized using diamond-like nanoparticles and a metal (Group 3 to Group 12) or a metal alloy is proposed in US Patent No. 7,709,759, European Patent Application No. EP 1 934 995 A1, and Japanese Patent Application No. JP 2009-501420 A.
- the material is prepared by vapor deposition or liquid deposition, and has the advantages of low contact resistance, low friction coefficient, and resistance to ablation.
- the electrical contact uses a diamond-like nanoparticle having a sp 2 /sp 3 ratio higher than 0.6, that is, the graphite phase is much larger than the diamond phase, which results in low particle hardness and greatly reduces the overall mechanical of the electrical contact.
- the performance is especially the friction and wear performance.
- Another object of the present invention is to provide a method of preparing the above electrical contact.
- An electrical contact comprising a substrate, the surface of which is covered with a nanodiamond film heavily doped with a trivalent or positive pentavalent element.
- the nano-diamond film is a nano-diamond film heavily doped with boron.
- the boron-doped carbon nano-diamond film has a boron to carbon molar ratio of 0.01 to 0.1.
- a method for preparing an electrical contact includes the following steps:
- the step (3) specifically deposits a nano-diamond film heavily doped with boron on the surface of the electrical contact substrate to obtain an electrical contact covering the nano-diamond film with heavily doped boron.
- (3-1) placing the electrical contact substrate on the sample stage of the hot wire chemical vapor deposition apparatus; mixing the reaction gas sufficiently, wherein the volume of the formazan in the reaction gas is 0.5 to 5%, and the volume content of the trimethyl borate is 1 ⁇ 4%, the balance is hydrogen;
- reaction pressure is 3 ⁇ 8KPar ;
- hot wire temperature is 1500 ⁇ 2800°C;
- substrate temperature is 500 ⁇ 900°C,
- hot wire bias is 10 ⁇ 50V,
- the bias pole bias is 0 ⁇ 100V,
- the sample stage bias is 0 ⁇ 400V;
- the bias pole is set directly above the hot wire;
- the organic solvent is a solvent of the diamond micropowder solution, ultrasonic vibration for 10 ⁇ 60min;
- the surface of the electrical contact substrate is also pretreated; the pretreatment is finishing, surface strengthening, and transition coating treatment.
- the dehydrogenation treatment is further performed, specifically: placing the electrical contact covered with the nano-diamond film obtained in the step (3) under an oxygen atmosphere of 3 to 8 kPar, and heating to 100 to 300 ° C. And keep it for 5min ⁇ 60min.
- the reaction gas further includes a nucleation auxiliary gas; the volume content of the nucleation auxiliary gas is
- the nucleation auxiliary gas is one or any combination of Ar, N 2 , 0 2 , H 2 0, C0 2 .
- the present invention has the following advantages and technical effects:
- the invention is heavily doped with a positive trivalent or positive pentavalent element in the nano-diamond film, so that the conductivity of the diamond film is improved, metal-like properties appear, and the ultra-high thermal conductivity, ultra-high wear resistance and high melting point of the diamond itself are retained. .
- the film By applying the film to the electrical contact, problems such as weak ability of the substrate to consolidate diamond and poor mechanical properties exist in the prior art are avoided, and the electrical contact of the present invention has the following superior performance:
- Ultra-high thermal conductivity Pure diamond has the highest thermal conductivity in materials known in nature, and its thermal conductivity is ⁇ . ⁇ 1 , which is five times that of pure copper.
- Ultra-high friction and wear performance Pure diamond is the hardest material in the world's known materials. The surface of nano-diamond film is smooth and has a low friction coefficient ( ⁇ 0.1), so it has excellent friction and wear properties.
- high conductivity heavy doping of diamond, so that the conductivity is improved, showing metal-like properties, resistivity is about 10 - 2 Qcm;
- breakdown voltage is 250kV/2.5mm;
- High arc resistance ablation and anti-melting Since the diamond has a high melting point (about 3700 degrees Celsius), the electrical contact of the invention has excellent arc erosion resistance and anti-fuse ability.
- the electrical contact base of the present invention can adopt conventional electrical contact materials and processing techniques, and the process is simple and convenient, and the production cost is greatly reduced.
- Figure 1 is a schematic view of a hot wire vapor deposition apparatus used in a first embodiment of the present invention.
- Figure 2 is a flow chart showing the preparation method of the first embodiment of the present invention.
- Fig. 3 is a schematic view of the electrical contact of the first embodiment of the present invention, wherein the thickened portion indicates the surface on which the nanodiamond is deposited.
- FIG. 4 is a scanning electron micrograph of the surface of a nano-diamond film prepared in accordance with a first embodiment of the present invention.
- Figure 5 is a cross-sectional scanning electron micrograph of a nano-diamond film prepared in accordance with a first embodiment of the present invention.
- Figure 6 is a comparison diagram of the burning loss curves of the electrical contacts prepared according to the first embodiment of the present invention and the conventional copper and copper tungsten electrical contacts; wherein " ⁇ " indicates a copper contact, indicating a copper-tungsten alloy contact, - * One represents the electrical contact of this embodiment.
- Figure 7 is a schematic illustration of an electrical contact of a second embodiment of the present invention, wherein the bolded portion of the line represents the surface on which the nanodiamond is deposited.
- Figure 8 is a schematic view of an electrical contact of a third embodiment of the present invention, wherein the thickened portion of the line indicates the surface on which the nanodiamond is deposited. detailed description
- Example 1 The present invention will be further described in detail below with reference to the embodiments and drawings, but the embodiments of the present invention are not limited thereto.
- Example 1
- the hot-wire chemical vapor deposition apparatus includes a deposition chamber 8, a sample stage 7, a hot wire 6, and a bias electrode 5; above the deposition chamber 8.
- An air inlet 3 is provided, and an exhaust port 9 is disposed below;
- the sample stage 7 is located at a lower portion of the deposition chamber 8, and the hot wire 6 is located directly above the sample stage 7, and the bias pole 5 Located directly above the hot wire 6;
- a DC power source 2 is connected between the bias pole 5 and the ground, and a bias voltage 5 is biased;
- a DC power source 1 is connected between the hot wire 6 and the ground.
- a DC bias is applied to the hot wire 6;
- a DC power source 4 is connected between the sample stage 7 and the ground, and a DC bias is applied to the sample stage 7.
- the method for preparing the electrical contact of this embodiment is as follows:
- the surface topography of the electrical contact obtained in this embodiment is shown in Fig. 4.
- the grain size is 250 to 400 nm, the particles are uniform, and the film forming quality is high.
- the cross-sectional shape of the electrical contact obtained in this embodiment is shown in Fig. 5.
- the crystal grains grow upward after the nucleation of the base, and a dense structure is formed between the crystal grains, and the uniformity is good.
- FIG. 6 is a comparison diagram of the burnout curves of the electrical contacts and the conventional copper and copper tungsten electrical contacts of the present example. It can be seen from FIG. 6 that after depositing the boron-doped nano-diamond film on the copper base material, the copper-based material contacts are Or copper-tungsten alloy contacts, the burning area caused by the number of switching times is greatly reduced, and the contact life is greatly improved.
- Example 2
- reaction pressure is 8KPar
- hot wire temperature is 2800 °C
- substrate temperature is 900 °C
- hot wire bias is 50V
- bias is biased 100V
- the sample stage is biased to 400V
- (3-3) The mixed gas was introduced into a deposition chamber of a hot wire chemical vapor deposition apparatus for a deposition time of 20 h to obtain a heavily doped boron nano-diamond film having a thickness of 15 ⁇ m (a carbon to boron molar ratio of 0.1).
- the shape of the electrical contacts is shown in Figure 7.
- the electrical contact substrate is placed in a diamond micropowder solution using methanol as a solvent, and ultrasonically vibrated for 60 min;
- reaction pressure is 6KPar
- hot wire temperature is 2000 °C
- substrate temperature is 700 °C
- hot wire bias is 30V
- bias is biased 50V
- the sample stage is biased by 200V;
- This embodiment is the same as the first embodiment except that the step of pretreating the surface of the electrical contact substrate is performed before the step (2) is performed after the step (2) is completed.
- the pretreatment may be one of scraping, fine planing, grinding, honing, polishing, or any combination; the polishing may be one of mechanical polishing, mechanical chemical polishing, chemical polishing, electrochemical polishing, or a combination thereof. .
- Example 5
- This embodiment is the same as the first embodiment except that the pretreatment step is performed on the surface of the electrical contact substrate before the step (2) is performed after the completion of the step (1).
- the pretreatment is surface strengthening;
- the surface strengthening may be surface mechanical strengthening, or one or a combination of heat treatment or surface chemical heat treatment;
- the main methods of surface heat treatment are flame quenching and induction heating heat treatment, and common heat sources are Flames such as oxyacetylene or oxypropyl hydrazine, induced current (electrospark), laser and electron beam, etc.;
- the surface chemical heat treatment may be one or a group of carburizing, nitriding, or infiltrating metal
- This embodiment is the same as the first embodiment except that the pretreatment step is performed on the surface of the electrical contact substrate before the step (2) is performed after the completion of the step (1).
- the pretreatment is a transition layer treatment; the transition layer treatment is to deposit a transition layer on the surface of the substrate; the transition layer may be metal (non-copper), metal alloy (non-copper alloy), metal oxide (non-copper Oxide), metal carbide (non-copper carbide) or ceramic; the deposition process may be one of physical vapor deposition, chemical vapor deposition, liquid deposition, spray deposition or any combination.
- This embodiment is the same as the first embodiment except that after the completion of the step (3), the dehydrogenation treatment step is also performed.
- the dehydrogenation treatment step is specifically: placing the electrical contact obtained in the step (3) under an oxygen atmosphere of 3 kPar, and heating to 100 ° C for 5 min to remove the hydrogenation layer caused by the growth process on the surface of the diamond nano film, thereby
- the electrical contact material is made to have a constant ultra-high conductivity.
- This embodiment is the same as the first embodiment except that after the completion of the step (3), the dehydrogenation treatment step is also performed.
- the dehydrogenation treatment step is specifically: placing the electrical contact obtained in the step (3) under an oxygen atmosphere of 8 kPar, and heating to 300 ° C for 60 min to remove the hydrogenation layer caused by the growth process on the surface of the diamond nano film, thereby
- the electrical contact material is made to have a constant ultra-high conductivity.
- This embodiment is the same as the first embodiment except that after the completion of the step (3), the dehydrogenation treatment step is also performed.
- the dehydrogenation treatment step is specifically: placing the electrical contact obtained in the step (3) under an oxygen atmosphere of 5 kPar, and heating to 200 ° C for 40 min to remove the hydrogenation layer caused by the growth process on the surface of the diamond nano film, thereby
- the electrical contact material is made to have a constant ultra-high conductivity.
- the deposition method of the nano diamond film may be physical vapor deposition, liquid deposition or other coating methods;
- the source gas may be one of methanol, ethanol, acetone, acetylene, ethylene, formamidine, acetamethylene or any combination;
- the dopant gas may be a gas containing other positive trivalent or positive pentavalent elements;
- the nucleation auxiliary gas may be Ar, One or any combination of N 2 , 0 2 , H 2 0, C0 2 ;
- the transport gas may be an isotope gas of hydrogen, etc.; any other changes, modifications, substitutions, combinations, without departing from the spirit and principles of the invention And simplifications, all of which are equivalent replacement means, are included in the scope of protection of the present invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Combustion & Propulsion (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Contacts (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
一种电触头及其制备方法,电触头包括基体,基体表面覆盖有重掺杂正三价或正五价元素的纳米金刚石薄膜。电触头的制备方法包括以下步骤:(1)制备电触头基体;(2)对电触头基体进行辅助形核处理;(3)在电触头基体表面沉积重掺杂正三价或正五价元素的纳米金刚石薄膜。通过将重掺杂的金刚石薄膜应用于电触头中,电触具有超高导热性、超高摩擦磨损性能、高导电性、高击穿电压、高抗电弧烧蚀和抗熔焊能力,同时还具有工艺简方便的优点,降低了生产成本。
Description
一种电触头及其制备方法 技术领域
本发明涉及电触头, 特别涉及一种高抗电弧烧蚀的电触头及其制备方法。 背景技术
电触头是电气设备、 电器开关、 仪表仪器等的接触元件; 主要承担接通、 断开电路及负载电流的作用; 其性能的好坏, 主要影响电气设备、 电器开关和 仪表仪器运行的可靠性及使用寿命。 近年来, 我国的电力系统事故频繁发生, 以有载分接开关为例, 其设备故障率达到 15%-30%, 大大影响了输变电的安 全, 阻碍了国民经济生产。 这些问题很大程度上是由于电触头质量低造成的, 随着现代化建设的高速发展, 高压输变电网路负荷日益增加,对触头材料耐电 弧烧蚀的能力也提出更高的要求。
目前, 国内外研究的电触头材料大量采用的是 (1 ) 利用粉末冶金方式制 备的铜钨材料,(2)利用粉末冶金方式制备的添加了抗电弧烧蚀的金刚石颗粒 的金属基材料和 (3) 采用气相或液相沉积办法制备的碳素复合金属材料。 具 体如下:
( 1 ) 铜钨材料
中国专利 200810017440.2,在铜钨材料的基础上添加电子逸出功较低的稀 土金属氧化物 Ce02, 分散电弧的运动, 减少电弧对触头材料的集中烧蚀。 类 似的, 中国专利 200810018223.5公开了在钨铜材料的基础上添加稀土单质镧 或铈、镍粉来提高抗电弧烧蚀能力。这些铜钨材料具有一定程度上降低了电弧 烧蚀的优点。在燃弧状态下, 低熔点的铜被融化, 由于毛细管作用, 被吸附在 高熔点的钨骨架的毛细孔中, 即使局部温度很高,材料也不至于产生熔悍和飞 溅, 同时这些融化的铜因相变而大量吸收热量, 从而降低了材料的表面温度。 然而,其这类电触头材料的缺点也是明显的,上述专利技术提到的为了进一步 提高抗熔目的而添加的其他元素往往同时也造成触头电阻率偏高,从而导致电 阻变大使得触头温升过高而不符合有关标准的规定要求。 同时, 该类材料跟铜 基体的结合力差, 悍接工艺复杂的缺点。
(2) 添加了抗电弧烧蚀的金刚石颗粒的铜或银基材料
金刚石是自然界中导热率最高的物质,导热率达 138.16Wm-lK-l,它具有 高熔点(约 3700摄氏度), 耐磨损, 同时也是世界上最硬的物质, 采用粉末冶 金方法在金属基中加入微量细小的金刚石颗粒, 除了具有弥散强化的作用外, 还具有提高硬度和耐磨性, 因导热性好而降低表面温度, 能抵御熔悍和电烧蚀 的优点。例如添加了金刚石颗粒的铜基材料中可以通过增加不同的稀土元素单 质或氧化物 (中国专利 200610046594.5 , 01127933.8 , 200410155250.9 , 200610046594.5, 200610115204.5, 2005匪 0555.5, 200710045008.X), 增加 其他金属化合物(中国专利 03143970.5, 94102452.0, 200710071995.0), 改进 粉末冶金工艺(中国专利 201010207589.4)之中的一种或几种组合来制备电触 头材料。 又例如, 银基材料中也可类似的通过金刚石颗粒和 /或其他物质的组 合来制备电触头材料 (如中国专利 200810017203.6, 200310107771.2 , 200910196281.1 然而, 该类技术方案存在以下几个问题: 首先, 这类电触 头材料在高电压、大电流作用下, 易熔化粘连使触头表面产生严重烧蚀坑而引 起过早失效, 已经不能满足大负载尤其是有载情况下的需求。其次, 该电触头 材料由于均是采用传统的粉末冶金法制备的, 即先用机械混粉法将金属粉、金 刚石粉和其他添加物粉进行混料,然后依次通过等压成型、真空或特殊氛围烧 结、 挤压成型、 最后机械加工成型。 经过机械混合工艺混合后的金刚石颗粒, 在金属基中分布往往不均匀, 固结金刚石的能力减弱,进而影响电触点的抗熔 悍性和耐电弧烧损力。 除此以外, 这类材料还容易发生成分偏析现象, 即在烧 结后的铜合金中,所添加的稀土元素或其氧化物等还可能以单质状态存在。这 是因为, 一方面稀土元素等很难与金属基完全合金化; 此外, 电触头的电阻率 也会受到影响, 因此该技术方案的电触头材料的综合电性能不高。
(3 ) 添加了碳素材料颗粒 (含金刚石) 的金属基材料
美国专利 US7709759 , 欧洲专利申请 EP1934995A1, 日本专利申请 JP2009-501420A, 提出使用类金刚石纳米颗粒和金属 (族 3到族 12) 或金属 合金合成的电触头材料。该材料使用气相沉积或液相沉积方法制备,具有低接 触电阻、 低摩擦系数、 较耐烧蚀等优点。 然而由于该电触头中使用高于 0.6的 sp2/sp3比值的类金刚石纳米颗粒制备, 即石墨相远大于金刚石相, 这就导致了 颗粒硬度低,大大降低了电触头的整体机械性能尤其是摩擦磨损性能,长期使 用后电触头材料的耐磨性和抗熔悍性会大大降低、 通断寿命短。 发明内容
为了克服现有技术的不足,本发明的目的在于提供一种高抗电弧烧蚀的电 触头。
本发明的另一目的在于提供一种上述电触头的制备方法。
本发明的目的通过以下技术方案实现: 一种电触头, 包括基体, 所述基体 表面覆盖有重掺杂正三价或正五价元素的纳米金刚石薄膜。
所述纳米金刚石薄膜为重掺杂硼的纳米金刚石薄膜。
所述重掺杂硼的纳米金刚石薄膜的硼与碳的摩尔比为 0.01~0.1。
一种电触头的制备方法, 包括以下步骤:
( 1 ) 制备电触头基体;
(2) 对电触头基体进行辅助形核处理;
(3 ) 在电触头基体表面沉积重掺杂正三价或正五价元素的纳米金刚石薄 膜, 得到覆盖有纳米金刚石薄膜的电触头。
所述步骤 (3 ) 具体为, 在电触头基体表面沉积重掺杂硼的纳米金刚石薄 膜, 得到覆盖有重掺杂硼的纳米金刚石薄膜的电触头。
所述在电触头基体表面沉积重掺杂硼的纳米金刚石薄膜, 具体为:
(3-1 ) 将电触头基体置于热丝化学气相沉积设备的样品台; 将反应气体 充分混合, 其中反应气体中甲垸的体积含量为 0.5~5%, 硼酸三甲脂的体积含 量为 1~4%, 余量为氢气;
(3-2) 设定热丝化学气相沉积设备的参数: 反应压力为 3~8KPar; 热丝 温度为 1500~2800°C ; 衬底温度为 500~900°C, 热丝偏压为 10~50V, 偏压极 偏压为 0~100V, 样品台偏压 0~400V; 所述偏压极设于热丝的正上方;
( 3-3 ) 将反应气体通入热丝化学气相沉积设备的沉积腔, 沉积时间为 所述步骤 (2) 对电触头基体进行辅助形核处理具体为: 将电触头基体放 入以有机溶剂为溶剂的金刚石微粉溶液中, 超声振动 10~60min;
或为: 使用以有机溶剂为溶剂的金刚石微粉溶液对电触头基体进行研磨, 时间为 l~20min。
在进行步骤(1 )之后, 步骤(2)之前, 还对电触头基体表面进行预处理; 所述预处理为精加工、 表面强化、 过渡涂层处理。
在进行步骤(3 )之后, 还进行去氢处理, 具体为: 将步骤(3 )得到的覆 盖有纳米金刚石薄膜的电触头置于 3~8kPar的氧气氛围下, 加热到 100~300°C 并保持 5min~60min。
所述反应气体还包括形核辅助气体; 所述形核辅助气体的体积含量为
30%~90%; 所述形核辅助气体为 Ar, N2, 02, H20, C02之一或任意组合。
与现有技术相比, 本发明具有以下优点和技术效果:
本发明在纳米金刚石薄膜中重掺杂正三价或正五价元素,使金刚石薄膜的 导电能力提升, 出现类金属特性, 同时保留了金刚石本身的超高导热、超高耐 磨、 高熔点的特性。通过将该薄膜应用于电触头中, 避免了现有技术存在的基 体固结金刚石的能力弱、机械性能差等问题, 并使本发明的电触头具有以下优 异的性能:
1、 超高导热性: 纯金刚石具有自然界已知材料里面最高的导热能力, 其 导热系数为 δ.ΐόλνπ^κ·1, 是纯铜材料的五倍;
2、 超高摩擦磨损性能: 纯金刚石是世界已知材料里面最硬的材料, 纳米 金刚石膜表面光洁, 摩擦系数低 (<0.1 ), 因而具备优异的摩擦磨损性能;
3、 高导电性: 对金刚石进行重掺杂, 使得导电能力提升, 表现出类金属 特性, 电阻率约为 10— 2Qcm;
4、 高击穿电压: 击穿电压为 250kV/2.5mm;
5、 高抗电弧烧蚀和抗熔悍: 由于金刚石具有高熔点 (约 3700摄氏度), 使得本发明的电触头具有优异的抗电弧烧蚀和抗熔悍能力。
同时, 由于对基体材料几何形状尺寸要求低,本发明的电触头基体可采用 常规的电触头材料和加工工艺, 工艺简单方便, 大大降低了生产成本。 附图说明
图 1为本发明的第一个实施例使用的热丝气相沉积设备的示意图。
图 2为本发明的第一个实施例的制备方法的流程图。
图 3为本发明的第一个实施例的电触头的示意图,其中线条加粗部分表示 沉积有纳米金刚石的表面。
图 4为本发明的第一个实施例制备的纳米金刚石薄膜的表面扫描电镜图。 图 5为本发明的第一个实施例制备的纳米金刚石薄膜的断面扫描电镜图。 图 6为本发明的第一个实施例制备的电触头与传统的紫铜、铜钨电触头的 烧损曲线对比图; 其中一■ "表示紫铜触头, 表示铜钨合金触头, - *一表 示本实施例的电触头。
图 7为本发明的第二个实施例的电触头的示意图,其中线条加粗部分表示 沉积有纳米金刚石的表面。
图 8为本发明的第三个实施例的电触头的示意图,其中线条加粗部分表示 沉积有纳米金刚石的表面。 具体实施方式
下面结合实施例及附图,对本发明作进一步地详细说明,但本发明的实施 方式不限于此。 实施例 1
本实施例使用热丝化学气相沉积设备制备纳米金刚石薄膜, 如图 1所示, 热丝化学气相沉积设备包括沉积腔 8、样品台 7、热丝 6和偏压极 5; 沉积腔 8 的上方设有进气口 3, 下方设有排气口 9; 所述样品台 7位于所述沉积腔 8的 下部, 所述热丝 6位于所述样品台 7的正上方, 所述偏压极 5位于所述热丝 6 的正上方; 所述偏压极 5与地之间连接有直流电源 2, 为偏压极 5加偏压; 所 述热丝 6与地之间连接有直流电源 1, 为热丝 6加直流偏压; 所述样品台 7与 地之间连接有直流电源 4, 为样品台 7加直流偏压。
如图 2所示, 本实施例的电触头的制备方法如下:
( 1 ) 制备电触头基体: 本实施例采用铜 (或铜合金) 做为基体材料, 采 用铸造的加工方式制备电触头基体。
(2) 对电触头基体进行辅助形核处理:
(2-1 )使用盐酸和硝酸溶液(体积比为 HC1:HN03=1:1 )对基体进行清洗, 并辅助以加热和超声振动;
(2-2) 将电触头基体放入以甲醇为溶剂的金刚石微粉溶液中, 超声振动 lOmin;
(2-3) 依次在丙酮和甲醇中超声清洗 3min, 并用压缩空气吹干。
(3 ) 在电触头基体表面沉积重掺杂硼的纳米金刚石薄膜, 得到覆盖有纳 米金刚石薄膜的电触头, 具体步骤为:
(3-1 ) 将电触头基体置于热丝化学气相沉积设备的样品台; 将反应气体 充分混合, 其中反应气体中甲垸 (碳源气体) 的体积含量为 0.5%; 硼酸三甲 脂 (掺杂气体) 体积含量为 4%; 氦气 (形核辅助气体) 的体积含量为 30%; 余量为氢气 (输送气体);
(3-2) 设定热丝化学气相沉积设备的参数: 反应压力为 3KPar; 热丝温 度为 1500°C ; 衬底温度为 500°C, 热丝偏压为 10V, 偏压极不加偏压; 样品台
不加偏压;
(3-3)将混合气体通入热丝化学气相沉积设备的沉积腔,沉积时间为 5h, 得到厚度为 4微米的重掺杂硼的纳米金刚石薄膜 (碳与硼的摩尔比为 0.01 )。 电触头的形状如图 3所示。
本实施例得到的电触头的表面形貌如图 4所示, 由图 4可知, 晶粒大小为 250~400nm, 颗粒均匀, 成膜质量较高。
本实施例得到的电触头的断面形貌如图 5所示, 由图 5可知, 晶粒在基底 形核后向上生长, 晶粒之间形成致密结构, 均匀性好。
图 6为本实例得到电触头与传统的紫铜、 铜钨电触头的烧损曲线对比图, 由图 6可知,在铜基体材料上沉积掺硼纳米金刚石膜后,相对铜基材料触头或 铜钨合金触头,单位切换次数造成的烧损面积大大降低,触头寿命得到很大程 度的提高。 实施例 2
本实施例的电触头的制备方法如下:
( 1 ) 制备电触头基体: 本实施例采用银 (或银合金) 做为基体材料, 采 用压力加工的加工方式制备电触头基体。
(2) 对电触头基体进行辅助形核处理:
(2-1 )首先使用盐酸和硝酸溶液(体积比为 HC1:HN03=1:1 )对基体进行 清洗, 并辅助以加热和超声振动;
(2-2) 使用以有机溶剂为溶剂的金刚石微粉溶液对基体进行研磨, 时间 为 lmin;
(2-3) 依次在乙醇和甲醛中超声清洗 3min, 并用压缩空气吹干。
(3 ) 在电触头基体表面沉积重掺杂硼的纳米金刚石薄膜, 得到覆盖有纳 米金刚石薄膜的电触头, 具体步骤为:
(3-1 ) 将电触头基体置于热丝化学气相沉积设备的样品台; 将反应气体 充分混合, 其中反应气体中甲垸 (碳源气体) 的体积含量为 5%; 硼酸三甲脂 (掺杂气体) 体积含量为 1%; 氦气 (形核辅助气体) 的体积含量为 60%; 余 量为氢气 (输送气体);
(3-2) 设定热丝化学气相沉积设备的参数: 反应压力为 8KPar; 热丝温 度为 2800 °C ; 衬底温度为 900°C, 热丝偏压 50V, 偏压极加偏压 100V; 样品 台加偏压 400V;
(3-3)将混合气体通入热丝化学气相沉积设备的沉积腔,沉积时间为 20h, 得到厚度为 15微米的重掺杂硼的纳米金刚石薄膜 (碳与硼的摩尔比为 0.1 )。 电触头的形状如图 7所示。
实施例 3
本实施例的电触头的制备方法如下:
( 1 ) 制备电触头基体: 本实施例采用金 (或金的合金) 做为基体材料, 采用粉末冶金的加工方式制备电触头基体。
(2) 对电触头基体进行辅助形核处理:
(2-1 )首先使用盐酸和硝酸溶液(体积比为 HC1:HN03=1:1 )对基体进行 清洗, 并辅助以加热和超声振动;
(2-2) 将电触头基体放入以甲醇为溶剂的金刚石微粉溶液中, 超声振动 60min;
(2-3) 依次在甘油和乙醇中超声清洗 3min, 并用压缩空气吹干。
(3 ) 在电触头基体表面沉积重掺杂硼的纳米金刚石薄膜, 得到覆盖有纳 米金刚石薄膜的电触头, 具体步骤为:
(3-1 ) 将电触头基体置于热丝化学气相沉积设备的样品台; 将反应气体 充分混合, 其中反应气体中甲垸 (碳源气体) 的体积含量为 2%; 硼酸三甲脂 (掺杂气体) 体积含量为 3%; 氦气 (形核辅助气体) 的体积含量为 90%; 余 量为氢气 (输送气体);
(3-2) 设定热丝化学气相沉积设备的参数: 反应压力为 6KPar; 热丝温 度为 2000 °C ; 衬底温度为 700°C, 热丝偏压 30V, 偏压极加偏压 50V; 样品台 加偏压 200V;
(3-3)将混合气体通入热丝化学气相沉积设备的沉积腔,沉积时间为 10h, 得到厚度为 8微米的重掺杂硼的纳米金刚石薄膜 (碳与硼的摩尔比为 0.06)。 电触头的形状如图 8所示。 实施例 4
本实施例除在完成步 ; ( 1 )之后进行步骤(2)之前, 还进行对电触头基 体表面进行预处理步骤外 其余步骤与实施例 1相同。
所述预处理为精加工 可以是刮削、 细刨、 研磨、 珩磨、 抛光之一或任意 组合; 所述的抛光可以是; 械抛光、 机械化学抛光、 化学抛光、 电化学抛光之 一或其组合。
实施例 5
本实施例除在完成步骤(1 )之后进行步骤(2)之前, 还进行对电触头基 体表面进行预处理步骤外, 其余步骤与实施例 1相同。
所述预处理为表面强化;所述表面强化可以为表面机械强化,或者为热处 理或表面化学热处理之一或组合;所述的表面热处理的主要方法有火焰淬火和 感应加热热处理, 常用的热源有氧乙炔或氧丙垸等火焰、感应电流(电火花)、 激光和电子束等; 所述的表面化学热处理可以是渗碳、渗氮、渗金属之一或组
实施例 6
本实施例除在完成步骤(1 )之后进行步骤(2)之前, 还进行对电触头基 体表面进行预处理步骤外, 其余步骤与实施例 1相同。
所述预处理为过渡层处理; 所述过渡层处理为在基体表面沉积一层过渡 层; 所述过渡层可以是金属 (非铜)、 金属合金(非铜合金)、 金属氧化物(非 铜氧化物)、 金属碳化物 (非铜碳化物) 或陶瓷; 沉积工艺可以是物理气相沉 积、 化学气相沉积、 液相沉积、 喷涂沉积手段之一或任意组合。 实施例 7
本实施例除在完成步骤 (3 ) 之后, 还进行去氢处理步骤外, 其余步骤与 实施例 1相同。
去氢处理步骤具体为: 将步骤 (3 ) 得到的电触头置于 3kPar的氧气氛围 下, 并加热到 100°C, 保持 5min, 去除金刚石纳米膜表面因生长过程而造成的 氢化层, 从而使得电触头材料具备恒定的超高导电能力。 实施例 8
本实施例除在完成步骤 (3 ) 之后, 还进行去氢处理步骤外, 其余步骤与 实施例 1相同。
去氢处理步骤具体为: 将步骤 (3 ) 得到的电触头置于 8kPar的氧气氛围 下, 并加热到 300°C, 保持 60min, 去除金刚石纳米膜表面因生长过程而造成 的氢化层, 从而使得电触头材料具备恒定的超高导电能力。
本实施例除在完成步骤 (3) 之后, 还进行去氢处理步骤外, 其余步骤与 实施例 1相同。
去氢处理步骤具体为: 将步骤 (3) 得到的电触头置于 5kPar的氧气氛围 下, 并加热到 200°C, 保持 40min, 去除金刚石纳米膜表面因生长过程而造成 的氢化层, 从而使得电触头材料具备恒定的超高导电能力。 上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实 施例的限制,如纳米金刚石膜的沉积方法可以为物理气相沉积、液相沉积或其 他镀膜方法; 碳源气体可以为甲醇、 乙醇、 丙酮、 乙炔、 乙烯、 甲垸、 乙垸之 一或任意组合;掺杂气体可以为含有其他正三价或正五价元素的气体; 形核辅 助气体可以为 Ar, N2, 02, H20, C02之一或任意组合; 输送气体可为氢的同 位素气体等;其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、 替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims
1、 一种电触头, 包括基体, 其特征在于, 所述基体表面覆盖有重掺杂正 三价或正五价元素的纳米金刚石薄膜。
2、 根据权利要求 1所述的电触头, 其特征在于, 所述纳米金刚石薄膜为 重掺杂硼的纳米金刚石薄膜。
3、 根据权利要求 2所述的电触头, 其特征在于, 所述重掺杂硼的纳米金 刚石薄膜的硼与碳的摩尔比为 0.01~0.1。
4、 一种电触头的制备方法, 其特征在于, 包括以下步骤:
( 1 ) 制备电触头基体;
(2) 对电触头基体进行辅助形核处理;
(3 ) 在电触头基体表面沉积重掺杂正三价或正五价元素的纳米金刚石薄 膜, 得到覆盖有纳米金刚石薄膜的电触头。
5、根据权利要求 4所述的电触头的制备方法,其特征在于,所述步骤(3) 具体为,在电触头基体表面沉积重掺杂硼的纳米金刚石薄膜,得到覆盖有重掺 杂硼的纳米金刚石薄膜的电触头。
6、 根据权利要求 5所述的电触头的制备方法, 其特征在于, 所述在电触 头基体表面沉积重掺杂硼的纳米金刚石薄膜, 具体为:
(3-1 ) 将电触头基体置于热丝化学气相沉积设备的样品台; 将反应气体 充分混合, 其中反应气体中甲垸的体积含量为 0.5~5%, 硼酸三甲脂的体积含 量为 1~4%, 余量为氢气;
(3-2) 设定热丝化学气相沉积设备的参数: 反应压力为 3~8KPar; 热丝 温度为 1500~2800°C ; 衬底温度为 500~900°C, 热丝偏压为 10~50V, 偏压极 偏压为 0~100V, 样品台偏压 0~400V; 所述偏压极设于热丝的正上方;
(3-3 ) 将反应气体通入热丝化学气相沉积设备的沉积腔, 沉积时间为
7、根据权利要求 4所述的电触头的制备方法,其特征在于,所述步骤(2) 对电触头基体进行辅助形核处理具体为:将电触头基体放入以有机溶剂为溶剂 的金刚石微粉溶液中, 超声振动 10~60min;
或为: 使用以有机溶剂为溶剂的金刚石微粉溶液对电触头基体进行研磨, 时间为 l~20min。
8、 根据权利要求 4所述的电触头的制备方法, 其特征在于, 在进行步骤 ( 1 )之后, 步骤(2)之前, 还对电触头基体表面进行预处理; 所述预处理为 精加工、 表面强化、 过渡涂层处理。
9、 根据权利要求 4所述的电触头的制备方法, 其特征在于, 在进行步骤 (3 )之后, 还进行去氢处理, 具体为: 将步骤(3 )得到的覆盖有纳米金刚石 薄膜的电触头置于 3~8kPar 的氧气氛围下, 加热到 100~300°C并保持 5min~60min。
10、根据权利要求 6所述的电触头的制备方法, 其特征在于, 所述反应气 体还包括体积含量为 30%~90%的形核辅助气体;所述形核辅助气体为 Ar, N2, 02, H20, C02之一或任意组合。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/235,645 US20140224628A1 (en) | 2011-07-29 | 2012-01-05 | Electric contact and fabrication method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110217642.3 | 2011-07-29 | ||
CN201110217642.3A CN102290260B (zh) | 2011-07-29 | 2011-07-29 | 一种电触头及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013016950A1 true WO2013016950A1 (zh) | 2013-02-07 |
Family
ID=45336573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/070044 WO2013016950A1 (zh) | 2011-07-29 | 2012-01-05 | 一种电触头及其制备方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20140224628A1 (zh) |
CN (1) | CN102290260B (zh) |
WO (1) | WO2013016950A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102290260B (zh) * | 2011-07-29 | 2014-02-26 | 广州市德百顺电气科技有限公司 | 一种电触头及其制备方法 |
CN104952642A (zh) * | 2015-04-04 | 2015-09-30 | 湖南德沃普电气股份有限公司 | 有载调容调压开关 |
JP7012304B2 (ja) * | 2017-11-18 | 2022-02-14 | 国立大学法人金沢大学 | 熱フィラメントcvd装置 |
CN111254410A (zh) * | 2019-10-10 | 2020-06-09 | 东南大学 | 一种纳米晶金刚石粒子增强银基电接触涂层 |
CN113897675B (zh) * | 2021-09-15 | 2023-04-11 | 湖南新锋先进材料科技有限公司 | 一种掺杂金刚石颗粒及其制备方法与应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101149356A (zh) * | 2007-11-05 | 2008-03-26 | 同济大学 | 采用纳米掺硼金刚石膜电极的电化学分析装置及其应用 |
JP2008128650A (ja) * | 2006-11-16 | 2008-06-05 | Kyushu Institute Of Technology | プローブカード用接触子及びその製造方法 |
CN102290260A (zh) * | 2011-07-29 | 2011-12-21 | 广州市德百顺电气科技有限公司 | 一种电触头及其制备方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6161499A (en) * | 1997-07-07 | 2000-12-19 | Cvd Diamond Corporation | Apparatus and method for nucleation and deposition of diamond using hot-filament DC plasma |
US7309530B2 (en) * | 2004-08-24 | 2007-12-18 | General Electric Company | Thermal barrier coating with reduced sintering and increased impact resistance, and process of making same |
US7858186B2 (en) * | 2004-11-12 | 2010-12-28 | William Marsh Rice University | Fluorinated nanodiamond as a precursor for solid substrate surface coating using wet chemistry |
CN101197215B (zh) * | 2008-01-02 | 2010-08-04 | 陕西艺林实业有限责任公司 | 纳米金刚石掺杂银基触头材料的加工方法 |
CN101481792B (zh) * | 2008-01-08 | 2010-12-08 | 中国科学院物理研究所 | 一种硼掺杂金刚石超导材料的制备方法 |
-
2011
- 2011-07-29 CN CN201110217642.3A patent/CN102290260B/zh active Active
-
2012
- 2012-01-05 WO PCT/CN2012/070044 patent/WO2013016950A1/zh active Application Filing
- 2012-01-05 US US14/235,645 patent/US20140224628A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008128650A (ja) * | 2006-11-16 | 2008-06-05 | Kyushu Institute Of Technology | プローブカード用接触子及びその製造方法 |
CN101149356A (zh) * | 2007-11-05 | 2008-03-26 | 同济大学 | 采用纳米掺硼金刚石膜电极的电化学分析装置及其应用 |
CN102290260A (zh) * | 2011-07-29 | 2011-12-21 | 广州市德百顺电气科技有限公司 | 一种电触头及其制备方法 |
Non-Patent Citations (1)
Title |
---|
CAO, JUQIN: "The effect of substrate surface pre-polishing on nucleation diamond thin films", MPECVD, NINGXIA ENGINGEERING TECHNOLOGY, vol. 9, no. 1, March 2010 (2010-03-01), pages 58 - 59 * |
Also Published As
Publication number | Publication date |
---|---|
US20140224628A1 (en) | 2014-08-14 |
CN102290260A (zh) | 2011-12-21 |
CN102290260B (zh) | 2014-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101651050B (zh) | 亚微米颗粒增强银基电触头材料及其制备方法 | |
WO2013016950A1 (zh) | 一种电触头及其制备方法 | |
CN110216282A (zh) | 铜基合金触点的制备方法 | |
Zhang et al. | Microstructure and properties of Ag–Ti 3 SiC 2 contact materials prepared by pressureless sintering | |
WO2015192815A1 (zh) | 一种碳化钨-立方氮化硼复合材料及其制备方法 | |
CN108893637A (zh) | 一种铜钨合金掺杂石墨烯的制备方法 | |
CN111636023B (zh) | 一种铜钨梯度材料电触头的制备方法 | |
CN103290359A (zh) | 一种银碳化钨触头合金的制备方法 | |
CN103184402B (zh) | 一种稀土改性金属陶瓷涂层的制备方法 | |
KR101155998B1 (ko) | 팔라듐-구리-니켈 합금 수소 분리막의 제조방법 | |
CN106498206A (zh) | 一种Ti3SiC2增强Ag基电触头材料的制备方法 | |
CN109365799A (zh) | 石墨烯包覆金属粉体的制备方法及金属基-石墨烯电触点 | |
CN114561565B (zh) | 金刚石颗粒增强的高熵合金复合材料的制备方法 | |
Han et al. | Interfacial thermal stress relief in Ag–SnO2 composites by in situ formation of CuO nanoparticles additive on SnO2 | |
CN103386484B (zh) | 铜-钛硅碳复合触头材料及其热压烧结制备方法和用途 | |
CN105679560B (zh) | 一种镀镍石墨烯增强银基电触头材料的制备方法 | |
CN105609159B (zh) | 一种镀铜石墨烯增强铜基电触头材料及其制备方法 | |
CN108441668B (zh) | 一种银钨电接触材料及其制备方法 | |
WO2019037651A1 (zh) | 一种含硼的碳化钨铜合金及制备方法 | |
CN103352159B (zh) | 铜-钛硅碳复合触头材料及其无压烧结制备方法和用途 | |
CN105551860A (zh) | 一种镀镍石墨烯/银镍电触头材料的制备方法 | |
CN107217171B (zh) | 一种液液掺杂稀土氧化物铜基复合材料及其制备方法 | |
CN105803283A (zh) | 一种Nb-Si-Ti-W-Cr合金棒材及其制备方法 | |
CN110614381B (zh) | 银基石墨烯电接触材料的制备方法及其电接触材料 | |
CN110899717A (zh) | 一种Al2O3-CNTs/Cu复合材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12819261 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14235645 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12819261 Country of ref document: EP Kind code of ref document: A1 |