WO2013014748A1 - 車両用動力伝達システム - Google Patents
車両用動力伝達システム Download PDFInfo
- Publication number
- WO2013014748A1 WO2013014748A1 PCT/JP2011/066935 JP2011066935W WO2013014748A1 WO 2013014748 A1 WO2013014748 A1 WO 2013014748A1 JP 2011066935 W JP2011066935 W JP 2011066935W WO 2013014748 A1 WO2013014748 A1 WO 2013014748A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- clutch
- shift
- driving force
- engine
- power transmission
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/68—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
- F16H61/682—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings with interruption of drive
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D29/00—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
- F02D29/02—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0215—Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
- F02D41/023—Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission in relation with the gear ratio shifting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P5/00—Advancing or retarding ignition; Control therefor
- F02P5/04—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
- F02P5/145—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
- F02P5/15—Digital data processing
- F02P5/1502—Digital data processing using one central computing unit
- F02P5/1504—Digital data processing using one central computing unit with particular means during a transient phase, e.g. acceleration, deceleration, gear change
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/04—Smoothing ratio shift
- F16H61/0437—Smoothing ratio shift by using electrical signals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H63/00—Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
- F16H63/40—Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
- F16H63/50—Signals to an engine or motor
- F16H63/502—Signals to an engine or motor for smoothing gear shifts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2200/00—Type of vehicle
- B60Y2200/10—Road Vehicles
- B60Y2200/12—Motorcycles, Trikes; Quads; Scooters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D37/00—Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
- F02D37/02—Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention relates to a vehicle power transmission system mounted on a self-propelled vehicle such as a motorcycle or a four-wheel buggy.
- a power transmission device is provided to transmit driving force generated by an engine (prime mover) to driving wheels.
- a power transmission device is a mechanical device that transmits and transmits to a drive wheel while changing the rotational speed of a rotary drive shaft while being connected to and disconnected from a rotary drive shaft (crankshaft) of an engine, and is mainly composed of a clutch and a transmission.
- the clutch is a mechanical device that transmits the rotational driving force of the rotational drive shaft to the transmission side while being connected to and disconnected from the rotational drive shaft of the engine.
- the transmission is a mechanical device that changes the rotational speed of the rotational drive shaft of the engine at a plurality of shift stages and transmits it to the drive wheel side.
- the gear train changing process includes a gear pulling process that eliminates the transmission state of the driving force in the gear train that constitutes the gear stage before the gear shift, and a gear train constituting the gear stage that constitutes the gear gear after the gear shift And a gear connecting step for making the state of transmission.
- the present invention has been made to cope with the above-described problems, and an object of the present invention is to provide a vehicular power capable of quickly performing a speed change operation in a transmission and reducing a so-called uncomfortable torque caused to a driver during the speed change operation. It is to provide a transmission system.
- a feature of the present invention according to claim 1 is that an engine that is mounted on a vehicle and generates a driving force by combustion of fuel, a main shaft that is rotationally driven by the driving force of the engine, and a driving wheel of the vehicle A transmission that transmits a driving force to driving wheels while changing a rotational speed of the engine, wherein a plurality of gear trains constituting a plurality of gear stages having different gear ratios are provided between a counter shaft coupled to the engine, and an engine A vehicle equipped with a clutch that transmits and shuts off the driving force of the engine to the transmission by closely contacting and separating a friction plate that is rotationally driven by the driving force transmitted from the clutch and a clutch plate that is connected to the transmission and receives the driving force
- transmission shifting Before starting to shut off the driving force between the main shaft and the countershaft, the transmission driving force reducing means for reducing the driving force transmitted from the engine to the main shaft is provided. It is to complete the interruption of the driving force between the
- the vehicle power transmission system is configured to start blocking the transmission of the driving force between the main shaft and the countershaft during the speed change operation of the transmission.
- a transmission driving force reduction means for reducing the driving force transmitted from the engine to the main shaft, and after the reduction of the driving force to the main shaft by the transmission driving force reduction means and the transmission of the driving force in the clutch. Before the disconnection is completed, the transmission completes the disconnection of the driving force transmission between the main shaft and the countershaft.
- the power transmission system for a vehicle reduces the driving force from the engine in a state where the driving force from the engine is reduced during a shift operation such as a shift up or down in the transmission, regardless of the transmission state of the driving force in the clutch.
- a shift operation such as a shift up or down in the transmission
- the transmission state of the driving force by the gear train constituting the gear stage before the shifting in the transmission is canceled.
- the transmission operation in the transmission can be completed more quickly than the conventional power transmission device that starts the transmission operation in the transmission after the transmission of the driving force in the clutch is interrupted, and is given to the operator during this transmission operation. Discomfort caused by so-called torque loss can be reduced.
- the transmission driving force lowering means reduces a fuel supply amount to the engine, and shifts an ignition timing of the fuel in the engine.
- the driving force from the engine transmitted to the main shaft is reduced by at least one of weakening the adhesion between the friction plate and the clutch plate in the clutch.
- the transmission driving force lowering means in the vehicle power transmission system reduces the amount of fuel supplied to the engine.
- the driving force from the engine transmitted to the main shaft is reduced by at least one of shifting the timing and weakening the adhesion between the friction plate and the clutch plate in the clutch.
- the power transmission system for vehicles can reduce the driving force from the engine transmitted to the main shaft with a simple configuration.
- the transmission driving force reduction means reduces the amount of fuel supplied to the engine before the driving force in the clutch is completely shut off. There is.
- the transmission driving force lowering means in the vehicle power transmission system is configured such that the fuel to the engine is completely removed before the transmission of the driving force in the clutch is completed. The supply amount is reduced. Thereby, since the driving force from the engine transmitted to the main shaft is reduced before the transmission of the driving force in the clutch is interrupted, the transmission of the driving force in the transmission can be smoothly interrupted.
- the transmission driving force lowering means determines the ignition timing of the fuel in the engine before reducing the amount of fuel supplied to the engine. There is to shift.
- the transmission driving force reducing means in the vehicle power transmission system may reduce the amount of fuel supplied to the engine before reducing the amount of fuel supplied to the engine.
- the ignition timing is shifted.
- the driving force of the engine can be reduced while preventing a sudden drop in the driving force due to a reduction in the amount of fuel supplied to the engine.
- the transmission of driving force can be cut off.
- a shift spindle that is rotationally driven based on a shift operation from the outside, and a radial extending from the shift spindle are provided.
- Clutch lift lever and gear shift arm drive lever that rotate and displaces integrally with the shift spindle, and fixed clutch lifter that closely contacts and separates the friction plate and clutch plate in the clutch, and clutch drive play between the clutch lifter lever and the clutch lift lever.
- Between the index pin and / or the gear shift arm provided between the index pin and the gear shift arm drive lever for rotationally driving the shift clutch for changing the gear train in the transmission.
- a gearshift arm connected through a shift operation play between the moving lever.
- the clutch and the transmission are respectively connected to the clutch spindle and the shift spindle which is rotationally driven by a shift operation from the outside. It is configured to be connected and driven via a shift operation play. That is, by appropriately adjusting the amount of clutch drive play for driving the clutch and the amount of shift operation play for driving the transmission, the timing for operating the clutch and the timing for operating the transmission can be freely set. Can do. Thereby, the transmission driving force reduction means can be configured with a simple configuration.
- Another feature of the present invention according to claim 6 is that in the vehicle power transmission system, the amount of clutch drive play is smaller than the amount of shift operation play.
- the amount of clutch drive play is smaller than the amount of shift operation play. For this reason, in the vehicle power transmission system, the transmission is started after the clutch is first operated by the rotational drive of the shift spindle. As a result, the rotational driving force transmitted from the engine prior to the operation of the transmission can be reduced, and the transmission of the driving force in the transmission can be smoothly interrupted.
- the preload spring further includes a shift operation play between the gear shift arm and the index pin and / or the gear shift arm drive lever in the vehicle power transmission system. It is in having.
- the amount of shift operation play for driving the transmission is packed by a preload spring.
- the transmission is ready to start a shift operation immediately after the rotational drive of the shift spindle, and the drive force is reduced from the engine to enable the shift operation. That is, the gear train constituting the shift stage before the shift Immediately at the moment when the transmission state of the driving force by can be canceled, the transmission state of the driving force by the gear train is canceled. Thereby, the speed change operation in the transmission can be performed more quickly.
- FIG. 1 is a block diagram schematically illustrating an overall configuration of a vehicle power transmission system according to the present invention. It is a top view shown in the partially broken front view which shows roughly the inside of the power transmission device shown in FIG.
- FIG. 3 is a cross-sectional view schematically showing an outline of a main part of the power transmission device as seen from line AA shown in FIG. 2.
- FIG. 3 is a partially broken plan view schematically showing an internal state before a shift-up operation in the power transmission device shown in FIG. 2.
- 2 is a time chart showing an operation process during a shift-up operation of a shift stage of the vehicle power transmission system shown in FIG. 1.
- FIG. 1 is a block diagram schematically illustrating an overall configuration of a vehicle power transmission system according to the present invention. It is a top view shown in the partially broken front view which shows roughly the inside of the power transmission device shown in FIG.
- FIG. 3 is a cross-sectional view schematically showing an outline of a main part of the power transmission device as seen from line
- FIG. 3 is a partially broken plan view schematically showing an internal state at the end of a lost motion in a shift-up operation process of the power transmission device shown in FIG. 2.
- FIG. 3 is a partially cutaway plan view schematically showing an internal state at the time of completion of a gear pulling process during a shift-up operation of the power transmission device shown in FIG. 2.
- It is a power transmission device in the power transmission system for vehicles concerning the modification of the present invention, and is a sectional view showing typically the outline of the composition in the dashed circle shown in FIG.
- FIG. 1 is a block diagram schematically showing an outline of the overall configuration of a vehicle power transmission system 100 according to the present invention. Note that each drawing referred to in the present specification is schematically represented by exaggerating some of the components in order to facilitate understanding of the present invention. For this reason, the dimension, ratio, etc. between each component may differ.
- the vehicle power transmission system 100 is a group of mechanical devices that transmit to a driving wheel a rotational driving force generated by an engine that is a prime mover in a two-wheeled vehicle (so-called motorcycle). And below the fuel tank).
- the vehicle power transmission system 100 includes an engine 110.
- the engine 110 is a prime mover that is mounted on a vehicle (not shown) and generates a rotational driving force by burning fuel. Specifically, the engine 110 introduces an air-fuel mixture composed of fuel and air into a cylindrical cylinder 111 and ignites the air-fuel mixture with an ignition plug 112 to explode the piston 113.
- This is a so-called reciprocating engine that generates a rotational driving force on a crankshaft 114 that is reciprocated in a cylinder 111 and connected to a piston 113.
- the engine 110 is assumed to be a so-called 4-stroke engine, but it is natural that it may be a so-called 2-stroke engine.
- An intake pipe 116 is connected to a cylinder 111 constituting a combustion chamber in the engine 110 via an intake valve 115.
- the intake pipe 116 is a pipe for supplying an air-fuel mixture into the cylinder 111, and supplies (injects) fuel in the form of a mist into the throttle valve 117 and the cylinder 111 for adjusting the amount of air supplied into the cylinder 111.
- Each injector 118 is provided. Among these, the operation of the spark plug 112 and the injector 118 is controlled by an ECU 300 described later, and the throttle valve 117 is operated by a manual operation by a vehicle operator.
- the power transmission device 200 is connected to the crankshaft 114 in the engine 110 via a primary drive gear 114a.
- the power transmission device 200 is a mechanical device that transmits the rotational driving force generated by the engine 110 at a plurality of shift speeds, and mainly includes a clutch 210 and a transmission 240.
- Clutch 210 is disposed between engine 110 and transmission 240 on the transmission path of the rotational driving force generated by engine 110, and transmits and blocks rotational driving force generated by engine 110 to transmission 240. It is a mechanical device. Specifically, as shown in FIGS. 2 to 4, the clutch 210 is provided on one end side (right side in the drawing) of the main shaft 241 extending in a shaft shape from the transmission 240 and includes a friction material (not shown).
- the friction plates 211 and the clutch plates 212 made of steel plates are alternately housed in the clutch case 201 in a state where a plurality of the friction plates 211 and the steel plate clutch plates 212 are alternately arranged. In this case, the friction plate 211 is held in the clutch shell 213 and the clutch plate 212 is held in the clutch hub 214.
- the clutch shell 213 that holds the friction plate 211 is integrally fixed to a primary driven gear 215 that meshes with the primary drive gear 114a, and is integrally rotated together with the primary drive gear 114a, that is, the crankshaft 114.
- the clutch hub 214 that holds the clutch plate 212 is integrally connected to the main shaft 241, and rotates together with the main shaft 241 and the clutch plate 212.
- a pair of pressure plates 217 a that are pressed and adhered to the outside of the alternately arranged friction plates 211 and clutch plates 212 in a state where the friction plates 211 and the clutch plates 212 are sandwiched by the elastic force of the clutch spring 216. 217b is provided.
- a fixed clutch lifter 220 is disposed opposite to the outside (right side in the figure) of the pressure plate 217b via a movable clutch lifter 221.
- the fixed clutch lifter 220 rotates the pressure plate 217b against the elastic force of the clutch spring 216 via the movable clutch lifter 221 by rotating some of the components in conjunction with the rotational drive of the shift spindle 230 described later. It is a mechanical device to press.
- the movable clutch lifter 221 is a bar member that is integrally fixed to the rotating component in the fixed clutch lifter 220 and extends to the outside of the fixed clutch lifter 220.
- the friction plate 211 and the clutch plate 212 are brought into close contact with each other, whereby the clutch shell 213 and the clutch hub 214 are integrally rotated to transmit the rotational driving force of the engine 110 to the transmission 240. Further, the clutch 210 transmits the transmission by eliminating the contact state between the friction plate 211 and the clutch plate 212 by the fixed clutch lifter 220 pressing the pressure plate 217b via the movable clutch lifter 221 to weaken the elastic force of the clutch spring 216. The rotational driving force of the engine 110 with respect to 240 is shut off.
- a shift spindle 230 is connected to the fixed clutch lifter 220 in the clutch 210 via a movable clutch lifter 221 and a clutch lifter lever 222.
- the clutch lifter lever 222 is a bar member that connects the movable clutch lifter 221 and the shift spindle 230.
- One end of the clutch lifter lever 221 is connected to the movable clutch lifter 221 and the other end is integrally fixed to the shift spindle 230. Has been.
- the movable clutch lifter 221 and the clutch lifter lever 222 are connected in a loose manner via a clutch drive play L1. More specifically, a through-hole 221a is formed at the end of the movable clutch lifter 221, and a boss 222a having a diameter smaller than the diameter of the through-hole 221a is provided at the end of the clutch lifter lever 222. It has been. A boss 222 a formed at the end of the clutch lifter lever 222 is movably fitted into a through hole 221 a formed at the end of the movable clutch lifter 221. Note that the clutch drive play L1 is formed on both sides of the boss 222a corresponding to each shift operation of the transmission 240 upshifting and downshifting.
- the shift spindle 230 is a shaft body that is driven to rotate in a corresponding rotation direction based on a shift up or down shift operation by a vehicle operator, and one end thereof is a clutch lifter lever 222 and a movable clutch lifter 221. The other end is connected to the shift spindle drive motor 231.
- the shift spindle drive motor 231 is an electric motor that is rotationally driven by operation control by the ECU. That is, even when the shift spindle 230 is rotationally driven by the shift spindle drive motor 231, the fixed clutch lifter 220 does not start to operate until the clutch drive play L1 is eliminated.
- the transmission 240 is a mechanical device for shifting the rotational driving force generated from the engine 110 at a plurality of shift speeds (for example, four speed shifts) and transmitting it to the drive wheels.
- a main shaft 241 connected to the crankshaft 114 of the engine 110 via a clutch 210 and a counter shaft 242 (not shown in FIG. 3) connected to driving wheels are arranged in parallel to each other.
- a plurality of gear trains that constitute a plurality of gear stages having different gear ratios are provided.
- the plurality of gear trains provided between the main shaft 241 and the counter shaft 242 include a plurality of main shaft gears 241 a provided on the main shaft 241 and a plurality of counter shaft gears 242 a provided on the counter shaft 242.
- the main shaft gear 241a and the counter shaft gear 242a are configured so as to form a pair and always mesh with each other.
- one main shaft gear 241a or counter shaft gear 242a constituting this pair is fixedly supported with respect to the main shaft 241 or counter shaft 242, and the other counter shaft gear 242a constituting the same pair or
- the main shaft 241 is supported so as to be slidable in the axial direction with respect to the counter shaft 242 or the main shaft 241.
- the main shaft gear 241a and the counter shaft gear 242a have a dog 243a and a fitting hole 243b that are fitted to each other between the adjacent main shaft gears 241a and the counter shaft gear 242a constituting one shift stage. It is formed on the opposite side surface.
- a shift fork 244 is provided outside the main shaft gears 241a and the counter shaft gears 242a that are connected and separated from each other.
- the shift fork 244 is a component that presses the main shaft gear 241a and the counter shaft gear 242a that are slidable in the axial direction, and is configured by a bifurcated plate-like body that surrounds the main shaft gear 241a and the counter shaft gear 242a.
- the shift fork 244 is formed of a cylindrical body, and a groove 245a is formed on the outer peripheral surface of the cylindrical body.
- the shift fork 244 is supported by a shift drum 245 positioned at a rotational position corresponding to the gear position of the transmission 240.
- a part of the shift fork 244 is fitted in a groove 245 a formed on the outer peripheral surface of the shift drum 245, and the outer peripheral surface of the shift drum 245 follows the groove 245 a by rotational driving of the shift drum 245. Slide displacement along the axial direction on the top.
- an index plate 246b formed in a star shape having five shift drum pins 246a and five protrusions is provided.
- the rotational displacement of the shift drum 245 is elastically restricted by pressing the tip of the index arm 247 against the valley of the index plate 246b by the index spring 247a.
- a shift spindle 230 is connected to the shift drum pin 246 a of the shift drum 245 via a gear shift arm 248 and a gear shift arm drive lever 249.
- the gear shift arm 248 is a bar member that is rotatably supported by the shift spindle 230 with a hook 248a hooked to the shift drum pin 246a so as to be able to rotate and slide.
- the hook 248a is configured to have two hook-shaped portions on both sides of the shift drum pin 246a in order to rotate the shift drum pin 246a in the rotation direction corresponding to each shift operation of the transmission 240 upshifting and downshifting. Yes.
- a shift operation play L3 is formed between each tip of the two hook-shaped portions of the hook 248a and the outer peripheral surface of the shift drum pin 246a.
- the gear shift arm drive lever 249 is a bar member that connects the gear shift arm 248 and the shift spindle 230, one end of which is freely connected to the gear shift arm 248 and the other end to the shift spindle 230. It is fixed integrally.
- the gear shift arm 248 and the gear shift arm drive lever 249 are connected via a shift operation play L2. More specifically, a through hole 248b is formed at the end of the gear shift arm 248, and the end of the gear shift arm drive lever 249 is bent toward the through hole 248b with a width narrower than the diameter of the through hole 248b. A bent piece 249a is formed. A bent piece 249 a formed at the end of the gear shift arm drive lever 249 is movably fitted into a through hole 248 b formed at the end of the gear shift arm 248.
- the shift drive play L2 is also formed on both sides of the bent piece 249a corresponding to each shift-up and shift-down operation of the transmission 240, like the clutch drive play L1 and the shift drive play L3. Yes.
- the gear shift arm 248 and the gear shift arm drive lever 249 are positioned at a neutral position by a gear shift return spring 250 supported by the shift spindle 230.
- the gear shift return spring 250 is formed such that both end portions of the coil spring extend linearly, and the two end portions are neutral positioning pins 251 fixed to a frame (not shown) in the power transmission device 200.
- the bent piece 249a of the gear shift arm drive lever 249 and the bent piece 248c formed in the through hole 248b of the gear shift arm 248 are provided.
- the gear shift return spring 250 rotates in the clockwise or counterclockwise direction shown in the figure in order to lift up the clutch 210 during the operation of changing the gear train constituting the gear stage in the transmission 240, and the gear shift arm drive lever 249. Is reversed counterclockwise or clockwise to return to the original neutral position. 4, 6, and 7, the rotation directions of the clutch lifter lever 222, the gear shift arm 248, the gear shift arm drive lever 249, and the shift drum 245 during the shift up operation of the transmission 240 are indicated by broken line arrows, respectively. Show.
- the clutch drive play L1, the shift operation play L2, and the shift operation play L3 are set to have a relationship of L1 ⁇ (L2 + L3). Therefore, the power transmission device 200 in the present embodiment is configured such that the transmission 240 starts to operate after the clutch 210 first starts operating by the rotational drive of the shift spindle 230.
- the ECU 300 (Engine Control Unit) is configured by a microcomputer including a CPU, a ROM, a RAM, and the like, and comprehensively controls the entire operation of the vehicle power transmission system 100 according to a control program (not shown) stored in advance in the ROM. Control. Specifically, the ECU 300 determines the ignition plug 112, the injector 118, and the shift based on the shift change control signal output from the shift change switch 302 provided on the handle 301 of the vehicle on which the vehicle power transmission system 100 is mounted. Each operation of the spindle drive motor 231 is controlled to execute each shift operation of the transmission 240 in the upshift and the downshift.
- the ECU 300 comprehensively controls the operation of not only the vehicle power transmission system 100 but also the vehicle on which the vehicle power transmission system 100 is mounted. Therefore, the ECU 300 includes information necessary for controlling the operation of the engine 110 (for example, the rotational speed of the engine 110, the vehicle speed, the opening degree of the throttle valve 117, the oxygen in the exhaust pipe) in each part of the engine 110 including the engine 110 and the power transmission device 200. Sensors (not shown) for acquiring the amount, the rotation angle of the shift spindle 230, the shift position, the clutch lift amount, etc.) and control each control target including the engine 110 based on information acquired from these sensors. . In FIG. 1, the path of information acquired from these sensors is indicated by broken-line arrows. In addition, the fact that the power transmission device 200 is actuated by the rotational drive of the shift spindle drive motor 231 is also indicated by a broken line arrow.
- the vehicle power transmission system 100 is disposed below a seating seat and a fuel tank in a two-wheeled motor vehicle, and is operated by a shift change operation of a shift change switch 302 by a driver of the vehicle.
- the upshifting operation and the downshifting operation in the vehicle power transmission system 100 by the upshifting operation and the downshifting operation by the operator are the same as each other except for the rotation direction of the shift spindle 230 and the operation caused by the rotation direction. Therefore, in the following description of the operation, only the upshifting operation of the transmission 240 will be described, but the downshifting operation is the same.
- first gear to third gear also referred to as “first gear to third gear”
- second gear to fourth gear the gear is raised by one gear to 2
- the vehicle operator operates the shift change switch 302 provided on the handle 301 to instruct the ECU 300 to shift up.
- the process of the shift-up operation in the vehicle power transmission system 100 for this shift-up operation will be described with reference to the time chart shown in FIG.
- the shift change switch 302 When the operator performs an upshift operation on the shift change switch 302, the shift change switch 302 outputs a shift up control signal, which is a shift change control signal indicating the upshift, to the ECU 300 (timing T 1 ). As soon as the upshift control signal output from the shift change switch 302 is input, the ECU 300 outputs an ignition timing control signal for delaying the ignition timing to the spark plug 112. In this case, the ECU 300 controls the ignition plug 112 so that ignition is performed at a timing that is 10 to 20 ° retarded from a normal ignition timing (15 to 35 ° advance from the top dead center). Thereby, since the ignition timing of the air-fuel mixture in the cylinder 111 is gradually delayed from the optimal timing, the rotational driving force generated from the engine 110 is reduced. Note that the accelerator operation by the driver is normally canceled in advance when the driver performs a shift change operation on the shift change switch 302.
- the ECU 300 outputs to the shift spindle drive motor 231 a rotation drive signal for rotating the shift spindle 230 in the rotation direction corresponding to the shift-up operation of the shift stage in the transmission 240.
- the shift spindle drive motor 231 starts to rotate in the rotation direction corresponding to the shift-up operation of the transmission 240 to rotate the shift spindle 230.
- the clutch lifter lever 222 and the gear shift arm drive lever 249 fixed to the shift spindle 230 are rotationally driven (see broken line arrows in FIGS. 4, 6, and 7).
- the operation starts after the lost motion. More specifically, as shown in FIG. 6, the transmission 240 starts to increase the lift amount of the clutch 210 (T 2 ) after two consecutive lost motions filling the shift operation play L2 and L3. Later, the shift drum pin 246a starts to be pulled by the hook 248a, and the shift-up operation of the gear stage is started (timing T 3 ).
- the shift-up operation of the gear stage in the transmission 240 includes a “gear extraction process” for canceling the connection state of the gear trains before the shift-up between the main shaft gears 241a and the counter shaft gears 242a, and the connection before the shift-up.
- This is composed of a “gear connection process” in which the gear train after the upshifting is different from the state, and these two processes are performed while the projection of the index plate 246b rotates by one mountain.
- the initial position of the movable clutch lifter 221 is indicated by a two-dot chain line.
- the ECU 300 Simultaneously with the start of the shift-up operation of the gear stage in the transmission 240, the ECU 300 outputs a fuel injection control signal instructing the injector 118 to stop fuel supply (injection) (timing T 3 ). In response to this instruction, the injector 118 stops the fuel supply into the cylinder 111 constituting the combustion chamber. Thereby, the rotational driving force generated from the engine 110 is further reduced.
- the gear removal process is performed by the slide displacement of the shift fork 244 due to the rotational drive of the shift drum 245 via the rotational drive of the shift drum pin 246a and the index plate 246b.
- the gear extraction process is performed by the dogs 243a in the main shaft gears 241a and the counter shaft gears 242a that are fitted to each other being removed from the fitting holes 243b.
- the friction plate 211 and the clutch plate 212 are separated to such an extent that the clutch 210 cannot substantially transmit the rotational driving force from the engine 110 to the transmission 240 side.
- the gear removal process is completed (timing T 4 ) before the clutch is disengaged (timing T 5 ).
- the transmission 240 cancels the transmission state of the driving force by the gear train that constitutes the gear stage before the shift.
- the initial position of the clutch lifter lever 222 and the position of the movable clutch lifter 221 when the clutch 220 is substantially lifted up (timing T 5 ) are indicated by a two-dot chain line.
- the transmission 240 performs a gear coupling step following a gear pulling step by continuously rotating the shift drum 245.
- the gear coupling step is performed by inserting the dogs 243a between the main shaft gears 241a and the counter shaft gears 242a constituting the shift stage after the upshifting into the fitting holes 243b.
- the clutch 210 is in a state in which the so-called clutch is disengaged, so that the gear coupling step is smoothly performed.
- the shift-up operation of the gear position in the transmission 240 is completed (timing T 6 ).
- the gear coupling step is completed before the lift amount of the clutch 210 reaches the maximum amount, but the timing at which the gear coupling step is completed and the lift of the clutch 210 are completed. Whichever comes first is the timing at which the amount reaches the maximum amount.
- the ECU 300 outputs control signals for instructing the shift spindle drive motor 231, the spark plug 112, and the injector 118 to return. Specifically, the ECU 300 generates a rotation drive signal for causing the shift spindle drive motor 231 to rotate the same rotation amount as the rotation amount for the upshifting operation in the direction opposite to the upshifting operation. Output. As a result, the position of the shift spindle 230 in the rotational direction returns to the position before the shift-up operation, and the clutch lifter lever 222 and the gear shift arm drive lever 249 fixed to the shift spindle 230 also move to the positions before the shift-up operation. Return to.
- the lift amount of the clutch 210 gradually decreases and the friction plate 211 and the clutch plate 212 are brought into close contact with each other, whereby the rotational driving force from the engine 110 is transmitted, that is, the clutch is engaged. Is started (timing T 7 ).
- the ECU 300 sets the ignition timing to the ignition plug 112 at the normal ignition timing (top dead center).
- an ignition timing control signal for returning to 15 to 35 ° is advanced (timing T 8 ).
- the ignition timing of the air-fuel mixture in the cylinder 111 gradually returns to the optimal timing, so that the rotational driving force generated from the engine 110 increases.
- the return of the ignition timing in the spark plug 112 is executed in time for the timing at which the clutch in the clutch 210 completely enters.
- the ECU 300 outputs a fuel injection control signal that instructs the injector 118 to resume injection of fuel supply (injection) (timing T 9 ).
- the injector 118 resumes the fuel supply into the cylinder 111.
- the rotational driving force generated from the engine 110 starts to increase.
- a series of shift-up operations in the vehicle power transmission system 100 is completed.
- the vehicle power transmission system 100 blocks transmission of the driving force between the main shaft 241 and the counter shaft 242 during the speed change operation of the transmission 240.
- the ECU 300 includes an ECU 300 that controls the operation of the shift spindle drive motor 231, the spark plug 112, and the injector 118, and the ECU 300 drives the main shaft 241.
- the transmission 240 blocks the transmission of the driving force between the main shaft 241 and the counter shaft 242 after the power is reduced and before the transmission of the driving force in the clutch 210 is cut off.
- the vehicle power transmission system 100 starts the gear shifting operation in a state where the driving force from the engine 110 is reduced regardless of the driving force transmission state in the clutch 210 during the transmission shifting operation.
- the transmission state of the driving force by the gear train constituting the gear stage before the shift in the transmission 240 is canceled.
- the transmission operation in the transmission 240 can be completed more quickly than in the conventional power transmission device in which the transmission operation in the transmission 240 is started after the transmission of the driving force in the clutch 210 is interrupted. Discomfort caused by so-called torque loss given to a person can be reduced.
- the shift spindle 230 is configured to be rotationally driven by the shift spindle drive motor 231.
- the shift spindle 230 can also be mechanically rotated by a manual operation using the limbs of the driver of the vehicle.
- the ECU 300 may be configured to control the operation of the spark plug 112 and the injector 118 in the same manner as in the above embodiment by detecting the rotation angle of the shift spindle 230.
- the ignition timing delay in the spark plug 112 and the lift up in the clutch 210 are executed prior to the shift-up operation by the transmission 240. That is, ECU 300 that performs control for shifting the ignition timing, movable clutch lifter 221 and clutch lifter lever 222 that are a clutch operating mechanism provided with clutch drive play L1, and gear shift that is a transmission operating mechanism provided with shift operation play L2 and L3.
- the arm 248 and the gear shift arm driving lever 249 correspond to the transmission driving force reducing means according to the present invention.
- the transmission driving force reducing means is not limited to the above embodiment as long as it is configured to reduce the rotational driving force of the engine 110 prior to the shift-up operation by the transmission 240.
- the rotational driving force of the engine 110 may be reduced by reducing the rotational driving force itself or by reducing the transmission amount of the rotational driving force transmitted to the transmission.
- the transmission driving force lowering means performs operations such as reducing the amount of fuel supplied to the engine 110, shifting the ignition timing of the fuel in the engine 110, and performing lift-up in the clutch 210, respectively. Can be combined as appropriate. Also, the order in which these are executed can be set as appropriate.
- the supplied fuel may be completely cut as in the above embodiment, or the current fuel supply amount may be reduced within a range that is not completely cut. Also good.
- the transmission driving force reduction means may reduce the amount of fuel supplied to the engine 110 before the interruption of the transmission of the driving force in the clutch 210 is completed. According to this, since the driving force from the engine 110 transmitted to the main shaft 241 is reduced before the transmission of the driving force in the clutch 210 is interrupted, the transmission of the driving force in the transmission 240 is smoothly interrupted. Can do.
- the transmission driving force reducing means may shift the ignition timing of the fuel in the engine 110 before reducing the amount of fuel supplied to the engine 110.
- the driving force of the engine 110 can be reduced while preventing a sudden drop in the driving force due to a reduction in the amount of fuel supplied to the engine 110, so that smooth discomfort to the vehicle occupant is suppressed.
- Transmission of driving force in the transmission 240 can be interrupted.
- the lift-up in the clutch 210 is performed prior to the shift-up operation by the transmission 240.
- the rotational driving force of the engine 110 is reduced prior to the shift-up operation by the transmission 240.
- the lift-up in the clutch 210 may be started after the shift-up operation by the transmission 240 is started.
- the amount of the clutch drive play L1 is set smaller than the total amount of the shift operation play L2 and L3.
- the transmission 240 starts operating after the clutch 210 is operated.
- the engine 110 may be rotated by delaying the ignition timing or cutting the fuel supply amount. If the driving force is reduced in advance, lift-up in the clutch 210 can be started after the upshifting operation by the transmission 240 is started. In this case, the amount of the clutch drive play L1 is set larger than the sum of the shift operation play L2 and L3.
- shift operation play L2 and L3 do not necessarily need to be configured by two plays, and may be configured by the shift operation play L2 or the shift operation play L3, or may be configured by three or more plays.
- the clutch drive play L1 may be composed of two or more plays.
- the vehicle power transmission system 100 further includes the shift operation play L2, between the gear shift arm 248 and the shift drum pin 246a and / or between the gear shift arm 248 and the gear shift arm drive lever 249.
- a preload spring for filling L3 may be provided.
- the vehicle power transmission system 100 can be configured to include a preload spring 252 for filling the shift operation play L2 between the gear shift arm 248 and the gear shift arm drive lever 249.
- the preload spring 252 is formed of a coil spring similar to the gear shift return spring 250 and is supported on the shift spindle 230.
- the preload spring 252 is provided such that both ends of the coil spring sandwich the bent piece 249a of the gear shift arm drive lever 249 and the bent piece 248c of the gear shift arm 248.
- the bent piece 249a of the gear shift arm drive lever 249 forming the shift operation play L2 and the inner peripheral surface of the through hole 248b of the gear shift arm 248 are in contact with each other by the elastic force of the preload spring 252.
- the gear shift return spring 250 in the above-described embodiment is provided such that both ends of the coil spring sandwich the neutral positioning pin 251 and the bent piece 249a of the gear shift arm drive lever 249.
- FIG. 8 shows the process of the upshifting operation of the vehicle power transmission system 100 provided with such a preload spring 251.
- the amount of the shift operation play L2 for driving the transmission 240 is packed by the preload spring 251. That is, the bent piece 249a is provided in contact with the inner peripheral surface of the through-hole 248b of the gear shift arm 248 that is contacted and pressed by the bent piece 249a of the gear shift arm drive lever 249 during the shift-up operation.
- the transmission 240 is ready to start the shift operation immediately after the end of the lost motion of the shift operation play L3 after the rotational drive of the shift spindle 230 (timing P 1 ).
- the driving force is reduced from the engine 110 due to a delay in ignition timing, the lift of the clutch 210, or the like, so that a shifting operation can be performed.
- the transmission state of the driving force by the gear train is canceled. Thereby, the speed change operation in the transmission 240 can be performed more quickly.
- Clutch spring 217a, 217b ... Pressure plate, 220 ... fixed clutch lifter, 221 ... movable clutch lifter, 221a ... through hole, 222 ... clutch lifter lever, 222a ... boss, 230 ... shift spindle, 231 ... shift spindle drive motor, 240 ... Transmission, 241 ... Main shaft, 242 ... Counter shaft, 243a ... Dog, 243b ... Fitting hole, 244 ... Shift fork, 245 ... Shift drum, 245a ... Groove, 246a ... Shift drum pin, 246b ... Index plate, 247 ... index arm, 247a ... index spring, 248 ...
- gear shift arm 248a ... hook, 248b ... through hole, 248c ... bent piece, 249 ... gear shift arm drive lever, 249a ... bent piece, 250 ... gear shift return spring, 251 ... neutral positioning Pin, 252 ... Preload spring, 300 ... ECU, 301 ... handle, 302 ... shift change switch.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Theoretical Computer Science (AREA)
- Signal Processing (AREA)
- Control Of Transmission Device (AREA)
- Structure Of Transmissions (AREA)
- Gear-Shifting Mechanisms (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
Abstract
トランスミッションにおける変速動作を迅速に行なうとともにトルク抜けによる操縦者の不快感を軽減可能な車両用動力伝達システムを提供する。 車両用動力伝達システム100は、ECU300によって作動が制御されるエンジン110、クラッチ210およびトランスミッション240を備えている。クラッチ210およびトランスミッション240は、クラッチ駆動遊びL1およびシフト操作遊びL2,L3を介して連結されるシフトスピンドル230の回転駆動により作動を開始する。変速動作は、エンジン110での点火タイミングの遅延およびクラッチ210のリフトアップの開始によってトランスミッションに伝達される駆動力を低下させた後に、エンジン110での燃料供給カットおよびトランスミッション240のギアの抜き工程が実行される。このギアの抜き工程は、クラッチ210において駆動力が実質的に遮断される前に完了する。
Description
本発明は、自動二輪車や四輪バギー車などの自走式車両に搭載される車両用動力伝達システムに関する。
従来から、自動二輪車や四輪バギー車などの自走式車両においては、エンジン(原動機)で発生した駆動力を駆動輪に伝達するために動力伝達装置が設けられている。動力伝達装置は、エンジンの回転駆動軸(クランクシャフト)に対して接続および切断しながら同回転駆動軸の回転数を変速しつつ駆動輪に伝達する機械装置であり、主としてクラッチとトランスミッションによって構成されている。ここで、クラッチとは、エンジンの回転駆動軸に対して接続および切断しながら同回転駆動軸の回転駆動力をトランスミッション側に伝達する機械装置である。また、トランスミッションとは、エンジンの回転駆動軸の回転数を複数の変速段で変速させて駆動輪側に伝達する機械装置である。
このような動力伝達装置においては、トランスミッションにおける変速動作はできるだけ速やかに行なわれることが望まれる。このため、例えば、下記特許文献1には、トランスミッションの変速動作時にシフトドラムに対して回転方向に力を付与するプリロードを行なうことにより、クラッチが切れて駆動力の伝達が遮断された場合に直ちにシフトドラムを回転させてギアの切り替え、すなわち、変速段の切り替えを行なう動力伝達装置が開示されている。
しかしながら、上記特許文献1に記載された動力伝達装置においては、クラッチが切れた後にトランスミッションにおける変速動作、すなわち、変速段を構成するギア列の変更工程が行われるため、変速動作に時間が掛かるととともにエンジンからの駆動力が駆動輪に伝達しない所謂トルク抜け時間が長く操縦者に不快感を与えるという問題があった。なお、この場合、ギア列の変更工程は、変速前の変速段を構成するギア列における駆動力の伝達状態を解消するギアの抜き工程と、変速後の変速段を構成するギア列を駆動力の伝達状態とするギアの連結工程とで構成されている。
本発明は上記問題に対処するためなされたもので、その目的は、トランスミッションにおける変速動作を迅速に行なうとともに同変速動作時に操縦者に与える所謂トルク抜けによる不快感を軽減することができる車両用動力伝達システムを提供することにある。
上記目的を達成するため、請求項1に係る本発明の特徴は、車両に搭載されて燃料の燃焼によって駆動力を発生させるエンジンと、エンジンによる駆動力によって回転駆動するメインシャフトと車両の駆動輪に連結されるカウンターシャフトとの間に互いに変速比の異なる複数の変速段を構成する複数のギア列が設けられてエンジンの回転速度を変速しつつ駆動力を駆動輪に伝達するトランスミッションと、エンジンから伝達される駆動力によって回転駆動するフリクションプレートとトランスミッションに連結されて駆動力を受けるクラッチプレートとを密着および離隔させることによってエンジンの駆動力をトランスミッションに伝達および遮断するクラッチとを備えた車両用動力伝達システムにおいて、トランスミッションの変速動作時におけるメインシャフトとカウンターシャフトの間の駆動力の遮断を開始する前にメインシャフトに伝達されるエンジンからの駆動力を低下させる伝達駆動力低下手段を備え、トランスミッションは、伝達駆動力低下手段によるメインシャフトへの駆動力の低下後かつクラッチにおける駆動力の遮断が完了する前にメインシャフトとカウンターシャフトの間の駆動力の遮断を完了することにある。
このように構成した請求項1に係る本発明の特徴によれば、車両用動力伝達システムは、トランスミッションの変速動作時におけるメインシャフトとカウンターシャフトとの間の駆動力の伝達の遮断を開始する前にメインシャフトに伝達されるエンジンからの駆動力を低下させる伝達駆動力低下手段を備えるとともに、伝達駆動力低下手段によるメインシャフトへの駆動力の低下後であってかつクラッチにおける駆動力の伝達の遮断が完了する前にトランスミッションがメインシャフトとカウンターシャフトとの間の駆動力の伝達の遮断を完了する。すなわち、本発明に係る車両用動力伝達システムは、トランスミッションにおけるシフトアップやシフトダウンなどの変速動作時において、クラッチにおける駆動力の伝達状態に拘らずエンジンからの駆動力を低下させた状態でギアの変速動作を開始してクラッチにおける駆動力の伝達が遮断される前にトランスミッションにおける変速前の変速段を構成するギア列による駆動力の伝達状態を解消する。これにより、クラッチにおける駆動力の伝達を遮断した後にトランスミッションにおける変速動作を開始する従来の動力伝達装置に比べて迅速にトランスミッションにおける変速動作を完了することができるとともに、この変速動作時に操縦者に与える所謂トルク抜けによる不快感を軽減することができる。
また、請求項2に係る本発明の他の特徴は、前記車両用動力伝達システムにおいて、伝達駆動力低下手段は、エンジンへの燃料の供給量を減じる、エンジンでの燃料への点火タイミングをずらす、およびクラッチにおけるフリクションプレートとクラッチプレートとの密着力を弱めるうちの少なくとも1つによってメインシャフトに伝達されるエンジンからの駆動力を低下させることにある。
このように構成した請求項2に係る本発明の他の特徴によれば、車両用動力伝達システムにおける伝達駆動力低下手段は、エンジンへの燃料の供給量を減じる、エンジンでの燃料への点火タイミングをずらす、およびクラッチにおけるフリクションプレートとクラッチプレートとの密着力を弱めるうちの少なくとも1つによってメインシャフトに伝達されるエンジンからの駆動力を低下させている。これにより、車両用動力伝達システムは、簡易な構成によってメインシャフトに伝達されるエンジンからの駆動力を低下することができる。
また、請求項3に係る本発明の他の特徴は、前記車両用動力伝達システムにおいて、伝達駆動力低下手段は、クラッチにおける駆動力の遮断が完了する前にエンジンへの燃料の供給量を減じることにある。
このように構成した請求項3に係る本発明の他の特徴によれば、車両用動力伝達システムにおける伝達駆動力低下手段は、クラッチにおける駆動力の伝達の遮断が完了する前にエンジンへの燃料の供給量を減じている。これにより、クラッチにおける駆動力の伝達が遮断される前にメインシャフトに伝達されるエンジンからの駆動力が低下するため、トランスミッションにおける駆動力の伝達の遮断を円滑に行なうことができる。
また、請求項4に係る本発明の他の特徴は、前記車両用動力伝達システムにおいて、伝達駆動力低下手段は、エンジンへの燃料の供給量を減じる前にエンジンでの燃料への点火タイミングをずらすことにある。
このように構成した請求項4に係る本発明の他の特徴によれば、車両用動力伝達システムにおける伝達駆動力低下手段は、エンジンへの燃料の供給量を減じる前にエンジンでの燃料への点火タイミングをずらしている。これにより、エンジンへの燃料の供給量を減じることによる急激な駆動力の低下を防止しながらエンジンの駆動力を低下させることができため、車両の乗員への不快感を抑えながら円滑にトランスミッションにおける駆動力の伝達の遮断することができる。
また、請求項5に係る本発明の他の特徴は、前記車両用動力伝達システムにおいて、外部からの変速操作に基づいて回転駆動するシフトスピンドルと、シフトスピンドルから径方向に延びて設けられ、同シフトスピンドルと一体的に回転変位するクラッチリフターレバーおよびギアシフトアーム駆動レバーと、クラッチにおけるフリクションプレートとクラッチプレートとを密着および離隔させる固定クラッチリフターに連結されてクラッチリフターレバーとの間でクラッチ駆動遊びを介して連結される可動クラッチリフターと、トランスミッションにおけるギア列を変更するためのシフトドラムを回転駆動するインデックスピンとギアシフトアーム駆動レバーとの間に設けられてインデックスピンとの間および/またはギアシフトアーム駆動レバーとの間でシフト操作遊びを介して連結されるギアシフトアームとを備えることにある。
このように構成した請求項5に係る本発明の他の特徴によれば、車両用動力伝達システムは、外部からの変速操作により回転駆動するシフトスピンドルに対してクラッチおよびトランスミッションがそれぞれクラッチ駆動遊びおよびシフト操作遊びを介して連結されて駆動されるように構成されている。すなわち、クラッチを駆動するためのクラッチ駆動遊びの量とトランスミッションを駆動するためのシフト操作遊びの量とを適宜調整することにより、クラッチを作動させるタイミングとトランスミッションを作動させるタイミングを自由に設定することができる。これにより、簡単な構成で伝達駆動力低下手段を構成することができる。
また、請求項6に係る本発明の他の特徴は、前記車両用動力伝達システムにおいて、クラッチ駆動遊びの量は、シフト操作遊びの量よりも少ないことにある。
このように構成した請求項6に係る本発明の他の特徴によれば、車両用動力伝達システムは、クラッチ駆動遊びの量は、シフト操作遊びの量よりも少ない。このため、車両用動力伝達システムは、シフトスピンドルの回転駆動によって、先ず、クラッチが作動した後にトランスミッションが作動を開始する。これにより、トランスミッションの作動に先駆けてトランスミッションに伝達されるエンジンからの回転駆動力を低下させることができ、円滑にトランスミッションにおける駆動力の伝達の遮断を行なうことができる。
また、請求項7に係る本発明の他の特徴は、前記車両用動力伝達システムにおいて、さらに、ギアシフトアームとインデックスピンおよび/またはギアシフトアーム駆動レバーとの間のシフト操作遊びを詰めるためのプリロードスプリングを備えることにある。
このように構成した請求項7に係る本発明の他の特徴によれば、車両用動力伝達システムは、トランスミッションを駆動するためのシフト操作遊びの量がプリロードスプリングによって詰められている。これにより、トランスミッションは、シフトスピンドルの回転駆動後、直ちに変速動作が開始可能な状態となるとともに、エンジンから駆動力が低下して変速動作が可能、すなわち、変速前の変速段を構成するギア列による駆動力の伝達状態が解消可能な状態となった瞬間に直ちにギア列による駆動力の伝達状態の解消が実行される。これにより、より迅速にトランスミッションにおける変速動作を行なうことができる。
以下、本発明に係る車両用動力伝達システムの一実施形態について図面を参照しながら説明する。図1は、本発明に係る車両用動力伝達システム100の全体構成の概略を模式的に示すブロック図である。なお、本明細書において参照する各図は、本発明の理解を容易にするために一部の構成要素を誇張して表わすなど模式的に表している。このため、各構成要素間の寸法や比率などは異なっていることがある。この車両用動力伝達システム100は、二輪自動車(所謂オートバイ)において原動機であるエンジンで発生させた回転駆動力を駆動輪に伝達する機械装置群であり、二輪自動車におけるエンジンの周辺(例えば、着座シートや燃料タンクの下方)に設けられる。
(車両用動力伝達システム100の構成)
車両用動力伝達システム100は、エンジン110を備えている。エンジン110は、図示しない車両に搭載されて燃料の燃焼によって回転駆動力を発生させる原動機である。具体的には、エンジン110は、筒状に形成されたシリンダ111内に燃料と空気とからなる混合気を導入するとともに、この混合気を点火プラグ112によって点火して爆発させることによりピストン113をシリンダ111内で往復運動させてピストン113に連結さえるクランクシャフト114に回転駆動力を発生させる所謂レシプロエンジンである。本実施形態においては、エンジン110は、所謂4ストロークエンジンを想定しているが、所謂2ストロークエンジンであってもよいことは当然である。
車両用動力伝達システム100は、エンジン110を備えている。エンジン110は、図示しない車両に搭載されて燃料の燃焼によって回転駆動力を発生させる原動機である。具体的には、エンジン110は、筒状に形成されたシリンダ111内に燃料と空気とからなる混合気を導入するとともに、この混合気を点火プラグ112によって点火して爆発させることによりピストン113をシリンダ111内で往復運動させてピストン113に連結さえるクランクシャフト114に回転駆動力を発生させる所謂レシプロエンジンである。本実施形態においては、エンジン110は、所謂4ストロークエンジンを想定しているが、所謂2ストロークエンジンであってもよいことは当然である。
このエンジン110における燃焼室を構成するシリンダ111には、吸気バルブ115を介して吸気管116が接続されている。吸気管116は、シリンダ111内に混合気を供給するための配管であり、シリンダ111内に供給する空気量を調整するスロットルバルブ117および同シリンダ111内に燃料を霧状にして供給(噴射)するインジェクタ118をそれぞれ備えている。これらのうち、点火プラグ112およびインジェクタ118は後述するECU300によって作動がそれぞれ制御されるとともに、スロットルバルブ117は車両の操縦者による手動操作によって作動する。
エンジン110におけるクランクシャフト114には、プライマリードライブギア114aを介して動力伝達装置200が連結されている。動力伝達装置200は、エンジン110により発生された回転駆動力を複数の変速段で変速して伝達する機械装置であり、主として、クラッチ210およびトランスミッション240によって構成されている。
クラッチ210は、エンジン110で発生させた回転駆動力の伝達経路上におけるエンジン110とトランスミッション240との間に配置されてエンジン110で発生させた回転駆動力をトランスミッション240に対して伝達および遮断を行なう機械装置である。このクラッチ210は、詳しくは、図2ないし図4に示すように、トランスミッション240から軸状に延びるメインシャフト241の一方(図示右側)の端部側に設けられており、図示しない摩擦材を備えたフリクションプレート211と鋼板製のクラッチプレート212とが交互に複数枚ずつ配置された状態でクラッチケース201内に回転可能な状態でそれぞれ収容されて構成されている。この場合、フリクションプレート211はクラッチシェル213に、クラッチプレート212はクラッチハブ214にそれぞれ嵌め込まれた状態で保持されている。
これらのうち、フリクションプレート211を保持するクラッチシェル213は、前記プライマリードライブギア114aに噛み合うプライマリードリブンギア215に一体的に固定されてプライマリードライブギア114a、すなわち、クランクシャフト114とともに一体的に回転駆動する。また、クラッチプレート212を保持するクラッチハブ214は、メインシャフト241に一体的に連結されており、メインシャフト241およびクラッチプレート212とともに一体的に回転駆動する。
また、交互に配置されたフリクションプレート211およびクラッチプレート212の外側には、クラッチスプリング216の弾性力によってフリクションプレート211とクラッチプレート212とを挟んだ状態で押圧して密着させる一対のプレッシャプレート217a,217bがそれぞれ設けられている。これらのプレッシャプレート217a,217bのうち、プレッシャプレート217bの外側(図示右側)には、可動クラッチリフター221を介して固定クラッチリフター220が対向配置されている。固定クラッチリフター220は、後述するシフトスピンドル230の回転駆動に連動して構成部品の一部が回転することにより可動クラッチリフター221を介してプレッシャプレート217bをクラッチスプリング216の弾性力に抗する方向に押圧する機械装置である。また、可動クラッチリフター221は、固定クラッチリフター220における前記回転部品に一体的に固定されて同固定クラッチリフター220の外側に延びるバー部材である。
すなわち、クラッチ210は、フリクションプレート211とクラッチプレート212とが密着することによりクラッチシェル213とクラッチハブ214とが一体的に回転駆動してエンジン110の回転駆動力がトランスミッション240に伝達される。また、クラッチ210は、固定クラッチリフター220が可動クラッチリフター221を介してプレッシャプレート217bを押圧してクラッチスプリング216の弾性力を弱めることによるフリクションプレート211とクラッチプレート212との密着状態の解消によってトランスミッション240に対するエンジン110の回転駆動力を遮断する。
このクラッチ210における固定クラッチリフター220には、可動クラッチリフター221およびクラッチリフターレバー222を介してシフトスピンドル230が連結されている。クラッチリフターレバー222は、可動クラッチリフター221とシフトスピンドル230とを連結するバー部材であり、一方の端部が可動クラッチリフター221に連結されるとともに他方の端部がシフトスピンドル230に一体的に固定されている。
これらの可動クラッチリフター221とクラッチリフターレバー222とは、クラッチ駆動遊びL1を介して遊動的に連結されている。より具体的には、可動クラッチリフター221の端部には貫通孔221aが形成されているとともに、クラッチリフターレバー222の端部には貫通孔221aの孔径より小径のボス222aが突出した状態で設けられている。そして、クラッチリフターレバー222の端部に形成されたボス222aが可動クラッチリフター221の端部に形成された貫通孔221a内に可動的に嵌め込まれている。なお、クラッチ駆動遊びL1は、トランスミッション240のシフトアップおよびシフトダウンの各変速動作に対応してボス222aの両側に形成されている。
シフトスピンドル230は、車両の操縦者によるシフトアップまたはシフトダウンの変速操作に基づいてそれぞれ対応する回転方向にそれぞれ回転駆動する軸体であり、一方の端部がクラッチリフターレバー222および可動クラッチリフター221を介して固定クラッチリフター220に連結されるとともに、他方の端部がシフトスピンドル駆動モータ231に連結されている。シフトスピンドル駆動モータ231は、ECUによる作動制御により回転駆動する電動機である。すなわち、固定クラッチリフター220は、シフトスピンドル駆動モータ231によりシフトスピンドル230が回転駆動した場合であっても、クラッチ駆動遊びL1が解消されるまでの間、作動を開始することはない。
トランスミッション240は、エンジン110から発生した回転駆動力を複数の変速段(例えば、4段変速)で変速して駆動輪に伝達するための機械装置である。このトランスミッション240は、クラッチ210を介してエンジン110のクランクシャフト114に繋がるメインシャフト241と、駆動輪に繋がるカウンターシャフト242(図3においては不図示)とが互いに平行配置されるとともに、これら2つのメインシャフト241とカウンターシャフト242との間に互いに変速比の異なる複数の変速段を構成する複数のギア列が設けられて構成されている。このメインシャフト241とカウンターシャフト242との間設けられた複数のギア列は、それぞれメインシャフト241に設けられた複数のメインシャフトギア241aとカウンターシャフト242に設けられた複数のカウンターシャフトギア242aとでそれぞれ構成されており、これらのメインシャフトギア241aとカウンターシャフトギア242aとは、互いに対向するギア同士が対を構成して常に噛み合っている。
また、この対を構成する一方のメインシャフトギア241aまたはカウンターシャフトギア242aがメインシャフト241またはカウンターシャフト242に対して固定的に支持されているとともに、同対を構成する他方のカウンターシャフトギア242aまたはメインシャフト241がカウンターシャフト242またはメインシャフト241に対して軸線方向にスライド変位可能に支持されている。また、メインシャフトギア241aおよびカウンターシャフトギア242aは、1つの変速段を構成する互いに隣り合うメインシャフトギア241a同士およびカウンターシャフトギア242a同士に互いに嵌合し合うドッグ243aと嵌合穴243bとが互いに対向する側面に形成されている。これにより、1つの変速段を構成する互いに隣り合うメインシャフトギア241a同士およびカウンターシャフトギア242a同士がメインシャフト241およびカウンターシャフト242上で互いに連結および分離するように構成されている。
互いに連結および分離するメインシャフトギア241a同士およびカウンターシャフトギア242a同士の外側には、シフトフォーク244が設けられている。シフトフォーク244は、スライド変位可能なメインシャフトギア241aおよびカウンターシャフトギア242aを軸線方向に押圧する部品であり、メインシャフトギア241aおよびカウンターシャフトギア242aを包囲する二股の板状体で構成されている。このシフトフォーク244は、円柱体で構成されるとともに同円柱体の外周面に溝245aが形成されてトランスミッション240の変速段に対応する回転位置に位置決めされるシフトドラム245に支持されている。この場合、シフトフォーク244は、その一部がシフトドラム245の外周面に形成された溝245a内に嵌まり込んでおり、シフトドラム245の回転駆動によって溝245aに倣ってシフトドラム245の外周面上を軸線方向に沿ってスライド変位する。
このシフトドラム245における長手方向の一方(図示右側)の端部には、5つのシフトドラムピン246aと5つの突起を有する星型形状に形成されたインデックスプレート246bがそれぞれ設けられている。そして、シフトドラム245は、インデックスプレート246bの谷部にインデックスアーム247の先端部がインデックススプリング247aによって押圧されることによって回転変位が弾性的に規制されている。また、シフトドラム245のシフトドラムピン246aには、ギアシフトアーム248およびギアシフトアーム駆動レバー249を介してシフトスピンドル230が連結されている。
ギアシフトアーム248は、シフトドラムピン246aに引っ掛けられるフック248aを回転摺動可能に備えた状態でシフトスピンドル230に回転摺動可能に支持されたバー部材である。フック248aは、シフトドラムピン246aをトランスミッション240のシフトアップおよびシフトダウンの各変速動作に対応した回転方向に回転させるためにシフトドラムピン246aの両側に2つの鉤状部を有して構成されている。この場合、フック248aにおける2つの鉤状部の各先端部とシフトドラムピン246aの外周面との間には、シフト操作遊びL3がそれぞれ形成されている。一方、ギアシフトアーム駆動レバー249は、ギアシフトアーム248とシフトスピンドル230とを連結するバー部材であり、一方の端部がギアシフトアーム248に遊動的に連結されるとともに他方の端部がシフトスピンドル230に一体的に固定されている。
これらギアシフトアーム248とギアシフトアーム駆動レバー249とは、シフト操作遊びL2を介して連結されている。より具体的には、ギアシフトアーム248の端部には貫通孔248bが形成されているとともに、ギアシフトアーム駆動レバー249の端部には貫通孔248bの孔径より狭い幅で貫通孔248b側に屈曲した屈曲片249aが形成されている。そして、ギアシフトアーム駆動レバー249の端部に形成された屈曲片249aがギアシフトアーム248の端部に形成された貫通孔248b内に可動的に嵌め込まれている。なお、これらのシフト駆動遊びL2も、前記クラッチ駆動遊びL1およびシフト駆動遊びL3と同様に、トランスミッション240のシフトアップおよびシフトダウンの各変速動作に対応して屈曲片249aの両側にそれぞれ形成されている。
また、これらのギアシフトアーム248およびギアシフトアーム駆動レバー249は、シフトスピンドル230に支持されたギアシフトリターンスプリング250によって中立位置に位置決めされている。具体的には、ギアシフトリターンスプリング250は、コイルスプリングの両端部がそれぞれ直線状に延びて形成されており、これら2つの両端部が動力伝達装置200における図示しないフレームに固定された中立位置決めピン251、ギアシフトアーム駆動レバー249の屈曲片249a、およびギアシフトアーム248の貫通孔248b内に形成された屈曲片248cを挟んで設けられている。これにより、ギアシフトリターンスプリング250は、トランスミッション240における変速段を構成するギア列の変更動作時にクラッチ210をリフトアップするために図示時計回りまたは反時計回りに回転したギアシフトアーム248およびギアシフトアーム駆動レバー249を図示反時計回りまたは時計回りに逆転させて元の中立位置に戻す。なお、図4,図6,図7においては、トランスミッション240の変速段のシフトアップ動作時におけるクラッチリフターレバー222、ギアシフトアーム248、ギアシフトアーム駆動レバー249およびシフトドラム245の回転方向を破線矢印でそれぞれ示している。
ここで、クラッチ駆動遊びL1、シフト操作遊びL2およびシフト操作遊びL3の関係について説明しておく。本実施形態においては、クラッチ駆動遊びL1、シフト操作遊びL2およびシフト操作遊びL3は、L1<(L2+L3)の関係となるように設定されている。したがって、本実施形態における動力伝達装置200は、シフトスピンドル230の回転駆動によって先ずクラッチ210が作動を開始した後トランスミッション240が作動を開始するように構成されている。
ECU300(Engine Control Unit)は、CPU、ROM、RAMなどからなるマイクロコンピュータによって構成されており、ROMなどに予め記憶された図示しない制御プログラムに従って車両用動力伝達システム100の全体の作動を総合的に制御する。具体的には、ECU300は、車両用動力伝達システム100が搭載される車両のハンドル301に設けられたシフトチェンジスイッチ302から出力されるシフトチェンジ制御信号に基づいて、点火プラグ112、インジェクタ118およびシフトスピンドル駆動モータ231の各作動を制御してトランスミッション240におけるシフトアップおよびシフトダウンの各変速動作を実行する。
なお、このECU300は、車両用動力伝達システム100だけでなく、車両用動力伝達システム100が搭載された車両の作動を総合的に制御する。したがって、ECU300は、エンジン110および動力伝達装置200を含むエンジン110の各部にエンジン110の作動制御に必要な情報(例えば、エンジン110の回転数、車速、スロットルバルブ117の開度、排気管内の酸素量、シフトスピンドル230の回転角、シフトポジションおよびクラッチリフト量など)を取得するための図示しないセンサを備えており、これらのセンサから取得した情報に基づいてエンジン110を含む各制御対象を制御する。なお、図1においては、これらのセンサから取得した情報の経路を破線矢印によって示している。また、シフトスピンドル駆動モータ231の回転駆動によって動力伝達装置200が作動することも破線矢印で示している。
(車両用動力伝達システム100の作動)
次に、上記のように構成した車両用動力伝達システム100の作動について説明する。この車両用動力伝達システム100は、前記したように二輪自動車両における着座シートや燃料タンクの下方に配置されて、車両の操縦者によるシフトチェンジスイッチ302のシフトチェンジ操作によって作動する。この操縦者によるシフトアップ操作およびシフトダウン操作による車両用動力伝達システム100におけるシフトアップ動作およびシフトダウン動作はシフトスピンドル230の回転方向および同回転方向に起因する動作以外は互いに同様である。したがって、以下の作動説明においては、トランスミッション240のシフトアップ動作についてのみ説明するが、シフトダウン動作も同様である。
次に、上記のように構成した車両用動力伝達システム100の作動について説明する。この車両用動力伝達システム100は、前記したように二輪自動車両における着座シートや燃料タンクの下方に配置されて、車両の操縦者によるシフトチェンジスイッチ302のシフトチェンジ操作によって作動する。この操縦者によるシフトアップ操作およびシフトダウン操作による車両用動力伝達システム100におけるシフトアップ動作およびシフトダウン動作はシフトスピンドル230の回転方向および同回転方向に起因する動作以外は互いに同様である。したがって、以下の作動説明においては、トランスミッション240のシフトアップ動作についてのみ説明するが、シフトダウン動作も同様である。
具体的には、車両が1段~3段(「1速~3速」ともいう)のうちのいずれか1つの変速段で走行中(図4参照)において、変速段を1段上げて2段~4段(「2速~4速」ともいう)にシフトアップする場合、車両の操縦者はハンドル301に設けられたシフトチェンジスイッチ302を操作してECU300に対してシフトアップを指示する。このシフトアップ操作に対する車両用動力伝達システム100におけるシフトアップ動作の過程を図5に示すタイムチャートを参照しながら説明する。
操縦者によりシフトチェンジスイッチ302に対してシフトアップ操作がなされると、シフトチェンジスイッチ302はECU300に対してシフトアップを表すシフトチェンジ制御信号であるシフトアップ制御信号を出力する(タイミングT1)。ECU300は、シフトチェンジスイッチ302から出力されたシフトアップ制御信号を入力すると直ちに、点火プラグ112に対して点火タイミングを遅らせるための点火時期制御信号を出力する。この場合、ECU300は、点火プラグ112における通常の点火タイミング(上死点より15~35°進角)より10~20°遅角のタイミングで点火するように点火プラグ112を制御する。これにより、シリンダ111内での混合気の点火タイミングが最適タイミングより次第に遅れるため、エンジン110から発生する回転駆動力は低下する。なお、このシフトチェンジスイッチ302に対する操縦者によるシフトチェンジ操作に際しては、通常、予め操縦者によるアクセル操作が解除される。
次に、ECU300は、シフトスピンドル駆動モータ231に対してトランスミッション240における変速段のシフトアップ動作に対応した回転方向にシフトスピンドル230を回転駆動させるための回転駆動信号を出力する。この指示に応答してシフトスピンドル駆動モータ231は、トランスミッション240のシフトアップ動作に対応した回転方向に回転駆動を開始してシフトスピンドル230を回転駆動させる。これにより、シフトスピンドル230が回転駆動すると、このシフトスピンドル230に固定されたクラッチリフターレバー222およびギアシフトアーム駆動レバー249がそれぞれ回転駆動する(図4,図6,図7において破線矢印参照)。
この場合、クラッチリフターレバー222と可動クラッチリフター221との間にはクラッチ駆動遊びL1があり、ギアシフトアーム駆動レバー249とギアシフトアーム248との間にはシフト操作遊びL2があり、ギアシフトアーム248に連結されたフック248aとシフトドラムピン246aとの間にはシフト操作遊びL3がある。そして、これらのクラッチ駆動遊びL1、シフト操作遊びL2およびシフト操作遊びL3の間には、L1<(L2+L3)の関係がある。したがって、車両用動力伝達システム100は、シフトスピンドル230の回転駆動後、クラッチリフターレバー222がクラッチ駆動遊びL1を詰めるロストモーションの後、先ず、クラッチ210におけるフリクションプレート211とクラッチプレート212とが離隔、すなわちクラッチ210のリフト量が増加し始める(タイミングT2)。
一方、トランスミッション240は、ギアシフトアーム駆動レバー249がシフト操作遊びL2を詰めるロストモーション、および同シフト操作遊びL2が詰められるロストモーションに続くギアシフトアーム248に連結されたフック248aがシフト操作遊びL3を詰めるロストモーションを経て作動を開始する。より具体的には、トランスミッション240は、図6に示すように、シフト操作遊びL2,L3を詰める2つの連続するロストモーションの後、すなわち、クラッチ210のリフト量が増加し始めた(T2)後にシフトドラムピン246aがフック248aによって引かれ始めて変速段のシフトアップ動作が開始する(タイミングT3)。
このトランスミッション240における変速段のシフトアップ動作は、メインシャフトギア241a同士およびカウンターシャフトギア242a同士におけるシフトアップ前のギア列の連結状態を解消する「ギアの抜き工程」と、このシフトアップ前の連結状態とは異なるシフトアップ後のギア列の連結状態とする「ギアの連結工程」とで構成されており、これら2つの工程はインデックスプレート246bの突起が一山分だけ回転する間に行われる。なお、図6においては、可動クラッチリフター221の初期位置を二点鎖線で示している。
また、このトランスミッション240における変速段のシフトアップ動作の開始と同時に、ECU300は、インジェクタ118に対して燃料供給(噴射)の停止を指示する燃料噴射制御信号を出力する(タイミングT3)。この指示に応答してインジェクタ118は、燃焼室を構成するシリンダ111内への燃料供給を停止する。これにより、エンジン110から発生する回転駆動力がより一層低下する。
変速段のシフトアップ動作を開始したトランスミッション240は、シフトドラムピン246aおよびインデックスプレート246bの回転駆動を介したシフトドラム245の回転駆動によるシフトフォーク244のスライド変位によってギアの抜き工程が行われる。この場合、ギアの抜き工程は、互いに嵌りあうメインシャフトギア241a同士およびカウンターシャフトギア242a同士におけるドッグ243aが嵌合穴243bから抜けることにより行なわれる。
そして、このギアの抜き工程の実行時においては、点火プラグ112における点火タイミングがずらされているとともに、クラッチ210におけるリフトアップの開始によってエンジン110からトランスミッション240に伝達される回転駆動力が低下されているため、ギアの抜き工程が実行し易くなっている。また、これらに加えて、ギアの抜き工程の開始と同時にインジェクタ118による燃料供給が停止するため、より一層ギアの抜き工程が実行し易くなる。
これらにより、図7に示すように、トランスミッション240は、クラッチ210がエンジン110からの回転駆動力を実質的にトランスミッション240側に伝達不能となる程度にまでフリクションプレート211とクラッチプレート212とが離隔した状態、すなわち、クラッチが切れる状態(タイミングT5)となる前までにギアの抜き工程が完了する(タイミングT4)。これにより、トランスミッション240は、変速前の変速段を構成するギア列による駆動力の伝達状態が解消する。なお、図7においては、クラッチリフターレバー222の初期位置とクラッチ220が実質的にリフトアップした場合(タイミングT5)における可動クラッチリフター221の位置を二点鎖線で示している。
次いで、トランスミッション240は、シフトドラム245の連続的な回転駆動によってギアの抜き工程に続けてギアの連結工程を実行する。この場合、ギアの連結工程は、シフトアップ後の変速段を構成するメインシャフトギア241a同士およびカウンターシャフトギア242a同士におけるドッグ243aを嵌合穴243bに挿し込むことにより行なわれる。そして、このギアの連結工程の実行時においては、クラッチ210は所謂クラッチが切れた状態であるため、ギアの連結工程は円滑に行われる。これにより、トランスミッション240における変速段のシフトアップ動作が完了する(タイミングT6)。なお、本実施形態においては、図5に示すように、ギアの連結工程は、クラッチ210のリフト量が最大量に達する前に完了するが、ギアの連結工程の完了するタイミングとクラッチ210のリフト量が最大量に達するタイミングとはどちらが先であっても構わない。
そして、トランスミッション240における変速段のシフトアップ動作が完了した後、ECU300は、シフトスピンドル駆動モータ231、点火プラグ112およびインジェクタ118に対して復帰を指示する制御信号をそれぞれ出力する。具体的には、ECU300は、シフトスピンドル駆動モータ231に対してシフトアップ動作のために回転駆動した回転量と同じ回転量をシフトアップ動作時とは逆方向に回転駆動させるための回転駆動信号を出力する。これにより、シフトスピンドル230の回転方向における位置がシフトアップ動作の前の位置に復帰するとともに、このシフトスピンドル230に固定されたクラッチリフターレバー222およびギアシフトアーム駆動レバー249もシフトアップ動作の前の位置に復帰する。
この結果、クラッチ210は、リフト量が次第に減少してフリクションプレート211とクラッチプレート212とが密着していくことにより、エンジン110からの回転駆動力が伝達される状態、すなわち、クラッチが入る状態への移行を開始する(タイミングT7)。この場合、エンジン110からの回転駆動力を不十分ながら実質的に伝達し始めた状態、すなわち、半クラッチの状態においてECU300は、点火プラグ112に対して点火タイミングを通常の点火タイミング(上死点より15~35°進角)に復帰させる点火時期制御信号を出力する(タイミングT8)。これにより、シリンダ111内での混合気の点火タイミングが次第に最適タイミングに復帰するため、エンジン110から発生する回転駆動力が増大する。この点火プラグ112における点火タイミングの復帰は、クラッチ210におけるクラッチが完全に入るタイミングに間に合うように実行される。
次に、ECU300は、インジェクタ118に対して燃料供給(噴射)の噴射の再開を指示する燃料噴射制御信号を出力する(タイミングT9)。この指示に応答してインジェクタ118は、シリンダ111内への燃料供給を再開する。これにより、エンジン110から発生する回転駆動力が増大し始める。これにより、車両用動力伝達システム100における一連のシフトアップ動作が完了する。
上記作動説明からも理解できるように、上記実施形態によれば、車両用動力伝達システム100は、トランスミッション240の変速動作時におけるメインシャフト241とカウンターシャフト242との間の駆動力の伝達を遮断する前にメインシャフト241に伝達されるエンジン110からの駆動力を低下させるためにシフトスピンドル駆動モータ231、点火プラグ112およびインジェクタ118の作動を制御するECU300を備えるとともに、ECU300によるメインシャフト241への駆動力の低下後であってかつクラッチ210における駆動力の伝達が遮断される前にトランスミッション240がメインシャフト241とカウンターシャフト242との間の駆動力の伝達を遮断する。すなわち、本発明に係る車両用動力伝達システム100は、トランスミッションの変速動作時において、クラッチ210における駆動力の伝達状態に拘らずエンジン110からの駆動力を低下させた状態でギアの変速動作を開始してクラッチ210における駆動力の伝達が遮断される前にトランスミッション240における変速前の変速段を構成するギア列による駆動力の伝達状態を解消する。これにより、クラッチ210における駆動力の伝達を遮断した後にトランスミッション240における変速動作を開始する従来の動力伝達装置に比べて迅速にトランスミッション240における変速動作を完了することができるとともに、この変速動作時に操縦者に与える所謂トルク抜けによる不快感を軽減することができる。
さらに、本発明の実施にあたっては、上記実施形態に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。なお、下記に示す各変形例においては、上記実施形態における車両用動力伝達システム100と同様の構成部分には車両用動力伝達システム100に付した符号に対応する符号を付して、その説明は省略する。
例えば、上記実施形態においては、シフトスピンドル230は、シフトスピンドル駆動モータ231によって回転駆動するように構成されている。しかし、シフトスピンドル230は、車両の操縦者の手足による手動操作によって機械的に回転駆動させることもできる。この場合、ECU300は、シフトスピンドル230の回転角度を検出することにより点火プラグ112およびインジェクタ118の作動を上記実施形態と同様に制御するように構成するとよい。
また、上記実施形態においては、トランスミッション240によるシフトアップ動作に先駆けて点火プラグ112における点火タイミングの遅延およびクラッチ210におけるリフトアップを実行した。すなわち、点火タイミングをずらす制御を実行するECU300、クラッチ駆動遊びL1を備えたクラッチ作動機構である可動クラッチリフター221およびクラッチリフターレバー222、およびシフト操作遊びL2,L3を備えたトランスミッション作動機構であるギアシフトアーム248およびギアシフトアーム駆動レバー249が本発明に係る伝達駆動力低下手段に相当する。しかし、伝達駆動力低下手段は、トランスミッション240によるシフトアップ動作に先駆けてエンジン110の回転駆動力を低下させる構成であれば、上記実施形態に限定されるものではない。
この場合、エンジン110の回転駆動力の低下には、回転駆動力自体を低下させる場合と、トランスミッションに伝達される回転駆動力の伝達量を低下させる場合とがある。例えば、伝達駆動力低下手段は、エンジン110への燃料の供給量を減じる、エンジン110での燃料への点火タイミングをずらす、およびクラッチ210におけるリフトアップを行なうなどの動作をそれぞれ単体で、またはこれらを適宜組み合わせて構成することができる。また、これらを実行する順番も適宜設定することができる。なお、エンジン110への燃料の供給量を減じる場合には、上記実施形態のように供給燃料を完全にカットしてもよいし、現状の燃料供給量を完全にカットしない範囲で減じるようにしてもよい。
これらの場合、伝達駆動力低下手段は、クラッチ210における駆動力の伝達の遮断が完了する前にエンジン110への燃料の供給量を減じるとよい。これによれば、クラッチ210における駆動力の伝達が遮断される前にメインシャフト241に伝達されるエンジン110からの駆動力が低下するため、トランスミッション240における駆動力の伝達の遮断を円滑に行なうことができる。
また、これらの場合、伝達駆動力低下手段は、エンジン110への燃料の供給量を減じる前にエンジン110での燃料への点火タイミングをずらすとよい。これにより、エンジン110への燃料の供給量を減じることによる急激な駆動力の低下を防止しながらエンジン110の駆動力を低下させることができため、車両の乗員への不快感を抑えながら円滑にトランスミッション240における駆動力の伝達の遮断することができる。
なお、上記実施形態においては、トランスミッション240によるシフトアップ動作に先駆けてクラッチ210におけるリフトアップを実行したが、前記したように、トランスミッション240によるシフトアップ動作に先駆けてエンジン110の回転駆動力を低下させる構成であればよく、例えば、トランスミッション240によるシフトアップ動作開始後にクラッチ210におけるリフトアップを開始する構成とすることができるのは当然である。
すなわち、上記実施形態においては、クラッチ駆動遊びL1の量は、シフト操作遊びL2,L3の合算量よりも少なく設定した。これにより、シフトスピンドル230の回転駆動によって、先ず、クラッチ210が作動した後にトランスミッション240が作動を開始する。しかし、前記したように、トランスミッション240によるシフトアップ動作に先駆けてエンジン110の回転駆動力を低下させる構成であればよいため、例えば、点火タイミングの遅延や燃料の供給量のカットによりエンジン110の回転駆動力を予め低下させておけば、ランスミッション240によるシフトアップ動作開始後にクラッチ210におけるリフトアップを開始する構成とすることができる。この場合、クラッチ駆動遊びL1の量は、シフト操作遊びL2,L3の合算量より大きく設定することになる。なお、シフト操作遊びL2,L3は、必ずしも2つの遊びで構成される必要はなくシフト操作遊びL2またはシフト操作遊びL3で構成されていてもよいし、3つ以上の遊びで構成されていてもよい。また、クラッチ駆動遊びL1も2つ以上の遊びで構成されていてもよい。
また、上記実施形態において、車両用動力伝達システム100は、さらに、ギアシフトアーム248とシフトドラムピン246aとの間、および/またはギアシフトアーム248とギアシフトアーム駆動レバー249との間のシフト操作遊びL2,L3を詰めるためのプリロードスプリングを備えて構成してもよい。例えば、図8に示すように、車両用動力伝達システム100は、ギアシフトアーム248とギアシフトアーム駆動レバー249との間にシフト操作遊びL2を詰めるためのプリロードスプリング252を備えて構成することができる。
プリロードスプリング252は、前記ギアシフトリターンスプリング250と同様のコイルスプリングで構成されており、シフトスピンドル230上に支持されている。このプリロードスプリング252は、コイルスプリングの両端部がギアシフトアーム駆動レバー249の屈曲片249a、およびギアシフトアーム248の屈曲片248cを挟んで設けられている。これにより、シフト操作遊びL2を形成するギアシフトアーム駆動レバー249の屈曲片249aとギアシフトアーム248の貫通孔248b内周面とがプリロードスプリング252の弾性力によって接触している。一方、上記実施形態におけるギアシフトリターンスプリング250は、コイルスプリングの両端部が中立位置決めピン251およびギアシフトアーム駆動レバー249の屈曲片249aを挟んで設けられている。
このようなプリロードスプリング251を備えた車両用動力伝達システム100のシフトアップ動作の過程を図8に示す。これによれば、車両用動力伝達システム100は、トランスミッション240を駆動するためのシフト操作遊びL2の量がプリロードスプリング251によって詰められている。すなわち、シフトアップ動作時にギアシフトアーム駆動レバー249の屈曲片249aが接触して押圧するギアシフトアーム248の貫通孔248bの内周面に当初から屈曲片249aが接触した状態で設けられている。
このため、トランスミッション240は、シフトスピンドル230の回転駆動後、シフト操作遊びL3のロストモーションの終了と同時に直ちに変速動作が開始可能な状態となる(タイミングP1)。そして、トランスミッション240は、エンジン110から駆動力が点火タイミングの遅延やクラッチ210のリフトアップなどによって低下して変速動作が可能、すなわち、変速前の変速段を構成するギア列による駆動力の伝達状態が解消可能な状態となった瞬間(エリアP)に直ちにギア列による駆動力の伝達状態の解消が実行される。これにより、より迅速にトランスミッション240における変速動作を行なうことができる。
L1…クラッチ駆動遊び、L2,L3…シフト操作遊び、
100…車両用動力伝達システム、
110…エンジン、111…シリンダ、112…点火プラグ、113…ピストン、114…クランクシャフト、114a…プライマリードライブギア、115…吸気バルブ、116…吸気管、117…スロットルバルブ、118…インジェクタ、
200…動力伝達装置、201…クラッチケース、
210…クラッチ、211…フリクションプレート、212…クラッチプレート、213…クラッチシェル、214…クラッチハブ、215…プライマリードリブンギア、216…クラッチスプリング、217a,217b…プレッシャプレート、
220…固定クラッチリフター、221…可動クラッチリフター、221a…貫通孔、222…クラッチリフターレバー、222a…ボス、
230…シフトスピンドル、231…シフトスピンドル駆動モータ、
240…トランスミッション、241…メインシャフト、242…カウンターシャフト、243a…ドッグ、243b…嵌合穴、244…シフトフォーク、245…シフトドラム、245a…溝、246a…シフトドラムピン、246b…インデックスプレート、247…インデックスアーム、247a…インデックススプリング、248…ギアシフトアーム、248a…フック、248b…貫通孔、248c…屈曲片、249…ギアシフトアーム駆動レバー、249a…屈曲片、250…ギアシフトリターンスプリング、251…中立位置決めピン、252…プリロードスプリング、
300…ECU、301…ハンドル、302…シフトチェンジスイッチ。
100…車両用動力伝達システム、
110…エンジン、111…シリンダ、112…点火プラグ、113…ピストン、114…クランクシャフト、114a…プライマリードライブギア、115…吸気バルブ、116…吸気管、117…スロットルバルブ、118…インジェクタ、
200…動力伝達装置、201…クラッチケース、
210…クラッチ、211…フリクションプレート、212…クラッチプレート、213…クラッチシェル、214…クラッチハブ、215…プライマリードリブンギア、216…クラッチスプリング、217a,217b…プレッシャプレート、
220…固定クラッチリフター、221…可動クラッチリフター、221a…貫通孔、222…クラッチリフターレバー、222a…ボス、
230…シフトスピンドル、231…シフトスピンドル駆動モータ、
240…トランスミッション、241…メインシャフト、242…カウンターシャフト、243a…ドッグ、243b…嵌合穴、244…シフトフォーク、245…シフトドラム、245a…溝、246a…シフトドラムピン、246b…インデックスプレート、247…インデックスアーム、247a…インデックススプリング、248…ギアシフトアーム、248a…フック、248b…貫通孔、248c…屈曲片、249…ギアシフトアーム駆動レバー、249a…屈曲片、250…ギアシフトリターンスプリング、251…中立位置決めピン、252…プリロードスプリング、
300…ECU、301…ハンドル、302…シフトチェンジスイッチ。
Claims (7)
- 車両に搭載されて燃料の燃焼によって駆動力を発生させるエンジンと、
前記エンジンによる前記駆動力によって回転駆動するメインシャフトと前記車両の駆動輪に連結されるカウンターシャフトとの間に互いに変速比の異なる複数の変速段を構成する複数のギア列が設けられて前記エンジンの回転速度を変速しつつ前記駆動力を前記駆動輪に伝達するトランスミッションと、
前記エンジンから伝達される前記駆動力によって回転駆動するフリクションプレートと前記トランスミッションに連結されて前記駆動力を受けるクラッチプレートとを密着および離隔させることによって前記エンジンの駆動力を前記トランスミッションに伝達および遮断するクラッチとを備えた車両用動力伝達システムにおいて、
前記トランスミッションの変速動作時における前記メインシャフトと前記カウンターシャフトの間の前記駆動力の遮断を開始する前に前記メインシャフトに伝達される前記エンジンからの前記駆動力を低下させる伝達駆動力低下手段を備え、
前記トランスミッションは、
前記伝達駆動力低下手段による前記メインシャフトへの前記駆動力の低下後かつ前記クラッチにおける前記駆動力の遮断が完了する前に前記メインシャフトと前記カウンターシャフトの間の前記駆動力の遮断を完了することを特徴とする車両用動力伝達システム。 - 請求項1に記載した車両用動力伝達システムにおいて、
前記伝達駆動力低下手段は、
前記エンジンへの前記燃料の供給量を減じる、前記エンジンでの前記燃料への点火タイミングをずらす、および前記クラッチにおける前記フリクションプレートと前記クラッチプレートとの密着力を弱めるうちの少なくとも1つによって前記メインシャフトに伝達される前記エンジンからの前記駆動力を低下させることを特徴とする車両用動力伝達システム。 - 請求項2に記載した車両用動力伝達システムにおいて、
前記伝達駆動力低下手段は、
前記クラッチにおける前記駆動力の遮断が完了する前に前記エンジンへの前記燃料の供給量を減じることを特徴とする車両用動力伝達システム。 - 請求項2または請求項3に記載した車両用動力伝達システムにおいて、
前記伝達駆動力低下手段は、
前記エンジンへの前記燃料の供給量を減じる前に前記エンジンでの前記燃料への点火タイミングをずらすことを特徴とする車両用動力伝達システム。 - 請求項1ないし請求項4のうちのいずれか1つに記載した車両用動力伝達システムにおいて、
外部からの変速操作に基づいて回転駆動するシフトスピンドルと、
前記シフトスピンドルから径方向に延びて設けられ、同シフトスピンドルと一体的に回転変位するクラッチリフターレバーおよびギアシフトアーム駆動レバーと、
前記クラッチにおける前記フリクションプレートと前記クラッチプレートとを密着および離隔させる固定クラッチリフターに連結されて前記クラッチリフターレバーとの間でクラッチ駆動遊びを介して連結される可動クラッチリフターと、
前記トランスミッションにおける前記ギア列を変更するためのシフトドラムを回転駆動するインデックスピンと前記ギアシフトアーム駆動レバーとの間に設けられて前記インデックスピンとの間および/または前記ギアシフトアーム駆動レバーとの間でシフト操作遊びを介して連結されるギアシフトアームとを備えることを特徴とする車両用動力伝達システム。 - 請求項5に記載した車両用動力伝達システムにおいて、
前記クラッチ駆動遊びの量は、前記シフト操作遊びの量よりも少ないことを特徴とする車両用動力伝達システム。 - 請求項5または請求項6に記載した車両用動力伝達システムにおいて、さらに、
前記ギアシフトアームと前記インデックスピンおよび/または前記ギアシフトアーム駆動レバーとの間の前記シフト操作遊びを詰めるためのプリロードスプリングを備えることを特徴とする車両用動力伝達システム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180071932.XA CN103688040B (zh) | 2011-07-26 | 2011-07-26 | 车辆用动力传递系统 |
PCT/JP2011/066935 WO2013014748A1 (ja) | 2011-07-26 | 2011-07-26 | 車両用動力伝達システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/066935 WO2013014748A1 (ja) | 2011-07-26 | 2011-07-26 | 車両用動力伝達システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013014748A1 true WO2013014748A1 (ja) | 2013-01-31 |
Family
ID=47600638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/066935 WO2013014748A1 (ja) | 2011-07-26 | 2011-07-26 | 車両用動力伝達システム |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103688040B (ja) |
WO (1) | WO2013014748A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016191390A (ja) * | 2015-03-30 | 2016-11-10 | 本田技研工業株式会社 | 車両の変速装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001140675A (ja) * | 1999-06-18 | 2001-05-22 | Toyota Motor Corp | 車載用内燃機関の制御装置 |
JP2001280493A (ja) * | 2000-03-29 | 2001-10-10 | Honda Motor Co Ltd | 変速装置 |
JP3853926B2 (ja) * | 1997-09-12 | 2006-12-06 | 本田技研工業株式会社 | 車両用動力伝達装置 |
JP2007285450A (ja) * | 2006-04-18 | 2007-11-01 | Yamaha Motor Co Ltd | 自動変速制御装置および車両 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004011774A (ja) * | 2002-06-06 | 2004-01-15 | Yamaha Motor Co Ltd | 変速制御装置及び変速制御方法 |
-
2011
- 2011-07-26 WO PCT/JP2011/066935 patent/WO2013014748A1/ja active Application Filing
- 2011-07-26 CN CN201180071932.XA patent/CN103688040B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3853926B2 (ja) * | 1997-09-12 | 2006-12-06 | 本田技研工業株式会社 | 車両用動力伝達装置 |
JP2001140675A (ja) * | 1999-06-18 | 2001-05-22 | Toyota Motor Corp | 車載用内燃機関の制御装置 |
JP2001280493A (ja) * | 2000-03-29 | 2001-10-10 | Honda Motor Co Ltd | 変速装置 |
JP2007285450A (ja) * | 2006-04-18 | 2007-11-01 | Yamaha Motor Co Ltd | 自動変速制御装置および車両 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016191390A (ja) * | 2015-03-30 | 2016-11-10 | 本田技研工業株式会社 | 車両の変速装置 |
Also Published As
Publication number | Publication date |
---|---|
CN103688040A (zh) | 2014-03-26 |
CN103688040B (zh) | 2016-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3719442B2 (ja) | ハイブリッド電気車両の動力伝達システム | |
JP6376662B2 (ja) | 車両用動力伝達システム | |
US9073543B2 (en) | Control device of vehicle drive device | |
JP5741693B2 (ja) | ハイブリッド車両の制御装置 | |
JP4972566B2 (ja) | 自動変速機の制御方法及び制御装置 | |
US9073551B2 (en) | Vehicle control apparatus, vehicle, and motor | |
JP5918676B2 (ja) | ツインクラッチ制御装置 | |
US9061676B2 (en) | Vehicle control apparatus, vehicle, and motor | |
JP2014206233A (ja) | 自動変速機 | |
WO2012160912A1 (ja) | ハイブリッド車両の変速制御装置 | |
JP2014070686A (ja) | ツインクラッチ制御装置 | |
JP2014070682A (ja) | ツインクラッチ制御装置 | |
US20160176405A1 (en) | Transmission | |
US9067581B2 (en) | Automatic transmission | |
JP6344659B2 (ja) | 車両用動力伝達システム | |
WO2013038446A1 (ja) | 動力断続装置 | |
JP5743653B2 (ja) | 変速クラッチ制御装置 | |
JP5409526B2 (ja) | 車両の動力伝達制御装置 | |
JP2011218890A (ja) | 車両駆動装置 | |
JP5824437B2 (ja) | ツインクラッチ制御装置 | |
WO2013014748A1 (ja) | 車両用動力伝達システム | |
JP6170890B2 (ja) | 車両の制御装置 | |
JP6953473B2 (ja) | 動力伝達装置 | |
JPWO2013014748A1 (ja) | 車両用動力伝達システム | |
JP5796754B2 (ja) | 車両用動力伝達システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11870036 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013525487 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11870036 Country of ref document: EP Kind code of ref document: A1 |