WO2013014700A1 - 表示パネル及び表示装置 - Google Patents

表示パネル及び表示装置 Download PDF

Info

Publication number
WO2013014700A1
WO2013014700A1 PCT/JP2011/004157 JP2011004157W WO2013014700A1 WO 2013014700 A1 WO2013014700 A1 WO 2013014700A1 JP 2011004157 W JP2011004157 W JP 2011004157W WO 2013014700 A1 WO2013014700 A1 WO 2013014700A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
display panel
display
heat
power supply
Prior art date
Application number
PCT/JP2011/004157
Other languages
English (en)
French (fr)
Inventor
益本 賢一
山北 裕文
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013525432A priority Critical patent/JP5974387B2/ja
Priority to PCT/JP2011/004157 priority patent/WO2013014700A1/ja
Priority to US14/131,440 priority patent/US9129920B2/en
Priority to CN2012203510394U priority patent/CN202816948U/zh
Publication of WO2013014700A1 publication Critical patent/WO2013014700A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/87Arrangements for heating or cooling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8794Arrangements for heating and cooling

Definitions

  • the present invention relates to a display panel for displaying video and a display device including the display panel.
  • the display panel emits pixels and displays images. When the pixel emits light, the display panel generates heat.
  • Various heat radiating members have been developed to promote heat dissipation from the display panel.
  • Patent Documents 1 and 2 disclose a heat radiating member formed using a graphite sheet. Patent Documents 1 and 2 work on covering the graphite sheet with another sheet material to prevent the detachment of the graphite powder from the graphite sheet.
  • Graphite sheet has excellent thermal conductivity in the in-plane direction. Therefore, the graphite sheet is suitably used as a material that promotes heat dissipation from the heat generating part.
  • FIG. 13 is a schematic diagram showing the influence of a heat dissipation member on an image displayed on a display panel 900 (organic EL display panel) using an organic EL (electroluminescence) element.
  • the display panel 900 shown in the section (a) of FIG. 13 displays a bright image locally.
  • the central rectangular area of the display panel 900 is a high luminance area 901 where a high luminance image is displayed, and the outer area surrounding the high luminance area 901 is a low luminance area 902 where a low luminance image is displayed. .
  • the high luminance region 901 generates a lot of heat.
  • the section (b) in FIG. 13 represents an image defined by the image signal sent to the display panel 900 thereafter.
  • the video signal defines a uniformly bright video. Note that the brightness of the video defined by the video signal is slightly lower than the brightness of the high brightness area 901.
  • the section (c) in FIG. 13 represents an image actually displayed on the display panel 900 to which no heat dissipation member is attached.
  • the heat generation in the high luminance region 901 makes the light emission efficiency of the organic EL element arranged in the high luminance region 901 different from the light emission efficiency of the organic EL element arranged in the low luminance region 902. As a result, an afterimage region 903 that substantially matches the high luminance region 901 appears in the video.
  • the section (d) in FIG. 13 represents an image actually displayed on the display panel 900 to which the heat dissipating member is attached. Since the heat dissipation member dissipates heat generated in the high luminance region 901, the difference between the light emission efficiency of the organic EL element arranged in the high luminance region 901 and the light emission efficiency of the organic EL element arranged in the low luminance region 902 is Get smaller. Accordingly, the area of the afterimage region 903 is reduced. As described above, since the display panel 900 is affected by the previously displayed display image, it is important to attach a heat dissipating member and suppress the generation of heat in the display panel.
  • the present inventor has found that the display panel has a heat source other than the display area for displaying the video.
  • FIG. 14 is a schematic plan view of the substrate 910 of the display panel. A heat source other than the display area will be described with reference to FIG.
  • the board 910 is mounted with an external board (not shown) for sending power to the board 910.
  • the external substrate is mounted on a rectangular area MA surrounded by a dotted line.
  • An electrode 911 for sending electric power to the substrate 910 is disposed in the rectangular area MA.
  • the electrode 913 is arranged corresponding to the electrode 911 in the rectangular area MA.
  • the electrode 913 is installed on a power supply band 914 for supplying power to the display area.
  • the electrode 913 is narrower than the electrode 911 in the rectangular area MA. Therefore, the power supply line 915 connecting the electrodes 911 and 913 becomes narrower as the electrode 913 is approached.
  • the graph on the upper side of the plan view of the substrate 910 schematically represents the fluctuation of the resistance value between the electrodes 911 and 913.
  • the resistance value peaks at the boundary between the power line 915 and the electrode 913 due to the gradually narrowing power line 915.
  • a large amount of heat is generated at the boundary between the power supply line 915 and the electrode 913.
  • This heat is transferred to the electrode 913 through the power line 915.
  • the contact resistance between the electrode 913 and the power supply band 914 is large. Due to this contact resistance, heat is generated even in the contact region of the electrode 913 on the power supply band 914.
  • FIG. 15 is a schematic plan view of the substrate 920 of the display panel.
  • the heat sources other than the display area will be further described with reference to FIG.
  • the board 920 is mounted with an external board (not shown) for sending power to the board 920.
  • an external substrate is mounted on a rectangular area MA surrounded by a dotted line.
  • An electrode 921 for sending electric power to the substrate 920 is arranged in the rectangular area MA.
  • the electrode 923 is arranged corresponding to the electrode 921 in the rectangular area MA.
  • the electrode 923 is provided on a power supply band 924 for supplying power to the display area.
  • the electrode 921 in the rectangular area MA is narrower than the electrode 923. Therefore, the power supply line 925 that connects the electrodes 921 and 923 becomes narrower as the electrode 921 is approached.
  • the upper graph in the plan view of the substrate 920 schematically represents a variation in resistance value between the electrodes 921 and 923. Due to the power line 925 gradually narrowing, the resistance value has a peak at the boundary between the power line 925 and the electrode 921. As a result, large heat is generated at the boundary between the power supply line 925 and the electrode 921. This heat is transferred to the electrode 923 through the power line 925. Similarly to the configuration of FIG. 14, heat is generated in the contact region between the electrode 923 and the power supply band 924 due to the contact resistance generated between the electrode 923 and the power supply band 924.
  • the heat radiating member carries the heat to the display area where the image is displayed.
  • the light emission efficiency of the light emitting elements in the display region varies due to heat generated in the power supply path.
  • a display panel includes a display region having a plurality of flexible substrates on which a first power supply line for supplying power is mounted, and a plurality of display pixels arranged to display an image.
  • a substrate including: a first surface provided; a second surface opposite to the first surface; and a second power supply line connecting the first power supply line and the display pixel; and the second surface.
  • a heat conduction member that partially conducts heat and conducts heat in an in-plane direction, and a heat conduction seal that covers a peripheral edge of the heat conduction member, wherein the first surface includes the plurality of flexible substrates and the display region.
  • a display device includes the above-described display panel, a housing that accommodates the display panel, and a heat radiating plate connected to the heat conductive seal, and the heat radiating plate includes the housing. It is used as a chassis for fixing the display panel in the body.
  • the above-described display panel and display device can mitigate the influence of heat generated in the power supply path on the display area where the video is displayed.
  • FIG. 1 is a schematic partial cross-sectional view of a display panel according to a first embodiment.
  • FIG. 2 is a schematic rear view of the display panel shown in FIG. 1.
  • FIG. 2 is a schematic partial front view of the display panel shown in FIG. 1.
  • FIG. 2 is a schematic partial front view of the display panel shown in FIG. 1.
  • FIG. 5 is a partial rear view corresponding to FIG. 4.
  • It is a schematic flowchart of the manufacturing method of the display panel shown by FIG. It is the schematic of the display panel in each process of the manufacturing method of the display panel shown by FIG.
  • the simulation result of the temperature distribution of a display panel is shown.
  • the simulation result of the temperature distribution of a display panel is shown.
  • It is a schematic fragmentary sectional view of the display panel concerning a 2nd embodiment.
  • FIG. 1 is a schematic partial cross-sectional view of a display panel according to a first embodiment.
  • FIG. 2 is a schematic rear view of the display panel shown in FIG. 1.
  • FIG. 2 is a schematic front view of a display device in which the display panel shown in FIG. 1 is incorporated.
  • FIG. 12 is a schematic partial cross-sectional view of the display device shown in FIG. 11. It is the schematic showing the influence which the heat radiating member has on the image
  • It is a schematic top view of the board
  • FIG. 1 is a schematic partial cross-sectional view of a display panel 100 according to the first embodiment.
  • FIG. 2 is a schematic rear view of the display panel 100.
  • FIG. 3 is a schematic partial front view of the display panel 100.
  • the display panel 100 is described with reference to FIGS.
  • An organic EL display panel will be described as the display panel 100.
  • a plasma display panel or other device for displaying an image may be used as the display panel.
  • the display panel 100 includes a substrate 110 on which various elements (described later) for displaying images are mounted.
  • the substrate 110 includes a first main surface 111 provided with a display area for displaying an image, and a second main surface 112 opposite to the first main surface 111.
  • the first main surface 111 is exemplified as the first surface.
  • the second major surface 112 is exemplified as the second surface.
  • the display panel 100 further includes a terminal portion 129 formed on the first main surface 111 and a plurality of flexible substrates 120 attached on the terminal portion 129.
  • Each flexible substrate 120 includes a first power line 121. Electric power for displaying an image is supplied through the first power supply line 121 mounted on the flexible substrate 120.
  • the flexible substrate 120 is disposed at intervals along the upper edge 115, the lower edge 116, the right edge 117, and the left edge 118 of the substrate 110 (see FIG. 2).
  • the display panel 100 further includes a graphite sheet 130 that partially covers the second main surface 112 of the substrate 110.
  • the graphite sheet 130 conducts heat generated in the display area in the in-plane direction.
  • the graphite sheet 130 is illustrated as a heat conductive member. Note that other materials having high thermal conductivity in the in-plane direction may be used as the heat conducting member.
  • the second main surface 112 of the substrate 110 includes a first region opposite to the display region.
  • the graphite sheet 130 entirely covers the first region. Moreover, since the graphite sheet 130 is formed larger than the first region, the periphery 131 of the graphite sheet 130 protrudes from the first region.
  • the display panel 100 further includes a metal foil sheet 140 that covers the periphery 131 of the graphite sheet 130. Unlike the graphite sheet 130 having high thermal conductivity in the in-plane direction, the metal foil sheet 140 has isotropic thermal conductivity characteristics.
  • the metal foil sheet 140 may be, for example, an aluminum sheet or a copper sheet.
  • the metal foil sheet 140 is bonded to the graphite sheet 130 and the second main surface 112.
  • the metal foil sheet 140 is exemplified as a heat conductive seal. Note that another sealing material having high thermal conductivity may be used as the thermal conductive seal.
  • the graphite sheet 130 tends to cause the detachment of the graphite powder from the periphery 131 due to deterioration over time.
  • the metal foil sheet 140 covers the peripheral edge 131, the graphite powder hardly falls. Therefore, it is difficult to cause a problem such as a short circuit due to the fall of the graphite powder.
  • the display panel 100 further includes a TFT layer 150 formed on the first main surface 111 and an EL layer 160 stacked on the TFT layer 150.
  • An organic EL element 170 is formed on the EL layer 160.
  • the TFT layer 150 drives the organic EL element 170. As a result, the organic EL element 170 emits light.
  • Each of the organic EL elements 170 arranged in, for example, a matrix within the display area so as to display an image is used as a display pixel.
  • the display panel 100 can display a video.
  • the organic EL element 170 includes a lower electrode 171 formed on the TFT layer 150, a hole injection layer 172 for taking holes from the lower electrode 171, an organic light emitting layer 173 that emits light by the combination of holes and electrons, A cathode electrode 174 disposed on the organic light emitting layer 173. As a result of voltage application between the lower electrode 171 and the cathode electrode 174, a current flows through the organic light emitting layer 173, and the organic light emitting layer 173 emits light.
  • the EL layer 160 includes an auxiliary electrode 161 in addition to the organic EL element 170.
  • the auxiliary electrode 161 is used to suppress a drop in voltage applied to the cathode electrode 174.
  • the EL layer 160 further includes a bank portion 162 that surrounds the organic EL element 170.
  • the bank part 162 defines the region of the organic light emitting layer.
  • the EL layer 160 further includes a power supply line 163 extending from the display area toward the flexible substrate 120.
  • the substrate 110 further includes a second power supply line 113 that is electrically connected to the first power supply line 121.
  • the power supply line 163 extends along the TFT layer 150.
  • the second power supply line 113 is formed in the same layer as the TFT layer 150, and the power supply line is connected via a connection portion 114 (a power supply band 192 (a part of a power supply band 192 to be described later) to which the second power supply line 113 and the power supply line 163 are connected). 163 is electrically connected.
  • the first power supply line 121 is electrically connected to the organic EL element 170 forming the display pixel via the second power supply line 113 and the power supply line 163.
  • the power supply line 163 is exemplified as a power supply unit.
  • an area of the first main surface 111 in which the second power supply line 113 is disposed between the flexible substrate 120 and the display area is referred to as an “arrangement area”.
  • the area of the second main surface 112 opposite to the arrangement area is referred to as a “second area”.
  • the metal foil sheet 140 described above partially covers the second region.
  • the metal foil sheet may cover the entire second region.
  • the heat conducting member for example, the graphite sheet 130
  • the heat generated in the display region is conducted in the in-plane direction through the heat conducting member and appropriately radiated.
  • the heat conductive seal for example, the metal foil sheet 140
  • the heat generated in the arrangement region is appropriately radiated through the heat conductive seal, and the heat conduction to the first region is suppressed. The Therefore, the heat generated in the power supply path for the display area is reduced from being transmitted to the display pixels in the display area, and is appropriately mitigated.
  • connection portion 114 As described with reference to FIGS. 14 and 15, due to the increase in the resistance value of the connection portion 114 between the second power supply line 113 and the power supply line 163, large heat generation is likely to occur in the connection portion 114.
  • the metal foil sheet 140 particularly contributes to heat dissipation with respect to the heat generated at the connection portion 114.
  • power supply bands 191 and 192 for supplying power to the display area are formed on the substrate 110.
  • a connection portion 114 between the second power supply line 113 and the power supply line 163 connected to the first power supply line 121 of the flexible substrate 120 arranged along the right edge 117 and the left edge 118 is provided on the inner power supply band 191. It is done.
  • a connection portion 114 between the second power supply line 113 and the power supply line 163 connected to the first power supply line 121 of the flexible substrate 120 arranged along the upper edge 115 and the lower edge 116 is provided on the outer power supply band 192. It is done.
  • the display panel 100 seals a sealing thin film 181 that covers the EL layer 160, a sealing substrate 182 that faces the substrate 110, and a space between the sealing substrate 182 and the substrate 110.
  • the sealing thin film 181, the sealing member 183, and the sealing portion 184 prevent inflow of outside air or the like between the sealing substrate 182 and the substrate 110. As a result, the EL layer 160 is unlikely to deteriorate.
  • FIG. 4 is a schematic partial front view of the display panel 100.
  • FIG. 5 is a partial rear view corresponding to FIG.
  • the display panel 100 will be further described with reference to FIGS. 1, 4 and 5.
  • FIG. 4 and 5 show one flexible substrate 120 disposed along the right edge 117 of the substrate 110 and two flexible substrates 120 disposed along the upper edge 115 of the substrate 110.
  • FIG. One of the two flexible boards 120 along the upper edge 115 is labeled with “120a”, and the other is labeled with “120b”.
  • the flexible substrates 120a and 120b will be described.
  • the flexible substrate 120b bonded to the first main surface 111 of the substrate 110 is separated from the flexible substrate 120a bonded to the first main surface 111 by a predetermined distance near the corners of the substrate 110.
  • one of the flexible substrates 120a and 120b is exemplified as the first flexible substrate, and the other is exemplified as the second flexible substrate.
  • connection portion 114 corresponding to the second power supply line 113al is denoted by a reference numeral “114al”
  • the connection portion 114 corresponding to the second power supply line 113ar is denoted by a reference numeral “114ar”.
  • connection portion 114 corresponding to the second power supply line 113bl is denoted by a reference numeral “114bl”
  • connection portion 114 corresponding to the second power supply line 113br is denoted by a reference numeral “114br”.
  • the area covered by the graphite sheet 130 corresponds to the display area.
  • the interval between the connection portions 114al and 114br is relatively short. Accordingly, the distance between the second power supply lines 113al and 113br becomes shorter as the display area is approached, and becomes the shortest at the connection portions 114al and 114br.
  • connection portions 114al and 114br and the surrounding area are referred to as “approach area”.
  • a region on the second main surface 112 opposite to the approach region is referred to as an “opposite region”.
  • FIG. 6 is a schematic flowchart of a method for manufacturing the display panel 100.
  • FIG. 7 is a schematic view of the display panel 100 in each of the steps shown in FIG. A method for manufacturing the display panel 100 will be described with reference to FIGS.
  • Step S110 a sealing process is performed.
  • the substrate 110 is placed so that the first main surface 111 of the substrate 110 faces upward.
  • the sealing thin film 181, the sealing substrate 182, the sealing member 183, and the sealing portion 184 are arranged and formed.
  • step S120 is executed.
  • step S120 In step S120, the substrate 110 is turned upside down. As a result, the first main surface 111 faces down and the second main surface 112 faces up. Thereafter, step S130 is executed.
  • step S 130 In step S ⁇ b> 130, the graphite sheet 130 is pasted on the second main surface 112 of the substrate 110.
  • the graphite sheet 130 may be affixed to the 2nd main surface 112, for example using an adhesive agent. After the graphite sheet 130 is fixed on the second main surface 112, step S140 is executed.
  • Step S140 In step S ⁇ b> 140, the metal foil sheet 140 is bonded to the graphite sheet 130 and the second main surface 112 of the substrate 110. As a result, the metal foil sheet 140 covers the periphery 131 of the graphite sheet 130. An adhesive is suitably used for bonding the metal foil sheet 140 to the graphite sheet 130 and the second main surface 112. After the metal foil sheet 140 is bonded to the graphite sheet 130 and the second main surface 112, step S150 is performed.
  • step S150 the substrate 110 is turned upside down. As a result, the first major surface 111 faces upward and the second major surface 112 faces downward. Thereafter, step S160 is executed.
  • Step S160 In step S ⁇ b> 160, the flexible substrate 120 is attached to the first main surface 111 of the substrate 110. As a result, the first power line 121 and the second power line 113 are electrically connected (see FIG. 1).
  • Section (a) in FIG. 8 shows temperature setting data used in the simulation.
  • the temperature setting data in FIG. 8 simulates that a high-luminance video is displayed in the central area of the display panel.
  • a numerical value of “0.5” is assigned as the temperature data of the area displaying the high brightness image.
  • a numerical value of “0.7” is assigned to two regions near the upper edge and two regions near the lower edge of the display panel.
  • a numerical value of “0.7” represents heat generation in the power supply path for displaying the video in the display area.
  • the section (a) in FIG. 9 shows the temperature setting data used in the simulation.
  • the temperature setting data in FIG. 9 simulates that a high-luminance video is displayed in the central area of the display panel.
  • a numerical value of “0.5” is assigned as the temperature data of the area displaying the high brightness image.
  • a numerical value of “0.7” is assigned to four regions near the upper edge and four regions near the lower edge of the display panel.
  • a numerical value of “0.7” is assigned to two areas near the right edge and two areas near the left edge of the display panel.
  • a numerical value of “0.7” represents heat generation in the power supply path for displaying the video in the display area.
  • FIG. 8 and FIG. 9 (b) are isotherms of the temperature distribution under the condition that the metal foil sheet is not attached.
  • Section (c) in FIGS. 8 and 9 is an isotherm diagram of the temperature distribution under the condition where the metal foil sheet is attached.
  • isotherms are represented by isotherms at intervals of “0.5 ° C.”. Further, a high temperature region is recorded in the central region of these isotherm diagrams (that is, the region corresponding to the central region of the display panel to which the numerical value “0.5” is assigned). These isotherm diagrams show that the temperature decreases as the distance from the central region (high temperature region) increases.
  • the metal foil sheet reduces the maximum temperature generated on the display panel. This also shows that the metal foil sheet suppresses the change in the light emission efficiency of the display panel.
  • FIG. 10 is a schematic partial cross-sectional view of a display panel 100A according to the second embodiment.
  • the display panel 100A will be described with reference to FIG.
  • symbol is attached
  • the display panel 100A includes the substrate 110, the graphite sheet 130, the metal foil sheet 140, the TFT layer 150, the EL layer 160, the sealing thin film 181, and the sealing.
  • a substrate 182, a seal member 183, and a sealing portion 184 are provided.
  • the display panel 100 ⁇ / b> A further includes a heat dissipation plate 190 bonded to the metal foil sheet 140.
  • heat generated in the power supply path to the display area is transmitted to the metal foil sheet 140.
  • the metal foil sheet 140 conducts the transmitted heat isotropically.
  • the heat generated in the power supply path is suitably transmitted to the heat radiating plate 190 via the metal foil sheet 140.
  • the heat sink 190 preferably has a higher thermal conductivity than the metal foil sheet 140. As a result, the heat radiating plate 190 can conduct heat isotropically and quickly to promote heat dissipation.
  • FIG. 11 is a schematic front view of the display device 200.
  • the display device 200 is described with reference to FIG.
  • the display device 200 includes the display panel 100 described in relation to the first embodiment, and a casing 210 that houses the display panel 100.
  • FIG. 12 is a schematic partial cross-sectional view of the display device 200.
  • the display device 200 is described with reference to FIGS. 11 and 12.
  • the display device 200 includes a heat radiating plate 290 connected to the metal foil sheet 140.
  • the heat sink 290 preferably has a higher thermal conductivity than the metal foil sheet 140, similar to the heat sink 190 described in connection with the second embodiment.
  • the heat radiating plate 290 is used not only for radiating the heat of the display panel 100 but also as a chassis for supporting the display panel 100 in the housing 210.
  • the heat radiating plate 290 may be formed integrally with the housing 210.
  • the display device 200 Since the heat radiation function and the fixing function for the display panel 100 are achieved by one member (heat radiation plate 290), the display device 200 is reduced in size, thickness, and weight. Further, the number of parts of the display device 200 is reduced.
  • the embodiment described above mainly includes the following configuration.
  • a display panel and a display device having the following configuration can alleviate the influence of heat generated in a power supply path on a display area where an image is displayed.
  • a display panel includes a plurality of flexible substrates on which a first power supply line for supplying power is mounted, and a plurality of display pixels arranged to display an image.
  • a substrate comprising: a first surface provided with a region; a second surface opposite to the first surface; and a second power supply line connecting the first power supply line and the display pixel;
  • a heat conductive member that partially covers two surfaces and conducts heat in an in-plane direction; and a heat conductive seal that covers a peripheral edge of the heat conductive member, wherein the first surface includes the plurality of flexible substrates and the plurality of flexible substrates.
  • Including a disposition region in which the second power supply line is disposed between the display region and the second surface, the first region on the opposite side of the display region, and the opposite side of the disposition region A second region, wherein the heat conducting member covers at least the first region and the heat conducting sheet. It is characterized by covering the second region.
  • the first power supply line for supplying power is mounted on the plurality of flexible boards.
  • a display area having a plurality of display pixels arranged to display an image is provided on the first surface of the substrate.
  • the second power supply line of the substrate connects the first power supply line and the display pixel. As a result, an image is displayed in the display area.
  • the heat conducting member partially covers the second surface opposite to the first surface and conducts heat in the in-plane direction. Since the heat conductive seal covers the periphery of the heat conductive member, partial peeling of the heat conductive member due to deterioration of the heat conductive member is less likely to occur.
  • the first surface includes an arrangement area in which a second power supply line arranged between the plurality of flexible substrates and the display area is arranged.
  • the second surface includes a first area opposite to the display area and a second area opposite to the arrangement area. Since the heat conducting member covers at least the first region, the heat generated in the display region is conducted in the in-plane direction through the heat conducting member and appropriately radiated. Since the heat conductive seal covers the second region, the heat generated in the arrangement region is appropriately radiated through the heat conductive seal. As a result, heat conduction to the first region is suppressed. Therefore, the heat generated in the power supply path for the display area is reduced from being transmitted to the display pixels in the display area, and is appropriately mitigated.
  • the plurality of flexible substrates include a first flexible substrate bonded to the first surface, and a second flexible substrate bonded to the first surface at a distance from the first flexible substrate.
  • the conductive seal preferably covers at least the opposite area.
  • the plurality of flexible substrates include the first flexible substrate bonded to the first surface and the second flexible substrate bonded to the first surface spaced from the first flexible substrate.
  • the interval between the power supply lines between the second power supply line connected to the first power supply line of the first flexible substrate and the second power supply line connected to the first power supply line of the second flexible substrate becomes narrower as the display area is approached. .
  • the power supply line interval is the shortest, so heat is easily stored in the approach area.
  • the heat conductive seal covers the opposite region opposite to the approach region, the heat generated in the approach region is appropriately dissipated through the heat conductive seal. Therefore, the influence of heat generated in the power supply path with respect to the display area is appropriately mitigated.
  • the display region includes an EL layer in which an organic EL element is formed, and a TFT layer in which a TFT for driving the organic EL element is formed, and the plurality of flexible substrates and the display region
  • the second power line disposed between the TFT layers is formed in the same layer, and the EL layer includes a power feeding unit that supplies power from the second power line to the organic EL element. Is preferably connected to the second power line in the approach region.
  • the display area includes an EL layer in which an organic EL element is formed and a TFT layer in which a TFT for driving the organic EL element is formed.
  • the second power supply line disposed between the plurality of flexible substrates and the display area is formed in the same layer as the TFT layer.
  • the EL layer includes a power feeding unit that supplies power from the second power supply line to the organic EL element. Since the power feeding unit is connected to the second power supply line in the approaching region, heat is easily stored at the boundary between the power feeding unit and the second power supply line. However, since the heat conductive seal covers at least the opposite region, the heat generated in the approach region is properly dissipated through the heat conductive seal. Therefore, the influence of heat generated in the power supply path with respect to the display area is appropriately mitigated.
  • the display panel further includes a heat radiating plate connected to the heat conductive seal.
  • the display panel further includes the heat radiating plate connected to the heat conductive seal, the heat transmitted to the heat conductive seal is appropriately radiated through the heat radiating plate. Therefore, the influence of heat generated in the power supply path with respect to the display area is appropriately mitigated.
  • the thermal conductivity of the heat radiating plate is higher than the thermal conductivity of the heat conducting member.
  • the heat conductivity of the heat radiating plate is higher than the heat conductivity of the heat conducting member, the heat transferred to the heat conductive seal is appropriately radiated through the heat radiating plate. Therefore, the influence of heat generated in the power supply path with respect to the display area is appropriately mitigated.
  • a display device includes the above-described display panel, a housing that accommodates the display panel, and a heat sink that is connected to the heat conductive seal. It is used as a chassis for fixing the display panel in the body.
  • the display device includes the above-described display panel, a housing that accommodates the display panel, and a heat radiating plate connected to the heat conductive seal. Since the heat radiating plate is used as a chassis for fixing the display panel in the housing, it is not necessary to separately prepare a member for radiating heat and a member for fixing the display panel. Therefore, the number of parts of the display device can be reduced and the display panel can be reduced in size, thickness, and weight.
  • the principle of the above-described embodiment is suitably used for a display panel such as an organic EL display panel or a PDP and a display device that displays an image using the display panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

 本発明は、映像が表示される表示領域に対する電力供給経路で発生した熱の影響を緩和する構造を有する表示パネル及び当該表示パネルを備える表示装置を提供することを目的とする。 本発明の表示パネルは、電力を供給するための第1電源線(121)が搭載された複数のフレキシブル基板(120)と、映像を表示するように配列された複数の表示画素を有する表示領域が設けられた第1面(111)と、該第1面とは反対側の第2面(112)と、前記第1電源線と前記表示画素とを接続する第2電源線(113)とを含む基板(110)と、前記第2面を部分的に覆い面内方向に熱を伝導する熱伝導部材(130)と、前記熱伝導部材の周縁を覆う熱伝導シール(140)とを備え、前記第1面は、前記複数のフレキシブル基板と前記表示領域との間に配置された前記第2電源線が配設される配設領域を含み、前記第2面は、前記表示領域とは反対側の第1領域と、前記配設領域とは反対側の第2領域とを含み、前記熱伝導部材は、少なくとも前記第1領域を覆い、前記熱伝導シールは、前記第2領域を覆うことを特徴とする。

Description

表示パネル及び表示装置
 本発明は、映像を表示する表示パネル及び表示パネルを備える表示装置に関する。
 表示パネルは、画素を発光させ、映像を表示する。画素の発光の際に、表示パネルは発熱する。表示パネルからの放熱を促すために、様々な放熱部材が開発されている。
 特許文献1及び2は、グラファイトシートを用いて形成された放熱部材を開示する。特許文献1及び2は、グラファイトシートを他のシート材料で覆い、グラファイトシートからのグラファイト粉の脱離を防止することに取り組んでいる。
 グラファイトシートは、面内方向に優れた熱伝導性を有する。したがって、グラファイトシートは、発熱部位からの放熱を促す材料として好適に用いられる。
 図13は、有機EL(エレクトロルミネセンス)素子を用いた表示パネル900(有機EL表示パネル)が表示する映像に放熱部材が与える影響を表す概略図である。
 図13のセクション(a)に示される表示パネル900は、局所的に明るい映像を表示している。表示パネル900の中央の矩形領域は、高い輝度の映像が表示される高輝度領域901であり、高輝度領域901を取り囲む外側の領域は、低い輝度の映像が表示される低輝度領域902である。高輝度領域901は、多くの熱を発する。
 図13のセクション(b)は、表示パネル900にその後送られた映像信号によって規定される映像を表す。映像信号は、均一に明るい映像を規定する。尚、映像信号が規定する映像の輝度は、高輝度領域901の輝度よりも若干低い。
 図13のセクション(c)は、放熱部材が取り付けられていない表示パネル900が実際に表示する映像を表す。高輝度領域901の発熱は、高輝度領域901に配置された有機EL素子の発光効率を、低輝度領域902に配置された有機EL素子の発光効率と相違させる。この結果、高輝度領域901に略一致する残像領域903が映像中に現れる。
 図13のセクション(d)は、放熱部材が取り付けられた表示パネル900が実際に表示する映像を表す。放熱部材は、高輝度領域901で発生した熱を放熱するので、高輝度領域901に配置された有機EL素子の発光効率と低輝度領域902に配置された有機EL素子の発光効率との差異は小さくなる。したがって、残像領域903の面積は小さくなる。このように、表示パネル900において、前に表示した表示画像の影響を受けてしまうため、表示パネルにおいて放熱部材を取り付け、熱の発生を抑制することは重要である。
 さらに、本発明者は、表示パネルは、映像を表示する表示領域以外にも熱源を有することを見出した。
 図14は、表示パネルの基板910の概略的な平面図である。図14を用いて、表示領域以外の熱源が説明される。
 基板910には、基板910に電力を送るための外部基板(図示せず)が搭載される。図14中において点線で囲まれる矩形領域MAに外部基板が搭載される。矩形領域MA内には、基板910へ電力を送るための電極911が配置される。
 矩形領域MA内の電極911に対応して、電極913が配置される。電極913は、表示領域に電力を供給するための電源帯914上に設置される。電極913は、矩形領域MA内の電極911よりも狭い。したがって、電極911,913を接続する電源線915は、電極913に近づくにつれて狭くなる。
 基板910の平面図の上側のグラフは、電極911,913間の抵抗値の変動を概略的に表す。徐々に狭くなる電源線915に起因して、電源線915と電極913との境界において、抵抗値はピークとなる。この結果、電源線915と電極913との境界において、大きな発熱を生ずる。この熱は電源線915を介して電極913に伝わる。また、電極913と電源帯914との間の接触抵抗は大きい。この接触抵抗により、電源帯914上の電極913の接触領域でも発熱を生ずる。
 図15は、表示パネルの基板920の概略的な平面図である。図15を用いて、表示領域以外の熱源が更に説明される。
 基板920には、基板920に電力を送るための外部基板(図示せず)が搭載される。図15中において点線で囲まれる矩形領域MAに外部基板が搭載される。矩形領域MA内には、基板920へ電力を送るための電極921が配置される。
 矩形領域MA内の電極921に対応して、電極923が配置される。電極923は、表示領域に電力を供給するための電源帯924上に設置される。矩形領域MA内の電極921は、電極923よりも狭い。したがって、電極921,923を接続する電源線925は、電極921に近づくにつれて狭くなる。
 基板920の平面図の上側のグラフは、電極921,923間の抵抗値の変動を概略的に表す。徐々に狭くなる電源線925に起因して、電源線925と電極921との境界において、抵抗値はピークとなる。この結果、電源線925と電極921との境界において、大きな発熱を生ずる。この熱は電源線925を介して電極923に伝わる。また、図14の構成と同様に、電極923と電源帯924との間に生ずる接触抵抗により、電極923と電源帯924との接触領域において熱を生ずる。
 電力供給経路中で発生した熱が放熱部材に伝達されるならば、放熱部材は、映像が表示される表示領域へ熱を運ぶこととなる。この結果、電力供給経路中で発生した熱に起因して、表示領域中の発光素子の発光効率が変動することとなる。
特開2005-210035号公報 特開2008-80672号公報
 本発明は、映像が表示される表示領域に対する電力供給経路で発生した熱の影響を緩和する構造を有する表示パネル及び当該表示パネルを備える表示装置を提供することを目的とする。
 本発明の一の局面に係る表示パネルは、電力を供給するための第1電源線が搭載された複数のフレキシブル基板と、映像を表示するように配列された複数の表示画素を有する表示領域が設けられた第1面と、該第1面とは反対側の第2面と、前記第1電源線と前記表示画素とを接続する第2電源線と、を含む基板と、前記第2面を部分的に覆い、面内方向に熱を伝導する熱伝導部材と、前記熱伝導部材の周縁を覆う熱伝導シールと、を備え、前記第1面は、前記複数のフレキシブル基板と前記表示領域との間の前記第2電源線が配設される配設領域を含み、前記第2面は、前記表示領域とは反対側の第1領域と、前記配設領域とは反対側の第2領域と、を含み、前記熱伝導部材は、少なくとも前記第1領域を覆い、前記熱伝導シールは、前記第2領域を覆うことを特徴とする。
 本発明の他の局面に係る表示装置は、上述の表示パネルと、該表示パネルを収容する筐体と、前記熱伝導シールに接続される放熱板と、を備え、該放熱板は、前記筐体内で前記表示パネルを固定するシャーシとして用いられることを特徴とする。
 上述の表示パネル及び表示装置は、映像が表示される表示領域に対する電力供給経路で発生した熱の影響を緩和することができる。
 本発明の目的、特徴及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。
第1実施形態に係る表示パネルの概略的な部分断面図である。 図1に示される表示パネルの概略的な背面図である。 図1に示される表示パネルの概略的な部分正面図である。 図1に示される表示パネルの概略的な部分正面図である。 図4に対応する部分背面図である。 図1に示される表示パネルの製造方法の概略的なフローチャートである。 図6に示される表示パネルの製造方法の工程それぞれにおける表示パネルの概略図である。 表示パネルの温度分布のシミュレーション結果を示す。 表示パネルの温度分布のシミュレーション結果を示す。 第2実施形態に係る表示パネルの概略的な部分断面図である。 図1に示される表示パネルが組み込まれた表示装置の概略的な正面図である。 図11に示される表示装置の概略的な部分断面図である。 有機EL素子を用いた表示パネルが表示する映像に放熱部材が与える影響を表す概略図である。 表示パネルの基板の概略的な平面図である。 表示パネルの基板の概略的な平面図である。
 以下、表示パネル及び表示装置が図面を参照して説明される。尚、以下に説明される実施形態において、同様の構成要素に対して同様の符号が付されている。また、説明の明瞭化のため、必要に応じて、重複する説明は省略される。図面に示される構成、配置或いは形状並びに図面に関連する記載は、単に、表示パネル及び表示装置の原理を容易に理解させることを目的とするものであり、表示パネル及び表示装置の原理は、これらに何ら限定されるものではない。
 <第1実施形態>
 (表示パネルの構造)
 図1は、第1実施形態に係る表示パネル100の概略的な部分断面図である。図2は、表示パネル100の概略的な背面図である。図3は、表示パネル100の概略的な部分正面図である。図1乃至図3を用いて、表示パネル100が説明される。尚、表示パネル100として、有機EL表示パネルが説明される。代替的に、プラズマディスプレイパネルや映像を表示するための他の装置が表示パネルとして用いられてもよい。
 表示パネル100は、映像を表示するための様々な要素(後述される)が搭載される基板110を備える。基板110は、映像が表示される表示領域が設けられる第1主面111と、第1主面111とは反対側の第2主面112とを含む。本実施形態において、第1主面111は、第1面として例示される。第2主面112は、第2面として例示される。
 表示パネル100は、第1主面111上に形成された端子部129と、端子部129上に取り付けられる複数のフレキシブル基板120を更に備える。フレキシブル基板120それぞれは、第1電源線121を含む。フレキシブル基板120に搭載された第1電源線121を通じて、映像を表示するための電力が供給される。フレキシブル基板120は、基板110の上縁115、下縁116、右縁117及び左縁118それぞれに沿って、間隔をおいて配置される(図2参照)。
 表示パネル100は、基板110の第2主面112を部分的に覆うグラファイトシート130を更に備える。グラファイトシート130は、表示領域で発生した熱を面内方向に伝導する。本実施形態において、グラファイトシート130は、熱伝導部材として例示される。尚、面内方向に高い熱伝導率を有する他の材料が熱伝導部材として用いられてもよい。
 基板110の第2主面112は、表示領域と反対側の第1領域を含む。グラファイトシート130は、第1領域を全体的に覆う。また、グラファイトシート130は、第1領域よりも大きく形成されるので、グラファイトシート130の周縁131は、第1領域からはみ出る。
 表示パネル100は、グラファイトシート130の周縁131を覆う金属箔シート140を更に備える。面内方向に高い熱伝導率を有するグラファイトシート130と異なり、金属箔シート140は、等方的な熱伝導特性を有する。金属箔シート140は、例えば、アルミニウムシートや銅シートであってもよい。金属箔シート140は、グラファイトシート130及び第2主面112に接着される。本実施形態において、金属箔シート140は、熱伝導シールとして例示される。尚、高い熱伝導性を有する他のシール材料が熱伝導シールとして用いられてもよい。
 グラファイトシート130は、経時的な劣化に起因して、特に、周縁131からグラファイト粉の脱離を引き起こしやすい。本実施形態において、金属箔シート140が周縁131を覆うので、グラファイト粉の落下は、ほとんど生じない。したがって、グラファイト粉の落下に起因する短絡といった不具合は生じにくくなる。
 表示パネル100は、第1主面111に形成されたTFT層150と、TFT層150に積層されたEL層160と、を更に備える。EL層160には、有機EL素子170が形成される。TFT層150は、有機EL素子170を駆動する。この結果、有機EL素子170は発光する。
 映像を表示するように表示領域内で例えばマトリクス状に配列された有機EL素子170それぞれは、表示画素として用いられる。映像信号にしたがって有機EL素子170が発光する結果、表示パネル100は映像を表示することができる。
 有機EL素子170は、TFT層150上に形成された下部電極171と、下部電極171からホールを取り入れるための正孔注入層172と、ホールと電子との結合によって発光する有機発光層173と、有機発光層173上に配設されたカソード電極174と、を含む。下部電極171とカソード電極174との間の電圧印加の結果、有機発光層173に電流が流れ、有機発光層173は発光する。
 EL層160は、有機EL素子170に加えて、補助電極161を含む。補助電極161は、カソード電極174に印加される電圧の降下を抑制するために用いられる。EL層160は、有機EL素子170を取り囲むバンク部162を更に含む。バンク部162は、有機発光層の領域を規定する。
 EL層160は、表示領域からフレキシブル基板120に向けて延びる給電線163を更に含む。また、基板110は、第1電源線121に電気的に接続された第2電源線113を更に含む。給電線163はTFT層150に沿って延びる。第2電源線113はTFT層150と同層に形成され、接続部114(第2電源線113及び給電線163が接続される電源帯192(後述される)の部分))を介して給電線163に電気的に接続される。この結果、第1電源線121は、第2電源線113及び給電線163を介して、表示画素を形成する有機EL素子170に電気的に接続される。かくして、第1電源線121から有機EL素子170への電力供給が達成される。本実施形態において、給電線163は、給電部として例示される。
 以下の説明において、フレキシブル基板120と表示領域との間の第2電源線113が配設される第1主面111の領域は、「配設領域」と称される。また、配設領域と反対側の第2主面112の領域は、「第2領域」と称される。
 上述の金属箔シート140は、第2領域を部分的に覆う。代替的に、金属箔シートは、第2領域全体を覆ってもよい。
 熱伝導部材(例えば、グラファイトシート130)は、少なくとも第1領域を覆うので、表示領域で発生した熱は、熱伝導部材を介して面内方向に伝導され、適切に放熱される。熱伝導シール(例えば、金属箔シート140)は、第2領域を覆うので、配設領域で発生した熱は、熱伝導シールを介して適切に放熱され、第1領域への熱伝導が抑制される。したがって、表示領域に対する電力供給経路で発生した熱を表示領域の表示画素に伝えることを低減し、適切に緩和される。
 図14及び図15に関連して説明されるように、第2電源線113と給電線163との接続部114の抵抗値の増大に起因して、接続部114において大きな発熱が生じやすい。金属箔シート140は、接続部114において発生した熱に対する放熱に特に貢献する。
 図3に示されるように、基板110には、表示領域へ電力を供給するための電源帯191,192が形成される。右縁117及び左縁118に沿って配列されたフレキシブル基板120の第1電源線121に接続される第2電源線113と給電線163との接続部114は、内側の電源帯191上に設けられる。上縁115及び下縁116に沿って配列されたフレキシブル基板120の第1電源線121に接続される第2電源線113と給電線163との接続部114は、外側の電源帯192上に設けられる。
 なお、図1に示されるように、表示パネル100は、EL層160を覆う封止薄膜181と、基板110に対向する封止基板182と、封止基板182と基板110との間をシールするシール部材183と、封止薄膜181、封止基板182及びシール部材183によって囲まれる空間に封入された樹脂から形成された封止部184と、を備える。封止薄膜181、シール部材183及び封止部184は、封止基板182と基板110との間への外気等の流入を防ぐ。この結果、EL層160は劣化しにくくなる。
 図4は、表示パネル100の概略的な部分正面図である。図5は、図4に対応する部分背面図である。図1、図4及び図5を用いて、表示パネル100が更に説明される。
 図4及び図5には、基板110の右縁117に沿って配置された1つのフレキシブル基板120と、基板110の上縁115に沿って配置された2つのフレキシブル基板120が示されている。上縁115に沿う2つのフレキシブル基板120のうち一方には、「120a」の符号が付され、他方には、「120b」の符号が付されている。以下、フレキシブル基板120a,120bが説明される。
 基板110の第1主面111に接合されたフレキシブル基板120bは、基板110の角隅部の近くにおいて第1主面111に接合されたフレキシブル基板120aから所定距離だけ離間している。本実施形態において、フレキシブル基板120a,120bのうち一方は、第1フレキシブル基板として例示され、他方は、第2フレキシブル基板として例示される。
 図4及び図5には、フレキシブル基板120aに搭載された第1電源線121に接続される一対の第2電源線113が示されている。左方の第2電源線113には、「113al」の符号が付され、右方の第2電源線113には、「113ar」の符号が付されている。また、第2電源線113alに対応する接続部114には、「114al」の符号が付され、第2電源線113arに対応する接続部114には、「114ar」の符号が付されている。
 図4及び図5には、フレキシブル基板120bに搭載された第1電源線121に接続される一対の第2電源線113が示されている。左方の第2電源線113には、「113bl」の符号が付され、右方の第2電源線113には、「113br」の符号が付されている。また、第2電源線113blに対応する接続部114には、「114bl」の符号が付され、第2電源線113brに対応する接続部114には、「114br」の符号が付されている。
 上述の如く、グラファイトシート130によって覆われる領域は、表示領域に対応する。接続部114al,114br間の間隔は、比較的短い。したがって、第2電源線113al,113br間の距離は、表示領域に近づくにつれて短くなり、接続部114al,114brにおいて最短となる。
 以下の説明において、接続部114al,114br並びにこれらの周囲の領域は、「接近領域」と称される。接近領域とは反対側の第2主面112上の領域は、「反対領域」と称される。
 図14及び図15に関連して説明されるように、給電線163(図1参照)と第2電源線113との間の接続部114における抵抗値の増大に起因して、接続部114の周囲において、大きな熱が発生しやすい。したがって、2つの接続部114al,114brが近接する接近領域において、蓄熱が生じやすくなる。しかしながら、接近領域と反対側の反対領域は、金属箔シート140によって覆われるので、接近領域で発生した熱は、金属箔シート140を介して放熱されることとなる。かくして、接近領域の熱は、表示領域で表示される映像にほとんど影響しなくなる。
 (表示パネルの製造方法)
 図6は、表示パネル100の製造方法の概略的なフローチャートである。図7は、図6に示される工程それぞれにおける表示パネル100の概略図である。図1、図6及び図7を用いて、表示パネル100の製造方法が説明される。
 (ステップS110)
 ステップS110において、封止工程が行われる。封止工程において、基板110の第1主面111が上を向くように基板110が設置される。基板110の第1主面111上にTFT層150及びEL層160が形成された後、封止薄膜181、封止基板182、シール部材183及び封止部184の配設並びに形成が行われる。封止工程が完了すると、ステップS120が実行される。
 (ステップS120)
 ステップS120において、基板110は、上下反転される。この結果、第1主面111は下を向き、第2主面112は上を向く。その後、ステップS130が実行される。
 (ステップS130)
 ステップS130において、基板110の第2主面112上にグラファイトシート130が貼り付けられる。グラファイトシート130は、例えば、接着剤を用いて、第2主面112に貼り付けられてもよい。グラファイトシート130が第2主面112上で固定された後、ステップS140が実行される。
 (ステップS140)
 ステップS140において、グラファイトシート130及び基板110の第2主面112に金属箔シート140が接着される。この結果、金属箔シート140は、グラファイトシート130の周縁131を覆う。グラファイトシート130及び第2主面112への金属箔シート140の貼り合わせには、接着剤が好適に用いられる。金属箔シート140がグラファイトシート130及び第2主面112に接着された後、ステップS150が実行される。
 (ステップS150)
 ステップS150において、基板110は、上下反転される。この結果、第1主面111は上を向き、第2主面112は下を向く。その後、ステップS160が実行される。
 (ステップS160)
 ステップS160において、フレキシブル基板120が基板110の第1主面111に貼り付けられる。この結果、第1電源線121と第2電源線113とが電気的に接続される(図1参照)。
 (温度分布)
 図8及び図9は、表示パネルの温度分布のシミュレーション結果を示す。図8及び図9を用いて、金属箔シートの効果が説明される。
 図8のセクション(a)は、シミュレーションにおいて用いられた温度設定データを示す。図8の温度設定データは、表示パネルの中央領域において、高い輝度の映像が表示されていることを模している。高輝度の画像を表示している領域の温度データとして、「0.5」の数値が割り当てられている。
 図8のセクション(a)に示されるシミュレーションモデルにおいて、表示パネルの上縁の近傍の2つの領域並びに下縁の近傍の2つの領域に「0.7」の数値がそれぞれ割り当てられている。「0.7」の数値は、表示領域の映像を表示するための電力供給経路中の発熱を表している。
 図9のセクション(a)は、シミュレーションにおいて用いられた温度設定データを示す。図9の温度設定データは、表示パネルの中央領域において、高い輝度の映像が表示されていることを模している。高輝度の画像を表示している領域の温度データとして、「0.5」の数値が割り当てられている。
 図9のセクション(a)に示されるシミュレーションモデルにおいて、表示パネルの上縁の近傍の4つの領域並びに下縁の近傍の4つの領域に「0.7」の数値がそれぞれ割り当てられている。また、表示パネルの右縁の近傍の2つの領域並びに左縁の近傍の2つの領域に「0.7」の数値がそれぞれ割り当てられている。「0.7」の数値は、表示領域の映像を表示するための電力供給経路中の発熱を表している。
 図8及び図9のセクション(b)は、金属箔シートが取り付けられていない条件下における温度分布の等温線図である。図8及び図9のセクション(c)は、金属箔シートが取り付けられた条件下における温度分布の等温線図である。
 これらの等温線図は、「0.5℃」の間隔の等温線で表されている。また、これらの等温線図の中央領域(即ち、「0.5」の数値が割り当てられた表示パネルの中央領域に対応する領域)において、高温領域が記録されている。これらの等温線図は、中央領域(高温領域)から離れるにつれて、温度が低下することを表している。
 金属箔シートが取り付けられていない条件下では、急な勾配を有する等温線図が得られている。図8のセクション(b)に示される等高線図において、最高温度領域と最低温度領域との間で、「6.9℃」もの温度差が記録されている。また、図9のセクション(b)に示される等高線図において、最高温度領域と最低温度領域との間で、「5.7℃」もの温度差が記録されている。
 一方、金属箔シートが取り付けられた条件下では、緩やかな勾配を有する等温線図が得られている。図8のセクション(c)に示される等高線図において、最高温度領域と最低温度領域との間で、「4.7℃」の温度差が記録されている。また、図9のセクション(b)に示される等高線図において、最高温度領域と最低温度領域との間で、「3.0℃」の温度差が記録されている。以上の結果から、金属箔シートは、表示パネル上の局所的な温度上昇を緩和することに貢献することが分かる。局所的な温度上昇が緩和される結果、表示パネルの局所的な発光効率の変化も生じにくくなる。
 加えて、セクション(b)とセクション(c)との間での最大温度の比較から、金属箔シートは、表示パネル上で生ずる最大温度を低減させることが分かる。このことからも、金属箔シートは、表示パネルの発光効率の変化を抑制することが分かる。
 <第2実施形態>
 図10は、第2実施形態に係る表示パネル100Aの概略的な部分断面図である。図10を用いて、表示パネル100Aが説明される。尚、第1実施形態の表示パネル100と同様の要素に対して、同様の符号が付されている。第1実施形態と共通する要素に関連する説明は省略され、第1実施形態の表示パネル100との差異が説明される。
 表示パネル100Aは、第1実施形態に関連して説明された表示パネル100と同様に、基板110、グラファイトシート130、金属箔シート140、TFT層150、EL層160、封止薄膜181、封止基板182、シール部材183及び封止部184を備える。表示パネル100Aは、金属箔シート140に接着された放熱板190を更に備える。
 第1実施形態に関連して説明されるように、金属箔シート140には表示領域への電力供給経路中で発生した熱が伝達される。金属箔シート140は、伝達された熱を等方的に伝導する。この結果、電力供給経路中で発生した熱は、金属箔シート140を介して、放熱板190へ好適に伝達される。
 放熱板190は、好ましくは、金属箔シート140よりも高い熱伝導率を有する。この結果、放熱板190は、熱を等方的に且つ素早く伝導し、放熱を促すことができる。
 <表示装置>
 図11は、表示装置200の概略的な正面図である。図11を用いて、表示装置200が説明される。
 表示装置200は、第1実施形態に関連して説明された表示パネル100と、表示パネル100を収容する筐体210と、を備える。
 図12は、表示装置200の概略的な部分断面図である。図11及び図12を用いて、表示装置200が説明される。
 表示装置200は、金属箔シート140に接続された放熱板290を備える。放熱板290は、第2実施形態に関連して説明された放熱板190と同様に、好ましくは、金属箔シート140よりも高い熱伝導率を有する。放熱板290は、表示パネル100の熱を放熱するためだけでなく、表示パネル100を筐体210内で支持するためのシャーシとしても用いられる。放熱板290は、筐体210と一体的に形成されてもよい。
 表示パネル100に対する放熱機能と固定機能が1つの部材(放熱板290)によって達成されるので、表示装置200は、小型化、薄型化及び軽量化される。また、表示装置200の部品数が少なくなる。
 上述された実施形態は、以下の構成を主に備える。以下の構成を備える表示パネル及び表示装置は、映像が表示される表示領域に対する電力供給経路で発生した熱の影響を緩和することができる。
 上述の実施形態の一の局面に係る表示パネルは、電力を供給するための第1電源線が搭載された複数のフレキシブル基板と、映像を表示するように配列された複数の表示画素を有する表示領域が設けられた第1面と、該第1面とは反対側の第2面と、前記第1電源線と前記表示画素とを接続する第2電源線と、を含む基板と、前記第2面を部分的に覆い、面内方向に熱を伝導する熱伝導部材と、前記熱伝導部材の周縁を覆う熱伝導シールと、を備え、前記第1面は、前記複数のフレキシブル基板と前記表示領域との間の前記第2電源線が配設される配設領域を含み、前記第2面は、前記表示領域とは反対側の第1領域と、前記配設領域とは反対側の第2領域と、を含み、前記熱伝導部材は、少なくとも前記第1領域を覆い、前記熱伝導シールは、前記第2領域を覆うことを特徴とする。
 上記構成によれば、複数のフレキシブル基板には、電力を供給するための第1電源線が搭載される。基板の第1面には、映像を表示するように配列された複数の表示画素を有する表示領域が設けられる。基板の第2電源線は、第1電源線と表示画素とを接続する。この結果、表示領域に映像が表示される。
 熱伝導部材は、第1面とは反対側の第2面を部分的に覆い、面内方向に熱を伝導する。熱伝導シールは、熱伝導部材の周縁を覆うので、熱伝導部材の劣化に起因する熱伝導部材の部分的なの剥離は生じにくくなる。
 第1面は、複数のフレキシブル基板と表示領域との間に配置された第2電源線が配設される配設領域を含む。第2面は、表示領域とは反対側の第1領域と、配設領域とは反対側の第2領域と、を含む。熱伝導部材は、少なくとも第1領域を覆うので、表示領域で発生した熱は、熱伝導部材を介して面内方向に伝導され、適切に放熱される。熱伝導シールは、第2領域を覆うので、配設領域で発生した熱は、熱伝導シールを介して適切に放熱される。この結果、第1領域への熱伝導が抑制される。したがって、表示領域に対する電力供給経路で発生した熱を表示領域の表示画素に伝えることを低減し、適切に緩和される。
 上記構成において、前記複数のフレキシブル基板は、前記第1面に接合された第1フレキシブル基板と、該第1フレキシブル基板から間隔をおいて前記第1面に接合された第2フレキシブル基板と、を含み、前記第1フレキシブル基板の前記第1電源線に接続される前記第2電源線と前記第2フレキシブル基板の前記第1電源線に接続される前記第2電源線との間の電源線間隔は、前記表示領域に近づくにつれて狭まり、前記第1面は、前記電源線間隔が最も短くなる接近領域を含み、前記第2領域は、前記接近領域とは反対側の反対領域を含み、前記熱伝導シールは、少なくとも前記反対領域を覆うことが好ましい。
 上記構成によれば、複数のフレキシブル基板は、第1面に接合された第1フレキシブル基板と、第1フレキシブル基板から間隔をおいて第1面に接合された第2フレキシブル基板と、を含む。第1フレキシブル基板の第1電源線に接続される第2電源線と第2フレキシブル基板の第1電源線に接続される第2電源線との間の電源線間隔は、表示領域に近づくにつれて狭まる。第1面の接近領域において、電源線間隔が最も短くなるので、接近領域において蓄熱されやすくなる。しかしながら、熱伝導シールは、接近領域とは反対側の反対領域を覆うので、接近領域で発生した熱は、熱伝導シールを介して適切に放熱される。したがって、表示領域に対する電力供給経路で発生した熱の影響は、適切に緩和される。
 上記構成において、前記表示領域は、有機EL素子が形成されたEL層と、前記有機EL素子を駆動するTFTが形成されたTFT層と、を含み、前記複数のフレキシブル基板と前記表示領域との間に配置された前記第2電源線は、前記TFT層と同層に形成され、前記EL層は、前記第2電源線から前記有機EL素子へ電力を供給する給電部を含み、該給電部は、前記接近領域において、前記第2電源線に接続されることが好ましい。
 上記構成によれば、表示領域は、有機EL素子が形成されたEL層と、有機EL素子を駆動するTFTが形成されたTFT層と、を含む。複数のフレキシブル基板と表示領域との間に配置された第2電源線は、TFT層と同層に形成される。EL層は、第2電源線から有機EL素子へ電力を供給する給電部を含む。給電部は、接近領域において、第2電源線に接続されるので、給電部と第2電源線との境界において蓄熱されやすくなる。しかしながら、熱伝導シールは、少なくとも反対領域を覆うので、接近領域で発生した熱は、熱伝導シールを介して適切に放熱される。したがって、表示領域に対する電力供給経路で発生した熱の影響は、適切に緩和される。
 上記構成において、表示パネルは、前記熱伝導シールに接続される放熱板を更に備えることが好ましい。
 上記構成によれば、表示パネルは、熱伝導シールに接続される放熱板を更に備えるので、熱伝導シールに伝達された熱は、放熱板を介して適切に放熱される。したがって、表示領域に対する電力供給経路で発生した熱の影響は、適切に緩和される。
 上記構成において、前記放熱板の熱伝導率は、前記熱伝導部材の熱伝導率よりも高いことが好ましい。
 上記構成によれば、放熱板の熱伝導率は、熱伝導部材の熱伝導率よりも高いので、熱伝導シールに伝達された熱は、放熱板を介して適切に放熱される。したがって、表示領域に対する電力供給経路で発生した熱の影響は、適切に緩和される。
 上述の実施形態の他の局面に係る表示装置は、上述の表示パネルと、該表示パネルを収容する筐体と、前記熱伝導シールに接続される放熱板を備え、該放熱板は、前記筐体内で前記表示パネルを固定するシャーシとして用いられることを特徴とする。
 上記構成において、表示装置は、上述の表示パネルと、表示パネルを収容する筐体と、熱伝導シールに接続される放熱板と、を備える。放熱板は、前記筐体内で前記表示パネルを固定するシャーシとして用いられるので、放熱のための部材と表示パネルを固定するための部材とが個別に用意される必要はない。したがって、表示装置の部品数の低減や表示パネルの小型化・薄型化・軽量化が達成される。
 上述の実施形態の原理は、有機EL表示パネルやPDPといった表示パネル並びに当該表示パネルを用いて映像を表示する表示装置に好適に利用される。

Claims (6)

  1.  電力を供給するための第1電源線が搭載された複数のフレキシブル基板と、
     映像を表示するように配列された複数の表示画素を有する表示領域が設けられた第1面と、該第1面とは反対側の第2面と、前記第1電源線と前記表示画素とを接続する第2電源線と、を含む基板と、
     前記第2面を部分的に覆い、面内方向に熱を伝導する熱伝導部材と、
     前記熱伝導部材の周縁を覆う熱伝導シールと、を備え、
     前記第1面は、前記複数のフレキシブル基板と前記表示領域との間の前記第2電源線が配設される配設領域を含み、
     前記第2面は、前記表示領域とは反対側の第1領域と、前記配設領域とは反対側の第2領域と、を含み、
     前記熱伝導部材は、少なくとも前記第1領域を覆い、
     前記熱伝導シールは、前記第2領域を覆うことを特徴とする表示パネル。
  2.  前記複数のフレキシブル基板は、前記第1面に接合された第1フレキシブル基板と、該第1フレキシブル基板から間隔をおいて前記第1面に接合された第2フレキシブル基板と、を含み、
     前記第1フレキシブル基板の前記第1電源線に接続される前記第2電源線と前記第2フレキシブル基板の前記第1電源線に接続される前記第2電源線との間の電源線間隔は、前記表示領域に近づくにつれて狭まり、
     前記第1面は、前記電源線間隔が最も短くなる接近領域を含み、
     前記第2領域は、前記接近領域とは反対側の反対領域を含み、
     前記熱伝導シールは、少なくとも前記反対領域を覆うことを特徴とする請求項1に記載の表示パネル。
  3.  前記表示領域は、有機EL素子が形成されたEL層と、前記有機EL素子を駆動するTFTが形成されたTFT層と、を含み、
     前記複数のフレキシブル基板と前記表示領域との間に配置された前記第2電源線は、前記TFT層と同層に形成され、
     前記EL層は、前記第2電源線から前記有機EL素子へ電力を供給する給電部を含み、
     該給電部は、前記接近領域において、前記第2電源線に接続されることを特徴とする請求項2に記載の表示パネル。
  4.  前記熱伝導シールに接続される放熱板を更に備えることを特徴とする請求項1乃至3のいずれか1項に記載の表示パネル。
  5.  前記放熱板の熱伝導率は、前記熱伝導部材の熱伝導率よりも高いことを特徴とする請求項4に記載の表示パネル。
  6.  請求項1乃至3のいずれか1項に記載の表示パネルと、
     該表示パネルを収容する筐体と、
     前記熱伝導シールに接続される放熱板と、を備え、
     該放熱板は、前記筐体内で前記表示パネルを固定するシャーシとして用いられることを特徴とする表示装置。
PCT/JP2011/004157 2011-07-22 2011-07-22 表示パネル及び表示装置 WO2013014700A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013525432A JP5974387B2 (ja) 2011-07-22 2011-07-22 表示パネル及び表示装置
PCT/JP2011/004157 WO2013014700A1 (ja) 2011-07-22 2011-07-22 表示パネル及び表示装置
US14/131,440 US9129920B2 (en) 2011-07-22 2011-07-22 Display panel and display device
CN2012203510394U CN202816948U (zh) 2011-07-22 2012-07-19 显示面板及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/004157 WO2013014700A1 (ja) 2011-07-22 2011-07-22 表示パネル及び表示装置

Publications (1)

Publication Number Publication Date
WO2013014700A1 true WO2013014700A1 (ja) 2013-01-31

Family

ID=47600596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004157 WO2013014700A1 (ja) 2011-07-22 2011-07-22 表示パネル及び表示装置

Country Status (4)

Country Link
US (1) US9129920B2 (ja)
JP (1) JP5974387B2 (ja)
CN (1) CN202816948U (ja)
WO (1) WO2013014700A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015069743A (ja) * 2013-09-27 2015-04-13 株式会社ジャパンディスプレイ 有機el表示装置及びその製造方法
KR20200030161A (ko) * 2018-09-11 2020-03-20 삼성디스플레이 주식회사 디스플레이 장치

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057650A1 (ja) 2012-10-09 2014-04-17 パナソニック株式会社 画像表示装置
JP6248268B2 (ja) 2012-10-17 2017-12-20 株式会社Joled 画像表示装置
JP6248941B2 (ja) 2012-10-17 2017-12-20 株式会社Joled El表示装置
KR102318266B1 (ko) * 2014-07-23 2021-10-27 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
KR102396840B1 (ko) * 2015-06-10 2022-05-12 삼성디스플레이 주식회사 표시장치
KR20180035979A (ko) * 2016-09-29 2018-04-09 엘지디스플레이 주식회사 유기발광 표시장치
US11980081B2 (en) 2019-08-27 2024-05-07 Boe Technology Group Co., Ltd. Display device, method for manufacturing display device, heat dissipation layer, and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006064939A (ja) * 2004-08-26 2006-03-09 Optrex Corp 表示装置
JP2007248994A (ja) * 2006-03-17 2007-09-27 Shibaura Mechatronics Corp フラットパネルディスプレイ及びフラットパネルディスプレイ製造システム
JP2009064018A (ja) * 2007-09-06 2009-03-26 Samsung Sdi Co Ltd プラズマディスプレイ装置
JP2011090338A (ja) * 2011-01-25 2011-05-06 Hitachi Ltd プラズマディスプレイパネルモジュール

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100696501B1 (ko) * 2005-03-23 2007-03-19 삼성에스디아이 주식회사 플라즈마 디스플레이 장치
KR20100072653A (ko) * 2008-12-22 2010-07-01 엘지디스플레이 주식회사 상부 발광방식 유기전계발광소자 및 이의 제조방법
TWI587734B (zh) * 2009-03-26 2017-06-11 精工愛普生股份有限公司 有機el裝置、有機el裝置之製造方法、及電子機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006064939A (ja) * 2004-08-26 2006-03-09 Optrex Corp 表示装置
JP2007248994A (ja) * 2006-03-17 2007-09-27 Shibaura Mechatronics Corp フラットパネルディスプレイ及びフラットパネルディスプレイ製造システム
JP2009064018A (ja) * 2007-09-06 2009-03-26 Samsung Sdi Co Ltd プラズマディスプレイ装置
JP2011090338A (ja) * 2011-01-25 2011-05-06 Hitachi Ltd プラズマディスプレイパネルモジュール

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015069743A (ja) * 2013-09-27 2015-04-13 株式会社ジャパンディスプレイ 有機el表示装置及びその製造方法
KR20200030161A (ko) * 2018-09-11 2020-03-20 삼성디스플레이 주식회사 디스플레이 장치
KR102621591B1 (ko) * 2018-09-11 2024-01-08 삼성디스플레이 주식회사 디스플레이 장치

Also Published As

Publication number Publication date
US20140131693A1 (en) 2014-05-15
CN202816948U (zh) 2013-03-20
US9129920B2 (en) 2015-09-08
JP5974387B2 (ja) 2016-08-23
JPWO2013014700A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
JP5974387B2 (ja) 表示パネル及び表示装置
JP6105911B2 (ja) Oled表示パネル
KR101107176B1 (ko) 유기 발광 표시 장치
KR100719675B1 (ko) 플라즈마 디스플레이 장치
US7495918B2 (en) Plasma display device
JP4886540B2 (ja) 有機el素子パネル
JP2012242445A (ja) 表示装置
EP2808894A1 (en) Organic light emitting display module and display device including the same
JP5501687B2 (ja) 有機el光源ユニット
US20210165469A1 (en) Image display device
KR20140092170A (ko) 디스플레이 장치
JP2005265877A (ja) 電気光学装置及び電子機器
KR101486369B1 (ko) 방열 패드 및 그 제작방법
JP2006227427A (ja) 表示装置
JP2009157131A (ja) プラズマディスプレイ装置
JP2011192942A (ja) 有機elパネル
JP2006064939A (ja) 表示装置
KR100770096B1 (ko) 플라즈마 디스플레이 장치
JP2011187217A (ja) 有機elモジュール
JP5831341B2 (ja) 照明装置
KR100670253B1 (ko) 플라즈마 디스플레이 장치용 섀시 베이스 및 이를 구비한플라즈마 디스플레이 장치
KR20060080450A (ko) 열전도매체를 가지는 플라즈마 표시장치
CN116367604A (zh) 显示装置
KR20070069681A (ko) 액정 표시 장치
WO2010046950A1 (ja) プラズマディスプレイ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870110

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013525432

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14131440

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870110

Country of ref document: EP

Kind code of ref document: A1