WO2013011683A1 - 膜電極接合体およびガス拡散層の製造方法 - Google Patents

膜電極接合体およびガス拡散層の製造方法 Download PDF

Info

Publication number
WO2013011683A1
WO2013011683A1 PCT/JP2012/004562 JP2012004562W WO2013011683A1 WO 2013011683 A1 WO2013011683 A1 WO 2013011683A1 JP 2012004562 W JP2012004562 W JP 2012004562W WO 2013011683 A1 WO2013011683 A1 WO 2013011683A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
carbon
dispersion
surfactant
sheet
Prior art date
Application number
PCT/JP2012/004562
Other languages
English (en)
French (fr)
Inventor
晴彦 新谷
植田 利史
山内 将樹
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP12815214.7A priority Critical patent/EP2736107A4/en
Priority to JP2012548279A priority patent/JP5259022B1/ja
Priority to US13/812,233 priority patent/US8999599B2/en
Publication of WO2013011683A1 publication Critical patent/WO2013011683A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a membrane electrode assembly and a method for producing a gas diffusion layer. More specifically, the present invention relates to a membrane electrode assembly for a fuel cell and a method for producing a gas diffusion layer.
  • a fuel cell for example, a polymer electrolyte fuel cell, causes a fuel gas containing hydrogen and an oxidant gas containing oxygen such as air to react electrochemically in a gas diffusion layer having a catalyst layer such as platinum.
  • a catalyst layer such as platinum
  • a polymer electrolyte fuel cell generally has a structure in which an electrode layer and a gas diffusion layer are laminated in this order on both sides of a polymer electrolyte membrane.
  • Gas diffusion layers include those using carbon fiber as a base material and those using no carbon fiber.
  • Patent Documents 1 and 2 disclose gas diffusion layers that do not use carbon fiber as a base material.
  • Patent Document 1 discloses a method for producing a sheet-like electrode by rolling a rod-shaped preform made of carbon fine powder, a fluoropolymer resin, and a liquid lubricant.
  • Patent Document 2 discloses a gas diffusion layer for a fuel cell composed of a porous member mainly composed of conductive particles such as acetylene black and graphite and a polymer resin such as PTFE.
  • the conventional gas diffusion layer has a problem that it is not easy enough to handle a membrane electrode assembly produced using the gas diffusion layer.
  • This invention is made
  • the present inventors have intensively studied to solve the above problems. As a result, the following knowledge was obtained.
  • the present inventors have conceived that a dispersion obtained by mixing conductive particles, a polymer resin, a surfactant and a dispersion solvent is applied to a sheet heat-treated at high temperature, and heat-treated at low temperature. According to this method, the adhesion of the gas diffusion layer can be ensured, and a membrane electrode assembly that is easy to handle can be obtained.
  • the method for producing a membrane electrode assembly according to the present invention comprises kneading conductive particles, a polymer resin, a surfactant and a dispersion solvent to obtain a kneaded product, and rolling the kneaded product. And forming a sheet-like kneaded product, and heat-treating the sheet-like kneaded product at a first heat treatment temperature to obtain a carbon sheet from which the surfactant and the dispersion solvent are removed from the sheet-like kneaded product.
  • the conductive particles, the polymer resin, the surfactant, and the dispersion solvent are mixed to obtain a dispersion, and the dispersion is coated on the carbon sheet and dried to form a dispersion layer thinner than the carbon sheet.
  • On top of the carbon sheet To obtain a gas diffusion layer carbon layer is formed, causing laminating the electrolyte membrane and the catalyst layer in this order, on the carbon layer.
  • the dispersion layer may be formed by spray coating.
  • the dispersion liquid can be prevented from infiltrating into the carbon sheet.
  • the gas diffusion layer is brought into contact with the laminated structure in which the electrolyte membrane and the catalyst layer are laminated so that the carbon layer and the catalyst layer are in contact with each other,
  • the second heat treatment temperature may be thermocompression bonded at a lower third heat treatment temperature.
  • the surfactant used as the raw material of the dispersion may be a nonionic surfactant.
  • the heat treatment at the second heat treatment temperature may be performed in air.
  • the thickness of the carbon layer is 10 ⁇ m or more and 100 ⁇ m or less
  • the second heat treatment temperature is equal to or higher than the decomposition temperature of the surfactant that is a raw material of the dispersion liquid, and 260 degrees Celsius. It may be less than degrees.
  • the carbon sheet has a thickness of 100 ⁇ m or more and 1000 ⁇ m or less, and the first heat treatment temperature is 260 degrees Celsius or more, and the melting point of the polymer resin that is the raw material of the kneaded material It may be the following.
  • the content of the polymer resin in the carbon layer may be higher than the content of the polymer resin in the carbon sheet.
  • the method for producing a gas diffusion layer of the present invention is a sheet-like kneaded product obtained by kneading conductive particles, a polymer resin, a surfactant and a dispersion solvent to obtain a kneaded product, and rolling and molding the kneaded product.
  • the sheet-like kneaded product is heat treated at a first heat treatment temperature to obtain a carbon sheet from which the surfactant and the dispersion solvent are removed from the sheet-like kneaded product, and conductive particles and a polymer resin are obtained.
  • a surfactant and a dispersion solvent are mixed to obtain a dispersion, and the dispersion is coated on the carbon sheet and dried to form a dispersion layer thinner than the carbon sheet.
  • the formed carbon sheet is heat-treated at a second heat treatment temperature lower than the first heat treatment temperature to remove the surfactant and the dispersion solvent from the dispersion layer, and a carbon layer is formed on the carbon sheet.
  • Gas diffusion formed To obtain including the.
  • the membrane electrode assembly of the present invention includes a carbon sheet containing conductive particles, a polymer resin, and a surfactant, and is provided on the carbon sheet, and includes conductive particles, a polymer resin, and a surfactant.
  • the residual amount of the surfactant in the layer is 1% by weight or less, and the adhesive strength between the carbon layer and the catalyst layer is 0.1 N or more per 25 mm ⁇ 100 mm.
  • Such a configuration provides a membrane electrode assembly that is easy to handle.
  • a membrane electrode assembly that is easy to handle and a gas diffusion layer for obtaining the same are provided.
  • FIG. 1 is a cross-sectional view showing an example of a schematic configuration of a fuel cell stack incorporating a membrane electrode assembly obtained by the manufacturing method according to the first embodiment.
  • FIG. 2 is a flowchart showing an example of a manufacturing method of the membrane electrode assembly according to the first embodiment.
  • FIG. 3 is a diagram showing the results of the first experimental example.
  • FIG. 4 is a diagram showing the results of the second experimental example.
  • FIG. 1 is a cross-sectional view showing an example of a schematic configuration of a fuel cell stack incorporating a membrane electrode assembly obtained by the manufacturing method according to the first embodiment.
  • a cell 100 (also referred to as a single cell) of a polymer electrolyte fuel cell according to the present embodiment is disposed on both surfaces of an MEA 110 (Membrane-Electrode-Assembly) and the MEA 110. It has a pair of plate-like conductive separators 120.
  • MEA 110 Membrane-Electrode-Assembly
  • the MEA 110 includes a polymer electrolyte membrane 111 (ion exchange resin membrane) that selectively transports hydrogen ions, and a pair of electrode layers 112 formed on both surfaces of the polymer electrolyte membrane 111.
  • the pair of electrode layers 112 are formed on both surfaces of the polymer electrolyte membrane 111, and are formed on the catalyst layer 113, which is mainly composed of carbon powder carrying a white metal catalyst, and on the catalyst layer 113. It has a gas diffusion layer 114 (also referred to as GDL) that has both gas permeability and water repellency.
  • the polymer electrolyte membrane 111 is preferably a polymer membrane having hydrogen ion conductivity.
  • the shape of the polymer electrolyte membrane 111 is not particularly limited, but may be, for example, a substantially rectangular shape.
  • the material of the polymer electrolyte membrane 111 is not particularly limited as long as it selectively moves hydrogen ions.
  • polymer electrolyte membrane 111 examples include a fluorine-based polymer electrolyte membrane made of perfluorocarbon sulfonic acid (for example, Nafion (registered trademark) manufactured by DuPont of the United States, Aciplex (registered trademark) manufactured by Asahi Kasei Corporation, Asahi Glass ( Flemion (registered trademark), etc.) and various hydrocarbon electrolyte membranes can be used.
  • fluorine-based polymer electrolyte membrane made of perfluorocarbon sulfonic acid
  • Nafion registered trademark
  • Aciplex registered trademark
  • Asahi Kasei Corporation Asahi Glass
  • Flemion registered trademark
  • the catalyst layer 113 is preferably a layer containing a catalyst for a redox reaction of hydrogen or oxygen.
  • the catalyst layer 113 is not particularly limited as long as it has conductivity and has a catalytic ability for a redox reaction of hydrogen and oxygen.
  • the shape of the catalyst layer 113 is not particularly limited, but may be a substantially rectangular shape, for example.
  • the catalyst layer 113 is composed of, for example, a porous member mainly composed of carbon powder supporting a platinum group metal catalyst and a polymer material having proton conductivity.
  • the proton conductive polymer material used for the catalyst layer 113 may be the same as or different from the polymer electrolyte membrane.
  • the gas diffusion layer 114 is preferably a porous member having conductivity. Although the shape of the gas diffusion layer 114 is not particularly limited, for example, a substantially rectangular plate-shaped member can be used. The gas diffusion layer 114 is not particularly limited as long as it has conductivity and can diffuse the reaction gas.
  • the gas diffusion layer 114 includes a carbon sheet 115 and a carbon layer 116.
  • Each of the carbon sheet 115 and the carbon layer 116 includes conductive particles and a polymer resin.
  • the composition of the conductive particles and the polymer resin may be different between the carbon sheet 115 and the carbon layer 116.
  • the carbon layer 116 is preferably thinner than the carbon sheet 115.
  • the carbon layer 116 is preferably heat-treated at a temperature lower than that of the carbon sheet 115.
  • the gas diffusion layer 114 may contain a minute amount of a dispersion solvent, a surfactant, and the like used when the gas diffusion layer 114 is manufactured.
  • the gas diffusion layer 114 may include materials other than the conductive particles, the polymer resin, the surfactant, and the dispersion solvent (for example, short-fiber carbon fibers). It is preferable that the content of the polymer resin in the carbon layer 116 is higher than the content of the polymer resin in the carbon sheet 115.
  • a reaction gas flow channel groove may be formed on the main surface in contact with the separator 120.
  • the same gas diffusion layer may be used on the cathode side and the anode side, or different gas diffusion layers may be used.
  • the separator 120 is preferably a member for mechanically fixing the MEAs and electrically connecting adjacent MEAs to each other in series.
  • the separator 120 is preferably made of a material containing carbon or a material containing metal.
  • the separator 120 may be a porous plate having conductivity.
  • the separator 120 When the separator 120 is made of a material containing carbon, the separator 120 supplies raw powder mixed with carbon powder and a resin binder to the mold, and applies pressure and heat to the raw powder supplied to the mold. Can be formed.
  • the separator 120 When the separator 120 is made of a material containing metal, the separator 120 may be made of a metal plate.
  • the separator 120 may be a titanium or stainless steel plate whose surface is gold-plated.
  • a groove 122 is provided in the pair of separators 120.
  • the pair of separators 120 is provided with a cooling water passage groove 123 through which cooling water or the like passes on a main surface (hereinafter referred to as a cooling surface) that does not contact the gas diffusion layer 114.
  • the fuel gas is supplied to the electrode layer 112 through the fuel gas channel groove 121 and the oxidant gas is supplied to the electrode layer 112 through the oxidant gas channel groove 122, so that an electrochemical reaction occurs, and electric power and heat are supplied. Occurs.
  • the reaction gas channel groove is formed in the gas diffusion layer 114, the fuel gas channel groove 121 and the oxidant gas channel groove 122 may not be formed in the separator 120.
  • two manifold hole sets are formed in the peripheral portion of the separator 120.
  • One manifold hole set is composed of two fuel gas manifold holes (not shown) for supplying or discharging the fuel gas and one cooling fluid manifold hole (not shown) for supplying or discharging the cooling fluid.
  • the other manifold hole set is composed of two oxidant gas manifold holes (not shown) for supplying or discharging oxidant gas and one cooling fluid manifold hole (not shown) for supplying or discharging cooling fluid.
  • One of the pair of fuel gas manifold holes is for supply and the other is for discharge.
  • a fuel gas passage groove 121 is formed on the anode-side electrode surface of the separator 120 so as to connect them.
  • One of the pair of oxidant gas manifold holes is for supply and the other is for discharge.
  • An oxidant gas flow path groove 122 is formed on the electrode surface on the cathode side of the separator 120 so as to connect them.
  • One of the pair of cooling fluid manifold holes is for supply and the other is for discharge.
  • a cooling water channel groove 123 is formed on the cooling surface of the separator 120 as necessary so as to connect them.
  • the polymer electrolyte membrane 111 of the membrane electrode assembly 110 is formed with holes (not shown) corresponding to the six manifold holes of the separator 120, and these manifolds are connected to form six manifolds (internal manifolds). It is configured.
  • the fuel gas is supplied to the fuel gas supply manifold, the fuel gas is discharged from the fuel gas discharge manifold, the oxidant gas is supplied to the oxidant gas supply manifold, and the oxidant gas discharge The oxidant gas is discharged from the manifold, the cooling fluid is supplied to the cooling fluid supply manifold, and the cooling fluid is discharged from the cooling fluid discharge manifold.
  • the arrangement of the six manifold holes is arbitrary.
  • An internal manifold configured so that each supply manifold of fuel gas, oxidant gas, and cooling water is formed when the separator 120 is provided with manifold holes for fuel gas, oxidant gas, and cooling water.
  • the separator 120 is formed of a porous conductive material, and the pressure of the cooling water flowing through the cooling water channel groove 123 is the fuel gas channel groove 121 and the oxidant gas channel.
  • one or more cells 100 are generally stacked, and the cells 100 adjacent to each other are generally connected in series and used. At this time, the stacked cells 100 are fastened and fastened at a predetermined fastening pressure by a fastening member 130 such as a bolt so that the fuel gas and the oxidant gas do not leak and reduce the contact resistance. . Therefore, the MEA 110 and the separator 120 are in surface contact with a predetermined pressure.
  • a gasket 117 is disposed between the separators 120 and 120 so as to cover the side surfaces of the catalyst layer 113 and the gas diffusion layer 114. ing.
  • the gasket 117 is preferably a member that fills a gap between the catalyst layer 113 and the polymer electrolyte membrane 111 and the separator 120 or between the catalyst layer 113 and the separator 120.
  • the gasket is preferably a synthetic resin having appropriate mechanical strength and flexibility.
  • the shape of the gasket 117 is not particularly limited, and can be, for example, an annular shape and a substantially rectangular shape.
  • Examples of the material constituting the gasket 117 include polyethylene naphthalate, polytetrafluoroethylene, polyethylene terephthalate, fluoroethylene-propylene copolymer, tetrafluoroethylene-perfluoroalkoxyethylene copolymer, polyethylene, polypropylene, and polyetheramide.
  • a synthetic resin comprising at least one resin selected from the group consisting of polyetherimide, polyetheretherketone, polyethersulfone, polyphenylene sulfide, polyarylate, polysulfide, polyimide, and polyimideamide. More preferred.
  • a material constituting the gasket 117 for example, a rubber material, a thermoplastic elastomer, a compound such as an adhesive, or the like can be used.
  • the sealing material constituting the gasket 117 include fluoro rubber, silicone rubber, natural rubber, EPDM, butyl rubber, butyl rubber, butyl rubber, butadiene rubber, styrene-butadiene copolymer, ethylene-vinyl acetate rubber, acrylic rubber, Adhesives using thermoplastic elastomers such as polyisopropylene polymer, perfluorocarbon, polystyrene, polyolefin, polyester and polyamide, or latex such as isoprene rubber and butadiene rubber, liquid polybutadiene, polyisoprene, polychloroprene, Examples of the adhesive include silicone rubber, fluororubber, and acrylonitrile-butadiene rubber, but are not limited to these compounds. These compounds may be used alone or in combination
  • FIG. 2 is a flowchart showing an example of a manufacturing method of the membrane electrode assembly according to the first embodiment.
  • a kneaded product is obtained by kneading conductive particles, a polymer resin, a surfactant, and a dispersion solvent (step S1).
  • carbon fine powder can be used as the material of the conductive particles that are the raw material of the kneaded material.
  • the carbon fine powder include carbon materials such as graphite, carbon black, activated carbon, and carbon fiber fine powder.
  • carbon black include acetylene black (AB), furnace black, ketjen black, and vulcan.
  • the carbon fiber fine powder include vapor grown carbon fiber (VGCF), milled fiber, cut fiber, and chop fiber.
  • VGCF vapor grown carbon fiber
  • the raw material form of the carbon material may be any shape such as powder, fiber, and granule. It is preferable to mix carbon black and carbon fiber from the viewpoints of cost, electrical conductivity, and strength.
  • acetylene black is preferably used as carbon black from the viewpoint of low impurity content and high electrical conductivity.
  • the content of the conductive particles in the kneaded material is preferably 10% by weight or more and 50% by weight or less, for example.
  • a fluororesin can be used as the polymer resin used as the raw material of the kneaded material.
  • the fluororesin include PTFE (polytetrafluoroethylene), FEP (tetrafluoroethylene / hexafluoropropylene copolymer), PVDF (polyvinylidene fluoride), ETFE (tetrafluoroethylene / ethylene copolymer), and PCTFE. (Polychlorotrifluoroethylene), PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer) and the like.
  • PTFE is preferably used from the viewpoint of heat resistance, water repellency, and chemical resistance.
  • Examples of the raw material form of PTFE include dispersions and powders. From the viewpoint of workability, it is preferable that a dispersion is adopted as a raw material form of PTFE.
  • the polymer resin has a function as a binder that binds the conductive particles.
  • the polymer resin since the polymer resin has water repellency, it also has a function (water retention) to confine water in the system inside the fuel cell.
  • the content of the polymer resin in the kneaded product is preferably, for example, 1% by weight or more and 20% by weight or less.
  • Examples of the dispersion solvent used as a raw material for the kneaded material include water, alcohols such as methanol and ethanol, and glycols such as ethylene glycol. Among these, it is preferable to use water from the viewpoints of cost and environmental properties.
  • the content of the dispersion solvent in the kneaded product is preferably 30% by weight or more and 88% by weight or less, for example.
  • the surfactant used as a raw material for the kneaded product examples include an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant.
  • Specific examples include nonionics such as polyoxyethylene alkyl ethers and zwitterionics such as alkylamine oxides. From the viewpoint of removing the surfactant and preventing catalyst poisoning by metal ions, it is preferable to use a nonionic surfactant as the surfactant.
  • nonionic surfactant examples include polyoxyethylene alkyl ether, polyoxyethylene alkylphenol ether, alkyl glucoside, polyoxyethylene fatty acid ester, sucrose fatty acid ester, sorbitan fatty acid ester, and fatty acid alkanolamide.
  • the content of the surfactant in the kneaded material is preferably 0.1% by weight or more and 5% by weight or less, for example.
  • the amount of the dispersion solvent and the amount of the surfactant used at the time of production may be appropriately set according to the type of conductive particles, the type of polymer resin, the blending ratio thereof, and the like. In general, as the amount of the dispersion solvent and the amount of the surfactant are increased, the polymer resin (fluororesin) and the conductive particles (carbon) are more likely to be uniformly dispersed, but the fluidity is increased and it is difficult to form a sheet. Tend.
  • materials other than the conductive particles, the polymer resin, the surfactant, and the dispersion solvent for example, carbon fibers of short fibers may be added.
  • step S2 the kneaded product is rolled and formed to obtain a sheet-like kneaded product (step S2).
  • the sheet-like kneaded product refers to a kneaded product that has been rolled and formed so as to have a sheet-like shape.
  • a roll press or a flat plate press can be used for rolling and forming.
  • the thickness of the sheet-like kneaded material can be adjusted as appropriate so that the thickness of the carbon sheet 115 obtained in step 3 described later has a desired value.
  • step S2 the sheet-like kneaded product is heat-treated at the first heat treatment temperature to obtain the carbon sheet 115 from which the surfactant and the dispersion solvent are removed from the sheet-like kneaded product (step S3).
  • the heat treatment of the sheet-like kneaded product can be performed, for example, in a firing furnace, an electric furnace, a gas furnace, or the like.
  • the heating time in the first heat treatment temperature and the heat treatment at the first heat treatment temperature is the temperature and time at which the surfactant and the dispersion solvent are sufficiently removed from the sheet-like kneaded product and the crystallization of the polymer resin proceeds. It is preferable that The remaining amount of the surfactant and the dispersion solvent can be measured by an analysis result such as TG / DTA (simultaneous differential heat / thermogravimetric measuring device), and is generally 1 weight relative to the total weight of the carbon sheet. % Or less is desirable.
  • the heat treatment temperature and time may be determined so as to satisfy this, but these depend on the thickness of the carbon sheet 115.
  • the thickness of the carbon sheet 115 is preferably 100 ⁇ m or more. If the thickness of the carbon sheet 115 is 100 ⁇ m or more, the mechanical strength of the carbon sheet 115 increases.
  • the thickness of the carbon sheet 115 is preferably 1000 ⁇ m or less. If the thickness of the carbon sheet 115 is 1000 ⁇ m or less, the electrical resistance of the carbon sheet 115 becomes small.
  • the first heat treatment temperature is preferably 260 degrees Celsius or higher.
  • the first heat treatment temperature is 260 degrees Celsius or higher, it becomes easy to remove the surfactant from the sheet-like kneaded material at a speed that can ensure mass productivity.
  • the first heat treatment temperature is preferably equal to or lower than the melting point of the polymer resin that is the raw material of the kneaded product.
  • the first heat treatment temperature is equal to or lower than the melting point of the polymer resin that is the raw material of the kneaded product, the polymer resin is difficult to melt, the strength as a structure is unlikely to decrease, and the sheet shape is unlikely to collapse.
  • the melting point of the polymer resin is preferably 330 degrees Celsius or more and 350 degrees Celsius or less, and the temperature in the heat treatment at the first heat treatment temperature is preferably 260 degrees Celsius or more and 330 degrees Celsius or less.
  • step S4 After step S3 or in parallel with steps S1 to S3, the conductive particles, the polymer resin, the surfactant and the dispersion solvent are mixed to obtain a dispersion (step S4).
  • a dispersion treatment is added to a mixture of a surfactant and a dispersion solvent, and then a carbon fine powder and a fluororesin are added to the dispersion treatment.
  • a carbon fine powder and a fluororesin are added to the dispersion treatment.
  • all the materials including the surfactant may be simultaneously dispersed without performing the surfactant dispersion treatment in advance.
  • the same materials as those exemplified above as the material for the conductive particles used as the raw material for the kneaded product in Step S1 can be used.
  • the conductive particles used as the raw material for the kneaded product and the conductive particles used as the raw material for the dispersion may be the same or different.
  • the content of the conductive particles in the dispersion is preferably, for example, 1% by weight or more and 30% by weight or less.
  • the same materials as those exemplified above as the material of the polymer resin that becomes the raw material of the kneaded material in Step S1 can be used.
  • the material of the polymer resin that is the raw material of the kneaded product and the material of the polymer resin that is the raw material of the dispersion may be the same or different.
  • the content of the polymer resin in the dispersion is preferably 0.1% by weight or more and 10% by weight or less, for example.
  • the content of the polymer resin in the dispersion is preferably adjusted so that the polymer resin content of the carbon layer 116 obtained in step S6 is higher than the polymer resin content of the carbon sheet 115. This is because by increasing the amount of the polymer resin in the carbon layer, the water repellency at the interface between the catalyst layer and the gas diffusion layer (carbon sheet) is improved, and the drainage of the MEA is improved.
  • the same materials as those exemplified above as the raw material of the surfactant used as the raw material of the kneaded product in step S1 can be used.
  • the surfactant used as the raw material for the kneaded product and the surfactant used as the raw material for the dispersion may be the same or different.
  • the content of the surfactant in the dispersion is preferably 0.1% by weight or more and 5% by weight or less, for example.
  • the same materials as those exemplified above as the material for the dispersion solvent that becomes the raw material of the kneaded product in Step S1 can be used.
  • the material of the dispersion solvent that is the raw material of the kneaded product and the material of the dispersion solvent that is the raw material of the dispersion may be the same or different.
  • the content of the dispersion solvent in the dispersion is preferably 55% by weight or more and 98% by weight or less, for example.
  • the dispersion liquid is applied and dried on the carbon sheet 115 to form a dispersion liquid layer thinner than the carbon sheet 115 (step S5).
  • a spray coating machine or a screen printing machine can be used for coating the dispersion.
  • a coating method a die coating method may be used.
  • spray coating for example, drying using a hot plate and drying using a drying furnace can be used.
  • step S5 the carbon sheet 115 on which the dispersion liquid layer is formed is heat-treated at a second heat treatment temperature lower than the first heat treatment temperature to remove the surfactant and the dispersion solvent from the dispersion liquid layer.
  • a gas diffusion layer 114 having a carbon layer 116 formed on 115 is obtained (step S6).
  • the heat treatment of the carbon sheet 115 on which the dispersion layer is formed can be performed in, for example, an electric furnace, a gas furnace, a far infrared heating furnace, or the like.
  • the heat treatment is preferably performed in air.
  • the material, thickness, temperature, time, and the like it is preferable to set the material, thickness, temperature, time, and the like so that the surfactant is sufficient to remove the adhesive property deterioration due to crystallization of the polymer resin.
  • the heating time in the second heat treatment temperature and the heat treatment at the second heat treatment temperature is lower than the first heat treatment temperature, the crystallization of the polymer resin is difficult to proceed, and the surfactant and the dispersion solvent are dispersed in the dispersion layer. It is preferable that the temperature and time be sufficiently removed from the inside. The remaining amount of the surfactant and the dispersion solvent can be measured by an analysis result such as TG / DTA (simultaneous differential heat / thermogravimetric measuring device), and is generally 1 weight with respect to the total weight of the carbon layer. % Or less is desirable.
  • the heat treatment temperature and time may be determined so as to satisfy this, but these depend on the thickness of the carbon layer.
  • the thickness of the carbon layer 116 is preferably 10 ⁇ m or more. If the thickness of the carbon layer 116 is 10 ⁇ m or more, the adhesive strength of the carbon layer 116 can be ensured.
  • the thickness of the carbon layer 116 is preferably 100 ⁇ m or less. If the thickness of the carbon layer 116 is 100 ⁇ m or less, the surfactant can be removed at a speed that can ensure mass productivity even at a low heat treatment temperature.
  • the second heat treatment temperature is preferably equal to or higher than the decomposition temperature of the surfactant that is the raw material of the dispersion.
  • the second heat treatment temperature is preferably 220 degrees Celsius or higher. When the second heat treatment temperature is 220 degrees Celsius or higher, it becomes easy to remove the surfactant from the dispersion layer at a speed that can ensure mass productivity.
  • the second heat treatment temperature is more preferably 240 degrees Celsius or higher.
  • the second heat treatment temperature is 240 ° C. or higher, it becomes easy to remove the surfactant to 1% by weight or less of the carbon layer.
  • the second heat treatment temperature is preferably less than 260 degrees Celsius.
  • the second heat treatment temperature is less than 260 degrees Celsius, a decrease in the adhesion of the carbon layer surface is suppressed, and a high adhesive force can be obtained in the adhesion with the catalyst layer.
  • step S6 the catalyst layer 113 and the polymer electrolyte membrane 111 are laminated on the carbon layer 116 in this order (step S7).
  • a gas diffusion layer 114 in which a carbon layer 116 is formed on a carbon sheet 115 a laminated structure in which a polymer electrolyte membrane 111 and a catalyst layer 113 are laminated (membrane-catalyst layer assembly), are brought into contact with each other so that the carbon layer 116 and the catalyst layer 113 are in contact with each other, and thermocompression-bonded at a third heat treatment temperature.
  • the membrane-catalyst layer assembly is a structure in which an electrolyte membrane and a catalyst layer are joined, and is not particularly limited, and any one generally used for fuel cells can be used.
  • the catalyst layer 113 may be placed on the carbon layer 116, and the polymer electrolyte membrane 111 may be placed thereon. Any method may be used as long as it realizes a configuration in which the catalyst layer 113 and the polymer electrolyte membrane 111 are laminated in this order on the gas diffusion layer 114.
  • the third heat treatment temperature is preferably a temperature at which the gas diffusion layer, the catalyst layer, and the electrolyte membrane can be pressure-bonded with appropriate strength. Specifically, for example, the third heat treatment temperature is preferably lower than the second heat treatment temperature.
  • the third heat treatment temperature is preferably 100 degrees Celsius or higher. If the third heat treatment temperature is 100 degrees Celsius or higher, the pressure bonding can be performed appropriately.
  • the third heat treatment temperature is preferably 200 degrees Celsius or less. If the third heat treatment temperature is 200 degrees Celsius or lower, the alteration of the polymer electrolyte membrane 111 can be suitably suppressed.
  • step S7 may be omitted, and a method for manufacturing a gas diffusion layer may be used.
  • PTFE dispersion manufactured by Asahi Glass Co., Ltd., AD911, solid content ratio: 60% by weight
  • the sheet-like kneaded product from which the surfactant and water were removed was taken out of the firing furnace, and again rolled with a stretching roll machine (gap 400 ⁇ m) to adjust the thickness and reduce the thickness variation, and then cut into a 6 cm square. .
  • a stretching roll machine gap 400 ⁇ m
  • the obtained dispersion was applied to one side of a carbon sheet placed on a hot plate by a spray method.
  • a dispersion layer was prepared by removing almost all of the dispersion by drying with a hot plate (60 degrees Celsius). More specifically, the weight of the dispersion layer after drying was adjusted to 2.0 mg / cm 2 . Thereafter, the carbon sheet on which the dispersion layer was formed was heat-treated at 240 degrees Celsius for 2 hours in a firing furnace, and the surfactant in the dispersion layer was removed to produce a gas diffusion layer.
  • a gas diffusion layer was produced in the same manner as in the first example except that the carbon sheet on which the dispersion layer was formed was heat-treated in a baking furnace at 220 degrees Celsius.
  • a gas diffusion layer was produced in the same manner as in the first example except that the carbon sheet on which the dispersion layer was formed was heat-treated in a baking furnace at 260 degrees Celsius.
  • a gas diffusion layer was produced in the same manner as in the first example except that the carbon sheet on which the dispersion layer was formed was heat-treated in a baking furnace at 280 degrees Celsius.
  • a gas diffusion layer was produced in the same manner as in the first example except that the carbon sheet on which the dispersion layer was formed was heat-treated in a baking furnace at 300 degrees Celsius.
  • a catalyst layer forming ink (catalyst: Tanaka Kikinzoku, 10E50E, electrolyte resin: Asahi Glass, Flemion solution)) is applied to one side of a polymer electrolyte membrane (Japan Gore-Tex, Gore Select) and dried to form a catalyst layer. Formed. The obtained catalyst layer and the carbon layer of the gas diffusion layer were brought into contact with each other, and hot pressing was performed at 180 degrees Celsius and 6 kgf / cm 2 for 1 minute to join the catalyst layer and the gas diffusion layer. This was cut into a 25 mm ⁇ 100 mm test piece, and a 90 ° peel test was performed using a small tabletop tester (manufactured by Shimadzu Corporation, EZ-Graph).
  • FIG. 3 is a diagram showing the results of the first experimental example. As shown in the figure, there was a tendency that the higher the heat treatment temperature (second heat treatment temperature) of the carbon sheet on which the dispersion layer was formed, the lower the adhesive strength. Therefore, it has been found that it is preferable to lower the heat treatment temperature of the carbon sheet on which the dispersion layer is formed from the viewpoint of securing the adhesive strength with the catalyst layer.
  • the adhesive strength sharply decreased in the region where the heat treatment temperature exceeded 260 degrees Celsius. This is probably because crystallization of the polymer resin (PTFE) easily proceeds at 260 degrees Celsius or higher. Therefore, it is considered that the second heat treatment temperature is preferably less than 260 degrees Celsius from the viewpoint of securing the adhesive strength with the catalyst layer.
  • the dispersion described in the first example was coated on an aluminum foil in the same manner as in the first example, and dried on a hot plate in the same manner as in the first example.
  • the obtained aluminum foil with carbon layer was used as it was (sample A), heat treated at 220 ° C. for 2 hours in a firing furnace (sample B), and heat treated at 240 ° C. for 2 hours in a firing furnace.
  • TG / DTA differential heat / thermogravimetric simultaneous measurement device: TGDTA6300, manufactured by Seiko Instruments Inc.
  • TGDTA6300 thermogravimetric simultaneous measurement device
  • FIG. 4 is a diagram showing the results of the second experimental example.
  • the weight decrease started from around 150 ° C., and the weight decrease width suddenly decreased at around 350 ° C.
  • the change in weight mainly occurs because the surfactant remaining in the carbon layer decomposes and disappears. It was found that the thermal decomposition of the surfactant in the carbon layer mainly occurs in the temperature range of 150 ° C to 350 ° C.
  • the second heat treatment temperature is preferably set to 220 ° C. or higher, and more preferably set to 240 ° C. or higher.
  • the membrane electrode assembly obtained by the manufacturing method of the present embodiment includes, for example, a carbon sheet containing conductive particles, a polymer resin, and a surfactant, and a conductive sheet and a polymer provided on the carbon sheet.
  • the remaining amount of the surfactant in the carbon layer is 1% by weight or less, and the adhesive strength between the carbon layer and the catalyst layer is 0.1 N or more per 25 mm ⁇ 100 mm.
  • the carbon layer and the catalyst layer may not be bonded by an adhesive.
  • the production method of the present invention is useful as a production method of a membrane electrode assembly that is easy to handle and a gas diffusion layer for obtaining the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

 導電性粒子と高分子樹脂と界面活性剤と分散溶媒とを混練して混練物を得て(S1)、混練物を圧延および成形してシート状混練物を得て(S2)、シート状混練物を、第1熱処理温度で熱処理してシート状混練物から界面活性剤と分散溶媒とを除去したカーボンシートを得て(S3)、導電性粒子と高分子樹脂と界面活性剤と分散溶媒とを混ぜて分散液を得て(S4)、カーボンシート上に分散液を塗工および乾燥してカーボンシートよりも薄い分散液層を形成し(S5)、分散液層が形成されたカーボンシートを、第1熱処理温度よりも低い第2熱処理温度で熱処理して分散液層から界面活性剤と分散溶媒とを除去して、カーボンシートの上にカーボン層が形成されたガス拡散層を得て(S6)、カーボン層の上に触媒層と電解質膜とをこの順に積層させること(S7)を含む、膜電極接合体の製造方法。

Description

膜電極接合体およびガス拡散層の製造方法
 本発明は、膜電極接合体およびガス拡散層の製造方法に関する。より詳細には、燃料電池用の膜電極接合体およびガス拡散層の製造方法に関する。
 燃料電池、例えば高分子電解質形燃料電池は、水素を含有する燃料ガスと、空気などの酸素を含有する酸化剤ガスとを、白金などの触媒層を有するガス拡散層で電気化学的に反応させることにより、電力と熱とを同時に発生させる装置である。
 高分子電解質形燃料電池は、一般に、高分子電解質膜の両側に電極層とガス拡散層とをこの順に積層させた構造を有する。ガス拡散層は、基材として炭素繊維を利用するものと、炭素繊維を用いないものとがある。特許文献1及び2には、基材として炭素繊維を用いないガス拡散層が開示されている。
 特許文献1には、炭素微粉末、含フッ素重合体樹脂および液状潤滑剤からなるロッド状予備成形物を圧延処理するシート状電極の製造方法が開示されている。
 特許文献2には、アセチレンブラックやグラファイトなどの導電性粒子と、PTFEなどの高分子樹脂とを主成分とした多孔質部材で構成された燃料電池用ガス拡散層が開示されている。
特開2001-85280号公報 国際公開第2010/050219号
 しかしながら、前記従来のガス拡散層では、これを用いて製造される膜電極接合体の取り扱いが十分に容易でないとの課題を有していた。
 本発明は、上記課題に鑑みてなされたものであり、取り扱いが容易な膜電極接合体が得られる燃料電池用膜電極接合体およびこれを得るためのガス拡散層を提供することを目的とする。
 本発明者らは、上記課題を解決すべく、鋭意検討を行った。その結果、以下の知見を得た。
 基材として炭素繊維等を用いないガス拡散層(いわゆる、基材レスGDL)を作製する場合、導電性粒子と高分子樹脂を溶媒中に分散させるために、界面活性剤を用いることが必須となる。界面活性剤は、燃料電池の電極触媒を被毒する場合がある。そこで、導電性粒子と高分子樹脂と界面活性剤と分散溶媒とを用いてガス拡散層を製造する場合、界面活性剤を除去するために、高温で熱処理を行う必要がある。高温の熱処理を加えると、ガス拡散層の接着性が低下する。その結果、ガス拡散層と触媒層との接着が困難になり、膜電極接合体の取り扱いが難しくなるという課題が発見された。接着性の低下は、高分子樹脂の結晶化が進行するためと考えられた。
 そこで本発明者らは、高温で熱処理したシートに導電性粒子と高分子樹脂と界面活性剤と分散溶媒とを混ぜて得られる分散液を塗工し、低温で熱処理を加えることに想到した。かかる方法によれば、ガス拡散層の接着性を確保することができ、取り扱いが容易な膜電極接合体が得られる。
 すなわち上記課題を解決すべく、本発明の膜電極接合体の製造方法は、導電性粒子と高分子樹脂と界面活性剤と分散溶媒とを混練して混練物を得て、前記混練物を圧延および成形してシート状混練物を得て、前記シート状混練物を、第1熱処理温度で熱処理して前記シート状混練物から前記界面活性剤と前記分散溶媒とを除去したカーボンシートを得て、導電性粒子と高分子樹脂と界面活性剤と分散溶媒とを混ぜて分散液を得て、前記カーボンシート上に前記分散液を塗工および乾燥して前記カーボンシートよりも薄い分散液層を形成し、前記分散液層が形成された前記カーボンシートを、第1熱処理温度よりも低い第2熱処理温度で熱処理して前記分散液層から前記界面活性剤と前記分散溶媒とを除去して、前記カーボンシートの上にカーボン層が形成されたガス拡散層を得て、前記カーボン層の上に触媒層と電解質膜とをこの順に積層させること、を含む。
 かかる構成では、取り扱いが容易な膜電極接合体が得られる。
 上記膜電極接合体の製造方法において、前記分散液層をスプレー塗工により形成してもよい。
 かかる構成では、分散液がカーボンシート内部へ浸潤することを抑制できる。
 上記膜電極接合体の製造方法において、前記カーボン層と前記触媒層とが接触するように、前記電解質膜と前記触媒層とが積層された積層構造と前記ガス拡散層とを当接させ、前記第2熱処理温度も低い第3熱処理温度で熱圧着してもよい。
 かかる構成では、熱圧着時のカーボン層中の高分子樹脂の結晶化が抑制され、熱圧着によるカーボン層の接着性低下を抑制できる。
 上記膜電極接合体の製造方法において、前記分散液の原料となる界面活性剤が、非イオン系界面活性剤であってもよい。
 かかる構成では、界面活性剤を除去しやすくなる。
 上記膜電極接合体の製造方法において、前記第2熱処理温度での熱処理を空気中で行ってもよい。
 かかる構成では、界面活性剤を除去しやすくなる。
 上記膜電極接合体の製造方法において、前記カーボン層の厚みが、10μm以上、100μm以下であり、かつ、前記第2熱処理温度が前記分散液の原料となる界面活性剤の分解温度以上、摂氏260度未満であってもよい。
 上記膜電極接合体の製造方法において、前記カーボンシートの厚みが、100μm以上、1000μm以下であり、かつ、前記第1熱処理温度が摂氏260度以上、前記混練物の原料となる高分子樹脂の融点以下であってもよい。
 上記膜電極接合体の製造方法において、前記カーボン層における高分子樹脂の含有量が、前記カーボンシートにおける高分子樹脂の含有量よりも高くてもよい。
 また本発明のガス拡散層の製造方法は、導電性粒子と高分子樹脂と界面活性剤と分散溶媒とを混練して混練物を得て、前記混練物を圧延および成形してシート状混練物を得て、前記シート状混練物を、第1熱処理温度で熱処理して前記シート状混練物から前記界面活性剤と前記分散溶媒とを除去したカーボンシートを得て、導電性粒子と高分子樹脂と界面活性剤と分散溶媒とを混ぜて分散液を得て、前記カーボンシート上に前記分散液を塗工および乾燥して前記カーボンシートよりも薄い分散液層を形成し、前記分散液層が形成された前記カーボンシートを、第1熱処理温度よりも低い第2熱処理温度で熱処理して前記分散液層から前記界面活性剤と前記分散溶媒とを除去して、前記カーボンシートの上にカーボン層が形成されたガス拡散層を得ること、を含む。
 かかる構成では、取り扱いが容易な膜電極接合体に用いることができるガス拡散層が得られる。
 また本発明の膜電極接合体は、導電性粒子と高分子樹脂と界面活性剤とを含むカーボンシートと、前記カーボンシート上に設けられ、導電性粒子と高分子樹脂と界面活性剤とを含み、前記カーボンシートよりも高分子樹脂の含有量が高いカーボン層と、前記カーボン層に接触するように設けられた触媒層と、前記触媒層上に設けられた電解質膜と、を含み、前記カーボン層における界面活性剤の残存量は1重量%以下であり、前記カーボン層と前記触媒層との接着強度が25mm×100mmあたり0.1N以上である。
 かかる構成では、取り扱いが容易な膜電極接合体が提供される。
 本発明の製造方法によれば、取り扱いが容易な膜電極接合体およびこれを得るためのガス拡散層が提供される。
図1は、第1実施形態にかかる製造方法によって得られた膜電極接合体を組み込んだ燃料電池セルスタックの概略構成の一例を示す断面図である。 図2は、第1実施形態にかかる膜電極接合体の製造方法の一例を示すフローチャートである。 図3は、第1実験例の結果を示す図である。 図4は、第2実験例の結果を示す図である。
 (第1実施形態)
 [装置構成]
 図1は、第1実施形態にかかる製造方法によって得られた膜電極接合体を組み込んだ燃料電池セルスタックの概略構成の一例を示す断面図である。
 図1に示すように、本実施形態における高分子電解質形燃料電池のセル100(単電池ともいう)は、MEA110(Membrane-Electrode-Assembly:膜電極接合体)と、MEA110の両面に配置された一対の板状の導電性のセパレータ120とを有している。
 MEA110は、水素イオンを選択的に輸送する高分子電解質膜111(イオン交換樹脂膜)と、当該高分子電解質膜111の両面に形成された一対の電極層112とを備えている。一対の電極層112は、高分子電解質膜111の両面に形成され、白金属触媒を坦持したカーボン粉末を主成分とする触媒層113と、当該触媒層113上に形成され、集電作用とガス透過性と撥水性とを併せ持つガス拡散層114(GDLともいう)とを有している。
 高分子電解質膜111は、好ましくは、水素イオン伝導性を有する高分子膜である。高分子電解質膜111の形状は特に限定されないが、例えば、略矩形状とすることができる。高分子電解質膜111の材料は、水素イオンを選択的に移動させるものであれば特に限定されない。
 高分子電解質膜111としては、例えば、パーフルオロカーボンスルホン酸からなるフッ素系高分子電解質膜(例えば、米国DuPont社製のNafion(登録商標)、旭化成(株)製のAciplex(登録商標)、旭硝子(株)製のFlemion(登録商標)など)や各種炭化水素系電解質膜を使用できる。
 触媒層113は、好ましくは、水素または酸素の酸化還元反応に対する触媒を含む層である。触媒層113は、導電性を有し、かつ水素および酸素の酸化還元反応に対する触媒能を有するものであれば特に限定されない。触媒層113の形状は特に限定されないが、例えば、略矩形状とすることができる。
 触媒層113は、例えば、白金族金属触媒を担持したカーボン粉末とプロトン導電性を有する高分子材料とを主成分とした多孔質な部材から構成される。触媒層113に用いるプロトン導電性高分子材料は、上記高分子電解質膜と同じ種類であっても、異なる種類であってもよい。
 ガス拡散層114は、好ましくは、導電性を有する多孔質の部材である。ガス拡散層114の形状は特に限定されないが、例えば、略矩形状の板状部材とすることができる。ガス拡散層114は、導電性を有し、かつ反応ガスが拡散できるものであれば特に限定されない。
 ガス拡散層114は、カーボンシート115と、カーボン層116とで構成されている。カーボンシート115とカーボン層116とは、いずれも、導電性粒子と高分子樹脂とを含む。導電性粒子および高分子樹脂の組成は、カーボンシート115とカーボン層116とで異なっていてもよい。カーボン層116は、カーボンシート115よりも薄いことが好ましい。カーボン層116は、カーボンシート115よりも低い温度で熱処理されていることが好ましい。ガス拡散層114には、導電性粒子及び高分子樹脂以外に、ガス拡散層114の製造時に使用する分散溶媒及び界面活性剤などが微量含まれていてもよい。導電性粒子と、高分子樹脂と、分散溶媒と、界面活性剤と、の詳細については後述する。なお、ガス拡散層114には、導電性粒子と高分子樹脂と界面活性剤と分散溶媒以外の材料(例えば、短繊維の炭素繊維など)が含まれていてもよい。カーボン層116における高分子樹脂の含有量が、カーボンシート115における高分子樹脂の含有量よりも高いことが好ましい。
 ガス拡散層114には、セパレータ120と当接する主面に、反応ガス流路溝が形成されていてもよい。ガス拡散層114は、カソード側及びアノード側において同じガス拡散層を用いても、異なるガス拡散層を用いてもよい。
 セパレータ120は、好ましくは、MEAを機械的に固定するとともに、隣接するMEA同士を互いに電気的に直列に接続するための部材である。セパレータ120は、好ましくは、カーボンを含む材質や金属を含む材質で構成される。セパレータ120は、導電性を有する多孔質のプレートであってもよい。
 セパレータ120がカーボンを含む材質で構成される場合、セパレータ120は、カーボン粉末と樹脂バインダとを混合した原料粉を金型に供給し、金型に供給された原料粉に圧力と熱を加えることによって形成できる。
 セパレータ120が金属を含む材質で構成される場合、セパレータ120は、金属プレートからなるものであってもよい。セパレータ120は、チタンやステンレス鋼製の板の表面に金メッキを施したものを使用することができる。
 一対のセパレータ120には、ガス拡散層114と当接する主面(以下、電極面)に、燃料ガスを流すための燃料ガス流路溝121と、酸化剤ガスを流すための酸化剤ガス流路溝122とが設けられている。また、前記一対のセパレータ120には、ガス拡散層114と当接しない主面(以下、冷却面)に、冷却水などが通る冷却水流路溝123が設けられている。燃料ガス流路溝121を通じて電極層112に燃料ガスが供給され、かつ、酸化剤ガス流路溝122を通じて電極層112に酸化剤ガスが供給されることで、電気化学反応が起こり、電力と熱とが発生する。
 ガス拡散層114に反応ガス流路溝が形成されている場合には、セパレータ120に燃料ガス流路溝121及び酸化剤ガス流路溝122が形成されていなくてもよい。
 本実施形態では、セパレータ120の周縁部には、2つのマニホールド孔組が形成されている。一方のマニホールド孔組は、燃料ガスを供給又は排出する2つの燃料ガスマニホールド孔(図示せず)と、冷却流体を供給又は排出する1つの冷却流体マニホールド孔(図示せず)とで構成されている。他方のマニホールド孔組は、酸化剤ガスを供給又は排出する2つの酸化剤ガスマニホールド孔(図示せず)と、冷却流体を供給又は排出する1つの冷却流体マニホールド孔(図示せず)とで構成されている。
 一対の燃料ガスマニホールド孔は、一方が供給用で他方が排出用である。これらを接続するように燃料ガス流路溝121がセパレータ120のアノード側の電極面に形成される。一対の酸化剤ガスマニホールド孔は、一方が供給用で他方が排出用である。これらを接続するように酸化剤ガス流路溝122がセパレータ120のカソード側の電極面に形成される。
 一対の冷却流体マニホールド孔は、一方が供給用で他方が排出用である。これらを接続するように冷却水流路溝123が、必要に応じてセパレータ120の冷却面に形成される。
 膜電極接合体110の高分子電解質膜111には、セパレータ120の6つのマニホールド孔に対応する孔(図示せず)がそれぞれ形成されていて、これらがそれぞれ繋がって6つのマニホールド(内部マニホールド)が構成されている。これらの6つのマニホールドにおいて、燃料ガス供給用マニホールドに燃料ガスが供給され、燃料ガス排出用マニホールドから燃料ガスが排出され、酸化剤ガス供給用マニホールドに酸化剤ガスが供給され、酸化剤ガス排出用マニホールドから酸化剤ガスが排出され、冷却流体供給用マニホールドに冷却流体が供給され、冷却流体排出用マニホールドから冷却流体が排出される。6つのマニホールド孔の配置は任意である。
 なお、セパレータ120に燃料ガス、酸化剤ガス、及び冷却水の各マニホールド孔を設けて積層した際に燃料ガス、酸化剤ガス、及び冷却水の各供給マニホールドが形成されるように構成した内部マニホールド方式のものを例示して説明したが、スタックの側面に燃料ガス、酸化剤ガス、及び冷却水の各供給マニホールドを設けた、所謂、外部マニホールド方式のものにも、同様に適用でき、同様の効果を得ることができる。
 あるいは、上記の実施形態の構成において、セパレータ120を多孔状の導電材にて形成し、冷却水流路溝123を通流する冷却水の圧力が、燃料ガス流路溝121及び酸化剤ガス流路溝122の少なくとも一方を通流する反応ガスの圧力よりも高くなるようにして、冷却水の一部を電極面側にセパレータ120を透過させて、高分子電解質膜111を加湿する、所謂、内部加湿型に構成しても良い。
 セル100は、図1に示すように1つ以上積層され、互いに隣接するセル100を電気的に直列に接続されて使用されるのが一般的である。なお、このとき、互いに積層されたセル100は、燃料ガス及び酸化剤ガスがリークしないように且つ接触抵抗を減らすために、ボルトなどの締結部材130により所定の締結圧にて加圧締結される。従って、MEA110とセパレータ120とは所定の圧力で面接触することになる。また、電気化学反応に必要なガスが外部に漏れるのを防ぐために、セパレータ120、120の間には、触媒層113とガス拡散層114の側面を覆うようにガスケット117(シール材)が配置されている。
 ガスケット117は、好ましくは、触媒層113及び高分子電解質膜111とセパレータ120との間、または、触媒層113とセパレータ120との間の隙間を埋める部材である。ガスケットは、適度な機械的強度と柔軟性を有している合成樹脂であることが好ましい。ガスケット117の形状は、特に限定されないが、例えば、環状で略矩形状とすることができる。
 ガスケット117を構成する材料としては、例えば、ポリエチレンナフタレート、ポリテトラフルオロエチレン、ポリエチレンテレフタレート、フルオロエチレン-プロピレン共重合体、テトラフルオロエチレン-パーフルオロアルコキシエチレン共重合体、ポリエチレン、ポリプロピレン、ポリエーテルアミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルスルフォン、ポリフェニレンスルフィド、ポリアリレート、ポリスルフィド、ポリイミド、及び、ポリイミドアミドからなる群より選択される少なくとも1以上の樹脂から構成される合成樹脂であることがより好ましい。
 ガスケット117を構成する材料としては、例えば、ゴム材料や熱可塑性エラストマーや接着剤等の化合物を使用することができる。ガスケット117を構成するシール材の具体例として、フッ素ゴム、シリコーンゴム、天然ゴム、EPDM、ブチルゴム、塩化ブチルゴム、臭化ブチルゴム、ブタジエンゴム、スチレン-ブタジエン共重合体、エチレン-酢酸ビニルゴム、アクリルゴム、ポリイソプロピレンポリマー、パーフルオロカーボン、ポリスチレン系、ポリオレフィン系、ポリエステル系及びポリアミド系等の熱可塑性エラストマー、あるいはイソプレンゴム及びブタジエンゴム等のラテックスを用いた接着剤、液状のポリブタジエン、ポリイソプレン、ポリクロロプレン、シリコーンゴム、フッ素ゴムおよびアクリロニトリル-ブタジエンゴム等を用いた接着剤等を挙げることができるが、これらの化合物に限定されない。また、これらの化合物を単体で用いても、あるいは2種類以上を混合もしくは複合して用いてもよい。
 [製造方法]
 図2は、第1実施形態にかかる膜電極接合体の製造方法の一例を示すフローチャートである。
 本実施形態の膜電極接合体の製造方法では、まず、導電性粒子と高分子樹脂と界面活性剤と分散溶媒とを混練することで、混練物が得られる(ステップS1)。
 混練物の原料となる導電性粒子の材料としては、例えば、炭素微粉末を用いることができる。炭素微粉末としては、例えば、グラファイト、カーボンブラック、活性炭、炭素繊維微粉末等のカーボン材料が挙げられる。カーボンブラックとしては、アセチレンブラック(AB)、ファーネスブラック、ケッチェンブラック、バルカン等が挙げられる。炭素繊維微粉末としては、例えば、気相成長法炭素繊維(VGCF)、ミルドファイバー、カットファイバー、チョップファイバーなどが挙げられる。導電性粒子として、これらの材料を単独で使用してもよく、また、複数の材料を組み合わせて使用してもよい。カーボン材料の原料形態としては、粉末状、繊維状、粒状等のいずれの形状でもよい。カーボンブラックと炭素繊維を混合することが、コスト、電気伝導性、強度の観点から好ましい。さらに、カーボンブラックとしては、アセチレンブラックを用いることが、不純物含有量が少なく、電気伝導性が高いという観点から好ましい。
 混練物における導電性粒子の含有量は、例えば、10重量%以上、かつ、50重量%以下であることが好ましい。
 混練物の原料となる高分子樹脂としては、例えば、フッ素樹脂を用いることができる。フッ素樹脂としては、例えば、PTFE(ポリテトラフルオロエチレン)、FEP(テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体)、PVDF(ポリビニリデンフルオライド)、ETFE(テトラフルオロエチレン・エチレン共重合体)、PCTFE(ポリクロロトリフルオロエチレン)、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)等が挙げられる。高分子樹脂としては、耐熱性、撥水性、耐薬品性の観点から、PTFEが好適に用いられる。PTFEの原料形態としては、ディスパージョン及び粉末状等の形状があげられる。作業性の観点からは、PTFEの原料形態としてディスパージョンが採用されることが好ましい。なお、高分子樹脂は、導電性粒子同士を結着するバインダーとしての機能を有する。また、高分子樹脂は、撥水性を有するため、燃料電池の内部にて水を系内に閉じ込める機能(保水性)も有する。
 混練物における高分子樹脂の含有量は、例えば、1重量%以上、かつ、20重量%以下であることが好ましい。
 混練物の原料となる分散溶媒としては、例えば、水、メタノール及びエタノール等のアルコール類、エチレングリコール等のグリコール類が挙げられる。これらの中でも水を用いることが、コストと環境性の観点から好ましい。
 混練物における分散溶媒の含有量は、例えば、30重量%以上、かつ、88重量%以下であることが好ましい。
 混練物の原料となる界面活性剤としては、陰イオン界面活性剤、陽イオン界面活性剤、両性界面活性剤、非イオン界面活性剤が挙げられる。具体的には例えば、ポリオキシエチレンアルキルエーテル等のノニオン系、アルキルアミンオキシド等の両性イオン系が挙げられる。界面活性剤の除去および金属イオンによる触媒被毒防止という観点からは、界面活性剤として非イオン系界面活性剤を用いることが好ましい。非イオン系界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテル、アルキルグルコシド、ポリオキシエチレン脂肪酸エステル、ショ糖脂肪酸エステル、ソルビタン脂肪酸エステル、脂肪酸アルカノールアミドなどが挙げられる。
 混練物における界面活性剤の含有量は、例えば、0.1重量%以上、かつ、5重量%以下であることが好ましい。
 製造時に使用する分散溶媒の量及び界面活性剤の量は、導電性粒子の種類、高分子樹脂の種類、それらの配合比率などに応じて適宜設定すればよい。一般的には、分散溶媒の量及び界面活性剤量が多いほど、高分子樹脂(フッ素樹脂)と導電性粒子(カーボン)が均一分散しやすい一方で、流動性が高くなりシート化が難しくなる傾向がある。
 ステップS1で作成する混練物には、導電性粒子と高分子樹脂と界面活性剤と分散溶媒以外の材料(例えば、短繊維の炭素繊維など)が添加されてもよい。
 ステップS1が終わると、混練物を圧延および成形してシート状混練物が得られる(ステップS2)。
 シート状混練物とは、シート状の形状を有するように圧延および成形された混練物をいう。圧延および成形には、例えば、ロールプレス機又は平板プレス機などを用いることができる。シート状混練物の厚みは、後述するステップ3で得られるカーボンシート115の厚みが所望の値となるように、適宜に調整されうる。
 ステップS2が終わると、シート状混練物を、第1熱処理温度で熱処理してシート状混練物から界面活性剤と分散溶媒とを除去したカーボンシート115が得られる(ステップS3)。
 シート状混練物の熱処理は、例えば、焼成炉、電気炉、ガス炉等で行うことができる。
 第1熱処理温度および第1熱処理温度での熱処理における加熱時間は、界面活性剤と分散溶媒とがシート状混練物中から十分に除去され、かつ、高分子樹脂の結晶化が進行する温度及び時間とすることが好ましい。界面活性剤及び分散溶媒の残存量は、例えば、TG/DTA(示差熱・熱重量同時測定装置)等の分析結果により測定可能であり、一般的にはカーボンシートの全重量に対して1重量%以下とすることが望ましい。これを満たすように熱処理温度と時間を決定すればよいが、これらはカーボンシート115の厚みに依存する。
 カーボンシート115の厚みは、100μm以上であることが好ましい。カーボンシート115の厚みが100μm以上であれば、カーボンシート115の機械強度が大きくなる。
 カーボンシート115の厚みは、1000μm以下であることが好ましい。カーボンシート115の厚みが1000μm以下であれば、カーボンシート115の電気抵抗が小さくなる。
 第1熱処理温度は、摂氏260度以上であることが好ましい。第1熱処理温度が摂氏260度以上であれば、量産性を確保できる速さでシート状混練物中から界面活性剤を除去することが容易になる。
 第1熱処理温度は、混練物の原料となる高分子樹脂の融点以下であることが好ましい。第1熱処理温度が混練物の原料となる高分子樹脂の融点以下であれば、高分子樹脂が融解しにくく、構造体としての強度が低下しにくく、シート形状が崩れにくい。
 高分子樹脂としてPTFEを用いる場合、高分子樹脂の融点は摂氏330度以上摂氏350度以下であり、第1熱処理温度での熱処理における温度を摂氏260度以上摂氏330度以下とすることが好ましい。
 ステップS3の後、あるいはステップS1~S3と平行して、導電性粒子と高分子樹脂と界面活性剤と分散溶媒とを混ぜて分散液が得られる(ステップS4)。
 より具体的には、例えば、界面活性剤と分散溶媒とを混合したものに、分散処理を加えた後、炭素微粉末とフッ素樹脂を添加してさらに分散処理を加える。なお、予め界面活性剤の分散処理を行わずに、界面活性剤を含む全ての材料を同時に分散処理しても良い。
 分散液の原料となる導電性粒子の材料としては、ステップS1の混練物の原料となる導電性粒子の材料として上記に例示したものと同様のものを用いることができる。なお、混練物の原料となる導電性粒子と、分散液の原料となる導電性粒子の材料は、同じであってもよいし、異なってもよい。分散液における導電性粒子の含有量は、例えば、1重量%以上、かつ、30重量%以下であることが好ましい。
 分散液の原料となる高分子樹脂の材料としては、ステップS1の混練物の原料となる高分子樹脂の材料として上記に例示したものと同様のものを用いることができる。なお、混練物の原料となる高分子樹脂と、分散液の原料となる高分子樹脂の材料は、同じであってもよいし、異なってもよい。分散液における高分子樹脂の含有量は、例えば、0.1重量%以上、かつ、10重量%以下であることが好ましい。分散液における高分子樹脂の含有量は、ステップS6において得られるカーボン層116の高分子樹脂含有量が、カーボンシート115の高分子樹脂含有量よりも高くなるように調整されることが好ましい。カーボン層の高分子樹脂量を高めることで、触媒層とガス拡散層(カーボンシート)の界面の撥水性が向上し、MEAの排水性が向上するからである。
 分散液の原料となる界面活性剤の材料としては、ステップS1の混練物の原料となる界面活性剤の材料として上記に例示したものと同様のものを用いることができる。なお、混練物の原料となる界面活性剤と、分散液の原料となる界面活性剤の材料は、同じであってもよいし、異なってもよい。分散液における界面活性剤の含有量は、例えば、0.1重量%以上、かつ、5重量%以下であることが好ましい。
 分散液の原料となる分散溶媒の材料としては、ステップS1の混練物の原料となる分散溶媒の材料として上記に例示したものと同様のものを用いることができる。なお、混練物の原料となる分散溶媒と、分散液の原料となる分散溶媒の材料は、同じであってもよいし、異なってもよい。分散液における分散溶媒の含有量は、例えば、55重量%以上、かつ、98重量%以下であることが好ましい。
 ステップS4の後、カーボンシート115上に分散液を塗工および乾燥してカーボンシート115よりも薄い分散液層を形成する(ステップS5)。分散液の塗工には、例えば、スプレー塗工機又はスクリーン印刷機などを用いることができる。塗工方法として、ダイコート法を用いてもよい。なお、分散液がカーボンシート115の内部に浸潤することを抑制するという観点からは、スプレー塗工を用いることが好ましい。乾燥方法としては、例えば、ホットプレートによる乾燥および乾燥炉による乾燥等を利用できる。
 ステップS5の後、分散液層が形成されたカーボンシート115を、第1熱処理温度よりも低い第2熱処理温度で熱処理して分散液層から界面活性剤と分散溶媒とを除去して、カーボンシート115の上にカーボン層116が形成されたガス拡散層114が得られる(ステップS6)。
 分散液層が形成されたカーボンシート115の熱処理は、例えば、電気炉、ガス炉、遠赤外線加熱炉等で行うことができる。該熱処理は、空気中で行われることが好ましい。
 分散液の熱処理では、例えば、界面活性剤を除去させるには十分でありかつ高分子樹脂の結晶化による接着性低下が生じないように、材料、厚み、温度、時間などを設定することが好ましい。
 第2熱処理温度および第2熱処理温度での熱処理における加熱時間は、第1熱処理温度より低温であり、高分子樹脂の結晶化が進行しにくく、かつ、界面活性剤と分散溶媒とが分散液層中から十分に除去される温度及び時間とすることが好ましい。界面活性剤及び分散溶媒の残存量は、例えば、TG/DTA(示差熱・熱重量同時測定装置)等の分析結果により測定可能であり、一般的にはカーボン層の全重量に対して1重量%以下とすることが望ましい。これを満たすように熱処理温度と時間を決定すればよいが、これらはカーボン層の厚みに依存する。
 カーボン層116の厚みは、10μm以上であることが好ましい。カーボン層116の厚みが10μm以上であれば、カーボン層116の接着強度を確保できる。
 カーボン層116の厚みは、100μm以下であることが好ましい。カーボン層116の厚みが100μm以下であれば、低い熱処理温度であっても、量産性を確保できる速さで界面活性剤を除去することができる。
 第2熱処理温度は、分散液の原料となる界面活性剤の分解温度以上であることが好ましい。例えば、第2熱処理温度は、摂氏220度以上であることが好ましい。第2熱処理温度が摂氏220度以上であれば、量産性を確保できる速さで分散液層中から界面活性剤を除去することが容易になる。
 第2熱処理温度は、摂氏240度以上であることがさらに好ましい。第2熱処理温度が摂氏240度以上であれば、界面活性剤をカーボン層の1重量%以下まで除去することが容易になる。
 第2熱処理温度は、摂氏260度未満であることが好ましい。第2熱処理温度が摂氏260度未満であれば、カーボン層表面の接着性の低下が抑えられ、触媒層との接着において、高い接着力が得られる。
 ステップS6の後、カーボン層116の上に触媒層113と高分子電解質膜111とをこの順に積層させる(ステップS7)。
 具体的には、例えば、カーボンシート115の上にカーボン層116が形成されたガス拡散層114と、高分子電解質膜111と触媒層113とが積層された積層構造(膜触媒層接合体)とを、カーボン層116と触媒層113とが接触するように当接させ、第3熱処理温度で熱圧着する。膜触媒層接合体は、電解質膜と触媒層とが接合された構造体であって、特に制限はなく、燃料電池用として一般に用いられる任意のものを用いることができる。
 カーボン層116の上に触媒層113を載置し、さらにその上に高分子電解質膜111を載置してもよい。ガス拡散層114の上に触媒層113と高分子電解質膜111とがこの順に積層される構成を実現するものであれば、どのような方法が用いられてもよい。
 第3熱処理温度は、ガス拡散層と触媒層と電解質膜とを適切な強度で圧着できる温度とすることが好ましい。具体的には例えば、第3熱処理温度が第2熱処理温度よりも低いことが好ましい。
 第3熱処理温度は、摂氏100度以上であることが好ましい。第3熱処理温度が摂氏100度以上であれば、圧着が適切に行われうる。
 第3熱処理温度は、摂氏200度以下であることが好ましい。第3熱処理温度が摂氏200度以下であれば、高分子電解質膜111の変質を好適に抑制できる。
 なお、ステップS7を省略し、ガス拡散層の製造方法としてもよい。
 (第1実施例)
 1.カーボンシートの作製
 アセチレンブラック(電気化学工業製、デンカブラック)50gと、グラファイト(和光純薬工業製)80gと、VGCF(昭和電工製、繊維径0.15μm、繊維長15μm)3gと、界面活性剤(トライトンX)4gと、水200gとを、ミキサーに投入し、混練した。続いて、ミキサーにPTFEディスパージョン(旭硝子製、AD911、固形分比60重量%)25gを投入し、さらに5分間攪拌して混練物を得た。
 得られた混練物をミキサーの中から20g取り出し、延伸ロール機(ギャップ600μm)にて、厚み600μmのシート状混練物を得た。この後、シート状混練物を焼成炉にて300℃で2時間熱処理し、混練物中の界面活性剤と水を除去した。
 界面活性剤と水を除去したシート状混練物を焼成炉から取り出し、再び延伸ロール機(ギャップ400μm)にて圧延して厚さ調整及び厚さバラツキの低減を行ったのち、6cm角に裁断した。このようにして、厚さ400μmのゴム状のカーボンシートが作製された。
 2.カーボン層の作製
 水151gと、界面活性剤(トライトンX)1gを容器に投入し、自公転攪拌脱泡器にて界面活性剤の分散処理を行った。続いて、アセチレンブラック(電気化学工業製、デンカブラック)10gと、PTFEディスパージョン(旭硝子製、AD911、固形分比60重量%)5.5gとを容器に投入し、自公転攪拌脱泡器にてアセチレンブラックとPTFEの分散処理を行った。さらに、フィルター(SUS製、200mesh)を用いて粗大粒子を取り除いた後、自公転攪拌脱泡器を用いて脱泡処理を行うことで、分散液を得た。
 得られた分散液を、ホットプレート上に置かれたカーボンシートの一方の面に、スプレー法によって塗布した。ホットプレート(摂氏60度)により分散液のほぼ全量を乾燥により除去することで、分散液層を作製した。より具体的には、乾燥後の分散液層の重量が2.0mg/cmとなるように調整した。この後、分散液層が形成されたカーボンシートを、焼成炉にて摂氏240度で2時間熱処理し、分散液層中の界面活性剤の除去を行って、ガス拡散層を作製した。
 (第2実施例)
 分散液層が形成されたカーボンシートの、焼成炉による熱処理を、摂氏220度で行った他は、第1実施例と同様の方法で、ガス拡散層を作製した。
 (第3実施例)
 分散液層が形成されたカーボンシートの、焼成炉による熱処理を、摂氏260度で行った他は、第1実施例と同様の方法で、ガス拡散層を作製した。
 (第1比較例)
 分散液層が形成されたカーボンシートの、焼成炉による熱処理を、摂氏280度で行った他は、第1実施例と同様の方法で、ガス拡散層を作製した。
 (第2比較例)
 分散液層が形成されたカーボンシートの、焼成炉による熱処理を、摂氏300度で行った他は、第1実施例と同様の方法で、ガス拡散層を作製した。
 (第1実験例:接着強度試験)
 第1実験例では、第1実施例~第3実施例および第1比較例~第2比較例で作製したガス拡散層と、触媒層との接着強度を測定した。
 高分子電解質膜(ジャパンゴアテックス製、ゴアセレクト)の片面に、触媒層形成用インク(触媒:田中貴金属製、10E50E、電解質樹脂:旭硝子製、フレミオン溶液))を塗布、乾燥して触媒層を形成した。得られた触媒層と、ガス拡散層のカーボン層とを当接させ、摂氏180度、6kgf/cmで1分間ホットプレスを行い、触媒層とガス拡散層とを接合した。これを25mm×100mmの試験片に切断し、小型卓上試験機(島津製作所製、EZ-Graph)を用いて、90度剥離試験を行った。
 図3は、第1実験例の結果を示す図である。図に示されているように、分散液層が形成されたカーボンシートの熱処理温度(第2熱処理温度)が高いほど接着強度は低下する傾向が見られた。したがって、触媒層との接着強度を確保するという観点からは、分散液層が形成されたカーボンシートの熱処理温度を低くすることが好ましいことが分かった。
 特に、熱処理温度が摂氏260度を超えた領域では、接着強度が急激に低下することが分かった。摂氏260度以上で高分子樹脂(PTFE)の結晶化が進行しやすくなるためであると考えられる。したがって、触媒層との接着強度を確保するという観点からは、第2熱処理温度を摂氏260度未満とすることが好ましいと考えられる。
 (第2実験例:界面活性剤残存量の測定)
 第2実験例では、第2熱処理温度とカーボン層中の界面活性剤残存量との関係を検討した。
 第1実施例で説明した分散液を、第1実施例と同様の方法でアルミ箔の上に塗工し、第1実施例と同様の方法でホットプレートにより乾燥させた。得られたカーボン層付きアルミ箔につき、そのままの状態のもの(サンプルA)、焼成炉にて摂氏220度で2時間熱処理したもの(サンプルB)、焼成炉にて摂氏240度で2時間熱処理したもの(サンプルC)、焼成炉にて摂氏280度で2時間熱処理したもの(サンプルD)をサンプルとした。
 各サンプルについて、カーボン層をアルミ箔から剥がし取り、TG/DTA(示差熱・熱重量同時測定装置:セイコーインスツル製、TGDTA6300)を用いて、界面活性剤の残存量を測定した。TG/DTAでは、空気雰囲気において、温度を室温から摂氏400度まで10℃/minで昇温させたときの、重量変化率(昇温後重量/昇温前重量×100)を測定した。
 図4は、第2実験例の結果を示す図である。図に示されているように、熱処理を行っていないカーボン層(サンプルA)では、150℃付近から重量の減少が始まり、350℃付近で重量の減少幅が急激に小さくなった。重量の変化は、主として、カーボン層に残存していた界面活性剤が分解して消失したために生じる。カーボン層中における界面活性剤の熱分解は、主に150℃から350℃の温度領域で起こることが分かった。
 400℃まで加熱した後の、各サンプルの重量変化率をみると、熱処理温度が高いものほど重量変化率が小さかった(サンプルD[=-0.09%]<サンプルC[=-0.24%]<サンプルB[=-1.30%]<サンプルA[=-3.34%])。よって、界面活性剤の残存量は、熱処理温度が高いものほど少ないことが分かる。一般に、界面活性剤の残存量としては、カーボン層全体の重量に対して1重量%以下となることが望ましい。すなわち、第2熱処理温度としては、220℃以上に設定することが好ましく、240℃以上に設定することがさらに好ましい。
 また、本実施形態の製造方法により得られる膜電極接合体は、例えば、導電性粒子と高分子樹脂と界面活性剤とを含むカーボンシートと、カーボンシート上に設けられ、導電性粒子と高分子樹脂と界面活性剤とを含み、カーボンシートよりも高分子樹脂の含有量が高いカーボン層と、カーボン層に接触するように設けられた触媒層と、触媒層上に設けられた電解質膜と、を含む。カーボン層における界面活性剤の残存量は1重量%以下であり、カーボン層と触媒層の接着強度は25mm×100mmあたり0.1N以上である。また、本実施形態の製造方法により得られた膜電極接合体は、カーボン層と触媒層とが接着剤により接着されていなくてもよい。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 本発明の製造方法は、取り扱いが容易な膜電極接合体およびこれを得るためのガス拡散層の、製造方法として有用である。
 100 セル
 110 MEA
 111 高分子電解質膜
 112 電極層
 113 触媒層
 114 ガス拡散層
 115 カーボンシート
 116 カーボン層
 117 ガスケット
 120 セパレータ
 121 燃料ガス流路溝
 122 酸化剤ガス流路溝
 123 冷却水流路溝
 130 締結部材

Claims (10)

  1.  導電性粒子と高分子樹脂と界面活性剤と分散溶媒とを混練して混練物を得て、
     前記混練物を圧延および成形してシート状混練物を得て、
     前記シート状混練物を、第1熱処理温度で熱処理して前記シート状混練物から前記界面活性剤と前記分散溶媒とを除去したカーボンシートを得て、
     導電性粒子と高分子樹脂と界面活性剤と分散溶媒とを混ぜて分散液を得て、
     前記カーボンシート上に前記分散液を塗工および乾燥して前記カーボンシートよりも薄い分散液層を形成し、
     前記分散液層が形成された前記カーボンシートを、第1熱処理温度よりも低い第2熱処理温度で熱処理して前記分散液層から前記界面活性剤と前記分散溶媒とを除去して、前記カーボンシートの上にカーボン層が形成されたガス拡散層を得て、
     前記カーボン層の上に触媒層と電解質膜とをこの順に積層させること、
     を含む膜電極接合体の製造方法。
  2.  前記分散液層をスプレー塗工により形成する、請求項1に記載の膜電極接合体の製造方法。
  3.  前記カーボン層と前記触媒層とが接触するように、前記電解質膜と前記触媒層とが積層された積層構造と前記ガス拡散層とを当接させ、前記第2熱処理温度も低い第3熱処理温度で熱圧着する、請求項1または2に記載の膜電極接合体の製造方法。
  4.  前記分散液の原料となる界面活性剤が、非イオン系界面活性剤である、請求項1ないし3のいずれかに記載の膜電極接合体の製造方法。
  5.  前記第2熱処理温度での熱処理を空気中で行う、請求項2ないし4のいずれかに記載の膜電極接合体の製造方法。
  6.  前記カーボン層の厚みが、10μm以上、100μm以下であり、かつ、前記第2熱処理温度が前記分散液の原料となる界面活性剤の分解温度以上、摂氏260度未満である、請求項1ないし5のいずれかに記載の膜電極接合体の製造方法。
  7.  前記カーボンシートの厚みが、100μm以上、1000μm以下であり、かつ、前記第1熱処理温度が摂氏260度以上、前記混練物の原料となる高分子樹脂の融点以下である、請求項1ないし6のいずれかに記載の膜電極接合体の製造方法。
  8.  前記カーボン層における高分子樹脂の含有量が、前記カーボンシートにおける高分子樹脂の含有量よりも高い、請求項1ないし7のいずれかに記載の膜電極接合体の製造方法。
  9.  導電性粒子と高分子樹脂と界面活性剤と分散溶媒とを混練して混練物を得て、
     前記混練物を圧延および成形してシート状混練物を得て、
     前記シート状混練物を、第1熱処理温度で熱処理して前記シート状混練物から前記界面活性剤と前記分散溶媒とを除去したカーボンシートを得て、
     導電性粒子と高分子樹脂と界面活性剤と分散溶媒とを混ぜて分散液を得て、
     前記カーボンシート上に前記分散液を塗工および乾燥して前記カーボンシートよりも薄い分散液層を形成し、
     前記分散液層が形成された前記カーボンシートを、第1熱処理温度よりも低い第2熱処理温度で熱処理して前記分散液層から前記界面活性剤と前記分散溶媒とを除去して、前記カーボンシートの上にカーボン層が形成されたガス拡散層を得ること、
     を含むガス拡散層の製造方法。
  10.  導電性粒子と高分子樹脂と界面活性剤とを含むカーボンシートと、
     前記カーボンシート上に設けられ、導電性粒子と高分子樹脂と界面活性剤とを含み、前記カーボンシートよりも高分子樹脂の含有量が高いカーボン層と、
     前記カーボン層に接触するように設けられた触媒層と、
     前記触媒層上に設けられた電解質膜と、を含み、
     前記カーボン層における界面活性剤の残存量は1重量%以下であり、
     前記カーボン層と前記触媒層との接着強度が25mm×100mmあたり0.1N以上である、
     膜電極接合体。
PCT/JP2012/004562 2011-07-19 2012-07-17 膜電極接合体およびガス拡散層の製造方法 WO2013011683A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12815214.7A EP2736107A4 (en) 2011-07-19 2012-07-17 METHOD FOR PRODUCING A MEMBRANE ELECTRODE ARRANGEMENT AND METHOD FOR PRODUCING A GAS DIFFUSION LAYER
JP2012548279A JP5259022B1 (ja) 2011-07-19 2012-07-17 膜電極接合体およびガス拡散層の製造方法
US13/812,233 US8999599B2 (en) 2011-07-19 2012-07-17 Method of fabricating membrane electrode assembly and gas diffusion layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011157975 2011-07-19
JP2011-157975 2011-07-19

Publications (1)

Publication Number Publication Date
WO2013011683A1 true WO2013011683A1 (ja) 2013-01-24

Family

ID=47557883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004562 WO2013011683A1 (ja) 2011-07-19 2012-07-17 膜電極接合体およびガス拡散層の製造方法

Country Status (4)

Country Link
US (1) US8999599B2 (ja)
EP (1) EP2736107A4 (ja)
JP (1) JP5259022B1 (ja)
WO (1) WO2013011683A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015065002A (ja) * 2013-09-25 2015-04-09 パナソニック株式会社 多成分ガスのシミュレーション方法およびシミュレーション装置
JP2015064955A (ja) * 2013-09-24 2015-04-09 トヨタ自動車株式会社 拡散層形成ペーストとその製造方法およびガス拡散層の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9282650B2 (en) * 2013-12-18 2016-03-08 Intel Corporation Thermal compression bonding process cooling manifold
US10192847B2 (en) * 2014-06-12 2019-01-29 Asm Technology Singapore Pte Ltd Rapid cooling system for a bond head heater
US10840521B2 (en) * 2015-12-30 2020-11-17 Mann+Hummel Gmbh Humidifier, for example for a fuel cell
KR102127037B1 (ko) * 2017-02-28 2020-06-25 주식회사 엘지화학 전극 구조체 및 이를 포함하는 레독스 흐름 전지
EP3609005A4 (en) * 2017-04-03 2020-12-30 Toray Industries, Inc. METHOD OF MANUFACTURING A GAS DIFFUSION ELECTRODE SUBSTRATE AND FUEL CELL
JP6778241B2 (ja) * 2018-10-26 2020-10-28 本田技研工業株式会社 ガス拡散層シートの加工装置
CN114927704A (zh) * 2022-05-12 2022-08-19 上海碳际实业集团有限公司 一种燃料电池用气体扩散层的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085280A (ja) 1999-09-13 2001-03-30 Nippon Valqua Ind Ltd シート状電極およびその製造方法
JP2003178763A (ja) * 2001-12-10 2003-06-27 Fuji Electric Co Ltd リン酸型燃料電池の電極製造方法
JP2004164903A (ja) * 2002-11-11 2004-06-10 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池及びその電極の製造方法
JP2007242378A (ja) * 2006-03-07 2007-09-20 Univ Of Yamanashi 燃料電池用ガス拡散層
JP2009016171A (ja) * 2007-07-04 2009-01-22 Nissan Motor Co Ltd 燃料電池用ガス拡散電極及びその製造方法
WO2010050219A1 (ja) 2008-10-31 2010-05-06 パナソニック株式会社 燃料電池用ガス拡散層及びその製造方法、膜電極接合体、並びに燃料電池
JP2010176948A (ja) * 2009-01-28 2010-08-12 Sony Corp 電気化学デバイス用ガス拡散層の製造方法及びそれに使用される混合体
WO2011030720A1 (ja) * 2009-09-10 2011-03-17 日産自動車株式会社 燃料電池用ガス拡散層の製造方法、燃料電池用ガス拡散層、および燃料電池
JP2011258395A (ja) * 2010-06-09 2011-12-22 Toyota Motor Corp 燃料電池に用いられるガス拡散層の製造方法、および、製造装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7098163B2 (en) * 1998-08-27 2006-08-29 Cabot Corporation Method of producing membrane electrode assemblies for use in proton exchange membrane and direct methanol fuel cells
US6468682B1 (en) * 2000-05-17 2002-10-22 Avista Laboratories, Inc. Ion exchange membrane fuel cell
EP1383184B1 (en) * 2001-04-27 2017-03-08 Panasonic Intellectual Property Management Co., Ltd. Electrode for fuel cell and method of manufacturing the electrode
WO2006043394A1 (ja) * 2004-10-19 2006-04-27 Matsushita Electric Industrial Co., Ltd. 膜電極接合体、その製造方法及び高分子電解質形燃料電池
KR100761524B1 (ko) 2006-02-02 2007-10-04 주식회사 협진아이엔씨 연료전지용 기체확산층의 제조 방법
JP2007317391A (ja) * 2006-05-23 2007-12-06 Toyota Motor Corp 燃料電池用電極及び燃料電池用電極の製造方法、膜−電極接合体及び膜−電極接合体の製造方法、並びに固体高分子型燃料電池
JP5105888B2 (ja) 2007-02-01 2012-12-26 キヤノン株式会社 ガス拡散電極、燃料電池及びガス拡散電極の製造方法
JP5066998B2 (ja) * 2007-04-25 2012-11-07 旭硝子株式会社 固体高分子形燃料電池用膜電極接合体
KR20080109504A (ko) 2007-06-13 2008-12-17 삼성에스디아이 주식회사 연료전지 시스템용 다중층 캐소드 전극을 갖는 전극막조립체
KR101483125B1 (ko) * 2008-02-05 2015-01-15 삼성에스디아이 주식회사 연료전지용 막전극 접합체, 그 제조방법 및 이를 채용한연료전지
CA2719585A1 (en) * 2008-03-24 2009-10-01 Sanyo Electric Co., Ltd. Membrane-electrode assembly, fuel cell, and fuel cell system
WO2010050218A1 (ja) 2008-10-31 2010-05-06 パナソニック株式会社 膜電極接合体及び燃料電池
TWI431843B (zh) * 2008-12-31 2014-03-21 Ind Tech Res Inst 膜電極組結構及其製作方法
EP2228857A1 (de) * 2009-03-06 2010-09-15 Basf Se Verbesserte Membran-Elektrodeneinheiten

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085280A (ja) 1999-09-13 2001-03-30 Nippon Valqua Ind Ltd シート状電極およびその製造方法
JP2003178763A (ja) * 2001-12-10 2003-06-27 Fuji Electric Co Ltd リン酸型燃料電池の電極製造方法
JP2004164903A (ja) * 2002-11-11 2004-06-10 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池及びその電極の製造方法
JP2007242378A (ja) * 2006-03-07 2007-09-20 Univ Of Yamanashi 燃料電池用ガス拡散層
JP2009016171A (ja) * 2007-07-04 2009-01-22 Nissan Motor Co Ltd 燃料電池用ガス拡散電極及びその製造方法
WO2010050219A1 (ja) 2008-10-31 2010-05-06 パナソニック株式会社 燃料電池用ガス拡散層及びその製造方法、膜電極接合体、並びに燃料電池
JP2010176948A (ja) * 2009-01-28 2010-08-12 Sony Corp 電気化学デバイス用ガス拡散層の製造方法及びそれに使用される混合体
WO2011030720A1 (ja) * 2009-09-10 2011-03-17 日産自動車株式会社 燃料電池用ガス拡散層の製造方法、燃料電池用ガス拡散層、および燃料電池
JP2011258395A (ja) * 2010-06-09 2011-12-22 Toyota Motor Corp 燃料電池に用いられるガス拡散層の製造方法、および、製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2736107A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015064955A (ja) * 2013-09-24 2015-04-09 トヨタ自動車株式会社 拡散層形成ペーストとその製造方法およびガス拡散層の製造方法
JP2015065002A (ja) * 2013-09-25 2015-04-09 パナソニック株式会社 多成分ガスのシミュレーション方法およびシミュレーション装置

Also Published As

Publication number Publication date
EP2736107A1 (en) 2014-05-28
JP5259022B1 (ja) 2013-08-07
US20130122394A1 (en) 2013-05-16
JPWO2013011683A1 (ja) 2015-02-23
US8999599B2 (en) 2015-04-07
EP2736107A4 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
JP5259022B1 (ja) 膜電極接合体およびガス拡散層の製造方法
JP5979562B2 (ja) 燃料電池及びその製造方法
EP2722918B1 (en) Microporous layer sheet for fuel cells and method for producing same
CN102379055B (zh) 高分子电解质型燃料电池以及具备其的燃料电池堆
JP2009193860A (ja) 固体高分子形燃料電池用膜電極接合体およびその製造方法
JP5302481B2 (ja) 燃料電池
WO2011096205A1 (ja) 高分子電解質形燃料電池
JP5194624B2 (ja) 固体高分子形燃料電池用膜電極接合体の製造方法
US20090053403A1 (en) Method of producing electrolyte membrane-electrode assembly and method of producing electrolyte membrane
JP2010170892A (ja) 燃料電池
JP5178968B2 (ja) 高分子電解質形燃料電池およびその製造方法
JP2014179252A (ja) 燃料電池及びその製造方法
EP4303970A1 (en) Membrane electrode assembly aggregate roll, membrane electrode assembly, and solid polymer fuel cell
JP2013084486A (ja) 燃料電池セルスタック
EP2933862A1 (en) Fuel cell electrode sheet and method for producing same
JP2014002923A (ja) 燃料電池用ガス拡散層及びその製造方法
US20080090126A1 (en) Preservation Method Of Polymer Electrolyte Membrane Electrode Assembly Technical Field
JP2014035797A (ja) 膜電極接合体及び燃料電池、及びその製造方法
JP2013084427A (ja) 膜−触媒層接合体の製造方法及び膜電極接合体の製造方法
US10388976B2 (en) Method of producing membrane electrode assembly
JP2010257669A (ja) 膜電極接合体及びその製造方法並びに固体高分子形燃料電池
JP2014086133A (ja) 燃料電池用ガス拡散層およびその製造方法、並びに燃料電池セル
JP5400254B1 (ja) 膜−電極接合体、燃料電池スタック、燃料電池システムおよびその運転方法
JP2014086130A (ja) 燃料電池用ガス拡散層およびその製造方法
JP5522239B2 (ja) 固体高分子形燃料電池用膜電極接合体の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012548279

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13812233

Country of ref document: US

Ref document number: 2012815214

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12815214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE