WO2013011668A1 - 放熱基板用複合材料、及びその製造方法 - Google Patents

放熱基板用複合材料、及びその製造方法 Download PDF

Info

Publication number
WO2013011668A1
WO2013011668A1 PCT/JP2012/004490 JP2012004490W WO2013011668A1 WO 2013011668 A1 WO2013011668 A1 WO 2013011668A1 JP 2012004490 W JP2012004490 W JP 2012004490W WO 2013011668 A1 WO2013011668 A1 WO 2013011668A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
silicon carbide
aluminum alloy
heat dissipation
carbide particles
Prior art date
Application number
PCT/JP2012/004490
Other languages
English (en)
French (fr)
Inventor
石動 薫
石井 秀樹
茂久 渡辺
堀 久司
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Priority to EP12815573.6A priority Critical patent/EP2735391A4/en
Priority to CN201280021267.8A priority patent/CN103501939B/zh
Priority to US14/112,956 priority patent/US8945466B2/en
Priority to JP2013524600A priority patent/JP5464301B2/ja
Publication of WO2013011668A1 publication Critical patent/WO2013011668A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/065Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component

Definitions

  • the present invention relates to a composite material for a heat dissipation substrate and a manufacturing method thereof, and more particularly to a composite material for a heat dissipation substrate containing aluminum and silicon carbide and a manufacturing method thereof.
  • semiconductor elements are used not only for controlling electromagnetic signals in computers, but also for controlling power as a power source in industrial equipment such as electric cars, electric cars, machine tools, refrigerators, etc. ing.
  • a semiconductor element used for such power control has a large amount of heat generation because its purpose of use is power control, and a substrate on which such a semiconductor element is mounted is required to have high heat dissipation efficiency. .
  • copper and copper alloys having high thermal conductivity have been used as materials for a heat dissipation board that is mounted on a semiconductor element for power control and dissipates heat generated from the semiconductor element.
  • copper and copper alloys have a larger coefficient of thermal expansion than silicon and gallium arsenide that constitute a semiconductor element, the coefficient of thermal expansion between the semiconductor element and the heat dissipation substrate is caused by the heat generated by the semiconductor element. Cracks may occur due to the difference. As a result, the occurrence of such cracks may cause a decrease in the heat dissipation characteristics of the semiconductor element and the destruction of the semiconductor element.
  • molybdenum, tungsten, or an alloy thereof is used as the heat dissipation substrate from the viewpoint of preventing the occurrence of cracks due to the difference in thermal expansion coefficient between the semiconductor element and the heat dissipation substrate. It has been used for materials. However, these heat dissipation substrate materials have the disadvantage of low thermal conductivity. Increasing the volume of the heat dissipation substrate to compensate for the disadvantage of low thermal conductivity can also increase the density of these materials. And it led to an increase in mass.
  • Patent Literature 1 and Patent Literature 2 propose a composite material of copper and diamond and a composite material of copper and cuprous oxide, respectively.
  • Patent Document 1 Although the composite material disclosed in Patent Document 1 has both a thermal conductivity exceeding 600 W / (m ⁇ K) and a thermal expansion coefficient lower than 5 ⁇ 10 ⁇ 6 , it uses diamond. In addition to the high cost, there are disadvantages in that it is inferior in cutting workability during dimensional adjustment.
  • the composite material disclosed in Patent Document 2 has a thermal conductivity exceeding 200 W / (m ⁇ K) and a thermal expansion coefficient lower than 16 ⁇ 10 ⁇ 6, and is easy to manufacture and low in cost. Can be realized.
  • Patent Documents 3 to 7 each propose a composite material containing an aluminum alloy and silicon carbide.
  • the composite material according to Patent Documents 3 to 7, the density of the aluminum alloy and silicon carbide is because it is respectively 2.7 kg / dm 3 approximately and 3.2 kg / dm 3 approximately, made corresponding to the required weight reduction Yes.
  • the technique disclosed in Patent Document 3 is a method for manufacturing a composite material by a so-called impregnation method. Specifically, a porous preform which is an aggregate of silicon carbide particles or fibers is formed by molding silicon carbide particles or fibers, and then contacted with molten aluminum to form a porous preform. This is a method of impregnating a molten aluminum alloy with a gap.
  • Patent Document 4 is a method for manufacturing a composite material by a so-called casting method. Specifically, the molten aluminum alloy and silicon carbide particles are mixed and then cast. Further, the techniques disclosed in Patent Document 5, Patent Document 6, and Patent Document 7 are methods for producing a composite material of an aluminum alloy and silicon carbide by a so-called powder metallurgy method. Specifically, it is a method in which aluminum powder or aluminum alloy powder and silicon carbide particles are mixed and then sintered.
  • the proportion of silicon carbide particles when the proportion of silicon carbide particles is increased, the fluidity of the mixture of molten aluminum alloy and silicon carbide is lowered, the castability is deteriorated, and silicon carbide is segregated in the mixture. .
  • the ratio of silicon carbide in the mixture could not be increased to 50% or more, and it was difficult to obtain a heat dissipation substrate with satisfactory performance.
  • the ratio of silicon carbide particles can be made higher than in the casting method.
  • the technique described in Patent Document 5 uses aluminum having a purity of 99% or more instead of an aluminum alloy, the sintering temperature needs to be 660 ° C. or more. That is, the time and cost required for heating for sintering are enormous, and it is necessary to use an expensive graphite or ceramic as the mold for heat molding, resulting in high costs.
  • Patent Document 6 provides a semiconductor substrate material in which silicon carbide is dispersed in the form of particles in aluminum or an aluminum alloy.
  • the sintering atmosphere needs to be a nitrogen atmosphere of 99% by volume or more, an atmosphere having an oxygen concentration of 200 ppm or less, or an atmosphere having a dew point of ⁇ 20 ° C. or less, which is expensive. There was a drawback of becoming.
  • Patent Document 7 requires a plurality of ceramic particles having different average particle diameters, and requires preforming under conditions of 100 to 400 ° C. and 30 to 300 MPa, which increases costs. There was a drawback. Therefore, the present invention has been made paying attention to the above problems, the purpose of which is to achieve both a high thermal conductivity and a low coefficient of thermal expansion, and a composite material for a heat dissipation substrate having satisfactory performance as a heat dissipation substrate, Another object of the present invention is to provide a method for producing the composite material, which can produce the composite material at low cost.
  • the present inventors have conducted intensive studies. As a result, if the silicon carbide particles of the composite material for a heat dissipation substrate of an aluminum alloy and silicon carbide are in contact with each other, high thermal conductivity can be obtained. And a low coefficient of thermal expansion.
  • the present invention is based on the above findings by the present inventors, and a method for producing a composite material for a heat dissipation substrate according to an embodiment of the present invention for solving the above problems includes an aluminum alloy powder, a silicon carbide Mixing step of mixing elementary particles to obtain a mixture; A heating step of filling the mixture in an aluminum frame and heating; A forging step of forging the mixture in a semi-molten state in which the aluminum alloy is in a molten state, The silicon carbide particles are in contact with each other.
  • the aluminum alloy may be an Al—Si alloy.
  • the Al—Si alloy may be Al— (7 to 11) mass% Si.
  • the heating temperature in the heating step may be a liquidus temperature of the aluminum alloy or higher and 650 ° C. or lower.
  • the forging conditions in the forging step may be a pressure of 100 MPa to 300 MPa applied for 1 second to 20 seconds.
  • the composite material for heat sinks according to an embodiment of the present invention is obtained by the above-described method for manufacturing a composite material for heat sinks.
  • the composite material for heat dissipation substrates according to another embodiment of the present invention is manufactured using a powder metallurgy method, contains an aluminum alloy and silicon carbide, and the silicon carbide particles are in contact with each other.
  • the composite material for the heat dissipation substrate is produced by a powder metallurgy method, so that the cost is low.
  • the composite material for a heat dissipation substrate of the present invention has both high thermal conductivity and low thermal expansion coefficient, is lightweight, has a low longitudinal elastic modulus, and can improve adhesion with a semiconductor element. It has suitable performance as a heat dissipation substrate for semiconductor elements.
  • FIG. 2 is a photomicrograph showing the cross-sectional structure of the composite material of Example 1.
  • 4 is a photomicrograph showing the cross-sectional structure of the composite material of Comparative Example 1.
  • 6 is a photomicrograph showing a cross-sectional structure of a composite material of Comparative Example 2.
  • 6 is a photomicrograph showing the cross-sectional structure of the composite material of Comparative Example 3.
  • FIG. 3 is a photomicrograph obtained by image conversion of the cross-sectional structure of the composite material of Example 1 shown in FIG. 2 in which the silicon carbide particles are blackened and the other parts are whitened by image analysis.
  • FIG. 4 is a photomicrograph obtained by image conversion of the cross-sectional structure of the composite material of Comparative Example 1 shown in FIG. 3 in which the silicon carbide particle portions are blackened and the other portions are whitened by image analysis.
  • the manufacturing method of the composite material for heat dissipation substrates includes at least a mixing step, a heating step, and a forging step.
  • the mixing step is a step in which at least the aluminum alloy powder and the silicon carbide particles are uniformly mixed to obtain a mixture.
  • the aluminum alloy powder is preferably an Al—Si alloy powder, more preferably Al— (7 to 11) mass% Si. If the content of Si in the Al—Si alloy is less than 7% by mass, the effect of improving fluidity in the molten state due to the inclusion of Si is low, which is not preferable. On the other hand, if the content of Si in the Al—Si alloy exceeds 11% by mass, an Al—Si eutectic structure develops and the machinability after solidification deteriorates, which is not preferable.
  • the particle diameter of the aluminum alloy powder is not particularly limited, but is preferably 10 ⁇ m to 100 ⁇ m, and more preferably 25 to 60 ⁇ m. When the particle diameter exceeds 100 ⁇ m, it becomes difficult to uniformly mix with silicon carbide particles in the mixing step. On the other hand, if the particle size is smaller than 10 ⁇ m, it tends to float in the air and handling becomes difficult.
  • the aluminum alloy powder may be mixed with a plurality of aluminum alloy powders having different Si contents to form an Al- (7-11) mass% Si alloy.
  • the particle diameters of the plurality of aluminum alloy powders having different Si contents are preferably 10 ⁇ m to 100 ⁇ m, more preferably 25 ⁇ m to 60 ⁇ m.
  • the particle diameters of the plurality of aluminum alloy powders having different Si contents may be different from each other.
  • the particle diameter of the aluminum alloy powder is a value determined by a laser diffraction particle size analysis measurement method.
  • the shape of the aluminum alloy powder is not particularly limited, and may be any of, for example, a teardrop shape, a true spherical shape, a spheroid shape, a flake shape, or an indefinite shape.
  • silicon carbide particles green silicon carbide particles or black silicon carbide particles can be used.
  • the particle size of the silicon carbide particles is not particularly limited, but is preferably 10 ⁇ m to 100 ⁇ m, and more preferably 25 ⁇ m to 60 ⁇ m. When the particle diameter exceeds 100 ⁇ m, it becomes difficult to uniformly mix with the aluminum alloy powder in the mixing step. On the other hand, when the particle size of the silicon carbide particles is smaller than 10 ⁇ m, the particles are likely to float in the air and are not easily handled.
  • the particle size of the silicon carbide particles is a value determined by a laser diffraction particle size analysis measurement method.
  • the shape of the silicon carbide particles is not particularly limited, and may be any of, for example, a teardrop shape, a true spherical shape, a spheroid shape, a flake shape, or an indefinite shape.
  • the mixing ratio of the aluminum alloy powder to the silicon carbide particles is preferably 30:70 to 60:40 by mass ratio.
  • the mixing ratio exceeds 30:70, that is, when there are many silicon carbide particles, voids remain in the obtained composite material after the “forging step”, and thus high heat conduction. The rate is not obtained.
  • the composite material does not have satisfactory performance as a heat dissipation substrate for a power control semiconductor element.
  • the mixing ratio exceeds 60:40, that is, there are many aluminum alloy powders
  • the silicon carbide particles constituting the composite material obtained after the “forging step” are aluminum alloy powders. Therefore, a low coefficient of thermal expansion cannot be obtained. As a result, the composite material does not have satisfactory performance as a heat dissipation substrate for a power control semiconductor element.
  • a method of mixing the aluminum alloy powder and the silicon carbide particles a known method can be employed. For example, it is preferable to use a V blender, a mixer such as a cross rotary mixer, a vibration mill, a planetary mill or the like and mix for about 1 to 6 hours.
  • the preforming step is a step of compressing the mixture obtained in the mixing step by pressing at a pressure of 200 MPa to 1000 MPa or a hydrostatic pressure at a pressure in a temperature range of room temperature or room temperature to 300 ° C.
  • this preforming step can be omitted, the implementation of this step facilitates the filling of the mixture into the aluminum frame in the heating step described later.
  • the press or hydrostatic pressure is less than 200 MPa, there is no significant effect of preforming.
  • the hydrostatic pressure is 1000 MPa, and no further pressure is required.
  • the heating step is a step in which the mixture is filled in an aluminum frame and heated.
  • the heating temperature in this step varies depending on the component composition of the powder of the aluminum alloy, but is a liquidus temperature or higher and 650 ° C. or lower at which the aluminum alloy is in a molten state.
  • the liquidus temperature is 590 ° C.
  • the heating temperature is in the range of 590 to 650 ° C. If the heating temperature is lower than the liquidus temperature of the aluminum alloy, the forging process cannot be performed because the aluminum alloy is not in a molten state.
  • the heating temperature exceeds 650 ° C.
  • the cost required for heating increases, and the surface oxide film of the molten aluminum alloy becomes thick, and the apparent fluidity decreases.
  • the required pressure and the required time increase in the forging process, which is not preferable.
  • the atmosphere during heating in this step is not particularly limited, and an atmosphere such as air, nitrogen gas, argon gas, or vacuum can be set. However, air is preferable because the cost can be reduced.
  • the holding time until the forging step, which is the next step is preferably 10 minutes to 200 minutes after the mixture reaches a temperature of the liquidus temperature to 650 ° C.
  • the holding time is less than 10 minutes, when a plurality of aluminum alloy powders having different Si contents are mixed as described above, the component composition of the aluminum alloy is not uniformized.
  • the holding time exceeds 200 minutes, the cost required for heating increases, and the surface oxide film of the molten aluminum alloy becomes thick, and the apparent fluidity decreases. As a result, the required pressure and the required time increase in the forging process, which is not preferable.
  • the forging step is a step of forging the mixture in a molten state and in a semi-molten state for a predetermined time at a predetermined pressure by the heating step.
  • the aluminum alloy is forged while being maintained at a temperature not lower than the liquidus temperature of the aluminum alloy and not higher than 650 ° C. so that the aluminum alloy does not solidify.
  • Formging conditions As forging conditions in this step, it is preferable to apply a pressure of 100 MPa to 300 MPa for 1 second to 20 seconds. When the pressure is less than 100 MPa, voids remain in the obtained composite material, so that high thermal conductivity cannot be obtained. It is sufficient for the pressure to be 300 MPa, and it is not necessary to apply more pressure.
  • the forging time is less than 1 second, voids remain in the composite material, and thus high thermal conductivity cannot be obtained. It is sufficient that the forging time is 20 seconds, and it is not necessary to spend more time.
  • the composite material filled in the aluminum frame is cooled to room temperature while being filled in the aluminum frame. Thereafter, the cooled composite material is molded as a heat dissipation substrate by cutting an aluminum frame by machining as necessary.
  • FIG. 1 is a front view showing a configuration of a heat dissipation substrate made of a composite material produced by the composite material manufacturing method of the present embodiment.
  • a rectangular heat radiation board 1 has a power control semiconductor element 2 mounted on a surface 1a thereof.
  • the semiconductor element 2 is a semiconductor element made of silicon, for example.
  • the semiconductor element 2 is soldered or brazed to the surface 1a for the purpose of heat transfer.
  • a heat sink 3 having a large number of fins is fixed to the heat radiating board 1 by bolts 4 on the back surface 1b of the heat radiating board 1 through heat transfer grease (not shown).
  • the bolt 4 is also installed for the purpose of assisting heat transfer as well as fixing the heat sink 3 to the heat dissipation substrate 1. Therefore, the bolt 4 is preferably made of a material having high thermal conductivity.
  • the heat dissipating substrate 1 on which the semiconductor element 2 is mounted and the heat sink 3 is attached is provided in order to efficiently conduct the heat generated from the semiconductor element 1 to the heat sink 3 and dissipate it. That is, the heat dissipation substrate 1 needs to be excellent in thermal conductivity, thermal expansion coefficient, and longitudinal elastic modulus in order to achieve efficient heat dissipation.
  • the composite material produced by the composite material manufacturing method of the present embodiment is in contact with the silicon carbide particles constituting the composite material, and therefore has satisfactory performance as a heat dissipation substrate of the power control semiconductor element.
  • the silicon carbide particles are in contact with each other means that the surface of the composite material of the present embodiment (for example, the surface in the thickness direction) is opposite the surface (for example, in the thickness direction). This represents that the silicon carbide particles are continuously in contact with each other up to the back surface.
  • the “certain surface” and the “opposite surface” may be “one surface” and “the other surface on the opposite side” of a section of the composite material cut in an arbitrary range as a sample. That is, in the composite material of the present embodiment, silicon carbide particles may be continuously in contact from one surface to the opposite surface regardless of whether or not the composite material is cut.
  • the Al— (7-11) mass% Si alloy used in the present embodiment has a liquidus temperature lower than that of pure aluminum and has high fluidity even when melted in the atmosphere.
  • it has high wettability with silicon carbide (low interfacial energy). Therefore, it is not necessary to set the heating temperature to 660 ° C. or higher as disclosed in Patent Document 5, and even if the heating mold is made of steel, the life can be sufficiently extended.
  • the composite material of the present embodiment does not need to be a nitrogen atmosphere of 99% by volume or more, an atmosphere having an oxygen concentration of 200 ppm or less, or an atmosphere having a dew point of ⁇ 20 ° C. or less. . Therefore, even in the atmosphere, the silicon carbide particles constituting the composite material are in contact with each other, and as a result, both high thermal conductivity and low thermal expansion coefficient are compatible. A composite material having satisfactory performance as a substrate can be obtained.
  • the composite material of this embodiment fills an aluminum frame with a mixture of aluminum alloy powder and silicon carbide particles, heats them, and performs semi-molten forging. Molding can be omitted, and even when preforming is performed, it can be performed at room temperature or a temperature range from room temperature to 300 ° C.
  • the manufacturing method of the composite material of this embodiment employs the powder metallurgy method, even if the silicon carbide particles constituting the obtained composite material are in contact with each other, they are only in contact. . That is, unlike a composite material of an aluminum alloy and silicon carbide obtained by an impregnation method, silicon carbide particles are not formed to be chemically bonded as a porous preform. In particular, in the composite material of the present embodiment, silicon carbide particles are continuously in contact from one surface to the other surface on the opposite side. Therefore, the longitudinal elastic modulus of the composite material obtained by the composite material manufacturing method of the present embodiment can be set to 190 GPa or less. As a result, the stress generated due to the difference in the coefficient of thermal expansion between the semiconductor element and the semiconductor element can be relaxed, and the adhesion with the semiconductor element can be improved.
  • the composite material manufacturing method of the present embodiment employs a powder metallurgy method, the composite material is mounted on a power control semiconductor element at a lower cost than the techniques disclosed in Patent Documents 1 to 7.
  • a composite material having satisfactory performance as a heat dissipation substrate can be provided.
  • at least a composite material of an aluminum alloy and silicon carbide having a suitable longitudinal elastic modulus is used as a heat dissipation substrate for a power control semiconductor element at a low cost. Can be produced.
  • the mixing ratio of the aluminum alloy powder and the green silicon carbide particles is 50:50 by volume.
  • the liquidus temperature of Al-8.3 mass% Si is 607 ° C.
  • the obtained mixture was pre-formed by pressing at a pressure of 300 MPa at room temperature, and filled in an aluminum frame.
  • the mixture filled in the aluminum frame was heated to 620 ° C., which is a liquidus temperature to 650 ° C. to melt the aluminum alloy (heating step). Thereafter, the heated mixture was held for 30 minutes and then subjected to semi-molten forging (forging process) by applying a pressure of 220 MPa for 5 seconds to obtain a composite material of an aluminum alloy and silicon carbide.
  • the obtained mixture was preliminarily molded by pressing at a pressure of 300 MPa at room temperature, and filled in an aluminum frame (preliminary molding step). Thereafter, the mixture filled in the aluminum frame was heated to 620 ° C., which is a temperature lower than the liquidus temperature of the pure aluminum powder (heating step). The pure aluminum was not melted by this step. Thereafter, the heated mixture was held for 30 minutes, and then hot forged by applying a pressure of 220 MPa for 5 seconds to obtain a composite material of pure aluminum and silicon carbide.
  • the cross-sectional structure of the composite material of Example 1 shows that the silicon carbide particles observed in gray are in contact with each other, and there are almost no voids observed in black.
  • the cross-sectional structure of the composite material of Comparative Example 1 and Comparative Example 2 is that the heating temperature is lower than the liquidus temperature of the aluminum alloy, and the aluminum alloy is not in a molten state. It can be seen that the semi-molten forging is insufficient and many voids observed in black remain.
  • the black portion (silicon carbide particles) is continuous from the upper side (one surface) to the lower side (the other surface) in FIG.
  • the black portion (silicon carbide particles) is divided by the white portion (component other than silicon carbide).
  • the average thermal expansion coefficient of 20 ° C. to 150 ° C. was measured for the composite materials of Example 1 and Comparative Examples 1 to 3 obtained as described above.
  • the average coefficient of thermal expansion was measured using a DL-7000 coefficient of thermal expansion meter manufactured by Vacuum Riko Co., Ltd.
  • the measurement results are shown in Table 1.
  • the thermal expansion coefficients of Si (silicon) and GaAs (gallium arsenide) are 4.2 ⁇ 10 ⁇ 6 / ° C. and 6.5 ⁇ 10 ⁇ 6 / ° C., respectively (see Patent Document 6). Therefore, in this example, 9 ⁇ 10 ⁇ 6 / ° C. or less was used as an evaluation criterion.
  • the composite material of Example 1 has a thermal conductivity of more than 180 W / (m ⁇ K) and an average thermal expansion coefficient of 20 ° C. to 150 ° C. of less than 9 ⁇ 10 ⁇ 6 / ° C. is there.
  • the thermal conductivities of the composite materials of Comparative Examples 1 to 3 are all less than 160 W / (m ⁇ K), and the average thermal expansion coefficients from 20 ° C. to 150 ° C. are all 9 ⁇ 10 ⁇ 6. It can be seen that the value exceeds / ° C. Such a difference in value is considered to be caused by a difference in the amount of voids observed in the cross-sectional structure observation.
  • the longitudinal elastic modulus of the composite materials of Example 1 and Comparative Examples 1 to 3 were 180 GPa, 100 GPa, 120 GPa, and 140 GPa, respectively, all satisfying 190 GPa or less, and favorable results were obtained.
  • the impregnation method is used instead of the powder metallurgy method in order to produce a composite material having a favorable thermal conductivity and average thermal expansion coefficient, not only an increase in manufacturing cost is unavoidable, but also the longitudinal direction of the composite material. It is considered extremely difficult to set the elastic modulus to 190 GPa or less.
  • this invention is not limited to this, A various change and improvement can be performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Powder Metallurgy (AREA)

Abstract

 高い熱伝導率と低い熱膨張率を両立し、放熱基板として満足できる性能を有する放熱基板用複合材料、及び低コストで上記複合材料を製造することができる上記複合材料の製造方法を提供する。そのために、粉末冶金法によって放熱基板用複合材料を製造する。この製造方法によって作製された放熱基板用複合材料は、アルミニウム合金及び炭化けい素を含有し、上記炭化けい素の粒子同士が接している。

Description

放熱基板用複合材料、及びその製造方法
 本発明は、放熱基板用複合材料、及びその製造方法に関し、特に、アルミニウムと炭化けい素とを含む放熱基板用複合材料、及びその製造方法に関する。
 従来より、半導体素子は、計算機における電磁的信号の制御のみならず、鉄軌道の電気車、電気自動車、工作機械、冷凍機などのような産業機器における、動力源としての電力制御にも利用されている。このような電力制御に利用される半導体素子は、その利用目的が電力の制御であるため、発熱量も多く、そのような半導体素子が実装される基板は、放熱効率が高いことが要求される。
 電力制御用の半導体素子に実装され、該半導体素子から発生する熱を放熱する放熱基板の材料としては、従来より、熱伝導率の高い銅及び銅合金が利用されている。
 しかし、銅及び銅合金は、半導体素子を構成するけい素、ひ化ガリウムなどと比較して、熱膨張率が大きいため、半導体素子の発熱によって、半導体素子と放熱基板との間に熱膨張率の差に起因してクラックが発生することがある。このようなクラックの発生は、結果として、半導体素子の放熱特性の低下、及び半導体素子の破壊の要因となることがあった。
 そのため、半導体素子の信頼性が特に必要な場合、半導体素子と放熱基板との間の熱膨張率の差に起因するクラックの発生を防止する観点から、モリブデン、タングステン、又はそれらの合金が放熱基板の材料に利用されてきている。
 しかしながら、これらの放熱基板の材料は、熱伝導率が低いという欠点があり、熱伝導率が低いという欠点を補うために放熱基板の容積を増大させることは、これらの材料の密度が大きいこともあって、質量の増大につながっていた。
 そこで、取扱の容易性、並びに鉄軌道用の電気車及び電気自動車のような輸送機器における走行性能の向上を目的として、高い熱伝導率と、より低い熱膨張率を実現し、軽量な電力制御用半導体素子の放熱基板が要望されている。
 このような放熱基板への要望に対し、特許文献1及び特許文献2では、それぞれ、銅とダイヤモンドの複合材料及び銅と酸化第一銅の複合材料が提案されている。
 しかしながら、特許文献1に開示された複合材料は、600W/(m・K)を超える熱伝導率と5×10-6を下回る熱膨張率を両立させているものの、ダイヤモンドを利用しているため、コストが高いうえに、寸法調整等の際の切削加工性に劣るという欠点がある。
 一方、特許文献2に開示された複合材料は、200W/(m・K)を超える熱伝導率と16×10-6を下回る熱膨張率を両立させているほか、製造も容易で、低コストで実現できるものである。しかし、銅及び酸化第一銅の密度は、それぞれ8.9kg/dm及び6.4kg/dmであるため、軽量であるという要求に対応できていない。
 そこで、軽量化の要求に応える複合材料に関する技術として、特許文献3~7には、いずれもアルミニウム合金と炭化けい素とを含む複合材料が提案されている。特許文献3~7に記載の複合材料は、アルミニウム合金及び炭化けい素の密度が、それぞれ2.7kg/dm程度及び3.2kg/dm程度であるため、軽量化の要求に対応できている。
 特許文献3に開示された技術は、いわゆる含浸法による複合材料の製造方法である。具体的には、炭化けい素の粒子又は繊維を成型することによって炭化けい素の粒子又は繊維の凝集体である多孔質のプリフォームを形成した後、溶融アルミニウムを接触させ、多孔質のプリフォームの空隙に溶融アルミニウム合金を含浸させる方法である。
 また、特許文献4に開示された技術は、いわゆる鋳造法による複合材料の製造方法である。具体的には、溶融アルミニウム合金と炭化けい素の粒子を混合した後、鋳造する方法である。
 また、特許文献5、特許文献6、及び特許文献7に開示された技術は、いわゆる粉末冶金法によるアルミニウム合金と炭化けい素との複合材料の製造方法である。具体的には、アルミニウム粉末又はアルミニウム合金の粉末と、炭化けい素の粒子とを混合した後、焼結する方法である。
国際公開WO2003/040420号パンフレット 特開2004-003023号公報 特開平2-243729号公報 特表平1-501489号公報 特開平9-157773号公報 特開平10-335538号公報 特開平11-106848号公報
 しかしながら、上記含浸法では、多孔質のプリフォームを一旦形成した後に、多孔質のプリフォームの空隙に溶融アルミニウム合金を含浸させるため、多段階の加工が必要である。したがって、放熱基板に用いるのに適した複合材料が得られるものの、コストが著しく高くなるという欠点があった。
 一方、鋳造法及び粉末冶金法は、コストを低く抑えることはできるものの、混合可能な炭化けい素の粒子の混合割合に制限があるため、高い熱伝導率と低い熱膨張率を両立することが難しかった。
 特に、鋳造法においては、炭化けい素の粒子の割合を高くすると、溶融アルミニウム合金と炭化けい素との混合物の流動性が低くなって鋳造性が悪化するとともに混合物中において炭化けい素が偏析する。その結果、混合物中の炭化けい素の割合を50%以上にすることができず、満足できる性能の放熱基板を得ることが困難であった。
 なお、粉末冶金法においては、鋳造法よりも炭化けい素の粒子の割合を高くすることができる。しかし、特許文献5に記載の技術は、アルミニウム合金ではなく純度99%以上のアルミニウムを利用しているため、焼結温度を660℃以上とする必要がある。すなわち、焼結のための加熱に要する時間とコストが多大であるとともに、加熱成型用型を、高価な黒鉛又はセラミックス等とする必要があり、コストが高くなるという欠点があった。
 ここで、本発明者らの研究によれば、上記加熱成型用型を鉄鋼製に変更した場合、加熱成型用型の寿命が短く、コストが高くなるという欠点があることが判明している。
 また、特許文献6に記載の技術は、アルミニウム又はアルミニウム合金中に炭化ケイ素が粒子状に分散して存在する半導体基板材料を提供するものである。しかし、このような技術によれば、焼結雰囲気として、99体積%以上の窒素雰囲気、酸素濃度が200ppm以下の雰囲気、あるいは露点が-20℃以下の雰囲気、とする必要があってコストが高くなるという欠点があった。
 さらに、特許文献7に記載の技術は、平均粒径の異なる複数のセラミックス粒子を利用すると共に、100℃~400℃、30MPa~300MPaの条件で予備成形することが必要であり、コストが高くなるという欠点があった。
 そこで、本発明は上記の問題点に着目してなされたものであり、その目的は、高い熱伝導率と低い熱膨張率を両立し、放熱基板として満足できる性能を有する放熱基板用複合材料、及び低コストで上記複合材料を製造することができる上記複合材料の製造方法を提供することにある。
 上記課題を解決するため、本発明者らが鋭意検討を重ねた結果、アルミニウム合金と炭化けい素との放熱基板用複合材料の上記炭化けい素の粒子同士が接していれば、高い熱伝導率と低い熱膨張率とを両立できることを知見した。
 本発明は、本発明者らによる上記知見に基づくものであり、上記課題を解決するための本発明のある実施形態に係る放熱基板用複合材料の製造方法は、アルミニウム合金の粉末と、炭化けい素の粒子とを混合して混合物を得る混合工程と、
 上記混合物をアルミニウム製の枠内に充填して加熱する加熱工程と、
 上記アルミニウム合金が溶融状態となった半溶融状態の上記混合物を鍛造する鍛造工程とを含み、
 上記炭化けい素の粒子同士が接している。
 また、本発明の他の実施形態に係る放熱基板用複合材料の製造方法は、上記アルミニウム合金が、Al-Si合金でもよい。
 また、本発明の他の実施形態に係る放熱基板用複合材料の製造方法は、上記Al-Si合金が、Al-(7~11)質量%Siでもよい。
 また、本発明の他の実施形態に係る放熱基板用複合材料の製造方法は、上記加熱工程における加熱温度が、上記アルミニウム合金の液相線温度以上650℃以下の温度でもよい。
 また、本発明の他の実施形態に係る放熱基板用複合材料の製造方法は、上記鍛造工程における鍛造条件が、100MPa~300MPaの圧力を1秒間~20秒間作用させてもよい。
 また、本発明のある実施形態に係る放熱基板用複合材料は、上記放熱基板用複合材料の製造方法により得られる。
 また、本発明の他の実施形態に係る放熱基板用複合材料は、粉末冶金法を用いて製造され、アルミニウム合金及び炭化けい素を含有し、上記炭化けい素の粒子同士が接している。
 本発明の放熱基板用複合材料の製造方法によれば、粉末冶金法によって放熱基板用の複合材料を作製しているので、低コストである。また、本発明の放熱基板用複合材料は、高い熱伝導率と低い熱膨張率を両立し、軽量で、縦弾性係数が低く半導体素子との密着性を向上させることができるため、電力制御用半導体素子の放熱基板として好適な性能を有する。
本実施形態の放熱基板用複合材料によって作製された放熱基板の構成を示す正面図である。 実施例1の複合材料の断面組織を示す顕微鏡写真である。 比較例1の複合材料の断面組織を示す顕微鏡写真である。 比較例2の複合材料の断面組織を示す顕微鏡写真である。 比較例3の複合材料の断面組織を示す顕微鏡写真である。 図2に示す実施例1の複合材料の断面組織について画像解析により炭化けい素の粒子の部分を黒く、それ以外の部分を白くする画像変換した顕微鏡写真である。 図3に示す比較例1の複合材料の断面組織について画像解析により炭化けい素の粒子の部分を黒く、それ以外の部分を白くする画像変換した顕微鏡写真である。
 以下、本発明のある実施形態の放熱基板用複合材料、及びその製造方法について図面を参照して説明する。
(放熱基板用複合材料の製造方法)
 本実施形態の放熱基板用複合材料(以下、複合材料ということがある。)の製造方法は、混合工程と、加熱工程と、鍛造工程とを少なくとも含む。なお、上記混合工程と上記加熱工程との間に、予備成形工程を含んでもよい。
<混合工程>
 上記混合工程は、少なくとも、アルミニウム合金の粉末と、炭化けい素の粒子とを均一に混合して、混合物を得る工程である。
[アルミニウム合金の粉末]
 上記アルミニウム合金の粉末としては、Al-Si合金の粉末が好ましく、Al-(7~11)質量%Siであることがより好ましい。上記Al-Si合金中のSiの含有量が7質量%未満であると、Siを含有することによる溶融状態での流動性の向上の効果が低いため、好ましくない。一方、Al-Si合金中のSiの含有量が11質量%を超えると、Al-Si系の共晶組織が発達し、凝固後の機械加工性が低下するため、好ましくない。
 また、上記アルミニウム合金の粉末の粒径は、特に限定されないが、10μm~100μmが好ましく、25~60μmがより好ましい。上記粒径が100μmを超えると、上記混合工程において炭化けい素の粒子と均一に混合することが困難となる。一方、上記粒径が10μmより小さいと、空気中に浮遊しやすくなり、取扱が容易でなくなる。また、上記アルミニウム合金の粉末は、Si含有量の異なる複数のアルミニウム合金の粉末を混合して、Al-(7~11)質量%Si合金となるようにしてもよい。Si含有量の異なる複数の上記アルミニウム合金の粉末の粒径は、10μm~100μmが好ましく、25μm~60μmがより好ましい。また、Si含有量の異なる複数の上記アルミニウム合金の粉末の粒径は、相互に異なっていてもよい。
 なお、上記アルミニウム合金の粉末の粒径は、レーザ回折式粒度分析測定法よる値を示す。また、上記アルミニウム合金の粉末の形状としては、特に限定されないが、例えば、涙滴状,真球状,回転楕円体状,フレーク状又は不定形状等、いずれであってもよい。
[炭化けい素の粒子]
 上記炭化けい素の粒子としては、緑色炭化けい素の粒子又は黒色炭化けい素の粒子が使用できる。上記炭化けい素の粒子の粒径は、特に限定されないが、10μm~100μmが好ましく、25μm~60μmがより好ましい。上記粒径が100μmを超えると、上記混合工程において上記アルミニウム合金の粉末と均一に混合することが困難となる。一方、上記炭化けい素の粒子の粒径が10μmより小さいと、空気中に浮遊しやすくなり、取扱が容易でなくなる。
 なお、上記炭化けい素の粒子の粒径は、レーザ回折式粒度分析測定法よる値を示す。また、上記炭化けい素の粒子の形状は特に限定されないが、例えば、涙滴状,真球状,回転楕円体状,フレーク状又は不定形状等、いずれであってもよい。
[混合比]
 上記アルミニウム合金の粉末と、上記炭化けい素の粒子との混合比は、質量比で30:70~60:40が好ましい。
 ここで、上記混合比が、30:70を超える、すなわち、上記炭化けい素の粒子が多いと、上記「鍛造工程」後において、得られた複合材料内に空隙が残存するため、高い熱伝導率が得られない。その結果、上記複合材料は、電力制御用半導体素子の放熱基板として満足できる性能のものとならない。
 また、上記混合比が、60:40を超える、すなわち、アルミニウム合金の粉末が多いと、上記「鍛造工程」後において、得られた複合材料を構成する炭化けい素の粒子同士がアルミニウム合金の粉末により分断されるため、低い熱膨張率が得られない。その結果、上記複合材料は、電力制御用半導体素子の放熱基板として満足できる性能のものとならない。
 上記アルミニウム合金の粉末と、上記炭化けい素の粒子とを混合する方法としては、公知の方法を採用することができる。例えば、Vブレンダー,クロスロータリーミキサー等のミキサー、振動ミル、遊星ミル等を使用し、1時間から6時間程度混合することが好ましい。
<予備成形工程>
 上記予備成形工程は、上記混合工程で得られた上記混合物を室温、又は室温~300℃の温度範囲において、200MPa~1000MPaの圧力でのプレス、又は圧力での静水圧により圧縮する工程である。この予備成形工程は省略可能であるが、この工程の実施により、後述する加熱工程における、上記混合物のアルミニウム製の枠内への充填が容易になる。なお、本工程において、プレス又は静水圧が200MPa未満であると、予備成形の有意の効果がない。他方、静水圧は1000MPaあれば十分であり、それ以上の圧力をかける必要はない。
<加熱工程>
 上記加熱工程は、上記混合物を、アルミニウム製の枠内に充填して、加熱する工程である。
[加熱温度]
 本工程における加熱温度は、上記アルミニウム合金の粉末の成分組成により異なるが、上記アルミニウム合金が溶融状態となる液相線温度以上、650℃以下の温度である。例えば、上記アルミニウム合金の粉末の成分組成がAl-11質量%Siであれば、液相線温度は590℃であるから、上記加熱温度は590~650℃の範囲内となる。上記加熱温度が、上記アルミニウム合金の液相線温度未満であると、上記アルミニウム合金が溶融状態とならないため、上記鍛造工程を行うことができない。一方、上記加熱温度が650℃を超えると、加熱に要するコストが増大するほか、溶融状態の上記アルミニウム合金の表面酸化被膜が厚くなって、みかけ上の流動性が低下する。その結果、上記鍛造工程において、所要圧力及び所要時間が増大することとなり、好ましくない。
[加熱雰囲気]
 本工程における加熱中の雰囲気は特に限定されず、大気中、窒素ガス中、アルゴンガス中、又は真空中等の雰囲気を設定できるが、大気中とするとコストを低くすることができ、好ましい。
[保持時間]
 本工程では、次工程である上記鍛造工程まで保持する保持時間が、上記混合物が、液相線温度以上650℃以下の温度に達してから、10分~200分とすることが好ましい。保持時間が10分未満であると、前述のようにSi含有量の異なる複数の上記アルミニウム合金の粉末を混合した場合に、上記アルミニウム合金の成分組成が均一化しない。一方、保持時間が200分を超えると、加熱に要するコストが増大するほか、溶融状態のアルミニウム合金の表面酸化被膜が厚くなって、みかけ上の流動性が低下する。その結果、上記鍛造工程において、所要圧力及び所要時間が増大することとなり、好ましくない。
<鍛造工程>
 上記鍛造工程は、上記加熱工程により、上記アルミニウム合金が溶融状態であって、半溶融状態の上記混合物を、所定の圧力で所定時間鍛造する工程である。なお、本工程では、上記アルミニウム合金が凝固しないように、上記アルミニウム合金の液相線温度以上650℃以下の温度に保持したまま鍛造される。
[鍛造条件]
 本工程における鍛造条件は、100MPa~300MPaの圧力を1秒間~20秒間作用させることが好ましい。上記圧力が100MPa未満であると、得られた上記複合材料内に空隙が残存するため、高い熱伝導率が得られない。上記圧力は300MPaあれば十分であり、それ以上の圧力をかける必要はない。
 また、上記鍛造時間は、1秒間未満であると、上記複合材料内に空隙が残存するため、高い熱伝導率が得られない。上記鍛造時間は20秒間あれば十分であり、それ以上の時間をかける必要はない。半溶融鍛造後、アルミニウム製の枠内に充填された上記複合材料は、アルミニウム製の枠内に充填されたまま室温まで冷却される。その後、冷却された上記複合材料は、必要に応じて機械加工によりアルミニウム製の枠を切削して放熱基板として成型される。
(放熱基板)
 図1は、本実施形態の複合材料の製造方法によって作製された複合材料からなる放熱基板の構成を示す正面図である。図1に示すように、矩形状をなす放熱基板1は、その表面1aに電力制御用の半導体素子2が実装されている。半導体素子2は、例えば、シリコンよりなる半導体素子である。また半導体素子2は、熱伝達の目的で、表面1aに対して半田付け又はロウ付けされている。一方、放熱基板1の裏面1bには、多数のフィンを有するヒートシンク3が、図示しない伝熱グリスを介して、ボルト4によって放熱基板1に固定されている。このボルト4も、ヒートシンク3を放熱基板1に固定するだけでなく、熱伝達を補助する目的で設置されるものである。したがって、ボルト4は、熱伝導性が高い材料からなることが好ましい。
 このように半導体素子2が実装され、ヒートシンク3が取り付けられた放熱基板1は、半導体素子1から発生する熱をヒートシンク3に効率的に伝導させて放熱させるために設けられる。すなわち、放熱基板1は、効率的な放熱を達成するために、熱伝導率、熱膨張率、及び縦弾性係数に優れている必要がある。
 そこで、本実施形態の複合材料の製造方法によって作製された複合材料は、該複合材料を構成する炭化けい素の粒子同士が接しているため、電力制御用半導体素子の放熱基板として満足できる性能を有している。ここで、「炭化けい素の粒子同士が接している」とは、本実施形態の複合材料のある面(例えば、厚さ方向の表面)から、その反対側の面(例えば、厚さ方向の裏面)まで炭化けい素の粒子同士が連続的に接していることを表す。なお、上記「ある面」及び「その反対側の面」は、サンプルとして任意の範囲で切断した複合材料の切片の「一方の面」及び「その反対側の他方の面」でもよい。すなわち、本実施形態の複合材料は、当該複合材料を切断する、しないにかかわらず、ある面から、その反対側の面まで炭化けい素の粒子同士が連続的に接していればよい。
 具体的には、本実施形態で使用されるAl-(7~11)質量%Si合金は、純アルミニウムよりも液相線温度が低いうえに、大気中で溶融しても流動性が高く、なおかつ炭化けい素との濡れ性が高い(界面エネルギーが低い)。したがって、特許文献5に示されるように加熱温度を660℃以上とする必要がなく、加熱成型用型を鉄鋼製としても、その寿命を十分長くすることができる。
 また、本実施形態の複合材料は、特許文献6に示されるように、99体積%以上の窒素雰囲気、酸素濃度が200ppm以下の雰囲気、あるいは露点が-20℃以下の雰囲気、とする必要がない。したがって、大気中での実施においても、複合材料を構成する炭化けい素の粒子同士が接していて、その結果、高い熱伝導率と低い熱膨張率を両立するので、電力制御用半導体素子の放熱基板として満足できる性能を有する複合材料を得ることができる。
 さらに、本実施形態の複合材料は、アルミニウム合金の粉末と炭化けい素の粒子の混合物を、アルミニウム製の枠内に充填して加熱、半溶融鍛造するので、特許文献7に示されるような予備成形は省略可能であり、予備成形を実施する場合であっても室温又は室温~300℃の温度範囲で実施可能である。
 なお、本実施形態の複合材料の製造方法は、粉末冶金法を採用しているので、得られた複合材料を構成する炭化けい素の粒子同士が接していても、ただ接しているだけである。すなわち、含浸法により得られるアルミニウム合金と炭化けい素との複合材料のように、炭化けい素の粒子同士が、多孔質のプリフォームとして、化学結合するように形成されたものではない。特に、本実施形態の複合材料は、炭化けい素の粒子同士が、一方の面からその反対側の他方の面まで連続的に接している。したがって、本実施形態の複合材料の製造方法によって得られる複合材料の縦弾性係数を190GPa以下とすることができる。このことにより、半導体素子との間の熱膨張率の差に起因して発生する応力を緩和することができ、半導体素子との密着性を向上させることができる。
 加えて、本実施形態の複合材料の製造方法は、粉末冶金法を採用しているので、上記特許文献1~7に開示された各技術よりも低いコストで、電力制御用半導体素子に実装される放熱基板として満足できる性能を有する複合材料を提供することができる。
 以上説明したように、本実施形態の複合材料の製造方法によれば、電力制御用半導体素子の放熱基板として、少なくとも縦弾性係数が好適なアルミニウム合金と炭化けい素との複合材料を低いコストで作製することができる。
 以下、本発明に係る放熱基板用複合材料、及びその製造方法のある実施例について説明する。
(実施例1)
 アルミニウム合金の成分組成がAl-8.3質量%Siとなるように、平均粒径30μmの純アルミニウムの粉末と、平均粒径54μmのAl-11質量%Si粉末を混合した。このアルミニウム合金の粉末に対してさらに、平均粒径40μmの緑色炭化けい素の粒子を質量比で、上記アルミニウム合金の粉末:緑色炭化けい素の粒子=46:54、となるように、Vブレンダーにより3時間、混合した(混合工程)。なお、上記アルミニウム合金の粉末と上記緑色炭化けい素の粒子の混合比は、体積比で50:50である。また、Al-8.3質量%Siの液相線温度は607℃である。
 得られた上記混合物を室温において300MPaの圧力でプレスして予備成形し、アルミニウム製の枠内に充填した。アルミニウム製の枠内に充填した上記混合物を、液相線温度以上650℃以下の温度である、620℃に加熱して上記アルミニウム合金を溶融させた(加熱工程)。
 その後、加熱した上記混合物を30分間保持してから、220MPaの圧力を5秒間作用させることによって半溶融鍛造(鍛造工程)して、アルミニウム合金と炭化けい素との複合材料を得た。
(比較例1)
 実施例1の加熱工程における加熱温度を、液相線温度未満の温度である520℃とした以外は実施例1と同様にして複合材料を得た。
(比較例2)
 実施例1の加熱工程における加熱温度を、液相線温度未満の温度である560℃とした以外は実施例1と同様にして複合材料を得た。
(比較例3)
 平均粒径30μmの純アルミニウムの粉末に対して、平均粒径40μmの緑色炭化けい素の粒子を質量比で、アルミニウム粉末:緑色炭化けい素の粒子=46:54、となるように、Vブレンダーにより3時間、混合した(混合工程)。
 次に、得られた混合物を室温において300MPaの圧力でプレスして予備成形し、アルミニウム製の枠内に充填した(予備成形工程)。
 その後、アルミニウム製の枠内に充填した混合物を、純アルミニウムの粉末の液相線温度未満の温度である、620℃に加熱した(加熱工程)。この工程によって上記純アルミニウムは溶融しなかった。
 その後、加熱した上記混合物を30分間保持してから、220MPaの圧力を5秒間作用させることによって熱間鍛造して、純アルミニウムと炭化けい素との複合材料を得た。
<複合材料の評価>
[断面組織の観察]
 以上のようにして得られた実施例1、比較例1~3の複合材料について、光学顕微鏡により断面組織を観察した。観察結果を図2~図5に示す。
 図2~図5において、白く観察される部分はアルミニウム、又はその合金、灰色に観察される部分は炭化けい素の粒子、黒く観察される部分は空隙である。
 図2に示すように、実施例1の複合材料の断面組織は、灰色に観察される炭化けい素の粒子同士は接していて、なおかつ黒く観察される空隙は、ほとんどないことがわかる。
 一方、図3及び図4に示すように、比較例1及び比較例2の複合材料の断面組織は、加熱温度がアルミニウム合金の液相線温度未満であり、アルミニウム合金が溶融状態とならないため、半溶融鍛造が不十分であって、黒く観察される空隙が多く残存していることがわかる。
 他方、図5に示すように、比較例3の複合材料の断面組織は、純アルミニウムを使用したため、流動性が低いうえに、加熱温度もアルミニウムの液相線温度未満であって、アルミニウム合金が溶融状態とならないため、半溶融鍛造が不十分であって、黒く観察される空隙が多く残存していることがわかる。
 また、炭化けい素の粒子同士が接していることを明確化するため、実施例1、及び比較例1の複合材料の断面組織の顕微鏡写真について、画像解析により炭化けい素の粒子の部分を黒く、それ以外の部分を白く、2値化する画像変換を試みた。それらの結果を図6及び図7に示す。
 実施例1の画像変換結果では、図6に示すように、黒い部分(炭化けい素の粒子)は図6の上辺(一方の面)から下辺(他方の面)まで連続している。これに対して、比較例1の画像変換結果では、図7に示すように、黒い部分(炭化けい素の粒子)は白い部分(炭化けい素以外の成分)によって分断されている。
[熱伝導率の測定]
 また、以上のようにして得られた実施例1、比較例1~3の複合材料について、熱伝導率を測定した。熱伝導率の測定は、アルバック理工株式会社製TC-7000レーザフラッシュ法熱定数測定装置を用いて測定した。測定結果を表1に示す。なお、本実施例では、熱伝導率について、180W/(m・K)が必要とされる場合が多い(特許文献6の段落〔0008〕参照)ため、この値以上であることを評価基準とした。
[平均熱膨張率の測定]
 また、以上のようにして得られた実施例1、比較例1~3の複合材料について、20℃~150℃の平均熱膨張率を測定した。平均熱膨張率の測定は、真空理工株式会社製DL-7000熱膨張率計を用いて測定した。測定結果を表1に示す。ここで、一般に、Si(けい素)及びGaAs(ひ化ガリウム)の熱膨張率は、それぞれ4.2×10-6/℃及び6.5×10-6/℃である(特許文献6の段落〔0003〕参照)ため、本実施例では、9×10-6/℃以下を評価基準とした。
[縦弾性係数の測定]
 さらに、以上のようにして得られた実施例1、比較例1~3の複合材料について、縦弾性係数を測定した。縦弾性係数の測定は、アルミニウム製の枠の部分を切削加工により除去したものについて、3点支持しつつ一定荷重で弾性変形させ、その撓み変形量から縦弾性係数を計算した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1の複合材料は、熱伝導率が180W/(m・K)を超えるとともに、20℃~150℃の平均熱膨張率が9×10-6/℃未満である。
 これに対し、比較例1~3の複合材料の熱伝導率は、いずれも160W/(m・K)未満であると共に、20℃~150℃の平均熱膨張率がいずれも9×10-6/℃を超える値となっていることがわかる。このような値の差は、断面組織観察において観察された空隙量の差により、もたらされたものと考えられる。
 なお、実施例1、比較例1~3の複合材料の縦弾性係数は、それぞれ180GPa、100GPa、120GPa、及び140GPaであり、いずれも190GPa以下を満たし、好ましい結果を得た。しかし、熱伝導率及び平均熱膨張率が好適な複合材料を作製するために、粉末冶金法ではなく、含浸法を用いた場合、製造コストの上昇が避けられないだけでなく、複合材料の縦弾性係数を190GPa以下とすることは極めて困難と考えられる。
 以上、本発明の実施の形態について説明してきたが、本発明はこれに限定されずに、種々の変更、改良を行うことができる。
 1 放熱基板
 2 半導体素子
 3 ヒートシンク
 4 ボルト

Claims (7)

  1.  アルミニウム合金の粉末と、炭化けい素の粒子とを混合して混合物を得る混合工程と、
     前記混合物をアルミニウム製の枠内に充填して加熱する加熱工程と、
     前記アルミニウム合金が溶融状態となった半溶融状態の前記混合物を鍛造する鍛造工程とを含み、
     前記炭化けい素の粒子同士が接していることを特徴とする放熱基板用複合材料の製造方法。
  2.  前記アルミニウム合金が、Al-Si合金であることを特徴とする請求項1に記載の放熱基板用複合材料の製造方法。
  3.  前記Al-Si合金が、Al-(7~11)質量%Siであることを特徴とする請求項2に記載の放熱基板用複合材料の製造方法。
  4.  前記加熱工程における加熱温度が、前記アルミニウム合金の液相線温度以上650℃以下の温度であることを特徴とする請求項1に記載の放熱基板用複合材料の製造方法。
  5.  前記鍛造工程における鍛造条件が、100MPa~300MPaの圧力を1秒間~20秒間作用させることを特徴とする請求項1に記載の放熱基板用複合材料の製造方法。
  6.  請求項1~5のいずれか1項に記載の放熱基板用複合材料の製造方法により得られたことを特徴とする放熱基板用複合材料。
  7.  粉末冶金法を用いて製造され、
     アルミニウム合金及び炭化けい素を含有し、前記炭化けい素の粒子同士が接していることを特徴とする放熱基板用複合材料。
PCT/JP2012/004490 2011-07-15 2012-07-11 放熱基板用複合材料、及びその製造方法 WO2013011668A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12815573.6A EP2735391A4 (en) 2011-07-15 2012-07-11 COMPOSITE MATERIAL FOR HEAT DISSIPATING SUBSTRATE AND METHOD FOR MANUFACTURING COMPOSITE MATERIAL FOR HEAT DISSIPATING SUBSTRATE
CN201280021267.8A CN103501939B (zh) 2011-07-15 2012-07-11 散热基板用复合材料及其制造方法
US14/112,956 US8945466B2 (en) 2011-07-15 2012-07-11 Composite material for heat dissipating plate and method of production of same
JP2013524600A JP5464301B2 (ja) 2011-07-15 2012-07-11 放熱基板用複合材料の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011156819 2011-07-15
JP2011-156819 2011-07-15

Publications (1)

Publication Number Publication Date
WO2013011668A1 true WO2013011668A1 (ja) 2013-01-24

Family

ID=47557869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004490 WO2013011668A1 (ja) 2011-07-15 2012-07-11 放熱基板用複合材料、及びその製造方法

Country Status (5)

Country Link
US (1) US8945466B2 (ja)
EP (1) EP2735391A4 (ja)
JP (1) JP5464301B2 (ja)
CN (1) CN103501939B (ja)
WO (1) WO2013011668A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103949613A (zh) * 2014-03-12 2014-07-30 江苏时代华宜电子科技有限公司 大功率模块用铝碳化硅高导热基板材料的制备方法
CN104934388A (zh) * 2015-06-25 2015-09-23 刘淮祥 一种铝碳化硅复合散热结构
CN106180679A (zh) * 2016-08-11 2016-12-07 安徽波浪岛游乐设备有限公司 一种led基板复合散热材料及其生产方法
JP6776953B2 (ja) * 2017-03-07 2020-10-28 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板
US10253833B2 (en) 2017-06-30 2019-04-09 Honda Motor Co., Ltd. High performance disc brake rotor
US11187290B2 (en) 2018-12-28 2021-11-30 Honda Motor Co., Ltd. Aluminum ceramic composite brake assembly
CN110434334A (zh) * 2019-08-19 2019-11-12 常州泰格尔电子材料科技有限公司 一种厨具用超导热解冻板的制备方法
US20220068753A1 (en) * 2020-08-28 2022-03-03 Delphi Technologies Ip Limited Electronic power package and heat sink/cold rail arrangement

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01501489A (ja) 1986-05-01 1989-05-25 アルキヤン インターナシヨナル リミテツド 鋳造強化複合材料
JPH02243729A (ja) 1988-11-10 1990-09-27 Lanxide Technol Co Lp 金属マトリックス複合体の形成方法
JPH09157773A (ja) 1995-10-03 1997-06-17 Hitachi Metals Ltd 低熱膨張・高熱伝導性アルミニウム複合材料及びその製造方法
JPH10335538A (ja) 1996-06-14 1998-12-18 Sumitomo Electric Ind Ltd 半導体基板材料、半導体基板、半導体装置、及びその製造方法
JPH11106848A (ja) 1997-10-06 1999-04-20 Mitsubishi Alum Co Ltd セラミックス粉末高含有Al合金基複合材料の製造方法
JP2000192168A (ja) * 1998-12-25 2000-07-11 Sumitomo Electric Ind Ltd 炭化珪素系複合材料およびその製造方法
JP2001158933A (ja) * 1999-12-02 2001-06-12 Sumitomo Electric Ind Ltd Al−SiC系複合材料とその製造方法及びそれを用いた半導体装置
JP2003078087A (ja) * 2001-09-04 2003-03-14 Kubota Corp 半導体素子用フィン付き放熱性複合基板
WO2003040420A1 (en) 2001-11-09 2003-05-15 Sumitomo Electric Industries, Ltd. Sintered diamond having high thermal conductivity and method for producing the same and heat sink employing it
JP2004003023A (ja) 2003-05-21 2004-01-08 Hitachi Ltd 複合材料とその製造方法及び用途

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4759995A (en) 1983-06-06 1988-07-26 Dural Aluminum Composites Corp. Process for production of metal matrix composites by casting and composite therefrom
DE69708362T2 (de) * 1996-03-29 2002-08-22 Hitachi Metals Ltd Verfahren zur Herstellung von Aluminium-Verbundmaterial mit niedrigem thermischen Ausdehnungskoeffizient und hoher Wärmeleitfähigkeit
KR100247143B1 (ko) * 1998-02-04 2000-04-01 박호군 반응고 성형용 전신재 sic/(2xxx al+si)복합재료 및 그의 제조방법
US6280496B1 (en) * 1998-09-14 2001-08-28 Sumitomo Electric Industries, Ltd. Silicon carbide based composite material and manufacturing method thereof
US7364692B1 (en) * 2002-11-13 2008-04-29 United States Of America As Represented By The Secretary Of The Air Force Metal matrix composite material with high thermal conductivity and low coefficient of thermal expansion
ES2404505T3 (es) * 2004-12-28 2013-05-28 Nippon Light Metal Company, Ltd. Método para producir un material compuesto de aluminio
JP4913605B2 (ja) * 2005-01-20 2012-04-11 株式会社アライドマテリアル 半導体装置用部材の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01501489A (ja) 1986-05-01 1989-05-25 アルキヤン インターナシヨナル リミテツド 鋳造強化複合材料
JPH02243729A (ja) 1988-11-10 1990-09-27 Lanxide Technol Co Lp 金属マトリックス複合体の形成方法
JPH09157773A (ja) 1995-10-03 1997-06-17 Hitachi Metals Ltd 低熱膨張・高熱伝導性アルミニウム複合材料及びその製造方法
JPH10335538A (ja) 1996-06-14 1998-12-18 Sumitomo Electric Ind Ltd 半導体基板材料、半導体基板、半導体装置、及びその製造方法
JPH11106848A (ja) 1997-10-06 1999-04-20 Mitsubishi Alum Co Ltd セラミックス粉末高含有Al合金基複合材料の製造方法
JP2000192168A (ja) * 1998-12-25 2000-07-11 Sumitomo Electric Ind Ltd 炭化珪素系複合材料およびその製造方法
JP2001158933A (ja) * 1999-12-02 2001-06-12 Sumitomo Electric Ind Ltd Al−SiC系複合材料とその製造方法及びそれを用いた半導体装置
JP2003078087A (ja) * 2001-09-04 2003-03-14 Kubota Corp 半導体素子用フィン付き放熱性複合基板
WO2003040420A1 (en) 2001-11-09 2003-05-15 Sumitomo Electric Industries, Ltd. Sintered diamond having high thermal conductivity and method for producing the same and heat sink employing it
JP2004003023A (ja) 2003-05-21 2004-01-08 Hitachi Ltd 複合材料とその製造方法及び用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2735391A4

Also Published As

Publication number Publication date
US20140037934A1 (en) 2014-02-06
EP2735391A1 (en) 2014-05-28
CN103501939B (zh) 2016-04-06
JPWO2013011668A1 (ja) 2015-02-23
JP5464301B2 (ja) 2014-04-09
US8945466B2 (en) 2015-02-03
EP2735391A4 (en) 2015-03-25
CN103501939A (zh) 2014-01-08

Similar Documents

Publication Publication Date Title
JP5464301B2 (ja) 放熱基板用複合材料の製造方法
US6447894B1 (en) Silicon carbide composite, method for producing it and heat dissipation device employing it
WO2012127958A1 (ja) 複合材料からなる基板を備える複合部材
EP1114807A1 (en) Composite material and semiconductor device using the same
TWI796503B (zh) 金屬-碳化矽質複合體、及金屬-碳化矽質複合體之製造方法
WO2007094507A1 (ja) Cr-Cu合金、その製造方法、半導体用放熱板および半導体用放熱部品
WO2015115649A1 (ja) 炭化珪素質複合体及びその製造方法並びにそれを用いた放熱部品
JP2022027929A (ja) 放熱部材
Sun et al. Fabrication, microstructures, and properties of 50 vol.% SiCp/6061Al composites via hot pressing
Zhang et al. Microstructure and thermo-physical properties of a SiC/pure-Al composite for electronic packaging
JP4138844B2 (ja) Cr−Cu合金およびその製造方法ならびに半導体用放熱板と半導体用放熱部品
EP1375688B1 (en) Heat dissipation member for electronic apparatus and method for producing the same
CN112458333B (zh) 一种双相陶瓷减磨铜合金及其制备方法
Silvain et al. The role of controlled interfaces in the thermal management of copper–carbon composites
JP4228444B2 (ja) 炭化珪素系複合材料およびその製造方法
CN109136605B (zh) 一种铜基复合粉体的自蔓延合成及其应用
JP2004055577A (ja) アルミニウム−炭化珪素質板状複合体
JP4357380B2 (ja) アルミニウム合金−炭化珪素質複合体の製造方法
JP4127379B2 (ja) アルミニウム−炭化珪素複合体の製造方法
Xiu et al. Study on properties of high reinforcement-content aluminum matrix composite for electronic packages
JP2001217364A (ja) Al−SiC複合体
Murmu et al. Exploring Possibilities for Fabricating Cu–TiB2 Composite Through Different Powder Metallurgy Routes
JP2021072385A (ja) 炭素−銅焼結複合部材、及び、炭素−銅焼結複合部材の製造方法
JP2003268478A (ja) Al−SiC系複合体
JP2000328110A (ja) 熱伝導材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280021267.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12815573

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013524600

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14112956

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012815573

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE