WO2013008903A1 - 通信システム及び通信装置 - Google Patents

通信システム及び通信装置 Download PDF

Info

Publication number
WO2013008903A1
WO2013008903A1 PCT/JP2012/067895 JP2012067895W WO2013008903A1 WO 2013008903 A1 WO2013008903 A1 WO 2013008903A1 JP 2012067895 W JP2012067895 W JP 2012067895W WO 2013008903 A1 WO2013008903 A1 WO 2013008903A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
signal
pass filter
low
transformer
Prior art date
Application number
PCT/JP2012/067895
Other languages
English (en)
French (fr)
Inventor
遼 岡田
剛志 萩原
小松 裕
泉 達也
和彦 二井
陽介 高田
博哉 安藤
勇太 落合
隆市 釜賀
岩井 淳
宮下 之宏
信之 中川
Original Assignee
住友電気工業株式会社
住友電装株式会社
株式会社オートネットワーク技術研究所
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電装株式会社, 株式会社オートネットワーク技術研究所, トヨタ自動車株式会社 filed Critical 住友電気工業株式会社
Priority to JP2013523992A priority Critical patent/JP5868976B2/ja
Priority to CN201280034472.8A priority patent/CN103688472B/zh
Priority to US14/232,202 priority patent/US9577709B2/en
Priority to EP12810568.1A priority patent/EP2733859B1/en
Publication of WO2013008903A1 publication Critical patent/WO2013008903A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/548Systems for transmission via power distribution lines the power on the line being DC
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5404Methods of transmitting or receiving signals via power distribution lines
    • H04B2203/5416Methods of transmitting or receiving signals via power distribution lines by adding signals to the wave form of the power source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5462Systems for power line communications
    • H04B2203/547Systems for power line communications via DC power distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • the present invention relates to a communication system that performs communication between a vehicle such as an electric vehicle or a hybrid vehicle and a power supply device that supplies power to the vehicle, and a communication device that constitutes the communication system.
  • a vehicle such as an electric vehicle or a hybrid vehicle can charge a secondary battery from the outside of the vehicle by connecting a charging plug connected to an external power feeding device to a connector of a power feeding port provided in the vehicle. It can be configured.
  • a signal line called a control pilot line is provided between an output circuit provided on the power supply device side and an input circuit provided on the vehicle side, and a rectangular with a predetermined frequency is provided from the output circuit to the input circuit.
  • the present invention has been made in view of such circumstances, and even when a communication signal for in-band communication is superimposed on a control pilot line, the power supply device using the output circuit and the input circuit and the vehicle It is an object of the present invention to provide a communication system and a communication apparatus that constitutes the communication system that can prevent the state check function from being lost.
  • a communication system is provided in a power feeding device that supplies power to a vehicle, and is provided with an output circuit that outputs a rectangular wave signal having a predetermined frequency, and is provided in the vehicle, and is connected to the output circuit through a plurality of signal lines.
  • a first communication unit that transmits and receives a communication signal via a first transformer interposed in the middle of the signal line, and a second transformer that is provided in the power supply apparatus and is disposed in the middle of the signal line
  • a second communication unit that transmits and receives communication signals via the first low-pass filter, and a first low-pass filter interposed between the input circuit and the first transformer.
  • a communication system is characterized in that, in the first invention, a second low-pass filter interposed between the output circuit and the second transformer is provided.
  • the first low-pass filter in the first invention or the second invention, includes a first inductor connected in series with the signal line, the first inductor, and the first inductor.
  • a capacitor connected between the signal lines between the first transformer and the second low-pass filter, wherein the second low-pass filter is connected in series to the signal line; the second inductor; And a capacitor connected between the signal lines to the second transformer.
  • the first low-pass filter includes a resistor connected in parallel to the first inductor, and the second low-pass filter is parallel to the second inductor. A connected resistor is provided.
  • the first low-pass filter includes a resistor connected in series to the first inductor, and the second low-pass filter is in series with the second inductor. A connected resistor is provided.
  • the communication system according to a sixth aspect of the present invention is the communication system according to the third aspect, wherein each of the first and second low-pass filters includes a resistor connected in series to the capacitor.
  • a communication apparatus comprising: an output circuit that outputs a rectangular wave signal having a predetermined frequency via a plurality of signal lines; the signal is transmitted via a transformer provided in the middle of the signal line.
  • a communication unit that transmits and receives a communication signal by superimposing a communication signal on a line, and a low-pass filter that is interposed between the output circuit and the transformer are provided.
  • the communication device wherein the generation unit that generates the rectangular wave signal, the voltage detection unit that detects the output voltage of the output circuit, and the voltage detected by the voltage detection unit And an adjustment unit that adjusts the rectangular wave signal generated by the generation unit.
  • a communication apparatus including an input circuit to which a rectangular wave signal having a predetermined frequency is input through a plurality of signal lines, and the communication apparatus includes a transformer interposed in the middle of the signal line.
  • a communication unit that transmits and receives a communication signal by superimposing a communication signal on a signal line, and a low-pass filter interposed between the input circuit and the transformer are provided.
  • a communication device is the communication device according to the ninth invention, wherein the resistance portion has a plurality of resistors and the resistance value can be adjusted, and the resistance value of the resistance portion is adjusted in order to change the voltage of the resistance portion. And an adjustment unit.
  • the first communication unit is provided in the vehicle and is provided in the middle of a signal line (for example, a control pilot line) between the output circuit and the input circuit.
  • the communication signal is superimposed on the signal line via the first transformer, and the communication signal is transmitted and received.
  • the second communication unit is provided in the power supply apparatus, and superimposes the communication signal on the signal line via the second transformer interposed in the middle of the signal line between the output circuit and the input circuit. Send and receive. That is, the first and second communication units perform communication by connecting a transformer on the signal line and superimposing a voltage in series with the signal line.
  • the communication band used by the first and second communication units is, for example, 2 to 30 MHz (for example, Home Plug Green PHY), but is not limited to this, 150 kHz to 450 kHz (low speed PLC), 1.75 MHz Up to 1.8 MHz (FSK: frequency shift keying) may be used.
  • a first low-pass filter is interposed between the input circuit and the first transformer.
  • the first low-pass filter passes a rectangular wave signal having a predetermined frequency (for example, 1 kHz) output from the output circuit, and transmits a communication signal (for example, 2 to 30 MHz) transmitted and received by the first and second communication units. It is a filter that does not pass.
  • the communication signal transmitted from the first communication unit to the second communication unit is blocked by the first low-pass filter and input. Does not enter the circuit.
  • the communication signal transmitted from the second communication unit to the first communication unit is blocked by the first low-pass filter and does not enter the input circuit.
  • the voltage level at a predetermined location of the input circuit is not fluctuated by a communication signal transmitted and received between the first and second communication units, so that a state check between the power supply device using the output circuit and the input circuit and the vehicle is performed. Loss of function can be prevented.
  • the second low-pass filter is interposed between the output circuit and the second transformer.
  • the second low-pass filter passes a rectangular wave signal of a predetermined frequency (for example, 1 kHz) output from the output circuit and transmits a communication signal (for example, 2 to 30 MHz) transmitted and received by the first and second communication units. It is a filter that does not pass.
  • the voltage level of the rectangular wave signal transmitted from the output circuit is not changed by the communication signal transmitted and received between the first and second communication units, so that the power supply device using the output circuit and the input circuit is connected to the vehicle. It is possible to prevent the state confirmation function from being lost.
  • the first low-pass filter includes a first inductor connected in series with the signal line, and a capacitor between the signal line between the first inductor and the first transformer.
  • the second low-pass filter includes a second inductor connected in series with the signal line, and a capacitor between the signal lines between the second inductor and the second transformer.
  • the first and second inductors For a predetermined frequency (for example, 1 kHz) of a rectangular wave output from the output circuit, the first and second inductors have low impedance, and a communication signal (for example, 2 to 30 MHz) transmitted and received by the first and second communication units. ) Is high impedance.
  • the capacitor between the signal lines has a high impedance, and communication signals (for example, 2 to 2) transmitted and received by the first and second communication units. (30 MHz), the impedance is low. Thereby, the communication signal transmitted and received by the first and second communication units can be blocked with a simple configuration, and the control pilot signal can be passed.
  • the first low-pass filter includes a resistor connected in parallel to the first inductor
  • the second low-pass filter includes a resistor connected in parallel to the second inductor.
  • the first low-pass filter includes a resistor connected in series to the first inductor
  • the second low-pass filter includes a resistor connected in series to the second inductor.
  • the first low-pass filter includes a series circuit of a capacitor and a resistor between the signal lines between the first inductor and the first transformer
  • the second low-pass filter includes the first low-pass filter.
  • a series circuit of a capacitor and a resistor is provided between the signal lines between the two inductors and the second transformer.
  • the capacitor between the signal lines has a high impedance, and a communication signal (for example, 2 to 30 MHz) transmitted and received by the first and second communication units. Is low impedance.
  • the communication signal transmitted and received by the first and second communication units can be blocked with a simple configuration, and the control pilot signal can be passed.
  • the generator generates the rectangular wave signal (control pilot signal), the voltage detector that detects the output voltage of the output circuit, and the generator detects the voltage detected by the voltage detector.
  • An adjustment unit that adjusts the rectangular wave signal to be generated.
  • the rectangular wave signal is a signal whose duty ratio can be changed from 0 to 100%, and includes a constant voltage of ⁇ 12 V, for example.
  • the output circuit can output a desired control pilot signal.
  • a resistance unit having a plurality of resistors and capable of adjusting the resistance value, and an adjustment unit for adjusting the resistance value of the resistance unit to change the voltage of the resistance unit are provided. Accordingly, for example, the resistance value of the resistance unit can be adjusted according to the state of the vehicle, and the voltage of the resistance unit can be changed to a desired value.
  • the power supply device using the output circuit and the input circuit is connected between the vehicle and the vehicle. It is possible to prevent the state confirmation function from being lost.
  • FIG. 1 is a block diagram illustrating an example of a configuration of a communication system according to a first embodiment.
  • FIG. 3 is an explanatory diagram illustrating an influence on an input circuit by a communication signal between communication units according to the first embodiment.
  • 6 is a block diagram illustrating an example of a configuration of a communication system according to a second embodiment.
  • FIG. 10 is a block diagram illustrating an example of a configuration of a communication system according to a third embodiment.
  • FIG. 1 is a block diagram showing an example of the configuration of the communication system according to the first embodiment.
  • a vehicle such as an electric vehicle or a hybrid vehicle and a power supply device are electrically connected via an inlet 5 (also referred to as “power supply port” or “connector”).
  • the power supply apparatus includes an AC power source 6.
  • the AC power supply 6 is electrically connected to the vehicle charger 7 through the power supply line 1 (ACL) and the power supply line 2 (ACN).
  • a battery (secondary battery) 8 is connected to the charger 7.
  • AC power can be supplied to the vehicle by connecting a plug (not shown) connected to the charging cable from the power supply device to the inlet 5, and the battery 8 mounted on the vehicle can be charged. it can.
  • the communication system includes a communication device 10 provided in a power supply device, a communication device 50 provided in a vehicle, and the like.
  • the communication device 10 includes an output circuit 20 that outputs a rectangular wave signal (also referred to as “control pilot signal”) having a predetermined frequency, a communication unit 30, a transformer 31, a low-pass filter 33, and the like.
  • a rectangular wave signal also referred to as “control pilot signal”
  • the communication device 50 includes an input circuit 60 to which a control pilot signal is input, a communication unit 70, a transformer 71, a low-pass filter 73, and the like.
  • the output circuit 20 includes a voltage generation source 21, a resistor 22, a capacitor 23, a microcomputer 24, a buffer 25, and the like as a generation unit that generates a rectangular wave signal (control pilot signal).
  • the voltage source 21 generates a rectangular wave signal (control pilot signal) having a frequency of 1 kHz and a peak value of ⁇ 12V.
  • the duty ratio of the control pilot signal is 20%, for example, but is not limited to this.
  • the rectangular wave signal is a signal whose duty ratio can be changed from 0 to 100%, and includes a constant voltage of ⁇ 12 V, for example.
  • the output circuit 20 sends a control pilot signal to the input circuit 60 provided in the vehicle via the resistor 22.
  • the capacitor 23 is provided to reduce noise generated in the output circuit 20, for example.
  • the value of the resistor 22 is, for example, 1.0 k ⁇ , and the capacitance of the capacitor 23 is, for example, 2.2 nF, but the numerical value is not limited thereto.
  • the buffer 25 has a function as a voltage detection unit that detects the output voltage of the output circuit 20, detects the voltage across the capacitor 23, and outputs the detection result to the microcomputer 24.
  • the microcomputer 24 has a function as an adjustment unit that adjusts a rectangular wave signal generated by the voltage generation source 21.
  • the output circuit 20 can output a rectangular wave signal (control pilot signal) having a constant voltage of ⁇ 12 V and an arbitrary duty ratio (greater than 0 and smaller than 100) and a peak value of ⁇ 12 V. it can.
  • the input circuit 60 includes a capacitor 61, a diode 62, a buffer 63, a microcomputer 64, a resistance unit 65, and the like.
  • the buffer 63 detects the voltage Vout across the resistance unit 65 and outputs it to the microcomputer 64. Note that the voltage across the capacitor 61 may be detected instead of the voltage across the resistor 65.
  • the resistance unit 65 includes a plurality of resistors and an open / close switch, and can change (adjust) the resistance value by opening / closing the open / close switch by a signal from the microcomputer 64.
  • the microcomputer 64 has a function as an adjustment unit that adjusts the resistance value of the resistance unit 65 in order to change the voltage Vout of the resistance unit 65. That is, the microcomputer 64 changes the resistance value of the resistance unit 65 in order to change the voltage Vout according to the state of the vehicle (for example, a state related to charging). Depending on the value of the voltage Vout, the power supply device and the vehicle can detect a state related to charging.
  • the vehicle charging plug is not connected.
  • the resistance value of the resistance portion 65 is set to 2.74 k ⁇ , and the charging plug of the vehicle is connected to indicate a state of waiting for charging.
  • the resistance value of the resistance unit 65 is set to 882 ⁇ , indicating a state during charging.
  • the resistance value of the resistance unit 65 is set to 246 ⁇ , indicating that charging is in progress and the charging place needs to be ventilated.
  • the capacitor 61 is provided, for example, to reduce noise entering the input circuit 60.
  • the resistance value of the resistor unit 65 is, for example, about 2.74 k ⁇ , 882 ⁇ , and 246 ⁇ , and the capacitance of the capacitor 61 is, for example, 1.8 nF, but the numerical value is not limited to these.
  • the output circuit 20 and the input circuit 60 are electrically connected via a plurality of signal lines (control pilot line 4 and ground line 3).
  • the ground wire 3 can also be regarded as a control pilot line.
  • the communication unit 30 and the communication unit 70 perform PLC (Power Line Communication) communication by superimposing a predetermined communication signal on the control pilot line 4 provided between the output circuit 20 and the input circuit 60.
  • Information transmitted / received between the communication unit 30 and the communication unit 70 includes, for example, information related to a vehicle ID, information related to charge control (start or end of charge, etc.), charge amount management (rapid charge, charge amount notification, etc.) Related to the control pilot signal, such as information related to charging, management of charging, information related to updating of navigation, and the like.
  • the communication unit 30 and the communication unit 70 include, for example, a modulation circuit and a demodulation circuit using a modulation scheme such as orthogonal frequency multiplexing (OFDM) and spread spectrum (SS).
  • a modulation scheme such as orthogonal frequency multiplexing (OFDM) and spread spectrum (SS).
  • the communication band of communication performed by the communication unit 30 and the communication unit 70 is, for example, 2 to 30 MHz (for example, Home Plug Green PHY), but is not limited to this, and 150 kHz to 450 kHz (low speed PLC), 1 75 MHz to 1.8 MHz (FSK: frequency shift keying) may be used.
  • 2 to 30 MHz for example, Home Plug Green PHY
  • 150 kHz to 450 kHz low speed PLC
  • FSK frequency shift keying
  • One coil of the transformer 31 is interposed in the control pilot line 4 on the output side of the output circuit 20, and the communication unit 30 superimposes a communication signal on the control pilot line 4 via the transformer 31 and controls A communication signal on the pilot line 4 is received.
  • One coil of the transformer 71 is interposed in the control pilot line 4 on the input side of the input circuit 60, and the communication unit 70 superimposes a communication signal on the control pilot line 4 via the transformer 71 and performs control. A communication signal on the pilot line 4 is received.
  • the communication unit 30 and the communication unit 70 perform communication by connecting the transformers 31 and 71 on the signal line and superimposing a voltage on the signal line in series.
  • Such a method can be referred to as a linear method.
  • the control pilot line 4 between the output circuit 20 and the transformer 31 is provided with a low-pass filter 33.
  • a low-pass filter 73 is interposed in the control pilot line 4 between the input circuit 60 and the transformer 71.
  • the low-pass filters 33 and 73 each pass a rectangular wave signal (control pilot signal) having a predetermined frequency (for example, 1 kHz) output from the output circuit 20 and a communication signal (for example, transmitted and received by the communication units 30 and 70). 2 to 30 MHz).
  • the communication unit 70 is connected to the communication unit 30.
  • the transmitted communication signal is blocked by the low-pass filters 33 and 73 and does not enter the input circuit 60.
  • the communication signal transmitted from the communication unit 30 to the communication unit 70 is blocked by the low-pass filters 33 and 73 and does not enter the input circuit 60.
  • the communication signal transmitted from the communication unit 70 to the communication unit 30 is blocked by the low-pass filters 33 and 73 and does not enter the output circuit 20. Further, the communication signal transmitted from the communication unit 30 to the communication unit 70 is blocked by the low-pass filters 33 and 73 and does not enter the output circuit 20. As a result, the voltage level of the rectangular wave signal transmitted by the output circuit 20 is not changed by the communication signal transmitted / received between the communication units 30 and 70, so that the power supply device using the output circuit 20 and the input circuit 60 and the vehicle It is possible to prevent the state check function from being lost.
  • the low-pass filter 33 includes an inductor 331 connected in series with the control pilot line 4 and a capacitor 333 between signal lines between the inductor 331 and the transformer 31.
  • the inductance of the inductor 331 is, for example, 470 ⁇ H, but the inductance is not limited to this.
  • the inductor 331 For the predetermined frequency (for example, 1 kHz) output from the output circuit 20, the inductor 331 has a low impedance. Further, the inductor 331 has a high impedance for a communication signal (for example, 2 to 30 MHz) transmitted and received by the communication units 30 and 70. As a result, communication signals transmitted and received by the communication units 30 and 70 can be blocked with a simple configuration, and a control pilot signal can be passed.
  • a communication signal for example, 2 to 30 MHz
  • the capacitor 333 between the signal lines has a high impedance, and communication signals (for example, 2 to 2) transmitted and received by the communication units 30 and 70 are obtained. (30 MHz), the impedance is low. As a result, communication signals transmitted and received by the communication units 30 and 70 can be blocked with a simple configuration, and a control pilot signal can be passed.
  • the low-pass filter 73 includes an inductor 731 connected in series with the control pilot line 4 and a capacitor 733 between signal lines between the inductor 731 and the transformer 71.
  • the inductance of the inductor 731 is, for example, 470 ⁇ H, but the inductance is not limited to this.
  • the inductor 731 has a low impedance for a predetermined frequency (for example, 1 kHz) output from the output circuit 20. Further, the inductor 731 has a high impedance with respect to a communication signal (for example, 2 to 30 MHz) transmitted and received by the communication units 30 and 70. As a result, communication signals transmitted and received by the communication units 30 and 70 can be blocked with a simple configuration, and a control pilot signal can be passed.
  • a predetermined frequency for example, 1 kHz
  • a communication signal for example, 2 to 30 MHz
  • the capacitor 733 between the signal lines has a high impedance, and communication signals (for example, 2 to 2) transmitted and received by the communication units 30 and 70 are obtained. (30 MHz), the impedance is low. As a result, communication signals transmitted and received by the communication units 30 and 70 can be blocked with a simple configuration, and a control pilot signal can be passed.
  • the low pass filter 33 includes a resistor 332 connected in parallel to the inductor 331.
  • the resistance value of the resistor 332 is, for example, 470 ⁇ , but is not limited thereto.
  • a Q value representing the sharpness of the resonance peak of the resonance circuit formed between the inductor 331 and the capacitor 23 or the like existing in the output circuit 20 can be reduced. Unnecessary resonance can be suppressed.
  • the low-pass filter 73 includes a resistor 732 connected in parallel to the inductor 731.
  • the resistance value of the resistor 732 is, for example, 470 ⁇ , but is not limited thereto.
  • FIG. 2 is an explanatory diagram showing the influence of the communication signal between the communication units 30 and 70 of the first embodiment on the input circuit.
  • the horizontal axis indicates the frequency
  • the vertical axis indicates the frequency component of the voltage at a predetermined location of the input circuit 60 by the communication signal between the communication units 30 and 70.
  • the predetermined part of the input circuit 60 is a part where the buffer 63 detects the voltage level, and represents the voltage level of the voltage Vout.
  • the curve indicated by the symbol A indicates a case where the low-pass filters 33 and 73 are provided
  • the curve indicated by the symbol B indicates a case where the low-pass filters 33 and 73 are not provided.
  • the attenuation is in the range of 220 kHz to 50 MHz. Specifically, the attenuation is about 20 dB at 2 MHz and about 45 dB at 30 MHz, and is attenuated by about 20 dB to 45 dB at 2 to 30 MHz which is the communication band of the communication units 30 and 70.
  • the influence of the in-band communication between the communication units 30 and 70 on the output circuit 20 and the input circuit 60 can be reduced. However, since it is not fluctuate
  • the low-pass filter is configured by a parallel circuit of an inductor and a resistor.
  • the circuit configuration is not limited to this, and may be only an inductor, or a series circuit of an inductor and a resistor. But you can.
  • the control pilot line and the signal line of the ground line are used for the communication path of the rectangular wave signal or the communication signal, one or both of them may be a conductor such as a vehicle body or a casing of the power feeding device.
  • the low pass filter may have the following configuration.
  • FIG. 3 is a block diagram illustrating an example of a configuration of the communication system according to the second embodiment.
  • the low-pass filter 33 includes a resistor 334 in series with the inductor 331 instead of the resistor 332.
  • the low-pass filter 73 includes a resistor 734 in series with the inductor 731 instead of the resistor 732.
  • symbol is attached
  • the resistor 334 By providing the resistor 334, for example, the Q value (Quality factor) representing the sharpness of the resonance peak of the resonance circuit formed between the inductor 331 and the capacitor 23 or the like existing in the output circuit 20 can be reduced. Unnecessary resonance can be suppressed. Further, by providing the resistor 734, for example, the Q value (Quality factor) representing the sharpness of the resonance peak of the resonance circuit formed between the inductor 731 and the capacitor 61 and the like existing in the input circuit 60 is reduced. And unnecessary resonance can be suppressed.
  • FIG. 4 is a block diagram illustrating an example of a configuration of the communication system according to the third embodiment.
  • the low-pass filter 33 includes a series circuit of a capacitor 336 and a resistor 335 connected between the control pilot line 4 and the ground line 3 instead of the resistor 332.
  • the low-pass filter 73 includes a series circuit of a capacitor 736 and a resistor 735 connected between the control pilot line 4 and the ground line 3 instead of the resistor 732.
  • the low-pass filter 73 includes a series circuit of a capacitor 736 and a resistor 735 between signal lines between the inductor 731 and the transformer 71, and the low-pass filter 33 is provided between the inductor 331 and the transformer 31.
  • a series circuit of a capacitor 336 and a resistor 335 is provided between the signal lines.
  • the capacitor between the signal lines has a high impedance, and communication signals (for example, 2 to 2) transmitted and received by the communication units 30 and 70 are obtained. (30 MHz), the impedance is low. As a result, communication signals transmitted and received by the communication units 30 and 70 can be blocked with a simple configuration, and a control pilot signal can be passed.
  • the low-pass filter 33 is provided between the output circuit 20 and the communication unit 30, and the low-pass filter 73 is provided between the input circuit 60 and the communication unit 70.
  • the present invention is not limited to this, and the low pass filter 73 may be provided between the input circuit 60 and the communication unit 70 and the low pass filter 33 may not be provided.
  • the low-pass filters 33 and 73 it is possible to more reliably prevent the state confirmation function between the power supply device using the output circuit 20 and the input circuit 60 and the vehicle from being lost. it can.
  • the present embodiment can be applied to Home Plug Green PHY with a communication band of 2 to 30 MHz, but is not limited to this, and a low-speed PLC with a communication band of 150 kHz to 450 kHz and a communication band of 1.75 MHz. It can also be applied to FSK (frequency shift keying) of ⁇ 1.8 MHz.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Dc Digital Transmission (AREA)

Abstract

 コントロールパイロット線に通信信号を重畳させた場合であっても、出力回路及び入力回路を用いた給電装置と車両との間の状態確認機能が喪失することを防止することができる通信システム及び通信装置を提供する。 出力回路20は、電圧発生源21で生成したコントロールパイロット信号を入力回路60へ送出する。出力回路20の出力側のコントロールパイロット線4に変圧器31を介装し、通信部30は、変圧器31を介して通信信号を送受信する。入力回路60の入力側のコントロールパイロット線4に変圧器71を介装してあり、通信部70は、変圧器71を介して通信信号を送受信する。入力回路60と変圧器71との間のコントロールパイロット線4には、低域通過フィルタ73を介装してある。

Description

通信システム及び通信装置
 本発明は、電気自動車又はハイブリッド自動車などの車両と、該車両に給電するための給電装置との間の通信を行う通信システム及び該通信システムを構成する通信装置に関する。
 近年、地球温暖化に対応する技術として環境技術に注目が集まっている。このような環境技術としては、例えば、二次電池を搭載し、従来のようなガソリンを消費するエンジンに代えて駆動装置としてモータを採用した電気自動車や、ハイブリッド自動車などに関するものが実用化されている。
 このような電気自動車やハイブリッド自動車などの車両は、外部の給電装置に接続された充電プラグを車両に設けられた給電口のコネクタに接続して、車両の外部から二次電池を充電することができる構成となっている。
 車両に給電する際の車両と給電装置(充電スタンド)との間のインタフェースは、すでに規格化されている。例えば、給電装置側に設けられた出力回路と、車両側に設けられた入力回路との間でコントロールパイロット線と称される信号線を設け、出力回路から入力回路に対して所定の周波数の矩形波信号(コントロールパイロット信号)を出力し、入力回路の所定箇所の電圧レベルを変化させることにより、給電装置と車両との間で車両の充電状態などの情報を確認することができる(非特許文献1参照)。
 一方で、コントロールパイロット線に通信信号を重畳させて給電装置と車両との間で、さらに種々の情報の送受信を行うことができる通信システムも検討されている。
SAE International(Society of Automotive EngineersInternational)、SURFACE VEHICLE RECOMMENDED PRACTICE、2010-01  (ソサエティ・オブ・オートモーティブ・エンジニアズ・インターナショナル、サーフェイス ビークル リコメンディッド プラクティス、2010年1月)
 しかし、コントロールパイロット線にインバンド通信の通信信号を重畳させた場合、コントロールパイロット線上には通信信号に依拠する電圧が重畳されるため、重畳した電圧が出力回路及び入力回路に侵入することになる。このため、入力回路の所定箇所の電圧レベルが重畳された電圧により変動し、出力回路及び入力回路を用いた給電装置と車両との間の充電状態の確認機能が喪失されるという問題がある。
 本発明は、斯かる事情に鑑みてなされたものであり、コントロールパイロット線にインバンド通信の通信信号を重畳させた場合であっても、出力回路及び入力回路を用いた給電装置と車両との間の状態確認機能が喪失することを防止することができる通信システム及び該通信システムを構成する通信装置を提供することを目的とする。
 第1発明に係る通信システムは、車両に給電する給電装置に設けられ、所定の周波数の矩形波信号を出力する出力回路と、前記車両に設けられ、前記出力回路と複数の信号線で接続され、該出力回路が出力する矩形波信号が入力される入力回路とを備え、前記信号線に通信信号を重畳させて前記車両と給電装置との間で通信を行う通信システムにおいて、前記車両に設けられ、前記信号線の中途に介装した第1変圧器を介して通信信号の送受信を行う第1通信部と、前記給電装置に設けられ、前記信号線の中途に介装した第2変圧器を介して通信信号の送受信を行う第2通信部と、前記入力回路と前記第1変圧器との間に介装された第1低域通過フィルタとを備えることを特徴とする。
 第2発明に係る通信システムは、第1発明において、前記出力回路と前記第2変圧器との間に介装された第2低域通過フィルタを備えることを特徴とする。
 第3発明に係る通信システムは、第1発明又は第2発明において、前記第1低域通過フィルタは、前記信号線に対して直列に接続される第1インダクタと、該第1インダクタと前記第1変圧器との間の信号線間に接続されたキャパシタとを備え、前記第2低域通過フィルタは、前記信号線に対して直列に接続される第2インダクタと、該第2インダクタと前記第2変圧器との間の信号線間に接続されたキャパシタとを備えることを特徴とする。
 第4発明に係る通信システムは、第3発明において、前記第1低域通過フィルタは、前記第1インダクタに並列接続した抵抗を備え、前記第2低域通過フィルタは、前記第2インダクタに並列接続した抵抗を備えることを特徴とする。
 第5発明に係る通信システムは、第3発明において、前記第1低域通過フィルタは、前記第1インダクタに直列接続した抵抗を備え、前記第2低域通過フィルタは、前記第2インダクタに直列接続した抵抗を備えることを特徴とする。
 第6発明に係る通信システムは、第3発明において、前記第1及び第2低域通過フィルタそれぞれは、前記キャパシタに直列接続された抵抗を備えることを特徴とする。
 第7発明に係る通信装置は、所定の周波数の矩形波信号を複数の信号線を介して出力する出力回路を備える通信装置において、前記信号線の中途に介装した変圧器を介して該信号線に通信信号を重畳させて通信信号の送受信を行う通信部と、前記出力回路と前記変圧器との間に介装された低域通過フィルタとを備えることを特徴とする。
 第8発明に係る通信装置は、第7発明において、前記矩形波信号を生成する生成部と、前記出力回路の出力電圧を検出する電圧検出部と、該電圧検出部で検出した電圧に応じて、前記生成部で生成する矩形波信号を調整する調整部とを備えることを特徴とする。
 第9発明に係る通信装置は、複数の信号線を介して所定の周波数の矩形波信号が入力される入力回路を備える通信装置において、前記信号線の中途に介装した変圧器を介して該信号線に通信信号を重畳させて通信信号の送受信を行う通信部と、前記入力回路と前記変圧器との間に介装された低域通過フィルタとを備えることを特徴とする。
 第10発明に係る通信装置は、第9発明において、複数の抵抗を有し、抵抗値を調整可能な抵抗部と、該抵抗部の電圧を変化させるため、該抵抗部の抵抗値を調整する調整部とを備えることを特徴とする。
 第1発明、第7発明及び第9発明にあっては、第1通信部は、車両に設けられ、出力回路と入力回路との間の信号線(例えば、コントロールパイロット線)の中途に介装した第1変圧器を介して通信信号を信号線に重畳させて通信信号の送受信を行う。また、第2通信部は、給電装置に設けられ、出力回路と入力回路との間の信号線の中途に介装した第2変圧器を介して通信信号を信号線に重畳させて通信信号の送受信を行う。すなわち、第1及び第2通信部は、信号線上に変圧器を接続して信号線と直列に電圧を重畳させることにより通信を行う。第1及び第2通信部が用いる通信帯域は、例えば、2~30MHz(例えば、Home Plug Green PHY)であるが、これに限定されるものではなく、150kHz~450kHz(低速PLC)、1.75MHz~1.8MHz(FSK:frequency shift keying)などでもよい。
 入力回路と第1変圧器との間には第1低域通過フィルタを介装してある。第1低域通過フィルタは、出力回路が出力する所定の周波数(例えば、1kHz)の矩形波信号を通過させるとともに、第1及び第2通信部が送受信する通信信号(例えば、2~30MHz)を通過させないフィルタである。第1通信部と入力回路との間に第1低域通過フィルタを設けることにより、第1通信部が第2通信部に対して送信した通信信号は第1低域通過フィルタで遮断され、入力回路へ侵入しない。また、第2通信部が第1通信部に対して送信した通信信号は第1低域通過フィルタで遮断され、入力回路へ侵入しない。これにより、入力回路の所定箇所の電圧レベルが、第1及び第2通信部間で送受信される通信信号により変動されないので、出力回路及び入力回路を用いた給電装置と車両との間の状態確認機能が喪失することを防止することができる。
 第2発明にあっては、出力回路と第2変圧器との間には第2低域通過フィルタを介装してある。第2低域通過フィルタは、出力回路が出力する所定の周波数(例えば、1kHz)の矩形波信号を通過させるとともに、第1及び第2通信部が送受信する通信信号(例えば、2~30MHz)を通過させないフィルタである。第2通信部と出力回路との間に第2低域通過フィルタを設けることにより、第1通信部が第2通信部に対して送信した通信信号が第2低域通過フィルタで遮断され、出力回路へ侵入しない。また、第2通信部が第1通信部に対して送信した通信信号が第2低域通過フィルタで遮断され、出力回路へ侵入しない。これにより、出力回路が送出する矩形波信号の電圧レベルが、第1及び第2通信部間で送受信される通信信号により変動されないので、出力回路及び入力回路を用いた給電装置と車両との間の状態確認機能が喪失することを防止することができる。
 第3発明にあっては、第1低域通過フィルタは、信号線に対して直列に接続される第1インダクタと、第1インダクタと第1変圧器との間の信号線間にキャパシタとを備える。また、第2低域通過フィルタは、信号線に対して直列に接続される第2インダクタと、第2インダクタと第2変圧器との間の信号線間にキャパシタとを備える。出力回路が出力する矩形波の所定の周波数(例えば、1kHz)に対しては、第1及び第2インダクタは低インピーダンスとなり、第1及び第2通信部が送受信する通信信号(例えば、2~30MHz)に対しては高インピーダンスとなる。また、出力回路が出力する矩形波の所定の周波数(例えば、1kHz)に対しては、信号線間のキャパシタは高インピーダンスとなり、第1及び第2通信部が送受信する通信信号(例えば、2~30MHz)に対しては低インピーダンスとなる。これにより、簡単な構成で第1及び第2通信部が送受信する通信信号が遮断されるとともに、コントロールパイロット信号を通過させることができる。
 第4発明にあっては、第1低域通過フィルタは、第1インダクタに並列接続した抵抗を備え、第2低域通過フィルタは、第2インダクタに並列接続した抵抗を備える。抵抗を備えることにより、例えば、インダクタと出力回路又は入力回路に存在するキャパシタとの間で構成される共振回路の共振のピークの鋭さを表すQ値(Quality factor)を小さくすることができ、不要な共振を抑制することができる。
 第5発明にあっては、第1低域通過フィルタは、第1インダクタに直列接続した抵抗を備え、第2低域通過フィルタは、第2インダクタに直列接続した抵抗を備える。抵抗を備えることにより、例えば、インダクタと出力回路又は入力回路に存在するキャパシタとの間で構成される共振回路の共振のピークの鋭さを表すQ値(Quality factor)を小さくすることができ、不要な共振を抑制することができる。
 第6発明にあっては、第1低域通過フィルタは、第1インダクタと第1変圧器との間の信号線間にキャパシタ及び抵抗の直列回路を備え、第2低域通過フィルタは、第2インダクタと第2変圧器との間の信号線間にキャパシタ及び抵抗の直列回路を備える。出力回路が出力する矩形波の所定の周波数(例えば、1kHz)に対しては、信号線間のキャパシタは高インピーダンスとなり、第1及び第2通信部が送受信する通信信号(例えば、2~30MHz)に対しては低インピーダンスとなる。これにより、簡単な構成で第1及び第2通信部が送受信する通信信号が遮断されるとともに、コントロールパイロット信号を通過させることができる。
 第8発明にあっては、矩形波信号(コントロールパイロット信号)を生成する生成部と、出力回路の出力電圧を検出する電圧検出部と、電圧検出部で検出した電圧に応じて、生成部で生成する矩形波信号を調整する調整部とを備える。矩形波信号は、デューティ比が0から100%まで変更可能な信号であり、例えば、±12Vの一定電圧も含む。これにより、出力回路は、所望のコントロールパイロット信号を出力することができる。
 第10発明にあっては、複数の抵抗を有し、抵抗値を調整可能な抵抗部と、抵抗部の電圧を変化させるため、抵抗部の抵抗値を調整する調整部とを備える。これにより、例えば、車両の状態に応じて、抵抗部の抵抗値を調整して、抵抗部の電圧を所望の値に変化させることができる。
 本発明によれば、入力回路の所定箇所の電圧レベルが、第1及び第2通信部間で送受信される通信信号により変動されないので、出力回路及び入力回路を用いた給電装置と車両との間の状態確認機能が喪失することを防止することができる。
実施の形態1の通信システムの構成の一例を示すブロック図である。 実施の形態1の通信部間の通信信号による入力回路への影響を示す説明図である。 実施の形態2の通信システムの構成の一例を示すブロック図である。 実施の形態3の通信システムの構成の一例を示すブロック図である。
(実施の形態1)
 以下、本発明に係る通信システムの実施の形態を示す図面に基づいて説明する。図1は実施の形態1の通信システムの構成の一例を示すブロック図である。図1に示すように、電気自動車又はハイブリッド自動車などの車両と給電装置とは、インレット5(「給電口」、「コネクタ」とも称する)を介して電気的に接続される。給電装置はAC電源6を備える。AC電源6は、電源線1(ACL)、電源線2(ACN)を通じて車両の充電器7に電気的に接続される。充電器7には、バッテリ(二次電池)8を接続してある。
 これにより、給電装置からの充電ケーブルに接続されたプラグ(不図示)をインレット5に接続することにより、AC電力を車両へ供給することができ、車両に搭載されたバッテリ8を充電することができる。
 本実施の形態の通信システムは、給電装置に設けられた通信装置10、車両に設けられた通信装置50などを備える。
 通信装置10は、所定の周波数の矩形波信号(「コントロールパイロット信号」とも称する)を出力する出力回路20、通信部30、変圧器31、低域通過フィルタ33などを備える。
 通信装置50は、コントロールパイロット信号が入力される入力回路60、通信部70、変圧器71、低域通過フィルタ73などを備える。
 出力回路20は、矩形波信号(コントロールパイロット信号)を生成する生成部としての電圧発生源21、抵抗22、キャパシタ23、マイコン24、バッファ25などを備える。電圧発生源21は、例えば、周波数が1kHzであって、ピーク値が±12Vの矩形波信号(コントロールパイロット信号)を生成する。コントロールパイロット信号のデューティ比は、例えば、20%であるが、これに限定されるものではない。矩形波信号は、デューティ比が0から100%まで変更可能な信号であり、例えば、±12Vの一定電圧も含む。出力回路20は、抵抗22を介して車両に設けられた入力回路60へコントロールパイロット信号を送出する。
 キャパシタ23は、例えば、出力回路20で発生するノイズを低減するために設けられている。抵抗22の値は、例えば、1.0kΩ、キャパシタ23のキャパシタンスは、例えば、2.2nFであるが、数値はこれらに限定されるものではない。
 バッファ25は、出力回路20の出力電圧を検出する電圧検出部としての機能を有し、キャパシタ23の両端電圧を検出し、検出結果をマイコン24へ出力する。
 マイコン24は、電圧発生源21で生成する矩形波信号を調整する調整部としての機能を有する。これにより、出力回路20は、±12Vの一定電圧、及び任意のデューティ比(0より大きく、100より小さい)であって波高値が±12Vの矩形波信号(コントロールパイロット信号)を出力することができる。
 入力回路60は、キャパシタ61、ダイオード62、バッファ63、マイコン64、抵抗部65などを備える。バッファ63は、抵抗部65の両端電圧Voutを検出してマイコン64へ出力する。なお、抵抗部65の両端電圧に代えて、キャパシタ61の両端の電圧を検出してもよい。
 抵抗部65は、複数の抵抗及び開閉スイッチなどを備え、マイコン64からの信号により開閉スイッチを開閉することにより、抵抗値を変化させる(調整する)ことができる。
 マイコン64は、抵抗部65の電圧Voutを変化させるため、抵抗部65の抵抗値を調整する調整部としての機能を有する。すなわち、マイコン64は、車両の状態(例えば、充電に関連する状態)に応じて電圧Voutを変化させるため、抵抗部65の抵抗値を変化させる。電圧Voutの値に応じて、給電装置と車両とは、充電に関連する状態を検出することができる。
 例えば、電圧Voutが12Vである場合は、車両の充電プラグが未接続である状態を示す。また、電圧Voutが9Vである場合は、抵抗部65の抵抗値は2.74kΩに設定され、車両の充電プラグが接続され、充電待ちの状態を示す。また、電圧Voutが6Vである場合は、抵抗部65の抵抗値は882Ωに設定され、充電中の状態を示す。また、電圧Voutが3Vである場合は、抵抗部65の抵抗値は246Ωに設定され、充電中であって充電場所を換気する必要がある状態であることを示す。
 キャパシタ61は、例えば、入力回路60に侵入するノイズを低減するために設けられている。抵抗部65の抵抗値は、例えば、2.74kΩ、882Ω、246Ω程度であり、キャパシタ61のキャパシタンスは、例えば、1.8nFであるが、数値はこれらに限定されるものではない。
 出力回路20と入力回路60とは、複数の信号線(コントロールパイロット線4、接地線3)を介して電気的に接続されている。なお、接地線3もコントロールパイロット線であるとみなすことができる。
 通信部30及び通信部70は、出力回路20と入力回路60との間に設けられたコントロールパイロット線4に所定の通信信号を重畳させることによりPLC(Power Line Communication)通信を行う。通信部30及び通信部70の間で送受信される情報は、例えば、車両IDに関するもの、充電制御(充電の開始または終了など)に関するもの、充電量の管理(急速充電、充電量の通知など)に関するもの、課金の管理などに関するもの、ナビゲーションの更新に関するもの等、コントロールパイロット信号による情報より多様性に富んでいる。
 通信部30及び通信部70は、例えば、直交化周波数多重(OFDM:Orthogonal Frequency Domain Multiplex)、周波数拡散(SS:Spread Spectrum)などの変調方式を利用した変調回路、復調回路などを備える。
 通信部30及び通信部70が行う通信の通信帯域は、例えば、2~30MHz(例えば、Home Plug Green PHY)であるが、これに限定されるものではなく、150kHz~450kHz(低速PLC)、1.75MHz~1.8MHz(FSK:frequency shift keying)などでもよい。
 出力回路20の出力側のコントロールパイロット線4に変圧器31の一方のコイルを介装してあり、通信部30は、変圧器31を介して通信信号をコントロールパイロット線4に重畳させるとともに、コントロールパイロット線4上の通信信号を受信する。
 入力回路60の入力側のコントロールパイロット線4に変圧器71の一方のコイルを介装してあり、通信部70は、変圧器71を介して通信信号をコントロールパイロット線4に重畳させるとともに、コントロールパイロット線4上の通信信号を受信する。
 すなわち、通信部30及び通信部70は、信号線上に変圧器31、71を接続して信号線に対して直列に電圧を重畳させることにより通信を行う。このような方式を線上方式と称することができる。
 出力回路20と変圧器31との間のコントロールパイロット線4には、低域通過フィルタ33を介装してある。
 また、入力回路60と変圧器71との間のコントロールパイロット線4には、低域通過フィルタ73を介装してある。
 低域通過フィルタ33、73は、それぞれ出力回路20が出力する所定の周波数(例えば、1kHz)の矩形波信号(コントロールパイロット信号)を通過させるとともに、通信部30、70が送受信する通信信号(例えば、2~30MHz)を通過させないフィルタである。
 通信部30と出力回路20との間に低域通過フィルタ33を設け、通信部70と入力回路60との間に低域通過フィルタ73を設けることにより、通信部70が通信部30に対して送信した通信信号は低域通過フィルタ33、73で遮断され、入力回路60へ侵入しない。また、通信部30が通信部70に対して送信した通信信号は低域通過フィルタ33、73で遮断され、入力回路60へ侵入しない。これにより、入力回路60の所定箇所の電圧レベルVoutが、通信部30、70間で送受信される通信信号により変動されないので、出力回路20及び入力回路60を用いた給電装置と車両との間の状態確認機能が喪失することを防止することができる。
 また、通信部70が通信部30に対して送信した通信信号が低域通過フィルタ33、73で遮断され、出力回路20へ侵入しない。また、通信部30が通信部70に対して送信した通信信号が低域通過フィルタ33、73で遮断され、出力回路20へ侵入しない。これにより、出力回路20が送出する矩形波信号の電圧レベルが、通信部30、70間で送受信される通信信号により変動されないので、出力回路20及び入力回路60を用いた給電装置と車両との間の状態確認機能が喪失することを防止することができる。
 低域通過フィルタ33は、コントロールパイロット線4に対して直列に接続されるインダクタ331、及びインダクタ331と変圧器31との間の信号線間にキャパシタ333を備える。インダクタ331のインダクタンスは、例えば、470μHであるが、インダクタンスはこれに限定されるものではない。
 出力回路20が出力する所定の周波数(例えば、1kHz)に対しては、インダクタ331は低インピーダンスとなる。また、インダクタ331は、通信部30、70が送受信する通信信号(例えば、2~30MHz)に対しては高インピーダンスとなる。これにより、簡単な構成で通信部30、70が送受信する通信信号が遮断されるとともに、コントロールパイロット信号を通過させることができる。
 また、出力回路20が出力する矩形波の所定の周波数(例えば、1kHz)に対しては、信号線間のキャパシタ333は高インピーダンスとなり、通信部30、70が送受信する通信信号(例えば、2~30MHz)に対しては低インピーダンスとなる。これにより、簡単な構成で通信部30、70が送受信する通信信号が遮断されるとともに、コントロールパイロット信号を通過させることができる。
 低域通過フィルタ73は、コントロールパイロット線4に対して直列に接続されるインダクタ731、及びインダクタ731と変圧器71との間の信号線間にキャパシタ733を備える。インダクタ731のインダクタンスは、例えば、470μHであるが、インダクタンスはこれに限定されるものではない。
 出力回路20が出力する所定の周波数(例えば、1kHz)に対しては、インダクタ731は低インピーダンスとなる。また、インダクタ731は、通信部30、70が送受信する通信信号(例えば、2~30MHz)に対しては高インピーダンスとなる。これにより、簡単な構成で通信部30、70が送受信する通信信号が遮断されるとともに、コントロールパイロット信号を通過させることができる。
 また、出力回路20が出力する矩形波の所定の周波数(例えば、1kHz)に対しては、信号線間のキャパシタ733は高インピーダンスとなり、通信部30、70が送受信する通信信号(例えば、2~30MHz)に対しては低インピーダンスとなる。これにより、簡単な構成で通信部30、70が送受信する通信信号が遮断されるとともに、コントロールパイロット信号を通過させることができる。
 また、低域通過フィルタ33は、インダクタ331に並列接続した抵抗332を備える。抵抗332の抵抗値は、例えば、470Ωであるが、これに限定されるものではない。抵抗332を備えることにより、例えば、インダクタ331と出力回路20に存在するキャパシタ23等との間で構成される共振回路の共振のピークの鋭さを表すQ値(Quality factor)を小さくすることができ、不要な共振を抑制することができる。
 同様に、低域通過フィルタ73は、インダクタ731に並列接続した抵抗732を備える。抵抗732の抵抗値は、例えば、470Ωであるが、これに限定されるものではない。抵抗732を備えることにより、例えば、インダクタ731と入力回路60に存在するキャパシタ61等との間で構成される共振回路の共振のピークの鋭さを表すQ値(Quality factor)を小さくすることができ、不要な共振を抑制することができる。
 図2は実施の形態1の通信部30、70間の通信信号による入力回路への影響を示す説明図である。図2において、横軸は周波数を示し、縦軸は通信部30、70間の通信信号による入力回路60の所定箇所での電圧の周波数成分を示す。入力回路60の所定箇所は、バッファ63が電圧レベルを検出する箇所であり、電圧Voutの電圧レベルを表す。また、図2中、符号Aで示す曲線は低域通過フィルタ33、73を具備する場合を示し、符号Bで示す曲線は低域通過フィルタ33、73を具備しない場合を示す。
 図2から分かるように、低域通過フィルタ33、73を具備することにより、通信部30、70間の通信信号による入力回路60の所定箇所での電圧レベルは、低域通過フィルタ33、73を具備しない場合に比べて、220kHz~50MHzの範囲で減衰している。具体的には、2MHzで20dB程度、30MHzで45dB程度減衰しており、通信部30、70の通信帯域である2~30MHzで20dB~45dB程度減衰している。
 低域通過フィルタ33、73を具備することにより、通信部30、70間のインバンド通信の出力回路20及び入力回路60への影響を小さくすることができ、入力回路60の所定箇所の電圧レベルが、通信部30、70間で送受信される通信信号により変動されないので、出力回路20及び入力回路60を用いた給電装置と車両との間の状態確認機能が喪失することを防止することができる。
 上述の実施の形態では、低域通過フィルタは、インダクタと抵抗の並列回路で構成されていたが、回路構成はこれに限定されるものではなく、インダクタのみでもよく、あるいはインダクタと抵抗の直列回路でもよい。また、コントロールパイロット線と接地線の信号線を矩形波信号又は通信信号の通信経路に用いたが、一方もしくは双方を車体又は給電装置の筐体などの導体を用いてもよい。また、低域通過フィルタは、以下の構成でもよい。
(実施の形態2)
 図3は実施の形態2の通信システムの構成の一例を示すブロック図である。実施の形態1との違いは、低域通過フィルタ33が、抵抗332に代えて、インダクタ331に直列に抵抗334を備える点である。低域通過フィルタ73も同様に、抵抗732に代えて、インダクタ731に直列に抵抗734を備える。なお、実施の形態1と同様の箇所は同一符号を付して説明を省略する。
 抵抗334を備えることにより、例えば、インダクタ331と出力回路20に存在するキャパシタ23等との間で構成される共振回路の共振のピークの鋭さを表すQ値(Quality factor)を小さくすることができ、不要な共振を抑制することができる。また、抵抗734を備えることにより、例えば、インダクタ731と入力回路60に存在するキャパシタ61等との間で構成される共振回路の共振のピークの鋭さを表すQ値(Quality factor)を小さくすることができ、不要な共振を抑制することができる。
(実施の形態3)
 図4は実施の形態3の通信システムの構成の一例を示すブロック図である。実施の形態1との違いは、低域通過フィルタ33が、抵抗332に代えて、コントロールパイロット線4と接地線3との間に接続されたキャパシタ336と抵抗335との直列回路を備える点である。低域通過フィルタ73も同様に、抵抗732に代えて、コントロールパイロット線4と接地線3との間に接続されたキャパシタ736と抵抗735との直列回路を備える。
 すなわち、低域通過フィルタ73は、インダクタ731と変圧器71との間の信号線間にキャパシタ736及び抵抗735の直列回路を備え、低域通過フィルタ33は、インダクタ331と変圧器31との間の信号線間にキャパシタ336及び抵抗335の直列回路を備える。また、実施の形態1と同様の箇所は同一符号を付して説明を省略する。
 これにより、出力回路20が出力する矩形波の所定の周波数(例えば、1kHz)に対しては、信号線間のキャパシタは高インピーダンスとなり、通信部30、70が送受信する通信信号(例えば、2~30MHz)に対しては低インピーダンスとなる。これにより、簡単な構成で通信部30、70が送受信する通信信号が遮断されるとともに、コントロールパイロット信号を通過させることができる。
 上述の実施の形態では、出力回路20と通信部30との間に低域通過フィルタ33を設け、かつ入力回路60と通信部70との間に低域通過フィルタ73を設ける構成であったが、これに限定されるものではなく、入力回路60と通信部70との間に低域通過フィルタ73を設け、低域通過フィルタ33を具備しない構成でもよい。しかし、低域通過フィルタ33、73の両者を具備することにより、出力回路20及び入力回路60を用いた給電装置と車両との間の状態確認機能が喪失することを一層確実に防止することができる。
 本実施の形態は、通信帯域が2~30MHzのHome Plug Green PHYに適用することができるが、これに限定されるものではなく、通信帯域が150kHz~450kHzの低速PLC、通信帯域が1.75MHz~1.8MHzのFSK(frequency shift keying)などにも適用することができる。
 開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 3 接地線(コントロールパイロット線)
 4 コントロールパイロット線
 10、50 通信装置
 20 出力回路
 21 電圧発生源
 22 抵抗
 23 キャパシタ
 30、70 通信部
 31、34、71、74 変圧器
 32、72 カップリングキャパシタ
 33、73 低域通過フィルタ
 331、731 インダクタ
 332、334、335、732、734、735 抵抗
 333、336、733、736 キャパシタ
 60 入力回路
 61 キャパシタ
 62 ダイオード
 25、63 バッファ
 24、64 マイコン
 65 抵抗部

Claims (10)

  1.  車両に給電する給電装置に設けられ、所定の周波数の矩形波信号を出力する出力回路と、前記車両に設けられ、前記出力回路と複数の信号線で接続され、該出力回路が出力する矩形波信号が入力される入力回路とを備え、前記信号線に通信信号を重畳させて前記車両と給電装置との間で通信を行う通信システムにおいて、
     前記車両に設けられ、前記信号線の中途に介装した第1変圧器を介して通信信号の送受信を行う第1通信部と、
     前記給電装置に設けられ、前記信号線の中途に介装した第2変圧器を介して通信信号の送受信を行う第2通信部と、
     前記入力回路と前記第1変圧器との間に介装された第1低域通過フィルタと
     を備えることを特徴とする通信システム。
  2.  前記出力回路と前記第2変圧器との間に介装された第2低域通過フィルタを備えることを特徴とする請求項1に記載の通信システム。
  3.  前記第1低域通過フィルタは、
     前記信号線に対して直列に接続される第1インダクタと、
     該第1インダクタと前記第1変圧器との間の信号線間に接続されたキャパシタと
     を備え、
     前記第2低域通過フィルタは、
     前記信号線に対して直列に接続される第2インダクタと、
     該第2インダクタと前記第2変圧器との間の信号線間に接続されたキャパシタと
     を備えることを特徴とする請求項1又は請求項2に記載の通信システム。
  4.  前記第1低域通過フィルタは、
     前記第1インダクタに並列接続した抵抗を備え、
     前記第2低域通過フィルタは、
     前記第2インダクタに並列接続した抵抗を備えることを特徴とする請求項3に記載の通信システム。
  5.  前記第1低域通過フィルタは、
     前記第1インダクタに直列接続した抵抗を備え、
     前記第2低域通過フィルタは、
     前記第2インダクタに直列接続した抵抗を備えることを特徴とする請求項3に記載の通信システム。
  6.  前記第1及び第2低域通過フィルタそれぞれは、
     前記キャパシタに直列接続された抵抗を備えることを特徴とする請求項3に記載の通信システム。
  7.  所定の周波数の矩形波信号を複数の信号線を介して出力する出力回路を備える通信装置において、
     前記信号線の中途に介装した変圧器を介して該信号線に通信信号を重畳させて通信信号の送受信を行う通信部と、
     前記出力回路と前記変圧器との間に介装された低域通過フィルタと
     を備えることを特徴とする通信装置。
  8.  前記矩形波信号を生成する生成部と、
     前記出力回路の出力電圧を検出する電圧検出部と、
     該電圧検出部で検出した電圧に応じて、前記生成部で生成する矩形波信号を調整する調整部と
     を備えることを特徴とする請求項7に記載の通信装置。
  9.  複数の信号線を介して所定の周波数の矩形波信号が入力される入力回路を備える通信装置において、
     前記信号線の中途に介装した変圧器を介して該信号線に通信信号を重畳させて通信信号の送受信を行う通信部と、
     前記入力回路と前記変圧器との間に介装された低域通過フィルタと
     を備えることを特徴とする通信装置。
  10.  複数の抵抗を有し、抵抗値を調整可能な抵抗部と、
     該抵抗部の電圧を変化させるため、該抵抗部の抵抗値を調整する調整部と
     を備えることを特徴とする請求項9に記載の通信装置。
PCT/JP2012/067895 2011-07-13 2012-07-13 通信システム及び通信装置 WO2013008903A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013523992A JP5868976B2 (ja) 2011-07-13 2012-07-13 通信システム及び通信装置
CN201280034472.8A CN103688472B (zh) 2011-07-13 2012-07-13 通信系统和通信装置
US14/232,202 US9577709B2 (en) 2011-07-13 2012-07-13 Communication system and communication device
EP12810568.1A EP2733859B1 (en) 2011-07-13 2012-07-13 Communication system and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-155221 2011-07-13
JP2011155221 2011-07-13

Publications (1)

Publication Number Publication Date
WO2013008903A1 true WO2013008903A1 (ja) 2013-01-17

Family

ID=47506178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067895 WO2013008903A1 (ja) 2011-07-13 2012-07-13 通信システム及び通信装置

Country Status (5)

Country Link
US (1) US9577709B2 (ja)
EP (1) EP2733859B1 (ja)
JP (1) JP5868976B2 (ja)
CN (1) CN103688472B (ja)
WO (1) WO2013008903A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014147225A (ja) * 2013-01-29 2014-08-14 Sumitomo Electric Ind Ltd 給電装置及び給電システム
US9197290B2 (en) 2011-06-21 2015-11-24 Sumitomo Electric Industries, Ltd. Communication system and communication device
JPWO2013151007A1 (ja) * 2012-04-05 2015-12-17 三菱電機株式会社 充電通信システムおよび充電設備
US9240821B2 (en) 2011-07-13 2016-01-19 Sumitomo Electric Industries, Ltd. Communication system
JP2016171613A (ja) * 2015-03-11 2016-09-23 株式会社デンソー 通信方法
US9577709B2 (en) 2011-07-13 2017-02-21 Sumitomo Electric Industries, Ltd. Communication system and communication device
US9735832B2 (en) 2011-07-13 2017-08-15 Sumitomo Electric Industries, Ltd. Communication system and communication device
US10320445B2 (en) 2014-11-14 2019-06-11 Autonetworks Technologies, Ltd. Communication system and connector

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111684672B (zh) * 2018-01-25 2022-05-31 康达科提斯公司 能量传递与控制系统及通信装置
CN113682179A (zh) * 2021-08-02 2021-11-23 国创移动能源创新中心(江苏)有限公司 一种充电枪通信模块的上电管理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5566459U (ja) * 1978-10-31 1980-05-08
JPS61136327A (ja) * 1984-12-06 1986-06-24 Nec Corp 低圧配電線通信装置の信号結合方式
JP2003218754A (ja) * 2001-11-19 2003-07-31 Tdk Corp 電力線通信システムおよび電力線分岐装置
JP2004304365A (ja) * 2003-03-28 2004-10-28 Tdk Corp 電力線終端回路および方法、ならびに電力線中継装置
JP2007013812A (ja) * 2005-07-01 2007-01-18 Matsushita Electric Ind Co Ltd データ伝送システム、およびデータ伝送方法
JP2010123284A (ja) * 2008-11-17 2010-06-03 Toyota Motor Corp 充電コネクタおよび充電ケーブルユニット

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2634334A (en) 1948-02-20 1953-04-07 Harry N Kalb Carrier current communication system
JPS5566459A (en) * 1978-11-09 1980-05-19 Matsushita Electric Ind Co Ltd Conveyor for wire rod
US5686806A (en) 1994-12-19 1997-11-11 Trans-Coil, Inc. Low-pass filter and electronic speed control system for electric motors
US5757751A (en) * 1996-01-16 1998-05-26 International Business Machines Corporation Baseline correction circuit for pulse width modulated data readback systems
DE19653522A1 (de) 1996-12-20 1998-06-25 Bayerische Motoren Werke Ag Verfahren zum drahtlosen Übertragen von Energie und Daten
CA2286226C (en) 1997-04-17 2002-07-02 Tollgrade Communications, Inc. Telephony test system with adjustable output impedance
WO1999001878A1 (fr) * 1997-07-03 1999-01-14 The Furukawa Electric Co., Ltd. Transformateur dissocie et controleur d'emission equipe de ce transformateur dissocie
US6512437B2 (en) * 1997-07-03 2003-01-28 The Furukawa Electric Co., Ltd. Isolation transformer
JPH11327262A (ja) 1998-05-15 1999-11-26 Canon Inc 帯電装置及び画像形成装置
US6019779A (en) 1998-10-09 2000-02-01 Intratherapeutics Inc. Multi-filar coil medical stent
WO2000046923A1 (en) 1999-02-04 2000-08-10 Electric Power Research Institute, Inc. Apparatus and method for implementing digital communications on a power line
CA2323114C (en) * 1999-11-18 2007-12-11 Honda Giken Kogyo Kabushiki Kaisha Apparatus for assembling floor of vehicle
JP4964358B2 (ja) * 1999-12-07 2012-06-27 株式会社デンソー 回転センサの検出信号処理装置および回転センサの検出信号出力方法
MXPA03008859A (es) 2001-03-29 2004-10-15 Ambient Corp Circuito de acoplamiento para comunicaciones de lineas de energia.
DE10248456A1 (de) 2001-10-19 2003-06-18 Denso Corp Fahrzeugkommunikationssystem
US20030063900A1 (en) * 2001-12-13 2003-04-03 Carter Group, Inc. Linear electric motor controller and system for providing linear speed control
US7041932B2 (en) * 2003-05-30 2006-05-09 Toyota Motor Manufacturing North America, Inc. Apparatus and method for supplying a continuous source of wire
WO2005024851A1 (ja) * 2003-09-02 2005-03-17 Sumitomo (Sei) Steel Wire Corp. 被覆電線および自動車用ワイヤーハーネス
US7162397B2 (en) * 2004-05-07 2007-01-09 Snap-On Incorporated Decoding an alternator output signal
DE102004034328A1 (de) 2004-07-15 2006-02-02 BSH Bosch und Siemens Hausgeräte GmbH Schaltungsanordnung zur Unterdrückung von Störsignalen in von einem Modem eines Hausgerätes abgegebenen Sendesignalen
KR100883010B1 (ko) * 2004-11-30 2009-02-12 임머숀 코퍼레이션 진동촉각 햅틱 효과를 발생시키는 공진 디바이스를제어하기 위한 시스템 및 방법
EP1836809A2 (en) * 2005-01-13 2007-09-26 Matsushita Electric Industrial Co., Ltd. Data transmission system and data transmission method
JP5100966B2 (ja) * 2005-01-17 2012-12-19 ソニーモバイルコミュニケーションズ株式会社 非接触型近距離無線通信装置、携帯電話端末
US7205749B2 (en) 2005-02-28 2007-04-17 Texas Instruments Incorporated Power line communication using power factor correction circuits
US20060232095A1 (en) * 2005-04-13 2006-10-19 Marty Sedighzadeh Retractable roll-up cover
EP1750361A1 (en) * 2005-08-03 2007-02-07 ABB Research Ltd Multilevel converter arrangement and use thereof
US20070076666A1 (en) 2005-10-03 2007-04-05 Riveiro Juan C Multi-Wideband Communications over Power Lines
WO2009034877A1 (ja) 2007-09-10 2009-03-19 Toyota Jidosha Kabushiki Kaisha 車両用充電装置および車両の充電方法
JP4375472B2 (ja) 2007-10-23 2009-12-02 トヨタ自動車株式会社 車両の充電制御装置
KR101511575B1 (ko) 2007-11-29 2015-04-13 히엔쉬 이노베이션스 비.브이. 정전 스피커 시스템
KR20090066385A (ko) * 2007-12-20 2009-06-24 (주)매트론 전력선 통신용 임베디드형 비접촉식 신호결합장치
US20090255742A1 (en) * 2008-04-15 2009-10-15 Mr. Dana Allen Hansen Self-contained & self-propelled magnetic alternator & wheel DirectDrive units aka:MAW-DirectDrives
KR101036025B1 (ko) * 2008-04-16 2011-05-19 이상범 전력선통신 시스템.
US8099064B2 (en) 2008-05-08 2012-01-17 Research In Motion Limited Mobile wireless communications device with reduced harmonics resulting from metal shield coupling
JP2011109821A (ja) 2009-11-18 2011-06-02 Fujitsu Ten Ltd プラグイン充電車両の制御装置及び制御方法
EP2326026A1 (fr) 2009-11-19 2011-05-25 Thales Système à courants porteurs en ligne à bus d'énergie à courant continu.
JP2011172363A (ja) 2010-02-17 2011-09-01 Toyota Industries Corp 充電制御装置及び車両充電システム
US8831077B2 (en) 2010-07-01 2014-09-09 Texas Instruments Incorporated Communication on a pilot wire
US8829726B2 (en) * 2010-07-02 2014-09-09 Tdk Corporation Wireless power feeder and wireless power transmission system
JP2012034484A (ja) * 2010-07-30 2012-02-16 Toyota Industries Corp 給電装置及び車両
JP5351217B2 (ja) 2010-09-10 2013-11-27 住友電気工業株式会社 電力線通信システム、電力線通信装置及び充電ケーブル接続用車載コネクタ装置
US9197290B2 (en) 2011-06-21 2015-11-24 Sumitomo Electric Industries, Ltd. Communication system and communication device
US20140254694A1 (en) 2011-06-21 2014-09-11 Sumitomo Electric Industries, Ltd. Communication system and communication device
EP2733860B1 (en) 2011-07-13 2016-05-18 Sumitomo Electric Industries, Ltd. Communication system
CN103650360B (zh) 2011-07-13 2016-09-28 住友电气工业株式会社 通信系统和通信装置
CN103688472B (zh) 2011-07-13 2016-01-13 住友电气工业株式会社 通信系统和通信装置
JP2013038760A (ja) 2011-07-13 2013-02-21 Sumitomo Electric Ind Ltd 通信システム及び通信装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5566459U (ja) * 1978-10-31 1980-05-08
JPS61136327A (ja) * 1984-12-06 1986-06-24 Nec Corp 低圧配電線通信装置の信号結合方式
JP2003218754A (ja) * 2001-11-19 2003-07-31 Tdk Corp 電力線通信システムおよび電力線分岐装置
JP2004304365A (ja) * 2003-03-28 2004-10-28 Tdk Corp 電力線終端回路および方法、ならびに電力線中継装置
JP2007013812A (ja) * 2005-07-01 2007-01-18 Matsushita Electric Ind Co Ltd データ伝送システム、およびデータ伝送方法
JP2010123284A (ja) * 2008-11-17 2010-06-03 Toyota Motor Corp 充電コネクタおよび充電ケーブルユニット

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PETER VAN DEN BOSSCHE ET AL.: "Trends and Development Status of IEC Global Electric Vehicle Standards", JOURNAL OF ASIAN ELECTRIC VEHICLE, vol. 8, no. 2, December 2010 (2010-12-01), pages 1409 - 1414, XP055127022, Retrieved from the Internet <URL:http://www.union-services.com/aevs/1409-1414.pdf> [retrieved on 20120713] *
See also references of EP2733859A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9197290B2 (en) 2011-06-21 2015-11-24 Sumitomo Electric Industries, Ltd. Communication system and communication device
US9240821B2 (en) 2011-07-13 2016-01-19 Sumitomo Electric Industries, Ltd. Communication system
US9577709B2 (en) 2011-07-13 2017-02-21 Sumitomo Electric Industries, Ltd. Communication system and communication device
US9735832B2 (en) 2011-07-13 2017-08-15 Sumitomo Electric Industries, Ltd. Communication system and communication device
JPWO2013151007A1 (ja) * 2012-04-05 2015-12-17 三菱電機株式会社 充電通信システムおよび充電設備
JP2016001995A (ja) * 2012-04-05 2016-01-07 三菱電機株式会社 充電設備
JP2014147225A (ja) * 2013-01-29 2014-08-14 Sumitomo Electric Ind Ltd 給電装置及び給電システム
US10320445B2 (en) 2014-11-14 2019-06-11 Autonetworks Technologies, Ltd. Communication system and connector
JP2016171613A (ja) * 2015-03-11 2016-09-23 株式会社デンソー 通信方法

Also Published As

Publication number Publication date
EP2733859A1 (en) 2014-05-21
US9577709B2 (en) 2017-02-21
JPWO2013008903A1 (ja) 2015-02-23
JP5868976B2 (ja) 2016-02-24
CN103688472A (zh) 2014-03-26
EP2733859B1 (en) 2019-05-15
EP2733859A4 (en) 2015-01-21
US20140192910A1 (en) 2014-07-10
CN103688472B (zh) 2016-01-13

Similar Documents

Publication Publication Date Title
JP5868976B2 (ja) 通信システム及び通信装置
JP5876483B2 (ja) 通信システム及び通信装置
JP5931863B2 (ja) 通信システム及び通信装置
JP5931864B2 (ja) 通信システム及び通信装置
US20120029728A1 (en) Charging device for vehicle and vehicle
WO2013137211A1 (ja) 通信装置及び通信システム
WO2015159684A1 (ja) 通信装置
JP5903993B2 (ja) 通信システム
JP6047907B2 (ja) 通信装置及び通信システム
US20180326854A1 (en) Communication system and communication device
JP2013038760A (ja) 通信システム及び通信装置
JP5796468B2 (ja) 充電システム、給電装置及び車載システム
WO2013136901A1 (ja) 通信装置及び通信システム
JP2013115724A (ja) 充電システム及び車載システム
JP2013219432A (ja) 通信装置及び通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12810568

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012810568

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013523992

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14232202

Country of ref document: US