WO2013008721A1 - Device for supplying ozone water and method for supplying ozone water - Google Patents

Device for supplying ozone water and method for supplying ozone water Download PDF

Info

Publication number
WO2013008721A1
WO2013008721A1 PCT/JP2012/067205 JP2012067205W WO2013008721A1 WO 2013008721 A1 WO2013008721 A1 WO 2013008721A1 JP 2012067205 W JP2012067205 W JP 2012067205W WO 2013008721 A1 WO2013008721 A1 WO 2013008721A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone water
ozone
branch
main pipe
pipe
Prior art date
Application number
PCT/JP2012/067205
Other languages
French (fr)
Japanese (ja)
Inventor
裕人 床嶋
純一 井田
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to CN201280033875.0A priority Critical patent/CN103687820B/en
Priority to KR1020137030369A priority patent/KR101974667B1/en
Publication of WO2013008721A1 publication Critical patent/WO2013008721A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone

Definitions

  • the present invention relates to an ozone water supply device and an ozone water supply method. More specifically, an ozone water supply device that supplies ozone water from a location where ozone water is generated to a use point (a location where ozone water is used) and ozone without reducing the ozone concentration of ozone water that performs wet treatment on electronic materials and the like
  • the present invention relates to a water supply method.
  • RCA cleaning developed by RCA Corporation (Radio of Corporation of America Corp.).
  • a high concentration chemical solution or detergent and a large amount of pure water or ultrapure water for rinsing it have been used.
  • various efforts have been made to simplify the cleaning technology, and the results have been achieved.
  • As a typical cleaning technique there is a cleaning technique using cleaning water in which a specific gas such as ozone or hydrogen is dissolved.
  • ozone water in which ozone is dissolved in pure water has strong oxidizing power even though the dissolved ozone concentration is as low as several mg / L. Therefore, ozone water is used in the process of removing impurities such as organic substances and metals adhering to the surface of the substrate and the process of forming an oxide film layer on the surface of the silicon substrate. In such a process, since the concentration of ozone used greatly affects the cleaning power of the substrate surface and the film thickness to be formed, the management of the ozone concentration is extremely important.
  • Ozone is easily self-decomposing, and when the distance between the ozone water generation site and the use point is long, the ozone concentration in the ozone water decreases during the transfer of the generated ozone water to the use point.
  • the ozone water generated at the ozone water generation site is transferred by piping, and the ozone water that flows through the piping each time the ozone water is divided is supplied to the use points in a divided manner.
  • the water flow rate decreases. For this reason, at the use point located downstream, it takes time until the ozone water reaches, and when the ozone water reaches the use point, the ozone self-decomposes and the ozone concentration in the ozone water decreases. .
  • Patent Documents 1 and 2 describe techniques for preventing a decrease in ozone concentration in ozone water.
  • Patent Document 1 when ozone water generated by dissolving ozone in pure water is transferred, the self-decomposition of ozone is suppressed by dissolving carbon dioxide or an organic compound in pure water or ozone water using an ozone water generator.
  • medical agent supply apparatus is installed in the arbitrary positions from the ozone water supply pipe to the discharge pipe of the ozone water supply apparatus, and nitrous acid, nitrite, carbonic acid, carbonate, bicarbonate, sulfite, sulfite, One or more ozone decomposition inhibitors selected from the group consisting of bisulfite and hydrazine are added.
  • Patent Documents 3 to 5 describe technologies for adjusting ozone concentration in ozone water and easily supplying ozone water having a desired ozone concentration.
  • Patent Document 3 in a method for adjusting the concentration of ozone water in which ozone is excessively dissolved, the ozone concentration is adjusted by promoting the decomposition of ozone by the length of the water passage, heating, ultrasonic waves, ultraviolet rays, or turbulence. To do.
  • ozone containing water is made to contact glass and the ozone concentration of ozone water is adjusted.
  • Patent Document 5 describes a technique for stably supplying ozone water having a desired concentration.
  • ozone water in which an ozone decomposition inhibiting substance is present is transferred to a use point, and is reduced to a predetermined ozone concentration by a concentration adjusting means in the vicinity of the use point.
  • the object of the present invention is to supply ozone water without lowering the ozone concentration in ozone water when the distance between the ozone water generating means and the use point is long and / or when a plurality of use points are provided.
  • Another object of the present invention is to provide an ozone water supply device and an ozone water supply method.
  • the ozone water supply device is connected to the ozone water generating means for generating ozone water to be supplied to a use point, and the ozone water generating means is divided into the ozone water flowing inside, A main pipe in which a branch point corresponding to the number of use points is formed, a branch pipe connecting the branch point and the use point, and a decrease in the flow velocity of ozone water flowing through the main pipe and the branch pipe are prevented. And a flow rate maintaining means.
  • the flow rate of the ozone water can be prevented from being lowered, the ozone water can be transferred at a desired flow rate, and the ozone water can be supplied to the use point before the ozone concentration in the ozone water is lowered. Therefore, the first aspect can be preferably applied when the distance between the ozone water generating means and the use point is long.
  • the flow rate maintaining means is formed such that the flow passage cross-sectional area of the main pipe is decreased on the downstream side of the upstream side of the branch point, and the flow passage cross-sectional area of the main pipe is reduced.
  • the ozone water is divided into the branch pipes at the branch points so as to correspond to the flow rate.
  • This ozone water supply device can be preferably applied to a case where ozone water is supplied by diverting sequentially from a main pipe which is a supply pipe for ozone water to a plurality of use points.
  • a bypass pipe for bypassing the flow of ozone water to the use point is provided corresponding to the number of the use points, and switching means for flowing ozone water to the use point or the bypass pipe is provided.
  • the third aspect even when ozone water is not supplied to any of the use points, it is possible to flow ozone water through this bypass pipe. For this reason, on the downstream side of the main branch point corresponding to the use point that does not supply ozone water, it is possible to flow ozone water at a flow rate suitable for the cross-sectional area of the main flow path, Can be maintained.
  • the flow rate of the ozone water flowing in the branch pipe immediately before the use point is controlled to be at least 30 m / min.
  • the ozone water can be supplied to the use point before the ozone in the ozone water self-decomposes and the dissolved ozone concentration decreases.
  • the ozone water supply device includes pH value suppression means for suppressing the pH value of the ozone water supplied to the use point to 6 or less.
  • the pH value of the ozone water is adjusted to be acidic, the self-decomposition of ozone is suppressed, and the decrease of the dissolved ozone concentration in the ozone water can be effectively prevented.
  • the ozone water supply method is an ozone water supply method for supplying ozone water generated by ozone water generating means to a use point where ozone water is used by piping, wherein the ozone water flows through the piping.
  • the ozone water is supplied to the use point while maintaining the flow rate of the water at a certain level or higher.
  • the ozone water can be transferred at a desired flow rate by preventing the flow rate of the ozone water from being lowered. Since the decrease in the flow rate of the ozone water is prevented, the ozone water can be supplied to the use point before the ozone concentration in the ozone water decreases.
  • the sixth aspect can be preferably applied when the distance between the ozone water generating means and the use point is long.
  • the pipe is connected to the ozone water generating means and shunts ozone water flowing inside, and a main pipe in which branch points corresponding to the number of use points are formed, and the branch point And a branch pipe that communicates with the use point, the flow passage cross-sectional area of the main pipe is formed so that the downstream side is smaller than the upstream side of the branch point, and the flow passage break of the main pipe is formed.
  • the decrease in the area is made to correspond to the flow rate of the ozone water that is diverted to the branch pipe at the branch point, so that the decrease in the flow velocity of the ozone water flowing through the main pipe is prevented and ozone water is supplied.
  • the seventh aspect it is possible to prevent a decrease in the flow rate of the ozone water flowing through the main pipe even after the ozone water is divided from the main pipe.
  • the seventh aspect can be preferably applied to a case where ozone water is supplied to a plurality of use points by sequentially diverting from a main pipe which is a supply pipe for ozone water.
  • a bypass pipe for bypassing the flow of ozone water to the use point is provided corresponding to the number of the use points, and switching means for flowing ozone water to the use point or the bypass pipe is provided.
  • the flow of ozone water is caused to flow to the bypass pipe by the switching means corresponding to the selected use point, and the flow rate of the ozone water flowing through the main pipe downstream from the branch point corresponding to the selected use point is decreased. Prevent ozone and supply ozone water.
  • the ozone water is supplied by controlling the flow rate of the ozone water flowing in the branch pipe immediately before the use point to be at least 30 m / min.
  • the ozone water can be supplied to the use point before the ozone in the ozone water self-decomposes and the dissolved ozone concentration decreases.
  • ozone water is supplied with the pH value of ozone water being 6 or less.
  • the pH value of ozone water can be adjusted to acidity, self-decomposition can be suppressed, and a decrease in the dissolved concentration of ozone can be effectively prevented.
  • the ozone water supply device and the ozone water supply method according to the present invention even when the distance between the ozone water generating means and the use point is long, the ozone water can be transferred at a desired flow rate, and the dissolved ozone concentration is reduced. Ozone water can be supplied before.
  • the main water flows after the diversion. It can be transferred without reducing the flow rate of ozone water.
  • it is possible to supply ozone water at a desired flow rate to the use point located on the downstream side, and it is possible to supply ozone water that prevents a decrease in the dissolved ozone concentration.
  • the ozone water supply device 10 includes a pipe for flowing ozone water.
  • the pipe is composed of a main pipe 11 connected to the ozone water generating means 1 and a plurality of branch pipes 15, 16, 17 branched from the main pipe 11.
  • branch points 12, 13 and 14 corresponding to the use points 21, 22 and 23 are provided at different positions from the upstream side to the downstream side of the main pipe 11.
  • the branch pipes 15, 16, and 17 are provided so as to communicate these branch points 12, 13, and 14 with the use points 21, 22, and 23, respectively.
  • Detour pipes 31, 32, and 33 branching from the branch pipes 15, 16, and 17, respectively, are provided. These bypass pipes 31, 32, 33 send ozone water to the collection line 37 when not supplied to the use points 21, 22, 23.
  • the ozone water generating means 1 includes an ozone generator 4 that is an ozone gas supply source, and an ozone dissolving device 5 that dissolves ozone gas in water (for example, pure water).
  • the ozone generator 4 is connected to an oxygen gas tank 2 and a carbon dioxide gas tank 3 and supplied with a mixed gas of oxygen gas and carbon dioxide gas.
  • the ozone generator 4 generates ozone by various ozone generation methods. For example, ozone is generated using a silent discharge type, electrolysis type or ultraviolet type ozonizer.
  • the ozone dissolving device 5 is supplied with water (for example, pure water or may be ultrapure water) and the ozone-containing gas generated by the ozone generator 4 to generate ozone water.
  • the ozone dissolving device 5 is not particularly limited, and for example, a device that dissolves ozone gas using a gas permeable film, a device that dissolves ozone gas in high-pressure pure water using an ejector, or the like can be used. .
  • this ozone water generating means carbon dioxide gas is dissolved in water to make the pH of the ozone water acidic, thereby suppressing the self-decomposition of ozone in the ozone water.
  • the pH of ozone water is adjusted by controlling the amount of carbon dioxide dissolved.
  • carbon dioxide gas is mixed with oxygen gas.
  • carbon dioxide gas may be mixed with ozone gas generated by the ozone gas generator 4, and carbon dioxide gas is added to ozone water from the ozone dissolving device 5. May be dissolved.
  • carbon dioxide gas is used for suppressing the self-decomposition of ozone, it is preferable to dissolve it in water before or before the ozone gas is dissolved.
  • other chemicals pH adjusting liquid may be used inside or around the ozone water generating means 1.
  • the pH of the ozone water after adjusting the pH is preferably 7 or less, more preferably 6 or less, and more preferably 2 to 6.
  • the supplied ozone water is used to clean a substrate such as a semiconductor silicon substrate, a liquid crystal glass substrate, or a photomask quartz substrate and other electronic components.
  • a substrate or the like is immersed in a treatment tank to which ozone water is supplied, and treatment is performed by spraying ozone water on the substrate or the like.
  • the ozone water supply apparatus 10 shown in FIG. 1 three use points 21, 22, and 23 are provided, but this use point may be provided at one place, two places, or four or more places.
  • the main pipe 11 transfers ozone water from the ozone water generating means 1.
  • the main pipe 11 is preferably provided with a water supply pump.
  • the pump may be installed on the upstream side of the ozone dissolving device 5.
  • the main pipe 11 has the same number of branch points 12, 13, and 14 as the number of use points 21, 22, and 23, and diverts ozone water.
  • the main pipe 11 has a tapered shape in which the cross-sectional area of the flow path gradually decreases toward the downstream side in the vicinity of the branch points 12, 13, and 14.
  • Branch pipes 15, 16, and 17 communicate branch points 12, 13, and 14 of main pipe 11 with use points 21, 22, and 23, respectively.
  • the diverted ozone water is sent to use points 21, 22, and 23.
  • the flow rate maintaining means forms the main pipe 11 such that the flow passage cross-sectional area of the main pipe 11 is reduced on the downstream side from the upstream side of the branch points 12, 13, and 14.
  • the decrease in the flow path cross-sectional area is configured to correspond to the flow rate of the ozone water diverted to the branch pipes 15, 16, and 17 at the branch points 12, 13, and 14.
  • the flow rate of the ozone water flowing through the main pipe 11b is within a predetermined range.
  • the pipe diameters of the main pipes 11c and 11d on the downstream side of the branch points 12 and 13 are further reduced.
  • the flow rate of ozone water in the pipes 11c and 11d is within a predetermined range.
  • the flow rate of the ozone water flowing through the main pipe 11 can be reduced even after the ozone water is branched from the main pipe 11 to the branch pipes 15, 16, and 17. Reduction is prevented.
  • the pipe diameter of the main pipe 11 is designed according to the flow velocity of ozone water to be obtained.
  • the flow rate of the ozone water flowing through the main pipe 11 is controlled according to the distance between the ozone water generating means 1 and the use points 21, 22, and 23.
  • the flow rate of ozone water is preferably 30m / min to 180m / min, and 30m / min to 120m so that ozone water can be used at use points 21, 22, and 23 before the concentration of dissolved ozone in ozone water decreases. It is more desirable that the rate be 40 m / min to 90 m / min.
  • the material of the pipe used for the main pipe 11 and the branch pipes 15, 16, and 17 is not limited, but it is preferable to use a pipe having ozone resistance.
  • a PFA pipe formed of perfluoroalkoxy fluororesin may be used.
  • the bypass pipes 31, 32, and 33 can flow ozone water to the collection line 37 by bypassing the use points 21, 22, and 23.
  • the bypass pipes 31, 32 and 33 are connected to the branch pipes 15, 16 and 17, and flow through the branch pipes 15, 16 and 17 when ozone water is not supplied to the use points 21, 22 and 23. Diverted ozone water to the recovery line 37.
  • the branch pipes 15 to 17 and the bypass pipes 31 to 33 are switching means (valves) for switching between the flow path selection for supplying ozone water to the use points 21 to 23 and the flow path selection for flowing to the bypass pipes 31 to 33. ) Is provided.
  • the entire amount of ozone water flowing through the branch pipe 15 is transferred from the bypass pipe 31 to the recovery line 37. Shed.
  • the flow rate of the ozone water that flows through the main pipe 11b downstream of the branch point 12 of the main pipe 11 by detouring the ozone water by the bypass pipe 31 is within a predetermined range. Keep in.
  • the total amount of ozone water flowing through the branch pipes 16 and 17 to the respective use points 22 and 23 is transferred from the bypass pipes 32 and 33 to the recovery line 37. Shed. Thereby, the flow velocity of the ozone water in the main pipes 11c and 11d on the downstream side of the branch points 13 and 14 of the main pipe 11 is maintained constant.
  • the pipe diameters of the bypass pipes 31, 32, and 33 are preferably the same as the pipe diameters of the branch pipes 15, 16, and 17.
  • the material of the bypass pipes 31, 32, 33 is not particularly limited, but it is preferable to use ozone-resistant pipes, for example, PFA pipes formed of perfluoroalkoxy fluororesin are preferably used.
  • the switching means for selecting the flow path for flowing the total amount of ozone water flowing into the branch pipes 14, 15, 16 to the use points 21, 22, 23 and the flow path for flowing to the bypass pipes 31, 32, 33,
  • the solenoid valve 40 shown in FIG. 3 and the stop valves 41 and 42 shown in FIG. 4 are used.
  • the solenoid valve 40 shown in FIG. 3 has a state in which the total amount of ozone water flowing through the branch pipes 15, 16, and 17 flows to the use points 21, 22, and 23 by the movement of the spool in the valve and the bypass pipes 31, 32, and 33. Switch to one of the states to flow to. The spool is moved by turning on / off the current to the solenoid provided in the solenoid valve 40.
  • the stop valve 41 shown in FIG. 4 is provided in the branch pipes 15, 16, and 17 on the downstream side of the branch point between the branch pipes 15, 16, and 17 and the bypass pipes 31, 32, and 33, and the stop valve 42 is bypassed. It is provided in the piping 31, 32, 33 for use.
  • the stop valve 41 of the branch pipes 15, 16, 17 is closed and the bypass is bypassed.
  • the stop valve 42 of the pipes 31, 32, 33 is opened.
  • the stop valve 41 is opened and the stop valve 42 is closed.
  • switching of the flow path is not limited to the switching means using the solenoid valve 40 shown in FIG. 3 or the stop valves 41 and 42 shown in FIG. 4, and switching means having other configurations may be used.
  • the above ozone water supply apparatus 10 operates as follows.
  • the ozone water generated by the ozone water generating means 1 flows to the main pipe 11.
  • the ozone water is flowed at a flow rate of at least 30 m / min, preferably 30 m / min to 180 m / min, more preferably 30 m / min to It is sent out at a flow rate of 120 m / min, especially 40 m / min to 90 m / min.
  • the pH value of the ozone water is preferably 7 or less, particularly 6 or less, and more preferably 2 to 6.
  • the ozone water sent out to the main pipe 11 flows through the section 11a of the main pipe 11 and reaches the first branch point 12. Part of the ozone water that has reached the branch point 12 is diverted to the branch pipe 15, and the remainder flows through the section 11 b of the main pipe 11.
  • the ozone water branched from the main pipe 11 to the branch pipe 15 is supplied to the use point 21.
  • the supplied ozone water is used at a use point 21 to clean a substrate such as a semiconductor silicon substrate, a liquid crystal glass substrate, or a photomask quartz substrate and other electronic components.
  • the ozone water that has not been diverted to the branch pipe 15 passes through the branch point 12 and flows into the section 11b. Since the vicinity of the branch point 12 has a gentle taper, no turbulent flow is generated in the ozone water flowing in the vicinity of the branch point 12, and the flow rate of the ozone water does not decrease due to energy loss. Since the main pipe 11 is formed such that the flow passage cross-sectional area of the section 11b is smaller than the flow passage cross-sectional area of the section 11a, the flow rate of the ozone water in the section 11b is not less than a predetermined value, preferably 30 to 180 m / More preferably, it is 30 to 120 m / min, and particularly preferably 40 to 90 m / min.
  • Ozone water that has flowed through the main pipe 11 at a flow rate higher than a predetermined value flows into the branch pipes 15, 16, and 17 while maintaining the flow rate.
  • the ozone water branched into the branch pipes 15, 16, and 17 flows through the branch pipes 15, 16, and 17 and is supplied to the use points 21, 22, and 23. Used for cleaning.
  • the ozone water that has not been diverted to the branch pipes 15 to 16 at the branch points 12 to 14 flows through the main pipe 11 at a flow rate of a predetermined value or more.
  • the ozone water can be quickly reached to the respective use points 21, 22, and 23. For this reason, ozone water is supplied to each use point 21, 22, 23 before the dissolved ozone concentration falls without causing ozone in the ozone water to self-decompose.
  • the ozone water that has flowed through the section 14d of the main pipe 11 is then joined to the collection line 37 and collected.
  • the flow rate of ozone water in the main pipe 11 on the downstream side of the branch point to the use points is kept within a predetermined range. Can be maintained.
  • ozone water is supplied using this ozone water supply device 10, even when the distance between the ozone water generating means 1 and the use points 21, 22, 23 is long, the ozone water can be transferred at a desired flow rate, and dissolved ozone Ozone water can be supplied before the concentration decreases.
  • the ozone water When the ozone water is supplied to the multiple use points 21, 22, 23 sequentially from the main pipe 11, the ozone water can be transferred without decreasing the flow velocity of the ozone water flowing through the main pipe 11 after the diversion.
  • the ozone water can be supplied to the use points 22 and 23 located on the downstream side at a desired flow rate.
  • ozone water may not be supplied to a predetermined use point (for example, the use point 21 located on the most upstream side). Even in this case, ozone water can be supplied to the use points 22 and 23 located downstream from the use point 21 while maintaining a desired flow rate.
  • bypass pipes 31 to 33 are branched from the middle of the branch pipes 15 to 17, but may be branched from a branch point between the main pipe and the branch pipe or in the vicinity thereof.
  • FIG. 5 shows an example of the configuration in the vicinity of the branch point in this embodiment.
  • FIG. 5 shows an ozone water supply apparatus 10A in which branch pipes 55, 56, 57 and detour pipes 61, 62, 63 are connected to branch points 52, 53, 54 of the main pipe 51 connected to the ozone water generating means.
  • the process system diagram of is shown. Since the configuration of the ozone water generating means used in the second embodiment is the same as that of the first embodiment, the description thereof is omitted here.
  • Three branch points 52, 53, and 54 provided in the main pipe 51 include branch pipes 55, 56, and 57, and bypass pipes 61, 62, and 57 provided separately from the branch pipes 55, 56, and 57, respectively. 63 are connected to each other. These branch pipes 55, 56, 57 and bypass pipes 61, 62, 63 have pipe diameters that are the same, and the flow passage cross-sectional areas are designed to have the same value. The flow passage cross-sectional areas of these branch pipes 55, 56, 57 and the bypass pipes 61, 62, 63 are downstream of the flow passage cross-sectional area upstream of the branch points 52, 53, 54 of the main pipe 51. Corresponds to the decrease in road cross-sectional area.
  • the pipe diameter of the main pipe 51b downstream of the branch point 51 is smaller than the pipe diameter of the main pipe 51a upstream of the branch point 51, and the pipe diameter of the main pipe 51c downstream of the branch point 52 is the branch point.
  • the pipe diameter of the main pipe 51 c on the downstream side of the branch point 53 is smaller than the pipe diameter of the main pipe 51 b on the upstream side of the branch point 53.
  • a part of the ozone water flowing through the main pipe 51 is diverted to one of the branch pipes 55, 56, 57 or the bypass pipes 61, 62, 63, and the remainder Is provided for switching the downstream side of the main pipe 51 downstream of the branch points 52, 53, 54.
  • FIG. 6 shows a solenoid valve 70 as an example of switching means.
  • the solenoid valve 70 is configured to move the position of a spool provided in the solenoid valve 70 by turning on and off the current, and to flow the flowing ozone water downstream of the branch pipes 55, 56, 57 and the main pipe 51. And the state of flowing to the downstream side of the bypass pipes 61, 62, 63 and the main pipe 51 are performed.
  • FIG. 7 shows an example in which stop valves 71 and 72 as switching means are used.
  • the stop valve 71 is provided in the branch pipes 55, 56, 57 connected to the branch points 52, 53, 54, and the stop valve 72 is provided in the bypass pipes 61, 62, 63.
  • the stop valve 71 is opened and the stop valve 72 is turned on. Closed.
  • the stop valve 71 is closed and the stop valve 72 is opened.
  • the branch points from the main pipe 51 of the bypass pipes 61, 62, 63 may be in the vicinity of the branch points from the main pipe 51 of the branch pipes 55, 56, 57, and slightly in the pipe axis direction. It may shift.
  • bypass pipes 61, 62, and 63 are connected to the recovery line 67.
  • the bypass distribution pipes 61, 62, and 63 recover the ozone water. Detour to 67.
  • the main pipe 51 has a downstream cross-sectional area that is smaller than the upstream cross-sectional area of each of the branch points 52, 53, and 54.
  • the decrease in the flow path cross-sectional area formed is formed corresponding to the flow rate of the ozone water branched into the branch pipes 55, 56 and 57. Therefore, the flow rate of the ozone water flowing through the main pipe 51 on the downstream side of each branch point 52, 53, 54 can be set within a predetermined range. Even when the ozone water is not supplied to the use point, the ozone water is diverted to the bypass pipes 61, 62, and 63.
  • the branch points 52, 53, and 54 in the main pipe 51 corresponding to the use points that do not supply the ozone water are used. Without excessively increasing the flow velocity of the ozone water flowing through the main pipe 51 on the downstream side. It can be within a predetermined range.
  • the ozone generator 4 (Sumitomo Seimitsu Kogyo Co., Ltd., silent discharge type ozone generator GR-RD) shown in FIG. 1 and the ozone dissolver 5 (Japan Gore-Tech) are shown.
  • Ozone water was generated using an ozone-dissolved membrane (GNK-01K). Further, the dissolved ozone concentration was measured using a dissolved ozone meter (Sugawara Business Co., Ltd., dissolved ozone meter EL-700A).
  • the ozone water supply apparatus 10 including the main pipe 11 and the branch pipes 15, 16, and 17 shown in FIG. 1 was used.
  • FIG. 1 there are three use points 21, 22, and 23.
  • the water supply distance to the use point 21 is set to 30 m
  • the water supply distance to the use point 22 is set to 60 m
  • the water supply distance to the use point 23 is set to 90 m.
  • the inner diameter of the main pipe 11 in the section 11a to the branch point 12 corresponding to the first use point 21 is 32 mm
  • the inner diameter of the main pipe 11 in the section 11b from the branch point 13 corresponding to the second use point 22 to the branch point 14 corresponding to the third use point 23 is 20 mm.
  • Each of the pipes formed was used.
  • a mixed gas of oxygen gas and carbon dioxide gas is supplied to the ozone generator 4 to generate ozone gas, and the generated ozone gas is introduced into an ozone dissolving film which is the ozone dissolving device 5, and ozone is dissolved in pure water to dissolve ozone.
  • Water was produced.
  • the dissolved ozone concentration at the outlet of the ozone dissolving device 5 was 25 mg / L.
  • the pH value of the generated ozone water was 5.
  • each use point 21, 22, 23 needs to have a dissolved ozone concentration of at least 20 mg / L
  • the target value of the dissolved ozone concentration when reaching each use point 21, 22, 23 is 20 mg / L L.
  • the generated ozone water was sent to the main pipe 11 at a water supply amount of 35 L / min, and the amount of ozone water used at each use point 21, 22, 23 was 10 L / min per location.
  • the flow rate of ozone water flowing through the main pipe 11 is calculated by the following equation (1).
  • Pipe flow velocity LV (m / min) Water supply amount (m 3 / min) / Pipe cross-sectional area (m 2 ) (1)
  • the pipe cross-sectional area 12.5 2 ⁇ 3.14 ⁇ 10 ⁇ 6 (m 2 )
  • the pipe flow velocity in the section 11b is calculated to be about 51.0 m / min.
  • the cross-sectional area of the pipe 10 2 ⁇ 3.14 ⁇ 10 ⁇ 6 (m 2 )
  • the pipe flow velocity in the section 11c is about 47.8 m / min.
  • the measurement result of the dissolved ozone concentration of the ozone water at each use point 21, 22, 23 is 24mg / L at the first use point 21, 24mg / L at the second use point 22, and 23mg at the third use point 23. / L.
  • the ozone water supply device 10 similar to the ozone water supply device 10 shown in FIG. 1 is used, except that the inner diameter of the main pipe 11 is 32 mm in all sections, and measurement is performed by the same method. went.
  • the water supply distance to the use point 21 was set to 30 m
  • the water supply distance to the use point 22 was set to 60 m
  • the water supply distance to the use point 23 was set to 90 m.
  • the generation of ozone water and the dissolved ozone concentration (25 mg / L) of the generated ozone water were the same as in the examples.
  • the generated ozone water was sent to the main pipe 11 at a water supply amount of 35 L / min, and the amount of ozone water used at each use point 21, 22, 23 was 10 L / min per location.
  • the pipe flow velocity in the section 11c is about 18.7 m / min.
  • the first use point 21 was 24 mg / L
  • the second use point 22 was 22 mg / L
  • the third use point 23 was 18 mg. / L.
  • the dissolved ozone concentration at the downstream use point gradually decreases.
  • the dissolved ozone concentration decreased to 18 mg / L dissolved ozone concentration, and could not be set to the target value of 20 mg / L or more.
  • the pipe 11 is formed in the same size without reducing the pipe diameter. Compared to the comparative example using the pipe, the decrease in the flow velocity of the ozone water flowing through the main pipe 11 is prevented.
  • the dissolved ozone concentration of ozone water at each of the use points 21, 22, 23 is the dissolved ozone concentration that is the target value at all the use points 21, 22, 23 in the embodiment. It could be 20 mg / L or more.
  • the dissolved ozone concentration at each of the use points 21, 22, 23 decreases as the transfer distance of the ozone water increases, and at the third use point 23, the dissolved ozone concentration is 18 mg. / L has fallen below the target ozone concentration of 20 mg / L.
  • ozone water can be supplied at a flow rate of a certain value or more without reducing the flow rate of ozone water, and the dissolved ozone concentration of ozone water decreases. It can be effectively prevented.

Abstract

Provided are a device for supplying ozone water and a method for supplying ozone water that supply ozone water to a point of use without reductions in ozone concentration. A device (10) for supplying ozone water is provided with: an ozone water producing means (1) that produces ozone water; a main pipe (11) on which branch points (12, 13, 14), at which the flow of ozone water from the ozone water producing means (1) splits, are formed; branch pipes (15, 16, 17) that connect the branch points and points of use; and a flow rate maintaining means that prevents the flow rate of ozone water flowing in the main pipe and branch pipes from being reduced. The cross-sectional area of the flow path in the main pipe (11) decreases on the downstream side of the branch points (12, 13, 14) from that on the upstream side. The decrease in the cross-sectional area of the flow path of the main pipe (11) corresponds to the amount of flow of ozone water flowing into the branch pipes at the branch points.

Description

オゾン水供給装置及びオゾン水供給方法Ozone water supply apparatus and ozone water supply method
 本発明は、オゾン水供給装置及びオゾン水供給方法に関する。さらに詳しくは、電子材料等に対してウェット処理を行うオゾン水のオゾン濃度を低下させることなく、オゾン水生成場所からユースポイント(オゾン水使用箇所)にオゾン水を供給するオゾン水供給装置及びオゾン水供給方法に関する。 The present invention relates to an ozone water supply device and an ozone water supply method. More specifically, an ozone water supply device that supplies ozone water from a location where ozone water is generated to a use point (a location where ozone water is used) and ozone without reducing the ozone concentration of ozone water that performs wet treatment on electronic materials and the like The present invention relates to a water supply method.
 従来、半導体用シリコン基板、液晶用ガラス基板又はフォトマスク用石英基板等の基板その他の電子部品の洗浄は、米国のRCA社(Radio of Corporation of America Corp.)により開発されたRCA洗浄に代表されるように、高濃度の薬液や洗剤及びそれを濯ぐための夥しい量の純水又は超純水を用いて行われていた。洗浄工程のコストを削減する目的や大量の洗浄水の使用を抑制して環境を保全する目的等のために、洗浄技術に対する様々な簡略化の取り組みがなされ、その成果を上げてきた。その代表的な洗浄技術としてオゾンや水素等の特定のガスを溶解した洗浄水による洗浄技術がある。 Conventionally, cleaning of substrates and other electronic parts such as silicon substrates for semiconductors, glass substrates for liquid crystals or quartz substrates for photomasks is represented by RCA cleaning developed by RCA Corporation (Radio of Corporation of America Corp.). As described above, a high concentration chemical solution or detergent and a large amount of pure water or ultrapure water for rinsing it have been used. For the purpose of reducing the cost of the cleaning process and for the purpose of preserving the environment by suppressing the use of a large amount of cleaning water, various efforts have been made to simplify the cleaning technology, and the results have been achieved. As a typical cleaning technique, there is a cleaning technique using cleaning water in which a specific gas such as ozone or hydrogen is dissolved.
 例えば、純水にオゾンを溶解したオゾン水は、溶存オゾン濃度が数mg/Lといった低濃度であるにも拘わらず強い酸化力を有する。そのため、オゾン水は基板の表面に付着した有機物や金属等の不純物を除去する工程や、シリコン基板の表面に酸化皮膜層を形成する工程に使用されている。このような工程では、使用されるオゾンの濃度が基板表面の洗浄力や形成される膜厚に大きな影響を与えるため、オゾン濃度の管理が極めて重要とされている。 For example, ozone water in which ozone is dissolved in pure water has strong oxidizing power even though the dissolved ozone concentration is as low as several mg / L. Therefore, ozone water is used in the process of removing impurities such as organic substances and metals adhering to the surface of the substrate and the process of forming an oxide film layer on the surface of the silicon substrate. In such a process, since the concentration of ozone used greatly affects the cleaning power of the substrate surface and the film thickness to be formed, the management of the ozone concentration is extremely important.
 オゾンは自己分解しやすく、オゾン水生成場所とユースポイントとの距離が長い場合、生成されたオゾン水をユースポイントまで移送する途中でオゾン水中のオゾン濃度が低下してしまう。 Ozone is easily self-decomposing, and when the distance between the ozone water generation site and the use point is long, the ozone concentration in the ozone water decreases during the transfer of the generated ozone water to the use point.
 ユースポイントが複数存在する場合、オゾン水生成場所で生成したオゾン水を配管で移送し、ユースポイントに順次に分流して供給する手法であると、オゾン水を分流するたびに配管内を流れるオゾン水の流速が低下する。このため、下流側に位置するユースポイントでは、オゾン水が到達するまでに時間がかかり、ユースポイントにオゾン水が到達したときにはオゾンが自己分解してしまい、オゾン水中のオゾン濃度が低下してしまう。 When there are multiple use points, the ozone water generated at the ozone water generation site is transferred by piping, and the ozone water that flows through the piping each time the ozone water is divided is supplied to the use points in a divided manner. The water flow rate decreases. For this reason, at the use point located downstream, it takes time until the ozone water reaches, and when the ozone water reaches the use point, the ozone self-decomposes and the ozone concentration in the ozone water decreases. .
 オゾン水中のオゾン濃度の低下を防止する技術が特許文献1,2に記載されている。 Patent Documents 1 and 2 describe techniques for preventing a decrease in ozone concentration in ozone water.
 特許文献1では、純水にオゾンを溶解して生成したオゾン水を移送するに際し、オゾン水生成装置にて純水又はオゾン水に炭酸ガス又は有機化合物を溶解させることによりオゾンの自己分解を抑制する。特許文献2では、オゾン水供給装置のオゾン水の給水管から排出管までの任意の位置に薬剤供給装置を設け、亜硝酸、亜硝酸塩、炭酸、炭酸塩、重炭酸塩、亜硫酸、亜硫酸塩、重亜硫酸塩及びヒドラジンからなる群から選ばれる1又は2以上のオゾン分解抑制剤を添加する。 In Patent Document 1, when ozone water generated by dissolving ozone in pure water is transferred, the self-decomposition of ozone is suppressed by dissolving carbon dioxide or an organic compound in pure water or ozone water using an ozone water generator. To do. In patent document 2, the chemical | medical agent supply apparatus is installed in the arbitrary positions from the ozone water supply pipe to the discharge pipe of the ozone water supply apparatus, and nitrous acid, nitrite, carbonic acid, carbonate, bicarbonate, sulfite, sulfite, One or more ozone decomposition inhibitors selected from the group consisting of bisulfite and hydrazine are added.
 オゾン水中のオゾン濃度を調整し、所望のオゾン濃度のオゾン水を容易に供給する技術が特許文献3~5に記載されている。 Patent Documents 3 to 5 describe technologies for adjusting ozone concentration in ozone water and easily supplying ozone water having a desired ozone concentration.
 特許文献3では、過剰にオゾンを溶解させたオゾン水の濃度調整方法において、通水経路の長さ、加温、超音波、紫外線又は乱流化によりオゾンの分解を促進させてオゾン濃度を調整する。特許文献4では、オゾン含有水をガラスと接触させ、オゾン水のオゾン濃度を調整する。 In Patent Document 3, in a method for adjusting the concentration of ozone water in which ozone is excessively dissolved, the ozone concentration is adjusted by promoting the decomposition of ozone by the length of the water passage, heating, ultrasonic waves, ultraviolet rays, or turbulence. To do. In patent document 4, ozone containing water is made to contact glass and the ozone concentration of ozone water is adjusted.
 所望濃度のオゾン水を安定供給する技術が特許文献5に記載されている。特許文献5では、オゾン分解抑制物質を存在させたオゾン水をユースポイントに移送し、ユースポイント近傍において濃度調整手段により所定のオゾン濃度に低下させる。 Patent Document 5 describes a technique for stably supplying ozone water having a desired concentration. In Patent Document 5, ozone water in which an ozone decomposition inhibiting substance is present is transferred to a use point, and is reduced to a predetermined ozone concentration by a concentration adjusting means in the vicinity of the use point.
特開2000-37695号公報JP 2000-37695 A 特開2002-18454号公報JP 2002-18454 A 特開2000-180433号公報JP 2000-180433 A 特開2000-334468号公報JP 2000-334468 A 特開2005-294377号公報JP 2005-294377 A
 本発明の目的は、オゾン水生成手段とユースポイントとの距離が長い場合、及び/又は複数のユースポイントを備えた場合に、オゾン水中のオゾン濃度を低下させることなくオゾン水を供給することができるオゾン水供給装置及びオゾン水供給方法を提供することにある。 The object of the present invention is to supply ozone water without lowering the ozone concentration in ozone water when the distance between the ozone water generating means and the use point is long and / or when a plurality of use points are provided. Another object of the present invention is to provide an ozone water supply device and an ozone water supply method.
 第1態様に係るオゾン水供給装置は、ユースポイントに供給するためのオゾン水を生成するオゾン水生成手段と、前記オゾン水生成手段に接続されると共に、内部を流れるオゾン水を分流し、前記ユースポイントの数に対応する分岐点が形成された本管と、前記分岐点と前記ユースポイントとを連絡する枝管と、前記本管及び前記枝管を流れるオゾン水の流速の低下を防止する流速維持手段と、を備えることを特徴とする。 The ozone water supply device according to the first aspect is connected to the ozone water generating means for generating ozone water to be supplied to a use point, and the ozone water generating means is divided into the ozone water flowing inside, A main pipe in which a branch point corresponding to the number of use points is formed, a branch pipe connecting the branch point and the use point, and a decrease in the flow velocity of ozone water flowing through the main pipe and the branch pipe are prevented. And a flow rate maintaining means.
 第1態様によれば、オゾン水の流速の低下を防止して、所望の流速でオゾン水を移送でき、オゾン水中のオゾン濃度が低下する前にオゾン水をユースポイントに供給することができる。従って、第1態様はオゾン水生成手段とユースポイントとの距離が長い場合に好ましく適用することができる。 According to the first aspect, the flow rate of the ozone water can be prevented from being lowered, the ozone water can be transferred at a desired flow rate, and the ozone water can be supplied to the use point before the ozone concentration in the ozone water is lowered. Therefore, the first aspect can be preferably applied when the distance between the ozone water generating means and the use point is long.
 第2態様では、前記流速維持手段を、前記本管の流路断面積が前記分岐点の上流側よりも下流側が減少するよう形成し、かつ、前記本管の流路断面積の減少分が、前記分岐点で前記枝管に分流されるオゾン水の流量に対応するように構成する。 In the second aspect, the flow rate maintaining means is formed such that the flow passage cross-sectional area of the main pipe is decreased on the downstream side of the upstream side of the branch point, and the flow passage cross-sectional area of the main pipe is reduced. The ozone water is divided into the branch pipes at the branch points so as to correspond to the flow rate.
 第2態様によれば、本管からオゾン水を分流した後でもオゾン水の流速の低下を防止することができる。このオゾン水供給装置は、複数のユースポイントにオゾン水の供給用配管である本管から順次に分流させてオゾン水を供給させる場合に好ましく適用することができる。 According to the second aspect, it is possible to prevent a decrease in the flow rate of the ozone water even after the ozone water is diverted from the main pipe. This ozone water supply device can be preferably applied to a case where ozone water is supplied by diverting sequentially from a main pipe which is a supply pipe for ozone water to a plurality of use points.
 第3態様では、前記ユースポイントへのオゾン水の流れを迂回させる迂回用配管を、前記ユースポイントの数に対応して設け、前記ユースポイント又は前記迂回用配管にオゾン水を流す切換手段を設ける。 In the third aspect, a bypass pipe for bypassing the flow of ozone water to the use point is provided corresponding to the number of the use points, and switching means for flowing ozone water to the use point or the bypass pipe is provided. .
 第3態様によれば、ユースポイントのいずれかにオゾン水を供給しない場合であっても、この迂回用配管にオゾン水を流すことができる。このため、オゾン水を供給しないユースポイントに対応する本管の分岐点の下流側においては、本管の流路断面積に適応した流量のオゾン水を流すことができ、オゾン水の流速を適切に維持することができる。 According to the third aspect, even when ozone water is not supplied to any of the use points, it is possible to flow ozone water through this bypass pipe. For this reason, on the downstream side of the main branch point corresponding to the use point that does not supply ozone water, it is possible to flow ozone water at a flow rate suitable for the cross-sectional area of the main flow path, Can be maintained.
 第4態様に係るオゾン水供給装置では、前記ユースポイントの直前における前記枝管内を流れるオゾン水の流速を、少なくとも30m/分となるように制御する。 In the ozone water supply device according to the fourth aspect, the flow rate of the ozone water flowing in the branch pipe immediately before the use point is controlled to be at least 30 m / min.
 第4態様によれば、オゾン水中のオゾンが自己分解して溶存オゾン濃度が低下してしまう前にオゾン水をユースポイントに供給することができる。 According to the fourth aspect, the ozone water can be supplied to the use point before the ozone in the ozone water self-decomposes and the dissolved ozone concentration decreases.
 第5態様に係るオゾン水供給装置は、前記ユースポイントに供給されるオゾン水のpH値を6以下に抑制するpH値抑制手段を備える。 The ozone water supply device according to the fifth aspect includes pH value suppression means for suppressing the pH value of the ozone water supplied to the use point to 6 or less.
 第5態様によれば、オゾン水のpH値を酸性に調整し、オゾンの自己分解を抑制し、オゾン水中の溶存オゾン濃度の低下を効果的に防止できる。 According to the fifth aspect, the pH value of the ozone water is adjusted to be acidic, the self-decomposition of ozone is suppressed, and the decrease of the dissolved ozone concentration in the ozone water can be effectively prevented.
 第6態様に係るオゾン水供給方法は、オゾン水生成手段により生成されたオゾン水を、配管によってオゾン水が使用されるユースポイントに供給するオゾン水供給方法であって、前記配管を流れるオゾン水の流速を一定以上に維持して前記ユースポイントにオゾン水を供給することを特徴とする。 The ozone water supply method according to the sixth aspect is an ozone water supply method for supplying ozone water generated by ozone water generating means to a use point where ozone water is used by piping, wherein the ozone water flows through the piping. The ozone water is supplied to the use point while maintaining the flow rate of the water at a certain level or higher.
 第6態様によれば、オゾン水の流速の低下を防止して、所望の流速でオゾン水を移送できる。オゾン水の流速の低下を防止するので、オゾン水中のオゾン濃度が低下する前にオゾン水をユースポイントに供給することができる。第6態様は、オゾン水生成手段とユースポイントとの距離が長い場合に好ましく適用することができる。 According to the sixth aspect, the ozone water can be transferred at a desired flow rate by preventing the flow rate of the ozone water from being lowered. Since the decrease in the flow rate of the ozone water is prevented, the ozone water can be supplied to the use point before the ozone concentration in the ozone water decreases. The sixth aspect can be preferably applied when the distance between the ozone water generating means and the use point is long.
 第7態様では、前記配管は、前記オゾン水生成手段に接続されると共に、内部を流れるオゾン水を分流し、前記ユースポイントの数に対応する分岐点が形成された本管と、前記分岐点と前記ユースポイントとを連絡する枝管と、で構成され、前記本管の流路断面積を前記分岐点の上流側よりも下流側が減少するよう形成し、かつ、前記本管の流路断面積の減少分を、前記分岐点で前記枝管に分流されるオゾン水の流量に対応させて、本管を流れるオゾン水の流速の低下を防止してオゾン水を供給する。 In the seventh aspect, the pipe is connected to the ozone water generating means and shunts ozone water flowing inside, and a main pipe in which branch points corresponding to the number of use points are formed, and the branch point And a branch pipe that communicates with the use point, the flow passage cross-sectional area of the main pipe is formed so that the downstream side is smaller than the upstream side of the branch point, and the flow passage break of the main pipe is formed. The decrease in the area is made to correspond to the flow rate of the ozone water that is diverted to the branch pipe at the branch point, so that the decrease in the flow velocity of the ozone water flowing through the main pipe is prevented and ozone water is supplied.
 第7態様によれば、本管からオゾン水を分流した後でも本管を流れるオゾン水の流速の低下を防止することができる。第7態様は、複数のユースポイントに、オゾン水の供給用配管である本管から順次に分流させてオゾン水を供給させる場合に好ましく適用することができる。 According to the seventh aspect, it is possible to prevent a decrease in the flow rate of the ozone water flowing through the main pipe even after the ozone water is divided from the main pipe. The seventh aspect can be preferably applied to a case where ozone water is supplied to a plurality of use points by sequentially diverting from a main pipe which is a supply pipe for ozone water.
 第8態様では、前記ユースポイントへのオゾン水の流れを迂回させる迂回用配管を前記ユースポイントの数に対応して設けると共に、前記ユースポイント又は前記迂回用配管にオゾン水を流す切換手段を設け、選択された前記ユースポイントに対応する前記切換手段により前記迂回用配管へオゾン水を流し、選択された前記ユースポイントに対応する分岐点よりも下流側の本管を流れるオゾン水の流速の低下を防止してオゾン水を供給する。 In the eighth aspect, a bypass pipe for bypassing the flow of ozone water to the use point is provided corresponding to the number of the use points, and switching means for flowing ozone water to the use point or the bypass pipe is provided. The flow of ozone water is caused to flow to the bypass pipe by the switching means corresponding to the selected use point, and the flow rate of the ozone water flowing through the main pipe downstream from the branch point corresponding to the selected use point is decreased. Prevent ozone and supply ozone water.
 第8態様では、ユースポイントのいずれかにオゾン水を供給しない場合であっても、迂回用配管にオゾン水を流すことができる。このため、オゾン水を供給しないユースポイントに対応する本管の分岐点の下流側においては、本管の流路断面積に適応した流量のオゾン水を流すことができ、オゾン水の流速を適切に維持することができる。 In the eighth aspect, even when ozone water is not supplied to any of the use points, it is possible to flow ozone water through the bypass pipe. For this reason, on the downstream side of the main branch point corresponding to the use point that does not supply ozone water, it is possible to flow ozone water at a flow rate suitable for the cross-sectional area of the main flow path, Can be maintained.
 第9態様に係るオゾン水供給方法においては、前記ユースポイントの直前における前記枝管内を流れるオゾン水の流速を、少なくとも30m/分となるように制御してオゾン水を供給する。 In the ozone water supply method according to the ninth aspect, the ozone water is supplied by controlling the flow rate of the ozone water flowing in the branch pipe immediately before the use point to be at least 30 m / min.
 第9態様によれば、オゾン水中のオゾンが自己分解し溶存オゾン濃度が低下してしまう前にオゾン水をユースポイントに供給することができる。 According to the ninth aspect, the ozone water can be supplied to the use point before the ozone in the ozone water self-decomposes and the dissolved ozone concentration decreases.
 第10態様に係るオゾン水供給方法においては、オゾン水のpH値を6以下としてオゾン水を供給する。 In the ozone water supply method according to the tenth aspect, ozone water is supplied with the pH value of ozone water being 6 or less.
 第10態様によれば、オゾン水のpH値を酸性に調整し、自己分解を抑制してオゾンの溶存濃度の低下を効果的に防止できる。 According to the tenth aspect, the pH value of ozone water can be adjusted to acidity, self-decomposition can be suppressed, and a decrease in the dissolved concentration of ozone can be effectively prevented.
 本発明に係るオゾン水供給装置及びオゾン水供給方法によれば、オゾン水生成手段とユースポイントとの距離が長い場合でも、オゾン水を所望の流速で移送でき、溶存オゾン濃度が低下するよりも前にオゾン水を供給することができる。 According to the ozone water supply device and the ozone water supply method according to the present invention, even when the distance between the ozone water generating means and the use point is long, the ozone water can be transferred at a desired flow rate, and the dissolved ozone concentration is reduced. Ozone water can be supplied before.
 本発明に係るオゾン水供給装置及びオゾン水供給方法によれば、複数のユースポイントに、オゾン水を移送する本管から順次に分流してオゾン水を供給する場合でも、分流後に本管を流れるオゾン水の流速を低下させることなく移送できる。その結果、下流側に位置するユースポイントにも所望の流速でオゾン水を供給でき、溶存オゾン濃度の低下を防止したオゾン水を供給できる。 According to the ozone water supply apparatus and the ozone water supply method according to the present invention, even when ozone water is supplied to a plurality of use points by sequentially diverting from the main pipe for transferring ozone water, the main water flows after the diversion. It can be transferred without reducing the flow rate of ozone water. As a result, it is possible to supply ozone water at a desired flow rate to the use point located on the downstream side, and it is possible to supply ozone water that prevents a decrease in the dissolved ozone concentration.
本発明の第1実施形態に係るオゾン水供給装置の工程系統図である。It is a process flow diagram of an ozone water supply device concerning a 1st embodiment of the present invention. オゾン水供給装置を構成する本管及び枝管を示す一部切り欠き平面図である。It is a partially notched top view which shows the main pipe and branch pipe which comprise an ozone water supply apparatus. オゾン水の流路を切り換えるソレノイドバルブのシンボルを示す説明図である。It is explanatory drawing which shows the symbol of the solenoid valve which switches the flow path of ozone water. ストップバルブを使用したオゾン水の流路を切り換える切換手段を示す説明図である。It is explanatory drawing which shows the switching means which switches the flow path of ozone water which uses a stop valve. 本発明の第2実施形態に係るオゾン水供給装置の一部を示す工程系統図である。It is a process flow diagram showing a part of an ozone water supply device concerning a 2nd embodiment of the present invention. オゾン水の流路を切り換えるソレノイドバルブのシンボルを示す説明図である。It is explanatory drawing which shows the symbol of the solenoid valve which switches the flow path of ozone water. ストップバルブを使用したオゾン水の流路を切り換える切換手段を示す説明図である。It is explanatory drawing which shows the switching means which switches the flow path of ozone water which uses a stop valve.
 以下、本発明の実施形態について図面を参照しながら説明する。なお、本発明の技術的範囲は、以下の記載や図面にのみ限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The technical scope of the present invention is not limited only to the following description and drawings.
[第1実施形態]
 オゾン水供給装置10は、図1に示すように、オゾン水を流すための配管を備えている。配管は、オゾン水生成手段1に接続される本管11と、本管11から分岐する複数の枝管15,16,17とから構成される。本管11には、ユースポイント21,22,23に対応する分岐点12,13,14が、本管11の上流側から下流側にかけて、異なる位置に設けられている。枝管15,16,17は、これらの分岐点12,13,14とユースポイント21,22,23とをそれぞれ連絡するように設けられている。
[First Embodiment]
As shown in FIG. 1, the ozone water supply device 10 includes a pipe for flowing ozone water. The pipe is composed of a main pipe 11 connected to the ozone water generating means 1 and a plurality of branch pipes 15, 16, 17 branched from the main pipe 11. In the main pipe 11, branch points 12, 13 and 14 corresponding to the use points 21, 22 and 23 are provided at different positions from the upstream side to the downstream side of the main pipe 11. The branch pipes 15, 16, and 17 are provided so as to communicate these branch points 12, 13, and 14 with the use points 21, 22, and 23, respectively.
 各枝管15,16,17から分岐する迂回用配管31,32,33がそれぞれ設けられている。これらの迂回用配管31,32,33は、ユースポイント21,22,23へ供給しない場合にオゾン水を回収ライン37に送水する。 Detour pipes 31, 32, and 33 branching from the branch pipes 15, 16, and 17, respectively, are provided. These bypass pipes 31, 32, 33 send ozone water to the collection line 37 when not supplied to the use points 21, 22, 23.
 <オゾン水生成手段>
 オゾン水生成手段1は、オゾンガス供給源であるオゾン発生器4と、水(例えば純水)にオゾンガスを溶解するオゾン溶解装置5とを備えている。
<Ozone water generating means>
The ozone water generating means 1 includes an ozone generator 4 that is an ozone gas supply source, and an ozone dissolving device 5 that dissolves ozone gas in water (for example, pure water).
 オゾン発生器4には、酸素ガスタンク2と炭酸ガスタンク3が接続され、酸素ガスと炭酸ガスとの混合ガスが供給される。このオゾン発生器4は、種々のオゾン発生方式によりオゾンを発生する。例えば、無声放電方式、電気分解方式又は紫外線方式のオゾナイザを用いてオゾンを発生させる。 The ozone generator 4 is connected to an oxygen gas tank 2 and a carbon dioxide gas tank 3 and supplied with a mixed gas of oxygen gas and carbon dioxide gas. The ozone generator 4 generates ozone by various ozone generation methods. For example, ozone is generated using a silent discharge type, electrolysis type or ultraviolet type ozonizer.
 オゾン溶解装置5は、水(例えば純水。超純水であってもよい。)と、オゾン発生器4により発生されたオゾン含有ガスが供給され、オゾン水を生成させる。オゾン溶解装置5についても特に制限はなく、例えば、ガス透過膜を用いてオゾンガスを溶解させる方式の装置や、エゼクターを用い、高圧の純水にオゾンガスを溶解させる方式の装置等を用いることができる。 The ozone dissolving device 5 is supplied with water (for example, pure water or may be ultrapure water) and the ozone-containing gas generated by the ozone generator 4 to generate ozone water. The ozone dissolving device 5 is not particularly limited, and for example, a device that dissolves ozone gas using a gas permeable film, a device that dissolves ozone gas in high-pressure pure water using an ejector, or the like can be used. .
 このオゾン水生成手段1では、水に炭酸ガスを溶解させてオゾン水のpHを酸性とし、オゾン水中でのオゾンの自己分解を抑制している。炭酸ガスの溶解量を制御することにより、オゾン水のpHが調整される。 In this ozone water generating means 1, carbon dioxide gas is dissolved in water to make the pH of the ozone water acidic, thereby suppressing the self-decomposition of ozone in the ozone water. The pH of ozone water is adjusted by controlling the amount of carbon dioxide dissolved.
 この実施の形態では、炭酸ガスを酸素ガスと混合しているが、オゾンガス発生器4で発生したオゾンガスに炭酸ガスを混合してもよく、オゾン溶解装置5からのオゾン水に炭酸ガスを添加して溶解させてもよい。ただし、炭酸ガスはオゾンの自己分解を抑制するためのものであるので、オゾンガスを溶解させるとき、またはそれ以前に水に溶解させることが好ましい。オゾン水のpHを酸性に調整するために、オゾン水生成手段1の内部又はその前後にて他の薬品(pH調整液)を使用してもよい。 In this embodiment, carbon dioxide gas is mixed with oxygen gas. However, carbon dioxide gas may be mixed with ozone gas generated by the ozone gas generator 4, and carbon dioxide gas is added to ozone water from the ozone dissolving device 5. May be dissolved. However, since carbon dioxide gas is used for suppressing the self-decomposition of ozone, it is preferable to dissolve it in water before or before the ozone gas is dissolved. In order to adjust the pH of the ozone water to be acidic, other chemicals (pH adjusting liquid) may be used inside or around the ozone water generating means 1.
 pHを調整した後のオゾン水は、pHが7以下特に6以下であることが望ましく、2~ 6であることがより望ましい。 The pH of the ozone water after adjusting the pH is preferably 7 or less, more preferably 6 or less, and more preferably 2 to 6.
 <ユースポイント>
 ユースポイント21,22,23では、供給されたオゾン水を利用して、半導体用シリコン基板、液晶用ガラス基板又はフォトマスク用石英基板等の基板やその他の電子部品が洗浄される。ユースポイント21,22,23では、オゾン水が供給された処理槽に基板等を浸漬して処理したり、基板等にオゾン水のシャワーを吹き付けて処理することが行われる。図1に示したオゾン水供給装置10では、3箇所のユースポイント21,22,23を設けているが、このユースポイントは1箇所、2箇所又は4箇所以上設けられてもよい。
<Use point>
At the use points 21, 22, and 23, the supplied ozone water is used to clean a substrate such as a semiconductor silicon substrate, a liquid crystal glass substrate, or a photomask quartz substrate and other electronic components. In the use points 21, 22, and 23, a substrate or the like is immersed in a treatment tank to which ozone water is supplied, and treatment is performed by spraying ozone water on the substrate or the like. In the ozone water supply apparatus 10 shown in FIG. 1, three use points 21, 22, and 23 are provided, but this use point may be provided at one place, two places, or four or more places.
 <本管及び枝管>
 本管11は、オゾン水生成手段1からのオゾン水を移送する。本管11に送水用ポンプが設けられることが好ましい。ポンプはオゾン溶解装置5の上流側に設置されてもよい。
<Main pipe and branch pipe>
The main pipe 11 transfers ozone water from the ozone water generating means 1. The main pipe 11 is preferably provided with a water supply pump. The pump may be installed on the upstream side of the ozone dissolving device 5.
 本管11は、図2に示すように、ユースポイント21,22,23の数と同数の分岐点12,13,14を有し、オゾン水を分流する。本管11は、各分岐点12,13,14付近で、下流側に向けて徐々に流路断面積が減少するテーパ形状となっている。 As shown in FIG. 2, the main pipe 11 has the same number of branch points 12, 13, and 14 as the number of use points 21, 22, and 23, and diverts ozone water. The main pipe 11 has a tapered shape in which the cross-sectional area of the flow path gradually decreases toward the downstream side in the vicinity of the branch points 12, 13, and 14.
 枝管15,16,17は、本管11の分岐点12,13,14と、ユースポイント21,22,23とをそれぞれ連絡しており、各分岐点12,13,14で本管11から分流したオゾン水をユースポイント21,22,23に送水する。 Branch pipes 15, 16, and 17 communicate branch points 12, 13, and 14 of main pipe 11 with use points 21, 22, and 23, respectively. The diverted ozone water is sent to use points 21, 22, and 23.
 流速維持手段は、図2に示すように、本管11を、本管11の流路断面積が分岐点12,13,14の上流側より下流側が減少するよう形成し、かつ、本管11の流路断面積の減少分を、分岐点12,13,14で枝管15,16,17に分流されるオゾン水の流量に対応するように構成して実現している。 As shown in FIG. 2, the flow rate maintaining means forms the main pipe 11 such that the flow passage cross-sectional area of the main pipe 11 is reduced on the downstream side from the upstream side of the branch points 12, 13, and 14. The decrease in the flow path cross-sectional area is configured to correspond to the flow rate of the ozone water diverted to the branch pipes 15, 16, and 17 at the branch points 12, 13, and 14.
 分岐点12よりも上流側の本管11aを流れてきたオゾン水の一部が分岐点12から枝管15へ分流しても、分岐点12の下流側の本管11bの管径が上流側の本管11aよりも小さくなっているので、本管11bを流れるオゾン水の流速は所定範囲内となる。 Even if a portion of the ozone water that has flowed through the main pipe 11a upstream from the branch point 12 is branched from the branch point 12 to the branch pipe 15, the pipe diameter of the main pipe 11b downstream from the branch point 12 is the upstream side. Therefore, the flow rate of the ozone water flowing through the main pipe 11b is within a predetermined range.
 同様に分岐点13,14から枝管16,17にオゾン水が分流しても、分岐点12,13よりも下流側の本管11c,11dの管径がそれぞれさらに小さくなっているので、本管11c,11dにおけるオゾン水の流速は所定範囲内となる。 Similarly, even if ozone water is diverted from the branch points 13 and 14 to the branch pipes 16 and 17, the pipe diameters of the main pipes 11c and 11d on the downstream side of the branch points 12 and 13 are further reduced. The flow rate of ozone water in the pipes 11c and 11d is within a predetermined range.
 このように本管11及び枝管15,16,17を構成することで、オゾン水が本管11から枝管15,16,17に分流した後も、本管11を流れるオゾン水の流速の低下が防止される。この本管11の配管径は、得ようとするオゾン水の流速に応じて設計される。 By configuring the main pipe 11 and the branch pipes 15, 16, and 17 in this manner, the flow rate of the ozone water flowing through the main pipe 11 can be reduced even after the ozone water is branched from the main pipe 11 to the branch pipes 15, 16, and 17. Reduction is prevented. The pipe diameter of the main pipe 11 is designed according to the flow velocity of ozone water to be obtained.
 本管11を流れるオゾン水の流速は、オゾン水生成手段1とユースポイント21,22,23との距離に応じて制御される。オゾン水中の溶存オゾン濃度が低下する前にユースポイント21,22,23でオゾン水を使用できるように、オゾン水の流速を30m/分~180m/分とすることが望ましく、30m/分~120m/分、特に40m/分~90m/分とすることがより望ましい。 The flow rate of the ozone water flowing through the main pipe 11 is controlled according to the distance between the ozone water generating means 1 and the use points 21, 22, and 23. The flow rate of ozone water is preferably 30m / min to 180m / min, and 30m / min to 120m so that ozone water can be used at use points 21, 22, and 23 before the concentration of dissolved ozone in ozone water decreases. It is more desirable that the rate be 40 m / min to 90 m / min.
 本管11及び枝管15,16,17に使用される配管の材質は限定されないが、耐オゾン性を有する配管を使用することが好ましい。例えば、ペルフルオロアルコキシフッ素樹脂により形成されたPFA配管等を用いるとよい。 The material of the pipe used for the main pipe 11 and the branch pipes 15, 16, and 17 is not limited, but it is preferable to use a pipe having ozone resistance. For example, a PFA pipe formed of perfluoroalkoxy fluororesin may be used.
 <迂回用配管>
 迂回用配管31,32,33は、オゾン水を、ユースポイント21,22,23を迂回して回収ライン37に流すことが可能である。迂回用配管31,32,33は、各枝管15,16,17に接続されており、ユースポイント21,22,23にオゾン水を供給しない場合に、枝管15,16,17を流れてきたオゾン水を回収ライン37へ迂回させる。
<By-pass piping>
The bypass pipes 31, 32, and 33 can flow ozone water to the collection line 37 by bypassing the use points 21, 22, and 23. The bypass pipes 31, 32 and 33 are connected to the branch pipes 15, 16 and 17, and flow through the branch pipes 15, 16 and 17 when ozone water is not supplied to the use points 21, 22 and 23. Diverted ozone water to the recovery line 37.
 枝管15~17及び迂回用配管31~33には、オゾン水をユースポイント21~23に供給する流路選択と迂回用配管31~33に流す流路選択とを切り替えるための切換手段(バルブ)が設けられている。 The branch pipes 15 to 17 and the bypass pipes 31 to 33 are switching means (valves) for switching between the flow path selection for supplying ozone water to the use points 21 to 23 and the flow path selection for flowing to the bypass pipes 31 to 33. ) Is provided.
 例えば、3箇所のユースポイント21,22,23のうち第1番目に位置するユースポイント21が使用されない場合、枝管15を流れてきたオゾン水の全量を、迂回用配管31から回収ライン37へ流す。このように、使用しないユースポイント21がある場合でも、迂回用配管31によりオゾン水を迂回させて、本管11の分岐点12よりも下流側の本管11bを流れるオゾン水の流速を所定範囲内に維持する。 For example, when the first use point 21 among the three use points 21, 22, and 23 is not used, the entire amount of ozone water flowing through the branch pipe 15 is transferred from the bypass pipe 31 to the recovery line 37. Shed. As described above, even when there is a use point 21 that is not used, the flow rate of the ozone water that flows through the main pipe 11b downstream of the branch point 12 of the main pipe 11 by detouring the ozone water by the bypass pipe 31 is within a predetermined range. Keep in.
 同様に、他のユースポイント22又は23を使用しない場合にも、それぞれのユースポイント22,23への枝管16,17を流れるオゾン水の全量を、迂回用配管32,33から回収ライン37へ流す。これにより、本管11の分岐点13,14よりも下流側の本管11c,11dにおけるオゾン水の流速が一定に維持される。 Similarly, when other use points 22 or 23 are not used, the total amount of ozone water flowing through the branch pipes 16 and 17 to the respective use points 22 and 23 is transferred from the bypass pipes 32 and 33 to the recovery line 37. Shed. Thereby, the flow velocity of the ozone water in the main pipes 11c and 11d on the downstream side of the branch points 13 and 14 of the main pipe 11 is maintained constant.
 迂回用配管31,32,33の管径は枝管15,16,17の管径と同一であることが好ましい。迂回用配管31,32,33の材質は特に制限されないが、耐オゾン性を有する配管を使用することが好ましく、例えば、ペルフルオロアルコキシフッ素樹脂により形成されたPFA配管等を使用いることが好ましい。 The pipe diameters of the bypass pipes 31, 32, and 33 are preferably the same as the pipe diameters of the branch pipes 15, 16, and 17. The material of the bypass pipes 31, 32, 33 is not particularly limited, but it is preferable to use ozone-resistant pipes, for example, PFA pipes formed of perfluoroalkoxy fluororesin are preferably used.
 枝管14,15,16に流入したオゾン水の全量をユースポイント21,22,23に流す流路選択と迂回用配管31,32,33に流す流路選択とを行うための切換手段は、例えば、図3に示すソレノイドバルブ40や図4に示すストップバルブ41,42を用いて構成される。 The switching means for selecting the flow path for flowing the total amount of ozone water flowing into the branch pipes 14, 15, 16 to the use points 21, 22, 23 and the flow path for flowing to the bypass pipes 31, 32, 33, For example, the solenoid valve 40 shown in FIG. 3 and the stop valves 41 and 42 shown in FIG. 4 are used.
 図3に示すソレノイドバルブ40は、バルブ内のスプールの移動によって、枝管15,16,17を流れるオゾン水の全量をユースポイント21,22,23へ流す状態と迂回用配管31,32,33へ流す状態とのいずれかに切り替える。スプールの移動は、ソレノイドバルブ40が備えるソレノイドへの電流のオン・オフにより行われる。 The solenoid valve 40 shown in FIG. 3 has a state in which the total amount of ozone water flowing through the branch pipes 15, 16, and 17 flows to the use points 21, 22, and 23 by the movement of the spool in the valve and the bypass pipes 31, 32, and 33. Switch to one of the states to flow to. The spool is moved by turning on / off the current to the solenoid provided in the solenoid valve 40.
 図4に示すストップバルブ41は、枝管15,16,17と迂回用配管31,32,33との分岐点よりも下流側の枝管15,16,17に設けられ、ストップバルブ42は迂回用配管31,32,33に設けられている。ユースポイント21,22,23へのオゾン水の供給を停止し、迂回用配管31,32,33へオゾン水を流す場合には、枝管15,16,17のストップバルブ41を閉じると共に、迂回用配管31,32,33のストップバルブ42を開く。ユースポイント21,22,23へオゾン水を流すときには、ストップバルブ41を開とし、ストップバルブ42を閉とする。 The stop valve 41 shown in FIG. 4 is provided in the branch pipes 15, 16, and 17 on the downstream side of the branch point between the branch pipes 15, 16, and 17 and the bypass pipes 31, 32, and 33, and the stop valve 42 is bypassed. It is provided in the piping 31, 32, 33 for use. When the supply of ozone water to the use points 21, 22, 23 is stopped and ozone water is allowed to flow to the bypass pipes 31, 32, 33, the stop valve 41 of the branch pipes 15, 16, 17 is closed and the bypass is bypassed. The stop valve 42 of the pipes 31, 32, 33 is opened. When flowing ozone water to the use points 21, 22, and 23, the stop valve 41 is opened and the stop valve 42 is closed.
 なお、流路の切り換えは、図3に示すソレノイドバルブ40や図4に示すストップバルブ41,42を用いた切換手段には限定されず、他の構成の切換手段を用いてもよい。 Note that the switching of the flow path is not limited to the switching means using the solenoid valve 40 shown in FIG. 3 or the stop valves 41 and 42 shown in FIG. 4, and switching means having other configurations may be used.
 <オゾン水供給装置の動作>
 以上のオゾン水供給装置10は以下のように動作する。
<Operation of ozone water supply device>
The above ozone water supply apparatus 10 operates as follows.
 オゾン水生成手段1により生成したオゾン水は本管11に流れる。既述のように、本管11にオゾン水を流す際には、オゾン水を少なくとも30m/分の流速で、好ましくは、30m/分~180m/分の流速で、より好ましくは30m/分~120m/分、特に40m/分~90m/分の流速で送り出す。この際、オゾン水のpH値は、7以下特に6以下とすることが望ましく、2~6とすることがより望ましい。 The ozone water generated by the ozone water generating means 1 flows to the main pipe 11. As described above, when flowing ozone water through the main pipe 11, the ozone water is flowed at a flow rate of at least 30 m / min, preferably 30 m / min to 180 m / min, more preferably 30 m / min to It is sent out at a flow rate of 120 m / min, especially 40 m / min to 90 m / min. At this time, the pH value of the ozone water is preferably 7 or less, particularly 6 or less, and more preferably 2 to 6.
 本管11に送り出されたオゾン水は、本管11の区間11aを流れ、最初の分岐点12に到達する。分岐点12に到達したオゾン水は、その一部が枝管15に分流され、残部は本管11の区間11bを流れる。 The ozone water sent out to the main pipe 11 flows through the section 11a of the main pipe 11 and reaches the first branch point 12. Part of the ozone water that has reached the branch point 12 is diverted to the branch pipe 15, and the remainder flows through the section 11 b of the main pipe 11.
 本管11から枝管15に分流されたオゾン水はユースポイント21に供給される。供給されたオゾン水は、ユースポイント21で、半導体用シリコン基板、液晶用ガラス基板又はフォトマスク用石英基板等の基板やその他の電子部品の洗浄に使用される。 The ozone water branched from the main pipe 11 to the branch pipe 15 is supplied to the use point 21. The supplied ozone water is used at a use point 21 to clean a substrate such as a semiconductor silicon substrate, a liquid crystal glass substrate, or a photomask quartz substrate and other electronic components.
 枝管15に分流しなかったオゾン水は、分岐点12を通過し、区間11bに流入する。分岐点12付近がなだらかなテーパ状であるため、分岐点12付近において、内部を流れるオゾン水に乱流が生じることがなく、エネルギー損失によりオゾン水の流速が低下することがない。本管11は、区間11aの流路断面積に対して区間11bの流路断面積が小さくなるよう形成されているので、区間11bのオゾン水の流速は所定値以上、好ましくは30~180m/分さらに好ましくは30~120m/分特に好ましくは40~90m/分となる。 The ozone water that has not been diverted to the branch pipe 15 passes through the branch point 12 and flows into the section 11b. Since the vicinity of the branch point 12 has a gentle taper, no turbulent flow is generated in the ozone water flowing in the vicinity of the branch point 12, and the flow rate of the ozone water does not decrease due to energy loss. Since the main pipe 11 is formed such that the flow passage cross-sectional area of the section 11b is smaller than the flow passage cross-sectional area of the section 11a, the flow rate of the ozone water in the section 11b is not less than a predetermined value, preferably 30 to 180 m / More preferably, it is 30 to 120 m / min, and particularly preferably 40 to 90 m / min.
 区間11bを流れたオゾン水は、その後に分岐点13,14に到達するごとに、その一部が枝管16,17に分流され、残部が本管11における分岐点14よりも下流側の区間11dに流れる。 Each time the ozone water flowing through the section 11 b reaches the branch points 13 and 14, a part thereof is diverted to the branch pipes 16 and 17, and the remainder is a section downstream of the branch point 14 in the main pipe 11. It flows to 11d.
 枝管15,16,17には、所定値以上の流速で本管11を流れてきたオゾン水が、その流速を維持したまま流入する。枝管15,16,17に分流されたオゾン水は、枝管15,16,17を流れてユースポイント21,22,23に供給され、それぞれのユースポイント21,22,23で電子部品等の洗浄に使用される。分岐点12~14で枝管15~16に分流しなかったオゾン水は、所定値以上の流速で本管11を流れる。 Ozone water that has flowed through the main pipe 11 at a flow rate higher than a predetermined value flows into the branch pipes 15, 16, and 17 while maintaining the flow rate. The ozone water branched into the branch pipes 15, 16, and 17 flows through the branch pipes 15, 16, and 17 and is supplied to the use points 21, 22, and 23. Used for cleaning. The ozone water that has not been diverted to the branch pipes 15 to 16 at the branch points 12 to 14 flows through the main pipe 11 at a flow rate of a predetermined value or more.
 このように、本管11を流れるオゾン水の流速の低下が防止されため、オゾン水を各ユースポイント21,22,23まで迅速に到達させることができる。このため、オゾン水中のオゾンが自己分解を起こすことなく、溶存オゾン濃度が低下する前に各ユースポイント21,22,23にオゾン水が供給される。 Thus, since the decrease in the flow velocity of the ozone water flowing through the main pipe 11 is prevented, the ozone water can be quickly reached to the respective use points 21, 22, and 23. For this reason, ozone water is supplied to each use point 21, 22, 23 before the dissolved ozone concentration falls without causing ozone in the ozone water to self-decompose.
 本管11の区間14dを流れたオゾン水は、その後、回収ライン37に合流して回収される。 The ozone water that has flowed through the section 14d of the main pipe 11 is then joined to the collection line 37 and collected.
 ユースポイント21,22,23のいずれかにオゾン水を供給しない場合、対応する迂回用配管31,32,33にオゾン水を流して回収ライン37に迂回させる。 When ozone water is not supplied to any of the use points 21, 22, and 23, the ozone water is caused to flow through the corresponding bypass pipes 31, 32, and 33 so as to bypass the recovery line 37.
 従って、1又は2以上のユースポイントにオゾン水を供給しない場合でも、当該ユースポイントへの分岐点よりも下流側の本管11内におけるオゾン水の流速を過大とすることなく、所定範囲内に維持することができる。 Therefore, even when ozone water is not supplied to one or two or more use points, the flow rate of ozone water in the main pipe 11 on the downstream side of the branch point to the use points is kept within a predetermined range. Can be maintained.
 このオゾン水供給装置10を使用してオゾン水を供給すれば、オゾン水生成手段1とユースポイント21,22,23との距離が長い場合でも、オゾン水を所望の流速で移送でき、溶存オゾン濃度が低下するよりも前にオゾン水を供給できる。 If ozone water is supplied using this ozone water supply device 10, even when the distance between the ozone water generating means 1 and the use points 21, 22, 23 is long, the ozone water can be transferred at a desired flow rate, and dissolved ozone Ozone water can be supplied before the concentration decreases.
 複数のユースポイント21,22,23に、オゾン水を移送する本管11から順次に分流させ、オゾン水を供給する場合、分流後に本管11を流れるオゾン水の流速を低下させることなく移送でき、下流側に位置するユースポイント22,23にも所望の流速でオゾン水を供給できる。オゾン水供給装置10でオゾン水を供給する場合、所定のユースポイント(例えば、最も上流側に位置するユースポイント21)にオゾン水を供給しないこともある。その場合でも、そのユースポイント21より下流側に位置するユースポイント22,23に対し、オゾン水を所望の流速に維持して供給することができる。 When the ozone water is supplied to the multiple use points 21, 22, 23 sequentially from the main pipe 11, the ozone water can be transferred without decreasing the flow velocity of the ozone water flowing through the main pipe 11 after the diversion. The ozone water can be supplied to the use points 22 and 23 located on the downstream side at a desired flow rate. When supplying ozone water with the ozone water supply apparatus 10, ozone water may not be supplied to a predetermined use point (for example, the use point 21 located on the most upstream side). Even in this case, ozone water can be supplied to the use points 22 and 23 located downstream from the use point 21 while maintaining a desired flow rate.
[第2実施形態]
 上記実施形態では、迂回用配管31~33は枝管15~17の途中から分岐しているが、本管と枝管との分岐点又はその近傍から分岐されてもよい。
[Second Embodiment]
In the above embodiment, the bypass pipes 31 to 33 are branched from the middle of the branch pipes 15 to 17, but may be branched from a branch point between the main pipe and the branch pipe or in the vicinity thereof.
 かかる実施形態の分岐点付近の構成の一例を図5に示す。 FIG. 5 shows an example of the configuration in the vicinity of the branch point in this embodiment.
 図5は、オゾン水生成手段に連なる本管51の各分岐点52,53,54に、枝管55,56,57と、迂回用配管61,62,63とを接続したオゾン水供給装置10Aの工程系統図を示している。この第2実施形態に使用されるオゾン水生成手段の構成は、第1実施形態のものと同様であるので、ここではその説明を省略する。 FIG. 5 shows an ozone water supply apparatus 10A in which branch pipes 55, 56, 57 and detour pipes 61, 62, 63 are connected to branch points 52, 53, 54 of the main pipe 51 connected to the ozone water generating means. The process system diagram of is shown. Since the configuration of the ozone water generating means used in the second embodiment is the same as that of the first embodiment, the description thereof is omitted here.
 本管51に設けられた3つの分岐点52,53,54には、枝管55,56,57と、この枝管55,56,57とは別途に設けられた迂回用配管61,62,63がそれぞれ接続されている。これら枝管55,56,57と迂回用配管61,62,63とはその管径が相互に同寸に形成されたものが使用され、その流路断面積が同値に設計されている。また、これら枝管55,56,57及び迂回用配管61,62,63の流路断面積は、本管51の分岐点52,53,54の上流側の流路断面積に対する下流側の流路断面積の減少分に対応している。 Three branch points 52, 53, and 54 provided in the main pipe 51 include branch pipes 55, 56, and 57, and bypass pipes 61, 62, and 57 provided separately from the branch pipes 55, 56, and 57, respectively. 63 are connected to each other. These branch pipes 55, 56, 57 and bypass pipes 61, 62, 63 have pipe diameters that are the same, and the flow passage cross-sectional areas are designed to have the same value. The flow passage cross-sectional areas of these branch pipes 55, 56, 57 and the bypass pipes 61, 62, 63 are downstream of the flow passage cross-sectional area upstream of the branch points 52, 53, 54 of the main pipe 51. Corresponds to the decrease in road cross-sectional area.
 分岐点51よりも下流側の本管51bの管径は分岐点51よりも上流側の本管51aの管径よりも小さく、分岐点52よりも下流側の本管51cの管径は分岐点52よりも上流側の本管51bの管径よりも小さく、分岐点53よりも下流側の本管51cの管径は分岐点53よりも上流側の本管51bの管径よりも小さい。 The pipe diameter of the main pipe 51b downstream of the branch point 51 is smaller than the pipe diameter of the main pipe 51a upstream of the branch point 51, and the pipe diameter of the main pipe 51c downstream of the branch point 52 is the branch point. The pipe diameter of the main pipe 51 c on the downstream side of the branch point 53 is smaller than the pipe diameter of the main pipe 51 b on the upstream side of the branch point 53.
 各分岐点52,53,54には、本管51を流れてきたオゾン水の一部を枝管55,56,57又は迂回用配管61,62,63のいずれか一方に分流させるとともに、残部を本管51の分岐点52,53,54よりも下流側に流すための切換手段が設けられている。 At each branch point 52, 53, 54, a part of the ozone water flowing through the main pipe 51 is diverted to one of the branch pipes 55, 56, 57 or the bypass pipes 61, 62, 63, and the remainder Is provided for switching the downstream side of the main pipe 51 downstream of the branch points 52, 53, 54.
 図6は、切換手段の一例であるソレノイドバルブ70を示している。このソレノイドバルブ70は、電流をオン・オフすることで、ソレノイドバルブ70が備えるスプールの位置を移動させ、流れてきたオゾン水を枝管55,56,57及び本管51の下流側に流す状態と、迂回用配管61,62,63及び本管51の下流側に流す状態との切り換えが行われる。 FIG. 6 shows a solenoid valve 70 as an example of switching means. The solenoid valve 70 is configured to move the position of a spool provided in the solenoid valve 70 by turning on and off the current, and to flow the flowing ozone water downstream of the branch pipes 55, 56, 57 and the main pipe 51. And the state of flowing to the downstream side of the bypass pipes 61, 62, 63 and the main pipe 51 are performed.
 図7は、切換手段であるストップバルブ71,72を使用した例を示している。ストップバルブ71は、分岐点52,53,54に接続された枝管55,56,57に設けられ、ストップバルブ72は迂回用配管61,62,63に設けられている。図7に示す切換手段では、オゾン水の一部を枝管55,56,57に分流させると共に残部を本管51の下流側に流す場合には、ストップバルブ71を開とし、ストップバルブ72を閉とする。逆に、オゾン水の一部を迂回用配管61,62,63に分流させると共に残部を本管51の下流側に流す場合には、ストップバルブ71を閉とし、ストップバルブ72を開とする。 FIG. 7 shows an example in which stop valves 71 and 72 as switching means are used. The stop valve 71 is provided in the branch pipes 55, 56, 57 connected to the branch points 52, 53, 54, and the stop valve 72 is provided in the bypass pipes 61, 62, 63. In the switching means shown in FIG. 7, when part of the ozone water is diverted to the branch pipes 55, 56, 57 and the remaining part is made to flow downstream of the main pipe 51, the stop valve 71 is opened and the stop valve 72 is turned on. Closed. Conversely, when part of the ozone water is diverted to the bypass pipes 61, 62, and 63 and the remaining part is made to flow downstream of the main pipe 51, the stop valve 71 is closed and the stop valve 72 is opened.
 図7の場合、迂回用配管61,62,63の本管51からの分岐箇所は、枝管55,56,57の本管51からの分岐箇所の近傍であればよく、管軸方向に若干ずれてもよい。 In the case of FIG. 7, the branch points from the main pipe 51 of the bypass pipes 61, 62, 63 may be in the vicinity of the branch points from the main pipe 51 of the branch pipes 55, 56, 57, and slightly in the pipe axis direction. It may shift.
 迂回用配管61,62,63は、回収ライン67に接続されており、ユースポイント21,22,23でオゾン水を使用しない場合に、迂回用配配管61,62,63はオゾン水を回収ライン67に迂回させる。 The bypass pipes 61, 62, and 63 are connected to the recovery line 67. When the ozone water is not used at the use points 21, 22, and 23, the bypass distribution pipes 61, 62, and 63 recover the ozone water. Detour to 67.
 この第2実施形態に係るオゾン水供給装置10Aにおいても、本管51は、各分岐点52,53,54の上流側の流路断面積に対し、下流側の流路断面積が小さくなるよう形成され、その流路断面積の減少分は、枝管55,56,57に分流したオゾン水の流量に対応して形成されている。そのため、各分岐点52,53,54よりも下流側の本管51を流れるオゾン水の流速を所定範囲内とすることができる。オゾン水をユースポイントに供給しない場合でも、オゾン水を迂回用配管61,62,63へ分流するので、本管51における、オゾン水を供給しないユースポイントに対応する分岐点52,53,54の下流側で、本管51を流れるオゾン水の流速を過大とすることなく。所定範囲内とすることができる。 Also in the ozone water supply apparatus 10A according to the second embodiment, the main pipe 51 has a downstream cross-sectional area that is smaller than the upstream cross-sectional area of each of the branch points 52, 53, and 54. The decrease in the flow path cross-sectional area formed is formed corresponding to the flow rate of the ozone water branched into the branch pipes 55, 56 and 57. Therefore, the flow rate of the ozone water flowing through the main pipe 51 on the downstream side of each branch point 52, 53, 54 can be set within a predetermined range. Even when the ozone water is not supplied to the use point, the ozone water is diverted to the bypass pipes 61, 62, and 63. Therefore, the branch points 52, 53, and 54 in the main pipe 51 corresponding to the use points that do not supply the ozone water are used. Without excessively increasing the flow velocity of the ozone water flowing through the main pipe 51 on the downstream side. It can be within a predetermined range.
 以下に実施例を挙げて本発明を更に詳細に説明するが、本発明は、以下の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
 なお、以下に説明する実施例及び比較例においては、図1に示したオゾン発生器4(住友精密工業(株)、無声放電式オゾン発生器 GR-RD)と、オゾン溶解装置5(ジャパンゴアテックス(株)、オゾン溶解膜 GNK-01K)とを使用してオゾン水を生成した。また、溶存オゾン濃度は、溶存オゾン計(荏原実業(株)、溶存オゾン計 EL-700A)を用いてそれぞれ測定した。 In the examples and comparative examples described below, the ozone generator 4 (Sumitomo Seimitsu Kogyo Co., Ltd., silent discharge type ozone generator GR-RD) shown in FIG. 1 and the ozone dissolver 5 (Japan Gore-Tech) are shown. Ozone water was generated using an ozone-dissolved membrane (GNK-01K). Further, the dissolved ozone concentration was measured using a dissolved ozone meter (Sugawara Business Co., Ltd., dissolved ozone meter EL-700A).
 [実施例]
 この実施例では、図1に示した本管11及び枝管15,16,17を具備するオゾン水供給装置10を使用した。ユースポイント21,22,23は、図1に示すとおり3箇所とし、ユースポイント21までの送水距離を30m、ユースポイント22までの送水距離を60m、ユースポイント23までの送水距離を90mに設定した。1番目のユースポイント21に対応する分岐点12までの区間11aにおける本管11の内径が32mm、1番目のユースポイント21に対応する分岐点12から2番目のユースポイント22に対応する分岐点13までの区間11bの本管11の内径が25mm、2番目のユースポイント22に対応する分岐点13から3番目のユースポイント23に対応する分岐点14までの区間11cの本管11の内径が20mmにそれぞれ形成された配管を使用した。
[Example]
In this embodiment, the ozone water supply apparatus 10 including the main pipe 11 and the branch pipes 15, 16, and 17 shown in FIG. 1 was used. As shown in FIG. 1, there are three use points 21, 22, and 23. The water supply distance to the use point 21 is set to 30 m, the water supply distance to the use point 22 is set to 60 m, and the water supply distance to the use point 23 is set to 90 m. . The inner diameter of the main pipe 11 in the section 11a to the branch point 12 corresponding to the first use point 21 is 32 mm, and the branch point 13 corresponding to the second use point 22 from the branch point 12 corresponding to the first use point 21. The inner diameter of the main pipe 11 in the section 11b from the branch point 13 corresponding to the second use point 22 to the branch point 14 corresponding to the third use point 23 is 20 mm. Each of the pipes formed was used.
 オゾン発生器4に酸素ガスと炭酸ガスとの混合ガスを供給してオゾンガスを発生させ、発生させたオゾンガスをオゾン溶解装置5であるオゾン溶解膜に導入し、純水にオゾンを溶解してオゾン水を生成した。オゾン溶解装置5の出口における溶存オゾン濃度は25mg/Lであった。生成したオゾン水のpH値は5であった。 A mixed gas of oxygen gas and carbon dioxide gas is supplied to the ozone generator 4 to generate ozone gas, and the generated ozone gas is introduced into an ozone dissolving film which is the ozone dissolving device 5, and ozone is dissolved in pure water to dissolve ozone. Water was produced. The dissolved ozone concentration at the outlet of the ozone dissolving device 5 was 25 mg / L. The pH value of the generated ozone water was 5.
 各ユースポイント21,22,23では、少なくとも溶存オゾン濃度が20mg/Lであることが必要であるため、各ユースポイント21,22,23に到達した際の溶存オゾン濃度の目標値は、20mg/Lである。 Since each use point 21, 22, 23 needs to have a dissolved ozone concentration of at least 20 mg / L, the target value of the dissolved ozone concentration when reaching each use point 21, 22, 23 is 20 mg / L L.
 生成したオゾン水は、送水量35L/分にて本管11に送り出し、各ユースポイント21,22,23におけるオゾン水の使用量を1箇所あたり、10L/分とした。 The generated ozone water was sent to the main pipe 11 at a water supply amount of 35 L / min, and the amount of ozone water used at each use point 21, 22, 23 was 10 L / min per location.
 本管11を流れるオゾン水の流速は次の式(1)で算出する。 The flow rate of ozone water flowing through the main pipe 11 is calculated by the following equation (1).
 配管流速LV(m/分)=送水量(m/分)/配管断面積(m)…(1) Pipe flow velocity LV (m / min) = Water supply amount (m 3 / min) / Pipe cross-sectional area (m 2 ) (1)
 この式(1)に、送水量=0.035(m/分)、配管断面積=16×3.14×10-6(m)を代入し、区間11aにおける配管流速を求めると、約43.5m/分となる。 Substituting into this equation (1) the amount of water delivered = 0.035 (m 3 / min) and the cross-sectional area of the pipe = 16 2 × 3.14 × 10 −6 (m 2 ), the pipe flow velocity in the section 11a is obtained. About 43.5 m / min.
 同様に、式(1)に、送水量=0.035-0.010=0.025(m/分)、配管断面積=12.5×3.14×10-6(m)を代入し、区間11bでの配管流速を求めると、約51.0m/分となる。また、式(1)に、送水量=0.025-0.010=0.015(m/分)、配管断面積=10×3.14×10-6(m)を代入し、区間11cでの配管流速を求めると、約47.8m/分となる。 Similarly, in the formula (1), the water supply amount = 0.035−0.010 = 0.025 (m 3 / min), the pipe cross-sectional area = 12.5 2 × 3.14 × 10 −6 (m 2 ) And the pipe flow velocity in the section 11b is calculated to be about 51.0 m / min. Further, substituting into the equation (1) the amount of water delivered = 0.025−0.010 = 0.015 (m 3 / min) and the cross-sectional area of the pipe = 10 2 × 3.14 × 10 −6 (m 2 ) The pipe flow velocity in the section 11c is about 47.8 m / min.
 各ユースポイント21,22,23におけるオゾン水の溶存オゾン濃度の測定結果は、1番目のユースポイント21では24mg/L、2番目のユースポイント22では24mg/L、3番目のユースポイント23では23mg/Lであった。 The measurement result of the dissolved ozone concentration of the ozone water at each use point 21, 22, 23 is 24mg / L at the first use point 21, 24mg / L at the second use point 22, and 23mg at the third use point 23. / L.
 このように、ユースポイント21,22,23における溶存イオン濃度を測定したところ、供給されたオゾン水の溶存オゾン濃度の低下が抑制され、溶存オゾン濃度が目標値以上であることを確認できた。 Thus, when the dissolved ion concentration at the use points 21, 22, and 23 was measured, it was confirmed that the decrease in the dissolved ozone concentration of the supplied ozone water was suppressed and the dissolved ozone concentration was equal to or higher than the target value.
 [比較例]
 この比較例では、本管11の内径を全ての区間で32mmに形成した他は、図1に示したオゾン水供給装置10と同様のオゾン水供給装置10を使用し、同様の手法によって測定を行った。実施例と同様、ユースポイント21,22,23は、3箇所とし、ユースポイント21までの送水距離を30m、ユースポイント22までの送水距離を60m、ユースポイント23までの送水距離を90mに設定した。オゾン水の生成及び生成されたオゾン水の溶存オゾン濃度(25mg/L)も実施例と同様とした。
[Comparative example]
In this comparative example, the ozone water supply device 10 similar to the ozone water supply device 10 shown in FIG. 1 is used, except that the inner diameter of the main pipe 11 is 32 mm in all sections, and measurement is performed by the same method. went. As in the example, there were three use points 21, 22, 23, the water supply distance to the use point 21 was set to 30 m, the water supply distance to the use point 22 was set to 60 m, and the water supply distance to the use point 23 was set to 90 m. . The generation of ozone water and the dissolved ozone concentration (25 mg / L) of the generated ozone water were the same as in the examples.
 生成したオゾン水は、送水量35L/分にて本管11に送り出し、各ユースポイント21,22,23でのオゾン水の使用量を1箇所あたり10L/分とした。 The generated ozone water was sent to the main pipe 11 at a water supply amount of 35 L / min, and the amount of ozone water used at each use point 21, 22, 23 was 10 L / min per location.
 式(1)に、送水量=0.035(m/分)、配管断面積=16×3.14×10-6(m)を代入し、区間11aでの配管流速を求めると、約43.5m/分となる。この点は、上述した実施例と同様である。 Substituting into equation (1) the amount of water delivered = 0.035 (m 3 / min) and the cross-sectional area of the pipe = 16 2 × 3.14 × 10 -6 (m 2 ), the pipe flow velocity in the section 11a is obtained. About 43.5 m / min. This is the same as in the above-described embodiment.
 これに対し、式(1)に、送水量=0.035-0.010=0.025(m/分)、配管断面積=16×3.14×10-6(m)を代入し、区間11bでの配管流速を求めると、約31.1m/分となる。また、式(1)に、送水量=0.025-0.010=0.015(m/分)、配管断面積=16×3.14×10-6(m)を代入し、区間11cでの配管流速を求めると、約18.7m/分となる。 In contrast, in equation (1), the amount of water delivered = 0.035−0.010 = 0.025 (m 3 / min), the cross-sectional area of the pipe = 16 2 × 3.14 × 10 −6 (m 2 ) By substituting and calculating the pipe flow velocity in the section 11b, it is about 31.1 m / min. In addition, substituting into the equation (1) the amount of water delivered = 0.025−0.010 = 0.015 (m 3 / min) and the cross-sectional area of the pipe = 16 2 × 3.14 × 10 −6 (m 2 ) The pipe flow velocity in the section 11c is about 18.7 m / min.
 このような条件下で各オゾン水使用領域における溶存オゾン濃度を測定したところ、1番目のユースポイント21では24mg/L、2番目のユースポイント22では22mg/L、3番目のユースポイント23では18mg/Lであった。 When the dissolved ozone concentration in each ozone water use area was measured under such conditions, the first use point 21 was 24 mg / L, the second use point 22 was 22 mg / L, and the third use point 23 was 18 mg. / L.
 このように、比較例では、ユースポイント21,22,23での溶存イオン濃度をしたところ、下流側のユースポイントでの溶存オゾン濃度が順次低下してしまうことが分かる。3番目のユースポイントでは、溶存オゾン濃度が、18mg/L溶存オゾン濃度まで低下してしまい、目標値である20mg/L以上とすることができなかった。 Thus, in the comparative example, when the dissolved ion concentration at the use points 21, 22, and 23 is obtained, it can be seen that the dissolved ozone concentration at the downstream use point gradually decreases. At the third use point, the dissolved ozone concentration decreased to 18 mg / L dissolved ozone concentration, and could not be set to the target value of 20 mg / L or more.
 実施例及び比較例の配管流速を表1に示し、溶存オゾン濃度を表2に示す。 The pipe flow rates of Examples and Comparative Examples are shown in Table 1, and the dissolved ozone concentration is shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1から明らかなように、本管11の配管径が分岐点を通過するごとに順次小さくなるよう形成された配管を使用した実施例では、配管径を小さくすることなくそのままの大きさに形成された配管を使用した比較例に比べ、本管11を流れるオゾン水の流速の低下が防止されている。そして、表2に示すように、各ユースポイント21,22,23でのオゾン水の溶存オゾン濃度は、実施例においては、全てのユースポイント21,22,23において、目標値である溶存オゾン濃度20mg/L以上とすることができた。これに対し、比較例においては、各ユースポイント21,22,23における溶存オゾン濃度が、オゾン水の移送距離が長くなるにつれて低下してしまい、3番目のユースポイント23では、溶存オゾン濃度が18mg/Lまで低下しており、目標値である溶存オゾン濃度20mg/Lを下回ってしまった。 As is apparent from Table 1, in the embodiment using the pipe formed so that the pipe diameter of the main pipe 11 gradually decreases every time it passes through the branch point, the pipe 11 is formed in the same size without reducing the pipe diameter. Compared to the comparative example using the pipe, the decrease in the flow velocity of the ozone water flowing through the main pipe 11 is prevented. As shown in Table 2, the dissolved ozone concentration of ozone water at each of the use points 21, 22, 23 is the dissolved ozone concentration that is the target value at all the use points 21, 22, 23 in the embodiment. It could be 20 mg / L or more. On the other hand, in the comparative example, the dissolved ozone concentration at each of the use points 21, 22, 23 decreases as the transfer distance of the ozone water increases, and at the third use point 23, the dissolved ozone concentration is 18 mg. / L has fallen below the target ozone concentration of 20 mg / L.
 このことから、実施例にかかるオゾン水供給装置を適用することで、オゾン水の流速を低下させることなく一定値以上の流速でオゾン水を供給することができ、オゾン水の溶存オゾン濃度の低下を効果的に防止することができることが分かった。 From this, by applying the ozone water supply device according to the embodiment, ozone water can be supplied at a flow rate of a certain value or more without reducing the flow rate of ozone water, and the dissolved ozone concentration of ozone water decreases. It can be effectively prevented.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 なお、本出願は、2011年7月8日付で出願された日本特許出願(特願2011-151832)に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
The present application is based on a Japanese patent application (Japanese Patent Application No. 2011-151832) filed on July 8, 2011, which is incorporated by reference in its entirety.

Claims (11)

  1.  オゾン水をユースポイントに供給するオゾン水供給装置であって、オゾン水を生成させるオゾン水生成手段と、
     該オゾン水生成手段からのオゾン水が流れる本管と、
     該本管の途中の複数箇所に設けられた、該本管内のオゾン水を分流させる分岐点と、
     該分岐点とユースポイントとを連絡する枝管と、
    を有するオゾン水供給装置において、
     最も下流側の該分岐点よりも上流側の本管内の全域においてオゾン水の流速が所定値以上であるように構成されていることを特徴とするオゾン水供給装置。
    An ozone water supply device for supplying ozone water to a use point, ozone water generating means for generating ozone water,
    A main through which ozone water from the ozone water generating means flows;
    A branch point provided at a plurality of locations in the middle of the main pipe for diverting ozone water in the main pipe,
    A branch pipe connecting the branch point and the use point;
    In an ozone water supply device having
    An ozone water supply device characterized in that the flow rate of ozone water is equal to or higher than a predetermined value in the entire area in the main pipe upstream of the branch point on the most downstream side.
  2.  請求項1において、最も下流側の前記分岐点よりも上流側の本管内の全域においてオゾン水の流速を所定範囲内とするように構成されていることを特徴とするオゾン水供給装置。 2. The ozone water supply device according to claim 1, wherein the flow rate of the ozone water is set within a predetermined range in the entire area in the main pipe upstream of the branch point on the most downstream side.
  3.  請求項1又は2において、該分岐点よりも下流側の本管の流路断面積が上流側の流路断面積よりも小さいことを特徴とするオゾン水供給装置。 3. The ozone water supply device according to claim 1 or 2, wherein the flow passage cross-sectional area of the main pipe downstream from the branch point is smaller than the flow passage cross-sectional area upstream.
  4.  請求項3において、本管の前記分岐点付近に、本管の管径が上流側から下流側に向って徐々に小さくなるテーパ部が設けられていることを特徴とするオゾン水供給装置。 4. The ozone water supply apparatus according to claim 3, wherein a taper portion in which the diameter of the main pipe gradually decreases from the upstream side toward the downstream side is provided near the branch point of the main pipe.
  5.  請求項4において、前記枝管は前記テーパ部又はその近傍に接続されていることを特徴とするオゾン水供給装置。 5. The ozone water supply apparatus according to claim 4, wherein the branch pipe is connected to the tapered portion or the vicinity thereof.
  6.  請求項1ないし5のいずれか1項において、前記枝管から、オゾン水を、前記ユースポイントを迂回して回収ラインに流すための迂回用配管が分岐しており、
     該本管から該枝管内に流入してきたオゾン水の全量をユースポイントに流す流路選択と迂回用配管に流す流路選択とを切り替える流路選択手段が設けられていることを特徴とするオゾン水供給装置。
    In any one of Claims 1 thru | or 5, the bypass piping for flowing ozone water from the said branch pipe around the said use point to a collection line branches off from the said branch pipe,
    Ozone having a flow path selection means for switching between flow path selection for flowing the total amount of ozone water flowing into the branch pipe from the main pipe to a use point and flow path selection for flowing to a bypass pipe Water supply device.
  7.  請求項1ないし5のいずれか1項において、前記分岐点付近から、オゾン水を、前記ユースポイントを迂回して回収ラインに流すための迂回用配管が分岐しており、
     該本管から該分岐点に流れてきたオゾン水の一部を前記枝管にのみ流す流路選択と迂回用配管にのみ流す流路選択とを切り替える流路選択手段が設けられていることを特徴とするオゾン水供給装置。
    In any one of Claims 1 thru | or 5, from the said branch point vicinity, the bypass piping for flowing ozone water around the said use point and flowing into a collection line branches.
    A flow path selection means for switching between a flow path selection in which a part of the ozone water flowing from the main pipe to the branch point flows only to the branch pipe and a flow path selection to flow only to the bypass pipe is provided. A featured ozone water supply device.
  8.  請求項1ないし7のいずれか1項において、最も下流側の分岐点よりも上流側の前記本管内のオゾン水の流速が30~180m/分であることを特徴とするオゾン水供給装置。 The ozone water supply device according to any one of claims 1 to 7, wherein the flow rate of ozone water in the main pipe upstream from the most downstream branch point is 30 to 180 m / min.
  9.  請求項1ないし8のいずれか1項において、前記オゾン水のpHを6以下とするpH調整手段を備えたことを特徴とするオゾン水供給装置。 9. The ozone water supply apparatus according to claim 1, further comprising pH adjusting means for adjusting the pH of the ozone water to 6 or less.
  10.  オゾン水生成手段により生成されたオゾン水を配管によってユースポイントに供給するオゾン水供方法において、
     前記配管を流れるオゾン水の流速を所定値以上とすることを特徴とするオゾン水供給方法。
    In the ozone water supply method of supplying ozone water generated by the ozone water generating means to the use point by piping,
    A method for supplying ozone water, wherein a flow rate of ozone water flowing through the pipe is set to a predetermined value or more.
  11.  請求項10において、請求項1ないし9のいずれか1項のオゾン水供給装置によってオゾン水を供給することを特徴とするオゾン水供給方法。 10. An ozone water supply method according to claim 10, wherein ozone water is supplied by the ozone water supply device according to any one of claims 1 to 9.
PCT/JP2012/067205 2011-07-08 2012-07-05 Device for supplying ozone water and method for supplying ozone water WO2013008721A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280033875.0A CN103687820B (en) 2011-07-08 2012-07-05 Ozone water supply apparatus and method of ozone water supply
KR1020137030369A KR101974667B1 (en) 2011-07-08 2012-07-05 Device for supplying ozone water and method for supplying ozone water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-151832 2011-07-08
JP2011151832A JP5874223B2 (en) 2011-07-08 2011-07-08 Ozone water supply apparatus and ozone water supply method

Publications (1)

Publication Number Publication Date
WO2013008721A1 true WO2013008721A1 (en) 2013-01-17

Family

ID=47506012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067205 WO2013008721A1 (en) 2011-07-08 2012-07-05 Device for supplying ozone water and method for supplying ozone water

Country Status (5)

Country Link
JP (1) JP5874223B2 (en)
KR (1) KR101974667B1 (en)
CN (1) CN103687820B (en)
TW (1) TWI538877B (en)
WO (1) WO2013008721A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107720941A (en) * 2017-12-11 2018-02-23 重庆丰望环保科技有限公司 A kind of sewage disposal system with sterilizing function
JP7452050B2 (en) 2020-02-04 2024-03-19 株式会社大林組 piping system
WO2021250745A1 (en) * 2020-06-08 2021-12-16 三菱電機株式会社 Ozone water production apparatus, water treatment apparatus, and ozone water production method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614587A (en) * 1984-06-15 1986-01-10 Toshiba Corp Demineralized water supply system and its method
JPS6369588A (en) * 1986-09-09 1988-03-29 Mitsubishi Electric Corp System for supplying pure water to semiconductor washing vessel
JPH02144195A (en) * 1988-11-21 1990-06-01 Shinko Pantec Co Ltd Device for producing and supplying ultrapure water
JPH02236100A (en) * 1989-03-09 1990-09-18 Suga Kogyo Kk Decision of return pipe dia. in forcible-circulation hot water supply pipe facility
JPH03188968A (en) * 1989-12-19 1991-08-16 Toyota Motor Corp Coating circulating device
JPH05329470A (en) * 1992-05-28 1993-12-14 Ebara Corp Clean water producing device
JPH1147754A (en) * 1997-07-31 1999-02-23 Nec Corp Method and apparatus for sterilizing piping
JPH11138182A (en) * 1997-11-10 1999-05-25 Kurita Water Ind Ltd Ozonized ultrapure water feeder
JP2003210966A (en) * 2002-01-25 2003-07-29 Sasakura Engineering Co Ltd Ozone water feeding device
JP2006105349A (en) * 2004-10-08 2006-04-20 Japan Organo Co Ltd Pure water production and feed device
JP2009195813A (en) * 2008-02-20 2009-09-03 Panasonic Electric Works Co Ltd Ozone water manufacturing device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000037695A (en) 1998-07-24 2000-02-08 Kurita Water Ind Ltd Apparatus for supplying ozone water
JP5037748B2 (en) 1998-12-15 2012-10-03 栗田工業株式会社 Ozone water concentration adjustment method and ozone water supply system
JP4508311B2 (en) 1999-05-26 2010-07-21 栗田工業株式会社 Adjustment method of ozone concentration
JP4538702B2 (en) 2000-07-05 2010-09-08 栗田工業株式会社 Ozone dissolved water supply device
JP4513122B2 (en) 2004-03-31 2010-07-28 栗田工業株式会社 Ozone water supply method and ozone water supply device
AU2005320350B8 (en) * 2005-01-24 2009-11-19 Nutech 03, Inc. Ozone injection method and system
JP4843339B2 (en) * 2006-03-10 2011-12-21 株式会社ササクラ Ozone water supply device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614587A (en) * 1984-06-15 1986-01-10 Toshiba Corp Demineralized water supply system and its method
JPS6369588A (en) * 1986-09-09 1988-03-29 Mitsubishi Electric Corp System for supplying pure water to semiconductor washing vessel
JPH02144195A (en) * 1988-11-21 1990-06-01 Shinko Pantec Co Ltd Device for producing and supplying ultrapure water
JPH02236100A (en) * 1989-03-09 1990-09-18 Suga Kogyo Kk Decision of return pipe dia. in forcible-circulation hot water supply pipe facility
JPH03188968A (en) * 1989-12-19 1991-08-16 Toyota Motor Corp Coating circulating device
JPH05329470A (en) * 1992-05-28 1993-12-14 Ebara Corp Clean water producing device
JPH1147754A (en) * 1997-07-31 1999-02-23 Nec Corp Method and apparatus for sterilizing piping
JPH11138182A (en) * 1997-11-10 1999-05-25 Kurita Water Ind Ltd Ozonized ultrapure water feeder
JP2003210966A (en) * 2002-01-25 2003-07-29 Sasakura Engineering Co Ltd Ozone water feeding device
JP2006105349A (en) * 2004-10-08 2006-04-20 Japan Organo Co Ltd Pure water production and feed device
JP2009195813A (en) * 2008-02-20 2009-09-03 Panasonic Electric Works Co Ltd Ozone water manufacturing device

Also Published As

Publication number Publication date
TW201318963A (en) 2013-05-16
CN103687820A (en) 2014-03-26
TWI538877B (en) 2016-06-21
CN103687820B (en) 2015-08-05
JP5874223B2 (en) 2016-03-02
JP2013017932A (en) 2013-01-31
KR20140032403A (en) 2014-03-14
KR101974667B1 (en) 2019-05-02

Similar Documents

Publication Publication Date Title
JP5292923B2 (en) Microorganism detection method, microorganism detection apparatus, and slurry supply apparatus using the same
JP4228732B2 (en) Ultrapure water production system
JP4495056B2 (en) Sterilizer for ultrapure water production equipment
WO2009113682A1 (en) Gas-dissolved water supply system
TWI601695B (en) Method for producing ozone gas dissolved water and washing method of electronic material
US7617836B2 (en) System and method for supplying functional water
TW200906735A (en) Method of washing and sterilizing ultrapure water production system
WO2019212046A1 (en) Production method for heated ozone water, heated ozone water, and semiconductor wafer-cleaning liquid
JP6225487B2 (en) Ultrapure water production system and ultrapure water production supply system
JP3381250B2 (en) Gas dissolving cleaning water flow pipe
WO2013008721A1 (en) Device for supplying ozone water and method for supplying ozone water
JP2009106831A (en) Ultrapure water producing apparatus and ultrapure water producing method
JP4927415B2 (en) Exhaust gas wastewater treatment equipment
JP2004261768A (en) Ultrapure water manufacturing system and its operation method
JP2009228991A (en) Boiler system and operating method of boiler system
WO2018127986A1 (en) Real-time large-volume hydrogen water generator
JP2007237113A (en) Apparatus for supplying ozone water
JP2010158672A (en) Bubble generation method, bubble generation apparatus, and ozone water producing method
TWI272254B (en) Method for forwarding ozonated water
JP5317531B2 (en) Method for cleaning slurry supply apparatus and slurry supply apparatus
JP2018129363A (en) Cleaning device of semiconductor substrate and cleaning method of semiconductor substrate
JP4661009B2 (en) Ultrapure water production system
JP2004068348A (en) Privately owned water supply system
JP5286940B2 (en) Slurry feeder
JP2005213498A (en) Cleaning fluid and cleaning method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811552

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137030369

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12811552

Country of ref document: EP

Kind code of ref document: A1