JP2009195813A - Ozone water manufacturing device - Google Patents

Ozone water manufacturing device Download PDF

Info

Publication number
JP2009195813A
JP2009195813A JP2008039208A JP2008039208A JP2009195813A JP 2009195813 A JP2009195813 A JP 2009195813A JP 2008039208 A JP2008039208 A JP 2008039208A JP 2008039208 A JP2008039208 A JP 2008039208A JP 2009195813 A JP2009195813 A JP 2009195813A
Authority
JP
Japan
Prior art keywords
ozone
pressure
water
flow path
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008039208A
Other languages
Japanese (ja)
Other versions
JP4950915B2 (en
Inventor
Atsushi Tsuji
敦志 辻
Shinya Hirota
伸也 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008039208A priority Critical patent/JP4950915B2/en
Publication of JP2009195813A publication Critical patent/JP2009195813A/en
Application granted granted Critical
Publication of JP4950915B2 publication Critical patent/JP4950915B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ozone water manufacturing device which can dissolve ozone to a high concentration and obtain ozone water from which the ozone does not escape for a long time. <P>SOLUTION: The ozone water manufacturing device comprises a pressurizing part 1 for pressure feeding water, an ozone injection part 2 for injecting the ozone into water, a pressurized dissolution part 3 which can dissolve the ozone into water by a pressurizing action to feed the water containing the injected ozone under pressure with the help of the pressurizing part 1, and a pressure reduction part 4 which can successively reduce the pressure of the ozone water containing the ozone dissolved by the pressurized dissolution part 3 to an atmospheric pressure level from the inflow side toward the outflow side of the ozone water. The continuous supply of the ozone water to the pressure reduction part 4 can be achieved by continuously operating each part, i.e. the pressurizing part 1, the ozone injection part 2 and the pressurized dissolution part 3. Thus, the generated air bubble-free ozone water is continuously discharged from the outflow side of the pressure reduction part 4. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、オゾン水製造装置に関するものである。   The present invention relates to an ozone water production apparatus.

オゾン水は、各種の分野において殺菌、漂白などに広く利用されている。そしてこのようなオゾン水を製造する装置として、例えば特許文献1などで提案されたものがある。この特許文献1では、水中にパイプからオゾンガスを吹き込み、このオゾン混合水に超音波振動を与えることによって、オゾンの気泡を細かくして水にオゾンを溶解させるようにしたものである。
特開2004−17042号公報
Ozone water is widely used for sterilization and bleaching in various fields. As an apparatus for producing such ozone water, there is one proposed in Patent Document 1, for example. In this Patent Document 1, ozone gas is blown from a pipe into the water, and ultrasonic vibration is applied to the ozone mixed water, so that ozone bubbles are made fine to dissolve ozone in water.
JP 2004-17042 A

しかし上記の特許文献1のものでは、超音波振動で微細化したオゾンの気泡を水に溶解させるようにしているだけであるので、高濃度でオゾンを溶解させることはできないものであり、またオゾンは微細気泡として水中に存在しているだけであるため、短時間で水中からオゾンが抜けてしまい、長時間に亘って高濃度でオゾンが溶解したオゾン水を得ることはできないものである。   However, in the above-mentioned Patent Document 1, only ozone bubbles refined by ultrasonic vibration are dissolved in water, so ozone cannot be dissolved at a high concentration. Is only present in the water as fine bubbles, and therefore ozone escapes from the water in a short time, and ozone water in which ozone is dissolved at a high concentration over a long time cannot be obtained.

本発明は上記の点に鑑みてなされたものであり、高濃度でオゾンを溶解させることができ、しかもオゾンが長時間抜けることもないオゾン水を得ることができるオゾン水製造装置を提供することを目的とするものである。   The present invention has been made in view of the above points, and provides an ozone water production apparatus capable of dissolving ozone at a high concentration and obtaining ozone water in which ozone does not escape for a long time. It is intended.

本発明に係るオゾン水製造装置は、水を圧送する加圧部1と、水にオゾンを注入するオゾン注入部2と、オゾンを注入された水が加圧部1で圧送されることによる加圧で水にオゾンを溶解させる加圧溶解部3と、加圧溶解部3でオゾンを溶解させたオゾン水の圧力を、オゾン水の流入側から流出側に向かって順次大気圧まで減圧する減圧部4とを備え、加圧部1、オゾン注入部2、加圧溶解部3の各部を連続的に運転させて、減圧部4にオゾン水を連続的に供給し、減圧部4の流出側から気泡の発生のないオゾン水を連続的に吐出させるようにして成ることを特徴とするものである。   The ozone water production apparatus according to the present invention includes a pressurizing unit 1 that pumps water, an ozone injecting unit 2 that injects ozone into water, and a pressure that is applied when water into which ozone has been injected is pumped by the pressurizing unit 1. Pressure dissolving part 3 that dissolves ozone in water with pressure, and pressure reducing ozone water that has dissolved ozone in the pressure dissolving part 3 from the inflow side to the outflow side to the atmospheric pressure sequentially The pressure part 1, the ozone injection part 2, and the pressure dissolution part 3 are continuously operated, and ozone water is continuously supplied to the pressure reducing part 4, and the outflow side of the pressure reducing part 4 is provided. From the above, ozone water without generation of bubbles is continuously discharged.

この発明によれば、加圧部1による加圧によって水にオゾンを溶解させるため、オゾンを水に効率高く、高濃度に溶解させることができるものであり、またオゾンを高濃度で溶解したオゾン水の圧力を、減圧部4で流入側から流出側に向かって順次大気圧まで減圧するものであるため、オゾン水に気泡が発生することを防止して、高濃度でオゾンが溶解したオゾン水をそのまま取り出すことができると共に、オゾンが抜けることなくオゾン濃度を長時間維持することができるものである。   According to the present invention, ozone is dissolved in water by pressurization by the pressurizing unit 1, so that ozone can be dissolved in water with high efficiency and at a high concentration, and ozone in which ozone is dissolved at a high concentration. Since the pressure of the water is gradually reduced from the inflow side to the outflow side by the decompression unit 4 to the atmospheric pressure, ozone water in which ozone is dissolved at a high concentration is prevented by preventing bubbles from being generated in the ozone water. The ozone concentration can be taken out as it is, and the ozone concentration can be maintained for a long time without ozone being lost.

また請求項2の発明は、加圧溶解部3で水に溶解しない余剰オゾンを排出する余剰オゾン排出部5を備えて成ることを特徴とするものである。   The invention of claim 2 is characterized in that it comprises a surplus ozone discharge section 5 that discharges surplus ozone that does not dissolve in water in the pressure dissolution section 3.

この発明によれば、水に溶解しない余剰オゾンを加圧溶解部3から排出することによって、余剰オゾンが残留することによる加圧溶解部3内のオゾンと水の比率を安定させて圧力変動を防ぐことができ、オゾンの溶解効率を高く維持することができるものである。   According to this invention, excess ozone that does not dissolve in water is discharged from the pressure dissolution unit 3, thereby stabilizing the ratio of ozone and water in the pressure dissolution unit 3 due to residual ozone remaining, and pressure fluctuation. It is possible to prevent the ozone from being dissolved and to maintain high ozone dissolution efficiency.

また請求項3の発明は、余剰オゾン排出部5から余剰オゾンをオゾン注入部2に供給する連結部10を備えて成ることを特徴とするものである。   The invention of claim 3 is characterized by comprising a connecting part 10 for supplying surplus ozone from the surplus ozone discharge part 5 to the ozone injection part 2.

この発明によれば、加圧溶解部3で水に溶解しない余剰オゾンをオゾン注入部2で再度水に注入することができ、余剰オゾンの無駄がなくなると共に、有害なオゾンが外部に漏れて環境が汚染されることを防ぐことができるものである。   According to the present invention, surplus ozone that does not dissolve in water at the pressure dissolving unit 3 can be reinjected into the water at the ozone injecting unit 2, and waste of surplus ozone is eliminated, and harmful ozone leaks to the outside. Can be prevented from being contaminated.

また請求項4の発明は、上記の減圧部4を、加圧溶解部3からオゾン水を送り出す流路6に設けられ、オゾン水の圧力を大気圧にまで段階的に減圧する複数の圧力調整弁7で構成して成ることを特徴とするものである。   According to a fourth aspect of the present invention, the pressure reducing part 4 is provided in a flow path 6 for sending ozone water from the pressure dissolving part 3, and a plurality of pressure adjustments for stepwise reducing the pressure of the ozone water to atmospheric pressure. It is characterized by comprising the valve 7.

この発明によれば、圧力調整弁7による圧力調整でオゾン水の圧力を下げることができ、加圧溶解部3における圧力に応じて圧力調整弁7で減圧調整することによって、オゾン水に気泡が発生することを安定して防ぐことができるものである。   According to the present invention, the pressure of the ozone water can be reduced by adjusting the pressure by the pressure adjusting valve 7. By adjusting the pressure by the pressure adjusting valve 7 according to the pressure in the pressurizing and dissolving unit 3, bubbles are generated in the ozone water. Occurrence can be stably prevented.

また請求項5の発明は、上記の減圧部4を、流路断面積と流路長さの少なくとも一方の調整でオゾン水の圧力を大気圧にまで減圧するように形成された、加圧溶解部3からオゾン水を送り出す流路6で構成して成ることを特徴とするものである。   In the invention of claim 5, the decompression section 4 is formed by pressurizing and dissolving the pressure of the ozone water to atmospheric pressure by adjusting at least one of the channel cross-sectional area and the channel length. It is characterized by comprising a flow path 6 for sending out ozone water from the section 3.

この発明によれば、加圧溶解部3からオゾン水を送り出す流路6の流路断面積と流路長によって、オゾン水の圧力を下げることができ、装置の構造を簡単なものに形成することができるものである。   According to this invention, the pressure of the ozone water can be lowered by the flow path cross-sectional area and flow path length of the flow path 6 for sending out the ozone water from the pressure dissolving section 3, and the structure of the apparatus is simplified. It is something that can be done.

また請求項6の発明は、上記の減圧部4は、一つの流路で形成されていることを特徴とするものである。   The invention of claim 6 is characterized in that the decompression section 4 is formed by one flow path.

この発明によれば、複数の流路を設けて減圧部4を形成する場合のような、装置構成が複雑になることがないものである。   According to the present invention, the apparatus configuration does not become complicated as in the case where the pressure reducing unit 4 is formed by providing a plurality of flow paths.

また請求項7の発明は、加圧溶解部3からオゾン水を送り出す流路6の圧力損失とこの流路6に付加した延長流路8の圧力損失の和が、加圧部1で圧送される水とオゾンの押し込み圧によって加圧溶解部3内で水とオゾンを加圧するのに必要な圧力となるように、流路6に延長流路8を付加して成ることを特徴とするものある。   In the invention of claim 7, the sum of the pressure loss of the flow path 6 for sending ozone water from the pressure dissolving section 3 and the pressure loss of the extension flow path 8 added to the flow path 6 is pumped by the pressure section 1. An extension channel 8 is added to the channel 6 so that the pressure required to pressurize the water and ozone in the pressurizing and dissolving part 3 by the pressure of the water and ozone. is there.

この発明によれば、流路6に延長流路8を付加することによって、絞り弁を用いる必要なく、加圧部1からの押し込み圧で加圧溶解部3内の圧力を確保することができ、この圧力で水にオゾンを溶解させることができるものである。   According to the present invention, by adding the extension flow path 8 to the flow path 6, it is possible to secure the pressure in the pressurizing and dissolving section 3 with the pushing pressure from the pressurizing section 1 without using a throttle valve. The ozone can be dissolved in water at this pressure.

また本発明は、オゾンを発生させてオゾンをオゾン注入部2から供給するオゾン発生器13と、オゾン水のオゾン溶解濃度を測定すると共に測定結果に基づいてオゾン発生器13によるオゾンの発生を制御する濃度検出制御部9を備えて成ることを特徴とするものである。   In addition, the present invention generates ozone and supplies ozone from the ozone injection part 2, and measures ozone dissolution concentration of ozone water and controls generation of ozone by the ozone generator 13 based on the measurement result. It is characterized by comprising a density detection control unit 9 that performs this.

この発明によれば、オゾン濃度検出制御部9で測定されたオゾン溶解濃度に基づいて、オゾン発生器13によるオゾンの発生をフィードバック制御することによって、必要とされるオゾン濃度に調整しながらオゾン水を生成することができるものである。   According to this invention, the ozone water is adjusted while adjusting to the required ozone concentration by performing feedback control of the ozone generation by the ozone generator 13 based on the ozone dissolution concentration measured by the ozone concentration detection control unit 9. Can be generated.

本発明によれば、加圧部1による加圧によって水にオゾンを溶解させるようにしたので、オゾンを水に効率高く、高濃度に溶解させることができるものであり、またオゾンを高濃度で溶解したオゾン水の圧力を、減圧部4で流入側から流出側に向かって順次大気圧まで減圧するようにしたので、オゾン水に気泡が発生することを防止して、高濃度でオゾンが溶解したオゾン水をそのまま供給することができると共に、オゾンが抜けることなくオゾン濃度を長時間維持することができるものである。   According to the present invention, ozone is dissolved in water by pressurization by the pressurizing unit 1, so that ozone can be dissolved in water with high efficiency and high concentration, and ozone can be dissolved at high concentration. Since the pressure of the dissolved ozone water is gradually reduced from the inflow side to the outflow side by the decompression unit 4 to the atmospheric pressure, bubbles are prevented from being generated in the ozone water, and ozone is dissolved at a high concentration. In addition to being able to supply the ozone water as it is, the ozone concentration can be maintained for a long time without the ozone being lost.

以下、本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

図1は本発明の実施の形態の一例を示すものであり、加圧溶解部3の流出側と流入側にそれぞれ配管で形成される流路15,6が接続してある。流入側の流路15は一端を加圧溶解部3に接続してあり、他端は水道配管17a、浴槽等の貯水槽17bなど、任意の水供給源17に接続してある。また流路15の途中には加圧部1が設けてある。加圧部1は、例えば、水供給源17から供給される水を加圧溶解部3に圧送するポンプ18などで形成されるものである。   FIG. 1 shows an example of an embodiment of the present invention, in which flow paths 15 and 6 formed by piping are respectively connected to the outflow side and the inflow side of the pressure dissolution unit 3. One end of the flow path 15 on the inflow side is connected to the pressure dissolving unit 3, and the other end is connected to an arbitrary water supply source 17 such as a water pipe 17 a and a water storage tank 17 b such as a bathtub. A pressurizing unit 1 is provided in the middle of the flow path 15. The pressurizing unit 1 is formed by, for example, a pump 18 that pumps water supplied from the water supply source 17 to the pressurizing and dissolving unit 3.

またこの流入側の流路15にはオゾン注入部2が接続してある。オゾン注入部2はオゾンを流路15に供給して注入するためのものであり、オゾン注入配管11にオゾン発生器13と圧力調整弁12を設けて形成してある。オゾン発生器13は圧力調整弁12よりも流路15側に設けられるものであり、オゾン発生器13としては例えば電気放電によって空気中の酸素からオゾンを生成するものを用いることができる。またこのようなオゾン発生器13を用いてオゾン注入部2を形成する他に、オゾンを封入したボンベからオゾンを供給するようにしてオゾン注入部2を形成することもできる。流路15へのオゾン注入部2の接続位置は、加圧溶解部3より上流側の位置であればよく、図1のように加圧部1より上流側の流路15に接続するようにしても、あるいは加圧部1より下流側の流路15に接続するようにしてもいずれでもよい。   The ozone injection part 2 is connected to the flow path 15 on the inflow side. The ozone injection part 2 is for supplying ozone to the flow path 15 and injecting it, and is formed by providing an ozone generator 13 and a pressure regulating valve 12 in the ozone injection pipe 11. The ozone generator 13 is provided closer to the flow path 15 than the pressure regulating valve 12, and as the ozone generator 13, for example, one that generates ozone from oxygen in the air by electric discharge can be used. In addition to forming the ozone injection part 2 using such an ozone generator 13, the ozone injection part 2 can be formed by supplying ozone from a cylinder filled with ozone. The connection position of the ozone injection part 2 to the flow path 15 may be a position upstream of the pressurizing / dissolving part 3 and is connected to the flow path 15 upstream of the pressurizing part 1 as shown in FIG. Alternatively, it may be either connected to the flow path 15 on the downstream side of the pressurizing unit 1.

一方、流出側の流路6は一端を加圧溶解部3に接続し、他端はオゾン水回収槽(図示省略)などに接続して大気に開放してある。この流路6には減圧部4が設けてある。また加圧溶解部3には余剰オゾン排出部5が設けてある。余剰オゾン排出部5は、例えば、加圧溶解部3内の気圧が所定の圧力以上になると開口するガス抜き弁などを備えて形成してあり、この余剰オゾン排出部5は連結部10によってオゾン注入部2に連通接続してある。図の実施の形態では、連結部10は圧力調整弁12とオゾン発生器13の間の位置においてオゾン注入配管11に接続してあるが、圧力調整弁12より流路15の側の位置であればよく、オゾン発生器13よりも流路15の側においてオゾン注入配管11に接続するようにしてもよい。   On the other hand, one end of the flow path 6 on the outflow side is connected to the pressure dissolution unit 3, and the other end is connected to an ozone water recovery tank (not shown) or the like and opened to the atmosphere. The flow path 6 is provided with a decompression section 4. In addition, a surplus ozone discharge unit 5 is provided in the pressure dissolving unit 3. The surplus ozone discharge part 5 is formed, for example, with a degassing valve that opens when the pressure in the pressure dissolving part 3 becomes a predetermined pressure or higher. The injection part 2 is connected in communication. In the illustrated embodiment, the connecting portion 10 is connected to the ozone injection pipe 11 at a position between the pressure adjustment valve 12 and the ozone generator 13, but may be at a position closer to the flow path 15 than the pressure adjustment valve 12. What is necessary is just to connect to the ozone injection piping 11 in the flow path 15 side rather than the ozone generator 13. FIG.

上記のように形成されるオゾン水製造装置にあって、ポンプ18で形成される加圧部1を作動させると、水供給源17から供給される水が流路15を通して加圧溶解部3へ圧送して供給される。このように流路15内を水が流れる際に、オゾン注入部2のオゾン注入配管11内に対して吸引力が作用し、大気中の空気が圧力調整弁12を通してオゾン発生器13に吸引され、オゾン発生器13内で空気中の酸素からオゾンが生成される。このように生成されたオゾンはオゾン注入部2から流路15内に吸引されて水にオゾンが注入される。そしてこのようにオゾンが注入された水を加圧部1で加圧溶解部3へ圧送して送り込むことによって、この圧送による押し込み力で加圧溶解部3内において水とオゾンに圧力が加わって高圧になる。このように加圧溶解部3内で水とオゾンを加圧することによって、水にオゾンを効率高く飽和量以上に溶解させることができるものであり、オゾンが高濃度で溶解したオゾン水を得ることができるものである。   In the ozone water production apparatus formed as described above, when the pressurization unit 1 formed by the pump 18 is operated, the water supplied from the water supply source 17 passes through the flow path 15 to the pressurization dissolution unit 3. Supplied by pumping. Thus, when water flows through the flow path 15, suction force acts on the ozone injection pipe 11 of the ozone injection section 2, and air in the atmosphere is sucked into the ozone generator 13 through the pressure adjustment valve 12. In the ozone generator 13, ozone is generated from oxygen in the air. The ozone thus generated is sucked into the flow path 15 from the ozone injection part 2 and ozone is injected into the water. Then, the water into which ozone has been injected in this manner is pumped and fed to the pressurizing / dissolving unit 3 by the pressurizing unit 1, and pressure is applied to the water and ozone in the pressurizing / dissolving unit 3 by the pushing force by this pumping. Become high pressure. Thus, by pressurizing water and ozone in the pressure dissolving part 3, ozone can be efficiently dissolved in water to a saturated amount or more, and ozone water in which ozone is dissolved at a high concentration is obtained. It is something that can be done.

また、このように加圧溶解部3内において水とオゾンを加圧して強制的に効率良く溶解させ、高濃度でオゾンが溶解したオゾン水を短時間で生成することができるため、加圧溶解部3内で生成されたオゾン水を流路6を通して送り出しながら、加圧溶解部3内で水にオゾンを溶解させるようにすることができるものである。従って、加圧溶解部3をタンクのような容積の大きなもので形成する必要がなくなるものであり、装置規模を小さくして装置のコストを低減することが可能になるものである。   In addition, since water and ozone are forcibly and efficiently dissolved in the pressure-dissolving unit 3 in this way, ozone water in which ozone is dissolved at a high concentration can be generated in a short time. While the ozone water generated in the part 3 is sent out through the flow path 6, ozone can be dissolved in the water in the pressure dissolving part 3. Therefore, it is not necessary to form the pressure dissolving part 3 with a large volume such as a tank, and the apparatus scale can be reduced and the cost of the apparatus can be reduced.

ここで、オゾン注入部2から注入されるオゾンの全量が水に溶解しないと、加圧溶解部3内で水に溶解しない余剰オゾンが生じるが、加圧溶解部3に余剰オゾン排出部5を設け、オゾンの溶解飽和量以上の溶解できない余剰オゾンを加圧溶解部3から排出することによって、余剰オゾンが残留することによる加圧溶解部3内のオゾンと水の比率を安定させて圧力変動を防ぐことができ、オゾンの溶解効率を高く維持することができるものである。   Here, if the total amount of ozone injected from the ozone injection unit 2 is not dissolved in water, surplus ozone that does not dissolve in water is generated in the pressure dissolution unit 3, but the excess ozone discharge unit 5 is provided in the pressure dissolution unit 3. Displacement of excess ozone that cannot be dissolved above the ozone dissolution saturation amount from the pressure dissolution unit 3 to stabilize the ratio of ozone and water in the pressure dissolution unit 3 due to the surplus ozone remaining, and pressure fluctuation It is possible to prevent ozone and maintain high ozone dissolution efficiency.

また、このように余剰オゾン排出部5から排出された余剰オゾンは連結部10を通してオゾン注入部2に返送し、オゾン注入部2から再度、水に注入するようにしてある。従って、加圧溶解部3で溶解しなかったオゾンを捨てることなく有効利用することができるものであり、しかも有害なオゾンが外部に漏れて環境が汚染されることを防ぐことができるものである。このとき、余剰オゾン排出部5から返送された余剰オゾンだけではオゾン注入部2で注入するガス圧が不足することがあるので、圧力調整弁12を調整して空気を吸入し、オゾン発生器13で不足分のオゾンを生成することによって、所定のガス圧でオゾンを注入することができるようにしてある。   Further, the surplus ozone discharged from the surplus ozone discharge unit 5 in this way is returned to the ozone injection unit 2 through the connecting unit 10 and is again injected into water from the ozone injection unit 2. Accordingly, ozone that has not been dissolved in the pressure dissolving part 3 can be effectively used without being discarded, and harmful ozone can be prevented from leaking to the outside and being contaminated. . At this time, only the surplus ozone returned from the surplus ozone discharge unit 5 may cause insufficient gas pressure to be injected in the ozone injecting unit 2. Therefore, the pressure adjusting valve 12 is adjusted to inhale air, and the ozone generator 13. Thus, ozone can be injected at a predetermined gas pressure by generating insufficient ozone.

そして、上記のように加圧溶解部3で生成されたオゾン水は、流路6を通して送り出されるが、加圧溶解部3内でオゾン水は高圧に加圧された状態にあるので、そのまま大気圧下に送り出されると、急激な圧力低下によって、オゾン水中に気泡が発生するおそれがあり、オゾン溶解量が減少し、またキャビテーションが発生することがある。このために本発明では、流路6に減圧部4を設け、加圧溶解部3内で加圧された状態のオゾン水を流路6を通して送り出す際に、減圧部4で大気圧まで気泡を発生させることなく減圧をした後に吐出するようにしてある。   And the ozone water produced | generated in the pressurization melt | dissolution part 3 as mentioned above is sent out through the flow path 6, However Since ozone water is in the state pressurized to the high pressure in the pressurization melt | dissolution part 3, it is large as it is. When sent out under atmospheric pressure, air bubbles may be generated in the ozone water due to a rapid pressure drop, the amount of dissolved ozone may decrease, and cavitation may occur. For this purpose, in the present invention, when the pressure reducing unit 4 is provided in the flow path 6 and ozone water pressurized in the pressure dissolving section 3 is sent out through the flow path 6, the pressure reducing section 4 generates bubbles to atmospheric pressure. It is made to discharge, after reducing pressure without generating.

ここで、加圧溶解部3内で生成されるのと同じ濃度のオゾン水について、加圧溶解部3内で加圧されている圧力と同じ圧力から大気圧まで減圧する際に、気泡が発生しない減圧度を、予め計算や測定で求めておき、減圧部4をこの予め求めた減圧度で、オゾン水が流入する側から流出する側に向かって、オゾン水の圧力を段階的に、あるいは連続的に、徐々に大気圧まで減圧できるように設定してある。従って、加圧溶解部3内で加圧されたオゾン水を、減圧部4において気泡が発生しない減圧度で徐々に大気圧まで減圧した後に、流路6の先端から吐出することによって、オゾン水に気泡が発生することなくオゾン水を吐出することができるものであり、加圧溶解部3で飽和量以上にオゾンが溶解されたオゾン水を、安定した高濃度の状態のまま送り出して利用することが可能になるものである。   Here, bubbles are generated when the ozone water having the same concentration as that generated in the pressure dissolving unit 3 is depressurized from the same pressure as that pressurized in the pressure dissolving unit 3 to the atmospheric pressure. The degree of decompression is determined in advance by calculation or measurement, and the pressure of the ozone water is stepped from the side where the ozone water flows in from the side where the ozone water flows in at the decompression unit 4 in advance. It is set so that it can be continuously reduced to atmospheric pressure gradually. Accordingly, the ozone water pressurized in the pressurizing and dissolving unit 3 is gradually reduced to atmospheric pressure at a reduced pressure that does not generate bubbles in the decompression unit 4, and then discharged from the tip of the flow path 6. Ozone water can be discharged without generating bubbles, and ozone water in which ozone is dissolved to a saturation amount or more in the pressure dissolution unit 3 is sent out and used in a stable high concentration state. It will be possible.

図2は、減圧部4の具体的な実施の形態の一例を示すものであり、加圧溶解部3に接続される流路6に、水の流れ方向に沿って複数の圧力調整弁7(7a,7b,7c)を設けることによって、減圧部4を形成するようにしてある。このように減圧部4を複数の圧力調整弁7を備えて形成することによって、気泡が発生しない減圧度でオゾン水の圧力を段階的に徐々に下げることができるものである。   FIG. 2 shows an example of a specific embodiment of the decompression unit 4, and a plurality of pressure regulating valves 7 ( 7a, 7b, 7c) is provided to form the decompression section 4. Thus, by forming the decompression unit 4 with the plurality of pressure regulating valves 7, the pressure of the ozone water can be gradually reduced step by step at a decompression degree that does not generate bubbles.

各圧力調整弁7a,7b,7cは、オゾン水に気泡発生が生じない減圧度で減圧するように設定されているものであり、この減圧度は予め計算や測定で求めた数値に設定されるものである。例えば、加圧溶解部3から流路6に送り出されたオゾン水の加圧圧力が0.5MPaであるとき、気泡が発生しない減圧量が0.12MPaであると測定によって判明しているとすると、圧力調整弁7aでオゾン水の圧力を0.12MPa減圧して、0.38MPaに落とす。またオゾン水の加圧圧力が0.38MPaであるとき、気泡が発生しない減圧量が0.16MPaであると測定によって判明しているとすると、次の圧力調整弁7bでオゾン水の圧力を0.16MPa減圧して、0.22MPaに落とす。さらにオゾン水の加圧圧力が0.22MPaであるとき、気泡が発生しない減圧量が0.22MPa以上であると測定によって判明しているとすると、次の圧力調整弁7cでオゾン水の圧力を0.22MPa減圧して、加圧圧力を0MPaに落とし、大気圧まで減圧することができるものである。尚、圧力調整弁7による減圧量は、水温、オゾンの溶解濃度、加圧溶解部3内の圧力、流路6の径などに応じて変動するものであり、装置毎に、計算や測定をして、適宜設定されるものである。   Each pressure regulating valve 7a, 7b, 7c is set to depressurize at a degree of decompression that does not generate bubbles in ozone water, and this degree of decompression is set to a numerical value obtained in advance by calculation or measurement. Is. For example, when the pressurized pressure of ozone water sent out from the pressurizing / dissolving unit 3 to the flow path 6 is 0.5 MPa, it is determined by measurement that the amount of reduced pressure at which bubbles are not generated is 0.12 MPa. The pressure of the ozone water is reduced by 0.12 MPa by the pressure adjusting valve 7a and dropped to 0.38 MPa. Further, when the pressure of ozone water is 0.38 MPa, if it is found by measurement that the amount of reduced pressure at which bubbles are not generated is 0.16 MPa, the pressure of ozone water is reduced to 0 by the next pressure regulating valve 7b. Reduce pressure to 16 MPa and drop to 0.22 MPa. Furthermore, when the pressure of ozone water is 0.22 MPa, if it is found by measurement that the amount of reduced pressure at which bubbles are not generated is 0.22 MPa or more, the pressure of the ozone water is controlled by the next pressure regulating valve 7c. The pressure is reduced to 0.22 MPa, the pressure applied is reduced to 0 MPa, and the pressure can be reduced to atmospheric pressure. Note that the amount of pressure reduction by the pressure regulating valve 7 varies depending on the water temperature, the dissolved concentration of ozone, the pressure in the pressurized dissolving section 3, the diameter of the flow path 6, and the like. Thus, it is set as appropriate.

図3は、減圧部4の具体的な実施の形態の他の一例を示すものであり、加圧溶解部3に接続される流路6を流路断面積が異なる複数の管体20a,20b,20cを備えて形成し、この流路断面積の異なる複数の管体20a,20b,20cで減圧部4が形成されるようにしてある。   FIG. 3 shows another example of a specific embodiment of the decompression unit 4, and a plurality of tubes 20a and 20b having different channel cross-sectional areas in the channel 6 connected to the pressure dissolution unit 3 are shown. 20c, and the decompression section 4 is formed by a plurality of pipe bodies 20a, 20b, 20c having different channel cross-sectional areas.

図3(a)の実施の形態では、流路断面積が異なる、つまり内径の異なる複数の管体20a,20b,20cを一体に連ねるようにしてあり、オゾン水の流れの上流側から下流側へと、徐々に管体20a,20b,20cの径が小さくなるようにしてある。また図3(b)の実施の形態では、内径の異なる複数の管体20a,20b,20cをレジューサ21を介して接続して連ねるようにしてあり、オゾン水の流れの上流側から下流側へと、徐々に管体20a,20b,20cの径が小さくなるようにしてある。さらに図3(c)の実施の形態では、オゾン水の流れの上流側から下流側へと連続的に径が小さくなる管体20a,20b,20cを一体に連ねるようにしてある。   In the embodiment of FIG. 3 (a), a plurality of tubes 20a, 20b, and 20c having different flow path cross-sectional areas, that is, different inner diameters, are integrally connected, and from the upstream side to the downstream side of the flow of ozone water. The diameters of the pipe bodies 20a, 20b, and 20c are gradually reduced. In the embodiment of FIG. 3 (b), a plurality of tubes 20a, 20b, 20c having different inner diameters are connected and connected via a reducer 21 so that the flow of ozone water flows from the upstream side to the downstream side. Then, the diameters of the tubular bodies 20a, 20b, and 20c are gradually reduced. Further, in the embodiment of FIG. 3C, the tubular bodies 20a, 20b, and 20c that continuously decrease in diameter from the upstream side to the downstream side of the flow of ozone water are integrally connected.

この図3のものにあって、各管体20a,20b,20cの内径はφd>φd>φdであるので、各管体20a,20b,20c内のオゾン水の流速はV<V<Vとなり、各管体20a,20b,20c内のオゾン水の圧力はP>P>Pとなる。従って、加圧溶解部3から送り出されるオゾン水の圧力Pを気泡が発生しない減圧度で、図3(a)(b)のものでは段階的に減圧して、また図3(c)のものでは連続的に減圧して、Pの大気圧まで徐々に下げることができるものである。 In FIG. 3, since the inner diameters of the tubes 20a, 20b, and 20c are φd 1 > φd 2 > φd 3 , the flow rate of the ozone water in the tubes 20a, 20b, and 20c is V 1 <. V 2 <V 3 is satisfied, and the pressure of the ozone water in each of the tubular bodies 20a, 20b, 20c is P 1 > P 2 > P 3 . Accordingly, the pressure P 1 of the ozone water to be fed from the pressure dissolution unit 3 at a reduced pressure of bubbles does not occur, those in the by stepwise decompression of FIG 3 (a) (b), and FIG. 3 (c) those in the continuously reduced pressure, but can be lowered gradually to atmospheric pressure P 3.

図4は、減圧部4の具体的な実施の形態の他の一例を示すものであり、加圧溶解部3に接続される流路6を通してオゾン水を排出する際に、流路6内をオゾン水が流れる際の圧力損失によって、オゾン水に気泡が発生しない減圧速度でオゾン水の圧力を徐々に連続的に低下させ、オゾン水の圧力を大気圧にまで低下させるようにしてある。従って図4(a)の実施の形態では、加圧溶解部3内での圧力がPのオゾン水を、流路6内を通過させる際にP〜Pn−1へと、オゾン水に気泡が発生しない減圧速度で徐々に連続的に圧力を低下させ(P>P>Pn−1)、流路6の終端ではオゾン水の圧力Pが大気圧にまで低下するように、流路6の流路断面積と管路長さLを設定するようにしてあり、このような流路断面積と管路長さLを有する流路6によって減圧部4が形成されるものである。 FIG. 4 shows another example of a specific embodiment of the decompression unit 4. When ozone water is discharged through the channel 6 connected to the pressure dissolution unit 3, the inside of the channel 6 is shown. Due to the pressure loss when the ozone water flows, the pressure of the ozone water is gradually and continuously reduced at a decompression speed at which bubbles are not generated in the ozone water, and the pressure of the ozone water is reduced to atmospheric pressure. Thus in the embodiment of FIG. 4 (a), the pressure ozone water P 1 in press-welding within the solution 3, to P 2 ~P n-1 when passing through the flow channel 6, ozone water The pressure is gradually and continuously reduced at a decompression rate at which no bubbles are generated (P 1 > P 2 > P n-1 ), and the pressure P n of the ozone water is reduced to atmospheric pressure at the end of the flow path 6. In addition, the flow path cross-sectional area and the pipe length L of the flow path 6 are set, and the pressure reducing part 4 is formed by the flow path 6 having such a flow path cross-sectional area and the pipe length L. Is.

この管路長さLは、次の式から設定することができる。すなわち、
流体の関係式P=λ・(L/d)・(v/2g)
[Pは加圧溶解部3内の圧力、λは管摩擦係数、dは内径、vは流速、gは加速度]
から、L=(P・d・2g)/(λ・v)を導くことができ、この式から計算して流路6の管路長さLを求めることができるものである。このように、流路6の管路長さLを所定長さに形成するだけで減圧部4を形成することができるものであり、装置の構造をより簡単なものに形成することができるものである。このような管路長さLが長い流路6で形成される減圧部4は、例えば図4(b)のような長いホース4aで形成することができる。
The pipe length L can be set from the following equation. That is,
Fluid relational expression P = λ · (L / d) · (v 2 / 2g)
[P is the pressure in the pressure dissolving section 3, λ is the coefficient of friction of the tube, d is the inner diameter, v is the flow velocity, and g is the acceleration]
From this, L = (P · d · 2g) / (λ · v 2 ) can be derived, and the pipe length L of the flow path 6 can be obtained by calculation from this equation. As described above, the decompression section 4 can be formed only by forming the pipe length L of the flow path 6 to a predetermined length, and the structure of the apparatus can be made simpler. It is. The decompression section 4 formed by the flow path 6 having a long pipe length L can be formed by a long hose 4a as shown in FIG. 4B, for example.

上記のように本発明では加圧部1によって水とオゾンを加圧溶解部3に圧送し、この際の押し込み圧によって加圧溶解部3内で水とオゾンを加圧してオゾンを溶解させるようにしているが、この押し込み圧を受けて加圧溶解部3内に必要な圧力が発生するようにする必要がある。このように加圧部1からの押し込み圧を受ける圧力を確保するために、加圧溶解部3の流出側の流路6に絞り弁などの絞り部を設けることが考えられるが、このように絞り部を流路6に設けると、加圧溶解部3で生成されたオゾン水を流路6に送り出して排出する際に、絞り部の前後で大きな圧力差が生じ、オゾン水が急激に減圧されることになり、オゾン水に気泡が発生するおそれがある。   As described above, in the present invention, water and ozone are pumped by the pressurizing unit 1 to the pressurizing / dissolving unit 3, and water and ozone are pressurized in the pressurizing / dissolving unit 3 by the pressing pressure at this time so as to dissolve ozone. However, it is necessary to generate a necessary pressure in the pressurizing / dissolving portion 3 by receiving the pushing pressure. In order to secure the pressure that receives the indentation pressure from the pressurizing unit 1 as described above, it is conceivable to provide a throttle unit such as a throttle valve in the flow path 6 on the outflow side of the pressurizing and dissolving unit 3. When the throttle part is provided in the flow path 6, when the ozone water generated in the pressure dissolving part 3 is sent to the flow path 6 and discharged, a large pressure difference occurs before and after the throttle part, and the ozone water is rapidly depressurized. As a result, bubbles may be generated in the ozone water.

そこで図5の実施の形態では、流路6の圧力損失を利用して、流路6に絞り部を設ける必要なく、押し込み圧を受ける圧力を確保するようにしている。このとき、上記各実施形態の流路6の長さでは、流路6の圧力損失で押し込み圧を受ける圧力を確保することは難しいので、流路6の加圧溶解部3と反対側の端部に延長流路8を付加するようにしてある。すなわち、流路6の減圧部4も含めた全体の圧力損失を算出し、加圧部1からの押し込み圧によって加圧溶解部3内で水とオゾンを加圧するのに必要な圧力と、この流路6の圧力損失との差を算出し、さらにこの差の圧力損失が生じる管路の長さを上記の式から算出して、この管路長さの延長流路8を流路6に付加するようにしてある。このように、流路6の圧力損失と延長流路8の圧力損失の和が、加圧部1で圧送されるオゾンと水の押し込み圧によって加圧溶解部3内で水とオゾンを加圧するのに必要な圧力となるように、流路6に延長流路8を付加することによって、絞り弁などの絞り部を用いる必要なく、加圧部1からの押し込み圧で加圧溶解部3内の加圧力を確保して、水にオゾンを溶解させることができるものである。   Therefore, in the embodiment of FIG. 5, the pressure loss of the flow path 6 is used to secure the pressure that receives the indentation pressure without the need to provide the throttle portion in the flow path 6. At this time, with the length of the flow path 6 of each of the above embodiments, it is difficult to secure the pressure that receives the indentation pressure due to the pressure loss of the flow path 6. An extension channel 8 is added to the part. That is, the total pressure loss including the pressure reducing part 4 of the flow path 6 is calculated, and the pressure required to pressurize water and ozone in the pressure dissolving part 3 by the indentation pressure from the pressure applying part 1, and this The difference from the pressure loss of the flow path 6 is calculated, and the length of the pipe line in which the pressure loss of this difference occurs is calculated from the above formula, and the extended flow path 8 of this pipe length is changed to the flow path 6. They are added. In this way, the sum of the pressure loss of the flow path 6 and the pressure loss of the extension flow path 8 pressurizes water and ozone in the pressurizing and dissolving section 3 by the pressure of ozone and water pushed in by the pressurizing section 1. By adding the extension flow path 8 to the flow path 6 so that the pressure required for the pressure is reached, it is not necessary to use a throttling portion such as a throttling valve. It is possible to secure ozone pressure and dissolve ozone in water.

図6はオゾン水製造装置の具体的な一例を示すものであり、水は流路15に導入口30から導入される。流路15にはオゾンが導入されるオゾン注入部2が接続してあり、オゾンが注入された水はポンプで形成される加圧部1によって、小容量のタンクで形成される加圧溶解部3に圧送される。このようにオゾンが注入された水が加圧溶解部3に圧送されることによって、加圧溶解部3内で水にオゾンが溶解されたオゾン水が生成される。そしてこのオゾン水は加圧溶解部3から流路6に送り出され、流路6の先端の吐出口31から送り出される。この流路6には減圧部4が設けてあり、加圧溶解部3から送り出されたオゾン水は大気圧まで減圧された後に流路6の端部の吐出口31から吐出され、気泡が発生しない状態でオゾン水を送り出すことができる。図6の実施の形態では、減圧部4は、図3(a)の内径が異なる管体20a,20b,20cを連ねたもので形成してある。   FIG. 6 shows a specific example of an ozone water production apparatus, and water is introduced into the flow path 15 from the inlet 30. An ozone injection part 2 into which ozone is introduced is connected to the flow path 15, and water into which ozone is injected is pressurized and dissolved by a pressurization part 1 formed by a pump and a small capacity tank. 3 is pumped. Thus, the water into which ozone is injected is pumped to the pressure dissolving unit 3, thereby generating ozone water in which ozone is dissolved in water in the pressure dissolving unit 3. The ozone water is sent out from the pressure dissolution unit 3 to the flow path 6 and is sent out from the discharge port 31 at the tip of the flow path 6. The flow path 6 is provided with a pressure reducing unit 4, and the ozone water sent out from the pressure dissolving part 3 is discharged from the discharge port 31 at the end of the flow path 6 after being depressurized to atmospheric pressure, and bubbles are generated. Ozone water can be sent out in a state that does not. In the embodiment of FIG. 6, the decompression unit 4 is formed by connecting the tubular bodies 20a, 20b, and 20c having different inner diameters as shown in FIG.

この装置にあって、ポンプで形成される加圧部1を連続運転することによって、オゾン注入部2、加圧溶解部3を連続的に運転させて、減圧部4にオゾン水を連続的に供給するようにすることができるものであり、減圧部4の流出側である吐出口31から気泡の発生のないオゾン水を連続的に吐出させて得ることができるものである。また、減圧部4は加圧溶解部3からオゾン水を送り出す流路6の一部として設けられており、そしてこの減圧部4はオゾン水の圧力を流入側から流出側に向かって順次大気圧まで減圧するものであるため、減圧部4を例えば内径2〜50mm程度の比較的大きい流路として形成することができるものであり、異物が混入しても減圧部4内が詰まるようなことがないものである。さらにこのような構成の減圧部4を設けることによって、減圧部4を流れるオゾン水のレイノルズ数が臨界レイノルズ数(Re=2320)より小さなレイノズル数である層流状態だけではなく、臨界レイノルズ数より大きなレイノルズ数である乱流状態でも対応することが可能になるものである。さらに、減圧部4をこのように内径の大きな流路として形成することによって、オゾン水の供給量を多くすることができ、減圧部4を一つの流路のみで形成することが可能になるものであり、装置構成を簡単なものに形成することができるものである。そして本装置を利用してオゾン水を製造する場合、水温20℃の水を用いて最大オゾン溶解量0.6g/Lのオゾン水を得ることができるものである。   In this apparatus, by continuously operating the pressurizing unit 1 formed by the pump, the ozone injecting unit 2 and the pressurizing / dissolving unit 3 are continuously operated, and ozone water is continuously supplied to the decompressing unit 4. It can be supplied, and can be obtained by continuously discharging ozone water without generating bubbles from the discharge port 31 on the outflow side of the decompression unit 4. The decompression unit 4 is provided as a part of the flow path 6 for sending out the ozone water from the pressurizing and dissolving unit 3, and the decompression unit 4 sequentially increases the pressure of the ozone water from the inflow side to the outflow side. Since the pressure reducing part 4 can be formed as a relatively large flow path having an inner diameter of about 2 to 50 mm, for example, the inside of the pressure reducing part 4 may be clogged even if foreign matter is mixed in. There is nothing. Furthermore, by providing the decompression unit 4 having such a configuration, not only the laminar flow state in which the Reynolds number of ozone water flowing through the decompression unit 4 is smaller than the critical Reynolds number (Re = 2320), but also the critical Reynolds number. It is possible to cope with a turbulent flow state having a large Reynolds number. Furthermore, by forming the decompression section 4 as a flow path having a large inner diameter in this way, the supply amount of ozone water can be increased, and the decompression section 4 can be formed with only one flow path. Therefore, the apparatus configuration can be formed in a simple one. And when manufacturing ozone water using this apparatus, ozone water with a maximum ozone dissolution amount of 0.6 g / L can be obtained using water having a water temperature of 20 ° C.

上記のようにして製造されたオゾン水は、例えば、食材や食器などの食品関連の被洗浄物の殺菌、生鮮食料品の殺菌や鮮度維持、トイレ、流し台、洗面台、風呂の除菌や消臭、トイレの尿石防止、洗濯機の被洗濯物および食器洗浄器の被洗浄物の殺菌や漂白、畜産、農業、食品、染色等の各種産業における排水の殺菌、有機物分解、脱臭、脱色など、各種の用途に用いることができるものである。そして本発明では上記のように、加圧部1による加圧によって加圧溶解部3内で水にオゾンを溶解させ、気泡が発生しないように減圧部4で大気圧にまで減圧することによって、オゾン水を製造するようにしているため、オゾンが気泡として外部に漏出することを防ぐことができるものであり、またオゾン水にはオゾンが完全に溶解した状態であるので、急激な温度や圧力の変化がない通常の使用状態では気泡化しにくく、オゾン水からもオゾンが放出されることがないものであり、オゾンによって環境を汚染するようなことがないものである。さらにオゾン水中のオゾンは、殺菌、有機物分解、脱色、漂白などを行なう際に消費される以外は消費や分解がなく、オゾン水による効果を長時間維持することができるものである。   The ozone water produced as described above can be used to sterilize food-related items to be cleaned such as ingredients and tableware, sterilize and maintain freshness of fresh food products, and disinfect and disinfect toilets, sinks, sinks and baths. Odor, prevention of urine stone in toilets, sterilization and bleaching of washing machine and dishwasher objects, sterilization of wastewater in various industries such as livestock, agriculture, food, dyeing, organic matter decomposition, deodorization, decolorization, etc. It can be used for various purposes. In the present invention, as described above, ozone is dissolved in water in the pressure dissolution unit 3 by pressurization by the pressure unit 1, and the pressure is reduced to atmospheric pressure by the pressure reduction unit 4 so that bubbles are not generated. Since ozone water is manufactured, ozone can be prevented from leaking out as bubbles, and ozone water is completely dissolved in ozone water. In a normal use state where there is no change, air bubbles are hardly formed, ozone is not released from ozone water, and the environment is not polluted by ozone. Further, ozone in ozone water is not consumed or decomposed except for consumption during sterilization, organic matter decomposition, decolorization, bleaching and the like, and the effect of ozone water can be maintained for a long time.

図7は本発明の他の実施の形態を示すものであり、減圧部4よりも水の流れの下流側において流路6にオゾン濃度計によって形成される濃度検出部37が設けてある。この濃度検出部37は制御部38に電気的に接続してあり、さらに制御部38はオゾン発生器13に電気的に接続してあり、制御部38によってオゾン発生器13の作動を制御することができるようにしてある。この濃度検出部37と制御部38によって濃度検出制御部9が形成されるものである。その他の構成は図1のものと同じである。   FIG. 7 shows another embodiment of the present invention, in which a concentration detection unit 37 formed by an ozone densitometer is provided in the flow path 6 on the downstream side of the flow of water from the decompression unit 4. The concentration detection unit 37 is electrically connected to the control unit 38, and the control unit 38 is electrically connected to the ozone generator 13, and the operation of the ozone generator 13 is controlled by the control unit 38. It is made to be able to. The concentration detection control unit 9 is formed by the concentration detection unit 37 and the control unit 38. Other configurations are the same as those in FIG.

このものにあって、上記のように減圧部4で圧力が減圧されたオゾン水が流路6を通過する際に、濃度検出部37によってオゾン水のオゾン溶解濃度が測定されるようになっており、濃度検出部37で測定されたオゾン濃度のデータは制御部38に入力されるようになっている。制御部38はCPUやメモリー等を備えて形成されるものであり、濃度検出部37から入力されたオゾン濃度値に基づいて、オゾン発生器13をオン−オフ制御したり、あるいはオゾン発生器13の印加電圧を変更したりして、オゾン発生器13によるオゾンの発生を制御するようにしてある。すなわち、濃度検出部37で測定されるオゾン濃度が制御部38のメモリーに登録された値より小さいときには、制御部38による制御で、オゾン発生器13をオンさせたり印加電圧を上昇させたりして、オゾン注入部2から水に注入されるオゾン量を増やして、加圧溶解部3で溶解されるオゾンの溶解濃度を高めるようにするものであり、また、濃度検出部37で測定されるオゾン濃度が制御部38のメモリーに登録された値より大きいときには、制御部38による制御で、オゾン発生器13をオフさせたり印加電圧を降下させたりして、オゾン注入部2から水に注入されるオゾン量を減らして、加圧溶解部3で溶解されるオゾンの溶解濃度を低下させるようにするものである。このようにして制御部38のメモリーに登録されたオゾン濃度の値にオゾン水の濃度を調整することができるものである。従って、用途に応じてオゾン水において必要とされるオゾン濃度は異なるが、必要なオゾン濃度のデータを制御部38のメモリーに登録しておくことによって、必要とされるオゾン濃度に調整しながらオゾン水を生成することができるものである。   In this case, when the ozone water whose pressure is reduced by the pressure reducing unit 4 as described above passes through the flow path 6, the ozone concentration of ozone water is measured by the concentration detecting unit 37. The ozone concentration data measured by the concentration detector 37 is input to the controller 38. The control unit 38 includes a CPU, a memory, and the like, and controls the on / off of the ozone generator 13 based on the ozone concentration value input from the concentration detection unit 37 or the ozone generator 13. The generation of ozone by the ozone generator 13 is controlled by changing the voltage applied. That is, when the ozone concentration measured by the concentration detection unit 37 is smaller than the value registered in the memory of the control unit 38, the control by the control unit 38 turns on the ozone generator 13 or increases the applied voltage. The ozone amount injected into the water from the ozone injection unit 2 is increased so as to increase the dissolved concentration of ozone dissolved in the pressure dissolving unit 3, and the ozone measured by the concentration detection unit 37 When the concentration is larger than the value registered in the memory of the control unit 38, the ozone generator 13 is turned off or the applied voltage is lowered by the control of the control unit 38, and the ozone is injected into the water from the ozone injection unit 2. By reducing the amount of ozone, the dissolved concentration of ozone dissolved in the pressure dissolving unit 3 is lowered. In this way, the concentration of ozone water can be adjusted to the value of the ozone concentration registered in the memory of the control unit 38. Therefore, although the ozone concentration required in the ozone water differs depending on the application, the ozone concentration can be adjusted to the required ozone concentration by registering the necessary ozone concentration data in the memory of the control unit 38. It can generate water.

本発明の実施の形態の一例を示す概略図である。It is the schematic which shows an example of embodiment of this invention. 同上の一部の一例を示す概略図である。It is the schematic which shows an example of a part of the same as the above. 同上の一部の他の一例を示すものであり、(a)(b)(c)はそれぞれ概略図である。It shows another example of a part of the above, (a) (b) (c) is a schematic diagram respectively. 同上の一部の他の一例を示すものであり、(a)は概略図、(b)は斜視図である。It shows another example of a part of the above, (a) is a schematic view, (b) is a perspective view. 同上の一部の他の一例を示す概略図である。It is the schematic which shows another example of a part of the same as the above. (a)(b)は本発明の実施の形態の一例を示す斜視図である。(A) (b) is a perspective view which shows an example of embodiment of this invention. 本発明の他の実施の形態の一例を示す概略図である。It is the schematic which shows an example of other embodiment of this invention.

符号の説明Explanation of symbols

1 加圧部
2 オゾン注入部
3 加圧溶解部
4 減圧部
5 余剰オゾン排出部
6 流路
7 圧力調整弁
8 延長流路
9 濃度検出制御部
10 連結部
11 オゾン注入配管
12 圧力調整弁
13 オゾン発生器
DESCRIPTION OF SYMBOLS 1 Pressurization part 2 Ozone injection part 3 Pressurization melt | dissolution part 4 Decompression part 5 Excess ozone discharge part 6 Flow path 7 Pressure adjustment valve 8 Extension flow path 9 Concentration detection control part 10 Connection part 11 Ozone injection piping 12 Pressure adjustment valve 13 Ozone Generator

Claims (8)

水を圧送する加圧部と、水にオゾンを注入するオゾン注入部と、オゾンを注入された水が加圧部で圧送されることによる加圧で水にオゾンを溶解させる加圧溶解部と、加圧溶解部でオゾンを溶解させたオゾン水の圧力を、オゾン水の流入側から流出側に向かって順次大気圧まで減圧する減圧部とを備え、加圧部、オゾン注入部、加圧溶解部の各部を連続的に運転させて、減圧部にオゾン水を連続的に供給し、減圧部の流出側から気泡の発生のないオゾン水を連続的に吐出させるようにして成ることを特徴とするオゾン水製造装置。   A pressurizing unit that pumps water, an ozone injecting unit that injects ozone into water, and a pressurizing and dissolving unit that dissolves ozone in water by pressurizing the water into which ozone has been injected by the pressurizing unit; And a pressure reducing part for reducing the pressure of the ozone water in which ozone is dissolved in the pressure dissolving part to the atmospheric pressure sequentially from the inflow side to the outflow side of the ozone water. Each part of the dissolving part is continuously operated, ozone water is continuously supplied to the decompression part, and ozone water without generation of bubbles is continuously discharged from the outflow side of the decompression part. Ozone water production equipment. 加圧溶解部で水に溶解しない余剰オゾンを排出する余剰オゾン排出部を備えて成ることを特徴とする請求項1に記載のオゾン水製造装置。   The apparatus for producing ozone water according to claim 1, further comprising a surplus ozone discharge unit that discharges surplus ozone that does not dissolve in water in the pressure dissolution unit. 余剰オゾン排出部から余剰オゾンをオゾン注入部に供給する連結部を備えて成ることを特徴とする請求項2に記載のオゾン水製造装置。   The apparatus for producing ozone water according to claim 2, comprising a connecting part for supplying surplus ozone from the surplus ozone discharge part to the ozone injection part. 減圧部を、加圧溶解部からオゾン水を送り出す流路に設けられ、オゾン水の圧力を大気圧にまで段階的に減圧する複数の圧力調整弁で構成して成ることを特徴とする請求項1乃至3のいずれか1項に記載のオゾン水製造装置。   The pressure reducing part is provided in a flow path for sending out ozone water from the pressure dissolving part, and comprises a plurality of pressure regulating valves for stepwise reducing the pressure of the ozone water to atmospheric pressure. The ozone water production apparatus according to any one of 1 to 3. 減圧部を、流路断面積と流路長さの少なくとも一方の調整でオゾン水の圧力を大気圧にまで減圧するように形成された、加圧溶解部からオゾン水を送り出す流路で構成して成ることを特徴とする請求項1乃至3のいずれか1項に記載のオゾン水製造装置。   The depressurization part is composed of a flow path for sending out ozone water from the pressure dissolution part, which is formed so as to depressurize the pressure of ozone water to atmospheric pressure by adjusting at least one of the cross-sectional area and the flow path length. The ozone water production apparatus according to any one of claims 1 to 3, wherein the apparatus is an ozone water production apparatus. 減圧部は、一つの流路で形成されていることを特徴とする請求項4又は5に記載のオゾン水製造装置。   The ozone water producing apparatus according to claim 4 or 5, wherein the decompression unit is formed by a single flow path. 加圧溶解部からオゾン水を送り出す流路の圧力損失とこの流路に付加した延長流路の圧力損失の和が、加圧部で圧送される水とオゾンの押し込み圧によって加圧溶解部内で水とオゾンを加圧するのに必要な圧力となるように、流路に延長流路を付加して成ることを特徴とする請求項1乃至6のいずれか1項に記載のオゾン水製造装置。   The sum of the pressure loss of the flow path for sending ozone water from the pressure dissolution section and the pressure loss of the extension flow path added to this flow path is increased in the pressure dissolution section by the pressure of water and ozone pushed in by the pressure section. The apparatus for producing ozone water according to any one of claims 1 to 6, wherein an extension flow path is added to the flow path so as to obtain a pressure required to pressurize water and ozone. オゾンを発生させてオゾンをオゾン注入部から供給するオゾン発生器と、オゾン水のオゾン溶解濃度を測定すると共に測定結果に基づいてオゾン発生器によるオゾンの発生を制御する濃度検出制御部を備えて成ることを特徴とする請求項1乃至7のいずれか1項に記載のオゾン水製造装置。   An ozone generator that generates ozone and supplies ozone from an ozone injection unit, and a concentration detection control unit that measures the ozone dissolution concentration of ozone water and controls the generation of ozone by the ozone generator based on the measurement result The ozone water production apparatus according to any one of claims 1 to 7, wherein the ozone water production apparatus is formed.
JP2008039208A 2008-02-20 2008-02-20 Ozone water production equipment Expired - Fee Related JP4950915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008039208A JP4950915B2 (en) 2008-02-20 2008-02-20 Ozone water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008039208A JP4950915B2 (en) 2008-02-20 2008-02-20 Ozone water production equipment

Publications (2)

Publication Number Publication Date
JP2009195813A true JP2009195813A (en) 2009-09-03
JP4950915B2 JP4950915B2 (en) 2012-06-13

Family

ID=41139952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008039208A Expired - Fee Related JP4950915B2 (en) 2008-02-20 2008-02-20 Ozone water production equipment

Country Status (1)

Country Link
JP (1) JP4950915B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195811A (en) * 2008-02-20 2009-09-03 Panasonic Electric Works Co Ltd Water clarification apparatus
JP2009195812A (en) * 2008-02-20 2009-09-03 Panasonic Electric Works Co Ltd Carbonated water manufacturing device
WO2013008721A1 (en) * 2011-07-08 2013-01-17 栗田工業株式会社 Device for supplying ozone water and method for supplying ozone water
JP2013017944A (en) * 2011-07-11 2013-01-31 Iwai Kikai Kogyo Co Ltd Gas dissolving device and gas dissolving method
WO2013136467A1 (en) * 2012-03-14 2013-09-19 シャープ株式会社 Ozone liquid generator, water purifier and method for cleaning ozone liquid generator
JP2013192977A (en) * 2012-03-16 2013-09-30 Heishin Engineering & Equipment Co Ltd Sodium hypochlorite injection apparatus
JP2014533201A (en) * 2011-11-10 2014-12-11 ブリスフィールド マニュファクチャリング カンパニー Method and apparatus for increasing gas concentration in a liquid
JP7457512B2 (en) 2020-01-27 2024-03-28 住友精密工業株式会社 Ozone water production equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03121A (en) * 1989-05-25 1991-01-07 Matsushita Electric Works Ltd Pressure dissolving device
JPH0889771A (en) * 1994-09-19 1996-04-09 Dainippon Ink & Chem Inc Gas dissolver and gas dissolving method
JP2000317284A (en) * 1999-05-13 2000-11-21 Mitsubishi Electric Corp Method for controlling ozone concentration
JP2000334283A (en) * 1999-05-26 2000-12-05 Ishikawajima Harima Heavy Ind Co Ltd Ozone dissolving method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03121A (en) * 1989-05-25 1991-01-07 Matsushita Electric Works Ltd Pressure dissolving device
JPH0889771A (en) * 1994-09-19 1996-04-09 Dainippon Ink & Chem Inc Gas dissolver and gas dissolving method
JP2000317284A (en) * 1999-05-13 2000-11-21 Mitsubishi Electric Corp Method for controlling ozone concentration
JP2000334283A (en) * 1999-05-26 2000-12-05 Ishikawajima Harima Heavy Ind Co Ltd Ozone dissolving method and device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195811A (en) * 2008-02-20 2009-09-03 Panasonic Electric Works Co Ltd Water clarification apparatus
JP2009195812A (en) * 2008-02-20 2009-09-03 Panasonic Electric Works Co Ltd Carbonated water manufacturing device
WO2013008721A1 (en) * 2011-07-08 2013-01-17 栗田工業株式会社 Device for supplying ozone water and method for supplying ozone water
JP2013017944A (en) * 2011-07-11 2013-01-31 Iwai Kikai Kogyo Co Ltd Gas dissolving device and gas dissolving method
JP2014533201A (en) * 2011-11-10 2014-12-11 ブリスフィールド マニュファクチャリング カンパニー Method and apparatus for increasing gas concentration in a liquid
WO2013136467A1 (en) * 2012-03-14 2013-09-19 シャープ株式会社 Ozone liquid generator, water purifier and method for cleaning ozone liquid generator
JP2013192977A (en) * 2012-03-16 2013-09-30 Heishin Engineering & Equipment Co Ltd Sodium hypochlorite injection apparatus
JP7457512B2 (en) 2020-01-27 2024-03-28 住友精密工業株式会社 Ozone water production equipment

Also Published As

Publication number Publication date
JP4950915B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP4950915B2 (en) Ozone water production equipment
JP4989677B2 (en) Gas dissolving apparatus and method for producing gas dissolving liquid
JP4916496B2 (en) Fluid mixing device
JP2006272232A (en) Method for forming superfine bubble, its device and sterilizing or disinfecting facility using it
JP2009154049A (en) Liquid mixing apparatus
JP2007117799A (en) Microbubble generator and microbubble generating apparatus using the same
JP2010051846A (en) Gas dissolving apparatus
JP5221978B2 (en) Biological breeding water production equipment
JP4843339B2 (en) Ozone water supply device
JP2008207122A (en) Apparatus and method for treating organic matter-containing water
JP4936189B2 (en) Carbonated water production equipment
JP2010194440A (en) Gas-liquid mixing apparatus
JP2010022955A (en) Apparatus for generating microbubble
JP4748248B2 (en) Cleaning device and cleaning method
TW201729892A (en) Functional water producing apparatus and functional water producing method
JP5113552B2 (en) Water purification device
JP2000185275A (en) Apparatus for controlling amount of dissolved oxygen in water
KR19990084428A (en) Ozone Sterilization Water Production Equipment
JP2013223824A (en) Fine bubble utilizing apparatus
JP2010269287A (en) Method and apparatus for removing dissolved oxygen in liquid
JP2007076320A (en) Inkjet device
JP5099519B2 (en) Gas dissolved water supply device
JP2021084079A (en) Batch type microbubble liquid generation device and generation method
WO2005003043A1 (en) Ejector for aeration
JP2008080259A (en) Fluid mixer and fluid mixing method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100811

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120309

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees