JP5221978B2 - Biological breeding water production equipment - Google Patents

Biological breeding water production equipment Download PDF

Info

Publication number
JP5221978B2
JP5221978B2 JP2008039205A JP2008039205A JP5221978B2 JP 5221978 B2 JP5221978 B2 JP 5221978B2 JP 2008039205 A JP2008039205 A JP 2008039205A JP 2008039205 A JP2008039205 A JP 2008039205A JP 5221978 B2 JP5221978 B2 JP 5221978B2
Authority
JP
Japan
Prior art keywords
oxygen
water
pressure
dissolved
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008039205A
Other languages
Japanese (ja)
Other versions
JP2009195145A (en
Inventor
敦志 辻
伸也 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008039205A priority Critical patent/JP5221978B2/en
Publication of JP2009195145A publication Critical patent/JP2009195145A/en
Application granted granted Critical
Publication of JP5221978B2 publication Critical patent/JP5221978B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/60Fishing; Aquaculture; Aquafarming

Description

本発明は、植物や魚介類を育成するための酸素溶解水からなる生物育成用水を製造する装置に関するものである。   The present invention relates to an apparatus for producing water for biological growth comprising oxygen-dissolved water for growing plants and seafood.

植物や魚介類の活性を高めて育成を早めるために、植物や魚介類を育成するための水に酸素を供給することが行なわれている。   In order to increase the activity of plants and seafood and accelerate the growth, oxygen is supplied to water for growing plants and seafood.

例えば特許文献1や特許文献2では、植物を水耕栽培するにあたって、マイクロバブル発生ノズルからマイクロバブル(微小気泡)を水中に吐出することによって、水中の溶存酸素を増加させて、植物の育成に必要な酸素を十分に供給するようにした装置が提案されている。   For example, in Patent Document 1 and Patent Document 2, when hydroponically cultivating a plant, microbubbles (microbubbles) are discharged into water from a microbubble generating nozzle to increase dissolved oxygen in the water, thereby growing the plant. An apparatus has been proposed in which the necessary oxygen is sufficiently supplied.

また特許文献3では、魚介類を水槽で育成するにあたって、微小気泡発生手段から微小気泡を水槽の水に放出することによって、水中の溶存酸素を増加させて、魚介類の育成に必要な酸素を十分に供給するようにした装置が提案されている。
特開2002−142582号公報 特開2006−42785号公報 特開2007−105010号公報
Further, in Patent Document 3, when seafood is grown in an aquarium, by releasing the microbubbles from the microbubble generating means to the water in the aquarium, the dissolved oxygen in the water is increased and oxygen necessary for the growth of the seafood is increased. Devices have been proposed that provide a sufficient supply.
JP 2002-142582 A JP 2006-42785 A JP 2007-105010 A

上記のものはいずれも、植物を栽培する水や魚介類を生育する水の中に微小気泡を供給することによって、水中の溶存酸素を増加させようとするものである。しかし、水の中に微小気泡を供給するだけでは溶存酸素濃度はそれほど向上することはなく、出願人が実測したところ、溶存酸素濃度(DO)はせいぜい14mg/Lになる程度であり、また水中の微小気泡は短時間で水面から逃げるために、5分程度で溶存酸素濃度が8〜9mg/L程度にまで低下してしまい、植物や魚介類の活性を高めて育成を早める効果を高く期待することはできないものである。   All of the above are intended to increase dissolved oxygen in water by supplying microbubbles into water for cultivating plants and water for growing seafood. However, simply supplying microbubbles into water does not improve the dissolved oxygen concentration so much, and the applicant has actually measured that the dissolved oxygen concentration (DO) is at most 14 mg / L. Since the microbubbles escape from the water surface in a short time, the dissolved oxygen concentration drops to about 8-9 mg / L in about 5 minutes, and it is highly expected to increase the activity of plants and seafood and accelerate the growth. It can't be done.

また微小気泡は水中に所定の箇所から供給されるために、供給箇所の近い場所と遠い場所とでは溶存酸素量が異なり、また微小気泡は水中を浮上するために、底部の溶存酸素濃度が低くなるなど、水中での溶存酸素濃度のばらつきが大きくなるものであり、植物や魚介類を均一に育成することが難しいという問題がある。   In addition, since microbubbles are supplied into the water from a predetermined location, the amount of dissolved oxygen differs at locations near and far from the supply location, and since microbubbles float in water, the dissolved oxygen concentration at the bottom is low. For example, the dispersion of dissolved oxygen concentration in water increases, and there is a problem that it is difficult to grow plants and seafood uniformly.

さらに、特許文献3のように魚介類を育成する水槽に微小気泡を放出すると、微小気泡で水槽内が白く濁り、水槽内の魚介類を視認することができなくなるので、魚介類の育成状態を観察することが難しくなるという問題もある。   Furthermore, when the microbubbles are released into the aquarium for growing seafood as in Patent Document 3, the inside of the aquarium becomes cloudy white due to the microbubbles, and the seafood in the aquarium cannot be seen. There is also a problem that it becomes difficult to observe.

本発明は上記の点に鑑みてなされたものであり、水に酸素を均一に且つ高い酸素濃度で溶解することができると共に、しかも水を白く濁らせることなく酸素を溶解することができ、植物や魚介類の育成を早める効果が高い生物育成用水の製造装置を提供することを目的とするものである。   The present invention has been made in view of the above points, and can dissolve oxygen uniformly and at a high oxygen concentration in water, and can dissolve oxygen without making the water white and cloudy. It is an object to provide an apparatus for producing water for biological growth that is highly effective in accelerating the growth of fish and seafood.

本発明に係る生物育成用水の製造装置は、酸素溶解水を植物や魚介類を育成する生物育成用水として製造する装置であって、水を圧送する加圧部1と、水に酸素を注入する酸素注入部2と、酸素を注入された水が加圧部1で圧送されることによる加圧で水に酸素を溶解させる加圧溶解部3と、加圧溶解部3で酸素を溶解させた酸素溶解水の圧力を、酸素溶解水の流入側から流出側に向かって順次大気圧まで減圧する減圧部4とを備え、減圧部4を、加圧溶解部3から酸素溶解水を送り出す流路6に設けられ、酸素溶解水の圧力を大気圧にまで段階的に減圧する複数の圧力調整弁7で構成し、加圧部1、酸素注入部2、加圧溶解部3の各部を連続的に運転させて、減圧部4に酸素溶解水を連続的に供給して、酸素溶解水を流しながら減圧部4によって段階的に徐々に減圧し、減圧部4の流出側から気泡の発生のない酸素溶解水を連続的に吐出させるようにして成ることを特徴とするものである。 The apparatus for producing biological growth water according to the present invention is an apparatus for producing oxygen-dissolved water as biological growth water for growing plants and fish and shellfish, and injects oxygen into the pressure unit 1 that pumps water. Oxygen was dissolved in the oxygen injection part 2, the pressure dissolution part 3 that dissolves oxygen in water by pressurizing the water injected with oxygen by the pressure part 1, and the pressure dissolution part 3. A pressure reducing unit 4 that sequentially reduces the pressure of the oxygen-dissolved water from the inflow side to the outflow side of the oxygen-dissolved water to the atmospheric pressure. 6 includes a plurality of pressure regulating valves 7 that gradually reduce the pressure of the oxygen-dissolved water to atmospheric pressure, and each of the pressurizing unit 1, the oxygen injection unit 2, and the pressurizing / dissolving unit 3 is continuously provided. by operating in an oxygen-dissolved water was continuously fed to a vacuum unit 4, the decompression unit 4 while flowing oxygen dissolved water Stepwise pressure was gradually reduced I and is characterized by comprising as to discharge without generating oxygen-dissolved water of the bubble from the outlet side of the pressure reducing unit 4 continuously.

この発明によれば、加圧によって水に酸素を溶解させるため、酸素を水に均一に且つ高濃度に溶解させることができるものである。また酸素を高濃度で溶解した酸素溶解水の圧力を、減圧部4で流入側から流出側に向かって順次大気圧まで減圧するものであるため、酸素溶解水に気泡が発生することを防止して、気泡によって白く濁るようなことなく、均一に且つ高濃度で酸素が溶解した酸素溶解水をそのまま生物育成用水として供給することができるものである。また、この発明によれば、圧力調整弁7による圧力調整で酸素溶解水の圧力を下げることができ、加圧溶解部3における圧力に応じて圧力調整弁7で減圧調整することによって、酸素溶解水に気泡が発生することを安定して防ぐことができるものである。 According to this invention, since oxygen is dissolved in water by pressurization, oxygen can be dissolved in water uniformly and at a high concentration. In addition, since the pressure of the oxygen-dissolved water in which oxygen is dissolved at a high concentration is gradually reduced from the inflow side to the outflow side by the decompression unit 4 to the atmospheric pressure, the generation of bubbles in the oxygen-dissolved water is prevented. Thus, oxygen-dissolved water in which oxygen is dissolved uniformly and at a high concentration can be supplied as it is as biological growth water without becoming cloudy white. Further, according to the present invention, the pressure of the oxygen-dissolved water can be lowered by adjusting the pressure by the pressure adjusting valve 7, and the oxygen dissolving is performed by adjusting the pressure by the pressure adjusting valve 7 in accordance with the pressure in the pressure dissolving unit 3. It is possible to stably prevent generation of bubbles in water.

また更なる発明は、加圧溶解部3で水に溶解しない余剰酸素を排出する余剰酸素排出部5を備えて成ることを特徴とするものである。 Furthermore, the further invention is characterized by comprising a surplus oxygen discharge section 5 that discharges surplus oxygen that does not dissolve in water in the pressure dissolution section 3.

この発明によれば、水に溶解しない余剰酸素を加圧溶解部3から排出することによって、余剰酸素が残留することによる加圧溶解部3内の酸素と水の比率を安定させて圧力変動を防ぐことができ、酸素の溶解効率を高く維持することができるものである。   According to the present invention, excess oxygen that does not dissolve in water is discharged from the pressure dissolution unit 3, thereby stabilizing the ratio of oxygen and water in the pressure dissolution unit 3 due to excess oxygen remaining, and pressure fluctuation. It is possible to prevent this, and the oxygen dissolution efficiency can be kept high.

また更なる発明は、上記減圧部4は、一つの流路で形成されていることを特徴とするものである。 Further, the invention is characterized in that the decompression section 4 is formed by one flow path.

この発明によれば、複数の流路を設けて減圧部4を形成する場合のような、装置構成が複雑になることがないものである。   According to the present invention, the apparatus configuration does not become complicated as in the case where the pressure reducing unit 4 is formed by providing a plurality of flow paths.

また更なる発明は、加圧溶解部3から酸素溶解水を送り出す流路6の圧力損失とこの流路6に付加した延長流路8の圧力損失の和が、加圧部1で圧送される水と酸素の押し込み圧によって加圧溶解部3内で水と酸素を加圧するのに必要な圧力となるように、流路6に延長流路8を付加して成ることを特徴とするものある。 In a further invention, the sum of the pressure loss of the flow path 6 for sending the oxygen-dissolved water from the pressure dissolving section 3 and the pressure loss of the extension flow path 8 added to the flow path 6 is pumped by the pressurizing section 1. An extension channel 8 is added to the channel 6 so that the pressure required to pressurize the water and oxygen in the pressurizing / dissolving unit 3 by the pressure of water and oxygen is provided. .

この発明によれば、流路6に延長流路8を付加することによって、絞り弁を用いる必要なく、加圧部1からの押し込み圧で加圧溶解部3内の圧力を確保することができ、この圧力で水に酸素を溶解させることができるものである。   According to the present invention, by adding the extension flow path 8 to the flow path 6, it is possible to secure the pressure in the pressurizing and dissolving section 3 with the pushing pressure from the pressurizing section 1 without using a throttle valve. In this pressure, oxygen can be dissolved in water.

また更なる発明は、酸素溶解水の酸素溶解濃度を測定すると共に、測定結果に基づいて加圧部1で圧送される水の圧力と加圧部1で圧送される水の流量の少なくとも一方を制御する酸素濃度検出制御部11を備えて成ることを特徴とするものである。 Furthermore, the invention further measures the oxygen dissolution concentration of the oxygen-dissolved water, and at least one of the pressure of the water pumped by the pressurizing unit 1 and the flow rate of the water pumped by the pressurizing unit 1 based on the measurement result. It is characterized by comprising an oxygen concentration detection controller 11 for controlling.

本発明によれば、酸素濃度検出制御部11で測定した酸素溶解濃度に基づいて、水の圧力やの流量をフィードバック制御することによって、必要とされる溶存酸素濃度に調整しながら酸素溶解水を生物育成用水として供給することができるものである。   According to the present invention, based on the oxygen dissolved concentration measured by the oxygen concentration detection control unit 11, the oxygen dissolved water is adjusted while adjusting the required dissolved oxygen concentration by feedback control of the water pressure and flow rate. It can be supplied as water for biological growth.

本発明によれば、加圧部1による加圧によって水に酸素を溶解させるようにしたので、酸素を水に均一に且つ高濃度に溶解させることができるものであり、また酸素を高濃度で溶解した酸素溶解水の圧力を、減圧部4で流入側から流出側に向かって順次大気圧まで減圧するようにしたので、酸素溶解水に気泡が発生することを防止して、気泡によって白く濁るようなことなく、均一に且つ高濃度で酸素が溶解した酸素溶解水をそのまま、生物育成用水として供給することができるものである。   According to the present invention, since oxygen is dissolved in water by pressurization by the pressurizing unit 1, oxygen can be dissolved in water uniformly and at a high concentration, and oxygen can be dissolved at a high concentration. Since the pressure of the dissolved oxygen-dissolved water is gradually reduced from the inflow side to the outflow side by the decompression unit 4 to the atmospheric pressure, bubbles are prevented from being generated in the oxygen-dissolved water, and the air bubbles are turbid white. Therefore, oxygen-dissolved water in which oxygen is uniformly dissolved at a high concentration can be supplied as it is as water for biological growth.

以下、本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

図1は本発明の実施の形態の一例を示すものであり、加圧溶解部3の流出側と流入側にそれぞれ配管で形成される流路15,6が接続してある。流入側の流路15は一端を加圧溶解部3に、他端を生育槽17に接続してあり、この流路15の途中に加圧部1が設けてある。加圧部1は、例えば、生育槽17から水16を吸い上げて加圧溶解部3に圧送するポンプ18などで形成されるものである。また生育槽17は、魚介類35を生育する水槽や、植物36を水耕栽培する栽培槽などとして形成されるものであり、淡水あるいは海水からなる水16を貯水している。   FIG. 1 shows an example of an embodiment of the present invention, in which flow paths 15 and 6 formed by piping are respectively connected to the outflow side and the inflow side of the pressure dissolution unit 3. One end of the flow path 15 on the inflow side is connected to the pressure dissolution unit 3 and the other end is connected to the growth tank 17, and the pressure unit 1 is provided in the middle of the flow path 15. The pressurizing unit 1 is formed by, for example, a pump 18 that sucks water 16 from the growth tank 17 and pumps it to the pressurizing and dissolving unit 3. The growth tank 17 is formed as a water tank for growing the seafood 35 or a cultivation tank for hydroponically cultivating the plant 36, and stores water 16 made of fresh water or seawater.

また流入側の流路15に酸素注入部2が接続してある。酸素注入部2は酸素を流路15に供給して注入するためのものであり、酸素を封入したボンベなどを流路15に接続して酸素注入部2を形成するようにしてある。空気中の酸素を供給して注入する場合には、一端を大気中に開放させた管体の他端を流路15に接続して酸素注入部2を形成し、空気を注入するようにしてもよい。流路15への酸素注入部2の接続位置は、加圧溶解部3より上流側の位置であればよく、図1のように加圧部1より上流側の流路15に接続するようにしても、あるいは加圧部1より下流側の流路15に接続するようにしてもいずれでもよい。   The oxygen injection section 2 is connected to the flow path 15 on the inflow side. The oxygen injection part 2 is for supplying oxygen to the flow path 15 and injecting it, and a cylinder filled with oxygen is connected to the flow path 15 to form the oxygen injection part 2. When supplying and injecting oxygen in the air, the other end of the tube whose one end is opened to the atmosphere is connected to the flow path 15 to form the oxygen injecting portion 2 so that air is injected. Also good. The connecting position of the oxygen injection part 2 to the flow path 15 may be a position upstream of the pressurizing / dissolving part 3 and is connected to the flow path 15 upstream of the pressurizing part 1 as shown in FIG. Alternatively, it may be either connected to the flow path 15 on the downstream side of the pressurizing unit 1.

一方、流出側の流路6は一端を加圧溶解部3に接続し、他端は生育槽17に接続してある。加圧溶解部3には余剰酸素排出部5が設けてある。余剰酸素排出部5は、例えば、一端を大気に開放した管体を、加圧溶解部3内の気圧が所定の圧力以上になると開口するガス抜き弁などを介して加圧溶解部3に接続することによって形成してある。またこの流路6には減圧部4が設けてあり、さらに減圧部4よりも水の流れの下流側に酸素濃度計によって形成される酸素濃度検出部37が設けてある。この酸素濃度検出部37は制御部38に電気的に接続してあり、さらに制御部38は加圧部1に電気的に接続してあり、制御部38によって加圧部1の作動を制御することができるようにしてある。この酸素濃度検出部37と制御部38によって酸素濃度検出制御部11が形成されるものである。   On the other hand, one end of the flow path 6 on the outflow side is connected to the pressure dissolution unit 3, and the other end is connected to the growth tank 17. The pressure dissolving unit 3 is provided with a surplus oxygen discharge unit 5. The surplus oxygen discharge unit 5 connects, for example, a tube whose one end is opened to the atmosphere to the pressurization and dissolution unit 3 via a degassing valve or the like that opens when the pressure in the pressurization and dissolution unit 3 exceeds a predetermined pressure. It is formed by doing. Further, the flow path 6 is provided with a decompression unit 4, and further, an oxygen concentration detection unit 37 formed by an oximeter is provided downstream of the water flow from the decompression unit 4. The oxygen concentration detector 37 is electrically connected to the controller 38, and the controller 38 is electrically connected to the pressurizer 1, and the controller 38 controls the operation of the pressurizer 1. I can do it. The oxygen concentration detection control unit 11 is formed by the oxygen concentration detection unit 37 and the control unit 38.

上記のように形成される生物育成用水製造装置にあって、ポンプ18で形成される加圧部1を作動させると、生育槽17から水が吸い上げられ、流路15を通して加圧溶解部3に水が圧送して供給される。このように流路15内を水が流れる際に、酸素注入部2から酸素が流路15内に吸引されて水に酸素が注入される。そしてこのように酸素が注入された水を加圧部1で加圧溶解部3へ圧送して送り込むことによって、この圧送による押し込み力で加圧溶解部3内において水と酸素に圧力が加わって高圧になり、加圧溶解部3内で水と酸素が加圧されることによって、水に酸素を効率高く飽和量以上に溶解させることができ、水に酸素が高濃度で均一に溶解した酸素溶解水を得ることができるものである。   In the water production apparatus for biological growth formed as described above, when the pressurization unit 1 formed by the pump 18 is operated, water is sucked up from the growth tank 17 and is passed through the flow path 15 to the pressurization dissolution unit 3. Water is pumped and supplied. As described above, when water flows through the flow path 15, oxygen is sucked into the flow path 15 from the oxygen injection section 2 and oxygen is injected into the water. Then, the water into which oxygen is injected in this manner is sent by being fed to the pressure dissolving unit 3 by the pressurizing unit 1, and pressure is applied to the water and oxygen in the pressure dissolving unit 3 by the pushing force by this pressure feeding. Oxygen can be dissolved in water more efficiently than the saturated amount by being pressurized and water and oxygen are pressurized in the pressurizing and dissolving part 3, and oxygen in which oxygen is uniformly dissolved at a high concentration in water Dissolved water can be obtained.

このように加圧溶解部3内において水と酸素を加圧して強制的に効率良く溶解させ、高濃度で酸素が溶解した酸素溶解水を短時間で生成することができるため、加圧溶解部3内で生成された酸素溶解水を流路6を通して送り出しながら、加圧溶解部3内で水に酸素を溶解させるようにすることができるものである。従って、加圧溶解部3をタンクのような容積の大きなもので形成する必要がなくなるものであり、装置規模を小さくして装置のコストを低減することが可能になるものである。   In this way, since the water and oxygen are pressurized and dissolved in the pressure dissolving part 3 forcibly and efficiently, oxygen-dissolved water in which oxygen is dissolved at a high concentration can be generated in a short time. The oxygen-dissolved water generated in 3 is sent out through the flow path 6, and oxygen can be dissolved in water in the pressure-dissolving unit 3. Therefore, it is not necessary to form the pressure dissolving part 3 with a large volume such as a tank, and the apparatus scale can be reduced and the cost of the apparatus can be reduced.

ここで、酸素注入部2から注入される酸素の全量が水に溶解しないと、加圧溶解部3内で水に溶解しない余剰酸素が生じるが、加圧溶解部3に余剰酸素排出部5を設け、酸素の溶解飽和量以上の溶解できない余剰酸素を加圧溶解部3から排出することによって、余剰酸素が残留することによる加圧溶解部3内の酸素と水の比率を安定させて圧力変動を防ぐことができ、酸素の溶解効率を高く維持することができるものである。   Here, if the total amount of oxygen injected from the oxygen injection unit 2 is not dissolved in water, surplus oxygen that does not dissolve in water is generated in the pressure dissolution unit 3, but the excess oxygen discharge unit 5 is provided in the pressure dissolution unit 3. Provided, by discharging excess oxygen that cannot be dissolved more than the dissolved oxygen saturation amount from the pressure dissolution unit 3, the ratio of oxygen and water in the pressure dissolution unit 3 due to the residual oxygen remaining is stabilized and the pressure fluctuation Can be prevented, and the dissolution efficiency of oxygen can be kept high.

そして、上記のように加圧溶解部3で生成された酸素溶解水は、流路6を通して送り出されるが、加圧溶解部3内で酸素溶解水は高圧に加圧された状態にあるので、そのまま大気圧下にある生育槽17に供給されると、急激な圧力低下によって、酸素溶解水中に気泡が発生するおそれがあり、酸素溶解量が減少し、またキャビテーションが発生することがある。このために本発明では、流路6に減圧部4を設け、加圧溶解部3内で加圧された状態の酸素溶解水を流路6を通して送り出す際に、減圧部4で大気圧まで気泡を発生させることなく減圧をした後に吐出するようにしてある。   And the oxygen-dissolved water produced | generated in the pressurization melt | dissolution part 3 as mentioned above is sent out through the flow path 6, However, Since the oxygen melt | dissolution water is in the state pressurized by the high pressure in the pressurization melt | dissolution part 3, If supplied to the growth tank 17 under atmospheric pressure as it is, bubbles may be generated in the oxygen-dissolved water due to a rapid pressure drop, the amount of dissolved oxygen may decrease, and cavitation may occur. For this reason, in the present invention, when the pressure reducing part 4 is provided in the flow path 6 and oxygen-dissolved water pressurized in the pressure dissolving part 3 is sent out through the flow path 6, It is made to discharge after decompressing without generating.

ここで、加圧溶解部3内で生成されるのと同じ濃度の酸素溶解水について、加圧溶解部3内で加圧されている圧力と同じ圧力から大気圧まで減圧する際に、気泡が発生しない減圧度を、予め計算や測定で求めておき、減圧部4をこの予め求めた減圧度で、酸素溶解水が流入側する側から流出側に向かって、酸素溶解水の圧力を段階的に、あるいは連続的に、徐々に大気圧まで減圧できるように設定してある。従って、加圧溶解部3内で加圧された酸素溶解水を、減圧部4において気泡が発生しない減圧度で徐々に大気圧まで減圧した後に、流路6の先端から吐出することによって、酸素溶解水に気泡が発生することなく酸素溶解水を吐出することができるものであり、加圧溶解部3で飽和量以上に酸素が溶解された酸素溶解水を、安定した高濃度の状態のまま送り出して利用することが可能になるものである。   Here, when the oxygen-dissolved water having the same concentration as that generated in the pressure-dissolving unit 3 is depressurized from the same pressure as that pressurized in the pressure-dissolving unit 3 to the atmospheric pressure, bubbles are generated. The degree of decompression that does not occur is obtained in advance by calculation or measurement, and the pressure of the oxygen-dissolved water is stepwise from the side where the oxygen-dissolved water flows into the outflow side at the decompression section 4 at the pre-determined degree of decompression. Or continuously or gradually so that the pressure can be reduced to atmospheric pressure. Accordingly, the oxygen-dissolved water pressurized in the pressure-dissolving unit 3 is gradually depressurized to the atmospheric pressure at a depressurization degree in which bubbles are not generated in the decompression unit 4, and then discharged from the tip of the flow path 6. Oxygen-dissolved water can be discharged without generating bubbles in the dissolved water, and the oxygen-dissolved water in which oxygen is dissolved to a saturation amount or more in the pressure-dissolving unit 3 remains in a stable high concentration state. It can be sent out and used.

図2は、減圧部4の具体的な実施の形態の一例を示すものであり、加圧溶解部3に接続される流路6に、水の流れ方向に沿って複数の圧力調整弁7(7a,7b,7c)を設けることによって、減圧部4を形成するようにしてある。このように減圧部4を複数の圧力調整弁7を備えて形成することによって、気泡が発生しない減圧度で酸素溶解水の圧力を段階的に徐々に下げることができるものである。   FIG. 2 shows an example of a specific embodiment of the decompression unit 4, and a plurality of pressure regulating valves 7 ( 7a, 7b, 7c) is provided to form the decompression section 4. Thus, by forming the decompression unit 4 with the plurality of pressure regulating valves 7, the pressure of the oxygen-dissolved water can be gradually lowered step by step with a degree of decompression that does not generate bubbles.

各圧力調整弁7a,7b,7cは、酸素溶解水に気泡発生が生じない減圧度で減圧するように設定されているものであり、この減圧度は予め計算や測定で求めた数値に設定されるものである。例えば、加圧溶解部3から流路6に送り出された酸素溶解水の加圧圧力が0.5MPaであるとき、気泡が発生しない減圧量が0.12MPaであると測定によって判明しているとすると、圧力調整弁7aで酸素溶解水の圧力を0.12MPa減圧して、0.38MPaに落とす。また酸素溶解水の加圧圧力が0.38MPaであるとき、気泡が発生しない減圧量が0.16MPaであると測定によって判明しているとすると、次の圧力調整弁7bで酸素溶解水の圧力を0.16MPa減圧して、0.22MPaに落とす。さらに酸素溶解水の加圧圧力が0.22MPaであるとき、気泡が発生しない減圧量が0.22MPa以上であると測定によって判明しているとすると、次の圧力調整弁7cで酸素溶解水の圧力を0.22MPa減圧して、加圧圧力を0MPaに落とし、大気圧まで減圧することができるものである。尚、圧力調整弁7による減圧量は、水温、酸素の溶解濃度、加圧溶解部3内の圧力、流路6の径などに応じて変動するものであり、装置毎に、計算や測定をして、適宜設定されるものである。   Each pressure regulating valve 7a, 7b, 7c is set to depressurize at a degree of decompression that does not generate bubbles in the oxygen-dissolved water, and this degree of decompression is set to a numerical value obtained by calculation or measurement in advance. Is. For example, when the pressurized pressure of oxygen-dissolved water sent from the pressure-dissolving unit 3 to the flow path 6 is 0.5 MPa, it is found by measurement that the amount of reduced pressure at which no bubbles are generated is 0.12 MPa. Then, the pressure of the oxygen-dissolved water is reduced by 0.12 MPa by the pressure adjusting valve 7a and dropped to 0.38 MPa. Further, when the pressure of oxygen-dissolved water is 0.38 MPa, if it is determined by measurement that the amount of reduced pressure at which bubbles are not generated is 0.16 MPa, the pressure of oxygen-dissolved water is determined by the next pressure regulating valve 7b. Is reduced to 0.12 MPa and reduced to 0.22 MPa. Furthermore, when the pressure of oxygen-dissolved water is 0.22 MPa, if it is found by measurement that the amount of reduced pressure at which bubbles do not occur is 0.22 MPa or more, the oxygen-dissolved water is detected by the next pressure regulating valve 7c. The pressure can be reduced to 0.22 MPa, the applied pressure can be reduced to 0 MPa, and the pressure can be reduced to atmospheric pressure. Note that the amount of pressure reduction by the pressure regulating valve 7 varies depending on the water temperature, the dissolved concentration of oxygen, the pressure in the pressurized dissolving section 3, the diameter of the flow path 6, and the like. Thus, it is set as appropriate.

図3は、減圧部4の具体的な実施の形態の他の一例を示すものであり、加圧溶解部3に接続される流路6を流路断面積が異なる複数の管体20a,20b,20cを備えて形成し、この流路断面積の異なる複数の管体20a,20b,20cで減圧部4が形成されるようにしてある。   FIG. 3 shows another example of a specific embodiment of the decompression unit 4, and a plurality of tubes 20a and 20b having different channel cross-sectional areas in the channel 6 connected to the pressure dissolution unit 3 are shown. 20c, and the decompression section 4 is formed by a plurality of pipe bodies 20a, 20b, 20c having different channel cross-sectional areas.

図3(a)の実施の形態では、流路断面積が異なる、つまり内径の異なる複数の管体20a,20b,20cを一体に連ねるようにしてあり、酸素溶解水の流れの上流側から下流側へと、徐々に管体20a,20b,20cの径が小さくなるようにしてある。また図3(b)の実施の形態では、内径の異なる複数の管体20a,20b,20cをレジューサ21を介して接続して連ねるようにしてあり、酸素溶解水の流れの上流側から下流側へと、徐々に管体20a,20b,20cの径が小さくなるようにしてある。さらに図3(c)の実施の形態では、酸素溶解水の流れの上流側から下流側へと連続的に径が小さくなる管体20a,20b,20cを一体に連ねるようにしてある。   In the embodiment of FIG. 3A, a plurality of pipes 20a, 20b, and 20c having different flow path cross-sectional areas, that is, different inner diameters, are integrally connected, and from the upstream side to the downstream side of the flow of oxygen-dissolved water. The diameters of the tubular bodies 20a, 20b, and 20c are gradually reduced toward the side. In the embodiment of FIG. 3 (b), a plurality of tubes 20a, 20b, 20c having different inner diameters are connected and connected via a reducer 21, and from the upstream side to the downstream side of the flow of oxygen-dissolved water. The diameters of the pipe bodies 20a, 20b, and 20c are gradually reduced. Further, in the embodiment of FIG. 3C, the pipes 20a, 20b, and 20c whose diameter continuously decreases from the upstream side to the downstream side of the flow of the oxygen-dissolved water are integrally connected.

この図3のものにあって、各管体20a,20b,20cの内径はφd>φd>φdであるので、各管体20a,20b,20c内の酸素溶解水の流速はV<V<Vとなり、各管体20a,20b,20c内の酸素溶解水の圧力はP>P>Pとなる。従って、加圧溶解部3から送り出される酸素溶解水の圧力Pを気泡が発生しない減圧度で、図3(a)(b)のものでは段階的に減圧して、また図3(c)のものでは連続的に減圧して、Pの大気圧まで徐々に下げることができるものである。 In FIG. 3, the inner diameters of the pipe bodies 20a, 20b, and 20c are φd 1 > φd 2 > φd 3 , so the flow rate of the oxygen-dissolved water in each of the pipe bodies 20a, 20b, and 20c is V 1. <V 2 <V 3 is satisfied, and the pressure of the oxygen-dissolved water in each of the tubular bodies 20a, 20b, and 20c is P 1 > P 2 > P 3 . Thus, a reduced pressure degree of bubble pressure P 1 of oxygen dissolved water fed from the pressure dissolution unit 3 does not occur, FIGS. 3 (a) those in is stepwise reduced pressure (b), and FIG. 3 (c) intended are those which can be lowered continuously reduced pressure, gradually to atmospheric pressure P 3.

図4は、減圧部4の具体的な実施の形態の他の一例を示すものであり、加圧溶解部3に接続される流路6を通して酸素溶解水を排出する際に、流路6内を酸素溶解水が流れる際の圧力損失によって、酸素溶解水に気泡が発生しない減圧速度で酸素溶解水の圧力を徐々に連続的に低下させ、酸素溶解水の圧力を大気圧にまで低下させるようにしてある。従って図4(a)の実施の形態では、加圧溶解部3内での圧力がPの酸素溶解水を、流路6内を通過させる際にP〜Pn−1へと、酸素溶解水に気泡が発生しない減圧速度で徐々に連続的に圧力を低下させ(P>P>Pn−1)、流路6の終端では酸素溶解水の圧力Pが大気圧にまで低下するように、流路6の流路断面積と管路長さLを設定するようにしてあり、このような流路断面積と管路長さLを有する流路6によって減圧部4が形成されるものである。 FIG. 4 shows another example of the specific embodiment of the decompression unit 4. When the oxygen-dissolved water is discharged through the channel 6 connected to the pressure dissolution unit 3, The pressure loss when oxygen-dissolved water flows causes the pressure of oxygen-dissolved water to gradually and continuously decrease at a decompression rate that does not generate bubbles in the oxygen-dissolved water, so that the pressure of oxygen-dissolved water is reduced to atmospheric pressure. It is. In the embodiment of FIG. 4 (a) Thus, the oxygen dissolution water pressure P 1 in the press-welding within the solution 3, the P 2 ~P n-1 when passing through the flow channel 6, the oxygen The pressure is gradually and continuously reduced at a decompression rate at which bubbles do not occur in the dissolved water (P 1 > P 2 > P n-1 ), and the pressure P n of the oxygen-dissolved water reaches atmospheric pressure at the end of the flow path 6. The flow path cross-sectional area and the pipe length L of the flow path 6 are set so as to decrease, and the decompression unit 4 is configured by the flow path 6 having such a flow path cross-sectional area and the pipe length L. Is formed.

この管路長さLは、次の式から設定することができる。すなわち、
流体の関係式P=λ・(L/d)・(v/2g)
[Pは加圧溶解部3内の圧力、λは管摩擦係数、dは内径、vは流速、gは加速度]
から、L=(P・d・2g)/(λ・v)を導くことができ、この式から計算して流路6の管路長さLを求めることができるものである。このように、流路6の管路長さLを所定長さに形成するだけで減圧部4を形成することができるものであり、装置の構造をより簡単なものに形成することができるものである。このような管路長さLが長い流路6で形成される減圧部4は、例えば図4(b)のような長いホース4aで形成することができる。
The pipe length L can be set from the following equation. That is,
Fluid relational expression P = λ · (L / d) · (v 2 / 2g)
[P is the pressure in the pressure dissolution section 3, λ is the coefficient of friction of the tube, d is the inner diameter, v is the flow velocity, and g is the acceleration]
From this, L = (P · d · 2g) / (λ · v 2 ) can be derived, and the pipe length L of the flow path 6 can be obtained by calculation from this equation. As described above, the decompression section 4 can be formed only by forming the pipe length L of the flow path 6 to a predetermined length, and the structure of the apparatus can be made simpler. It is. The decompression section 4 formed by the flow path 6 having a long pipe length L can be formed by a long hose 4a as shown in FIG. 4B, for example.

上記のように本発明では加圧部1によって水と酸素を加圧溶解部3に圧送し、この際の押し込み圧によって加圧溶解部3内で水と酸素を加圧して酸素を溶解させるようにしているが、この押し込み圧を受けて加圧溶解部3内に必要な圧力が発生するようにする必要がある。このように加圧部1からの押し込み圧を受ける圧力を確保するために、加圧溶解部3の流出側の流路6に絞り弁などの絞り部を設けることが考えられるが、このように絞り部を流路6に設けると、加圧溶解部3で生成された酸素溶解水を流路6に送り出して排出する際に、絞り部の前後で大きな圧力差が生じ、酸素溶解水が急激に減圧されることになり、酸素溶解水に気泡が発生するおそれがある。   As described above, in the present invention, water and oxygen are pumped to the pressurizing / dissolving unit 3 by the pressurizing unit 1, and water and oxygen are pressurized in the pressurizing / dissolving unit 3 by the pressing pressure at this time so as to dissolve oxygen. However, it is necessary to generate a necessary pressure in the pressurizing / dissolving portion 3 by receiving the pushing pressure. In order to secure the pressure that receives the indentation pressure from the pressurizing unit 1 as described above, it is conceivable to provide a throttle unit such as a throttle valve in the flow path 6 on the outflow side of the pressurizing and dissolving unit 3. When the throttle portion is provided in the flow path 6, when the oxygen-dissolved water generated in the pressure dissolution section 3 is sent to the flow path 6 and discharged, a large pressure difference occurs before and after the throttle section, and the oxygen-dissolved water rapidly There is a risk that bubbles will be generated in the oxygen-dissolved water.

そこで図5の実施の形態では、流路6の圧力損失を利用して、流路6に絞り部を設ける必要なく、押し込み圧を受ける圧力を確保するようにしている。このとき、上記各実施形態の流路6の長さでは、流路6の圧力損失で押し込み圧を受ける圧力を確保することは難しいので、流路6の加圧溶解部3と反対側の端部に延長流路8を付加するようにしてある。すなわち、流路6の減圧部4も含めた全体の圧力損失を算出し、加圧部1からの押し込み圧によって加圧溶解部3内で水と酸素を加圧するのに必要な圧力と、この流路6の圧力損失との差を算出し、さらにこの差の圧力損失が生じる管路の長さを上記の式から算出して、この管路長さの延長流路8を流路6に付加するようにしてある。このように、流路6の圧力損失と延長流路8の圧力損失の和が、加圧部1で圧送される酸素と水の押し込み圧によって加圧溶解部3内で水と酸素を加圧するのに必要な圧力となるように、流路6に延長流路8を付加することによって、絞り弁などの絞り部を用いる必要なく、加圧部1からの押し込み圧で加圧溶解部3内の加圧力を確保して、水に酸素を溶解させることができるものである。   Therefore, in the embodiment of FIG. 5, the pressure loss of the flow path 6 is used to secure the pressure that receives the indentation pressure without the need to provide the throttle portion in the flow path 6. At this time, with the length of the flow path 6 of each of the above embodiments, it is difficult to secure the pressure that receives the indentation pressure due to the pressure loss of the flow path 6. An extension channel 8 is added to the part. That is, the total pressure loss including the decompression unit 4 of the flow path 6 is calculated, and the pressure required to pressurize water and oxygen in the pressurization dissolution unit 3 by the indentation pressure from the pressurization unit 1, The difference from the pressure loss of the flow path 6 is calculated, and the length of the pipe line in which the pressure loss of this difference occurs is calculated from the above formula, and the extended flow path 8 of this pipe length is changed to the flow path 6. They are added. In this way, the sum of the pressure loss of the flow path 6 and the pressure loss of the extension flow path 8 pressurizes water and oxygen in the pressurizing and dissolving section 3 by the pushing pressure of oxygen and water pumped by the pressurizing section 1. By adding the extension flow path 8 to the flow path 6 so that the pressure required for the pressure is reached, it is not necessary to use a throttling portion such as a throttling valve. Thus, it is possible to dissolve oxygen in water.

図6は装置の具体的な一例を示すものであり、生育槽17から供給される水は流路15に導入口30から導入される。流路15には酸素が導入される酸素注入部2が接続してあり、酸素が注入された水はポンプで形成される加圧部1によって、小容量のタンクで形成される加圧溶解部3に圧送される。このように酸素が注入された水が加圧溶解部3に圧送されることによって、加圧溶解部3内で水に酸素が溶解された酸素溶解水が生成される。そしてこの酸素溶解水は加圧溶解部3から流路6に送り出され、流路6の先端の吐出口31から送り出されて生育槽17に返送される。この流路6には減圧部4が設けてあり、加圧溶解部3から送り出された酸素溶解水は大気圧まで減圧された後に吐出口31から吐出され、気泡が発生しない状態で酸素溶解水を送り出すことができる。図6の実施の形態では、減圧部4は、図3(a)の内径が異なる管体20a,20b,20cを連ねたもので形成してある。   FIG. 6 shows a specific example of the apparatus. Water supplied from the growth tank 17 is introduced into the flow path 15 from the introduction port 30. An oxygen injection part 2 into which oxygen is introduced is connected to the flow path 15, and the water into which oxygen has been injected is a pressure dissolving part formed in a small capacity tank by a pressure part 1 formed by a pump. 3 is pumped. Thus, oxygen-injected water in which oxygen is dissolved in water is generated in the pressure-dissolving unit 3 by pumping the water into which oxygen has been injected to the pressure-dissolving unit 3. The oxygen-dissolved water is sent out from the pressure dissolving unit 3 to the flow path 6, sent out from the discharge port 31 at the tip of the flow path 6, and returned to the growth tank 17. The flow path 6 is provided with a decompression section 4, and the oxygen-dissolved water sent out from the pressure-dissolution section 3 is decompressed to atmospheric pressure and then discharged from the discharge port 31, so that oxygen-dissolved water is generated in the state where no bubbles are generated. Can be sent out. In the embodiment of FIG. 6, the decompression unit 4 is formed by connecting the tubular bodies 20a, 20b, and 20c having different inner diameters as shown in FIG.

この装置にあって、ポンプで形成される加圧部1を連続運転することによって、酸素注入部2、加圧溶解部3を連続的に運転させて、減圧部4に酸素溶解水を連続的に供給するようにすることができるものであり、減圧部4の流出側である吐出口31から気泡の発生のない酸素溶解水を連続的に吐出させることができるものである。また、減圧部4は加圧溶解部3から酸素溶解水を送り出す流路6の一部として設けられており、そしてこの減圧部4は酸素溶解水の圧力を流入側から流出側に向かって順次大気圧まで減圧するものであるため、減圧部4を例えば内径2〜50mm程度の比較的大きい流路として形成することができるものであり、異物が混入しても減圧部4内が詰まるようなことがないものである。さらにこのような構成の減圧部4を設けることによって、減圧部4を流れる酸素溶解水のレイノルズ数が臨界レイノルズ数(Re=2320)より小さなレイノズル数である層流状態だけではなく、臨界レイノルズ数より大きなレイノルズ数である乱流状態でも対応することが可能になるものである。さらに、減圧部4をこのように内径の大きな流路として形成することによって、酸素溶解水の供給量を多くすることができ、減圧部4を一つの流路のみで形成することが可能になるものであり、装置構成を簡単なものに形成することができるものである。   In this apparatus, by continuously operating the pressurizing unit 1 formed by a pump, the oxygen injecting unit 2 and the pressurizing / dissolving unit 3 are continuously operated to continuously supply oxygen-dissolved water to the decompressing unit 4. The oxygen-dissolved water without generation of bubbles can be continuously discharged from the discharge port 31 on the outflow side of the decompression unit 4. The decompression unit 4 is provided as a part of a flow path 6 for sending oxygen-dissolved water from the pressure-dissolving unit 3, and the decompression unit 4 sequentially increases the pressure of the oxygen-dissolved water from the inflow side to the outflow side. Since the pressure is reduced to atmospheric pressure, the pressure reducing portion 4 can be formed as a relatively large flow path having an inner diameter of about 2 to 50 mm, for example, and the inside of the pressure reducing portion 4 is clogged even if foreign matter is mixed in. There is nothing. Furthermore, by providing the decompression unit 4 having such a configuration, not only the laminar flow state in which the Reynolds number of the oxygen-dissolved water flowing through the decompression unit 4 is smaller than the critical Reynolds number (Re = 2320), but also the critical Reynolds number It is possible to cope with a turbulent flow state having a larger Reynolds number. Furthermore, by forming the decompression section 4 as a flow path having a large inner diameter in this way, it is possible to increase the supply amount of oxygen-dissolved water, and it is possible to form the decompression section 4 with only one flow path. Therefore, it is possible to form a simple apparatus configuration.

また、上記のように減圧部4で圧力が減圧された酸素溶解水が流路6を通過する際に、酸素濃度検出部37によって酸素溶解水の溶存酸素濃度が測定されるようになっており、酸素濃度検出部37で測定された溶存酸素濃度のデータは制御部38に入力されるようになっている。制御部38はCPUやメモリー等を備えて形成されるものであり、酸素濃度検出部37から入力された溶存酸素濃度値に基づいて、加圧部1で圧送される水の圧力と加圧部1で圧送される水の流量の少なくとも一方を制御するようにしてある。すなわち、酸素濃度検出部37で測定される溶存酸素濃度が制御部38のメモリーに登録された値より小さいときには、制御部38で加圧部1の作動を制御して、圧送される水の圧力を高めたり、圧送される水の流量を少なくしたりすることによって、加圧溶解部3で溶解される酸素濃度を高め、また、酸素濃度検出部37で測定される溶存酸素濃度が制御部38のメモリーに登録された値より大きいときには、制御部38で加圧部1の作動を制御して、圧送される水の圧力を低くした、圧送される水の流量を多くしたりすることによって、加圧溶解部3で溶解される酸素濃度を低下させ、制御部38のメモリーに登録された酸素濃度の値に酸素溶解水の溶存酸素量を調整するものである。従って、用途に応じて酸素溶解水において必要とされる溶存酸素量は異なるが、必要な溶存酸素量のデータを制御部38のメモリーに登録しておくことによって、必要とされる溶存酸素濃度に調整しながら酸素溶解水を生成することができるものである。   Further, when the oxygen-dissolved water whose pressure is reduced by the decompression unit 4 as described above passes through the flow path 6, the oxygen concentration detection unit 37 measures the dissolved oxygen concentration of the oxygen-dissolved water. The dissolved oxygen concentration data measured by the oxygen concentration detection unit 37 is input to the control unit 38. The control unit 38 is formed with a CPU, a memory, and the like. Based on the dissolved oxygen concentration value input from the oxygen concentration detection unit 37, the pressure of the water fed by the pressurization unit 1 and the pressurization unit At least one of the flow rates of the water pumped by 1 is controlled. That is, when the dissolved oxygen concentration measured by the oxygen concentration detection unit 37 is smaller than the value registered in the memory of the control unit 38, the control unit 38 controls the operation of the pressurizing unit 1 to control the pressure of the pumped water. The oxygen concentration dissolved in the pressure dissolving unit 3 is increased by increasing the flow rate of water or the flow rate of the pumped water, and the dissolved oxygen concentration measured by the oxygen concentration detecting unit 37 is controlled by the control unit 38. When the value is larger than the value registered in the memory, the control unit 38 controls the operation of the pressurizing unit 1 to lower the pressure of the pumped water and increase the flow rate of the pumped water. The oxygen concentration dissolved in the pressure dissolving unit 3 is lowered, and the dissolved oxygen amount of the oxygen-dissolved water is adjusted to the value of the oxygen concentration registered in the memory of the control unit 38. Accordingly, although the amount of dissolved oxygen required in the oxygen-dissolved water differs depending on the application, the required dissolved oxygen concentration can be obtained by registering the necessary dissolved oxygen amount data in the memory of the control unit 38. The oxygen-dissolved water can be generated while adjusting.

図7は、流量一定条件下で、加圧部4を制御して所定圧力において加圧溶解部3で生成した酸素溶解水を、減圧部4で気泡を発生させることなく大気圧にまで減圧したときの、酸素溶解水の酸素濃度と水温との関係を示すグラフである。流量が一定であれば、酸素濃度は水の温度に依存する相関関係があり、再現性もある。従って、必要とされる酸素濃度の酸素溶解水を得るには、水温を測定してその水温に応じて加圧部1による加圧を所要圧力に制御すれば、再現性高く所定濃度の酸素溶解水を得ることができるものである。例えば、20℃の水に対して、インバータ等を使って加圧部1のポンプ18の圧力特性を0.5MPaに設定し、この0.5MPaの加圧下で酸素を溶解させると、45mg/Lの酸素溶解濃度の酸素溶解水を得ることができるものであり、また0.3MPaの圧力に変更すると、27mg/Lの酸素溶解濃度の酸素溶解水を得ることができるものである。   FIG. 7 shows that the oxygen-dissolved water generated in the pressure-dissolving unit 3 at a predetermined pressure is controlled to a normal pressure without generating bubbles in the pressure-reducing unit 4 under a constant flow rate. It is a graph which shows the relationship between the oxygen concentration of oxygen-dissolved water and water temperature. If the flow rate is constant, the oxygen concentration has a correlation depending on the temperature of the water, and is reproducible. Therefore, in order to obtain oxygen-dissolved water having the required oxygen concentration, if the water temperature is measured and the pressurization by the pressurizing unit 1 is controlled to the required pressure according to the water temperature, the oxygen-dissolved water with a predetermined concentration is highly reproducible. Water can be obtained. For example, when the pressure characteristic of the pump 18 of the pressurizing unit 1 is set to 0.5 MPa for water at 20 ° C. using an inverter or the like, and oxygen is dissolved under this 0.5 MPa pressure, 45 mg / L An oxygen-dissolved water having an oxygen-dissolved concentration of 27 mg / L can be obtained by changing the pressure to 0.3 MPa.

そして上記のように加圧部1で気泡を発生することなく大気圧にまで減圧された酸素溶解水は生物育成用水として、流路6の吐出口31から育成槽1内に返送されるものであり、生育槽17内の水16の溶存酸素濃度を高く維持することができ、植物36や魚介類35の活性を高めて育成を早めることができるものである。特に生育槽17を水槽として魚介類を飼育する際に、夏場等の水温上昇時には酸素不足を招き易いが、酸素が高濃度で溶解した酸素溶解水を供給することによって、酸素不足を解消して病気発生を防止したり、飼育密度を向上したりすることができるものである。   The oxygen-dissolved water decompressed to atmospheric pressure without generating bubbles in the pressurizing unit 1 as described above is returned to the breeding tank 1 from the discharge port 31 of the flow path 6 as water for biological growth. Yes, the dissolved oxygen concentration of the water 16 in the growth tank 17 can be maintained high, and the activity of the plant 36 and the seafood 35 can be increased to accelerate the growth. In particular, when raising seafood using the growth tank 17 as a water tank, oxygen deficiency is likely to occur when the water temperature rises in summer, etc., but by supplying oxygen-dissolved water in which oxygen is dissolved at a high concentration, oxygen deficiency is eliminated. It is possible to prevent the occurrence of illness and improve the breeding density.

ここで、本発明において得られる酸素溶解水は、微小気泡を吹き込んだようなものではなく、上記のように加圧部1による加圧によって加圧溶解部3で水に酸素を溶解させるようにしているために、酸素を均一に且つ高濃度に溶解させることができるものであり、しかもこの加圧状態の酸素溶解水の圧力を減圧部4で気泡が発生しないように大気圧まで減圧するようにしているため、酸素が均一に且つ高濃度に溶解したままの酸素溶解水を生物育成用水として供給することができるものであり、生物育成用水において高い溶存酸素濃度を長時間維持することができるものである。このため、生育槽17の植物36や魚介類35の育成を均一に早めることができるものである。また酸素溶解水に気泡が発生することがないように減圧部4で減圧しているため、酸素溶解水が気泡によって白く濁るようなことがないものであり、魚介類35の成育状態を観察することが容易になるものである。   Here, the oxygen-dissolved water obtained in the present invention is not such that microbubbles are blown in, but oxygen is dissolved in water by the pressurizing / dissolving unit 3 by pressurization by the pressurizing unit 1 as described above. Therefore, oxygen can be dissolved uniformly and at a high concentration, and the pressure of the oxygen-dissolved water in the pressurized state is reduced to atmospheric pressure so that bubbles are not generated in the pressure-reducing part 4. Therefore, oxygen-dissolved water in which oxygen is uniformly dissolved at a high concentration can be supplied as water for biological growth, and a high dissolved oxygen concentration can be maintained for a long time in the water for biological growth. Is. For this reason, it is possible to uniformly accelerate the growth of the plant 36 and the seafood 35 in the growth tank 17. Further, since the pressure is reduced by the pressure reducing unit 4 so that bubbles are not generated in the oxygen-dissolved water, the oxygen-dissolved water does not become cloudy white due to the bubbles, and the growth state of the seafood 35 is observed. It becomes easy.

図8(a)は、上記のようにして製造された酸素溶解水を4℃の大気圧下に保存したときの、溶存酸素濃度(DO)と経過時間との関係を示すものであり、700時間を経過しても、30mg/L程度の高い溶存酸素濃度を維持していることがわかる。また図8(b)は、加圧溶解部3において淡水に0.5MPaの加圧状態で酸素を溶解し、酸素溶解水を減圧部4で大気圧にまで減圧したきの、水の水温と酸素濃度の関係を示すものであり、水が高温であっても30mg/L程度の高い酸素濃度を示すことがわかる。   FIG. 8A shows the relationship between the dissolved oxygen concentration (DO) and the elapsed time when the oxygen-dissolved water produced as described above is stored at 4 ° C. under atmospheric pressure. It can be seen that a high dissolved oxygen concentration of about 30 mg / L is maintained over time. FIG. 8B shows the temperature of water when oxygen is dissolved in fresh water in a pressurized state of 0.5 MPa in the pressure-dissolving unit 3, and the oxygen-dissolved water is depressurized to atmospheric pressure in the decompression unit 4. It shows the relationship of oxygen concentration, and it can be seen that even when the temperature of water is high, it shows a high oxygen concentration of about 30 mg / L.

上記の図1の実施の形態では生育槽17内の水を吸引して加圧溶解部3で酸素溶解水を生成し、減圧部4で大気圧に減圧したこの酸素溶解水を飼育用水として生育槽17に返送することによって、循環させるようにしたが、図9の実施の形態では、水道配管19から貯水槽40に水16を供給して貯水し、この貯水槽40から水16を汲み上げて上記と同様にして加圧溶解部3で酸素溶解水を生成し、減圧部4で大気圧まで減圧したのちに、この酸素溶解水を育成用水として送り出すようにしてある。そしてこの実施の形態では、魚介類35や植物36を生育する生育槽17に酸素溶解水を育成用水として供給するようにしてあり、また植物36を植えた土壌41に酸素溶解水を育成用水として供給するようにしてある。このように土壌41に酸素溶解水を育成用水として供給すると、土壌の嫌気部分が減少して嫌気性病原菌の発生を防止することができ、病気発生を防ぐことができると共に、植物36の根からの酸素供給の増大によって、成長速度を向上することができるものである。   In the embodiment of FIG. 1 described above, water in the growth tank 17 is sucked to generate oxygen-dissolved water in the pressure-dissolving unit 3, and this oxygen-dissolved water decompressed to atmospheric pressure in the decompression unit 4 grows as breeding water. Although it is made to circulate by returning to the tank 17, in the embodiment of FIG. 9, the water 16 is supplied from the water pipe 19 to the water tank 40 and stored, and the water 16 is pumped up from the water tank 40. In the same manner as described above, oxygen-dissolved water is generated in the pressure-dissolving unit 3, and after the pressure is reduced to atmospheric pressure by the decompression unit 4, this oxygen-dissolved water is sent out as growth water. In this embodiment, oxygen-dissolved water is supplied as growth water to the growth tank 17 where the seafood 35 and the plant 36 are grown, and oxygen-dissolved water is used as the growth water for the soil 41 in which the plant 36 is planted. It is made to supply. When oxygen-dissolved water is supplied to the soil 41 as growth water in this manner, the anaerobic portion of the soil can be reduced to prevent the generation of anaerobic pathogens, prevent the occurrence of disease, and from the root of the plant 36. The growth rate can be improved by increasing the oxygen supply.

図10の実施の形態では、上記のようにして製造された酸素溶解水をタンク42に貯水するようにしてある。この実施の形態では生簀43を設けたトラックなどの運搬車44にタンク42を搭載してあり、開閉弁45を介して供給配管46によって生簀43にタンク42が接続してある。そして生簀43に設けた酸素濃度計47によって生簀43内の水16の酸素濃度を測定し、酸素濃度が所定値より低下すると、開閉弁45が開き、タンク42に貯水された酸素溶解水が育成用水として生簀43に供給され、酸素溶解水に溶解した酸素が補給されるようになっている。また生簀43内の酸素濃度が所定値まで回復したことが酸素濃度計47で測定されると、開閉弁45が閉じて酸素溶解水の供給は停止されるようになっている。   In the embodiment of FIG. 10, the oxygen-dissolved water produced as described above is stored in the tank 42. In this embodiment, a tank 42 is mounted on a transport vehicle 44 such as a truck provided with a ginger 43, and the tank 42 is connected to the ginger 43 by a supply pipe 46 through an on-off valve 45. The oxygen concentration of the water 16 in the ginger 43 is measured by an oxygen concentration meter 47 provided in the ginger 43. When the oxygen concentration falls below a predetermined value, the open / close valve 45 is opened, and the oxygen-dissolved water stored in the tank 42 is grown. Oxygen dissolved in the oxygen-dissolved water is supplied to the ginger 43 as irrigation water. When the oxygen concentration meter 47 measures that the oxygen concentration in the ginger 43 has recovered to a predetermined value, the on-off valve 45 is closed and the supply of oxygen-dissolved water is stopped.

本発明の実施の形態の一例を示す概略図である。It is the schematic which shows an example of embodiment of this invention. 同上の一部の一例を示す概略図である。It is the schematic which shows an example of a part of the same as the above. 同上の一部の他の一例を示すものであり、(a)(b)(c)はそれぞれ概略図である。It shows another example of a part of the above, (a) (b) (c) is a schematic diagram respectively. 同上の一部の他の一例を示すものであり、(a)は概略図、(b)は斜視図である。It shows another example of a part of the above, (a) is a schematic view, (b) is a perspective view. 同上の一部の他の一例を示す概略図である。It is the schematic which shows another example of a part of the same as the above. (a)(b)は本発明の実施の形態の一例を示す斜視図である。(A) (b) is a perspective view which shows an example of embodiment of this invention. 酸素溶解水の酸素濃度と温度との関係を示すグラフである。It is a graph which shows the relationship between the oxygen concentration of oxygen dissolved water, and temperature. (a)は酸素溶解水の酸素濃度と経過時間との関係を示すグラフ、(b)は酸素溶解水の酸素濃度と温度との関係を示すグラフである。(A) is a graph showing the relationship between the oxygen concentration of oxygen-dissolved water and elapsed time, and (b) is a graph showing the relationship between the oxygen concentration of oxygen-dissolved water and temperature. 本発明の実施の形態の他の一例を示す概略図である。It is the schematic which shows another example of embodiment of this invention. 本発明の実施の形態の他の一例を示す概略図である。It is the schematic which shows another example of embodiment of this invention.

符号の説明Explanation of symbols

1 加圧部
2 酸素注入部
3 加圧溶解部
4 減圧部
5 余剰酸素排出部
6 流路
7 圧力調整弁
8 延長流路
11 酸素濃度検出制御部
DESCRIPTION OF SYMBOLS 1 Pressurization part 2 Oxygen injection part 3 Pressurization melt | dissolution part 4 Depressurization part 5 Excess oxygen discharge part 6 Flow path 7 Pressure regulating valve 8 Extension flow path 11 Oxygen concentration detection control part

Claims (5)

酸素溶解水を植物や魚介類を育成する生物育成用水として製造する装置であって、水を圧送する加圧部と、水に酸素を注入する酸素注入部と、酸素を注入された水が加圧部で圧送されることによる加圧で水に酸素を溶解させる加圧溶解部と、加圧溶解部で酸素を溶解させた酸素溶解水の圧力を、酸素溶解水の流入側から流出側に向かって順次大気圧まで減圧する減圧部とを備え、減圧部を、加圧溶解部から酸素溶解水を送り出す流路に設けられ、酸素溶解水の圧力を大気圧にまで段階的に減圧する複数の圧力調整弁で構成し、加圧部、酸素注入部、加圧溶解部の各部を連続的に運転させて、減圧部に酸素溶解水を連続的に供給して、酸素溶解水を流しながら減圧部によって段階的に徐々に減圧し、減圧部の流出側から気泡の発生のない酸素溶解水を連続的に吐出させるようにして成ることを特徴とする生物育成用水の製造装置。 An apparatus for producing oxygen-dissolved water as biological growth water for growing plants and seafood, wherein a pressurizing unit that pumps water, an oxygen injection unit that injects oxygen into water, and water into which oxygen is injected are added. The pressure dissolving part that dissolves oxygen in water by pressurizing by the pressure part, and the pressure of the oxygen-dissolved water in which oxygen is dissolved in the pressure dissolving part are changed from the inflow side to the outflow side of the oxygen-dissolved water. A plurality of pressure-reducing portions that are sequentially reduced to atmospheric pressure, the pressure-reducing portion being provided in a flow path for sending oxygen-dissolved water from the pressure-dissolving portion, and gradually reducing the pressure of the oxygen-dissolved water to atmospheric pressure. The pressure regulating valve is configured to continuously operate each part of the pressurizing unit, the oxygen injecting unit, and the pressurizing and dissolving unit, continuously supplying oxygen-dissolved water to the decompression unit, and flowing the oxygen-dissolved water. stepwise pressure was gradually reduced by vacuum unit, not from the outlet side of the pressure reducing portion of the generation of bubbles of oxygen dissolved Apparatus for producing a biological water for raising which is characterized by comprising as to water continuously discharged. 加圧溶解部で水に溶解しない余剰酸素を排出する余剰酸素排出部を備えて成ることを特徴とする請求項1に記載の生物育成用水の製造装置。   The apparatus for producing water for biological growth according to claim 1, comprising a surplus oxygen discharge unit that discharges surplus oxygen that does not dissolve in water in the pressure dissolution unit. 減圧部は、一つの流路で形成されていることを特徴とする請求項又はに記載の生物育成用水の製造装置。 The apparatus for producing biological growth water according to claim 1 or 2 , wherein the decompression unit is formed by a single flow path. 加圧溶解部から酸素溶解水を送り出す流路の圧力損失とこの流路に付加した延長流路の圧力損失の和が、加圧部で圧送される水と酸素の押し込み圧によって加圧溶解部内で水と酸素を加圧するのに必要な圧力となるように、流路に延長流路を付加して成ることを特徴とする請求項1乃至のいずれか1項に記載の生物育成用水の製造装置。 The sum of the pressure loss of the flow path for sending oxygen-dissolved water from the pressure-dissolving part and the pressure loss of the extension flow path added to this flow path is the inside of the pressure-dissolving part due to the pushing pressure of water and oxygen pumped by the pressure part. The water for biological growth according to any one of claims 1 to 3 , wherein an extension channel is added to the channel so that the pressure required to pressurize the water and oxygen is obtained. manufacturing device. 酸素溶解水の酸素溶解濃度を測定すると共に、測定結果に基づいて加圧部で圧送される水の圧力と加圧部で圧送される水の流量の少なくとも一方を制御する酸素濃度検出制御部を備えて成ることを特徴とする請求項1乃至のいずれか1項に記載の生物育成用水の製造装置。 An oxygen concentration detection control unit that measures the oxygen dissolution concentration of oxygen-dissolved water and controls at least one of the pressure of water pumped by the pressurization unit and the flow rate of water pumped by the pressurization unit based on the measurement result The apparatus for producing water for biological growth according to any one of claims 1 to 4 , wherein the apparatus is provided.
JP2008039205A 2008-02-20 2008-02-20 Biological breeding water production equipment Expired - Fee Related JP5221978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008039205A JP5221978B2 (en) 2008-02-20 2008-02-20 Biological breeding water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008039205A JP5221978B2 (en) 2008-02-20 2008-02-20 Biological breeding water production equipment

Publications (2)

Publication Number Publication Date
JP2009195145A JP2009195145A (en) 2009-09-03
JP5221978B2 true JP5221978B2 (en) 2013-06-26

Family

ID=41139393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008039205A Expired - Fee Related JP5221978B2 (en) 2008-02-20 2008-02-20 Biological breeding water production equipment

Country Status (1)

Country Link
JP (1) JP5221978B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5662686B2 (en) * 2010-01-25 2015-02-04 パナソニックIpマネジメント株式会社 Plant cultivation equipment
JP5670843B2 (en) * 2011-08-11 2015-02-18 Idec株式会社 Biological breeding equipment
JP5892744B2 (en) * 2011-08-11 2016-03-23 Idec株式会社 Gas dissolution apparatus, biological growth apparatus, and gas dissolution method
JP6231780B2 (en) * 2012-06-14 2017-11-15 松本 高明 Oxygen water for fish and shellfish and its production system, fish and shellfish breeding device, fish and shellfish breeding method, fish and shellfish transport method and fish and shellfish oxygen ice
JP6676581B2 (en) * 2017-05-22 2020-04-08 メタウォーター株式会社 How to adjust dissolved oxygen concentration

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5281294A (en) * 1975-12-25 1977-07-07 Kawamoto Pump Mfg Apparatus for supplying oxygen into water tank for fish farming
US4664680A (en) * 1986-04-07 1987-05-12 Atec Inc. Method and system for enriching oxygen content of water
JPH0889771A (en) * 1994-09-19 1996-04-09 Dainippon Ink & Chem Inc Gas dissolver and gas dissolving method
JP2004057987A (en) * 2002-07-30 2004-02-26 Marutaka Co Ltd Oxygen dissolving water conditioning apparatus
JP2007000854A (en) * 2005-06-27 2007-01-11 Fukuhara Co Ltd Dissolution method and dissolution device for oxygen gas

Also Published As

Publication number Publication date
JP2009195145A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
JP4989677B2 (en) Gas dissolving apparatus and method for producing gas dissolving liquid
JP5221978B2 (en) Biological breeding water production equipment
JP4950915B2 (en) Ozone water production equipment
US20100325948A1 (en) Systems, methods, and media for circulating and carbonating fluid in an algae cultivation pond
EP2534946A1 (en) Method to reduce nitrogen concentration in salt water
US20210348106A1 (en) Gas dissolution device and algae cultivation device
JP4358779B2 (en) High concentration oxygen bubble water supply device and plant cultivation device using the same
JPH09173804A (en) Method for dissolving and mixing gas and liquid and device therefor
JP2011088076A (en) Method and apparatus for generating gas-liquid mixed liquid
JP2010051846A (en) Gas dissolving apparatus
JP2022027924A (en) Fine air bubble generation device
JP2014161241A (en) Carbon dioxide supply system
JP4936189B2 (en) Carbonated water production equipment
JP5763844B2 (en) Fluid processing apparatus and fluid processing method
JP5113552B2 (en) Water purification device
KR101000779B1 (en) The apparatus for development of an oxygen water
KR20220007820A (en) Nano bubble water generation system using ozone generator and oxygen tank and preparing method of nano bubble water using the same
JP7204211B2 (en) Batch-type microbubble liquid generator and generation method
KR20220007819A (en) Nano bubble water generation system using ozone generator and compressor and preparing method of nano bubble water using the same
JP7051598B2 (en) Aquatic organism breeding equipment
WO2005003043A1 (en) Ejector for aeration
JP7098175B2 (en) Gas-liquid dissolving device
JP2009195810A (en) Manufacturing method and manufacturing apparatus of gas-hydrate
WO2008038824A1 (en) Agricultural dissolved-oxygen water producing apparatus
US11660576B2 (en) High-flow, high-pressure inline saturator system and method thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100811

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees