JP2009195811A - Water clarification apparatus - Google Patents

Water clarification apparatus Download PDF

Info

Publication number
JP2009195811A
JP2009195811A JP2008039206A JP2008039206A JP2009195811A JP 2009195811 A JP2009195811 A JP 2009195811A JP 2008039206 A JP2008039206 A JP 2008039206A JP 2008039206 A JP2008039206 A JP 2008039206A JP 2009195811 A JP2009195811 A JP 2009195811A
Authority
JP
Japan
Prior art keywords
water
oxygen
pressure
dissolved
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008039206A
Other languages
Japanese (ja)
Other versions
JP5113552B2 (en
Inventor
Atsushi Tsuji
敦志 辻
Shinya Hirota
伸也 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008039206A priority Critical patent/JP5113552B2/en
Publication of JP2009195811A publication Critical patent/JP2009195811A/en
Application granted granted Critical
Publication of JP5113552B2 publication Critical patent/JP5113552B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water clarification apparatus capable of clarifying water quality by increasing an amount of dissolved oxygen in water in a water area regardless of the water depth of the water area. <P>SOLUTION: The water clarification apparatus for clarifying the water quality in the water area A includes: a pressurizing part 1 for pumping water sucked up from the water area A; an oxygen injection part 2 for injecting oxygen into water; a pressure-dissolving part 3 for dissolving oxygen into water by pressurization of water injected with oxygen by being pumped by the pressurizing part 1; and a pressure reducing part 4 for reducing the pressure of oxygen-dissolved water dissolved with oxygen in the pressure-dissolving part 3 to the atmospheric pressure, sequentially toward a flow-out side from a flow-in side. The pressurizing part 1, oxygen injection part 2 and pressure-dissolving part 3 are continuously operated, so that the oxygen-dissolved water is continuously supplied to the pressure reducing part 4, and the oxygen-dissolved water without causing any bubbles is continuously discharged from a flow-out side of the pressure reducing part 4, then the treated water is returned to the water area A. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、河川、池、湖沼、汽水域や海など、閉鎖水域や開放水域の水質を浄化する装置に関するものである。   The present invention relates to an apparatus for purifying water quality in a closed water area or an open water area such as a river, a pond, a lake, a brackish water area, and the sea.

上記のような水域の水質を浄化するために、水域の水中の溶存酸素量を増加させることが行なわれている。水中の溶存酸素量を増加させることによって、水域の水を好気性の生物で浄化することができるものである。   In order to purify the water quality in the water area as described above, the amount of dissolved oxygen in the water in the water area is increased. By increasing the amount of dissolved oxygen in water, the water in the water area can be purified by aerobic organisms.

例えば特許文献1では、空気を圧縮空気として貯蔵し、通気性フィルムに圧縮空気を透過させて微細な気泡を含有する微細気泡含有水を生成させ、水域の水底に配置された送水管の吐出孔からこの微細気泡含有水を水中に放出させることによって、水域の溶存酸素量を増加させるようにしている。
特開2007−330906号公報
For example, in Patent Document 1, air is stored as compressed air, compressed air is allowed to pass through a breathable film to generate fine bubble-containing water containing fine bubbles, and a discharge hole of a water pipe arranged at the bottom of a water area The amount of dissolved oxygen in the water area is increased by releasing the water containing fine bubbles into water.
JP 2007-330906 A

上記の特許文献1のものでは、水底に配置された送水管の吐出孔から微細気泡含有水を水中に放出することによって、微細気泡含有水に含有される気泡を水圧で水中に溶解させて、溶存酸素量を増加させるようにしているものであるが、この水圧は水域の水深に依存するので、水深により酸素溶解量は変わることになる。例えば水深が10m以下であると水圧は0.1MPa以下であるので、気泡は容易に水中に溶解せずに水面まで浮上することになり、溶存酸素量の大きな増加を期待することはできない。従って、特許文献1のものは、水域の水深によっては水質浄化の効果を十分に得ることができないという問題を有するものであった。   In the thing of said patent document 1, by discharging | emitting the fine bubble containing water in water from the discharge hole of the water pipe arrange | positioned at the water bottom, the bubble contained in fine bubble containing water is dissolved in water by water pressure, Although the amount of dissolved oxygen is increased, this water pressure depends on the water depth of the water area, so the amount of dissolved oxygen varies depending on the water depth. For example, when the water depth is 10 m or less, the water pressure is 0.1 MPa or less, so that the bubbles are not easily dissolved in water but float to the surface of the water, and a large increase in the amount of dissolved oxygen cannot be expected. Therefore, the thing of patent document 1 has a problem that the effect of water purification cannot fully be acquired depending on the water depth of a water area.

本発明は上記の点に鑑みてなされたものであり、水域の水深に関係なく、水域の水の溶存酸素量を増加して水質浄化することができる水質浄化装置を提供することを目的とするものである。   The present invention has been made in view of the above points, and an object thereof is to provide a water purification apparatus capable of purifying water by increasing the amount of dissolved oxygen in the water area regardless of the water depth of the water area. Is.

本発明に係る水質浄化装置は、水域Aの水質を浄化する装置であって、水域Aから汲み上げられた水を圧送する加圧部1と、水に酸素を注入する酸素注入部2と、酸素を注入された水が加圧部1で圧送されることによる加圧で水に酸素を溶解させる加圧溶解部3と、加圧溶解部3で酸素を溶解させた酸素溶解水の圧力を、酸素溶解水の流入側から流出側に向かって順次大気圧まで減圧する減圧部4とを備え、加圧部1、酸素注入部2、加圧溶解部3の各部を連続的に運転させて、減圧部4に酸素溶解水を連続的に供給し、減圧部4の流出側から気泡の発生のない酸素溶解水を連続的に吐出させて水域Aに返送するようにして成ることを特徴とするものである。   The water purification apparatus according to the present invention is an apparatus for purifying the water quality of the water area A, and includes a pressurizing unit 1 that pumps water pumped from the water area A, an oxygen injection unit 2 that injects oxygen into the water, an oxygen The pressure-dissolving part 3 that dissolves oxygen in water by pressurization by the water injected into the pressurizing part 1, and the pressure of oxygen-dissolved water in which oxygen is dissolved in the pressure-dissolving part 3, A decompression unit 4 that sequentially depressurizes the oxygen-dissolved water from the inflow side to the outflow side to the atmospheric pressure, and continuously operates each of the pressurization unit 1, the oxygen injection unit 2, and the pressurization dissolution unit 3; Oxygen-dissolved water is continuously supplied to the decompression unit 4, and oxygen-dissolved water without generation of bubbles is continuously discharged from the outflow side of the decompression unit 4 and returned to the water area A. Is.

この発明によれば、加圧部1による加圧によって水に酸素を溶解させるため、酸素を水に高濃度に溶解させることができるものであり、また酸素を高濃度で溶解した酸素溶解水の圧力を、減圧部4で流入側から流出側に向かって順次大気圧まで減圧するものであるため、酸素溶解水に気泡が発生することを防止して、高濃度で酸素が溶解した酸素溶解水をそのまま水域Aに返送することができるものであり、酸素溶解水中に高濃度で溶解した酸素を水域Aの水中に供給することができ、水域の水深に関係なく水域Aの水の溶存酸素量を増加して水質浄化することができるものである。   According to the present invention, since oxygen is dissolved in water by pressurization by the pressurizing unit 1, oxygen can be dissolved in water at a high concentration, and oxygen-dissolved water in which oxygen is dissolved at a high concentration Since the pressure is gradually reduced from the inflow side to the outflow side by the decompression unit 4 to the atmospheric pressure, the generation of bubbles in the oxygen-dissolved water is prevented, and the oxygen-dissolved water in which oxygen is dissolved at a high concentration Can be returned to the water area A as it is, oxygen dissolved at a high concentration in the oxygen-dissolved water can be supplied to the water in the water area A, and the dissolved oxygen amount in the water area A regardless of the water depth in the water area The water quality can be purified by increasing the amount of water.

また請求項2の発明は、加圧溶解部3で水に溶解しない余剰酸素を排出する余剰酸素排出部5を備えて成ることを特徴とするものである。   Further, the invention of claim 2 is characterized in that it is provided with a surplus oxygen discharge section 5 that discharges surplus oxygen that does not dissolve in water in the pressure dissolution section 3.

この発明によれば、水に溶解しない余剰酸素を加圧溶解部3から排出することによって、余剰酸素が残留することによる加圧溶解部3内の酸素と水の比率を安定させて圧力変動を防ぐことができ、酸素の溶解効率を高く維持することができるものである。   According to the present invention, excess oxygen that does not dissolve in water is discharged from the pressure dissolution unit 3, thereby stabilizing the ratio of oxygen and water in the pressure dissolution unit 3 due to excess oxygen remaining, and pressure fluctuation. It is possible to prevent this, and the oxygen dissolution efficiency can be kept high.

また請求項3の発明は、上記の減圧部4を、加圧溶解部3から酸素溶解水を送り出す流路6に設けられ、酸素溶解水の圧力を大気圧にまで段階的に減圧する複数の圧力調整弁7で構成して成ることを特徴とするものである。   Further, the invention of claim 3 is provided with a plurality of pressure reducing sections 4 provided in a flow path 6 for sending oxygen-dissolved water from the pressure-dissolving section 3, and gradually reducing the pressure of the oxygen-dissolved water to atmospheric pressure. It is characterized by comprising a pressure regulating valve 7.

この発明によれば、圧力調整弁7による圧力調整で酸素溶解水の圧力を下げることができ、加圧溶解部3における圧力に応じて圧力調整弁7で減圧調整することによって、酸素溶解水に気泡が発生することを安定して防ぐことができるものである。   According to the present invention, the pressure of the oxygen-dissolved water can be reduced by adjusting the pressure with the pressure adjusting valve 7, and the pressure of the oxygen-dissolved water is reduced by the pressure adjusting valve 7 according to the pressure in the pressure-dissolving unit 3. It is possible to stably prevent the generation of bubbles.

また請求項4の発明は、上記の減圧部4を、流路断面積と流路長さの少なくとも一方の調整で酸素溶解水の圧力を大気圧にまで減圧するように形成された、加圧溶解部3から酸素溶解水を送り出す流路6で構成して成ることを特徴とするものである。   According to the invention of claim 4, the pressure reducing part 4 is formed by pressurizing the oxygen-dissolved water to atmospheric pressure by adjusting at least one of the channel cross-sectional area and the channel length. It is characterized by comprising a flow path 6 for sending oxygen-dissolved water from the dissolving part 3.

この発明によれば、加圧溶解部3から酸素溶解水を送り出す流路6の流路断面積と流路長によって、酸素溶解水の圧力を下げることができ、装置の構造を簡単なものに形成することができるものである。   According to the present invention, the pressure of the oxygen-dissolved water can be reduced by the flow path cross-sectional area and the flow path length of the flow path 6 for sending the oxygen-dissolved water from the pressure-dissolving section 3, and the structure of the apparatus is simplified It can be formed.

また請求項5の発明は、上記の減圧部4は、一つの流路で形成されていることを特徴とするものである。   The invention of claim 5 is characterized in that the decompression section 4 is formed by a single flow path.

この発明によれば、複数の流路を設けて減圧部4を形成する場合のような、装置構成が複雑になることがないものである。   According to the present invention, the apparatus configuration does not become complicated as in the case where the pressure reducing unit 4 is formed by providing a plurality of flow paths.

また請求項6の発明は、加圧溶解部3から酸素溶解水を送り出す流路6の圧力損失とこの流路6に付加した延長流路8の圧力損失の和が、加圧部1で圧送される水と酸素の押し込み圧によって加圧溶解部3内で水と酸素を加圧するのに必要な圧力となるように、流路6に延長流路8を付加して成ることを特徴とするものある。   In the invention of claim 6, the sum of the pressure loss of the flow path 6 for sending the oxygen-dissolved water from the pressure dissolving section 3 and the pressure loss of the extension flow path 8 added to the flow path 6 is An extension channel 8 is added to the channel 6 so that the pressure required to pressurize the water and oxygen in the pressurizing and dissolving section 3 by the pressure of water and oxygen to be applied. There are things.

この発明によれば、流路6に延長流路8を付加することによって、絞り弁を用いる必要なく、加圧部1からの押し込み圧で加圧溶解部3内の圧力を確保することができ、この圧力で水に酸素を溶解させることができるものである。   According to the present invention, by adding the extension flow path 8 to the flow path 6, it is possible to secure the pressure in the pressurizing and dissolving section 3 with the pushing pressure from the pressurizing section 1 without using a throttle valve. In this pressure, oxygen can be dissolved in water.

本発明によれば、加圧部1による加圧によって水に酸素を溶解させるようにしたので、酸素を水に高濃度に溶解させることができるものであり、また酸素を高濃度で溶解した酸素溶解水の圧力を、減圧部4で流入側から流出側に向かって順次大気圧まで減圧するようにしたので、酸素溶解水に気泡が発生することを防止して、高濃度で酸素が溶解した酸素溶解水をそのまま水域Aに返送することができるものであり、酸素溶解水中に高濃度で溶解した酸素を水域Aの水中に供給することができ、水域の水深に関係なく水域Aの水の溶存酸素量を増加して水質浄化することができるものである。   According to the present invention, since oxygen is dissolved in water by pressurization by the pressurizing unit 1, oxygen can be dissolved in water at a high concentration, and oxygen in which oxygen is dissolved at a high concentration Since the pressure of the dissolved water was gradually reduced from the inflow side to the outflow side to the atmospheric pressure by the decompression unit 4, the generation of bubbles in the oxygen-dissolved water was prevented, and oxygen was dissolved at a high concentration. Oxygen-dissolved water can be returned to the water area A as it is, oxygen dissolved at a high concentration in the oxygen-dissolved water can be supplied to the water in the water area A, and the water in the water area A can be supplied regardless of the water depth of the water area. Water quality can be purified by increasing the amount of dissolved oxygen.

以下、本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

図1は本発明の実施の形態の一例を示すものであり、加圧溶解部3の流出側と流入側にそれぞれ配管で形成される流路15,6が接続してある。流入側の流路15は一端を加圧溶解部3に接続し、他端の導入口30を水域Aの水中に配置してある。この水域Aは特定のものに限定されないものであり、河川、池、湖沼、汽水域や海など、閉鎖水域や開放水域の総てを含むものである。また流路15の途中には加圧部1が設けてある。加圧部1は、例えば、水域Aの水を吸い上げて加圧溶解部3に圧送するポンプ18などで形成されるものである。   FIG. 1 shows an example of an embodiment of the present invention, in which flow paths 15 and 6 formed by piping are respectively connected to the outflow side and the inflow side of the pressure dissolution unit 3. One end of the flow path 15 on the inflow side is connected to the pressure dissolution unit 3, and the inlet 30 on the other end is disposed in the water of the water area A. This water area A is not limited to a specific one, and includes all closed water areas and open water areas such as rivers, ponds, lakes, brackish water areas and the sea. A pressurizing unit 1 is provided in the middle of the flow path 15. The pressurizing unit 1 is formed by, for example, a pump 18 that sucks up water in the water area A and pumps it to the pressurizing and dissolving unit 3.

またこの流入側の流路15に酸素注入部2が接続してある。酸素注入部2は酸素を流路15に供給して注入するためのものである。酸素注入部2から注入される酸素としては、純酸素であってもよいが、空気など酸素を含むガス中の酸素であればよい。例えば空気中の酸素を供給して注入する場合には、一端を大気中に開放させた管体の他端を流路15に接続して酸素注入部2を形成することができる。また純酸素を供給して注入する場合には、酸素を封入したボンベなどを流路15に接続して酸素注入部2を形成することができる。流路15への酸素注入部2の接続位置は、加圧溶解部3より上流側の位置であればよく、図1のように加圧部1より上流側の流路15に接続するようにしても、あるいは加圧部1より下流側の流路15に接続するようにしてもいずれでもよい。   Further, the oxygen injection part 2 is connected to the flow path 15 on the inflow side. The oxygen injection part 2 is for supplying oxygen to the flow path 15 and injecting it. The oxygen injected from the oxygen injection unit 2 may be pure oxygen, but may be oxygen in a gas containing oxygen such as air. For example, in the case where oxygen in the air is supplied and injected, the oxygen injection section 2 can be formed by connecting the other end of the tube whose one end is opened to the atmosphere to the flow path 15. When pure oxygen is supplied and injected, the oxygen injection part 2 can be formed by connecting a cylinder filled with oxygen to the flow path 15. The connecting position of the oxygen injection part 2 to the flow path 15 may be a position upstream of the pressurizing / dissolving part 3 and is connected to the flow path 15 upstream of the pressurizing part 1 as shown in FIG. Alternatively, it may be either connected to the flow path 15 on the downstream side of the pressurizing unit 1.

一方、流出側の流路6は一端を加圧溶解部3に接続し、他端の吐出口31は水域Aの水底に配置してあり、この流路6には減圧部4が設けてある。また加圧溶解部3には余剰酸素排出部5が設けてある。余剰酸素排出部5は、例えば、一端を大気に開放した管体を、加圧溶解部3内の気圧が所定の圧力以上になると開口するガス抜き弁などを介して加圧溶解部3に接続することによって形成してある。   On the other hand, one end of the flow path 6 on the outflow side is connected to the pressure dissolution unit 3, and the discharge port 31 on the other end is disposed at the bottom of the water area A. The pressure reducing unit 4 is provided in the flow path 6. . Further, a surplus oxygen discharge unit 5 is provided in the pressure dissolution unit 3. The surplus oxygen discharge unit 5 connects, for example, a tube whose one end is opened to the atmosphere to the pressurization and dissolution unit 3 via a degassing valve or the like that opens when the pressure in the pressurization and dissolution unit 3 exceeds a predetermined pressure. It is formed by doing.

上記のように形成される水質浄化装置にあって、ポンプ18で形成される加圧部1を作動させると、流路15の端部の導入口30から水域Aの水が吸い上げられ、流路15を通して加圧溶解部3へこの水が圧送して供給される。このように流路15内を水が流れる際に、酸素注入部2から酸素が流路15内に吸引されて水に酸素が注入される。そしてこのように酸素が注入された水を加圧部1で加圧溶解部3へ圧送して送り込むことによって、この圧送による押し込み力で加圧溶解部3内において水と酸素に圧力が加わって高圧になる。このように加圧溶解部3内で水と酸素を加圧することによって、水に酸素を効率高く飽和量以上に溶解させることができ、水に酸素が高濃度で溶解した酸素溶解水を得ることができるものである。   In the water purification apparatus formed as described above, when the pressurizing unit 1 formed by the pump 18 is operated, the water in the water area A is sucked up from the inlet 30 at the end of the channel 15, and the channel This water is fed to the pressure dissolution unit 3 through 15 and supplied. As described above, when water flows through the flow path 15, oxygen is sucked into the flow path 15 from the oxygen injection section 2 and oxygen is injected into the water. Then, the water into which oxygen is injected in this manner is sent by being fed to the pressure dissolving unit 3 by the pressurizing unit 1, and pressure is applied to the water and oxygen in the pressure dissolving unit 3 by the pushing force by this pressure feeding. Become high pressure. Thus, by pressurizing water and oxygen in the pressure dissolving part 3, oxygen can be efficiently dissolved in water to a saturation level or more, and oxygen-dissolved water in which oxygen is dissolved at a high concentration in water is obtained. It is something that can be done.

このように加圧溶解部3内において水と酸素を加圧して強制的に効率良く溶解させ、高濃度で酸素が溶解した酸素溶解水を短時間で生成することができるため、加圧溶解部3内で生成された酸素溶解水を流路6を通して送り出しながら、加圧溶解部3内で水に酸素を溶解させるようにすることができるものである。従って、加圧溶解部3をタンクのような容積の大きなもので形成する必要がなくなるものであり、装置規模を小さくして装置のコストを低減することが可能になるものである。   In this way, since the water and oxygen are pressurized and dissolved in the pressure dissolving part 3 forcibly and efficiently, oxygen-dissolved water in which oxygen is dissolved at a high concentration can be generated in a short time. The oxygen-dissolved water generated in 3 is sent out through the flow path 6, and oxygen can be dissolved in water in the pressure-dissolving unit 3. Therefore, it is not necessary to form the pressure dissolving part 3 with a large volume such as a tank, and the apparatus scale can be reduced and the cost of the apparatus can be reduced.

ここで、酸素注入部2から注入される酸素の全量が水に溶解しないと、加圧溶解部3内で水に溶解しない余剰酸素が生じるが、加圧溶解部3に余剰酸素排出部5を設け、酸素の溶解飽和量以上の溶解できない余剰酸素を加圧溶解部3から排出することによって、余剰酸素が残留することによる加圧溶解部3内の酸素と水の比率を安定させて圧力変動を防ぐことができ、酸素の溶解効率を高く維持することができるものである。   Here, if the total amount of oxygen injected from the oxygen injection unit 2 is not dissolved in water, surplus oxygen that does not dissolve in water is generated in the pressure dissolution unit 3, but the excess oxygen discharge unit 5 is provided in the pressure dissolution unit 3. Provided, by discharging excess oxygen that cannot be dissolved more than the dissolved oxygen saturation amount from the pressure dissolution unit 3, the ratio of oxygen and water in the pressure dissolution unit 3 due to the residual oxygen remaining is stabilized and the pressure fluctuation Can be prevented, and the dissolution efficiency of oxygen can be kept high.

そして、上記のように加圧溶解部3で生成された酸素溶解水は、流路6を通して送り出されるが、加圧溶解部3内で酸素溶解水は高圧に加圧された状態にあるので、そのまま水域Aに返送されると、急激な圧力低下によって、酸素溶解水中に気泡が発生するおそれがあり、酸素溶解量が減少し、またキャビテーションが発生することがある。このために本発明では、流路6に減圧部4を設け、加圧溶解部3内で加圧された状態の酸素溶解水を流路6を通して送り出す際に、減圧部4で大気圧まで気泡を発生させることなく減圧をした後に吐出するようにしてある。   And the oxygen-dissolved water produced | generated in the pressurization melt | dissolution part 3 as mentioned above is sent out through the flow path 6, However, Since the oxygen melt | dissolution water is in the state pressurized by the high pressure in the pressurization melt | dissolution part 3, If returned to the water area A as it is, bubbles may be generated in the oxygen-dissolved water due to a rapid pressure drop, the amount of dissolved oxygen may decrease, and cavitation may occur. For this reason, in the present invention, when the pressure reducing part 4 is provided in the flow path 6 and oxygen-dissolved water pressurized in the pressure dissolving part 3 is sent out through the flow path 6, It is made to discharge after decompressing without generating.

ここで、加圧溶解部3内で生成されるのと同じ濃度の酸素溶解水について、加圧溶解部3内で加圧されている圧力と同じ圧力から大気圧まで減圧する際に、気泡が発生しない減圧度を、予め計算や測定で求めておき、減圧部4をこの予め求めた減圧度で、酸素溶解水が流入側する側から流出側に向かって、酸素溶解水の圧力を段階的に、あるいは連続的に、徐々に大気圧まで減圧できるように設定してある。従って、加圧溶解部3内で加圧された酸素溶解水を、減圧部4において気泡が発生しない減圧度で徐々に大気圧まで減圧した後に、流路6の先端から吐出することによって、酸素溶解水に気泡が発生することなく酸素溶解水を吐出することができるものであり、加圧溶解部3で飽和量以上に酸素が溶解された酸素溶解水を、安定した高濃度の状態のまま送り出して利用することが可能になるものである。   Here, when the oxygen-dissolved water having the same concentration as that generated in the pressure-dissolving unit 3 is depressurized from the same pressure as that pressurized in the pressure-dissolving unit 3 to the atmospheric pressure, bubbles are generated. The degree of decompression that does not occur is obtained in advance by calculation or measurement, and the pressure of the oxygen-dissolved water is stepwise from the side where the oxygen-dissolved water flows into the outflow side at the decompression section 4 at the pre-determined decompression degree. Or continuously or gradually so that the pressure can be reduced to atmospheric pressure. Accordingly, the oxygen-dissolved water pressurized in the pressure-dissolving unit 3 is gradually depressurized to the atmospheric pressure at a depressurization degree in which bubbles are not generated in the decompression unit 4, and then discharged from the tip of the flow path 6. Oxygen-dissolved water can be discharged without generating bubbles in the dissolved water, and the oxygen-dissolved water in which oxygen is dissolved to a saturation amount or more in the pressure-dissolving unit 3 remains in a stable high concentration state. It can be sent out and used.

図2は、減圧部4の具体的な実施の形態の一例を示すものであり、加圧溶解部3に接続される流路6に、水の流れ方向に沿って複数の圧力調整弁7(7a,7b,7c)を設けることによって、減圧部4を形成するようにしてある。このように減圧部4を複数の圧力調整弁7を備えて形成することによって、気泡が発生しない減圧度で酸素溶解水の圧力を段階的に徐々に下げることができるものである。   FIG. 2 shows an example of a specific embodiment of the decompression unit 4, and a plurality of pressure regulating valves 7 ( 7a, 7b, 7c) is provided to form the decompression section 4. Thus, by forming the decompression unit 4 with the plurality of pressure regulating valves 7, the pressure of the oxygen-dissolved water can be gradually lowered step by step with a degree of decompression that does not generate bubbles.

各圧力調整弁7a,7b,7cは、酸素溶解水に気泡発生が生じない減圧度で減圧するように設定されているものであり、この減圧度は予め計算や測定で求めた数値に設定されるものである。例えば、加圧溶解部3から流路6に送り出された酸素溶解水の加圧圧力が0.5MPaであるとき、気泡が発生しない減圧量が0.12MPaであると測定によって判明しているとすると、圧力調整弁7aで酸素溶解水の圧力を0.12MPa減圧して、0.38MPaに落とす。また酸素溶解水の加圧圧力が0.38MPaであるとき、気泡が発生しない減圧量が0.16MPaであると測定によって判明しているとすると、次の圧力調整弁7bで酸素溶解水の圧力を0.16MPa減圧して、0.22MPaに落とす。さらに酸素溶解水の加圧圧力が0.22MPaであるとき、気泡が発生しない減圧量が0.22MPa以上であると測定によって判明しているとすると、次の圧力調整弁7cで酸素溶解水の圧力を0.22MPa減圧して、加圧圧力を0MPaに落とし、大気圧まで減圧することができるものである。尚、圧力調整弁7による減圧量は、水温、酸素の溶解濃度、加圧溶解部3内の圧力、流路6の径などに応じて変動するものであり、装置毎に、計算や測定をして、適宜設定されるものである。   Each pressure regulating valve 7a, 7b, 7c is set to depressurize at a degree of decompression that does not generate bubbles in the oxygen-dissolved water, and this degree of decompression is set to a numerical value obtained by calculation or measurement in advance. Is. For example, when the pressurized pressure of oxygen-dissolved water sent from the pressure-dissolving unit 3 to the flow path 6 is 0.5 MPa, it is found by measurement that the amount of reduced pressure at which no bubbles are generated is 0.12 MPa. Then, the pressure of the oxygen-dissolved water is reduced by 0.12 MPa by the pressure adjusting valve 7a and dropped to 0.38 MPa. Further, when the pressure of oxygen-dissolved water is 0.38 MPa, if it is determined by measurement that the amount of reduced pressure at which bubbles are not generated is 0.16 MPa, the pressure of oxygen-dissolved water is determined by the next pressure regulating valve 7b. Is reduced to 0.12 MPa and reduced to 0.22 MPa. Furthermore, when the pressure of oxygen-dissolved water is 0.22 MPa, if it is found by measurement that the amount of reduced pressure at which bubbles do not occur is 0.22 MPa or more, the oxygen-dissolved water is detected by the next pressure regulating valve 7c. The pressure can be reduced to 0.22 MPa, the applied pressure can be reduced to 0 MPa, and the pressure can be reduced to atmospheric pressure. Note that the amount of pressure reduction by the pressure regulating valve 7 varies depending on the water temperature, the dissolved concentration of oxygen, the pressure in the pressurized dissolving section 3, the diameter of the flow path 6, and the like. Thus, it is set as appropriate.

図3は、減圧部4の具体的な実施の形態の他の一例を示すものであり、加圧溶解部3に接続される流路6を流路断面積が異なる複数の管体20a,20b,20cを備えて形成し、この流路断面積の異なる複数の管体20a,20b,20cで減圧部4が形成されるようにしてある。   FIG. 3 shows another example of a specific embodiment of the decompression unit 4, and a plurality of tubes 20a and 20b having different channel cross-sectional areas in the channel 6 connected to the pressure dissolution unit 3 are shown. 20c, and the decompression section 4 is formed by a plurality of pipe bodies 20a, 20b, 20c having different channel cross-sectional areas.

図3(a)の実施の形態では、流路断面積が異なる、つまり内径の異なる複数の管体20a,20b,20cを一体に連ねるようにしてあり、酸素溶解水の流れの上流側から下流側へと、徐々に管体20a,20b,20cの径が小さくなるようにしてある。また図3(b)の実施の形態では、内径の異なる複数の管体20a,20b,20cをレジューサ21を介して接続して連ねるようにしてあり、酸素溶解水の流れの上流側から下流側へと、徐々に管体20a,20b,20cの径が小さくなるようにしてある。さらに図3(c)の実施の形態では、酸素溶解水の流れの上流側から下流側へと連続的に径が小さくなる管体20a,20b,20cを一体に連ねるようにしてある。   In the embodiment of FIG. 3A, a plurality of pipes 20a, 20b, and 20c having different flow path cross-sectional areas, that is, different inner diameters, are integrally connected, and from the upstream side to the downstream side of the flow of oxygen-dissolved water. The diameters of the tubular bodies 20a, 20b, and 20c are gradually reduced toward the side. In the embodiment of FIG. 3 (b), a plurality of tubes 20a, 20b, 20c having different inner diameters are connected and connected via a reducer 21, and from the upstream side to the downstream side of the flow of oxygen-dissolved water. The diameters of the pipe bodies 20a, 20b, and 20c are gradually reduced. Further, in the embodiment of FIG. 3C, the pipes 20a, 20b, and 20c whose diameter continuously decreases from the upstream side to the downstream side of the flow of the oxygen-dissolved water are integrally connected.

この図3のものにあって、各管体20a,20b,20cの内径はφd>φd>φdであるので、各管体20a,20b,20c内の酸素溶解水の流速はV<V<Vとなり、各管体20a,20b,20c内の酸素溶解水の圧力はP>P>Pとなる。従って、加圧溶解部3から送り出される酸素溶解水の圧力Pを気泡が発生しない減圧度で、図3(a)(b)のものでは段階的に減圧して、また図3(c)のものでは連続的に減圧して、Pの大気圧まで徐々に下げることができるものである。 In FIG. 3, the inner diameters of the pipe bodies 20a, 20b, and 20c are φd 1 > φd 2 > φd 3 , so the flow rate of the oxygen-dissolved water in each of the pipe bodies 20a, 20b, and 20c is V 1. <V 2 <V 3 , and the pressure of the oxygen-dissolved water in each of the tubes 20a, 20b, 20c is P 1 > P 2 > P 3 . Thus, a reduced pressure degree of bubble pressure P 1 of oxygen dissolved water fed from the pressure dissolution unit 3 does not occur, FIGS. 3 (a) those in is stepwise reduced pressure (b), and FIG. 3 (c) intended are those which can be lowered continuously reduced pressure, gradually to atmospheric pressure P 3.

図4は、減圧部4の具体的な実施の形態の他の一例を示すものであり、加圧溶解部3に接続される流路6を通して酸素溶解水を排出する際に、流路6内を酸素溶解水が流れる際の圧力損失によって、酸素溶解水に気泡が発生しない減圧速度で酸素溶解水の圧力を徐々に連続的に低下させ、酸素溶解水の圧力を大気圧にまで低下させるようにしてある。従って図4(a)の実施の形態では、加圧溶解部3内での圧力がPの酸素溶解水を、流路6内を通過させる際にP〜Pn−1へと、酸素溶解水に気泡が発生しない減圧速度で徐々に連続的に圧力を低下させ(P>P>Pn−1)、流路6の終端では酸素溶解水の圧力Pが大気圧にまで低下するように、流路6の流路断面積と管路長さLを設定するようにしてあり、このような流路断面積と管路長さLを有する流路6によって減圧部4が形成されるものである。 FIG. 4 shows another example of a specific embodiment of the decompression unit 4, and when the oxygen-dissolved water is discharged through the channel 6 connected to the pressure dissolution unit 3, The pressure loss when oxygen-dissolved water flows causes the pressure of oxygen-dissolved water to gradually and continuously decrease at a decompression rate that does not generate bubbles in the oxygen-dissolved water, so that the pressure of oxygen-dissolved water is reduced to atmospheric pressure. It is. In the embodiment of FIG. 4 (a) Thus, the oxygen dissolution water pressure P 1 in the press-welding within the solution 3, the P 2 ~P n-1 when passing through the flow channel 6, the oxygen The pressure is gradually and continuously reduced at a decompression rate at which bubbles do not occur in the dissolved water (P 1 > P 2 > P n-1 ), and the pressure P n of the oxygen-dissolved water reaches atmospheric pressure at the end of the flow path 6. The flow path cross-sectional area and the pipe length L of the flow path 6 are set so as to decrease, and the decompression unit 4 is configured by the flow path 6 having such a flow path cross-sectional area and the pipe length L. Is formed.

この管路長さLは、次の式から設定することができる。すなわち、
流体の関係式P=λ・(L/d)・(v/2g)
[Pは加圧溶解部3内の圧力、λは管摩擦係数、dは内径、vは流速、gは加速度]
から、L=(P・d・2g)/(λ・v)を導くことができ、この式から計算して流路6の管路長さLを求めることができるものである。このように、流路6の管路長さLを所定長さに形成するだけで減圧部4を形成することができるものであり、装置の構造をより簡単なものに形成することができるものである。このような管路長さLが長い流路6で形成される減圧部4は、例えば図4(b)のような長いホース4aで形成することができる。
The pipe length L can be set from the following equation. That is,
Fluid relational expression P = λ · (L / d) · (v 2 / 2g)
[P is the pressure in the pressure dissolving section 3, λ is the coefficient of friction of the tube, d is the inner diameter, v is the flow velocity, and g is the acceleration]
From this, L = (P · d · 2g) / (λ · v 2 ) can be derived, and the pipe length L of the flow path 6 can be obtained by calculation from this equation. As described above, the decompression section 4 can be formed only by forming the pipe length L of the flow path 6 to a predetermined length, and the structure of the apparatus can be made simpler. It is. The decompression section 4 formed by the flow path 6 having such a long pipe line length L can be formed by a long hose 4a as shown in FIG. 4B, for example.

上記のように本発明では加圧部1によって水と酸素を加圧溶解部3に圧送し、この際の押し込み圧によって加圧溶解部3内で水と酸素を加圧して酸素を溶解させるようにしているが、この押し込み圧を受けて加圧溶解部3内に必要な圧力が発生するようにする必要がある。このように加圧部1からの押し込み圧を受ける圧力を確保するために、加圧溶解部3の流出側の流路6に絞り弁などの絞り部を設けることが考えられるが、このように絞り部を流路6に設けると、加圧溶解部3で生成された酸素溶解水を流路6に送り出して排出する際に、絞り部の前後で大きな圧力差が生じ、酸素溶解水が急激に減圧されることになり、酸素溶解水に気泡が発生するおそれがある。   As described above, in the present invention, water and oxygen are pumped to the pressurizing / dissolving unit 3 by the pressurizing unit 1, and water and oxygen are pressurized in the pressurizing / dissolving unit 3 by the pressing pressure at this time so as to dissolve oxygen. However, it is necessary to generate a necessary pressure in the pressurizing / dissolving portion 3 by receiving the pushing pressure. In order to secure the pressure that receives the indentation pressure from the pressurizing unit 1 as described above, it is conceivable to provide a throttle unit such as a throttle valve in the flow path 6 on the outflow side of the pressurizing and dissolving unit 3. When the throttle portion is provided in the flow path 6, when the oxygen-dissolved water generated in the pressure dissolution section 3 is sent to the flow path 6 and discharged, a large pressure difference occurs before and after the throttle section, and the oxygen-dissolved water rapidly There is a risk that bubbles will be generated in the oxygen-dissolved water.

そこで図5の実施の形態では、流路6の圧力損失を利用して、流路6に絞り部を設ける必要なく、押し込み圧を受ける圧力を確保するようにしている。このとき、上記各実施形態の流路6の長さでは、流路6の圧力損失で押し込み圧を受ける圧力を確保することは難しいので、流路6の加圧溶解部3と反対側の端部に延長流路8を付加するようにしてある。すなわち、流路6の減圧部4も含めた全体の圧力損失を算出し、加圧部1からの押し込み圧によって加圧溶解部3内で水と酸素を加圧するのに必要な圧力と、この流路6の圧力損失との差を算出し、さらにこの差の圧力損失が生じる管路の長さを上記の式から算出して、この管路長さの延長流路8を流路6に付加するようにしてある。このように、流路6の圧力損失と延長流路8の圧力損失の和が、加圧部1で圧送される酸素と水の押し込み圧によって加圧溶解部3内で水と酸素を加圧するのに必要な圧力となるように、流路6に延長流路8を付加することによって、絞り弁などの絞り部を用いる必要なく、加圧部1からの押し込み圧で加圧溶解部3内の加圧力を確保して、水に酸素を溶解させることができるものである。   Therefore, in the embodiment of FIG. 5, the pressure loss of the flow path 6 is used to secure the pressure that receives the indentation pressure without the need to provide the throttle portion in the flow path 6. At this time, with the length of the flow path 6 of each of the above embodiments, it is difficult to secure the pressure that receives the indentation pressure due to the pressure loss of the flow path 6. An extension channel 8 is added to the part. That is, the total pressure loss including the decompression unit 4 of the flow path 6 is calculated, and the pressure required to pressurize water and oxygen in the pressurization dissolution unit 3 by the indentation pressure from the pressurization unit 1, The difference from the pressure loss of the flow path 6 is calculated, and the length of the pipe line in which the pressure loss of this difference occurs is calculated from the above formula, and the extended flow path 8 of this pipe length is changed to the flow path 6. They are added. In this way, the sum of the pressure loss of the flow path 6 and the pressure loss of the extension flow path 8 pressurizes water and oxygen in the pressurizing and dissolving section 3 by the pushing pressure of oxygen and water pumped by the pressurizing section 1. By adding the extension flow path 8 to the flow path 6 so that the pressure required for the pressure is reached, it is not necessary to use a throttling portion such as a throttling valve. Thus, it is possible to dissolve oxygen in water.

図6は水質浄化装置の具体的な一例を示すものであり、水域Aの水は流路15に導入口30から導入される。流路15には酸素が導入される酸素注入部2が接続してあり、酸素が注入された水はポンプで形成される加圧部1によって、小容量のタンクで形成される加圧溶解部3に圧送される。このように酸素が注入された水が加圧溶解部3に圧送されることによって、加圧溶解部3内で水に酸素が溶解された酸素溶解水が生成される。そしてこの酸素溶解水は加圧溶解部3から流路6に送り出され、流路6の先端の吐出口31から送り出される。この流路6には減圧部4が設けてあり、加圧溶解部3から送り出された酸素溶解水は大気圧まで減圧された後に流路6の端部の吐出口31から吐出され、気泡が発生しない状態で酸素溶解水を送り出すことができる。図6の実施の形態では、減圧部4は、図3(a)の内径が異なる管体20a,20b,20cを連ねたもので形成してある。   FIG. 6 shows a specific example of the water purification device, and water in the water area A is introduced into the flow path 15 from the introduction port 30. An oxygen injection part 2 into which oxygen is introduced is connected to the flow path 15, and the water into which oxygen has been injected is a pressure dissolving part formed in a small capacity tank by a pressure part 1 formed by a pump. 3 is pumped. Thus, oxygen-injected water in which oxygen is dissolved in water is generated in the pressure-dissolving unit 3 by pumping the water into which oxygen has been injected to the pressure-dissolving unit 3. The oxygen-dissolved water is sent out from the pressure dissolving unit 3 to the flow path 6 and is sent out from the discharge port 31 at the tip of the flow path 6. The flow path 6 is provided with a decompression section 4, and the oxygen-dissolved water sent out from the pressure dissolution section 3 is decompressed to atmospheric pressure and then discharged from the discharge port 31 at the end of the flow path 6, and bubbles are generated. Oxygen-dissolved water can be sent out without being generated. In the embodiment of FIG. 6, the decompression unit 4 is formed by connecting the tubular bodies 20a, 20b, and 20c having different inner diameters as shown in FIG.

この装置にあって、ポンプで形成される加圧部1を連続運転することによって、酸素注入部2、加圧溶解部3を連続的に運転させて、減圧部4に酸素溶解水を連続的に供給するようにすることができるものであり、減圧部4の流出側である吐出口31から気泡の発生のない酸素溶解水を連続的に吐出させることができるものである。また、減圧部4は加圧溶解部3から酸素溶解水を送り出す流路6の一部として設けられており、そしてこの減圧部4は酸素溶解水の圧力を流入側から流出側に向かって順次大気圧まで減圧するものであるため、減圧部4を例えば内径2〜50mm程度の比較的大きい流路として形成することができるものであり、異物が混入しても減圧部4内が詰まるようなことがないものである。さらにこのような構成の減圧部4を設けることによって、減圧部4を流れる酸素溶解水のレイノルズ数が臨界レイノルズ数(Re=2320)より小さなレイノズル数である層流状態だけではなく、臨界レイノルズ数より大きなレイノルズ数である乱流状態でも対応することが可能になるものである。さらに、減圧部4をこのように内径の大きな流路として形成することによって、酸素溶解水の供給量を多くすることができ、減圧部4を一つの流路のみで形成することが可能になるものであり、装置構成を簡単なものに形成することができるものである。   In this apparatus, by continuously operating the pressurizing unit 1 formed by a pump, the oxygen injecting unit 2 and the pressurizing / dissolving unit 3 are continuously operated to continuously supply oxygen-dissolved water to the decompressing unit 4. The oxygen-dissolved water without generation of bubbles can be continuously discharged from the discharge port 31 on the outflow side of the decompression unit 4. The decompression unit 4 is provided as a part of a flow path 6 for sending oxygen-dissolved water from the pressure-dissolving unit 3, and the decompression unit 4 sequentially increases the pressure of the oxygen-dissolved water from the inflow side to the outflow side. Since the pressure is reduced to atmospheric pressure, the pressure reducing portion 4 can be formed as a relatively large flow path having an inner diameter of about 2 to 50 mm, for example, and the inside of the pressure reducing portion 4 is clogged even if foreign matter is mixed in. There is nothing. Furthermore, by providing the decompression unit 4 having such a configuration, not only the laminar flow state in which the Reynolds number of the oxygen-dissolved water flowing through the decompression unit 4 is smaller than the critical Reynolds number (Re = 2320), but also the critical Reynolds number It is possible to cope with a turbulent flow state having a larger Reynolds number. Furthermore, by forming the decompression section 4 as a flow path having a large inner diameter in this way, it is possible to increase the supply amount of oxygen-dissolved water, and it is possible to form the decompression section 4 with only one flow path. Therefore, it is possible to form a simple apparatus configuration.

そして上記のように加圧部1で気泡を発生することなく大気圧にまで減圧された酸素溶解水は、水域Aの水底に配置された流路6の吐出口31から水域A内に返送されるものである。酸素溶解水は高濃度で水が溶解しているので、この酸素溶解水が水域Aの水中に返送されると、酸素溶解水が水域Aの水中に拡散するに従って、酸素溶解水に溶解した酸素も水域Aの水中に拡散して溶解し、水域Aの溶存酸素量を増大させることができるものである。ここで、本発明において得られる酸素溶解水は、特許文献1の場合のように微細気泡を含有させるようにしたものではなく、上記のように加圧部1による加圧によって加圧溶解部3で水に酸素を高濃度に溶解させるようにしたものであるため、水域Aの水深に関係なく、酸素溶解水に溶解した酸素を水中に直接的に供給して溶存酸素量を増大させることができるものである。そしてこのように水域Aの溶存酸素量を増大させることによって、水域Aを好気性雰囲気にして好気性細菌による浄化作用で、水や汚泥を浄化することができるものである。   The oxygen-dissolved water decompressed to atmospheric pressure without generating bubbles in the pressurizing unit 1 as described above is returned into the water area A from the discharge port 31 of the flow path 6 disposed at the bottom of the water area A. Is. Since the oxygen-dissolved water is dissolved at a high concentration, when the oxygen-dissolved water is returned to the water in the water area A, the oxygen dissolved in the oxygen-dissolved water is diffused as the oxygen-dissolved water diffuses into the water in the water area A. Can also be diffused and dissolved in the water of the water area A to increase the amount of dissolved oxygen in the water area A. Here, the oxygen-dissolved water obtained in the present invention does not contain fine bubbles as in the case of Patent Document 1, but the pressure-dissolving part 3 by pressurization by the pressure part 1 as described above. Since oxygen is dissolved in water at a high concentration, oxygen dissolved in oxygen-dissolved water can be directly supplied to water to increase the amount of dissolved oxygen regardless of the water depth of water area A. It can be done. And by increasing the amount of dissolved oxygen in the water area A in this way, the water area and the sludge can be purified by the purification action by aerobic bacteria with the water area A as an aerobic atmosphere.

図7(a)は、本発明の装置において加圧溶解部3で水に酸素を溶解し、酸素溶解水を減圧部4で大気圧にまで減圧したときの、水温と酸素濃度の関係を示すものである。例えば水域Aの水の温度が25℃であると、40mg/L以上の高い濃度で酸素が溶解しており、この酸素溶解水を水域Aに返送することによって、水域Aの水中の溶存酸素濃度を容易に高めることができることがわかる。また図7(b)は、本発明の装置において加圧溶解部3で10℃の水に酸素を溶解し、酸素溶解水を減圧部4で大気圧にまで減圧した後に、25℃で放置したときの、溶存酸素濃度と経過時間との関係を示すものである。700時間を経過しても、30mg/L程度の高い溶存酸素濃度を維持しており、この酸素溶解水を水系Aに返送することによって、水域Aの水中の溶存酸素濃度を長期に亘って高く維持できることがわかる。   FIG. 7A shows the relationship between the water temperature and the oxygen concentration when oxygen is dissolved in water by the pressure dissolving unit 3 and the oxygen-dissolved water is decompressed to atmospheric pressure by the decompressing unit 4 in the apparatus of the present invention. Is. For example, when the temperature of the water in the water area A is 25 ° C., oxygen is dissolved at a high concentration of 40 mg / L or more. By returning this oxygen-dissolved water to the water area A, the dissolved oxygen concentration in the water in the water area A It can be seen that can be easily increased. FIG. 7 (b) shows that in the apparatus of the present invention, oxygen was dissolved in water at 10 ° C. by the pressure dissolution unit 3, and the oxygen-dissolved water was reduced to atmospheric pressure by the pressure reduction unit 4, and then left at 25 ° C. This shows the relationship between the dissolved oxygen concentration and the elapsed time. Even after 700 hours, a high dissolved oxygen concentration of about 30 mg / L is maintained, and by returning this oxygen-dissolved water to the water system A, the dissolved oxygen concentration in the water in the water area A is increased over a long period of time. It can be seen that it can be maintained.

本発明の実施の形態の一例を示す概略図である。It is the schematic which shows an example of embodiment of this invention. 同上の一部の一例を示す概略図である。It is the schematic which shows an example of a part of the same as the above. 同上の一部の他の一例を示すものであり、(a)(b)(c)はそれぞれ概略図である。It shows another example of a part of the above, (a) (b) (c) is a schematic diagram respectively. 同上の一部の他の一例を示すものであり、(a)は概略図、(b)は斜視図である。It shows another example of a part of the above, (a) is a schematic view, (b) is a perspective view. 同上の一部の他の一例を示す概略図である。It is the schematic which shows another example of a part of the same as the above. (a)(b)は本発明の実施の形態の一例を示す斜視図である。(A) (b) is a perspective view which shows an example of embodiment of this invention. (a)は酸素溶解水の酸素濃度と温度との関係を示すグラフ、(b)は酸素溶解水の酸素濃度と経過時間との関係を示すグラフである。(A) is a graph showing the relationship between the oxygen concentration of oxygen-dissolved water and temperature, and (b) is a graph showing the relationship between the oxygen concentration of oxygen-dissolved water and elapsed time.

符号の説明Explanation of symbols

1 加圧部
2 酸素注入部
3 加圧溶解部
4 減圧部
5 余剰酸素排出部
6 流路
7 圧力調整弁
8 延長流路
DESCRIPTION OF SYMBOLS 1 Pressurization part 2 Oxygen injection part 3 Pressurization melt | dissolution part 4 Depressurization part 5 Excess oxygen discharge part 6 Flow path 7 Pressure control valve 8 Extension flow path

Claims (6)

水域の水質を浄化する装置であって、水域から汲み上げられた水を圧送する加圧部と、水に酸素を注入する酸素注入部と、酸素を注入された水が加圧部で圧送されることによる加圧で水に酸素を溶解させる加圧溶解部と、加圧溶解部で酸素を溶解させた酸素溶解水の圧力を、酸素溶解水の流入側から流出側に向かって順次大気圧まで減圧する減圧部とを備え、加圧部、酸素注入部、加圧溶解部の各部を連続的に運転させて、減圧部に酸素溶解水を連続的に供給し、減圧部の流出側から気泡の発生のない酸素溶解水を連続的に吐出させて水域に返送するようにして成ることを特徴とする水質浄化装置。   An apparatus for purifying the water quality of a water area, wherein a pressurizing unit that pumps water pumped from the water area, an oxygen injection unit that injects oxygen into water, and water into which oxygen is injected is pumped by the pressurizing unit. The pressure dissolution part that dissolves oxygen in water by pressurization by pressure, and the pressure of the oxygen-dissolved water in which oxygen is dissolved in the pressure dissolution part are gradually increased from the inflow side to the outflow side to the atmospheric pressure. A decompression section for decompressing, continuously operating each of the pressurization section, the oxygen injection section, and the pressurization dissolution section, continuously supplying oxygen-dissolved water to the decompression section, and bubbles from the outflow side of the decompression section A water purification apparatus characterized in that oxygen-dissolved water without generation of water is continuously discharged and returned to the water area. 加圧溶解部で水に溶解しない余剰酸素を排出する余剰酸素排出部を備えて成ることを特徴とする請求項1に記載の水質浄化装置。   The water purification apparatus according to claim 1, further comprising a surplus oxygen discharge unit that discharges surplus oxygen that does not dissolve in water in the pressure dissolution unit. 減圧部を、加圧溶解部から酸素溶解水を送り出す流路に設けられ、酸素溶解水の圧力を大気圧にまで段階的に減圧する複数の圧力調整弁で構成して成ることを特徴とする請求項1又は2に記載の水質浄化装置。   The pressure reducing part is provided in a flow path for sending oxygen-dissolved water from the pressure-dissolving part, and comprises a plurality of pressure regulating valves that stepwise reduce the pressure of the oxygen-dissolved water to atmospheric pressure. The water purification apparatus according to claim 1 or 2. 減圧部を、流路断面積と流路長さの少なくとも一方の調整で酸素溶解水の圧力を大気圧にまで減圧するように形成された、加圧溶解部から酸素溶解水を送り出す流路で構成して成ることを特徴とする請求項1又は2に記載の水質浄化装置。   The pressure reducing part is a flow path for sending oxygen-dissolved water from the pressure-dissolving part formed so as to reduce the pressure of the oxygen-dissolved water to atmospheric pressure by adjusting at least one of the channel cross-sectional area and the channel length. The water purification apparatus according to claim 1 or 2, wherein the water purification apparatus is configured. 減圧部は、一つの流路で形成されていることを特徴とする請求項3又は4に記載の水質浄化装置。   The water purification apparatus according to claim 3 or 4, wherein the decompression unit is formed by a single flow path. 加圧溶解部から酸素溶解水を送り出す流路の圧力損失とこの流路に付加した延長流路の圧力損失の和が、加圧部で圧送される水と酸素の押し込み圧によって加圧溶解部内で水と酸素を加圧するのに必要な圧力となるように、流路に延長流路を付加して成ることを特徴とする請求項1乃至5のいずれか1項に記載の水質浄化装置。   The sum of the pressure loss of the flow path for sending oxygen-dissolved water from the pressure-dissolving part and the pressure loss of the extension flow path added to this flow path is the inside of the pressure-dissolving part due to the pushing pressure of water and oxygen pumped by the pressure part. The water purification apparatus according to any one of claims 1 to 5, wherein an extension channel is added to the channel so that the pressure required for pressurizing water and oxygen is obtained.
JP2008039206A 2008-02-20 2008-02-20 Water purification device Expired - Fee Related JP5113552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008039206A JP5113552B2 (en) 2008-02-20 2008-02-20 Water purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008039206A JP5113552B2 (en) 2008-02-20 2008-02-20 Water purification device

Publications (2)

Publication Number Publication Date
JP2009195811A true JP2009195811A (en) 2009-09-03
JP5113552B2 JP5113552B2 (en) 2013-01-09

Family

ID=41139950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008039206A Expired - Fee Related JP5113552B2 (en) 2008-02-20 2008-02-20 Water purification device

Country Status (1)

Country Link
JP (1) JP5113552B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088075A (en) * 2009-10-22 2011-05-06 Ohbayashi Corp Method and system for preserving function of stone stack purifying embankment
JP2014533201A (en) * 2011-11-10 2014-12-11 ブリスフィールド マニュファクチャリング カンパニー Method and apparatus for increasing gas concentration in a liquid

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06210147A (en) * 1993-01-20 1994-08-02 Idec Izumi Corp Method and device for mixing gas and liquid under pressure
JPH08132094A (en) * 1994-11-07 1996-05-28 Aisawa Kogyo Kk Fine bubble discharger
JPH09141072A (en) * 1995-11-24 1997-06-03 Idec Izumi Corp Method for controlling bubble diameter and device therefor
JPH09173804A (en) * 1995-10-26 1997-07-08 Idec Izumi Corp Method for dissolving and mixing gas and liquid and device therefor
JPH11197475A (en) * 1997-10-28 1999-07-27 Idec Izumi Corp Gas liquid dissolving and mixing apparatus
JPH11207162A (en) * 1998-01-22 1999-08-03 Yamahiro:Kk Pressure type oxygen dissolving method
JP2000334283A (en) * 1999-05-26 2000-12-05 Ishikawajima Harima Heavy Ind Co Ltd Ozone dissolving method and device
JP2001347146A (en) * 2000-06-08 2001-12-18 Yokogawa Electric Corp Gas dissolving device
JP2002239587A (en) * 2001-02-20 2002-08-27 Takeshi Yoshioka Apparatus for increasing dissolved oxygen in deep sea water
JP2003071494A (en) * 2001-09-05 2003-03-11 Yokogawa Electric Corp Apparatus and method for removing water bloom
JP2004188263A (en) * 2002-12-09 2004-07-08 Yokogawa Electric Corp Device for supplying oxygen into water
JP2004283810A (en) * 2003-01-28 2004-10-14 Matsushita Electric Works Ltd Structure of dissolution tank and fine air bubble generator equipped with the dissolution tank
JP2005193140A (en) * 2004-01-07 2005-07-21 Yokogawa Electric Corp Method and apparatus for supplying oxygen into water
JP2005246351A (en) * 2004-03-08 2005-09-15 Irie Shingo Fine bubble forming apparatus for improving water quality
JP2005262200A (en) * 2004-02-19 2005-09-29 Mitsubishi Heavy Ind Ltd Water cleaning apparatus
JP2006136759A (en) * 2004-11-10 2006-06-01 Yokogawa Electric Corp Air dissolved water feed system
JP2006136777A (en) * 2004-11-11 2006-06-01 Maruwa Biochemical Co Ltd Mixing apparatus for fine bubble
JP2006305494A (en) * 2005-04-28 2006-11-09 Ebara Corp Oxygen dissolving system
JP2006346638A (en) * 2005-06-20 2006-12-28 Aura Tec:Kk Discharging passage of pressure dissolution apparatus
JP2007021341A (en) * 2005-07-14 2007-02-01 Lwj Kk Oxygen enriched water production device, and water quality improvement device
JP2007069063A (en) * 2005-09-05 2007-03-22 Yokogawa Electric Corp Gas dissolved water supply system
JP2008114214A (en) * 2006-10-12 2008-05-22 Matsushita Electric Works Ltd Cleaning device
JP2008188574A (en) * 2006-08-23 2008-08-21 Matsushita Electric Works Ltd Gas dissolving apparatus
JP2009045564A (en) * 2007-08-21 2009-03-05 Yokogawa Electric Corp Oxygen dissolved water supply apparatus
JP2009160588A (en) * 2006-10-12 2009-07-23 Panasonic Electric Works Co Ltd Cleaning device and cleaning method
JP2009195813A (en) * 2008-02-20 2009-09-03 Panasonic Electric Works Co Ltd Ozone water manufacturing device

Patent Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06210147A (en) * 1993-01-20 1994-08-02 Idec Izumi Corp Method and device for mixing gas and liquid under pressure
JPH08132094A (en) * 1994-11-07 1996-05-28 Aisawa Kogyo Kk Fine bubble discharger
JPH09173804A (en) * 1995-10-26 1997-07-08 Idec Izumi Corp Method for dissolving and mixing gas and liquid and device therefor
JPH09141072A (en) * 1995-11-24 1997-06-03 Idec Izumi Corp Method for controlling bubble diameter and device therefor
JPH11197475A (en) * 1997-10-28 1999-07-27 Idec Izumi Corp Gas liquid dissolving and mixing apparatus
JPH11207162A (en) * 1998-01-22 1999-08-03 Yamahiro:Kk Pressure type oxygen dissolving method
JP2000334283A (en) * 1999-05-26 2000-12-05 Ishikawajima Harima Heavy Ind Co Ltd Ozone dissolving method and device
JP2001347146A (en) * 2000-06-08 2001-12-18 Yokogawa Electric Corp Gas dissolving device
JP2002239587A (en) * 2001-02-20 2002-08-27 Takeshi Yoshioka Apparatus for increasing dissolved oxygen in deep sea water
JP2003071494A (en) * 2001-09-05 2003-03-11 Yokogawa Electric Corp Apparatus and method for removing water bloom
JP2004188263A (en) * 2002-12-09 2004-07-08 Yokogawa Electric Corp Device for supplying oxygen into water
JP2004283810A (en) * 2003-01-28 2004-10-14 Matsushita Electric Works Ltd Structure of dissolution tank and fine air bubble generator equipped with the dissolution tank
JP2005193140A (en) * 2004-01-07 2005-07-21 Yokogawa Electric Corp Method and apparatus for supplying oxygen into water
JP2005262200A (en) * 2004-02-19 2005-09-29 Mitsubishi Heavy Ind Ltd Water cleaning apparatus
JP2005246351A (en) * 2004-03-08 2005-09-15 Irie Shingo Fine bubble forming apparatus for improving water quality
JP2006136759A (en) * 2004-11-10 2006-06-01 Yokogawa Electric Corp Air dissolved water feed system
JP2006136777A (en) * 2004-11-11 2006-06-01 Maruwa Biochemical Co Ltd Mixing apparatus for fine bubble
JP2006305494A (en) * 2005-04-28 2006-11-09 Ebara Corp Oxygen dissolving system
JP2006346638A (en) * 2005-06-20 2006-12-28 Aura Tec:Kk Discharging passage of pressure dissolution apparatus
WO2006137265A1 (en) * 2005-06-20 2006-12-28 Aura Tec Co., Ltd. Discharge flow passage of pressure dissolving device
JP2007021341A (en) * 2005-07-14 2007-02-01 Lwj Kk Oxygen enriched water production device, and water quality improvement device
JP2007069063A (en) * 2005-09-05 2007-03-22 Yokogawa Electric Corp Gas dissolved water supply system
JP2009160589A (en) * 2006-08-23 2009-07-23 Panasonic Electric Works Co Ltd Gas dissolving apparatus and method of manufacturing gas solution
JP2008188574A (en) * 2006-08-23 2008-08-21 Matsushita Electric Works Ltd Gas dissolving apparatus
JP2009172606A (en) * 2006-08-23 2009-08-06 Panasonic Electric Works Co Ltd Gas dissolving apparatus and method for producing gas-dissolved solution
JP2009165491A (en) * 2006-08-23 2009-07-30 Panasonic Electric Works Co Ltd Plant cultivation apparatus and plant cultivation method
JP2008114214A (en) * 2006-10-12 2008-05-22 Matsushita Electric Works Ltd Cleaning device
JP2009160587A (en) * 2006-10-12 2009-07-23 Panasonic Electric Works Co Ltd Cleaning device and cleaning method
JP2009160588A (en) * 2006-10-12 2009-07-23 Panasonic Electric Works Co Ltd Cleaning device and cleaning method
JP2009045564A (en) * 2007-08-21 2009-03-05 Yokogawa Electric Corp Oxygen dissolved water supply apparatus
JP2009195813A (en) * 2008-02-20 2009-09-03 Panasonic Electric Works Co Ltd Ozone water manufacturing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088075A (en) * 2009-10-22 2011-05-06 Ohbayashi Corp Method and system for preserving function of stone stack purifying embankment
JP2014533201A (en) * 2011-11-10 2014-12-11 ブリスフィールド マニュファクチャリング カンパニー Method and apparatus for increasing gas concentration in a liquid

Also Published As

Publication number Publication date
JP5113552B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
JP4345823B2 (en) Gas dissolving apparatus and method for producing gas dissolving liquid
JP4869922B2 (en) Fine bubble generator
JP4950915B2 (en) Ozone water production equipment
JP2009148673A (en) Membrane separation apparatus and desalination method
CA2947145C (en) Systems and methods for dissolving a gas into a liquid
JP2008307522A (en) Desalting method, desalting apparatus, and bubble generator
JP6104399B2 (en) Contaminated water purification system provided with fine bubble generating device and fine bubble generating device
WO2012122271A3 (en) Systems and methods for delivering a liquid having a desired dissolved gas concentration
JP2018034147A (en) Water feeding pump-less hydrogen water manufacturing apparatus and hydrogen water manufacturing method
WO2018148542A1 (en) Brine dispersal system
JP2010051846A (en) Gas dissolving apparatus
JP5113552B2 (en) Water purification device
JP5221978B2 (en) Biological breeding water production equipment
JP2008188502A (en) Water treatment apparatus and water treatment method
JP4843339B2 (en) Ozone water supply device
JP2007268390A (en) Bubble generating device
EP1009518A1 (en) System and method for delivery of gas-supersaturated fluids
JP2007330906A (en) Water purification apparatus and water purification method
JP5709095B2 (en) Method for removing dissolved oxygen in liquid and apparatus for removing dissolved oxygen in liquid
JP5763844B2 (en) Fluid processing apparatus and fluid processing method
JP4936189B2 (en) Carbonated water production equipment
WO2010023977A1 (en) Gas dissolver
JP5058383B2 (en) Liquid processing apparatus and liquid processing method
KR20200142964A (en) Micro bubble nozzle and micro bubble generator comprising same
JP2009195810A (en) Manufacturing method and manufacturing apparatus of gas-hydrate

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100811

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees