JP2009165491A - Plant cultivation apparatus and plant cultivation method - Google Patents

Plant cultivation apparatus and plant cultivation method Download PDF

Info

Publication number
JP2009165491A
JP2009165491A JP2009107079A JP2009107079A JP2009165491A JP 2009165491 A JP2009165491 A JP 2009165491A JP 2009107079 A JP2009107079 A JP 2009107079A JP 2009107079 A JP2009107079 A JP 2009107079A JP 2009165491 A JP2009165491 A JP 2009165491A
Authority
JP
Japan
Prior art keywords
gas
pressure
dissolving
unit
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009107079A
Other languages
Japanese (ja)
Other versions
JP5010638B2 (en
Inventor
Atsushi Tsuji
敦志 辻
Shinya Hirota
伸也 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2009107079A priority Critical patent/JP5010638B2/en
Publication of JP2009165491A publication Critical patent/JP2009165491A/en
Application granted granted Critical
Publication of JP5010638B2 publication Critical patent/JP5010638B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Hydroponics (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Accessories For Mixers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plant cultivation apparatus preventing occurrence of bubbles and supplying a gas dissolved solution in which oxygen is dissolved at a high concentration to plants. <P>SOLUTION: This plant cultivation device has a gas dissolving device (A) and a cultivation container 36 for cultivating a plant 35. The gas dissolving device (A) has a pressurizing part 1 which forcefully feeds liquid, a gas pouring part 2 which pours oxygen as gas into liquid, a pressurizing dissolving part 3 which dissolves gas in liquid by pressure caused by forcefully feeding liquid into which gas is poured, by the pressurizing part 1, and a depressurizing part 4 which sequentially depressurizes to an atmospheric pressure, a pressure of a gas dissolved solution in which gas is dissolved in the pressurizing dissolving part 3, through gradually quickening a current speed of the gas dissolved solution from an inflow side to an outflow side of the gas solution. Furthermore, the gas dissolving device A includes continuously driving each of the parts of the pressurizing part 1, the gas pouring part 2, and the gas dissolving part 3, continuously supplying the gas dissolved solution to the depressurizing part 4, and continuously ejecting the gas dissolved solution causing no bubble from an outflow side of the depressurizing part 4. The plant cultivation apparatus includes supplying the gas dissolved solution causing no bubble ejected from an outflow side of the depressurizing part, to the cultivation container 36. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、気体を高濃度で溶解した気体溶解液を利用した植物栽培装置及び植物栽培方法に関するものである。   The present invention relates to a plant cultivation apparatus and a plant cultivation method using a gas solution obtained by dissolving a gas at a high concentration.

酸素、オゾン、二酸化炭素、アルゴン等の気体を水などの液体に高濃度に溶解させた気体溶解液は、各種の分野に利用されている。例えば、環境分野では、池や貯水池等の閉鎖水域の浄化、下水処理、土壌浄化、産業排水浄化などに、農林水産分野では、溶液栽培、農業水、農業廃水処理などに、食品分野では、食品加工水、食品洗浄水、腐敗防止などに、製造産業分野では、部品洗浄などに、家庭用では酸素水として飲料、美容用などに利用されている。   A gas solution obtained by dissolving a gas such as oxygen, ozone, carbon dioxide, or argon in a liquid such as water at a high concentration is used in various fields. For example, in the environmental field, for purification of closed water areas such as ponds and reservoirs, sewage treatment, soil purification, industrial wastewater purification, etc. It is used for processing water, food washing water, anti-corruption, etc., in the manufacturing industry, for parts washing, etc., and for home use as oxygen water for beverages, cosmetics, etc.

特許文献1には、酸素を含有する気体と液体とを加圧下において混合し、液体中に気体を溶解させて高濃度酸素の気泡水を生成する気体溶解装置が提案されており、またこの気体溶解装置から供給される気泡水を、植物の栽培を行なう培地や土壌に供給することによって、高酸素濃度の水で、酸欠状態を起こすことなく多数の植物を栽培することができるようにした植物栽培装置が提案されている。   Patent Document 1 proposes a gas dissolving apparatus that mixes a gas containing oxygen and a liquid under pressure and dissolves the gas in the liquid to generate high-concentration oxygen bubble water. By supplying the bubble water supplied from the dissolving device to the culture medium and soil for plant cultivation, it became possible to grow a large number of plants without causing oxygen deficiency with high oxygen concentration water. Plant cultivation equipment has been proposed.

しかしながら、特許文献1の植物栽培装置にあっては、高酸素濃度の気泡水を供給する際に、圧力の急激な低下で液体中に気泡が発生し、酸素溶解量が減少することになるという問題がある。また気体溶解装置から培地や土壌に高酸素濃度の気泡水を供給するにあたって、このように発生した気泡が水路に付着したり、さらに植物の根に気泡が付着したりして、多数の植物の全体に酸素を行き渡らせることが難しいという問題もある。   However, in the plant cultivation apparatus of Patent Document 1, when supplying high-oxygen-bubble water, bubbles are generated in the liquid due to a rapid drop in pressure, and the amount of dissolved oxygen is reduced. There's a problem. In addition, when supplying high oxygen concentration bubbling water from the gas dissolving device to the culture medium and soil, the bubbles generated in this way adhere to the water channel, and further, bubbles adhere to the roots of the plant. There is also a problem that it is difficult to spread oxygen throughout.

気体を高濃度に溶解した気体溶解液を製造する気体溶解装置としては、密閉タンクに液体と気体を供給し、密閉タンク内に設けた邪魔板に液体を衝突させて、液体の飛沫を多量に発生させることによって、液体の飛沫に気体を溶解させるようにしたもの(特許文献2参照)、密閉タンクに液体と気体を供給し、密閉タンクを複数の室に分割して、各室の圧力差を用いて液体を他の室に噴出させることによって、噴出した液体の飛沫に気体を溶解させるようにしたもの(特許文献3参照)、などが提案されている。   As a gas dissolving device for producing a gas dissolving solution in which gas is dissolved at a high concentration, liquid and gas are supplied to a sealed tank, and the liquid collides against a baffle plate provided in the sealed tank, so that a large amount of liquid splashes are generated. By generating, gas is dissolved in liquid droplets (see Patent Document 2), liquid and gas are supplied to a sealed tank, the sealed tank is divided into a plurality of chambers, and the pressure difference between each chamber There is proposed an apparatus in which a gas is dissolved in a spray of liquid ejected by ejecting the liquid into another chamber by using (see Patent Document 3).

しかし、上記の特許文献2,3のものでは、液体の飛沫に気体を接触させることによって、気体を溶解させるようにしているために、大きな密閉タンクを必要とし、装置が大掛かりなものになるという問題があり、また気体の溶解効率も悪いという問題があった。さらに、気体を高濃度で溶解させた気体溶解液を密閉タンクから取り出す際に、圧力の急激な低下で液体中に気泡が発生し、気体溶解量が減少したりキャビテーションが生じたりするおそれがあるという問題もあった。   However, in the above-mentioned Patent Documents 2 and 3, since the gas is dissolved by bringing the gas into contact with the liquid droplets, a large sealed tank is required, and the apparatus becomes large. There was a problem and there was a problem that gas dissolution efficiency was also bad. In addition, when taking out a gas solution with a high concentration of gas dissolved from the sealed tank, there is a risk that bubbles will be generated in the liquid due to a rapid drop in pressure, resulting in a decrease in the amount of dissolved gas or cavitation. There was also a problem.

一方、気体を高濃度で溶解させた気体溶解液を、液体中に気泡が発生しない状態で吐出することができるようにした技術も提案されている。   On the other hand, a technique has also been proposed in which a gas-dissolved solution in which a gas is dissolved at a high concentration can be discharged without generating bubbles in the liquid.

例えば特許文献4では、水などの溶媒にオゾンを混合して加圧することによって溶解させた後、オゾン溶解液を細路に層流状態で通して減圧することによって、オゾンの気泡が発生しない状態でオゾン溶解液を吐出させるようにしている。しかし特許文献4においてこの細路は、直径0.5mm程度の細管の集合体からなるものであり、異物の混入によって細路に詰まりが発生し易く、廃水処理や水浄化などの用途に使用することはできないものであって、用途が限定されるという問題があった。   For example, in Patent Document 4, after ozone is dissolved in a solvent such as water and dissolved by applying pressure, the ozone solution is passed through a narrow path in a laminar flow state to reduce the pressure, so that no bubbles of ozone are generated. In this way, ozone solution is discharged. However, in Patent Document 4, this narrow path is composed of a collection of narrow pipes having a diameter of about 0.5 mm, and the narrow path is likely to be clogged due to the inclusion of foreign matter, and is used for applications such as wastewater treatment and water purification. There is a problem that the use is limited.

また特許文献5では、廃水中に処理ガスを溶存させたガス富化流体を、複数の流体通路を有するノズルを通して減圧することによって、気泡が発生しない状態でガス富化流体を吐出させるようにしている。しかし特許文献5において流体通路は、内径約150乃至450μmの毛細管などからなるものであり、上記と同様に異物の混入によって流体通路に詰りが発生し易いという問題があった。   Further, in Patent Document 5, the gas-enriched fluid in which the treatment gas is dissolved in the wastewater is decompressed through a nozzle having a plurality of fluid passages, so that the gas-enriched fluid is discharged without generating bubbles. Yes. However, in Patent Document 5, the fluid passage is made of a capillary tube having an inner diameter of about 150 to 450 μm, and there is a problem that the fluid passage is likely to be clogged due to the inclusion of foreign matter as described above.

また特許文献6は、液体を圧縮してキャビテーション核を除去した後に、液体とガスを圧縮してガス過飽和液体を形成し、ガス過飽和液体を送出系統を通して噴射させるようにしたものであり、キャビテーション核を除去しておくことによって、気泡が発生しない状態でガス過飽和液体を送出系統を通して噴射できるようにしたものである。しかし特許文献6では、このように液体を圧縮してキャビテーション核を除去するために、小さな毛管流路を使用するようにしており、上記と同様に異物の混入によって毛管流路に詰りが発生し易いという問題があった。   In Patent Document 6, the liquid is compressed to remove the cavitation nuclei, then the liquid and the gas are compressed to form a gas supersaturated liquid, and the gas supersaturated liquid is ejected through the delivery system. In this way, the gas supersaturated liquid can be jetted through the delivery system in a state where bubbles are not generated. However, in Patent Document 6, in order to compress the liquid and remove the cavitation nuclei in this way, a small capillary channel is used, and the capillary channel is clogged due to the mixing of foreign substances as described above. There was a problem that it was easy.

特開2006−304714号公報JP 2006-304714 A 特開2002−346351号公報JP 2002-346351 A 特開2003−190750号公報JP 2003-190750 A 特開2000−334283号公報JP 2000-334283 A 特表2004−505752号公報JP-T-2004-505752 特表平10−507400号公報Japanese National Patent Publication No. 10-507400

本発明は上記の点に鑑みてなされたものであり、大きなタンクを必要とすることなく効率良く気体を溶解させることができると共に、また異物が混入しても詰まるようなことなく気体溶解液の減圧を行なうことができ、気泡の発生を防止して安定に高濃度で酸素が溶解した気体溶解液を植物に供給することができる植物栽培装置及び植物栽培方法を提供することを目的とするものである。   The present invention has been made in view of the above points, and can dissolve gas efficiently without the need for a large tank, and can also be used for the gas solution without clogging even if foreign matter is mixed in. An object of the present invention is to provide a plant cultivation apparatus and a plant cultivation method that can perform decompression and supply a gas-dissolved solution in which oxygen is stably dissolved at a high concentration by preventing generation of bubbles. It is.

本発明の請求項1に係る植物栽培装置は、液体を圧送する加圧部1と、液体に気体を注入する気体注入部2と、気体が注入された液体が加圧部1で圧送されることによる加圧で液体に気体を溶解させる加圧溶解部3と、加圧溶解部3で気体を溶解させた気体溶解液の圧力を、気体溶解液の流入側から流出側に向かって気体溶解液の流速を徐々に速くして順次大気圧まで減圧する減圧部4とを備え、加圧部1、気体注入部2、加圧溶解部3の各部を連続的に運転させて、減圧部4に気体溶解液を連続的に供給し、減圧部4の流出側から気泡の発生のない気体溶解液を連続的に吐出させるようにして成る気体溶解装置Aと、植物35を栽培する栽培容器36とを備え、気体として酸素を用い、減圧部4の流出側から吐出される気泡の発生のない気体溶解液を栽培容器36に供給して成ることを特徴とするものである。   In the plant cultivation apparatus according to claim 1 of the present invention, the pressurizing unit 1 that pumps the liquid, the gas injection unit 2 that injects the gas into the liquid, and the liquid into which the gas is injected are pumped by the pressurizing unit 1. The pressure dissolution part 3 for dissolving the gas in the liquid by pressurization and the pressure of the gas solution obtained by dissolving the gas in the pressure dissolution part 3 are dissolved from the inflow side to the outflow side of the gas solution. A pressure reducing unit 4 that gradually increases the flow rate of the liquid and sequentially reduces the pressure to atmospheric pressure, and continuously operates each of the pressurizing unit 1, the gas injection unit 2, and the pressure dissolving unit 3. The gas dissolving device A is configured to continuously supply the gas dissolving solution and discharge the gas dissolving solution without generation of bubbles from the outflow side of the decompression unit 4, and the cultivation container 36 for growing the plant 35. Gas using oxygen as the gas and free of bubbles generated from the outflow side of the decompression unit 4 It is characterized in that formed by supplying a solution to the culture vessel 36.

この発明によれば、加圧によって液体に気体を溶解させるため、効率良く気体を溶解させることができると共に、加圧溶解部3を容積の大きなタンクで形成するような必要がなく、装置規模を小さくすることが可能になるものである。また気体を溶解した気体溶解液を減圧部4で減圧するため、気体溶解液に気泡が発生することを防止して安定した高濃度の気体溶解液を得ることができ、キャビテーションが生じることを防ぐことができるものである。そしてこの減圧部4は気体溶解液の圧力を流入側から流出側に向かって順次大気圧まで減圧するものであるため、細い流路などで形成する必要なく比較的太い流路などで形成することができるものであり、異物が混入しても詰まるようなことなく気体溶解液の減圧を行なうことができるものである。さらにこのような減圧部4を設けることによって、減圧部4を流れる気体溶解液のレイノルズ数が臨界レイノルズ数(Re=2320)より小さなレイノズル数である層流状態だけではなく、臨界レイノルズ数より大きなレイノルズ数である乱流状態でも対応することが可能になるものである。   According to the present invention, the gas is dissolved in the liquid by pressurization, so that the gas can be efficiently dissolved, and it is not necessary to form the pressurization / dissolution part 3 with a tank having a large volume, and the scale of the apparatus is reduced. It can be made smaller. Moreover, since the gas solution in which the gas is dissolved is decompressed by the decompression unit 4, it is possible to obtain a stable high-concentration gas solution by preventing bubbles from being generated in the gas solution, and to prevent cavitation from occurring. It is something that can be done. And since this pressure reduction part 4 pressure-reduces the pressure of a gas solution from an inflow side to an outflow side to atmospheric pressure sequentially, it is not necessary to form with a thin flow path etc., and it forms with a comparatively thick flow path etc. The gas solution can be depressurized without being clogged even if foreign matter is mixed in. Furthermore, by providing such a decompression unit 4, not only the laminar flow state where the Reynolds number of the gas solution flowing through the decompression unit 4 is smaller than the critical Reynolds number (Re = 2320), but also larger than the critical Reynolds number. It is possible to cope with a turbulent flow state having a Reynolds number.

そして、本発明の植物栽培装置は、気体溶解装置Aで生成される酸素が高濃度で溶解した気体溶解液を農業用水として植物に供給するようにしたものであり、植物に多量の酸素を供給することができ、植物の生育や発芽を促進することができると共に、密生状態でも酸欠状態が生じることなく植物を栽培することができるものである。   And the plant cultivation apparatus of this invention is made to supply a plant with the gas solution which the oxygen produced | generated with the gas dissolving apparatus A melt | dissolved with high concentration as agricultural water, and supplies a lot of oxygen to a plant It is possible to promote the growth and germination of the plant, and it is possible to cultivate the plant without producing an oxygen deficient state even in a dense state.

また請求項2の発明は、請求項1において、気体溶解装置が、加圧溶解部3で液体に溶解しない余剰気体を排出する余剰気体排出部5を備えて成ることを特徴とするものである。   The invention of claim 2 is characterized in that, in claim 1, the gas dissolving device is provided with an excess gas discharge portion 5 for discharging excess gas that is not dissolved in the liquid in the pressure dissolution portion 3. .

この発明によれば、気体の溶解飽和量以上の溶解できない余剰気体を加圧溶解部3から排出することによって、余剰気体が残留することによる加圧溶解部3内の気体と液体の比率を安定させて圧力変動を防ぐことができ、気体の溶解効率を高く維持することができるものである。   According to the present invention, the excess gas that cannot be dissolved more than the dissolution saturation amount of the gas is discharged from the pressure dissolution unit 3, thereby stabilizing the ratio of the gas and the liquid in the pressure dissolution unit 3 due to the surplus gas remaining. Thus, pressure fluctuation can be prevented, and the gas dissolution efficiency can be kept high.

また請求項3の発明は、請求項1又は2において、気体溶解装置の減圧部4を、加圧溶解部3から気体溶解液を送り出す流路6に設けられ、気体溶解液の圧力を大気圧にまで段階的に減圧する複数の圧力調整弁7で構成して成ることを特徴とするものである。   According to a third aspect of the present invention, in the first or second aspect, the decompression unit 4 of the gas dissolving device is provided in the flow path 6 for sending the gas dissolved solution from the pressurized dissolving unit 3, and the pressure of the gas dissolved solution is set to atmospheric pressure. It is characterized by comprising a plurality of pressure regulating valves 7 that reduce the pressure step by step.

この発明によれば、圧力調整弁7による圧力調整で気体溶解液の圧力を下げることができ、加圧溶解部3における圧力に応じて圧力調整弁7で減圧調整することによって、気体溶解液に気泡が発生することを安定して防ぐことができるものである。   According to this invention, the pressure of the gas solution can be reduced by adjusting the pressure with the pressure adjusting valve 7, and the pressure of the gas dissolving solution can be reduced by adjusting the pressure with the pressure adjusting valve 7 according to the pressure in the pressure dissolving unit 3. It is possible to stably prevent the generation of bubbles.

また請求項4の発明は、請求項1又は2において、気体溶解装置の減圧部4を、流路断面積と流路長さの少なくとも一方の調整で気体溶解液の圧力を大気圧にまで減圧するように形成された、加圧溶解部3から気体溶解液を送り出す流路6で構成して成ることを特徴とするものである。   According to a fourth aspect of the present invention, in the first or second aspect, the decompression unit 4 of the gas dissolving device is configured to reduce the pressure of the gas solution to atmospheric pressure by adjusting at least one of the channel cross-sectional area and the channel length. It is characterized by comprising the flow path 6 which sends out the gas solution from the pressure dissolution part 3 formed so that it may do.

この発明によれば、加圧溶解部3から気体溶解液を送り出す流路6の流路断面積と流路長によって、気体溶解液の圧力を下げることができ、装置の構造を簡単なものに形成することができるものである。   According to the present invention, the pressure of the gas solution can be lowered by the channel cross-sectional area and the channel length of the channel 6 for sending the gas solution from the pressure dissolution unit 3, and the structure of the apparatus can be simplified. It can be formed.

また請求項5の発明は、請求項3又は4において、気体溶解装置の減圧部4は、一つの流路で形成されていることを特徴とするものである。   The invention of claim 5 is characterized in that, in claim 3 or 4, the decompression section 4 of the gas dissolving apparatus is formed by a single flow path.

この発明によれば、複数の流路を設けて減圧部4を形成する場合のような、装置構成が複雑になることがないものである。   According to the present invention, the apparatus configuration does not become complicated as in the case where the pressure reducing unit 4 is formed by providing a plurality of flow paths.

また請求項6の発明は、請求項1乃至5のいずれかにおいて、気体溶解装置が、加圧溶解部3から気体溶解液を送り出す流路6の圧力損失とこの流路6に付加した延長流路8の圧力損失の和が、加圧部1で圧送される液体と気体の押し込み圧によって加圧溶解部3内で液体と気体を加圧するのに必要な圧力となるように、流路6に延長流路8を付加して成ることを特徴とするものである。   The invention of claim 6 is the extended flow added to the flow path 6 and the pressure loss of the flow path 6 in which the gas dissolving device sends out the gas dissolved liquid from the pressure dissolving section 3 in any one of the first to fifth aspects. The flow path 6 is such that the sum of the pressure losses in the path 8 becomes a pressure necessary to pressurize the liquid and gas in the pressure dissolution section 3 by the pressure of the liquid and gas pumped by the pressure section 1. And an extension channel 8 is added to the above.

この発明によれば、流路6に延長流路8を付加することによって、絞り弁を用いる必要なく、加圧部1からの押し込み圧で加圧溶解部3内の圧力を確保することができ、この圧力で液体に気体を溶解させることができるものである。   According to the present invention, by adding the extension flow path 8 to the flow path 6, it is possible to secure the pressure in the pressurizing and dissolving section 3 with the pushing pressure from the pressurizing section 1 without using a throttle valve. The gas can be dissolved in the liquid at this pressure.

また請求項7の発明は、請求項1乃至6のいずれかにおいて、気体溶解装置が、加圧溶解部3から気体溶解液を送り出す流路6に、気体溶解液中の気体を微細気泡として発生させるための微細気泡抽出流路9を設けて成ることを特徴とするものである。   The invention of claim 7 is the gas generating apparatus according to any one of claims 1 to 6, wherein the gas dissolving device generates gas in the gas dissolving liquid as fine bubbles in the flow path 6 for sending the gas dissolving liquid from the pressure dissolving section 3. It is characterized in that a fine bubble extraction channel 9 is provided.

この発明によれば、気体を高濃度に溶解した気体溶解液を取り出す他に、気体溶解液から微細気泡を発生させるようにすることもできるものである。   According to the present invention, in addition to taking out a gas solution in which a gas is dissolved at a high concentration, it is also possible to generate fine bubbles from the gas solution.

また請求項8の発明は、請求項1乃至7のいずれかにおいて、気体溶解装置が、気体注入部2に余剰気体排出部5を連結部10で連結して成ることを特徴とするものである。   The invention of claim 8 is characterized in that, in any one of claims 1 to 7, the gas dissolving apparatus is formed by connecting the surplus gas discharge part 5 to the gas injection part 2 by the connecting part 10. .

この発明によれば、加圧溶解部3で液体に溶解しない余剰気体を気体注入部2で再度液体に混合することができ、余剰気体を大気に放出して捨てる必要がなくなるものである。   According to the present invention, the surplus gas that does not dissolve in the liquid in the pressure dissolving section 3 can be mixed with the liquid again in the gas injection section 2, and it is not necessary to discharge the surplus gas to the atmosphere and throw it away.

また請求項9の発明は、気体溶解装置の加圧部1を、気体注入部2に水を圧送する水道配管11で形成して成ることを特徴とするものである。   The invention of claim 9 is characterized in that the pressurizing section 1 of the gas dissolving apparatus is formed by a water pipe 11 for pumping water to the gas injection section 2.

この発明によれば、所定の圧力で水道水が供給される水道配管19を利用して気体注入部2に水を圧送することができ、気体注入部2に水を圧送するための動力が不要になるものである。   According to the present invention, water can be pumped to the gas injection part 2 using the water pipe 19 to which tap water is supplied at a predetermined pressure, and power for pumping water to the gas injection part 2 is unnecessary. It will be.

請求項10の植物栽培方法の発明は、液体を圧送し、圧送された液体に気体として酸素を注入し、気体を注入された液体が圧送されることによる加圧で液体に気体を溶解し、気体が溶解された液体を流速が徐々に速くなるように送りながらその圧力を順次大気圧まで減圧することにより、気泡の発生のない気体溶解液を連続的に生成し、当該気体溶解液を植物35に供給することを特徴とするものである。   Invention of the plant cultivation method of claim 10 pumps a liquid, injects oxygen as a gas into the pumped liquid, dissolves the gas in the liquid by pressurization by pumping the liquid injected with the gas, By continuously reducing the pressure to atmospheric pressure while sending the liquid in which the gas is dissolved so that the flow rate is gradually increased, a gas solution without generation of bubbles is continuously generated. 35.

本発明の植物栽培方法は、酸素が高濃度で溶解した気体溶解液を農業用水として植物に供給するようにしたものであり、植物に多量の酸素を供給することができ、植物の生育や発芽を促進することができると共に、密生状態でも酸欠状態が生じることなく植物を栽培することができるものである。   The plant cultivation method of the present invention is such that a gas-dissolved solution in which oxygen is dissolved at a high concentration is supplied to plants as agricultural water, and a large amount of oxygen can be supplied to plants, so that the growth and germination of plants can be achieved. In addition, the plant can be cultivated without causing an oxygen deficient state even in a dense state.

本発明によれば、加圧によって液体に気体を溶解させるようにしているので、効率良く気体を溶解させることができると共に、加圧溶解部3を容積の大きなタンクで形成するような必要がなく、装置規模を小さくすることが可能になるものである。また気体を溶解した気体溶解液を減圧部4で減圧するようにしているので、気体溶解液に気泡が発生することを防止して安定した高濃度の気体溶解液を得ることができるものであり、キャビテーションが生じることを防ぐことができるものである。さらに減圧部4は気体溶解液の圧力を流入側から流出側に向かって順次大気圧まで減圧するものであって、比較的太い流路などで減圧部4を形成することができるものであり、異物が混入しても詰まるようなことなく気体溶解液の減圧を行なうことができるものである。そして、気体溶解装置で生成される酸素が高濃度で溶解した気体溶解液を農業用水として植物に供給することにより、植物に多量の酸素を供給することができ、植物の生育や発芽を促進することができると共に、密生状態でも酸欠状態が生じることなく植物を栽培することができるものである。   According to the present invention, the gas is dissolved in the liquid by pressurization, so that the gas can be dissolved efficiently and there is no need to form the pressurization / dissolution part 3 with a large volume tank. Thus, the apparatus scale can be reduced. In addition, since the gas solution obtained by dissolving the gas is decompressed by the decompression unit 4, it is possible to obtain a stable high-concentration gas solution by preventing bubbles from being generated in the gas solution. It is possible to prevent cavitation from occurring. Furthermore, the decompression unit 4 is for decompressing the pressure of the gas solution sequentially from the inflow side to the outflow side to the atmospheric pressure, and the decompression unit 4 can be formed with a relatively thick channel or the like. The gas solution can be depressurized without clogging even if foreign matter is mixed. A large amount of oxygen can be supplied to the plant by promoting the growth and germination of the plant by supplying the plant with a gas-dissolved solution in which oxygen produced by the gas-dissolving device is dissolved at a high concentration as agricultural water. In addition, the plant can be cultivated without producing an oxygen deficiency even in a dense state.

気体溶解装置の一例を示す概略図である。It is the schematic which shows an example of a gas dissolving apparatus. 気体溶解装置の他の一例を示す一部の概略図である。It is a partial schematic diagram showing another example of a gas dissolving device. 気体溶解装置の他の一例を示す一部の概略図である。It is a partial schematic diagram showing another example of a gas dissolving device. 気体溶解装置の他の一例を示すものであり、(a)(b)(c)はそれぞれ一部の概略図である。It shows another example of the gas dissolving apparatus, and (a), (b), and (c) are partial schematic diagrams, respectively. 気体溶解装置の他の一例を示す一部の概略図である。It is a partial schematic diagram showing another example of a gas dissolving device. 気体溶解装置の他の一例を示す一部の概略図である。It is a partial schematic diagram showing another example of a gas dissolving device. (a)(b)は気体溶解装置の一例を示す斜視図である。(A) (b) is a perspective view which shows an example of a gas dissolving apparatus. 気体溶解装置の他の一例を示すものであり、(a)は概略図、(b)は微細気泡発生ノズルの斜視図である。It shows another example of a gas dissolving device, (a) is a schematic diagram, (b) is a perspective view of a fine bubble generating nozzle. 気体溶解装置の他の一例を示す概略図である。It is the schematic which shows another example of a gas dissolving apparatus. 0.5MPaの圧力で空気を水に溶解させる場合の、水温と溶存酸素濃度(DO)との関係を示すグラフである。It is a graph which shows the relationship between water temperature and dissolved oxygen concentration (DO) in the case of dissolving air in water at a pressure of 0.5 MPa. 本発明の植物栽培装置の一例を示すものであり、(a)は水耕栽培用の植物栽培装置の概略図、(b)は液肥栽培用の植物栽培装置の概略図である。An example of the plant cultivation apparatus of this invention is shown, (a) is the schematic of the plant cultivation apparatus for hydroponics, (b) is the schematic of the plant cultivation apparatus for liquid manure cultivation.

以下、本発明を実施するための形態を説明する。   Hereinafter, modes for carrying out the present invention will be described.

図1は気体溶解装置の一例を示すものであり、加圧溶解部3の流出側と流入側にそれぞれ配管で形成される流路15,6が接続してある。流入側の流路15は一端を加圧溶解部3に、他端を水などの液体16を貯留する液体槽17に接続してあり、この流路15の途中に加圧部1が設けてある。加圧部1は、例えば、液体槽17から液体16を吸い上げて加圧溶解部3に圧送するポンプ18などで形成されるものである。   FIG. 1 shows an example of a gas dissolving device, in which flow paths 15 and 6 formed by piping are respectively connected to the outflow side and the inflow side of the pressure dissolution unit 3. One end of the flow path 15 on the inflow side is connected to the pressure dissolution unit 3, and the other end is connected to a liquid tank 17 that stores a liquid 16 such as water, and the pressure unit 1 is provided in the middle of the flow path 15. is there. The pressurizing unit 1 is formed by, for example, a pump 18 that sucks the liquid 16 from the liquid tank 17 and feeds it to the pressurizing and dissolving unit 3.

またこの流入側の流路15に気体注入部2が接続してある。気体注入部2は気体を流路15に供給して注入するためのものであり、例えば気体として空気を供給する場合には、一端を大気中に開放させた管体の他端を流路15に接続して気体注入部2を形成するようにしてある。あるいは気体として酸素、オゾン、水素、窒素、二酸化炭素、アルゴン等を供給する場合には、これらの気体を封入したボンベなどを流路15に接続して気体注入部2を形成するようにしてある。流路15への気体注入部2の接続位置は、加圧溶解部3より上流側の位置であればよく、図1のように加圧部1より上流側の流路15に接続するようにしても、あるいは加圧部1より下流側の流路15に接続するようにしてもいずれでもよい。   Further, the gas injection part 2 is connected to the flow path 15 on the inflow side. The gas injection part 2 is for supplying and injecting gas into the flow path 15. For example, when supplying air as a gas, the other end of the tube whose one end is opened to the atmosphere is connected to the flow path 15. The gas injection part 2 is formed in connection with Alternatively, when oxygen, ozone, hydrogen, nitrogen, carbon dioxide, argon, or the like is supplied as a gas, a cylinder filled with these gases is connected to the flow path 15 to form the gas injection part 2. . The connection position of the gas injection part 2 to the flow path 15 may be a position upstream of the pressure dissolving part 3 and is connected to the flow path 15 upstream of the pressure part 1 as shown in FIG. Alternatively, it may be either connected to the flow path 15 on the downstream side of the pressurizing unit 1.

一方、流出側の流路6は一端を加圧溶解部3に接続し、他端は気体溶解液回収槽(図示省略)などに接続して、大気に開放してある。またこの流路6には減圧部4が設けてある。さらに、加圧溶解部3には余剰気体排出部5が設けてある。余剰気体排出部5は、例えば、一端を大気に開放した管体を、加圧溶解部3内の気圧が所定の圧力以上になると開口するガス抜き弁などを介して加圧溶解部3に接続することによって、形成してある。   On the other hand, one end of the flow path 6 on the outflow side is connected to the pressure dissolution unit 3 and the other end is connected to a gas solution recovery tank (not shown) or the like, and is open to the atmosphere. The flow path 6 is provided with a decompression section 4. Furthermore, the pressure dissolution unit 3 is provided with an excess gas discharge unit 5. For example, the surplus gas discharge unit 5 connects a tubular body having one end opened to the atmosphere via a degassing valve or the like that opens when the pressure in the pressure dissolution unit 3 exceeds a predetermined pressure. It is formed by doing.

上記のように形成される気体溶解装置にあって、ポンプ18で形成される加圧部1を作動させ、液体槽17から液体を吸い上げ、流路15を通して加圧溶解部3へ液体を圧送して供給する。このように流路15内を液体が流れる際に、気体注入部2から気体が流路15内に吸引されて液体に気体が注入される。そしてこのように気体が注入された液体を加圧部1で加圧溶解部3へ圧送して送り込むことによって、この圧送による押し込み力で加圧溶解部3内において液体と気体に圧力が加わって高圧になる。このように加圧溶解部3内で液体と気体を加圧することによって、液体に気体を効率高く飽和量以上に溶解させることができ、液体に気体が高濃度で溶解した気体溶解液を得ることができるものである。図10は本発明の気体溶解装置を用いて、0.5MPaの圧力で空気を水に溶解させる場合の、水温と溶存酸素濃度(DO)との関係を示すグラフである。このグラフにみられるように、水温27℃の水に空気を混合して加圧溶解部3内で0.5MPaの圧力を加圧すると、溶存酸素濃度35mg/Lの高濃度酸素溶解水を造ることができるものである。   In the gas dissolving apparatus formed as described above, the pressurizing unit 1 formed by the pump 18 is operated, the liquid is sucked from the liquid tank 17, and the liquid is pumped to the pressurizing and dissolving unit 3 through the flow path 15. And supply. As described above, when the liquid flows in the flow channel 15, the gas is sucked into the flow channel 15 from the gas injection unit 2, and the gas is injected into the liquid. Then, the liquid into which the gas has been injected in this manner is sent by being sent to the pressurizing / dissolving unit 3 by the pressurizing unit 1, and pressure is applied to the liquid and the gas in the pressurizing / dissolving unit 3 by the pushing force by the pumping. Become high pressure. Thus, by pressurizing the liquid and the gas in the pressurizing / dissolving unit 3, the gas can be efficiently dissolved in the liquid to a saturation amount or more, and a gas-dissolved solution in which the gas is dissolved at a high concentration in the liquid is obtained. It is something that can be done. FIG. 10 is a graph showing the relationship between water temperature and dissolved oxygen concentration (DO) when air is dissolved in water at a pressure of 0.5 MPa using the gas dissolving apparatus of the present invention. As can be seen from this graph, when air is mixed with water having a water temperature of 27 ° C. and a pressure of 0.5 MPa is applied in the pressurizing / dissolving unit 3, high-concentration oxygen-dissolved water having a dissolved oxygen concentration of 35 mg / L is produced. It is something that can be done.

また、上記のように加圧溶解部3内において液体と気体を加圧して強制的に効率良く溶解させ、高濃度で気体が溶解した気体溶解液を短時間で生成することができるため、加圧溶解部3内で生成された気体溶解液を流路6を通して送り出しながら、加圧溶解部3内で液体に気体を溶解させるようにすることができるものである。従って、加圧溶解部3をタンクのような容積の大きなもので形成する必要がなくなるものであり、装置規模を小さくして装置のコストを低減することが可能になるものである。   Further, as described above, the liquid and the gas are pressurized in the pressure dissolution unit 3 to forcibly dissolve efficiently, and a gas solution in which the gas is dissolved at a high concentration can be generated in a short time. The gas can be dissolved in the liquid in the pressure dissolving section 3 while the gas dissolving liquid generated in the pressure dissolving section 3 is sent out through the flow path 6. Therefore, it is not necessary to form the pressure dissolving part 3 with a large volume such as a tank, and the apparatus scale can be reduced and the cost of the apparatus can be reduced.

ここで、気体の全量が液体に溶解しないと、加圧溶解部3内で液体に溶解しない余剰気体が生じるが、加圧溶解部3に余剰気体排出部5を設け、気体の溶解飽和量以上の溶解できない余剰気体を加圧溶解部3から排出することによって、余剰気体が残留することによる加圧溶解部3内の気体と液体の比率を安定させて圧力変動を防ぐことができ、気体の溶解効率を高く維持することができるものである。   Here, if the total amount of gas does not dissolve in the liquid, surplus gas that does not dissolve in the liquid is generated in the pressurized dissolution unit 3. By discharging the excess gas that cannot be dissolved from the pressure dissolution unit 3, the ratio of the gas and the liquid in the pressure dissolution unit 3 due to the surplus gas remaining can be stabilized and the pressure fluctuation can be prevented. The dissolution efficiency can be kept high.

そして、上記のように加圧溶解部3で生成された気体溶解液は、流路6を通して送り出されるが、加圧溶解部3内で気体溶解液は高圧に加圧された状態にあるので、そのまま大気圧下にある外部に排出されると、急激な圧力低下によって、気体溶解液中に気泡が発生するおそれがあり、気体溶解量が減少し、またキャビテーションが発生することがある。このために本発明では、流路6に減圧部4を設け、加圧溶解部3内で加圧された状態の気体溶解液を流路6を通して送り出す際に、流速が徐々に速くなるように送りながら減圧部4で大気圧まで気泡を発生させることなく減圧をした後に吐出するようにしてある。   And although the gas solution produced | generated in the pressurization melt | dissolution part 3 as mentioned above is sent out through the flow path 6, since the gas solution is in the state pressurized by the high pressure in the pressurization melt | dissolution part 3, When discharged to the outside under atmospheric pressure as it is, there is a risk that bubbles will be generated in the gas solution due to a rapid pressure drop, and the amount of dissolved gas may be reduced and cavitation may occur. For this reason, in the present invention, when the pressure reducing part 4 is provided in the flow path 6 and the gas solution in a state pressurized in the pressure dissolving part 3 is sent out through the flow path 6, the flow rate is gradually increased. While being fed, the pressure reducing unit 4 discharges the pressure without reducing the pressure to atmospheric pressure without generating bubbles.

ここで、加圧溶解部3内で生成されるのと同じ濃度の気体溶解液について、加圧溶解部3内で加圧されている圧力と同じ圧力から大気圧まで減圧する際に、気泡が発生しない減圧度を、予め計算や測定で求めておき、減圧部4をこの予め求めた減圧度で、気体溶解液が流入側する側から流出側に向かって、気体溶解液の圧力を段階的に、あるいは連続的に、徐々に大気圧まで減圧できるように設定してある。従って、加圧溶解部3内で加圧された気体溶解液を、流速が徐々に速くなるように送りながら減圧部4において気泡が発生しない減圧度で徐々に大気圧まで減圧した後に、流路6の先端から吐出することによって、気体溶解液に気泡が発生することなく気体溶解液を吐出することができるものであり、加圧溶解部3で飽和量以上に気体が溶解された気体溶解液を、安定した高濃度の状態のまま取り出して利用することが可能になるものである。   Here, when the gas solution having the same concentration as that generated in the pressure dissolution unit 3 is depressurized from the same pressure as that pressurized in the pressure dissolution unit 3 to the atmospheric pressure, bubbles are generated. The degree of decompression that does not occur is obtained in advance by calculation or measurement, and the pressure of the gas solution is stepwise from the inflow side to the outflow side by the decompression unit 4 at the predetermined degree of decompression. Or continuously or gradually so that the pressure can be reduced to atmospheric pressure. Accordingly, after the gas dissolved liquid pressurized in the pressure dissolving section 3 is sent so that the flow rate is gradually increased, the pressure reducing section 4 gradually depressurizes to atmospheric pressure at a degree of decompression that does not generate bubbles, and then the flow path By discharging from the tip of gas 6, the gas solution can be discharged without generating bubbles in the gas solution, and the gas solution in which the gas is dissolved at a saturation amount or more in the pressure dissolution unit 3 Can be taken out and used in a stable high concentration state.

図2は、減圧部4の具体的な実施の形態の一例を示すものであり、加圧溶解部3に接続される流路6に、液体の流れ方向に沿って複数の圧力調整弁7(7a,7b,7c)を設けることによって、減圧部4を形成するようにしてある。このように減圧部4を複数の圧力調整弁7を備えて形成することによって、気泡が発生しない減圧度で気体溶解液の圧力を段階的に徐々に下げることができるものである。   FIG. 2 shows an example of a specific embodiment of the decompression unit 4, and a plurality of pressure regulating valves 7 (along the flow direction of the liquid are provided in the flow path 6 connected to the pressure dissolution unit 3. 7a, 7b, 7c) is provided to form the decompression section 4. Thus, by forming the decompression unit 4 with the plurality of pressure regulating valves 7, the pressure of the gas solution can be gradually reduced step by step with a degree of decompression that does not generate bubbles.

各圧力調整弁7a,7b,7cは、気体溶解液に気泡発生が生じない減圧度で減圧するように設定されているものであり、この減圧度は予め計算や測定で求めた数値に設定されるものである。例えば、加圧溶解部3から流路6に送り出された気体溶解液の加圧圧力が0.5MPaであるとき、気泡が発生しない減圧量が0.12MPaであると測定によって判明しているとすると、圧力調整弁7aで気体溶解液の圧力を0.12MPa減圧して、0.38MPaに落とす。また気体溶解液の加圧圧力が0.38MPaであるとき、気泡が発生しない減圧量が0.16MPaであると測定によって判明しているとすると、次の圧力調整弁7bで気体溶解液の圧力を0.16MPa減圧して、0.22MPaに落とす。さらに気体溶解液の加圧圧力が0.22MPaであるとき、気泡が発生しない減圧量が0.22MPa以上であると測定によって判明しているとすると、次の圧力調整弁7cで気体溶解液の圧力を0.22MPa減圧して、加圧圧力を0MPaに落とし、大気圧まで減圧することができるものである。尚、圧力調整弁7による減圧量は、液体の種類、温度、気体の種類、溶解濃度、加圧溶解部3内の圧力、流路6の径などに応じて変動するものであり、装置毎に、計算や測定をして、適宜設定されるものである。   Each pressure regulating valve 7a, 7b, 7c is set to depressurize at a degree of decompression that does not generate bubbles in the gas solution, and this degree of decompression is set to a numerical value obtained in advance by calculation or measurement. Is. For example, when the pressurization pressure of the gas solution sent from the pressurization and dissolution section 3 to the flow path 6 is 0.5 MPa, it is found by measurement that the amount of reduced pressure at which no bubbles are generated is 0.12 MPa. Then, the pressure of the gas solution is reduced by 0.12 MPa by the pressure adjusting valve 7a and dropped to 0.38 MPa. Further, when the pressure of the gas solution is 0.38 MPa, if it is found by measurement that the amount of reduced pressure at which bubbles are not generated is 0.16 MPa, the pressure of the gas solution is determined by the next pressure regulating valve 7b. Is reduced to 0.12 MPa and reduced to 0.22 MPa. Furthermore, when the pressure of the gas solution is 0.22 MPa, if it is found by measurement that the amount of reduced pressure at which bubbles are not generated is 0.22 MPa or more, the next pressure regulating valve 7c The pressure can be reduced to 0.22 MPa, the applied pressure can be reduced to 0 MPa, and the pressure can be reduced to atmospheric pressure. Note that the amount of pressure reduction by the pressure regulating valve 7 varies depending on the type of liquid, temperature, type of gas, dissolution concentration, pressure in the pressure dissolution unit 3, the diameter of the flow path 6, and the like. In addition, it is set as appropriate by performing calculations and measurements.

ここで、上記の図1や図2の気体溶解装置では、加圧部1をポンプ18で形成し、加圧溶解部3をタンクほどの大きな容積は必要ではないにしても一定の容積を有する容器で形成したが、図3に示すように、加圧部1を所定の水圧で水が供給される水道配管19で形成することもできる。このように水道配管19は所定の水圧で水を供給するので、水を加圧溶解部3に送り込むことによる押し込み圧で、加圧溶解部3内を加圧することができるものである。また、水道配管19の蛇口などを流路6に接続すると、水道配管19から水を流路6に送り込むことによる押し込み圧で、流路6内を加圧することができるものであり、流路6自体で加圧溶解部3を形成するようにすることもできる。   Here, in the gas dissolving apparatus shown in FIGS. 1 and 2, the pressurizing unit 1 is formed by the pump 18, and the pressurizing / dissolving unit 3 has a constant volume even if the volume as large as the tank is not necessary. Although formed with a container, as shown in FIG. 3, the pressurizing unit 1 can be formed with a water pipe 19 to which water is supplied at a predetermined water pressure. Thus, since the water supply pipe 19 supplies water at a predetermined water pressure, the inside of the pressurizing / dissolving unit 3 can be pressurized with a pushing pressure by feeding water into the pressurizing / dissolving unit 3. Further, when a faucet or the like of the water supply pipe 19 is connected to the flow path 6, the inside of the flow path 6 can be pressurized with a pushing pressure by feeding water from the water supply pipe 19 into the flow path 6. The pressure dissolving part 3 can also be formed by itself.

図3は、水道配管19で加圧部1を形成し、水道配管19に接続される流路6で加圧溶解部3を形成するようにした気体溶解装置を示すものであり、流路6のうち、流路6に接続した気体注入部2と、流路6に設けた圧力調整弁7からなる減圧部4との間の部分が、加圧溶解部3となるものである。流路6で形成される加圧溶解部3には、必要に応じて余剰気体排出部5を設ければよい。従ってこのものでは、ポンプ18などの動力が不要になり、また容器などを用いて加圧溶解部3を形成する必要もなくなるので、装置の製造コストを一層低減することができるものである。   FIG. 3 shows a gas dissolving apparatus in which the pressurizing part 1 is formed by the water pipe 19 and the pressure dissolving part 3 is formed by the flow path 6 connected to the water pipe 19. Among them, the portion between the gas injection part 2 connected to the flow path 6 and the pressure reducing part 4 including the pressure regulating valve 7 provided in the flow path 6 is the pressure dissolution part 3. What is necessary is just to provide the surplus gas discharge part 5 in the pressurization melt | dissolution part 3 formed with the flow path 6 as needed. Accordingly, in this case, the power of the pump 18 or the like is not necessary, and it is not necessary to form the pressure dissolving part 3 using a container or the like, so that the manufacturing cost of the apparatus can be further reduced.

図4は、減圧部4の具体的な実施の形態の他の一例を示すものであり、加圧溶解部3に接続される流路6を流路断面積が異なる複数の管体20a,20b,20cを備えて形成し、この流路断面積の異なる複数の管体20a,20b,20cで減圧部4が形成されるようにしてある。   FIG. 4 shows another example of the specific embodiment of the decompression unit 4, and a plurality of tubes 20 a and 20 b having different channel cross-sectional areas in the channel 6 connected to the pressure dissolution unit 3. 20c, and the decompression section 4 is formed by a plurality of pipe bodies 20a, 20b, 20c having different channel cross-sectional areas.

図4(a)の実施の形態では、流路断面積が異なる、つまり内径の異なる複数の管体20a,20b,20cを一体に連ねるようにしてあり、気体溶解液の流れの上流側から下流側へと、徐々に管体20a,20b,20cの径が小さくなるようにしてある。また図4(b)の実施の形態では、内径の異なる複数の管体20a,20b,20cをレジューサ21を介して接続して連ねるようにしてあり、気体溶解液の流れの上流側から下流側へと、徐々に管体20a,20b,20cの径が小さくなるようにしてある。さらに図4(c)の実施の形態では、気体溶解液の流れの上流側から下流側へと連続的に径が小さくなる管体20a,20b,20cを一体に連ねるようにしてある。   In the embodiment of FIG. 4 (a), a plurality of tubes 20a, 20b, and 20c having different flow path cross-sectional areas, that is, different inner diameters, are integrally connected, and downstream from the upstream side of the gas solution flow. The diameters of the tubular bodies 20a, 20b, and 20c are gradually reduced toward the side. In the embodiment of FIG. 4B, a plurality of tubes 20a, 20b, and 20c having different inner diameters are connected and connected via a reducer 21, and the upstream side of the flow of the gas solution is downstream. The diameters of the pipe bodies 20a, 20b, and 20c are gradually reduced. Further, in the embodiment shown in FIG. 4C, the tubular bodies 20a, 20b, and 20c whose diameter continuously decreases from the upstream side to the downstream side of the flow of the gas solution are integrally connected.

この図4のものにあって、各管体20a,20b,20cの内径はφd>φd>φdであるので、各管体20a,20b,20c内の気体溶解液の流速はV<V<Vとなり、各管体20a,20b,20c内の気体溶解液の圧力はP>P>Pとなる。従って、加圧溶解部3から送り出される気体溶解液の圧力Pを気泡が発生しない減圧度で、図4(a)(b)のものでは段階的に減圧して、また図4(c)のものでは連続的に減圧して、Pの大気圧まで徐々に下げることができるものである。 In FIG. 4, the inner diameters of the tubes 20a, 20b, and 20c are φd 1 > φd 2 > φd 3 , so the flow rate of the gas solution in each of the tubes 20a, 20b, and 20c is V 1. <V 2 <V 3 , and the pressure of the gas solution in each of the tubes 20a, 20b, 20c is P 1 > P 2 > P 3 . Accordingly, the pressure P 1 of the gas dissolved solution fed from the pressure dissolution unit 3 at a reduced pressure of bubbles does not occur, FIGS. 4 (a) those in is stepwise reduced pressure (b), and FIG. 4 (c) intended are those which can be lowered continuously reduced pressure, gradually to atmospheric pressure P 3.

図5は、減圧部4の具体的な実施の形態の他の一例を示すものであり、加圧溶解部3に接続される流路6を通して気体溶解液を排出する際に、流路6内を気体溶解液が流れる際の圧力損失によって、気体溶解液に気泡が発生しない減圧速度で気体溶解液の圧力を徐々に連続的に低下させ、気体溶解液の圧力を大気圧にまで低下させるようにしてある。従って図5の実施の形態では、加圧溶解部3内での圧力がPの気体溶解液を、流路6内を通過させる際にP〜Pn−1へと、気体溶解液に気泡が発生しない減圧速度で徐々に連続的に圧力を低下させ(P>P>Pn−1)、流路6の終端では気体溶解液の圧力Pが大気圧にまで低下するように、流路6の流路断面積と管路長Lを設定するようにしてあり、このような流路断面積と管路長さLを有する流路6によって減圧部4が形成されるものである。 FIG. 5 shows another example of the specific embodiment of the decompression unit 4. When the gas solution is discharged through the channel 6 connected to the pressure dissolution unit 3, The pressure loss when the gas solution flows through the gas solution gradually decreases the pressure of the gas solution at a reduced pressure rate that does not generate bubbles in the gas solution, and the pressure of the gas solution decreases to atmospheric pressure. It is. Therefore, in the embodiment of FIG. 5, when the gas solution having the pressure P 1 in the pressure dissolving unit 3 is passed through the flow path 6, the gas solution is changed to P 2 to P n−1 . The pressure is gradually and continuously reduced at a decompression speed at which no bubbles are generated (P 1 > P 2 > P n-1 ), and the pressure P n of the gas solution is reduced to atmospheric pressure at the end of the flow path 6. In addition, the flow path cross-sectional area and the pipe length L of the flow path 6 are set, and the decompression section 4 is formed by the flow path 6 having such a flow path cross-sectional area and the pipe length L. It is.

この管路長さLは、次の式から設定することができる。すなわち、
流体の関係式P=λ・(L/d)・(v/2g)
[Pは加圧溶解部3内の圧力、λは管摩擦係数、dは内径、vは流速、gは加速度]
から、L=(P・d・2g)/(λ・v)を導くことができ、この式から計算して流路6の管路長さLを求めることができるものである。このように、流路6の管路長さLを所定長さに形成するだけで減圧部4を形成することができるものであり、気体溶解装置の構造をより簡単なものに形成することができるものである。
The pipe length L can be set from the following equation. That is,
Fluid relational expression P = λ · (L / d) · (v 2 / 2g)
[P is the pressure in the pressure dissolving section 3, λ is the coefficient of friction of the tube, d is the inner diameter, v is the flow velocity, and g is the acceleration]
From this, L = (P · d · 2g) / (λ · v 2 ) can be derived, and the pipe length L of the flow path 6 can be obtained by calculation from this equation. Thus, the decompression part 4 can be formed only by forming the pipe length L of the flow path 6 to a predetermined length, and the structure of the gas dissolving apparatus can be made simpler. It can be done.

上記のように本発明では加圧部1によって液体と気体を加圧溶解部3に圧送し、この際の押し込み圧によって加圧溶解部3内で液体と気体を加圧して気体を溶解させるようにしているが、この押し込み圧を受けて加圧溶解部3内に必要な圧力が発生するようにする必要がある。このように加圧部1からの押し込み圧を受ける圧力を確保するために、加圧溶解部3の流出側の流路6に絞り弁などの絞り部を設けることが考えられるが、このように絞り部を流路6に設けると、加圧溶解部3で生成された気体溶解液を流路6に送り出して排出する際に、絞り部の前後で大きな圧力差が生じ、気体溶解液が急激に減圧されることになり、気体溶解液に気泡が発生するおそれがある。   As described above, in the present invention, the liquid and the gas are pumped to the pressure-dissolving unit 3 by the pressurizing unit 1, and the liquid and the gas are pressurized in the pressurizing-dissolving unit 3 by the pressing pressure at this time to dissolve the gas. However, it is necessary to generate a necessary pressure in the pressurizing / dissolving portion 3 by receiving the pushing pressure. In order to secure the pressure that receives the indentation pressure from the pressurizing unit 1 as described above, it is conceivable to provide a throttle unit such as a throttle valve in the flow path 6 on the outflow side of the pressurizing and dissolving unit 3. When the throttle part is provided in the flow path 6, when the gas solution generated in the pressure dissolving part 3 is sent out to the flow path 6 and discharged, a large pressure difference occurs before and after the throttle part, and the gas solution rapidly There is a risk that bubbles will be generated in the gas solution.

そこで図6の気体溶解装置では、流路6の圧力損失を利用して、流路6に絞り部を設ける必要なく、押し込み圧を受ける圧力を確保するようにしている。このとき、上記各実施形態の流路6の長さでは、流路6の圧力損失で押し込み圧を受ける圧力を確保することは難しいので、流路6の加圧溶解部3と反対側の端部に延長流路8を付加するようにしてある。すなわち、流路6の減圧部4も含めた全体の圧力損失を算出し、加圧部1からの押し込み圧によって加圧溶解部3内で液体と気体を加圧するのに必要な圧力と、この流路6の圧力損失との差を算出し、さらにこの差の圧力損失が生じる管路の長さを上記の式から算出して、この管路長さの延長流路8を流路6に付加するようにしてある。このように、流路6の圧力損失と延長流路8の圧力損失の和が、加圧部1で圧送される液体と気体の押し込み圧によって加圧溶解部3内で液体と気体を加圧するのに必要な圧力となるように、流路6に延長流路8を付加することによって、絞り弁などの絞り部を用いる必要なく、加圧部1からの押し込み圧で加圧溶解部3内の加圧力を確保して、液体に気体を溶解させることができるものである。   Therefore, in the gas dissolving apparatus shown in FIG. 6, the pressure loss of the flow path 6 is used to secure the pressure to receive the indentation pressure without the need to provide the throttle portion in the flow path 6. At this time, with the length of the flow path 6 of each of the above embodiments, it is difficult to secure the pressure that receives the indentation pressure due to the pressure loss of the flow path 6. An extension channel 8 is added to the part. That is, the total pressure loss including the decompression unit 4 of the flow path 6 is calculated, and the pressure required to pressurize the liquid and gas in the pressurizing and dissolving unit 3 by the indentation pressure from the pressurizing unit 1, The difference from the pressure loss of the flow path 6 is calculated, and the length of the pipe line in which the pressure loss of this difference occurs is calculated from the above formula, and the extended flow path 8 of this pipe length is changed to the flow path 6. They are added. As described above, the sum of the pressure loss of the flow path 6 and the pressure loss of the extension flow path 8 pressurizes the liquid and gas in the pressurizing / dissolving unit 3 by the pressure of the liquid and gas pumped by the pressurizing unit 1. By adding the extension flow path 8 to the flow path 6 so that the pressure required for the pressure is reached, it is not necessary to use a throttling portion such as a throttling valve. Thus, it is possible to dissolve the gas in the liquid.

図7は気体溶解装置の具体的な一例を示すものであり、液体槽17から供給される水は流路15に導入口30から導入される。流路15には空気が導入される気体注入部2が接続してあり、空気が注入された水はポンプで形成される加圧部1によって、小容量のタンクで形成される加圧溶解部3に圧送される。このように空気が注入された水が加圧溶解部3に圧送されることによって、加圧溶解部3内で水に空気が溶解された気体溶解液が生成される。そしてこの気体溶解液は加圧溶解部3から流路6に送り出され、流路6の先端の吐出口31から吐出される。この流路6には減圧部4が設けてあり、加圧溶解部3から送り出された気体溶解液は大気圧まで減圧された後に吐出口31から吐出され、気泡が発生しない状態で気体溶解液を吐出することができる。図7の気体溶解装置では、減圧部4は、図4(a)の内径が異なる管体20a,20b,20cを連ねたもので形成してある。   FIG. 7 shows a specific example of the gas dissolving apparatus. Water supplied from the liquid tank 17 is introduced into the flow path 15 from the introduction port 30. A gas injection unit 2 into which air is introduced is connected to the flow path 15, and the water into which the air has been injected is pressurized by a pressurizing unit 1 formed by a pump and a pressurized dissolving unit formed by a small-capacity tank. 3 is pumped. The water in which air is injected in this manner is pumped to the pressure dissolution unit 3, thereby generating a gas solution in which air is dissolved in water in the pressure dissolution unit 3. Then, the gas solution is sent out from the pressure dissolution unit 3 to the flow path 6 and discharged from the discharge port 31 at the tip of the flow path 6. The flow path 6 is provided with a decompression section 4, and the gas solution sent out from the pressure dissolution section 3 is discharged from the discharge port 31 after being decompressed to atmospheric pressure, and in a state where no bubbles are generated. Can be discharged. In the gas dissolving apparatus of FIG. 7, the decompression unit 4 is formed by connecting the tubular bodies 20a, 20b, and 20c having different inner diameters as shown in FIG.

この気体溶解装置にあって、ポンプで形成される加圧部1を連続運転することによって、気体注入部2、加圧溶解部3を連続的に運転させて、減圧部4に気体溶解液を連続的に供給するようにすることができるものであり、減圧部4の流出側である吐出口31から気泡の発生のない気体溶解液を連続的に吐出させることができるものである。   In this gas dissolving apparatus, by continuously operating the pressurizing unit 1 formed by the pump, the gas injecting unit 2 and the pressurizing and dissolving unit 3 are continuously operated, and the gas dissolving solution is supplied to the decompressing unit 4. The gas solution that can be continuously supplied can be continuously discharged from the discharge port 31 on the outflow side of the decompression unit 4 without generating bubbles.

また、減圧部4は加圧溶解部3から気体溶解液を送り出す流路6の一部として設けられており、そしてこの減圧部4は気体溶解液の圧力を流入側から流出側に向かって順次大気圧まで減圧するものであるため、減圧部4を例えば内径2〜50mm程度の比較的大きい流路として形成することができるものであり、異物が混入しても減圧部4内が詰まるようなことがないものである。さらにこのような構成の減圧部4を設けることによって、減圧部4を流れる気体溶解液のレイノルズ数が臨界レイノルズ数(Re=2320)より小さなレイノズル数である層流状態だけではなく、臨界レイノルズ数より大きなレイノルズ数である乱流状態でも対応することが可能になるものである。   The decompression unit 4 is provided as a part of the flow path 6 for sending the gas solution from the pressure dissolution unit 3, and the decompression unit 4 sequentially increases the pressure of the gas solution from the inflow side to the outflow side. Since the pressure is reduced to atmospheric pressure, the pressure reducing portion 4 can be formed as a relatively large flow path having an inner diameter of about 2 to 50 mm, for example, and the inside of the pressure reducing portion 4 is clogged even if foreign matter is mixed in. There is nothing. Furthermore, by providing the decompression unit 4 having such a configuration, not only the laminar flow state where the Reynolds number of the gas solution flowing through the decompression unit 4 is smaller than the critical Reynolds number (Re = 2320), but also the critical Reynolds number. It is possible to cope with a turbulent flow state having a larger Reynolds number.

さらに、減圧部4をこのように内径の大きな流路として形成することによって、気体溶解液の供給量を多くすることができ、減圧部4を一つの流路のみで形成することが可能になるものであり、装置構成を簡単なものに形成することができるものである。   Furthermore, by forming the decompression unit 4 as a channel having a large inner diameter in this way, it is possible to increase the supply amount of the gas solution, and it is possible to form the decompression unit 4 with only one channel. Therefore, it is possible to form a simple apparatus configuration.

図8は気体溶解装置の他の一例を示すものであり、加圧溶解部3の流出側に接続される流路6に分岐接続して、微細気泡抽出流路9が設けてある。図8(a)に示すように、微細気泡抽出流路9は加圧溶解部3と減圧部4との間の箇所において、あるいは減圧部4より下流側の箇所において、切り替え弁22を介して流路6に分岐接続されるものである。また微細気泡抽出流路9の先端には図8(b)に示すような微細気泡発生ノズル23が設けてある。微細気泡発生ノズル23は吐出口に多数の微細穴24を設けて形成してある。   FIG. 8 shows another example of the gas dissolution apparatus, and a fine bubble extraction flow path 9 is provided by branch connection to the flow path 6 connected to the outflow side of the pressure dissolution section 3. As shown in FIG. 8 (a), the fine bubble extraction flow path 9 is located at a location between the pressure dissolving portion 3 and the pressure reducing portion 4 or at a location downstream of the pressure reducing portion 4 via a switching valve 22. It is branched and connected to the flow path 6. Further, a fine bubble generating nozzle 23 as shown in FIG. 8B is provided at the tip of the fine bubble extraction channel 9. The fine bubble generating nozzle 23 is formed by providing a large number of fine holes 24 at the discharge port.

このものにあって、加圧溶解部3で生成された気体溶解液は、流路6を通して取り出して使用することができる他に、切り替え弁22を切り替えて気体溶解液を流路6から微細気泡抽出流路9に送り出し、微細気泡発生ノズル23から吐出させることによって、微細気泡を含む微細気泡含有液を得ることができるものであり、一台の装置で、気体溶解液と微細気泡含有液の二種類の液を造ることができるものである。   In this case, the gas solution generated in the pressure dissolution unit 3 can be taken out through the flow path 6 and used. In addition, the gas dissolution liquid is removed from the flow path 6 by switching the switching valve 22. A fine bubble-containing liquid containing fine bubbles can be obtained by sending it out to the extraction flow path 9 and discharging it from the fine bubble generation nozzle 23. With one apparatus, the gas dissolved liquid and the fine bubble-containing liquid can be obtained. Two types of liquid can be made.

図9は気体溶解装置の他の一例を示すものであり、加圧溶解部3の余剰気体排出部5を気体注入部2に連結部10で連結するようにしてある。このように余剰気体排出部5を気体注入部2に接続することによって、加圧溶解部3で液体に溶解しなかった余剰気体を気体注入部2に返送して、再度液体に溶解させるようにすることができるものである。従って、加圧溶解部3で液体に溶解しなかった気体を捨てることなく有効利用することができるものであり、またオゾンなどの有害気体が外部に排出されて環境が汚染されることを防ぐことができるものである。   FIG. 9 shows another example of the gas dissolving apparatus. The surplus gas discharge part 5 of the pressure dissolving part 3 is connected to the gas injection part 2 by the connecting part 10. By connecting the surplus gas discharge part 5 to the gas injection part 2 in this way, the surplus gas that has not been dissolved in the liquid by the pressure dissolving part 3 is returned to the gas injection part 2 and is again dissolved in the liquid. Is something that can be done. Therefore, the gas that has not been dissolved in the liquid in the pressure dissolving part 3 can be effectively used without being discarded, and the environment is prevented from being polluted by harmful gases such as ozone being discharged to the outside. It is something that can be done.

上記のように形成される気体溶解装置は、酸素やオゾンなどの気体を高濃度で溶解した気体溶解液を生成して供給することができるので、環境分野、製造・産業分野、農林水産分野、家庭用分野、医療分野や、その他の各種の分野において使用することができるものである。   Since the gas dissolving apparatus formed as described above can generate and supply a gas solution in which a gas such as oxygen or ozone is dissolved at a high concentration, the environmental field, the manufacturing / industrial field, the agriculture / forestry / fishery field, It can be used in the household field, the medical field, and other various fields.

例えば環境分野では、海、河川、湖、池、ダム湖等の閉鎖水域に、酸素が高濃度で溶解した気体溶解液を供給することによって、溶存酸素量を高めて水浄化を行なうことができるものであり、同様に浄化槽、下水道施設、し尿処理施設において、酸素供給に利用することができる。また土壌への酸素供給によって有害物質や油汚染等を処理することができる。   For example, in the environmental field, by supplying a gas solution in which oxygen is dissolved at a high concentration to closed water areas such as the sea, rivers, lakes, ponds, and dam lakes, water can be purified by increasing the amount of dissolved oxygen. Similarly, it can be used for oxygen supply in septic tanks, sewerage facilities, and human waste processing facilities. Moreover, harmful substances and oil contamination can be treated by supplying oxygen to the soil.

製造・産業分野では、工場排水処理施設に、酸素が高濃度で溶解した気体溶解液を供給することによって、溶存酸素の向上による排水処理を行なうことができ、あるいはオゾンが高濃度で溶解した気体溶解液を供給することによって、排水をオゾン処理することができる。また食品工場での発酵食品の発酵と培養促進のための、酸素供給に利用することができる。また業務用浴場、プール、水族館等の循環水ろ過システムへの酸素やオゾンの供給に利用することができ、工場の塗装工程循環水、工場の洗浄工程循環水、冷却循環水への酸素やオゾン供給による浄化に利用することができる。さらに本発明の気体溶解装置を、工場等で発生した有毒ガスを水に高濃度で溶解させて処理する装置として利用することもできる。   In the manufacturing and industrial fields, wastewater treatment by improving dissolved oxygen can be performed by supplying gas dissolved solution with high concentration of oxygen to factory wastewater treatment facilities, or gas with dissolved ozone at high concentration By supplying the solution, the waste water can be treated with ozone. Moreover, it can utilize for oxygen supply for fermentation and culture | cultivation promotion of fermented food in a food factory. It can also be used to supply oxygen and ozone to circulating water filtration systems such as commercial baths, swimming pools, and aquariums. Oxygen and ozone in factory painting process circulation water, factory cleaning process circulation water, and cooling circulation water It can be used for purification by supply. Furthermore, the gas dissolving apparatus of the present invention can be used as an apparatus for dissolving and processing a toxic gas generated in a factory or the like in water at a high concentration.

農林水産分野では、農業排水、水産排水、畜産排水に酸素が高濃度で溶解した気体溶解液を供給することによって、溶存酸素向上による水浄化や汚物の浮上分離に利用することができる。また酸素が高濃度で溶解した気体溶解液を農業用水や水産用水として用いることによって、植物の発芽促進や成長促進、魚介類の成長促進を図ることができる。さらに生簀に高濃度で溶解した気体溶解液を供給することによって、活魚輸送などの際の酸素供給を行なうことができる。   In the field of agriculture, forestry and fisheries, by supplying a gas solution in which oxygen is dissolved at a high concentration to agricultural wastewater, fishery wastewater, and livestock wastewater, it can be used for water purification by improving dissolved oxygen and floating separation of filth. Further, by using a gas solution in which oxygen is dissolved at a high concentration as agricultural water or fishery water, it is possible to promote the germination and growth of plants and the growth of fish and shellfish. Further, by supplying a gas solution dissolved at a high concentration to the ginger, oxygen can be supplied during live fish transportation.

家庭用分野では、生活排水の浄化槽などに酸素が高濃度で溶解した気体溶解液を供給することによって、溶存酸素の向上による排水処理を効率良く行なうことができる。また二酸化炭素が高濃度で溶解した気体溶解液を浴槽に供給することによって、炭酸ガス風呂を形成することができる。   In the household field, wastewater treatment by improving dissolved oxygen can be efficiently performed by supplying a gas solution in which oxygen is dissolved at a high concentration to a septic tank for domestic wastewater. Moreover, a carbon dioxide bath can be formed by supplying a gas solution in which carbon dioxide is dissolved at a high concentration to the bathtub.

医療分野では、酸素が高濃度で溶解した気体溶解液や、二酸化炭素が高濃度で溶解した気体溶解液を、飲料用、癌治療用、結石破壊用などに利用することができる。   In the medical field, a gas-dissolved solution in which oxygen is dissolved at a high concentration and a gas-dissolved solution in which carbon dioxide is dissolved at a high concentration can be used for beverages, cancer treatment, stone destruction, and the like.

その他の分野では、飲料用の酸素水製造装置、飲料用の炭酸水製造装置として本発明の気体溶解装置を利用することができる。さらに殺菌用、脱色用、脱臭用、有機物分解用など多分野で使用されるオゾン水製造装置として本発明の気体溶解装置を利用することができる。   In other fields, the gas dissolving apparatus of the present invention can be used as an oxygen water production apparatus for beverages and a carbonated water production apparatus for beverages. Furthermore, the gas dissolution apparatus of the present invention can be used as an ozone water production apparatus used in various fields such as sterilization, decolorization, deodorization, and organic matter decomposition.

本発明に係る植物栽培装置は、気体溶解装置を、上記の各分野のうち農林水産分野において、植物の栽培に利用したものである。植物栽培装置は、気体溶解装置で生成される酸素が高濃度で溶解した気体溶解液を農業用水として植物に供給するようにしたものであり、植物に多量の酸素を供給することができ、植物の生育や発芽を促進することができると共に、密生状態でも酸欠状態が生じることなく植物を栽培することができるものである。   The plant cultivation apparatus which concerns on this invention utilizes the gas dissolving apparatus for cultivation of a plant in the agriculture, forestry, and fisheries field | area among said each field | area. The plant cultivation device is a device in which a gas solution in which oxygen produced by the gas dissolving device is dissolved at a high concentration is supplied to the plant as agricultural water, and can supply a large amount of oxygen to the plant. It is possible to promote the growth and germination of plants, and it is possible to cultivate plants without producing an oxygen deficient state even in a dense state.

図11は本発明の植物栽培装置の実施の形態を示すものであり、減圧部4を有する気体溶解装置Aと、植物35を栽培する栽培容器36とを備え、減圧部4の流出側から吐出される気泡の発生のない気体溶解液を栽培容器36に供給するようにしたものである。気体溶解装置Aは上記の図1乃至図7、図9と同様に形成されるものである。   FIG. 11 shows an embodiment of the plant cultivation apparatus according to the present invention, which includes a gas dissolving apparatus A having a decompression unit 4 and a cultivation container 36 for cultivating a plant 35, and is discharged from the outflow side of the decompression unit 4. The gas solution without the generation of bubbles is supplied to the cultivation container 36. The gas dissolving apparatus A is formed in the same manner as in FIGS. 1 to 7 and FIG.

図11(a)は水耕栽培用の植物栽培装置を示すものであり、栽培容器36として水耕栽培槽37を用い、水耕栽培槽37内の水面付近に配置した複数の定植パネル38に植物35が植えてある。気体溶解装置Aの流出側の流路6は水耕栽培槽37の一端部に接続してある。また気体溶解装置Aの流入側の流路15が接続される液体槽17と水耕栽培槽37の他端部の間には返送流路39が接続してある。液体槽17には水耕栽培用の液体が貯留してあり、この液体としては例えば肥料成分を含有する水を用いることができる。   FIG. 11A shows a plant cultivation apparatus for hydroponics. A hydroponic cultivation tank 37 is used as a cultivation container 36, and a plurality of planting panels 38 arranged near the water surface in the hydroponic cultivation tank 37 are used. Plant 35 is planted. The flow path 6 on the outflow side of the gas dissolving apparatus A is connected to one end of the hydroponic cultivation tank 37. A return flow path 39 is connected between the liquid tank 17 to which the flow path 15 on the inflow side of the gas dissolving apparatus A is connected and the other end of the hydroponic culture tank 37. The liquid tank 17 stores a liquid for hydroponics, and as this liquid, for example, water containing a fertilizer component can be used.

この植物栽培装置にあって、気体溶解装置Aの加圧部1を作動させ、液体槽17から液体を吸い上げて加圧溶解部3へ液体を圧送して供給すると共に、気体注入部2から空気など酸素を含む気体を注入することによって、加圧溶解部3内で液体に酸素が高濃度で溶解した気体溶解液を得ることができる。そして加圧溶解部3で生成された気体溶解液は、減圧部4で大気圧まで減圧された後に流路6を通して水耕栽培槽37に送り出されるものである。このように気体溶解装置Aで生成された酸素が高濃度に溶解した気体溶解液を水耕栽培槽37に供給することによって、定植パネル38に植えた植物35の根に多量の酸素を供給することができるものであり、植物35の発育を促進することができると共に、多数の植物35を密生して植えていても酸素欠乏状態になることがなく、植物35の栽培効率を高めることができるものである。水耕栽培槽37に供給された気体溶解液は、返送流路39を通して液体槽17に返送され、循環して繰り返して使用される。   In this plant cultivation device, the pressurizing unit 1 of the gas dissolving device A is operated, the liquid is sucked up from the liquid tank 17 and supplied by being pumped and supplied to the pressurizing and dissolving unit 3, and air is supplied from the gas injecting unit 2. By injecting a gas containing oxygen or the like, a gas-dissolved solution in which oxygen is dissolved in a liquid at a high concentration in the pressure-dissolving unit 3 can be obtained. And the gas solution produced | generated in the pressurization melt | dissolution part 3 is sent out to the hydroponic cultivation tank 37 through the flow path 6, after depressurizing to atmospheric pressure in the pressure reduction part 4. FIG. In this way, a large amount of oxygen is supplied to the roots of the plant 35 planted in the planting panel 38 by supplying the hydrolyzed cultivation tank 37 with the gas solution in which the oxygen generated in the gas dissolving device A is dissolved at a high concentration. It is possible to promote the growth of the plant 35, and even if a large number of plants 35 are planted densely, they are not deficient in oxygen and can increase the cultivation efficiency of the plant 35. Is. The gas solution supplied to the hydroponic cultivation tank 37 is returned to the liquid tank 17 through the return flow path 39, circulated and repeatedly used.

ここで、気体溶解装置Aで生成された気体溶解液は減圧部4で大気圧に減圧された後に、流路6を通して水耕栽培槽37に供給されるので、気体溶解液から気泡が発生することを防ぐことができ、酸素が気泡として抜けて気体溶解液の酸素濃度が低下することを防止することができるものであり、植物35への酸素の供給の効率を高めることができるものである。またこのように気体溶解液から気泡が発生することを防ぐことができるので、気体溶解装置Aから水耕栽培槽37までの間の水路に気泡が付着したり、植物35の根に気泡が付着したりすることがなくなり、植物35の全体に酸素が行き渡らなくなるということもなくなるものである。   Here, since the gas solution generated by the gas dissolution apparatus A is decompressed to atmospheric pressure by the decompression unit 4 and then supplied to the hydroponics tank 37 through the flow path 6, bubbles are generated from the gas solution. It is possible to prevent the oxygen from being released as bubbles and to reduce the oxygen concentration of the gas solution, and the efficiency of supplying oxygen to the plant 35 can be increased. . Moreover, since it can prevent that a bubble generate | occur | produces from a gas solution in this way, a bubble adheres to the water channel between the gas dissolving apparatus A and the hydroponic cultivation tank 37, or a bubble adheres to the root of the plant 35. This prevents the oxygen from being distributed to the entire plant 35.

図11(b)は液肥栽培用の植物栽培装置を示すものであり、栽培容器36として土壌などの培地41を収容した栽培鉢42を用い、栽培鉢42の培地41に植物35が植えてある。気体溶解装置Aの流出側の流路6には栽培鉢42の培地41に気体溶解液を滴下して供給する供給流路43が接続してある。図の実施の形態では、複数の栽培鉢42を用い、各栽培鉢42に個別に気体溶解液を滴下などして供給するように、複数の供給流路43を流路6に分岐して設けるようにしてある。また気体溶解装置Aの流入側の流路15が接続される液体槽17には液肥栽培用の液体が貯留してあり、この液体としては例えば肥料を水に溶解した肥料液を用いることができる。   FIG. 11 (b) shows a plant cultivation apparatus for liquid fertilization cultivation. A cultivation pot 42 containing a culture medium 41 such as soil is used as a cultivation container 36, and a plant 35 is planted in the culture medium 41 of the cultivation pot 42. . Connected to the flow path 6 on the outflow side of the gas dissolving apparatus A is a supply flow path 43 that drops and supplies the gas solution to the culture medium 41 of the cultivation pot 42. In the illustrated embodiment, a plurality of supply channels 43 are branched and provided to the channel 6 so that a plurality of cultivation pots 42 are used and a gas solution is supplied to each cultivation pot 42 by dropping. It is like that. Moreover, the liquid tank 17 to which the flow path 15 on the inflow side of the gas dissolving apparatus A is connected stores a liquid for liquid fertilizer cultivation. As this liquid, for example, a fertilizer liquid obtained by dissolving fertilizer in water can be used. .

この植物栽培装置にあって、気体溶解装置Aの加圧部1を作動させ、液体槽17から肥料液を吸い上げて加圧溶解部3へ液体を圧送して供給すると共に、気体注入部2から空気など酸素を含む気体を注入することによって、加圧溶解部3内で肥料液に酸素が高濃度で溶解した気体溶解液を得ることができる。そして加圧溶解部3で生成された気体溶解液は、減圧部4で大気圧まで減圧された後に流路6を通して供給流路43の先端から各栽培鉢42の培地41に滴下などして供給される。このように気体溶解装置Aで生成された酸素が高濃度に溶解した気体溶解液からなる肥料液を栽培鉢42の培地41に供給することによって、培地41に植えた植物35の根に肥料と共に多量の酸素を供給することができるものであり、植物35の発育を促進することができると共に、植物35を密生して植えていても酸素欠乏状態になることがなく、植物35の栽培効率を高めることができるものである。   In this plant cultivation device, the pressurizing unit 1 of the gas dissolving device A is operated, the fertilizer liquid is sucked up from the liquid tank 17, and the liquid is pumped and supplied to the pressurizing and dissolving unit 3, and from the gas injection unit 2 By injecting a gas containing oxygen such as air, it is possible to obtain a gas solution in which oxygen is dissolved at a high concentration in the fertilizer solution in the pressure dissolution unit 3. The gas solution generated in the pressure dissolving unit 3 is supplied to the medium 41 of each cultivation pot 42 by dropping from the tip of the supply channel 43 through the channel 6 after being decompressed to the atmospheric pressure in the decompression unit 4. Is done. Thus, by supplying the fertilizer liquid which consists of the gas solution which oxygen produced | generated by the gas dissolving apparatus A melt | dissolved in high concentration to the culture medium 41 of the cultivation pot 42, it is with a fertilizer to the root of the plant 35 planted in the culture medium 41. A large amount of oxygen can be supplied, the growth of the plant 35 can be promoted, and even if the plant 35 is planted densely, it does not become oxygen-deficient and the cultivation efficiency of the plant 35 is improved. It can be raised.

このものにあっても、気体溶解装置Aで生成された気体溶解液は減圧部4で大気圧に減圧された後に、流路6を通して栽培鉢42に供給されるので、気体溶解液から気泡が発生することを防ぐことができ、酸素が気泡として抜けて気体溶解液の酸素濃度が低下することを防止することができるものであり、植物35への酸素の供給の効率を高めることができるものである。またこのように気体溶解液から気泡が発生することを防ぐことができるので、気体溶解装置Aから栽培鉢42までの間の水路の途中に気泡が付着し、気体溶解装置Aから遠い栽培鉢42にまで酸素が行き渡らなくなるということもなくなるものである。   Even if it exists in this thing, since the gas solution produced | generated with the gas dissolving apparatus A is pressure-reduced by the pressure reduction part 4 to atmospheric pressure, after being supplied to the cultivation pot 42 through the flow path 6, a bubble is generated from a gas solution. It can prevent generation | occurrence | production, can prevent that oxygen escapes as a bubble and the oxygen concentration of a gas solution falls, and can raise the efficiency of the supply of oxygen to the plant 35 It is. Moreover, since it can prevent that a bubble generate | occur | produces from a gas dissolving solution in this way, a bubble adheres in the middle of the water channel from the gas dissolving apparatus A to the cultivation pot 42, and the cultivation pot 42 far from the gas dissolving apparatus A is used. Oxygen does not spread all the way.

また、気体溶解装置で生成される高酸素濃度の気体溶解液を植物に供給する植物栽培装置としては、上記のような水耕栽培用や液肥栽培用に限られるものではなく、例えば、高酸素濃度の気体溶解液を植物の種子に供給し、種子の発芽を酸素供給によって促進するものに使用することもできる。   In addition, the plant cultivation apparatus that supplies the plant with the high-oxygen-concentrated gas solution produced by the gas dissolving apparatus is not limited to hydroponics or liquid fertilizer cultivation as described above. A gas solution having a concentration can be supplied to plant seeds, and seed germination can be promoted by supplying oxygen.

1 加圧部
2 気体注入部
3 加圧溶解部
4 減圧部
5 余剰気体排出部
6 流路
7 圧力調整弁
8 延長流路
9 微細気泡抽出流路
10 連結部
19 水道配管
35 植物
36 栽培容器
A 気体溶解装置
DESCRIPTION OF SYMBOLS 1 Pressurization part 2 Gas injection part 3 Pressurization melt | dissolution part 4 Decompression part 5 Excess gas discharge part 6 Flow path 7 Pressure control valve 8 Extension flow path 9 Fine bubble extraction flow path 10 Connection part 19 Water supply piping 35 Plant 36 Cultivation container A Gas dissolving device

Claims (10)

液体を圧送する加圧部と、液体に気体を注入する気体注入部と、気体を注入された液体が加圧部で圧送されることによる加圧で液体に気体を溶解させる加圧溶解部と、加圧溶解部で気体を溶解させた気体溶解液の圧力を、気体溶解液の流入側から流出側に向かって気体溶解液の流速を徐々に速くして順次大気圧まで減圧する減圧部とを備え、加圧部、気体注入部、加圧溶解部の各部を連続的に運転させて、減圧部に気体溶解液を連続的に供給し、減圧部の流出側から気泡の発生のない気体溶解液を連続的に吐出させるようにして成る気体溶解装置と、
植物を栽培する栽培容器とを備え、
気体として酸素を用い、減圧部の流出側から吐出される気泡の発生のない気体溶解液を栽培容器に供給して成ることを特徴とする植物栽培装置。
A pressurizing unit for pumping liquid, a gas injecting unit for injecting gas into the liquid, and a pressurizing / dissolving unit for dissolving the gas in the liquid by pressurization when the liquid injected with the gas is pumped by the pressurizing unit; The pressure of the gas dissolving solution in which the gas is dissolved in the pressure dissolving unit, the pressure reducing unit for gradually reducing the flow rate of the gas dissolving solution from the inflow side to the outflow side of the gas solution and gradually reducing the pressure to atmospheric pressure A gas that does not generate bubbles from the outflow side of the decompression unit by continuously operating each unit of the pressurization unit, gas injection unit, and pressurization dissolution unit, and continuously supplying the gas solution to the decompression unit A gas dissolving device configured to continuously discharge a solution;
A cultivation container for cultivating plants,
A plant cultivation apparatus characterized in that oxygen is used as a gas and a gas-dissolved solution without generation of bubbles discharged from the outflow side of the decompression unit is supplied to a cultivation container.
気体溶解装置が、加圧溶解部で液体に溶解しない余剰気体を排出する余剰気体排出部を備えて成ることを特徴とする請求項1に記載の植物栽培装置。   The plant cultivation apparatus according to claim 1, wherein the gas dissolving device includes a surplus gas discharge unit that discharges surplus gas that does not dissolve in the liquid in the pressure dissolving unit. 気体溶解装置の減圧部を、加圧溶解部から気体溶解液を送り出す流路に設けられ、気体溶解液の圧力を大気圧にまで段階的に減圧する複数の圧力調整弁で構成して成ることを特徴とする請求項1又は2に記載の植物栽培装置。   The decompression section of the gas dissolving device is provided with a plurality of pressure regulating valves that are provided in a flow path for sending the gas solution from the pressure dissolving section and gradually reduce the pressure of the gas solution to atmospheric pressure. The plant cultivation apparatus according to claim 1 or 2, wherein 気体溶解装置の減圧部を、流路断面積と流路長さの少なくとも一方の調整で気体溶解液の圧力を大気圧にまで減圧するように形成された、加圧溶解部から気体溶解液を送り出す流路で構成して成ることを特徴とする請求項1又は2に記載の植物栽培装置。   The decompression part of the gas dissolution apparatus is configured to reduce the pressure of the gas solution to atmospheric pressure by adjusting at least one of the channel cross-sectional area and the channel length. The plant cultivation apparatus according to claim 1, wherein the plant cultivation apparatus is constituted by a flow-out channel. 気体溶解装置の減圧部は、一つの流路で形成されていることを特徴とする請求項3又は4に記載の植物栽培装置。   The plant cultivation device according to claim 3 or 4, wherein the decompression unit of the gas dissolving device is formed by one flow path. 気体溶解装置が、加圧溶解部から気体溶解液を送り出す流路の圧力損失とこの流路に付加した延長流路の圧力損失の和が、加圧部で圧送される液体と気体の押し込み圧によって加圧溶解部内で液体と気体を加圧するのに必要な圧力となるように、流路に延長流路を付加して成ることを特徴とする請求項1乃至5のいずれか1項に記載の植物栽培装置。   The sum of the pressure loss of the channel through which the gas dissolving device delivers the gas solution from the pressure dissolving unit and the pressure loss of the extension channel added to this channel is the indentation pressure of the liquid and gas pumped by the pressurizing unit 6. An extended flow path is added to the flow path so as to obtain a pressure required to pressurize the liquid and gas in the pressurizing / dissolving section. Plant cultivation equipment. 気体溶解装置が、加圧溶解部から気体溶解液を送り出す流路に、気体溶解液中の気体を微細気泡として発生させるための微細気泡抽出流路を設けて成ることを特徴とする請求項1乃至6のいずれか1項に記載の植物栽培装置。   2. The gas dissolution apparatus is provided with a fine bubble extraction channel for generating gas in the gas solution as fine bubbles in a flow channel for sending the gas solution from the pressure dissolution unit. The plant cultivation apparatus of any one of thru | or 6. 気体溶解装置が、気体注入部に余剰気体排出部を連結部で連結して成ることを特徴とする請求項1乃至7のいずれか1項に記載の植物栽培装置。   The plant cultivation apparatus according to any one of claims 1 to 7, wherein the gas dissolving apparatus is formed by connecting a surplus gas discharge part to a gas injection part by a connection part. 気体溶解装置の加圧部を、気体注入部に水を圧送する水道配管で形成して成ることを特徴とする請求項1乃至8のいずれか1項に記載の植物栽培装置。   The plant cultivation device according to any one of claims 1 to 8, wherein the pressurizing unit of the gas dissolving device is formed by a water pipe that pumps water to the gas injection unit. 液体を圧送し、圧送された液体に気体として酸素を注入し、気体を注入された液体が圧送されることによる加圧で液体に気体を溶解し、気体が溶解された液体を流速が徐々に速くなるように送りながらその圧力を順次大気圧まで減圧することにより、気泡の発生のない気体溶解液を連続的に生成し、当該気体溶解液を植物に供給することを特徴とする植物栽培方法。   The liquid is pumped, oxygen is injected into the pumped liquid as a gas, the gas is dissolved in the liquid by pressurization by pumping the liquid into which the gas is injected, and the flow rate of the liquid in which the gas is dissolved gradually A plant cultivation method characterized by continuously producing a gas solution free from bubbles by supplying the plant with the gas solution by reducing the pressure to atmospheric pressure while feeding it at high speed. .
JP2009107079A 2006-08-23 2009-04-24 Plant cultivation apparatus and plant cultivation method Expired - Fee Related JP5010638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009107079A JP5010638B2 (en) 2006-08-23 2009-04-24 Plant cultivation apparatus and plant cultivation method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2006227079 2006-08-23
JP2006227079 2006-08-23
JP2007002664 2007-01-10
JP2007002664 2007-01-10
JP2009107079A JP5010638B2 (en) 2006-08-23 2009-04-24 Plant cultivation apparatus and plant cultivation method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007031021A Division JP4345823B2 (en) 2006-08-23 2007-02-09 Gas dissolving apparatus and method for producing gas dissolving liquid

Publications (2)

Publication Number Publication Date
JP2009165491A true JP2009165491A (en) 2009-07-30
JP5010638B2 JP5010638B2 (en) 2012-08-29

Family

ID=39749184

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2007031021A Expired - Fee Related JP4345823B2 (en) 2006-08-23 2007-02-09 Gas dissolving apparatus and method for producing gas dissolving liquid
JP2009107079A Expired - Fee Related JP5010638B2 (en) 2006-08-23 2009-04-24 Plant cultivation apparatus and plant cultivation method
JP2009107078A Pending JP2009160589A (en) 2006-08-23 2009-04-24 Gas dissolving apparatus and method of manufacturing gas solution
JP2009107077A Expired - Fee Related JP4989677B2 (en) 2006-08-23 2009-04-24 Gas dissolving apparatus and method for producing gas dissolving liquid

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2007031021A Expired - Fee Related JP4345823B2 (en) 2006-08-23 2007-02-09 Gas dissolving apparatus and method for producing gas dissolving liquid

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2009107078A Pending JP2009160589A (en) 2006-08-23 2009-04-24 Gas dissolving apparatus and method of manufacturing gas solution
JP2009107077A Expired - Fee Related JP4989677B2 (en) 2006-08-23 2009-04-24 Gas dissolving apparatus and method for producing gas dissolving liquid

Country Status (1)

Country Link
JP (4) JP4345823B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195811A (en) * 2008-02-20 2009-09-03 Panasonic Electric Works Co Ltd Water clarification apparatus
RU2478272C1 (en) * 2011-08-04 2013-04-10 Федеральное государственное образовательное учреждение высшего профессионального образования "Кубанский государственный аграрный университет" Method of corn disinfection under conditions of protected ground for breeding purposes
JP2016112007A (en) * 2014-12-17 2016-06-23 株式会社光変換光合成促進農法 Plant cultivation system and plant cultivation method
JP2017000022A (en) * 2015-06-05 2017-01-05 株式会社フォーエス Hydrogen water supply apparatus
KR20200119659A (en) * 2019-04-10 2020-10-20 (주)에스엠 Do concentration controlling system based on circulating rate and high efficiency bioactive foam reactor using the same
WO2022093843A1 (en) * 2020-10-26 2022-05-05 Agvnt, LLC Liquid fertilizer composition containing nano-bubbles and method of use thereof

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4936189B2 (en) * 2008-02-20 2012-05-23 パナソニック株式会社 Carbonated water production equipment
JP2010051846A (en) * 2008-08-26 2010-03-11 Panasonic Electric Works Co Ltd Gas dissolving apparatus
JPWO2010023977A1 (en) * 2008-08-26 2012-01-26 パナソニック電工株式会社 Gas dissolving device
JP5294790B2 (en) * 2008-10-14 2013-09-18 クボタ環境サ−ビス株式会社 Aeration equipment and wastewater treatment equipment
JP2010136671A (en) * 2008-12-11 2010-06-24 Panasonic Electric Works Co Ltd Plant cultivation device
JP2010194440A (en) * 2009-02-24 2010-09-09 Panasonic Electric Works Co Ltd Gas-liquid mixing apparatus
JP5065348B2 (en) * 2009-07-28 2012-10-31 パナソニック株式会社 Microbubble generator
JP6018440B2 (en) * 2012-07-04 2016-11-02 本田技研工業株式会社 Air bubble mixed liquid production and supply apparatus, air bubble mixed liquid supply system, air bubble mixed liquid supply method, and program thereof
JP3190824U (en) * 2014-03-12 2014-05-29 株式会社光未来 Gas dissolving device
CN106457167B (en) * 2014-05-27 2020-06-26 株式会社光未来 Gas dissolving apparatus and gas dissolving method
CN104587855A (en) * 2015-01-12 2015-05-06 吉首大学 Hydraulic propeller type chemical engineering dissolving device
JP6564736B2 (en) * 2016-06-20 2019-08-21 株式会社ノリタケカンパニーリミテド Gas-containing liquid supply device
JP7094026B2 (en) * 2017-06-07 2022-07-01 国立大学法人 鹿児島大学 Bubble forming device
US11772005B2 (en) * 2020-02-28 2023-10-03 Canon Kabushiki Kaisha Apparatus for and method of producing ultrafine bubble-containing liquid, and ultrafine bubble-containing liquid

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07313005A (en) * 1994-05-26 1995-12-05 Idec Izumi Corp Oxygen for hydroponic culture, method for feeding fine foam and apparatus therefor
JPH0889771A (en) * 1994-09-19 1996-04-09 Dainippon Ink & Chem Inc Gas dissolver and gas dissolving method
JPH09141072A (en) * 1995-11-24 1997-06-03 Idec Izumi Corp Method for controlling bubble diameter and device therefor
JP2001211770A (en) * 2000-02-01 2001-08-07 Fujisaki Denki Kk Arrangement for producing agricultural irrigative water
JP2001347145A (en) * 2000-06-08 2001-12-18 Matsushita Electric Ind Co Ltd Fine bubble generator
JP2003154242A (en) * 2001-11-26 2003-05-27 Texas Instr Japan Ltd Fluid mixing apparatus
JP2004351399A (en) * 2003-05-26 2004-12-16 Wataru Murota Reducing water and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779954B2 (en) * 1988-08-25 1995-08-30 宇部興産株式会社 Gas separation membrane module
JP2003112024A (en) * 2001-10-04 2003-04-15 Cyber Techno:Kk Apparatus for producing ozone water
JP3823045B2 (en) * 2001-11-16 2006-09-20 株式会社プリオ Hair clog elimination sewage mixing device and method of using the device
EP1470855B1 (en) * 2002-01-09 2008-06-18 BeRyu Co., Ltd. Emulsifying/dispersing system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07313005A (en) * 1994-05-26 1995-12-05 Idec Izumi Corp Oxygen for hydroponic culture, method for feeding fine foam and apparatus therefor
JPH0889771A (en) * 1994-09-19 1996-04-09 Dainippon Ink & Chem Inc Gas dissolver and gas dissolving method
JPH09141072A (en) * 1995-11-24 1997-06-03 Idec Izumi Corp Method for controlling bubble diameter and device therefor
JP2001211770A (en) * 2000-02-01 2001-08-07 Fujisaki Denki Kk Arrangement for producing agricultural irrigative water
JP2001347145A (en) * 2000-06-08 2001-12-18 Matsushita Electric Ind Co Ltd Fine bubble generator
JP2003154242A (en) * 2001-11-26 2003-05-27 Texas Instr Japan Ltd Fluid mixing apparatus
JP2004351399A (en) * 2003-05-26 2004-12-16 Wataru Murota Reducing water and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195811A (en) * 2008-02-20 2009-09-03 Panasonic Electric Works Co Ltd Water clarification apparatus
RU2478272C1 (en) * 2011-08-04 2013-04-10 Федеральное государственное образовательное учреждение высшего профессионального образования "Кубанский государственный аграрный университет" Method of corn disinfection under conditions of protected ground for breeding purposes
JP2016112007A (en) * 2014-12-17 2016-06-23 株式会社光変換光合成促進農法 Plant cultivation system and plant cultivation method
JP2017000022A (en) * 2015-06-05 2017-01-05 株式会社フォーエス Hydrogen water supply apparatus
KR20200119659A (en) * 2019-04-10 2020-10-20 (주)에스엠 Do concentration controlling system based on circulating rate and high efficiency bioactive foam reactor using the same
KR102236859B1 (en) * 2019-04-10 2021-04-06 (주)에스엠 Do concentration controlling system based on circulating rate and high efficiency bioactive foam reactor using the same
WO2022093843A1 (en) * 2020-10-26 2022-05-05 Agvnt, LLC Liquid fertilizer composition containing nano-bubbles and method of use thereof

Also Published As

Publication number Publication date
JP2009172606A (en) 2009-08-06
JP2008188574A (en) 2008-08-21
JP4345823B2 (en) 2009-10-14
JP4989677B2 (en) 2012-08-01
JP5010638B2 (en) 2012-08-29
JP2009160589A (en) 2009-07-23

Similar Documents

Publication Publication Date Title
JP5010638B2 (en) Plant cultivation apparatus and plant cultivation method
EP2327298B1 (en) Device for supplying gas into water
JP3765759B2 (en) Microbubble generator
CN103043798B (en) Floating island system for remediation of eutrophic polluted water and water remediation method
JP4018130B1 (en) Water treatment system
JP5042585B2 (en) Water purification device and water purification method
US20170107474A1 (en) Apparatus, Systems and Methods for Oxygenating Liquid Media to Enhance Microorganism Growth
Park et al. Promotion of lettuce growth by application of microbubbles in nutrient solution using different rates of electrical conductivity and under periodic intermittent generation in a deep flow technique culture system
EP2534946A1 (en) Method to reduce nitrogen concentration in salt water
AU2021435297B2 (en) Method and systems for oxygenation of water bodies
JP5221978B2 (en) Biological breeding water production equipment
JP5763844B2 (en) Fluid processing apparatus and fluid processing method
CN202168387U (en) Antibiont blocking device for drip irrigation system
KR20160058376A (en) Nutriculture system for leaf vegetables and fruit vegetables using micro and/or nano bubbles and apparatus used in the system for sterilizing nutrient solution using ozone
JP5058383B2 (en) Liquid processing apparatus and liquid processing method
JP2018174841A (en) Elevated cultivation device
US20230023548A1 (en) Method and systems for oxygenation of water bodies
CN216703982U (en) Oxygen-enriched solution adding system
JP6977533B2 (en) Mixer
JP2008036508A (en) Pond purification device
US20160016831A1 (en) Top down variable depth aeration system
CN116058269A (en) Nutrient solution irrigation system and application method thereof
WO2024076450A1 (en) Method and systems for oxygenation of water bodies
US20190373828A1 (en) Flow through Oxygen Infuser
CN113856505A (en) Method for feeding high-concentration oxygen-enriched solution by adopting oxygen-enriched solution feeding system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090520

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100713

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees