JP2008036508A - Pond purification device - Google Patents

Pond purification device Download PDF

Info

Publication number
JP2008036508A
JP2008036508A JP2006212800A JP2006212800A JP2008036508A JP 2008036508 A JP2008036508 A JP 2008036508A JP 2006212800 A JP2006212800 A JP 2006212800A JP 2006212800 A JP2006212800 A JP 2006212800A JP 2008036508 A JP2008036508 A JP 2008036508A
Authority
JP
Japan
Prior art keywords
pond
water
pipe
supply pipe
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006212800A
Other languages
Japanese (ja)
Inventor
Chong Won Lee
チョン ウォン リー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seo Won Co Ltd
Original Assignee
Seo Won Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seo Won Co Ltd filed Critical Seo Won Co Ltd
Priority to JP2006212800A priority Critical patent/JP2008036508A/en
Publication of JP2008036508A publication Critical patent/JP2008036508A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pond purification device for purifying the water quality of a pond. <P>SOLUTION: The pond purification device comprises a water intake port 5 located in the deep part of a pond a suction line 3 connected from the water intake port 5 to a pump P, a feed pipe 4 for supplying water (a chemical liquid) supplied from the pump P uniformly throughout the pond, a number of connecting pipes 9 connected to the feed pipe 4 at regular intervals so as to be branched from the feed pipe 4 toward the pond, venturi nozzles each of which is connected to the tip end of the connecting pipe 9, and the middle of which is connected with a suction pipe communicating with atmosphere. Pond water is injected from the venturi nozzles. The pond water supplied from the pump P is injected into the pond so that the injected pond water is quickly returned to the water intake port 5, thereby increasing dissolved oxygen in the pond. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、池の水質を改善するための池の浄化装置に係り、さらに詳しくは、池水の循環・還流効率を高めると共に、水質管理に役立つガス(O2、O3など)が注入し易く、池の溶存酸素量を大幅に増やして水を汚す有機物を酸化させることにより、藻類の生成を抑え、悪臭の原因となる嫌気性バクテリアの発生を抑えて池の水質管理がなお一層効率よく行われるようにした池の浄化装置に関する。   The present invention relates to a pond purification device for improving the water quality of a pond. More specifically, the pond water circulation / reflux efficiency is improved, and gas (O2, O3, etc.) useful for water quality management can be easily injected. By increasing the amount of dissolved oxygen in the water and oxidizing the organic matter that pollutes the water, the generation of algae is suppressed, the generation of anaerobic bacteria that cause malodors is suppressed, and the water quality management of the pond is made even more efficient The present invention relates to a pond purification device.

池に生息する藻類や池の水草は1次生産者に属し、これらは光線、水、そして水に溶存する窒素やリンなどに依存して増殖する。このため、池に流れ込まれるいかなる水(雨水、灌漑水、排水など)であるにせよ、藻類が必要とする栄養素を含んでおり、肥料残留物、土壌粒子、そして空気(大気中の窒素ガスは池水に溶け込んで硝酸塩に変わる。)を介しても栄養素が供給されるため、池には常に藻類の栄養素が豊富であり、且つ、その供給源も無限であり、しかも、その量も莫大である。   Algae and pond aquatic plants inhabiting ponds belong to primary producers, and they grow depending on light, water, and nitrogen and phosphorus dissolved in water. For this reason, whatever water is flowing into the pond (rainwater, irrigation water, drainage, etc.), it contains nutrients needed by algae, fertilizer residues, soil particles, and air (nitrogen gas in the atmosphere It is dissolved in pond water and turns into nitrate), so the pond is always rich in algae nutrients, its source is unlimited, and the amount is huge .

例えば、雨水中に含有されている単なる0.05PPMのリンさえあれば、池においては藻類の生息が可能であるだけではなく、池中の沈殿物そのものが藻類の立派な栄養素となる。これらの栄養塩類を酸化させるのに足りる量の酸素が供給されなければ、池の富栄養化が激しくなり、藻類が繁殖し過ぎる緑藻現象を引き起こし、これによる溶存酸素量の枯渇により藻類が窒息死してしまい、その死体がさらに汚染源となる。   For example, if there is only 0.05PPM phosphorus contained in rainwater, not only is it possible for algae to inhabit in the pond, but the sediment in the pond itself is an excellent algae nutrient. If not enough oxygen is supplied to oxidize these nutrients, the pond becomes eutrophied, causing the algae to overgrow, causing the algae to die of suffocation due to the depletion of dissolved oxygen. The corpse becomes a source of further contamination.

これらが水中に沈降すると、好気性の微生物により相当量が分解されるが、微生物はこの分解過程で酸素を必要とし、この酸素のほとんどを水中で得ることになる。もし、水が溜まっている場合、水中の酸素は微生物の分解の進行に伴って一層不足する結果となる。酸素が不足する場合、微生物の分解が遅れるが故に濁度が高くなり、栄養素は水中に再放出されるため、これらはさらに藻類の繁殖、生長、消滅過程などの悪循環を招いてしまうのである。   When they settle in water, a significant amount is degraded by aerobic microorganisms, but the microorganisms require oxygen during the degradation process and most of this oxygen is obtained in water. If water is accumulated, the oxygen in the water will result in a further shortage as the decomposition of microorganisms proceeds. When oxygen is deficient, microbial degradation is delayed and turbidity increases, and nutrients are re-released into the water, which in turn leads to a vicious cycle of algae growth, growth, and extinction.

酸素が十分で且つ持続的に供給されると、好気性の微生物は効率よく有機物質を分解させて池水を浄化させることができるのに対し、酸素がない、あるいは不足している環境になると、嫌気性微生物が急増して、これらが有機物を分解する過程で硫化水素やメタンガスなどを生じさせて、池の悪臭を発生させる。   If oxygen is sufficiently and continuously supplied, aerobic microorganisms can efficiently decompose organic substances and purify pond water, whereas when there is no or insufficient oxygen, Anaerobic microorganisms increase rapidly, and these generate hydrogen sulfide and methane gas in the process of decomposing organic matter, generating odors in the pond.

このため、池や小さな湖に貯留された水は、流動しない場合には澱みによる自浄能力が極めて弱化するが、ベンチューリノズルを介して大気中の空気と水を噴射すると、池水が空気と接触できる面積が数百倍ないし数千倍以上に大きくなって、空気中の酸素との接触面積がその分大きくなり、その結果、溶存酸素量が増大する。   For this reason, when the water stored in a pond or a small lake does not flow, the self-cleaning ability due to starch is extremely weakened. However, when air and water in the atmosphere are injected through a venturi nozzle, the pond water can come into contact with the air. The area increases several hundred times to several thousand times or more, and the contact area with oxygen in the air increases accordingly, and as a result, the amount of dissolved oxygen increases.

図10は、従来の技術による池の浄化装置を説明するための平面図であって、池に噴水または曝気装置を多数台設けて池が汚染されることを予防するための方法を示している。これは、酸素の供給のための別途の機器が必要になり、酸素の供給率が極めて制限されざるを得ないほか、池の屈曲が激しい場合、線影部分などの循環の死角地帯ができてしまうという問題点がある。   FIG. 10 is a plan view for explaining a conventional pond purifying apparatus, and shows a method for preventing the pond from being contaminated by providing a plurality of fountains or aeration devices in the pond. . This requires a separate device for oxygen supply, and the oxygen supply rate must be extremely limited. In addition, if the pond is severely bent, a dead zone of circulation such as a shaded area is created. There is a problem that.

さらに、水質管理に役立つ液体を注入する場合には、薬液貯蔵タンク、定量ポンプ、注入具(KIT)及びコントローラーなどが必要となり、ガスを注入する場合には、通常、ガスを溶解させるための処理槽や、散気管などの付随装置が必要になる。また、処理槽を設けない場合には、別途の溶解タンクが求められる。さらに、附帯施設に対する設置コストと運転コスト及びメンテナンスコストが高いという問題点があるだけではなく、単一の設備では液体とガスを一緒に処理することができないため、水質管理に役立つO2、O3などのガスとpH調節剤、殺藻剤、光合成遮断剤、凝集剤、微生物製剤などの液体を一緒に注入するとき、それぞれの装置を別々に設ける必要があるという問題点がある。   Furthermore, when injecting a liquid that is useful for water quality management, a chemical storage tank, a metering pump, an injection tool (KIT), and a controller are required. When injecting a gas, a process for dissolving the gas is usually performed. Ancillary devices such as a tank and a diffuser are required. Moreover, when a processing tank is not provided, a separate dissolution tank is required. In addition to the problems of high installation, operation, and maintenance costs for incidental facilities, O2 and O3 are useful for water quality management because a single facility cannot handle liquid and gas together. When injecting a gas such as a pH regulator, an algaecide, a photosynthetic blocker, a flocculant, and a microbial preparation together, it is necessary to provide each device separately.

本発明は、上記の問題点を解消するためのものであり、池が容易に汚染・腐敗することを防ぎ、しかも、これらのメンテナンスコストも大幅に節減することができる池の浄化装置を提供することをその主たる目的としている。   The present invention is intended to solve the above-described problems, and provides a pond purification device that can prevent the pond from being easily contaminated and rotted, and that can greatly reduce the maintenance cost. This is the main purpose.

また、水(薬液)にガスを注入するときのガスの損失を極力抑え、ガスと液体の両方を単一の設備により供給可能にして、設置コストやメンテナンスコストを大幅に節減できるようにしている。   In addition, the loss of gas when injecting gas into water (chemical solution) is suppressed as much as possible, and both gas and liquid can be supplied from a single facility, greatly reducing installation costs and maintenance costs. .

前記目的を達成するために、本発明においては、第一に、ポンプ(陸上及び水中ポンプが共に使用可能)及び取水口と吸込ラインを介して池の深層水を取り入れ、池の周縁部に沿って循環管(池の外部及び池の内部共に設置可能)を配管した後、この循環ラインに一定の間隔を隔てて設けられたベンチューリノズルを介して池の表面下約20〜30cmの個所から噴射する方法により池水を循環させて表層水(高温、酸素飽和状態)と 深層水(低温、無酸素状態)を混ぜ合わせることにより、池の深層部の嫌気性バクテリアの増殖を抑える総合的な還流を形成して循環効果を極大化させている。   In order to achieve the above object, in the present invention, first, the deep water of the pond is taken in via the pump (both onshore and submersible pumps can be used) and the intake port and the suction line, and along the periphery of the pond. After piping a circulation pipe (can be installed both outside and inside the pond), it is injected from a location approximately 20-30 cm below the surface of the pond via a venturi nozzle provided at a certain interval in the circulation line. Circulate the pond water by the above method to mix the surface water (high temperature, oxygen saturation) and the deep water (low temperature, oxygen-free state), thereby providing a comprehensive return that suppresses the growth of anaerobic bacteria in the deep part of the pond. It is formed to maximize the circulation effect.

第二に、池の周りに沿って設けられた循環管路の上にベンチューリノズルを一定の間隔を隔てて多数設けることにより、たとえ、池の形状が様々であり、しかも屈曲の激しい部分があるとしても、死角地域無しに、池水が全体を通じて還流されるように誘導して、循環効果を一層高めている。   Second, by providing a large number of venturi nozzles at regular intervals on a circulation line provided around the pond, the shape of the pond varies, and there is a portion that is severely bent. Even so, the circulation effect is further enhanced by guiding the pond water to be recirculated throughout the whole without a blind spot area.

第三に、噴射ノズルとしてはベンチューリノズルを用いることにより、別途の動力無しに空気中の酸素が自動的に池水に溶解するようにして、動力コストを大幅に節減させ、さらに、ベンチューリノズルの特性上、空気が微細に放出されて酸素の転移効率が高められ、その結果、溶存酸素量を極大化させている。   Thirdly, by using a venturi nozzle as the injection nozzle, oxygen in the air is automatically dissolved in the pond water without any additional power, greatly reducing power costs, and the characteristics of the venturi nozzle. In addition, air is finely released to increase oxygen transfer efficiency, and as a result, the amount of dissolved oxygen is maximized.

第四に、簡単な 薬液注入装置(ベンチューリノズル)を設けて、池浄化剤及び有効ガスの投入に際して別途の動力無しにも供給量及び混合比を自動的に調節させることにより、池の浄化管理の効率性と利便性を大幅に改善している。   Fourth, a simple chemical solution injection device (Venturi nozzle) is provided, and pond purification control is performed by automatically adjusting the supply amount and mixing ratio without additional power when adding the pond purification agent and effective gas. The efficiency and convenience of have been greatly improved.

第五に、ベンチューリノズルの接続管を循環管路の上部に接続するが、循環管路の内部に長く延設して常に液体中に存在させ、ガスが液体に溶解されない限り、ベンチューリノズルを介して外へ抜け出ないようにして、注入されたガスの全量溶解、全量利用を図っている。   Fifth, the Venturi nozzle connection pipe is connected to the upper part of the circulation line, but it extends long inside the circulation line so that it is always present in the liquid, and unless the gas is dissolved in the liquid, the Venturi nozzle is connected through the Venturi nozzle. In order not to escape outside, all the injected gas is dissolved and used.

最後に、循環ポンプの仕様、循環管路の長さ及び管径、ベンチューリノズルの構造及び配置間隔、配置数量とその他の附帯施設の設置基準を池の規模及び池水質別に最適な条件に定量化することにより、設置コストを画期的に節減可能にしている。   Finally, quantifies the specifications of the circulation pump, the length and diameter of the circulation line, the structure and arrangement interval of the venturi nozzle, the arrangement quantity, and the installation standards of other ancillary facilities to the optimum conditions for each pond size and pond water quality. By doing so, installation costs can be dramatically reduced.

このように、本発明は、池に湛水される水中の溶存酸素量を既存よりも大幅に増やして、生物化学的酸素要求量(BOD:Biochemical Oxygen Demand)や化学的酸素要求量(COD:Chemical Oxygen Demand)を格段に低めることにより、池の汚染源となる水中の藻類や有機物質を酸化・殺菌させ、その結果、池の浄化に大いに寄与することができる。   As described above, the present invention significantly increases the amount of dissolved oxygen in the water that is submerged in the pond, compared with the existing ones, so that the biochemical oxygen demand (BOD) and the chemical oxygen demand (COD: By significantly reducing Chemical Oxygen Demand), it is possible to oxidize and sterilize algae and organic substances in the water that are the source of pollution in the pond, thereby greatly contributing to the purification of the pond.

本発明は、供給管を池の周縁部に沿って配管し、緑藻類の主たる発生地域である池の浅い部分までも水を還流させて溶存酸素量を高めに構成することにより、浄化効果が極めて高く、水質管理に役立つガスを別途の処理槽を設けることなく、供給管を用いるようにして溶解が行われるようにしている。   The present invention has an extremely high purification effect by arranging a supply pipe along the periphery of the pond and recirculating water to the shallow part of the pond, which is the main generation area of green algae, so as to increase the amount of dissolved oxygen. The gas that is high and useful for water quality management is dissolved by using a supply pipe without providing a separate treatment tank.

また、本発明は、構造が簡単であり、且つ、設置コストが安価であるほか、池の水を効率よく浄化することができ、常に清潔で且つきれいな池を保持することが可能になる。   In addition, the present invention is simple in structure and low in installation cost, and can purify the water in the pond efficiently, and can always keep a clean and clean pond.

以下、添付図面に基づき、本発明の好適な実施の形態による池の浄化装置の動作及び作用効果を説明する。   Hereinafter, operations and effects of a pond purifier according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings.

本発明による池の浄化装置は、図1から図3に示すように、大きく、取水口、吸込部、ポンプ、供給管の部分により構成されている。池の最深層部に位置している取水口5と、前記取水口からポンプPまで接続される吸込ライン3、ポンプ設備、そして前記ポンプPから供給された水(薬液)を池の全体に亘って均一に供給するための供給管4と、前記供給管から一定の間隔ごとに池に向かって分岐接続された多数の接続管9と、前記接続管の先端に接続され、中央部が大気と連通されて吸気管6が接続されたベンチューリノズル7と、により構成され、これを介して水が池の周縁部から中央部に向かって噴射され、矢印の方向に池の水が全体的に還流することになる。   As shown in FIGS. 1 to 3, the pond purifying apparatus according to the present invention is largely composed of a water intake, a suction part, a pump, and a supply pipe. The water intake 5 located in the deepest layer of the pond, the suction line 3 connected from the water intake to the pump P, the pump equipment, and the water (chemical solution) supplied from the pump P over the entire pond Supply pipe 4 for supplying uniformly, a large number of connection pipes 9 branchingly connected from the supply pipe toward the pond at regular intervals, and connected to the tip of the connection pipe, with the central portion being the atmosphere The venturi nozzle 7 is connected to the intake pipe 6 and communicated thereto, through which water is sprayed from the periphery of the pond toward the center, and the pond water is circulated as a whole in the direction of the arrow. Will do.

前記供給管4には一定の間隔を隔てて多数の接続管9が分岐され、それぞれの接続管の末端部には、一定の高さだけ水面の外へ露出される吸気管6を持つベンチューリノズル7が設けられる。前記吸気管を介して空気中の酸素が自動的に吸い込まれ、このときに生じる水圧と大気圧との圧力差により流れ込んだ酸素は超微細な気泡の状態に変わって水中に注入されて溶解される。これにより、通常の噴水または曝気システムと比較したとき、酸素転移効能が数百〜数千倍に高くなり、その結果、池水の全体が酸素飽和状態となる。   A large number of connecting pipes 9 are branched from the supply pipe 4 at a predetermined interval, and a venturi nozzle having an intake pipe 6 exposed to the outside of the water surface by a predetermined height at the end of each connecting pipe. 7 is provided. Oxygen in the air is automatically sucked in through the intake pipe, and the oxygen that flows due to the pressure difference between the water pressure and the atmospheric pressure generated at this time changes into a state of ultrafine bubbles and is injected into water and dissolved. The Thereby, when compared with a normal fountain or an aeration system, the oxygen transfer effect is several hundred to several thousand times higher, and as a result, the entire pond water is saturated with oxygen.

一方、池の深層部の水を取り入れて多数のベンチューリノズル7を介して池表面下約20〜30cmの個所から噴射することにより、池内の水は水平にだけではなく、上下にも流動する攪拌効果により総合的な還流が行われ、池の周縁部の水は速やかに深層部の取水口に循環することになる。このような循環方式は、池の低温深層水と高温表面水との間の水温差を無くす役割を果たすだけではなく、溶存酸素量が豊富で且つ好気性バクテリアの生息密度が高い表面水を、無酸素状態で且つ嫌気性バクテリアの生息密度が高い深層部に供給し続けることにより、嫌気性及び好気性バクテリアの繁殖を抑え、その結果、池の浄化が効率よく行われる。   On the other hand, by taking water from the deep part of the pond and spraying it from about 20-30 cm below the surface of the pond through a number of venturi nozzles 7, the water in the pond flows not only horizontally but also vertically. As a result, the total reflux is performed, and the water at the peripheral edge of the pond is quickly circulated to the water intake in the deep layer. Such a circulation system not only serves to eliminate the water temperature difference between the low-temperature deep water of the pond and the high-temperature surface water, but also the surface water rich in dissolved oxygen and high inhabiting density of aerobic bacteria. By continuing to supply to the deep layer where anaerobic bacteria have a high density of anaerobic bacteria, the breeding of anaerobic and aerobic bacteria is suppressed, and as a result, the purification of the pond is performed efficiently.

また、本発明は、池の管理に際し、ガス(O2、O3)と液体(微生物培養液、その他の池浄化剤)を用いる必要がある場合、これらを別途の動力無しに簡単で且つ自動的に供給管4に注入できるように、ベンチューリ管の原理を用いた別途の薬液注入装置8をポンプPの吐出口と供給管4との間に接続している。これにより、従来のように、顆粒状の投入剤の散布方式よりも時間とコストなどを大幅に低減することができる。   Further, in the present invention, when it is necessary to use gas (O2, O3) and liquid (microorganism culture solution, other pond purifier) in managing the pond, these can be easily and automatically performed without any additional power. A separate chemical solution injection device 8 using the Venturi tube principle is connected between the discharge port of the pump P and the supply tube 4 so that the supply tube 4 can be injected. Thereby, time, cost, etc. can be reduced significantly compared with the dispersion | distribution method of a granular input agent conventionally.

前記供給管4は、池の周縁部に沿って長く配管されるため、全体的には池の形状と類似なものとして構成され、前記ポンプPは、供給管の終端に接続されているベンチューリノズル7においても、水(薬液)を噴き出すのに足りる圧力を形成するように設計される必要がある。   Since the supply pipe 4 is piped long along the peripheral edge of the pond, the supply pipe 4 is generally configured to be similar to the shape of the pond, and the pump P is a venturi nozzle connected to the end of the supply pipe. 7 also needs to be designed to create a pressure sufficient to spout water (chemical solution).

取水口5は、池の深層水を取り入れ易く、池の最深層部(深層部)に設けられるが、ベンチューリノズル7の出口が池の中心を向かうようにして、ベンチューリノズル7に接続される吸気管6の先端部が大気に露出されるように設けられることが好ましい。   The intake 5 is easy to take in the deep water of the pond and is provided in the deepest layer (deep layer) of the pond, but the intake connected to the venturi nozzle 7 so that the outlet of the venturi nozzle 7 faces the center of the pond. It is preferable that the tip of the tube 6 is provided so as to be exposed to the atmosphere.

図4は、本発明の一部の構成要素であるベンチューリノズルのみを示す拡大図であり、ベンチューリノズル7は、途中部の断面積が出入口の断面積よりも小さく形成されているため、前記ベンチューリノズル7を通過する流体は途中部において流速が高くなり、ベルヌーイの原理により圧力が大気圧以下に低下する。このため、大気中の酸素が吸気管6を通ってベンチューリノズル7の内部に流れ込み、水圧により接続管9から供給された水(薬液)と共に池に噴き出される。   FIG. 4 is an enlarged view showing only the venturi nozzle which is a part of the component of the present invention, and the venturi nozzle 7 is formed so that the cross-sectional area of the middle portion is smaller than the cross-sectional area of the inlet / outlet. The fluid passing through the nozzle 7 has a high flow velocity in the middle, and the pressure is reduced to atmospheric pressure or less by the Bernoulli principle. For this reason, oxygen in the atmosphere flows into the venturi nozzle 7 through the intake pipe 6 and is jetted into the pond together with water (chemical solution) supplied from the connection pipe 9 by water pressure.

図5は、従来の技術による配管の接続構造を示し、図6は、本発明による配管接続構造の第2の実施の形態を示す側面図であり、そして図7は、本発明による配管接続構造の第3の実施の形態を示す側面図である。   FIG. 5 shows a pipe connection structure according to the prior art, FIG. 6 is a side view showing a second embodiment of the pipe connection structure according to the present invention, and FIG. 7 shows a pipe connection structure according to the present invention. It is a side view which shows 3rd Embodiment of this.

先ず、図5に示すように、接続管9が供給管4よりも高めに接続されている場合、水(薬液)に液体さえ混入されていれば大した問題は起こらないが、図示の実施の形態でのように、液体41とガス42が上下部に分かれる場合には、ガス42が接続管9の上方に位置することになるため、水(薬液)に溶解されない状態で放出される可能性は高い。この場合には、水(薬液)にO2、O3などの水質管理に役立つガスを含めることになるが、これは、有効ガスの無駄使いを来たし、その結果、浄化効果を大きく期待できなくなるという問題点がある。   First, as shown in FIG. 5, when the connection pipe 9 is connected higher than the supply pipe 4, no problem occurs as long as liquid is mixed in the water (chemical solution). As in the embodiment, when the liquid 41 and the gas 42 are separated into upper and lower parts, the gas 42 is located above the connecting pipe 9 and thus may be released without being dissolved in water (chemical solution). Is expensive. In this case, gas useful for water quality management such as O2 and O3 is included in the water (chemical solution), but this causes a waste of effective gas, and as a result, a problem that the purification effect cannot be greatly expected. There is a point.

これに対し、図6に示すように、接続管9が水(薬液)供給管4よりも低めに接続されている場合、水(薬液)に液体とガスが一緒に混入されている場合であっても、液体41が接続管9の下方に位置することになるため、ガス42は、水(薬液)に溶解されない状態では放出されない。このため、図6の実施の形態の方が図5の実施の形態に比べて、水(薬液)に含まれているガスを無駄使いにしなくなり、なお一層経済的で且つ効率的な方法となる。   On the other hand, as shown in FIG. 6, when the connection pipe 9 is connected lower than the water (chemical liquid) supply pipe 4, the liquid (gas) and the gas are mixed together. However, since the liquid 41 is positioned below the connecting pipe 9, the gas 42 is not released in a state where it is not dissolved in water (chemical solution). For this reason, the embodiment of FIG. 6 does not waste gas contained in water (chemical solution) compared to the embodiment of FIG. 5, and is an even more economical and efficient method. .

ところが、池の浄化装置の配管を接続するに際して、先ず、供給管4を池の周縁部2に沿って配管した後、多数のノズル接続管9を前記供給管に互いに一定の間隔を隔てて接続するが、図6に示すように、接続管が水(薬液)供給管よりも低めに位置している場合には、前記接続管を供給管の下方で接続しなければならないため、作業に不便が生じ、しかも、能率的でもないという問題点がある。このような問題点を改善するために、図7においては、前記接続管9が供給管4よりも高めに接続されるが、前記接続管の端部91を供給管の内側の下端部まで長く接続して供給管の内部の液体41中に常に位置するように構成すると、作業が容易になり、しかも、一層効率よい浄化が行われる。   However, when connecting the piping of the pond purification apparatus, first, the supply pipe 4 is piped along the peripheral edge 2 of the pond, and then a number of nozzle connection pipes 9 are connected to the supply pipe at regular intervals. However, as shown in FIG. 6, when the connection pipe is positioned lower than the water (chemical solution) supply pipe, the connection pipe must be connected below the supply pipe. In addition, there is a problem that it is not efficient. In order to improve such a problem, in FIG. 7, the connecting pipe 9 is connected higher than the supply pipe 4, but the end 91 of the connecting pipe is extended to the lower end inside the supply pipe. When connected and configured so as to be always located in the liquid 41 inside the supply pipe, the operation is facilitated, and more efficient purification is performed.

前記供給管4の上部にはキャップ92が結合され、これを介してノズル接続管9が嵌合され、これらの接続部の周りには供給管4の内部の液体41、ガス42が外部に漏れないように十分に密封する必要がある。   A cap 92 is coupled to the upper portion of the supply pipe 4, and a nozzle connection pipe 9 is fitted through the cap 92, and the liquid 41 and gas 42 inside the supply pipe 4 leak to the outside around these connections. It is necessary to seal well so that there is no.

図8は、池の浄化装置における薬液注入装置の作動説明図であり、本発明においては、供給管4に沿って池に還流する水の水質管理に役立つ微生物培養液及び薬液(池浄化剤など)を自動的に注入するように構成された別途の薬液注入装置8を備える。   FIG. 8 is an operation explanatory diagram of the chemical solution injection device in the pond purification device. In the present invention, the microorganism culture solution and chemical solution (pond purification agent, etc.) useful for water quality management of water returning to the pond along the supply pipe 4 ) Is provided with a separate chemical liquid injection device 8 configured to automatically inject the liquid).

前記薬液注入装置8は、図8に示すように、供給管4に並列に接続され、これにより、薬液注入装置8から自動的に供給される水(薬液)が供給管を介して池に一定に供給可能になる。すなわち、薬液注入装置8の分岐管81は供給管と並列に接続され、前記分岐管81の途中部には、ガス発生装置または水質浄化剤貯蔵タンク84から接続された薬液注入装置吸込管83がその途中に接続されているベンチューリ管82に接続される。   As shown in FIG. 8, the chemical injection device 8 is connected in parallel to the supply pipe 4, so that water (chemical solution) automatically supplied from the chemical injection device 8 is constant in the pond via the supply pipe. Can be supplied. That is, the branch pipe 81 of the chemical liquid injector 8 is connected in parallel with the supply pipe, and a chemical liquid injector suction pipe 83 connected from the gas generator or the water purification agent storage tank 84 is provided in the middle of the branch pipe 81. It is connected to a Venturi tube 82 connected in the middle.

このため、ポンプPの圧力により取水口5を介して流れ込んだ水が供給管4を通過すると、分岐管81は、前記供給管に並列に接続されているため、一部の水は前記分岐管81に流れ込む。分岐管81に流れ込んだ水は、ベンチューリ管82を通過するが、前記ベンチューリ管82の途中にガス発生装置または水質浄化剤貯蔵タンク84から接続された吸込管83が接続されているため、ベルヌーイの原理により前記吸込管83を介して供給された流体はベンチューリ管82の内部に流れ込み、このようにしてベンチューリ管82の内部に供給された流体は、分岐管81に流れ込んだ水と混合されながら、供給管4を介して池に供給され続く。   For this reason, when the water that has flowed in through the water intake 5 due to the pressure of the pump P passes through the supply pipe 4, the branch pipe 81 is connected in parallel to the supply pipe. It flows into 81. The water flowing into the branch pipe 81 passes through the Venturi pipe 82. Since the suction pipe 83 connected from the gas generator or the water purification agent storage tank 84 is connected in the middle of the Venturi pipe 82, it is Bernoulli's. In principle, the fluid supplied through the suction pipe 83 flows into the venturi pipe 82, and the fluid supplied into the venturi pipe 82 in this way is mixed with the water that flows into the branch pipe 81. It continues to be supplied to the pond via the supply pipe 4.

水(薬液)に水質管理に役立つガス(O2、O3など)のみを含めたい場合には、符号84がガス発生装置に相当し、水(薬液)に水質管理に役立つ液体(pH調節剤、殺藻剤、光合成遮断剤、凝集剤、微生物製剤など)のみを含めたい場合には、符号84が水質浄化剤貯蔵タンクに相当する。また、水(薬液)にガスと液体の両方を含めたい場合には、符号84がガス発生装置と水質浄化剤貯蔵タンクの両方に相当する。この薬液注入装置8は構造が簡単であり、施工費、運転費及びメンテナンス費が安価であるほか、ガス及び液体の注入を単一の設備で行えるというメリットがある。   In the case where only water (chemical solution) containing gas (O2, O3, etc.) useful for water quality management is to be included, reference numeral 84 corresponds to a gas generator, and water (chemical solution) is useful for water quality management (pH regulator, In the case where it is desired to include only algae, a photosynthetic blocking agent, a flocculant, a microbial preparation, etc., reference numeral 84 corresponds to a water purification agent storage tank. Further, when it is desired to include both gas and liquid in the water (chemical solution), reference numeral 84 corresponds to both the gas generator and the water purification agent storage tank. This chemical solution injection device 8 has a simple structure, has low construction costs, operation costs, and maintenance costs, and has the advantage that gas and liquid can be injected with a single facility.

水(薬液)に水質管理に役立つガスを含めて供給したい場合、このガスが水に十分に溶解(混合)された状態で池に供給するためには、ガスと水を混ぜ合わせるための過程が求められるが、本発明においては、図9に示す方法によりこれを解消している。   If you want to supply water (chemical solution) that contains gas useful for water quality management, the process of mixing the gas and water is necessary to supply the pond with this gas sufficiently dissolved (mixed) in water. In the present invention, this is solved by the method shown in FIG.

前記供給管4の前部には、接続管9及びベンチューリノズル7無し溶解部44がガスと水と混ぜ合わせるのに足りる長さに形成され、その後方には接続管9及びベンチューリノズル7付き排出部45が一体に接続される。   At the front part of the supply pipe 4, a connecting part 9 and a venturi nozzle-less dissolving part 44 are formed to have a length sufficient to mix gas and water, and at the rear thereof, a discharge with a connecting pipe 9 and a venturi nozzle 7 is provided. The part 45 is connected integrally.

供給管4は、配管の端部が閉塞されている密閉空間であり、溶解部44が一種の溶解処理槽の役割を果たすことから、処理槽や高価な溶解タンクがなくても完璧に溶解処理が行えるというメリットがある。   The supply pipe 4 is a sealed space in which the end of the pipe is closed, and the dissolution part 44 serves as a kind of dissolution treatment tank. Therefore, even if there is no treatment tank or expensive dissolution tank, the supply pipe 4 is completely dissolved. There is an advantage that can be done.

図示の例においては、供給管4が池の周縁部に沿って配管され、管径、ポンプ圧力、使用ガスの種類によって供給管の溶解部44と排出部45との長さの割合を任意に調節することができる。   In the illustrated example, the supply pipe 4 is piped along the peripheral edge of the pond, and the ratio of the length of the dissolving part 44 and the discharge part 45 of the supply pipe is arbitrarily determined according to the pipe diameter, pump pressure, and type of gas used. Can be adjusted.

このように構成された本発明の池の浄化装置は、池が濁った場合に動作するが、このとき、池の濁った水はポンプPにより取水口5とポンプを介して供給管4に流れ込んだ後、接続管9とベンチューリノズル7を介して池に高圧にて噴射される。   The pond purification apparatus of the present invention configured as described above operates when the pond becomes cloudy. At this time, the turbid water in the pond flows into the supply pipe 4 by the pump P through the water intake 5 and the pump. After that, it is injected into the pond at high pressure via the connecting pipe 9 and the venturi nozzle 7.

これを所定の時間以上動作させると、水面上に露出された吸気管6を介して流れ込む空気が前記ベンチューリノズル7を通過するときに生じる気圧差により吸い込まれた後、微細な気泡の状態で水中に溶解される。これにより、通常の噴水システムと比較したとき、酸素の伝達効率が12〜20倍ほど高い溶存酸素量を保持することが可能になる。   When this is operated for a predetermined time or longer, the air flowing in through the intake pipe 6 exposed on the surface of the water is sucked in due to a pressure difference generated when passing through the venturi nozzle 7, and then in the state of fine bubbles. Dissolved in Thereby, when compared with a normal fountain system, it is possible to maintain a dissolved oxygen amount that is 12 to 20 times higher in oxygen transmission efficiency.

このように、本発明は、溶存酸素量を大幅に高めて生化学的な酸素要求量(BOD)と化学的な酸素要求量(COD)を低下することにより、池の汚染源となる藻類や有機物質をいずれも酸化させることができ、嫌気性バクテリアやウイルスまでも殺菌、消毒するというメリットがある。   As described above, the present invention significantly increases the dissolved oxygen amount to lower the biochemical oxygen demand (BOD) and the chemical oxygen demand (COD), thereby causing algae and organics that are the source of pond pollution. All substances can be oxidized, and there is an advantage that even anaerobic bacteria and viruses can be sterilized and disinfected.

さらに、池の周縁部、すなわち、境界部に沿って設けられる供給管4は屈曲が激しく、浅い部分までも設置し易くて池の深層の低温水を噴射するので、水温層をなくし、溶存酸素量が豊富な水が新たに供給されるに伴って有機物が酸化され、藻類などの栄養分が遮断されて池水の浄化作用が行われ続く。   Furthermore, the supply pipe 4 provided along the peripheral edge of the pond, that is, along the boundary, is severely bent and can be easily installed even in a shallow portion, and jets low-temperature water in the deep pond. As the abundant amount of water is newly supplied, organic matter is oxidized, nutrients such as algae are cut off, and the purification of pond water continues.

本発明の第1の実施の形態を説明するための平面図。The top view for demonstrating the 1st Embodiment of this invention. 本発明の第1の実施の形態を説明するための側面図。The side view for demonstrating the 1st Embodiment of this invention. 本発明による配管接続構造の第1の実施の形態を示す側面図。The side view which shows 1st Embodiment of the piping connection structure by this invention. 本発明の一要部となるベンチューリノズルのみを拡大して示す側断面図。The sectional side view which expands and shows only the venturi nozzle used as the principal part of this invention. 従来の技術による配管接続構造を示す側面図。The side view which shows the piping connection structure by a prior art. 本発明による配管接続構造の第2の実施の形態を示す側面図。The side view which shows 2nd Embodiment of the piping connection structure by this invention. 本発明による配管接続構造の第3の実施の形態を示す側面図。The side view which shows 3rd Embodiment of the piping connection structure by this invention. 池の浄化装置における水(薬液)注入装置の作動説明図。Operation | movement explanatory drawing of the water (chemical | medical solution) injection | pouring apparatus in the purification apparatus of a pond. 本発明の第の2実施の形態を説明するための平面図。The top view for demonstrating the 2nd Embodiment of this invention. 従来の技術による池の浄化装置を説明するための平面図。The top view for demonstrating the purification apparatus of the pond by a prior art.

符号の説明Explanation of symbols

1 池(また水槽および貯水池)または池水
2 池の周縁ライン
3 吸込ライン
4 水(薬液)供給管
5 取水口
6 吸気管
7 ベンチューリノズル
8 薬液注入装置
9 接続管
41 液体
42 ガス
44 溶解部
45 排出部
81 分岐管
82 ベンチューリ管
83 薬液注入装置吸込管
84 ガス発生装置または水質浄化剤貯蔵タンク
91 端部
92 キャップ
1 Pond (also tank and reservoir) or pond water 2 Peripheral line of pond 3 Suction line 4 Water (chemical liquid) supply pipe 5 Water intake 6 Intake pipe 7 Venturi nozzle 8 Chemical liquid injector 9 Connection pipe 41 Liquid 42 Gas 44 Dissolving part 45 Discharge Part 81 Branch pipe 82 Venturi pipe 83 Chemical solution injector suction pipe 84 Gas generator or water purification agent storage tank 91 End 92 Cap

Claims (6)

ポンプ(P)から供給された水を池の内部に噴射することにより池の溶存酸素量を増大させるための池の浄化装置において、
池の深層部に位置している取水口(5)と、前記取水口からポンプ(P)まで接続される吸込ライン(3)と、前記ポンプ(P)から供給された水(薬液)を池の全体に亘って均一に供給するための供給管(4)と、前記供給管から池に向かって一定の間隔ごとに分岐接続された多数の接続管(9)と、前記接続管の先端に接続され、中央部が大気と連通された吸気管(6)が接続されたベンチューリノズル(7)と、により構成され、これを介して池水を噴射させて、究極的に噴射された水が取水口(5)に迅速に再還流することを特徴とする池の浄化装置。
In the pond purification apparatus for increasing the amount of dissolved oxygen in the pond by injecting the water supplied from the pump (P) into the pond,
A water intake (5) located in the deep part of the pond, a suction line (3) connected from the water intake to the pump (P), and water (chemical solution) supplied from the pump (P) A supply pipe (4) for supplying uniformly over the whole, a large number of connection pipes (9) branched and connected at regular intervals from the supply pipe toward the pond, and at the tip of the connection pipe And a venturi nozzle (7) connected to the intake pipe (6) connected to the atmosphere at the center, and pond water is jetted through this, and the finally jetted water is taken in. A pond purification device characterized by being quickly recirculated to the mouth (5).
ベンチューリノズル(7)のノズル途中部に接続された吸気管(6)の先端部が大気に露出されるように一定の間隔ごとに多数設けられ、多量の酸素を別途の動力装置無しに自動的に池に注入・供給することを特徴とする請求項1に記載の池の浄化装置。 A large amount of oxygen is provided at regular intervals so that the tip of the intake pipe (6) connected to the middle of the nozzle of the venturi nozzle (7) is exposed to the atmosphere, and a large amount of oxygen is automatically added without a separate power unit. 2. The pond purifier according to claim 1, wherein the pond purifier is supplied to the pond. 水の水質管理に役立つガス(O2、O3など)及び液体(pH調節剤、殺藻剤、光合成遮断剤、凝集剤、微生物製剤など)を池に供給するための別途の薬液注入装置(8)を備えるが、前記薬液注入装置は、供給管(4)と並列に接続された分岐管(81)と、前記分岐管の途中部に接続されたベンチューリ管(82)と、ガス発生装置または水質浄化剤貯蔵タンク(84)から前記ベンチューリ管の途中部に接続された吸込管(83)と、により構成されて、別途の動力装置を設けることなく簡単で且つ自動的に池に前記ガス及び液体を注入・供給することを特徴とする請求項1に記載の池の浄化装置。 Separate chemical injection device (8) for supplying gas (O2, O3, etc.) and liquid (pH regulators, algicides, photosynthetic blockers, flocculants, microbial agents, etc.) useful for water quality management to the pond The chemical injection device includes a branch pipe (81) connected in parallel to the supply pipe (4), a venturi pipe (82) connected to a middle portion of the branch pipe, and a gas generator or water quality And a suction pipe (83) connected to a middle part of the venturi pipe from the purifier storage tank (84), and the gas and liquid can be easily and automatically supplied to the pond without providing a separate power unit. The pond purifier according to claim 1, wherein the pond purifier is supplied and supplied. 前記接続管(9)が供給管(4)よりも低めに設けられて溶解度を100%成し遂げることにより、溶解処理の効率性を極大化させることを特徴とする請求項1に記載の池の浄化装置。 The purification of the pond according to claim 1, wherein the connection pipe (9) is provided lower than the supply pipe (4) to achieve 100% solubility, thereby maximizing the efficiency of the dissolution treatment. apparatus. 前記接続管(9)が供給管(4)よりも高めに接続されるが、前記ノズル接続管(9)の端部(91)は、接続個所から水(薬液)供給管(4)の内側の下端部に長く接続されて常に供給管(4)の内部の液体(41)中に位置するようになっていることを特徴とする請求項1に記載の池の浄化装置。 The connection pipe (9) is connected higher than the supply pipe (4), but the end (91) of the nozzle connection pipe (9) is connected to the inside of the water (chemical solution) supply pipe (4) from the connection point. The pond purifier according to claim 1, characterized in that it is long connected to the lower end of the tank and is always located in the liquid (41) inside the supply pipe (4). 前記薬液供給管(4)の前部には、接続管(9)及びベンチューリノズル(7)が結合されていない 溶解部 (44)がガスを水と混合するのに足りる長さに形成され、その後方には、接続管(9)及びベンチューリノズル(7)が結合された排出部(45)が一体に接続されていることを特徴とする請求項1に記載の池の浄化装置。
A connecting part (9) and a venturi nozzle (7) are not connected to the front part of the chemical liquid supply pipe (4), and a dissolving part (44) is formed with a length sufficient to mix the gas with water, 2. The pond purifier according to claim 1, wherein a discharge portion (45) to which the connecting pipe (9) and the venturi nozzle (7) are coupled is integrally connected to the rear side thereof.
JP2006212800A 2006-08-04 2006-08-04 Pond purification device Pending JP2008036508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006212800A JP2008036508A (en) 2006-08-04 2006-08-04 Pond purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006212800A JP2008036508A (en) 2006-08-04 2006-08-04 Pond purification device

Publications (1)

Publication Number Publication Date
JP2008036508A true JP2008036508A (en) 2008-02-21

Family

ID=39172133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006212800A Pending JP2008036508A (en) 2006-08-04 2006-08-04 Pond purification device

Country Status (1)

Country Link
JP (1) JP2008036508A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019188271A (en) * 2018-04-18 2019-10-31 株式会社アイテック Water flow generation device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50140252U (en) * 1974-05-07 1975-11-19
JPS6447430A (en) * 1987-08-18 1989-02-21 Hideteru Sawa Injection device of substance
JPH05277483A (en) * 1992-03-31 1993-10-26 Nippon Petrochem Co Ltd Aeration device
JPH0716598A (en) * 1993-06-30 1995-01-20 Nippon Tainetsu Kagaku Kogyo Kk Method for activating water, method for clarifying water in closed lake and marsh and apparatus therefor
JPH08290192A (en) * 1995-02-20 1996-11-05 Takashi Yamamoto Aeration device
JPH11342396A (en) * 1998-06-01 1999-12-14 Tanaka Sansho Kk Water cleaner of lake, marsh and the like
JP2002370095A (en) * 2001-06-14 2002-12-24 Masao Ukisho Liquid cleaning apparatus
JP2003062441A (en) * 2001-08-23 2003-03-04 Takashi Yamamoto Air mixing nozzle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50140252U (en) * 1974-05-07 1975-11-19
JPS6447430A (en) * 1987-08-18 1989-02-21 Hideteru Sawa Injection device of substance
JPH05277483A (en) * 1992-03-31 1993-10-26 Nippon Petrochem Co Ltd Aeration device
JPH0716598A (en) * 1993-06-30 1995-01-20 Nippon Tainetsu Kagaku Kogyo Kk Method for activating water, method for clarifying water in closed lake and marsh and apparatus therefor
JPH08290192A (en) * 1995-02-20 1996-11-05 Takashi Yamamoto Aeration device
JPH11342396A (en) * 1998-06-01 1999-12-14 Tanaka Sansho Kk Water cleaner of lake, marsh and the like
JP2002370095A (en) * 2001-06-14 2002-12-24 Masao Ukisho Liquid cleaning apparatus
JP2003062441A (en) * 2001-08-23 2003-03-04 Takashi Yamamoto Air mixing nozzle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019188271A (en) * 2018-04-18 2019-10-31 株式会社アイテック Water flow generation device
JP7019181B2 (en) 2018-04-18 2022-02-15 株式会社アイテック Water flow generator

Similar Documents

Publication Publication Date Title
CN103043798B (en) Floating island system for remediation of eutrophic polluted water and water remediation method
CN101606506A (en) The circulating water culture system of intensification
KR101270696B1 (en) Disinfectant ozonic water and oh radical generator, and sewage purification, abstersion or sterilization system using the same
CN103818997A (en) Method and device of composite aeration MBR (membrane bio-reactor)
CN207091218U (en) A kind of livestock breeding wastewater advanced treatment system
JP2006088021A (en) Water treatment system
KR20150038957A (en) Plant Culture Appratus and Operating Method thereof
JP5453600B2 (en) Hydroponic cultivation equipment and hydroponic cultivation method using ozone water
JP2003340489A (en) Water cleaning apparatus in closed water area
CN101121568A (en) Pool purification system
CN208200514U (en) Three groups of formula circulating water cultivation biological filter systems of zero-emission type
JP2008036508A (en) Pond purification device
KR20000050209A (en) method for purificationing a waste water and apparatus for performing the same
CN207468276U (en) Aerobic cell system
ES2436301T3 (en) Process and plant to purify contaminated water
CN206219375U (en) A kind of processing system for livestock breeding wastewater
KR100541001B1 (en) Pond-purification system
KR102153994B1 (en) Volume change type water treatment device for circulation type upper focusing aeration
KR100859550B1 (en) Equipment for treating culture fluid and nutri-culture equipment using the same
CN103466889B (en) water purifying device and method
KR100429472B1 (en) Pond-purification system
KR200320848Y1 (en) Pond-purification system
KR200259118Y1 (en) Pond-purification system
CN111377577A (en) Waste water treatment equipment for pesticide production
CN205575871U (en) Adopt UCT to handle and slaughter wastewater systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120307