JP5874223B2 - Ozone water supply apparatus and ozone water supply method - Google Patents

Ozone water supply apparatus and ozone water supply method Download PDF

Info

Publication number
JP5874223B2
JP5874223B2 JP2011151832A JP2011151832A JP5874223B2 JP 5874223 B2 JP5874223 B2 JP 5874223B2 JP 2011151832 A JP2011151832 A JP 2011151832A JP 2011151832 A JP2011151832 A JP 2011151832A JP 5874223 B2 JP5874223 B2 JP 5874223B2
Authority
JP
Japan
Prior art keywords
ozone water
ozone
flow rate
branch
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011151832A
Other languages
Japanese (ja)
Other versions
JP2013017932A (en
Inventor
裕人 床嶋
裕人 床嶋
純一 井田
純一 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2011151832A priority Critical patent/JP5874223B2/en
Priority to CN201280033875.0A priority patent/CN103687820B/en
Priority to PCT/JP2012/067205 priority patent/WO2013008721A1/en
Priority to KR1020137030369A priority patent/KR101974667B1/en
Priority to TW101124427A priority patent/TWI538877B/en
Publication of JP2013017932A publication Critical patent/JP2013017932A/en
Application granted granted Critical
Publication of JP5874223B2 publication Critical patent/JP5874223B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Description

本発明は、オゾン水供給装置及びオゾン水供給方法に関する。さらに詳しくは、電子材料等に対してウェット処理を行うオゾン水のオゾン濃度を低下させることなく、オゾン水生成場所からオゾン水使用箇所にオゾン水を供給するオゾン水供給装置及びオゾン水供給方法に関する。   The present invention relates to an ozone water supply device and an ozone water supply method. More specifically, the present invention relates to an ozone water supply device and an ozone water supply method for supplying ozone water from an ozone water generation place to an ozone water use place without reducing the ozone concentration of ozone water that performs wet treatment on electronic materials and the like. .

従来、半導体用シリコン基板、液晶用ガラス基板又はフォトマスク用石英基板等の基板その他の電子部品の洗浄は、米国のRCA社(Radio of Corporation of America Corp.)により開発されたRCA洗浄に代表されるように、高濃度の薬液や洗剤及びそれを濯ぐための夥しい量の純水又は超純水を用いて行われていた。これに対し、洗浄工程のコストを削減する目的や大量の洗浄水の使用を抑制して環境を保全する目的等のために、洗浄技術に対する様々な簡略化の取り組みがなされ、その成果を上げてきた。その代表的な洗浄技術としてオゾンや水素等の特定のガスを溶解した洗浄水による洗浄技術がある。   Conventionally, cleaning of a substrate such as a silicon substrate for a semiconductor, a glass substrate for a liquid crystal, or a quartz substrate for a photomask is represented by an RCA cleaning developed by RCA (Radio of Corporation of America Corp.) in the United States. As described above, a high concentration chemical solution or detergent and a large amount of pure water or ultrapure water for rinsing it have been used. On the other hand, various simplifications have been made to the cleaning technology for the purpose of reducing the cost of the cleaning process and the purpose of conserving the environment by suppressing the use of a large amount of cleaning water, and have achieved results. It was. As a typical cleaning technique, there is a cleaning technique using cleaning water in which a specific gas such as ozone or hydrogen is dissolved.

例えば、純水にオゾンを溶解したオゾン水は、溶存オゾン濃度が数mg/Lといった低濃度であるにも拘わらず強い酸化力を有する。そのため、オゾン水は基板の表面に付着した有機物や金属等の不純物を除去する工程や、シリコン基板の表面に酸化皮膜層を形成する工程に使用されている。このような工程では、使用されるオゾンの濃度が基板表面の洗浄力や形成される膜厚に大きな影響を与えるため、オゾン濃度の管理が極めて重要とされている。   For example, ozone water in which ozone is dissolved in pure water has a strong oxidizing power even though the dissolved ozone concentration is as low as several mg / L. Therefore, ozone water is used in the process of removing impurities such as organic substances and metals adhering to the surface of the substrate and the process of forming an oxide film layer on the surface of the silicon substrate. In such a process, since the concentration of ozone used greatly affects the cleaning power of the substrate surface and the film thickness to be formed, the management of the ozone concentration is extremely important.

しかしながら、オゾンは自己分解しやすく、オゾン水生成場所とオゾン水使用箇所との距離が長い場合、生成されたオゾン水をオゾン水使用箇所まで移送する途中でオゾン水中のオゾン濃度が低下してしまう。   However, ozone is easily self-decomposing, and if the distance between the ozone water generation site and the ozone water use location is long, the ozone concentration in the ozone water decreases during the transfer of the generated ozone water to the ozone water use location. .

また、オゾン水使用箇所が複数存在する場合、オゾン水生成場所で生成したオゾン水を配管で移送し、オゾン水使用箇所に順次に分流して供給する手法であると、オゾン水を分流するたびに配管内を流れるオゾン水の流速が低下する。このため、下流側に位置するオゾン水使用箇所では、オゾン水が到達するまでに時間がかかり、オゾン水使用箇所にオゾン水が到達したときにはオゾンが自己分解してしまい、オゾン水中のオゾン濃度が低下してしまう。   In addition, when there are multiple locations where ozone water is used, the ozone water generated at the ozone water generation site is transferred by piping, and the ozone water is sequentially divided and supplied to the location where ozone water is used. The flow rate of ozone water flowing in the pipe decreases. For this reason, it takes time for the ozone water to reach the location where the ozone water is used on the downstream side, and when the ozone water reaches the location where the ozone water is used, the ozone self-decomposes and the ozone concentration in the ozone water It will decline.

このようなオゾン水中のオゾン濃度の低下を防止する技術について、本出願人は、これまでに様々な技術を提案してきた。   As for the technology for preventing such a decrease in ozone concentration in the ozone water, the present applicant has so far proposed various technologies.

特許文献1では、純水にオゾンを溶解して生成したオゾン水を移送するに際し、オゾン水生成装置にて純水又はオゾン水に炭酸ガス又は有機化合物を溶解させることでオゾンの自己分解を抑制できる技術を提案している。また、特許文献2では、オゾン水供給装置に、オゾン水の給水管から排出管までの任意の位置に薬剤供給装置を設け、亜硝酸、亜硝酸塩、炭酸、炭酸塩、重炭酸塩、亜硫酸、亜硫酸塩、重亜硫酸塩及びヒドラジンからなる群から選ばれる1又は2以上のオゾン分解抑制剤を添加する技術を提案している。   In Patent Document 1, when ozone water generated by dissolving ozone in pure water is transferred, ozone self-decomposition is suppressed by dissolving carbon dioxide gas or an organic compound in pure water or ozone water using an ozone water generator. It proposes a technology that can be used. Moreover, in patent document 2, the chemical | medical agent supply apparatus is provided in the arbitrary positions from the ozone water supply pipe to the discharge pipe in the ozone water supply apparatus, and nitrous acid, nitrite, carbonic acid, carbonate, bicarbonate, sulfurous acid, A technique for adding one or more ozone decomposition inhibitors selected from the group consisting of sulfite, bisulfite and hydrazine is proposed.

一方、本出願人は、オゾン水中のオゾン濃度を調整し、所望のオゾン濃度のオゾン水を容易に供給する技術についても種々提案している。   On the other hand, the present applicant has also proposed various techniques for adjusting ozone concentration in ozone water and easily supplying ozone water having a desired ozone concentration.

例えば、特許文献3では、過剰にオゾンを溶解させたオゾン水の濃度調整方法において、通水経路の長さ、加温、超音波、紫外線又は乱流化によりオゾンの分解を促進させることでオゾン濃度を調整する技術を提案している。また、特許文献4では、オゾン含有水をガラスと接触させ、所望のオゾン濃度のオゾン水とするオゾン濃度の調整方法に関する技術を提案している。   For example, in Patent Document 3, in a method for adjusting the concentration of ozone water in which ozone is excessively dissolved, ozone is decomposed by promoting the decomposition of ozone by the length of a water passage, heating, ultrasonic waves, ultraviolet rays, or turbulence. A technique for adjusting the concentration is proposed. Patent Document 4 proposes a technique related to an ozone concentration adjustment method in which ozone-containing water is brought into contact with glass to obtain ozone water having a desired ozone concentration.

さらに、本出願人は、所望濃度のオゾン水を安定供給する技術についても提案している。例えば、特許文献5では、オゾン分解抑制物質を存在させたオゾン水をユースポイントに移送し、ユースポイント近傍において濃度調整手段により所定のオゾン濃度に低下させることでオゾン水を供給する技術を提案している。   Furthermore, the present applicant has also proposed a technique for stably supplying ozone water having a desired concentration. For example, Patent Document 5 proposes a technique for supplying ozone water by transferring ozone water containing an ozone decomposition inhibitor to a use point and reducing it to a predetermined ozone concentration by a concentration adjusting means in the vicinity of the use point. ing.

特開2000−37695号公報JP 2000-37695 A 特開2002−18454号公報JP 2002-18454 A 特開2000−180433号公報JP 2000-180433 A 特開2000−334468号公報JP 2000-334468 A 特開2005−294377号公報JP 2005-294377 A

本発明は、上記した技術に引き続いてオゾン水中のオゾン濃度の低下を防止するためになされたものであり、その目的は、オゾン水生成手段とオゾン水使用箇所との距離が長い場合、及び/又は複数のオゾン水使用箇所を備えた場合に、オゾン水中のオゾン濃度を低下させることなくオゾン水を供給することができるオゾン水供給装置及びオゾン水供給方法を提供することにある。   The present invention was made in order to prevent a decrease in ozone concentration in ozone water following the above-described technique, and its purpose is when the distance between the ozone water generating means and the location where the ozone water is used is long, and / or Alternatively, an object is to provide an ozone water supply device and an ozone water supply method that can supply ozone water without lowering the ozone concentration in the ozone water when a plurality of ozone water use locations are provided.

上記課題を解決するための本発明に係るオゾン水供給装置は、オゾン水使用箇所に供給するためのオゾン水を生成するオゾン水生成手段と、前記オゾン水生成手段に接続されると共に、内部を流れるオゾン水を分流し、前記オゾン水使用箇所の数に対応する分岐点が形成された本管と、前記分岐点と前記オゾン水使用箇所とを連絡する枝管と、前記本管及び前記枝管を流れるオゾン水の流速の低下を防止する流速維持手段と、を備えることを特徴とする。   An ozone water supply device according to the present invention for solving the above-mentioned problems is connected to the ozone water generating means for generating ozone water to be supplied to the ozone water use location, the ozone water generating means, and the inside A main pipe in which branching points corresponding to the number of the ozone water use locations are formed, a branch pipe connecting the branch points and the ozone water use locations, the main pipe and the branches. And a flow rate maintaining means for preventing a decrease in the flow rate of the ozone water flowing through the pipe.

この発明によれば、オゾン水生成手段に接続されると共に、内部を流れるオゾン水を分流し、オゾン水使用箇所の数に対応する分岐点が形成された本管と、分岐点とオゾン水使用箇所とを連絡する枝管と、本管及び枝管を流れるオゾン水の流速の低下を防止する流速維持手段とを備えるので、オゾン水の流速の低下を防止して、所望の流速でオゾン水を移送できる。こうしたオゾン水供給装置は、オゾン水の流速の低下を防止するので、オゾン水中のオゾン濃度が低下する前にオゾン水をオゾン水使用箇所に供給することができ、オゾン水生成手段とオゾン水使用箇所との距離が長い場合に好ましく適用することができる。   According to this invention, while being connected to the ozone water generation means, the ozone water flowing inside is shunted, a main pipe formed with branch points corresponding to the number of ozone water use points, and the branch points and ozone water use And a flow rate maintaining means for preventing a decrease in the flow rate of the ozone water flowing through the main tube and the branch tube. Therefore, the decrease in the flow rate of the ozone water is prevented, and the ozone water is supplied at a desired flow rate. Can be transported. Such an ozone water supply device prevents a decrease in the flow rate of the ozone water, so the ozone water can be supplied to the location where the ozone water is used before the ozone concentration in the ozone water decreases. It can be preferably applied when the distance to the location is long.

本発明に係るオゾン水供給装置において、前記流速維持手段を、前記本管の横断面積が前記分岐点の上流側よりも下流側が減少するよう形成し、かつ、前記本管の横断面積の減少分が、前記分岐点で前記枝管に分流されるオゾン水の流量に対応するように構成する。   In the ozone water supply apparatus according to the present invention, the flow rate maintaining means is formed such that the cross-sectional area of the main pipe is reduced on the downstream side of the upstream side of the branch point, and the reduced amount of the cross-sectional area of the main pipe is reduced. Is configured to correspond to the flow rate of ozone water diverted to the branch pipe at the branch point.

この発明によれば、流速維持手段を、本管の横断面積が分岐点の上流側よりも下流側が減少するよう形成し、かつ、本管の横断面積の減少分が、分岐点で枝管に分流されるオゾン水の流量に対応するように構成するので、本管からオゾン水を分流した後でもオゾン水の流速の低下を防止することができる。このオゾン水供給装置は、複数のオゾン水使用箇所にオゾン水の供給用配管である本管から順次に分流させてオゾン水を供給させる場合に好ましく適用することができる。   According to the present invention, the flow rate maintaining means is formed so that the cross-sectional area of the main pipe is reduced on the downstream side of the upstream side of the branch point, and the decrease in the cross-sectional area of the main pipe is reduced to the branch pipe at the branch point. Since it is configured so as to correspond to the flow rate of the ozone water to be diverted, it is possible to prevent a decrease in the flow rate of the ozone water even after the ozone water is diverted from the main pipe. This ozone water supply device can be preferably applied to a case where ozone water is supplied by diverting sequentially from a main pipe which is a supply pipe for ozone water to a plurality of locations where ozone water is used.

本発明に係るオゾン水供給装置において、前記オゾン水使用箇所へのオゾン水の流れを迂回させる迂回用配管を、前記オゾン水使用箇所の数に対応して設け、前記オゾン水使用箇所又は前記迂回用配管にオゾン水を流す切換手段を設ける。   In the ozone water supply apparatus according to the present invention, a bypass pipe for bypassing the flow of ozone water to the ozone water use place is provided corresponding to the number of the ozone water use places, and the ozone water use place or the bypass is provided. A switching means for flowing ozone water in the piping is provided.

この発明によれば、オゾン水使用箇所のいずれかにオゾン水を供給しない場合であっても、オゾン水の流れを迂回させる迂回用配管を設けたので、この迂回用配管にオゾン水を流すことができる。このため、オゾン水を供給しないオゾン水使用箇所に対応する本管の分岐点の下流側においては、本管の横断面積に適応した流量のオゾン水を流すことができ、オゾン水の流速を適切に維持することができる。   According to the present invention, even when ozone water is not supplied to any of the locations where ozone water is used, the bypass pipe for bypassing the flow of ozone water is provided, so the ozone water is allowed to flow through the bypass pipe. Can do. For this reason, on the downstream side of the main branch point corresponding to the location where ozone water is not supplied, ozone water with a flow rate suitable for the cross-sectional area of the main water can be flowed, and the flow rate of ozone water is appropriate. Can be maintained.

本発明に係るオゾン水供給装置において、前記オゾン水使用箇所の直前における前記枝管内を流れるオゾン水の流速を、少なくとも30m/分となるように制御する。   In the ozone water supply apparatus according to the present invention, the flow rate of the ozone water flowing in the branch pipe immediately before the location where the ozone water is used is controlled to be at least 30 m / min.

この発明によれば、オゾン水中のオゾンが自己分解して溶存オゾン濃度が低下してしまう前にオゾン水をオゾン水使用箇所に供給することができる。   According to this invention, the ozone water can be supplied to the location where the ozone water is used before the ozone in the ozone water self-decomposes and the dissolved ozone concentration decreases.

本発明に係るオゾン水供給装置において、前記オゾン水使用箇所に供給されるオゾン水のpH値を6以下に抑制するpH値抑制手段を備える。   The ozone water supply apparatus according to the present invention further comprises pH value suppression means for suppressing the pH value of the ozone water supplied to the ozone water use site to 6 or less.

この発明によれば、オゾン水のpH値を酸性に調整し、オゾンの自己分解を抑制し、オゾン水中の溶存オゾン濃度の低下を効果的に防止できる。   According to this invention, the pH value of ozone water can be adjusted to acidity, the self-decomposition of ozone can be suppressed, and the fall of the dissolved ozone concentration in ozone water can be prevented effectively.

また、上記課題を解決するための本発明に係るオゾン水供給方法は、オゾン水生成手段により生成されたオゾン水を、配管によってオゾン水が使用されるオゾン水使用箇所に供給するオゾン水供給方法であって、前記配管を流れるオゾン水の流速を一定以上に維持して前記オゾン水使用箇所にオゾン水を供給することを特徴とする。   Moreover, the ozone water supply method which concerns on this invention for solving the said subject is the ozone water supply method which supplies the ozone water produced | generated by the ozone water production | generation means to the ozone water use location where ozone water is used by piping. The ozone water is supplied to the ozone water use place while maintaining a flow rate of the ozone water flowing through the pipe at a certain level or more.

この発明によれば、オゾン水生成手段により生成されたオゾン水を、配管によってオゾン水が使用されるオゾン水使用箇所に供給する際に、この配管を流れるオゾン水の流速を一定以上に維持するので、オゾン水の流速の低下を防止して、所望の流速でオゾン水を移送できる。こうしたオゾン水供給方法は、オゾン水の流速の低下を防止するので、オゾン水中のオゾン濃度が低下する前にオゾン水をオゾン水使用箇所に供給することができ、オゾン水生成手段とオゾン水使用箇所との距離が長い場合に好ましく適用することができる。   According to this invention, when supplying the ozone water generated by the ozone water generating means to the ozone water use location where the ozone water is used by the pipe, the flow rate of the ozone water flowing through the pipe is maintained above a certain level. Therefore, the ozone water can be transferred at a desired flow rate while preventing a decrease in the flow rate of the ozone water. Since such ozone water supply method prevents the flow rate of ozone water from decreasing, ozone water can be supplied to the location where ozone water is used before the ozone concentration in ozone water decreases. It can be preferably applied when the distance to the location is long.

本発明に係るオゾン水供給方法において、前記配管は、前記オゾン水生成手段に接続されると共に、内部を流れるオゾン水を分流し、前記オゾン水使用箇所の数に対応する分岐点が形成された本管と、前記分岐点と前記オゾン水使用箇所とを連絡する枝管と、で構成され、前記本管の横断面積を前記分岐点の上流側よりも下流側が減少するよう形成し、かつ、前記本管の横断面積の減少分を、前記分岐点で前記枝管に分流されるオゾン水の流量に対応させて、本管を流れるオゾン水の流速の低下を防止してオゾン水を供給する。   In the ozone water supply method according to the present invention, the piping is connected to the ozone water generating means, and the ozone water flowing inside is divided to form a branch point corresponding to the number of locations where the ozone water is used. A main pipe, and a branch pipe connecting the branch point and the ozone water use location, and forming a cross-sectional area of the main pipe so that the downstream side is smaller than the upstream side of the branch point; and The decrease in the cross-sectional area of the main pipe is made to correspond to the flow rate of the ozone water diverted to the branch pipe at the branch point, and the decrease in the flow velocity of the ozone water flowing through the main pipe is prevented to supply ozone water. .

この発明によれば、本管の横断面積を分岐点の上流側よりも下流側が減少するよう形成し、かつ、本管の横断面積の減少分を、分岐点で枝管に分流されるオゾン水の流量に対応させているので、本管からオゾン水を分流した後でも本管を流れるオゾン水の流速の低下を防止することができる。このオゾン水供給方法は、複数のオゾン水使用箇所に、オゾン水の供給用配管である本管から順次に分流させてオゾン水を供給させる場合に好ましく適用することができる。   According to this invention, the ozone water is formed so that the cross-sectional area of the main pipe is reduced on the downstream side of the upstream side of the branch point, and the reduced cross-sectional area of the main pipe is diverted to the branch pipe at the branch point. Therefore, it is possible to prevent a decrease in the flow rate of the ozone water flowing through the main pipe even after the ozone water is diverted from the main pipe. This ozone water supply method can be preferably applied to a case where ozone water is supplied to a plurality of locations where ozone water is used by sequentially diverting from a main pipe which is a supply pipe for ozone water.

本発明に係るオゾン水供給方法において、前記オゾン水使用箇所へのオゾン水の流れを迂回させる迂回用配管を前記オゾン水使用箇所の数に対応して設けると共に、前記オゾン水使用箇所又は前記迂回用配管にオゾン水を流す切換手段を設け、選択された前記オゾン水使用箇所に対応する前記切換手段により前記迂回用配管へオゾン水を流し、選択された前記オゾン水使用箇所に対応する分岐点よりも下流側の本管を流れるオゾン水の流速の低下を防止してオゾン水を供給する。   In the ozone water supply method according to the present invention, a bypass pipe for bypassing the flow of ozone water to the ozone water use location is provided corresponding to the number of the ozone water use locations, and the ozone water use location or the bypass is provided. A switching means for flowing ozone water to the piping for use, and the switching means corresponding to the selected location where the ozone water is used causes the ozone water to flow to the bypass piping, and a branch point corresponding to the selected location where the ozone water is used The ozone water is supplied by preventing a decrease in the flow rate of the ozone water flowing through the main pipe on the downstream side.

この発明によれば、オゾン水使用箇所のいずれかにオゾン水を供給しない場合であっても、迂回用配管にオゾン水を流すことができる。このため、オゾン水を供給しないオゾン水使用箇所に対応する本管の分岐点の下流側においては、本管の横断面積に適応した流量のオゾン水を流すことができ、オゾン水の流速を適切に維持することができる。   According to this invention, even if it is a case where ozone water is not supplied to any ozone water use location, ozone water can be poured into the bypass pipe. For this reason, on the downstream side of the main branch point corresponding to the location where ozone water is not supplied, ozone water with a flow rate suitable for the cross-sectional area of the main water can be flowed, and the flow rate of ozone water is appropriate. Can be maintained.

本発明に係るオゾン水供給方法において、前記オゾン水使用箇所の直前における前記枝管内を流れるオゾン水の流速を、少なくとも30m/分となるように制御してオゾン水を供給する。   In the ozone water supply method according to the present invention, the ozone water is supplied by controlling the flow rate of the ozone water flowing in the branch pipe immediately before the ozone water use portion to be at least 30 m / min.

この発明によれば、オゾン水中のオゾンが自己分解し溶存オゾン濃度が低下してしまう前にオゾン水をオゾン水使用箇所に供給することができる。   According to this invention, ozone water can be supplied to the location where ozone water is used before the ozone in the ozone water self-decomposes and the dissolved ozone concentration decreases.

本発明に係るオゾン水供給方法において、オゾン水のpH値を6以下としてオゾン水を供給する。   In the ozone water supply method according to the present invention, ozone water is supplied at a pH value of 6 or less.

この発明によれば、オゾン水のpH値を酸性に調整し、自己分解を抑制してオゾンの溶存濃度の低下を効果的に防止できる。   According to this invention, the pH value of ozone water can be adjusted to acidity, self-decomposition can be suppressed, and the fall of the dissolved concentration of ozone can be prevented effectively.

本発明に係るオゾン水供給装置及びオゾン水供給方法によれば、オゾン水生成手段とオゾン水使用箇所との距離が長い場合でも、オゾン水を所望の流速で移送でき、溶存オゾン濃度が低下するよりも前にオゾン水を供給することができる。   According to the ozone water supply device and the ozone water supply method according to the present invention, even when the distance between the ozone water generating means and the ozone water use location is long, the ozone water can be transferred at a desired flow rate, and the dissolved ozone concentration is reduced. Ozone water can be supplied before.

また、本発明に係るオゾン水供給装置及びオゾン水供給方法によれば、複数のオゾン水使用箇所に、オゾン水を移送する本管から順次に分流してオゾン水を供給する場合でも、分流後に本管を流れるオゾン水の流速を低下させることなく移送できる。その結果、下流側に位置するオゾン水使用箇所にも所望の流速でオゾン水を供給でき、溶存オゾン濃度の低下を防止したオゾン水を供給できる。   In addition, according to the ozone water supply device and the ozone water supply method according to the present invention, even when ozone water is supplied to a plurality of locations where ozone water is used by sequentially diverting from the main for transferring ozone water, It can be transferred without reducing the flow rate of ozone water flowing through the main pipe. As a result, the ozone water can be supplied at a desired flow rate to the location where the ozone water is used on the downstream side, and the ozone water in which the decrease in the dissolved ozone concentration is prevented can be supplied.

本発明の第1実施形態に係るオゾン水供給装置の工程系統図である。It is a process flow diagram of an ozone water supply device concerning a 1st embodiment of the present invention. オゾン水供給装置を構成する本管及び枝管を示す一部切り欠き平面図である。It is a partially notched top view which shows the main pipe and branch pipe which comprise an ozone water supply apparatus. オゾン水の流路を切り換えるソレノイドバルブのシンボルを示す説明図である。It is explanatory drawing which shows the symbol of the solenoid valve which switches the flow path of ozone water. ストップバルブを使用したオゾン水の流路を切り換える切換手段を示す説明図である。It is explanatory drawing which shows the switching means which switches the flow path of ozone water which uses a stop valve. 本発明の第2実施形態に係るオゾン水供給装置の一部を示す工程系統図である。It is a process flow diagram showing a part of an ozone water supply device concerning a 2nd embodiment of the present invention. オゾン水の流路を切り換えるソレノイドバルブのシンボルを示す説明図である。It is explanatory drawing which shows the symbol of the solenoid valve which switches the flow path of ozone water. ストップバルブを使用したオゾン水の流路を切り換える切換手段を示す説明図である。It is explanatory drawing which shows the switching means which switches the flow path of ozone water which uses a stop valve.

以下、本発明の実施形態について図面を参照しながら説明する。なお、本発明の技術的範囲は、以下の記載や図面にのみ限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The technical scope of the present invention is not limited only to the following description and drawings.

本発明に係るオゾン水供給装置10は、図1に示すように、オゾン水生成手段1と、このオゾン水生成手段1に接続されると共に、内部を流れるオゾン水を分流し、オゾン水使用箇所21,22,23の数に対応する分岐点12,13,14が形成された本管11と、分岐点12,13,14とオゾン水使用箇所21,22,23とを連絡する枝管15,16,17とを備える。また、本管11及び枝管15,16,17を流れるオゾン水の流速の低下を防止する流速維持手段を備えている。   As shown in FIG. 1, the ozone water supply device 10 according to the present invention is connected to the ozone water generating means 1 and the ozone water generating means 1, and the ozone water flowing inside is shunted to use the ozone water. The main pipe 11 in which the branch points 12, 13, and 14 corresponding to the numbers 21, 22, and 23 are formed, and the branch pipe 15 that connects the branch points 12, 13, and 14 with the ozone water use locations 21, 22, and 23. , 16 and 17. Moreover, the flow rate maintenance means which prevents the fall of the flow rate of the ozone water which flows through the main pipe 11 and the branch pipes 15, 16, and 17 is provided.

このオゾン水供給装置10を使用してオゾン水を供給すれば、オゾン水生成手段1とオゾン水使用箇所21,22,23との距離が長い場合でも、オゾン水を所望の流速で移送でき、溶存オゾン濃度が低下するよりも前にオゾン水を供給できる。   If ozone water is supplied using this ozone water supply device 10, even when the distance between the ozone water generating means 1 and the ozone water use locations 21, 22, 23 is long, the ozone water can be transferred at a desired flow rate, Ozone water can be supplied before the dissolved ozone concentration decreases.

また、複数のオゾン水使用箇所21,22,23に、オゾン水を移送する本管11から順次に分流してオゾン水を供給する場合でも、分流後に本管11を流れるオゾン水の流速を低下させることなく移送でき、下流側に位置するオゾン水使用箇所22,23にも所望の流速でオゾン水を供給できるという格別の効果を有する。こうしたオゾン水供給装置10でオゾン水を供給する場合、所定のオゾン水使用箇所(例えば、最も上流側に位置するオゾン水使用箇所21)にオゾン水を供給しないこともある。その場合でも、そのオゾン水使用箇所21より下流側に位置するオゾン水使用箇所22,23に対し、オゾン水を所望の流速に維持して供給することができる。   Moreover, even when supplying ozone water to the plurality of ozone water use locations 21, 22, and 23 sequentially from the main pipe 11 for transferring the ozone water, the flow rate of the ozone water flowing through the main pipe 11 is reduced after the diversion. It has a special effect that it can be transported without causing the ozone water to be supplied to the ozone water use points 22 and 23 located on the downstream side at a desired flow rate. When supplying ozone water with such an ozone water supply apparatus 10, ozone water may not be supplied to a predetermined ozone water use location (for example, the ozone water use location 21 located on the most upstream side). Even in that case, the ozone water can be supplied to the ozone water use locations 22 and 23 located downstream from the ozone water use location 21 while maintaining the desired flow rate.

なお、本発明に係るオゾン水供給装置では、迂回用配管配を枝管に接続する第1実施形態、本管に接続する第2実施形態のいずれもが考えられる。これらの形態について、以下、さらに詳細に説明する。   In the ozone water supply device according to the present invention, both the first embodiment in which the bypass piping arrangement is connected to the branch pipe and the second embodiment in which the bypass pipe is connected to the main pipe are conceivable. These forms will be described in further detail below.

[第1実施形態]
オゾン水供給装置10は、図1に示すように、オゾン水を流すための配管を備えている。配管は、オゾン水生成手段1に接続される本管11と、本管11から分岐する複数の枝管15,16,17とから構成される。本管11には、オゾン水使用箇所21,22,23に対応する分岐点12,13,14が、その上流側から下流側にかけて、本管11の軸方向の異なる位置に設けられている。枝管15,16,17は、これらの分岐点12,13,14とオゾン水使用箇所21,22,23とをそれぞれ連絡するように設けられる。
[First Embodiment]
As shown in FIG. 1, the ozone water supply device 10 includes a pipe for flowing ozone water. The pipe is composed of a main pipe 11 connected to the ozone water generating means 1 and a plurality of branch pipes 15, 16, 17 branched from the main pipe 11. In the main pipe 11, branch points 12, 13, and 14 corresponding to the ozone water use locations 21, 22, and 23 are provided at different positions in the axial direction of the main pipe 11 from the upstream side to the downstream side. The branch pipes 15, 16, and 17 are provided so as to communicate these branch points 12, 13, and 14 with the ozone water use locations 21, 22, and 23, respectively.

図1に示す実施形態では、オゾン水使用箇所21,22,23が3箇所設けられ、このオゾン水使用箇所21,22,23の数に応じ、3つの分岐点12,13,14が設けられると共に、各分岐点12,13,14とオゾン水使用箇所21,22,23とを連絡する3つの枝管15,16,17が設けられている。また、各枝管15,16,17には、各枝管15,16,17からさらに分岐する迂回用配管31,32,33がそれぞれ設けられている。これらの迂回用配管31,32,33は、オゾン水使用箇所21,22,23へ供給しない場合にオゾン水を移送させている。   In the embodiment shown in FIG. 1, three ozone water use locations 21, 22, and 23 are provided, and three branch points 12, 13, and 14 are provided according to the number of ozone water use locations 21, 22, and 23. In addition, three branch pipes 15, 16, and 17 that connect the branch points 12, 13, and 14 with the ozone water use locations 21, 22, and 23 are provided. The branch pipes 15, 16, and 17 are provided with bypass pipes 31, 32, and 33 that further branch from the branch pipes 15, 16, and 17, respectively. These bypass pipes 31, 32, 33 transfer ozone water when not supplied to the ozone water use locations 21, 22, 23.

(オゾン水生成手段)
オゾン水生成手段1は、オゾン水を生成することができればその構成に制限はない。ここでは、オゾンガス供給源であるオゾン発生器4と、送り込まれた水(例えば純水)にオゾンガスを溶解するオゾン溶解装置5とを備えた装置を例に説明する。
(Ozone water generation means)
If the ozone water production | generation means 1 can produce | generate ozone water, there will be no restriction | limiting in the structure. Here, an apparatus including an ozone generator 4 that is an ozone gas supply source and an ozone dissolving device 5 that dissolves ozone gas in the supplied water (for example, pure water) will be described as an example.

このオゾン水生成手段1が備えるオゾン発生器4には、酸素ガスタンク2と炭酸ガスタンク3が接続され、酸素ガスと炭酸ガスとの混合ガスが供給される。このオゾン発生器4は、種々のオゾン発生方式によりオゾンを発生する。例えば、無声放電方式、電気分解方式又は紫外線方式のオゾナイザを用いてオゾンガスを発生させる。   An oxygen gas tank 2 and a carbon dioxide gas tank 3 are connected to an ozone generator 4 provided in the ozone water generating means 1 and a mixed gas of oxygen gas and carbon dioxide gas is supplied. The ozone generator 4 generates ozone by various ozone generation methods. For example, ozone gas is generated using a silent discharge type, electrolysis type or ultraviolet type ozonizer.

オゾン溶解装置5は、オゾン発生器4が接続されており、このオゾン発生器4により発生されたオゾンガスと水(例えば純水)が供給される。オゾン溶解装置5についても特に制限はなく、例えば、オゾン溶解膜を用いてオゾンガスを溶解させる方式の装置や、エゼクターを用い、高圧の純水にオゾンガスを溶解させる方式の装置等を用いることができる。   An ozone generator 4 is connected to the ozone dissolving device 5, and ozone gas and water (for example, pure water) generated by the ozone generator 4 are supplied. The ozone dissolving device 5 is not particularly limited, and for example, a device that dissolves ozone gas using an ozone dissolving film, a device that dissolves ozone gas in high-pressure pure water using an ejector, or the like can be used. .

なお、このオゾン水生成手段1では、炭酸ガスを混合してpHを酸性とし、オゾン水中に溶解するオゾンの自己分解を抑制している。炭酸ガスの混合によるpHの調整は、オゾンの原料ガスとして供給する炭酸ガス量を制御して行ったり、オゾンガス発生器4で発生したオゾンガスに混合してもよい。また、オゾン溶解装置5でオゾンガスを溶解させた後のオゾン水に混合して調整してもよい。もっとも、自己分解を抑制することが目的なので、オゾンガスを溶解する前に混合して調整することが好ましい。ただし、オゾン水のpHを酸性に調整するにあたり、オゾン水生成手段1の内部又はその前後にて他の薬品(pH調整液)を使用すること妨げるものではない。   In the ozone water generating means 1, carbon dioxide is mixed to make the pH acidic, and the self-decomposition of ozone dissolved in the ozone water is suppressed. The adjustment of pH by mixing carbon dioxide gas may be performed by controlling the amount of carbon dioxide gas supplied as ozone raw material gas, or may be mixed with ozone gas generated by the ozone gas generator 4. Further, the ozone gas may be adjusted by mixing with ozone water after the ozone gas is dissolved by the ozone dissolving device 5. However, since the purpose is to suppress self-decomposition, it is preferable to mix and adjust before dissolving the ozone gas. However, in adjusting the pH of the ozone water to acidic, it does not preclude the use of other chemicals (pH adjusting liquid) inside or around the ozone water generating means 1.

pHを調整した後のオゾン水は、pHが7以下であることが望ましく、pHが6〜2であることがより望ましい。   The ozone water after adjusting the pH preferably has a pH of 7 or less, and more preferably has a pH of 6-2.

(オゾン水使用箇所)
オゾン水使用箇所21,22,23は、供給されたオゾン水を利用して、半導体用シリコン基板、液晶用ガラス基板又はフォトマスク用石英基板等の基板やその他の電子部品が洗浄される箇所である。オゾン水使用箇所21,22,23では、オゾン水が供給された処理槽に基板等を浸漬して処理したり、基板等にオゾン水のシャワーを吹き付けて処理することが行われる。図1に示したオゾン水供給装置10では、3箇所のオゾン水使用箇所21,22,23を設けた例を示しているが、このオゾン水使用箇所は1箇所、2箇所又は4箇所以上の複数箇所設けてもよい。
(Use of ozone water)
Ozone water use locations 21, 22, and 23 are locations where a substrate such as a silicon substrate for a semiconductor, a glass substrate for a liquid crystal, or a quartz substrate for a photomask and other electronic components are cleaned using the supplied ozone water. is there. In the ozone water use locations 21, 22, and 23, the substrate is immersed in a treatment tank to which ozone water is supplied, and treatment is performed by spraying ozone water on the substrate. In the ozone water supply apparatus 10 shown in FIG. 1, an example in which three ozone water use places 21, 22, and 23 are provided, but this ozone water use place is one place, two places, or four places or more. Multiple locations may be provided.

(本管及び枝管)
本管11は、オゾン水生成手段1に接続されてオゾン水を下流側に移送するための配管である。本管11は、図2に示すように、オゾン水使用箇所21,22,23の数に対応する分岐点12,13,14を有し、内部を流れるオゾン水を分流する。また、本管11は、各分岐点12,13,14で、下流側に向けてテーパー状に先細りとなるように形成されており、なだらかに横断面積が減少するように形成されている。一方、枝管15,16,17は、本管11の分岐点12,13,14と、オゾン水使用箇所21,22,23とをそれぞれ連絡しおり、各分岐点12,13,14で本管11から分流したオゾン水をオゾン水使用箇所21,22,23まで移送している。
(Main and branch pipes)
The main pipe 11 is a pipe that is connected to the ozone water generating means 1 and transfers ozone water downstream. As shown in FIG. 2, the main pipe 11 has branch points 12, 13, 14 corresponding to the number of ozone water use places 21, 22, 23, and diverts ozone water flowing inside. Further, the main pipe 11 is formed so as to taper toward the downstream side at the respective branch points 12, 13, and 14 so that the cross-sectional area is gently reduced. On the other hand, the branch pipes 15, 16, and 17 connect the branch points 12, 13, and 14 of the main pipe 11 with the ozone water use locations 21, 22, and 23, respectively. The ozone water shunted from 11 is transferred to the ozone water use locations 21, 22 and 23.

本発明を構成する流速維持手段は、本管11及び枝管15,16,17により構成される。この流速維持手段は、図2に示すように、本管11を、本管11の横断面積が分岐点12,13,14の上流側より下流側が減少するよう形成し、かつ、本管11の横断面積の減少分を、分岐点12,13,14で枝管15,16,17に分流されるオゾン水の流量に対応するように構成して実現している。   The flow rate maintaining means constituting the present invention includes the main pipe 11 and the branch pipes 15, 16, and 17. As shown in FIG. 2, the flow rate maintaining means forms the main pipe 11 such that the cross-sectional area of the main pipe 11 is reduced on the downstream side from the upstream side of the branch points 12, 13, and 14. The reduction in the cross-sectional area is realized by configuring so as to correspond to the flow rate of ozone water diverted to the branch pipes 15, 16, and 17 at the branch points 12, 13, and 14.

このことは、仮に本管11に横断面積の減少がなかったとした場合に、横断面積の減少分を流れるはずであったオゾン水の流量が、枝管15,16,17に分流したオゾン水の流量に対応することを意味する。このように本管11及び枝管15,16,17を構成することで、オゾン水が本管11から枝管15,16,17に分流した後も、本管11を流れるオゾン水の水圧の低下が生じることはなく、オゾン水の流速の低下が防止される。なお、この本管11の配管径は、得ようとするオゾン水の流速に応じて設計される。   This means that if there is no reduction in the cross-sectional area in the main pipe 11, the flow rate of ozone water that should have flowed through the reduction in the cross-sectional area is It means to correspond to the flow rate. By configuring the main pipe 11 and the branch pipes 15, 16, and 17 in this way, the ozone water pressure of the ozone water flowing through the main pipe 11 can be reduced even after the ozone water is diverted from the main pipe 11 to the branch pipes 15, 16, and 17. A decrease does not occur, and a decrease in the flow rate of ozone water is prevented. The pipe diameter of the main pipe 11 is designed according to the flow rate of ozone water to be obtained.

本管11を流れるオゾン水の流速は、オゾン水生成手段1とオゾン水使用箇所21,22,23との距離に応じて適切な流速となるように制御される。すなわち、オゾン水中の溶存オゾン濃度が低下する前にオゾン水使用箇所21,22,23でオゾン水を使用できるように、オゾン水の流速を30m/分〜120m/分とすることが望ましく、40m/分〜90m/分とすることがより望ましい。   The flow rate of the ozone water flowing through the main pipe 11 is controlled so as to be an appropriate flow rate according to the distance between the ozone water generation means 1 and the ozone water use locations 21, 22 and 23. That is, it is desirable that the flow rate of the ozone water is 30 m / min to 120 m / min so that the ozone water can be used at the ozone water use locations 21, 22, 23 before the dissolved ozone concentration in the ozone water decreases, It is more desirable to set it to / m-90m / min.

なお、本管11及び枝管15,16,17に使用される配管の材質は限定されないが、耐オゾン性を有する配管を使用することが好ましい。例えば、ペルフルオロアルコキシフッ素樹脂により形成されたPFA配管等を用いるとよい。   In addition, although the material of piping used for the main pipe 11 and the branch pipes 15, 16, and 17 is not limited, it is preferable to use piping which has ozone resistance. For example, a PFA pipe formed of perfluoroalkoxy fluororesin may be used.

(迂回用配管)
次に、迂回用配管31,32,33について説明する。
(Bypass piping)
Next, the bypass pipes 31, 32, and 33 will be described.

迂回用配管31,32,33は、オゾン水使用箇所21,22,23へのオゾン水の流れを迂回させる配管であり、オゾン水使用箇所21,22,23の数に対応して設けられている。迂回用配管31,32,33は、各枝管15,16,17に接続されており、オゾン水使用箇所21,22,23にオゾン水を供給しない場合に、枝管15,16,17を流れてきたオゾン水を回収ライン37へ迂回させる。   The bypass pipes 31, 32, and 33 are pipes that bypass the flow of ozone water to the ozone water use locations 21, 22, and 23, and are provided corresponding to the number of ozone water use locations 21, 22, and 23. Yes. The bypass pipes 31, 32, 33 are connected to the branch pipes 15, 16, 17. When the ozone water is not supplied to the ozone water use places 21, 22, 23, the branch pipes 15, 16, 17 are connected. The flowing ozone water is bypassed to the recovery line 37.

例えば、3箇所のオゾン水使用箇所21,22,23のうち第1番目に位置するオゾン水使用箇所21が使用されないとする。この場合、オゾン水使用箇所21に対応する枝管15を流れてきたオゾン水をオゾン水使用箇所21へは供給させず、迂回用配管31へオゾン水を流し、迂回ライン37へ迂回させる。このように、使用しないオゾン水使用箇所21がある場合でも、迂回用配管31によりオゾン水を迂回させて、本管11の分岐点12よりも下流側の本管11を流れるオゾン水の流量を一定に維持する。その結果、分岐点12よりも下流側でのオゾン水の流速の低下を防止することができる。   For example, suppose that the ozone water use location 21 located first among the three ozone water use locations 21, 22, 23 is not used. In this case, the ozone water that has flowed through the branch pipe 15 corresponding to the ozone water use location 21 is not supplied to the ozone water use location 21, but the ozone water is caused to flow to the bypass pipe 31 and to be bypassed to the bypass line 37. In this way, even when there is an unused ozone water use location 21, the flow of ozone water flowing through the main pipe 11 downstream from the branch point 12 of the main pipe 11 is diverted by the bypass pipe 31. Keep constant. As a result, it is possible to prevent a decrease in the flow rate of the ozone water downstream from the branch point 12.

同様に、他のオゾン水使用箇所22,23を使用しない場合にも、それぞれのオゾン水使用箇所22,23に対応する枝管16,17を流れるオゾン水を、迂回用配管32,33へ流し、回収ライン37へ迂回させる。これにより、本管11の分岐点13,14よりも下流側におけるオゾン水の流量は一定に維持し、分岐点13,14よりも下流側でもオゾン水の流速の低下を防止することができる。   Similarly, even when the other ozone water use locations 22 and 23 are not used, the ozone water flowing through the branch pipes 16 and 17 corresponding to the respective ozone water use locations 22 and 23 is caused to flow to the bypass pipes 32 and 33. , Detour to the collection line 37. As a result, the flow rate of the ozone water downstream of the branch points 13 and 14 of the main pipe 11 can be maintained constant, and the flow rate of the ozone water can be prevented from decreasing even downstream of the branch points 13 and 14.

なお、この迂回用配管31,32,33の管径は枝管15,16,17の管径と同寸に形成されている。また、迂回用配管31,32,33の材質は特に制限されないが、耐オゾン性を有する配管を使用することが好ましく、例えば、ペルフルオロアルコキシフッ素樹脂により形成されたPFA配管等を使用いることが好ましい。   The bypass pipes 31, 32 and 33 have the same diameter as that of the branch pipes 15, 16 and 17. The material of the bypass pipes 31, 32, 33 is not particularly limited, but it is preferable to use ozone-resistant pipes, such as PFA pipes formed of perfluoroalkoxy fluororesin. .

オゾン水使用箇所21,22,23又は迂回用配管31,32,33のいずれかにオゾン水を流す切換手段を設けている。この切換手段は、例えば、図3に示すソレノイドバルブ40や図4に示すストップバルブ41を用いて構成される。   Switching means for flowing the ozone water is provided in any of the ozone water use locations 21, 22, 23 or the bypass pipes 31, 32, 33. This switching means is configured using, for example, a solenoid valve 40 shown in FIG. 3 or a stop valve 41 shown in FIG.

例えば、図3に示すソレノイドバルブ40を使用することができる。このソレノイドバルブ40は、バルブ内のスプールの移動によって、枝管15,16,17を流れるオゾン水をオゾン水使用箇所21,22,23へ流す状態又は迂回用配管31,32,33へ流す状態のいずれかに切り換わるよう構成されている。スプールの移動は、ソレノイドバルブ40が備えるソレノイドへの電流のオン・オフにより行われる。   For example, the solenoid valve 40 shown in FIG. 3 can be used. The solenoid valve 40 is in a state in which the ozone water flowing through the branch pipes 15, 16, and 17 is caused to flow to the ozone water use locations 21, 22, and 23 or to the bypass pipes 31, 32, and 33 due to movement of a spool in the valve. It is comprised so that it may switch to either. The spool is moved by turning on / off the current to the solenoid provided in the solenoid valve 40.

また、図4に示すストップバルブ41は、枝管15,16,17と迂回用配管31,32,33との分岐点よりも下流側に、枝管15,16,17及び迂回用配管31,32,33の双方にストップバルブ41を設けられる。この切換手段によれば、例えば、オゾン水使用箇所21,22,23へのオゾン水の供給を防止し、迂回用配管31,32,33へオゾン水を流す場合には、枝管15,16,17側のストップバルブ41を閉じると共に、迂回用配管31,32,33側のストップバルブ41を開く。   Further, the stop valve 41 shown in FIG. 4 has the branch pipes 15, 16, 17 and the bypass pipe 31, downstream of the branch point between the branch pipes 15, 16, 17 and the bypass pipes 31, 32, 33. Stop valves 41 are provided on both 32 and 33. According to this switching means, for example, when supplying ozone water to the ozone water use locations 21, 22, 23 is prevented and ozone water is allowed to flow to the bypass pipes 31, 32, 33, the branch pipes 15, 16 The stop valve 41 on the 17th side is closed and the stop valve 41 on the bypass piping 31, 32, 33 side is opened.

なお、流路の切り換えは、図3に示すソレノイドバルブ40や図4に示すストップバルブ41を用いた切換手段には限定されず、他の構成の切換手段を用いてもよい。   The switching of the flow path is not limited to switching means using the solenoid valve 40 shown in FIG. 3 or the stop valve 41 shown in FIG. 4, and switching means having other configurations may be used.

(オゾン水供給装置の作用及び効果)
以上のオゾン水供給装置10は以下のように作用する。
(Operation and effect of ozone water supply device)
The above ozone water supply apparatus 10 acts as follows.

まず、オゾン水生成手段1によりオゾン水が生成される。最初に、タンク2に収容された酸素ガス及びタンク3に収容された炭酸ガスが混合され、この混合ガスがオゾン発生器4に供給される。混合ガスがオゾン発生器4に供給されると、オゾン発生器4はオゾンを発生させる。次いで、発生されたオゾンガスは、オゾン溶解装置5に導入される。また、オゾン溶解装置5には、別途に純水が導入される。これらオゾンガス及び純水の導入されたオゾン溶解装置5は、オゾンガスを純水に溶解させてオゾン水を生成する。   First, ozone water is generated by the ozone water generating means 1. First, the oxygen gas stored in the tank 2 and the carbon dioxide gas stored in the tank 3 are mixed, and this mixed gas is supplied to the ozone generator 4. When the mixed gas is supplied to the ozone generator 4, the ozone generator 4 generates ozone. Next, the generated ozone gas is introduced into the ozone dissolving device 5. Separately, pure water is introduced into the ozone dissolving device 5. The ozone dissolving device 5 introduced with these ozone gas and pure water dissolves ozone gas in pure water to generate ozone water.

生成されたオゾン水は本管11に流される。既述のように、本管11にオゾン水を流す際には、オゾン水を少なくとも30m/分の流速で、好ましくは、30m/分〜120m/分の流速で、より好ましくは、40m/分〜90m/分の流速で送り出す。この際、オゾン水のpH値は、7以下とすることが望ましく、6〜2とすることがより望ましい。   The generated ozone water flows into the main pipe 11. As described above, when ozone water is allowed to flow through the main pipe 11, the ozone water is flowed at a flow rate of at least 30 m / min, preferably at a flow rate of 30 m / min to 120 m / min, more preferably 40 m / min. Deliver at a flow rate of ~ 90 m / min. At this time, the pH value of the ozone water is desirably 7 or less, and more desirably 6 to 2.

本管11に送り出されたオゾン水は、本管11の区間11aを流れ、最初の分岐点12に到達する。分岐点12に到達したオゾン水は、その一部が枝管15に分流され、残部はそのまま本管11の区間11bを流れる。   The ozone water sent out to the main pipe 11 flows through the section 11 a of the main pipe 11 and reaches the first branch point 12. Part of the ozone water that has reached the branching point 12 is diverted to the branch pipe 15, and the remainder flows through the section 11 b of the main pipe 11 as it is.

本管11から枝管15に分流されたオゾン水は枝管15を流れ、オゾン水使用箇所21に供給される。供給されたオゾン水は、オゾン水使用箇所21で、半導体用シリコン基板、液晶用ガラス基板又はフォトマスク用石英基板等の基板やその他の電子部品の洗浄に使用される。   The ozone water branched from the main pipe 11 to the branch pipe 15 flows through the branch pipe 15 and is supplied to the ozone water use location 21. The supplied ozone water is used for cleaning a substrate such as a silicon substrate for semiconductor, a glass substrate for liquid crystal, or a quartz substrate for photomask and other electronic components at the ozone water use location 21.

一方、本管11を流れるオゾン水は、分岐点12を通過し、横断面積が小さく形成された次の区間11bに到達する。本管11の横断面積が小さくなる部位は、下流側に向けてテーパー状に先細りとなるように形成されており、なだらかに横断面積が減少している。このため、この部位において、内部を流れるオゾン水に乱流が生じることがなく、エネルギー損失によりオゾン水の流速が失速することがない。また、本管11は区間11aの横断面積に対して区間11bの横断面積が小さくなるよう形成され、その横断面積の減少分は、枝管15に分流したオゾン水の流量に対応して形成されている。そのため、区間11bに流されたオゾン水は、オゾン水の流速が低下されることなく一定の流速以上に維持される。   On the other hand, the ozone water flowing through the main pipe 11 passes through the branch point 12 and reaches the next section 11b formed with a small cross-sectional area. The part where the cross-sectional area of the main pipe 11 becomes small is formed so as to taper toward the downstream side, and the cross-sectional area gradually decreases. For this reason, in this part, turbulent flow does not arise in the ozone water which flows inside, and the flow velocity of ozone water does not stall by energy loss. Further, the main pipe 11 is formed so that the cross-sectional area of the section 11b is smaller than the cross-sectional area of the section 11a, and the decrease in the cross-sectional area is formed corresponding to the flow rate of the ozone water branched into the branch pipe 15. ing. Therefore, the ozone water that has flowed into the section 11b is maintained at a constant flow rate or higher without the flow rate of the ozone water being reduced.

区間11bに流されたオゾン水は、その後に分岐点13,14に到達するごとに、その一部が分流され、残部が本管11における各分岐点13,14よりも下流側に流される。この際、枝管16,17には、一定値以上の流速で本管11を流れてきたオゾン水が、その流速を維持したまま枝管16,17に分流される。分流されたオゾン水は、枝管15,16,17を流れてオゾン水使用箇所21,22,23に供給され、それぞれのオゾン水使用箇所21,22,23で電子部品等の洗浄に使用される。これに対し、分岐点13,14の下流側に流されたオゾン水は、その流速が低下されることなく一定上の流速で本管11を流れる。   Each time the ozone water that has flowed into the section 11 b reaches the branch points 13 and 14, a part thereof is diverted, and the remaining part flows downstream from the branch points 13 and 14 in the main pipe 11. At this time, ozone water that has flowed through the main pipe 11 at a flow rate of a certain value or higher is branched into the branch pipes 16 and 17 while maintaining the flow rate. The diverted ozone water flows through the branch pipes 15, 16, and 17 and is supplied to the ozone water use locations 21, 22, and 23. The ozone water use locations 21, 22, and 23 are used for cleaning electronic components and the like. The On the other hand, the ozone water that has flowed downstream of the branch points 13 and 14 flows through the main pipe 11 at a constant flow velocity without being reduced in flow velocity.

このように、本管11を流れるオゾン水は流速の低下が防止されため、オゾン水を各オゾン水使用箇所21,22,23まで迅速に到達させることができる。このため、オゾン水中のオゾンが自己分解を起こすことなく、溶存オゾン濃度が低下する前に各オゾン水使用箇所21,22,23にオゾン水が供給される。   As described above, since the flow rate of the ozone water flowing through the main pipe 11 is prevented, the ozone water can quickly reach the respective ozone water use locations 21, 22, and 23. For this reason, ozone water is supplied to each ozone water use location 21,22,23 before dissolved ozone concentration falls, without causing ozone in ozone water to self-decompose.

なお、オゾン水使用箇所21,22,23に供給されず本管11を流れ続けたオゾン水は、オゾン水の回収ライン37へと流される。   The ozone water that has not been supplied to the ozone water use locations 21, 22, and 23 and has continued to flow through the main pipe 11 flows to the ozone water recovery line 37.

オゾン水使用箇所21,22,23のいずれかにオゾン水を供給しない場合、対応する迂回用配管31,32,33にオゾン水を流して回収ライン37に迂回させる。迂回用配管31,32,33にオゾン水を流して回収ライン37に迂回させる場合、例えば、対応する枝管15,16,17に設けられたソレノイドバルブ40(図3参照)を作動させる。ソレノイドバルブ40の作動により、オゾン水の流路は、オゾン水使用箇所21,22,23側から迂回用配管31,32,33側に切り換えられ、迂回用配管31,32,33にオゾン水が流れ込む。   When the ozone water is not supplied to any of the ozone water use locations 21, 22, and 23, the ozone water is caused to flow to the corresponding detour pipes 31, 32, and 33 to make a detour to the recovery line 37. When ozone water is allowed to flow through the bypass pipes 31, 32, and 33 to bypass the recovery line 37, for example, the solenoid valve 40 (see FIG. 3) provided in the corresponding branch pipes 15, 16, and 17 is operated. By the operation of the solenoid valve 40, the flow path of the ozone water is switched from the ozone water use places 21, 22, 23 side to the bypass pipes 31, 32, 33 side, and ozone water is supplied to the bypass pipes 31, 32, 33. Flows in.

例えば、オゾン水使用箇所21を使用せず、迂回用配管31にオゾン水を迂回させた場合、本管11の分岐点12より下流側である区間11bに流れるオゾン水の流量は、オゾン水使用箇所21にオゾン水を供給した場合と同様となる。このため、分岐点12の下流側に流されたオゾン水の流速の低下を生じさせることがなく、さらに下流側に位置するオゾン水使用箇所22,23に所望の流速でオゾン水を供給することができる。   For example, when the ozone water use location 21 is not used and the ozone water is bypassed in the bypass pipe 31, the flow rate of the ozone water flowing in the section 11b downstream from the branch point 12 of the main pipe 11 is the ozone water use This is the same as when ozone water is supplied to the location 21. For this reason, it does not cause a decrease in the flow rate of the ozone water that has flowed downstream of the branch point 12, and the ozone water is supplied at a desired flow rate to the ozone water use locations 22 and 23 that are located further downstream. Can do.

なお、図4に示したストップバルブ41を切換手段として用いる場合には、オゾン水使用箇所21,22,23側のストップバルブ41を閉鎖し、迂回用配管31,32,33側のストップバルブ41を開放する。   When the stop valve 41 shown in FIG. 4 is used as the switching means, the stop valve 41 on the side where the ozone water is used 21, 22, 23 is closed, and the stop valve 41 on the bypass pipes 31, 32, 33 side is closed. Is released.

[第2実施形態]
図5は、本管51の各分岐点52,53,54に、枝管55,56,57と、迂回用配管61,62,63とを接続したオゾン水供給装置10Aの工程系統図を示している。この第2実施形態に使用されるオゾン水生成手段の構成、及び本管51の構成は、第1実施形態のものと同様であるので、ここではその説明を省略する。
[Second Embodiment]
FIG. 5 shows a process flow diagram of the ozone water supply apparatus 10A in which branch pipes 55, 56, 57 and bypass pipes 61, 62, 63 are connected to the branch points 52, 53, 54 of the main pipe 51, respectively. ing. Since the configuration of the ozone water generating means used in the second embodiment and the configuration of the main pipe 51 are the same as those in the first embodiment, the description thereof is omitted here.

本管51に設けられた3つの分岐点52,53,54には、枝管55,56,57と、この枝管55,56,57とは別途に設けられた迂回用配管61,62,63がそれぞれ接続されている。これら枝管55,56,57と迂回用配管61,62,63とはその管径が相互に同寸に形成されたものが使用され、その横断面積が同値に設計されている。また、これら枝管55,56,57及び迂回用配管61,62,63の横断面積は、本管51の分岐点52,53,54の上流側の横断面積に対する下流側の横断面積の減少分に対応している。   Three branch points 52, 53, and 54 provided in the main pipe 51 include branch pipes 55, 56, and 57, and bypass pipes 61, 62, and 57 provided separately from the branch pipes 55, 56, and 57, respectively. 63 are connected to each other. These branch pipes 55, 56, 57 and bypass pipes 61, 62, 63 have pipe diameters that are formed in the same dimension, and the cross-sectional areas thereof are designed to have the same value. In addition, the cross-sectional areas of the branch pipes 55, 56, 57 and the bypass pipes 61, 62, 63 are a decrease in the cross-sectional area on the downstream side with respect to the cross-sectional area on the upstream side of the branch points 52, 53, 54 of the main pipe 51. It corresponds to.

さらに、各分岐点52,53,54には、本管51を流れてきたオゾン水の一部を枝管55,56,57又は迂回用配管61,62,63のいずれか一方に分流させるとともに、残部を本管51の分岐点52,53,54よりも下流側に流すための切換手段が設けられている。   Furthermore, at each branch point 52, 53, 54, a part of the ozone water flowing through the main pipe 51 is divided into one of the branch pipes 55, 56, 57 or the bypass pipes 61, 62, 63. Switching means is provided for flowing the remaining portion downstream of the branch points 52, 53, and 54 of the main pipe 51.

図6は、切換手段の一例であるソレノイドバルブ70を示している。このソレノイドバルブ70は、電流をオン・オフすることで、ソレノイドバルブ70が備えるスプールの位置を移動させ、流れてきたオゾン水を枝管55,56,57及び本管51の下流側に流す状態と、迂回用配管61,62,63及び本管51の下流側に流す状態との切り換えが行われる。   FIG. 6 shows a solenoid valve 70 which is an example of the switching means. The solenoid valve 70 is configured to move the position of a spool provided in the solenoid valve 70 by turning on and off the current, and to flow the flowing ozone water downstream of the branch pipes 55, 56, 57 and the main pipe 51. And the state of flowing to the downstream side of the bypass pipes 61, 62, 63 and the main pipe 51 are performed.

図7は、切換手段であるトップバルブ41を使用した例を示している。このストップバルブは、分岐点52,53,54に接続された枝管55,56,57及び迂回用配管61,62,63のいずれにも設けており、オゾン水の流通をオン・オフする。図7に示す切換手段では、オゾン水の一部を枝管55,56,57に分流させると共に残部を本管51の下流側に流す場合には、迂回用配管61,62,63に設けられたストップバルブ41を閉じ、迂回用配管61,62,63にオゾン水が流れ込むことを防止する。逆に、オゾン水の一部を迂回用配管61,62,63に分流させると共に残部を本管51の下流側に流す場合には、枝管55,56,57に設けられたストップバルブ41を閉じ、枝管55,56,57にオゾン水が流れ込むことを防止する。   FIG. 7 shows an example in which a top valve 41 as switching means is used. This stop valve is provided in any of the branch pipes 55, 56, 57 and the bypass pipes 61, 62, 63 connected to the branch points 52, 53, 54, and turns on / off the flow of ozone water. In the switching means shown in FIG. 7, when part of the ozone water is diverted to the branch pipes 55, 56, 57 and the remaining part is made to flow downstream of the main pipe 51, the detour pipes 61, 62, 63 are provided. The stop valve 41 is closed to prevent ozone water from flowing into the bypass pipes 61, 62, 63. Conversely, when part of the ozone water is diverted to the bypass pipes 61, 62, 63 and the remaining part is made to flow downstream of the main pipe 51, the stop valve 41 provided in the branch pipes 55, 56, 57 is used. It closes and prevents ozone water from flowing into the branch pipes 55, 56, 57.

迂回用配管61,62,63は、回収ライン67に接続されており、オゾン水使用箇所21,22,23でオゾン水を使用しない場合に、迂回用配配管61,62,63はオゾン水を回収ライン67に迂回させる。   The bypass pipes 61, 62, 63 are connected to the recovery line 67. When the ozone water is not used at the ozone water use locations 21, 22, 23, the bypass distribution pipes 61, 62, 63 receive ozone water. Detour to collection line 67.

この第2実施形態に係るオゾン水供給装置10Aにおいても、本管51は、各分岐点52,53,54の上流側の横断面積に対し、下流側の横断面積が小さくなるよう形成され、その横断面積の減少分は、枝管55,56,57に分流したオゾン水の流量に対応して形成されている。そのため、各分岐点52,53,54よりも下流側の本管51を流れるオゾン水の流速を低下させることなく一定値以上で流すことができる。また、オゾン水使用箇所に供給しない場合でも、オゾン水を迂回用配管61,62,63へ分流するので、本管51における、オゾン水を供給しないオゾン水供給箇所に対応する分岐点52,53,54の下流側で、本管51を流れるオゾン水の流速の低下を防止することができる。   Also in the ozone water supply apparatus 10A according to the second embodiment, the main pipe 51 is formed so that the cross-sectional area on the downstream side is smaller than the cross-sectional area on the upstream side of each branch point 52, 53, 54. The decrease in the cross-sectional area is formed corresponding to the flow rate of the ozone water branched into the branch pipes 55, 56, and 57. Therefore, it is possible to flow ozone water at a certain value or more without reducing the flow velocity of the ozone water flowing through the main pipe 51 on the downstream side of the branch points 52, 53, and 54. Even when ozone water is not supplied to the location where ozone water is used, the ozone water is diverted to the bypass pipes 61, 62, 63, so the branch points 52, 53 corresponding to the ozone water supply location in the main pipe 51 where ozone water is not supplied. , 54 on the downstream side, a decrease in the flow rate of the ozone water flowing through the main pipe 51 can be prevented.

以下に実施例を挙げて本発明を更に詳細に説明するが、本発明は、以下の実施例に何ら限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples.

なお、以下に説明する実施例及び比較例においては、図1に示したオゾン発生器4(住友精密工業(株)、無声放電式オゾン発生器 GR−RD)と、オゾン溶解装置5(ジャパンゴアテックス(株)、オゾン溶解膜 GNK−01K)とを使用してオゾン水を生成した。また、溶存オゾン濃度は、溶存オゾン計(荏原実業(株)、溶存オゾン計 EL−700A)を用いてそれぞれ測定した。   In Examples and Comparative Examples described below, the ozone generator 4 (Sumitomo Seimitsu Industry Co., Ltd., silent discharge type ozone generator GR-RD) shown in FIG. 1 and the ozone dissolving device 5 (Japan Gore-Tech). Ozone water was produced by using Ozone Co., Ltd., ozone-dissolved film GNK-01K. In addition, the dissolved ozone concentration was measured using a dissolved ozone meter (Sugawara Business Co., Ltd., dissolved ozone meter EL-700A).

[実施例]
この実施例では、図1に示した本管11及び枝管15,16,17を具備するオゾン水供給装置10を使用した。また、オゾン水使用箇所21,22,23は、図1に示すとおり3箇所とし、オゾン水使用箇所21までの送水距離を30m、オゾン水使用箇所22までの送水距離を60m、オゾン水使用箇所23までの送水距離を90mに設定した。そして、1番目のオゾン水使用箇所21に対応する分岐点12までの区間11aにおける本管11の内径が32mm、1番目のオゾン水使用箇所21に対応する分岐点12から2番目のオゾン水使用箇所22に対応する分岐点13までの区間11bの本管11の内径が25mm、2番目のオゾン水使用箇所22に対応する分岐点13から3番目のオゾン水使用箇所23に対応する分岐点14までの区間11cの本管11の内径が20mmにそれぞれ形成された配管を使用した。
[Example]
In this embodiment, the ozone water supply apparatus 10 including the main pipe 11 and the branch pipes 15, 16, and 17 shown in FIG. 1 was used. Moreover, the ozone water use places 21, 22, and 23 are three places as shown in FIG. 1, the water supply distance to the ozone water use place 21 is 30 m, the water supply distance to the ozone water use place 22 is 60 m, and the ozone water use place. The water supply distance up to 23 was set to 90 m. The inner diameter of the main pipe 11 in the section 11a up to the branch point 12 corresponding to the first ozone water use location 21 is 32 mm, and the second ozone water use from the branch point 12 corresponding to the first ozone water use location 21 The inner diameter of the main pipe 11 in the section 11b to the branch point 13 corresponding to the point 22 is 25 mm, and the branch point 14 corresponding to the third ozone water use point 23 from the branch point 13 corresponding to the second ozone water use point 22. Pipes in which the inner diameter of the main pipe 11 in the section 11c was formed to 20 mm were used.

まず、オゾン発生器4に酸素ガスと炭酸ガスとの混合ガスを供給してオゾンガスを発生させ、発生させたオゾンガスをオゾン溶解装置5であるオゾン溶解膜に導入し、純水にオゾンを溶解してオゾン水を生成した。このときのオゾン溶解装置5の出口における溶存オゾン濃度は25mg/Lであった。また、生成したオゾン水のpH値は5であった。   First, a mixed gas of oxygen gas and carbon dioxide gas is supplied to the ozone generator 4 to generate ozone gas, the generated ozone gas is introduced into an ozone dissolving film which is the ozone dissolving device 5, and ozone is dissolved in pure water. To produce ozone water. The dissolved ozone concentration at the outlet of the ozone dissolving device 5 at this time was 25 mg / L. The pH value of the generated ozone water was 5.

一方、各オゾン水使用箇所21,22,23では、少なくとも溶存オゾン濃度が20mg/Lであることが必要であるため、各オゾン水使用箇所21,22,23に到達した際の溶存オゾン濃度の目標値は、20mg/Lである。   On the other hand, at each ozone water use location 21, 22, 23, since it is necessary that at least the dissolved ozone concentration is 20 mg / L, the dissolved ozone concentration at the time when each ozone water use location 21, 22, 23 is reached. The target value is 20 mg / L.

生成されたオゾン水は、送水量を35L/分に設定して本管11に送り出し、各オゾン水使用箇所21,22,23におけるオゾン水の使用量を1箇所あたり、10L/分とした。   The generated ozone water was sent to the main pipe 11 with a water supply amount set to 35 L / min, and the amount of ozone water used at each ozone water use location 21, 22, 23 was 10 L / min per location.

本管11を流れるオゾン水の流速は次の式(1)で表すことができる。   The flow rate of the ozone water flowing through the main pipe 11 can be expressed by the following equation (1).

配管流速LV(m/分)=送水量(m/分)÷配管断面積(m)・・・(1) Pipe flow velocity LV (m / min) = Water supply amount (m 3 / min) ÷ Pipe cross-sectional area (m 2 ) (1)

この式(1)に、送水量=0.035(m/分)、配管断面積=16×3.14×10−6(m)を代入し、区間11aにおける配管流速を求めると、約43.5m/分となる。 Substituting into this equation (1) the amount of water delivered = 0.035 (m 3 / min) and the cross-sectional area of the pipe = 16 2 × 3.14 × 10 −6 (m 2 ), the pipe flow velocity in the section 11a is obtained. About 43.5 m / min.

同様に、式(1)に、送水量=0.035−0.010=0.025(m/分)、配管断面積=12.5×3.14×10−6(m)を代入し、区間11bでの配管流速を求めると、約51.0m/分となる。また、式(1)に、送水量=0.025−0.010=0.015(m/分)、配管断面積=10×3.14×10−6(m)を代入し、区間11cでの配管流速を求めると、約47.8m/分となる。 Similarly, in equation (1), the amount of water delivered = 0.035−0.010 = 0.025 (m 3 / min), the cross-sectional area of the pipe = 12.5 2 × 3.14 × 10 −6 (m 2 ) And the pipe flow velocity in the section 11b is calculated to be about 51.0 m / min. In addition, substituting into the formula (1) for water supply amount = 0.025−0.010 = 0.015 (m 3 / min) and pipe cross-sectional area = 10 2 × 3.14 × 10 −6 (m 2 ) The pipe flow velocity in the section 11c is about 47.8 m / min.

そして、各オゾン水使用箇所21,22,23におけるオゾン水の溶存オゾン濃度の測定結果は、1番目のオゾン水使用箇所21では24mg/L、2番目のオゾン水使用箇所22では24mg/L、3番目のオゾン水使用箇所23では23mg/Lであった。   And the measurement result of the dissolved ozone density | concentration of ozone water in each ozone water use location 21,22,23 is 24 mg / L in the 1st ozone water use location 21, 24 mg / L in the 2nd ozone water use location 22, It was 23 mg / L in the third ozone water use point 23.

このように、オゾン水使用箇所21,22,23における溶存イオン濃度を測定したところ、供給されたオゾン水の溶存オゾン濃度の低下が抑制され、溶存オゾン濃度が目標値以上であることを確認できた。   Thus, when the dissolved ion concentration in the ozone water use places 21, 22, and 23 was measured, a decrease in the dissolved ozone concentration of the supplied ozone water was suppressed, and it was confirmed that the dissolved ozone concentration was higher than the target value. It was.

[比較例]
この比較例では、本管11の内径を全ての区間で32mmに形成した他は、図1に示したオゾン水供給装置10と同様のオゾン水供給装置10を使用し、同様の手法によって測定を行った。なお、実施例と同様、オゾン水使用箇所21,22,23は、3箇所とし、オゾン水使用箇所21までの送水距離を30m、オゾン水使用箇所22までの送水距離を60m、オゾン水使用箇所23までの送水距離を90mに設定した。また、オゾン水の生成及び生成されたオゾン水の溶存オゾン濃度(25mg/L)も実施例と同様とした。
[Comparative example]
In this comparative example, the ozone water supply device 10 similar to the ozone water supply device 10 shown in FIG. 1 is used, except that the inner diameter of the main pipe 11 is 32 mm in all sections, and measurement is performed by the same method. went. As in the example, the ozone water use locations 21, 22, and 23 are 3 locations, the water supply distance to the ozone water use location 21 is 30m, the water supply distance to the ozone water use location 22 is 60m, and the ozone water use location The water supply distance up to 23 was set to 90 m. Moreover, the production | generation of ozone water and the dissolved ozone density | concentration (25 mg / L) of the produced | generated ozone water were also made into the same as that of an Example.

生成されたオゾン水は、送水量を35L/分に設定して本管11に送り出し、各オゾン水使用箇所21,22,23でのオゾン水の使用量を1箇所あたり10L/分とした。   The generated ozone water was sent to the main pipe 11 with a water supply amount set to 35 L / min, and the amount of ozone water used at each ozone water use location 21, 22, 23 was 10 L / min per location.

既述の式(1)に、送水量=0.035(m/分)、配管断面積=16×3.14×10−6(m)を代入し、区間11aでの配管流速を求めると、約43.5m/分となる。この点は、上述した実施例と同様である。 The aforementioned equation (1), water supply amount = 0.035 (m 3 / min), by substituting the pipe cross-sectional area = 16 2 × 3.14 × 10 -6 (m 2), the pipe flow velocity in the section 11a Is about 43.5 m / min. This is the same as in the above-described embodiment.

これに対し、式(1)に、送水量=0.035−0.010=0.025(m/分)、配管断面積=16×3.14×10−6(m)を代入し、区間11bでの配管流速を求めると、約31.1m/分となる。また、式(1)に、送水量=0.025−0.010=0.015(m/分)、配管断面積=16×3.14×10−6(m)を代入し、区間11cでの配管流速を求めると、約18.7m/分となる。 On the other hand, in the formula (1), the water supply amount = 0.035−0.010 = 0.025 (m 3 / min), the pipe cross-sectional area = 16 2 × 3.14 × 10 −6 (m 2 ) By substituting and calculating the pipe flow velocity in the section 11b, it is about 31.1 m / min. In addition, substituting into the formula (1) for water supply amount = 0.025−0.010 = 0.015 (m 3 / min) and pipe cross-sectional area = 16 2 × 3.14 × 10 −6 (m 2 ) The pipe flow velocity in the section 11c is about 18.7 m / min.

このような条件下で各オゾン水使用領域における溶存オゾン濃度を測定したところ、1番目のオゾン水使用箇所21では24mg/L、2番目のオゾン水使用箇所22では22mg/L、3番目のオゾン水使用箇所23では18mg/Lであった。   When the dissolved ozone concentration in each ozone water use region was measured under such conditions, the first ozone water use location 21 was 24 mg / L, the second ozone water use location 22 was 22 mg / L, and the third ozone The water usage point 23 was 18 mg / L.

このように、比較例では、オゾン水使用箇所21,22,23での溶存イオン濃度をしたところ、下流側のオゾン水使用箇所での溶存オゾン濃度が順次低下してしまうことが分かる。3番目のオゾン水使用箇所では、溶存オゾン濃度が、18mg/L溶存オゾン濃度まで低下してしまい、目標値である20mg/L以上とすることができなかった。   As described above, in the comparative example, when the dissolved ion concentration at the ozone water use locations 21, 22, and 23 is obtained, it can be seen that the dissolved ozone concentration at the downstream ozone water use location sequentially decreases. In the 3rd ozone water use location, the dissolved ozone concentration fell to 18 mg / L dissolved ozone concentration, and could not be 20 mg / L or more which is a target value.

実施例及び比較例の配管流速を表1に示し、溶存オゾン濃度を表2に示す。   The pipe flow rates of the examples and comparative examples are shown in Table 1, and the dissolved ozone concentration is shown in Table 2.

Figure 0005874223
Figure 0005874223

Figure 0005874223
Figure 0005874223

表1から明らかなように、本管11の配管径が分岐点を通過するごとに順次小さくなるよう形成された配管を使用した実施例では、配管径を小さくすることなくそのままの大きさに形成された配管を使用した比較例に比べ、本管11を流れるオゾン水の流速の低下が防止されている。そして、表2に示すように、各オゾン水使用箇所21,22,23でのオゾン水の溶存オゾン濃度は、実施例においては、全てのオゾン水使用箇所21,22,23において、目標値である溶存オゾン濃度20mg/L以上とすることができた。これに対し、比較例においては、各オゾン水使用箇所21,22,23における溶存オゾン濃度が、オゾン水の移送距離が長くなるにつれて低下してしまい、3番目のオゾン水使用箇所23では、溶存オゾン濃度が18mg/Lまで低下しており、目標値である溶存オゾン濃度20mg/Lを下回ってしまった。   As is apparent from Table 1, in the embodiment using the pipe formed so that the pipe diameter of the main pipe 11 gradually decreases every time it passes through the branch point, the pipe 11 is formed in the same size without reducing the pipe diameter. Compared to the comparative example using the pipe, the decrease in the flow velocity of the ozone water flowing through the main pipe 11 is prevented. And as shown in Table 2, the dissolved ozone concentration in each ozone water use location 21,22,23 is a target value in all the ozone water use locations 21,22,23 in an Example. A certain dissolved ozone concentration could be 20 mg / L or more. On the other hand, in the comparative example, the dissolved ozone concentration at each ozone water use location 21, 22, 23 decreases as the transfer distance of the ozone water increases, and at the third ozone water use location 23, the dissolved ozone concentration decreases. The ozone concentration was lowered to 18 mg / L, which was below the target ozone concentration of 20 mg / L.

このことから、実施例にかかるオゾン水供給装置を適用することで、オゾン水の流速を低下させることなく一定値以上の流速でオゾン水を供給することができ、オゾン水の溶存オゾン濃度の低下を効果的に防止することができることが分かった。   From this, by applying the ozone water supply device according to the embodiment, ozone water can be supplied at a flow rate of a certain value or more without reducing the flow rate of ozone water, and the dissolved ozone concentration of ozone water decreases. It can be effectively prevented.

1 オゾン水生成手段(オゾン水生成装置)
2 酸素ガスタンク
3 炭酸ガスタンク
4 オゾン発生器
5 オゾン溶解装置
10,10A オゾン水供給装置
11 本管
51 本管
12,13,14 分岐点
52,53,54 分岐点
15,16,17 枝管
55,56,57 枝管
21,22,23 オゾン水使用箇所
31,32,33 迂回用配管
63,64,65 迂回用配管
37,67 回収ライン
40 ソレノイドバルブ
70 ソレノイドバルブ
41 ストップバルブ
1 Ozone water generation means (ozone water generator)
2 Oxygen gas tank 3 Carbon dioxide gas tank 4 Ozone generator 5 Ozone dissolving device 10, 10A Ozone water supply device 11 Main pipe 51 Main pipe 12, 13, 14 Branch point 52, 53, 54 Branch point 15, 16, 17 Branch pipe 55, 56, 57 Branch pipe 21, 22, 23 Ozone water use point 31, 32, 33 Detour pipe 63, 64, 65 Detour pipe 37, 67 Recovery line 40 Solenoid valve 70 Solenoid valve 41 Stop valve

Claims (8)

オゾン水使用箇所に供給するためのオゾン水を生成するオゾン水生成手段と、
前記オゾン水生成手段に接続されると共に、内部を流れるオゾン水を分流し、前記オゾン水使用箇所の数に対応する分岐点が、上流側から下流側にかけて、軸方向の異なる位置に複数設けられた本管と、
前記分岐点と前記オゾン水使用箇所とを連絡する枝管と、
前記本管を流れるオゾン水の流速が、最も上流側に設けられた前記分岐点の上流側を流れるオゾン水の流速よりも低下することを防止するための流速維持手段と、を備え、
前記流速維持手段は、前記本管の横断面積が、前記分岐点の上流側よりも下流側が減少するよう形成されてなり、
前記横断面積の減少分が、当該分岐点に連絡された前記枝管に分流されるオゾン水の流量に対応していることを特徴とするオゾン水供給装置。
Ozone water generating means for generating ozone water to be supplied to the location where ozone water is used;
A plurality of branch points corresponding to the number of ozone water use locations are provided at different positions in the axial direction from the upstream side to the downstream side while being connected to the ozone water generation means and branching the ozone water flowing inside. and the main was,
A branch pipe connecting the branch point and the ozone water use point;
A flow rate maintaining means for preventing the flow rate of ozone water flowing through the main pipe from lowering than the flow rate of ozone water flowing upstream of the branch point provided on the most upstream side ,
The flow rate maintaining means is formed such that the cross-sectional area of the main pipe is reduced on the downstream side of the upstream side of the branch point,
The reduced amount of the cross-sectional area corresponds to the flow rate of ozone water diverted to the branch pipe connected to the branch point .
前記オゾン水使用箇所へのオゾン水の流れを迂回させる迂回用配管が、前記オゾン水使用箇所の数に対応して設けられ、前記オゾン水使用箇所又は前記迂回用配管にオゾン水を流す切換手段が設けられている、請求項に記載のオゾン水供給装置。 Switching means for bypassing the flow of ozone water to the ozone water use location is provided corresponding to the number of ozone water use locations, and switching means for flowing ozone water to the ozone water use location or the bypass piping The ozone water supply device according to claim 1 , wherein 前記オゾン水使用箇所の直前における前記枝管内を流れるオゾン水の流速が、少なくとも30m/分となるように制御されている、請求項1又は2に記載のオゾン水供給装置。 The ozone water supply apparatus according to claim 1 or 2, wherein a flow rate of the ozone water flowing in the branch pipe immediately before the ozone water use location is controlled to be at least 30 m / min. 前記オゾン水使用箇所に供給されるオゾン水のpH値を6以下に抑制するpH値抑制手段を備える、請求項1〜のいずれか1項に記載のオゾン水供給装置。 The ozone water supply apparatus of any one of Claims 1-3 provided with the pH value suppression means which suppresses the pH value of the ozone water supplied to the said ozone water use location to 6 or less. オゾン水生成手段により生成されたオゾン水を、配管によってオゾン水が使用されるオゾン水使用箇所に供給するオゾン水供方法であって、
前記配管は、前記オゾン水生成手段に接続されると共に、内部を流れるオゾン水を分流し、前記オゾン水使用箇所の数に対応する分岐点が上流側から下流側にかけて、軸方向の異なる位置に複数設けられた本管と、前記分岐点と前記オゾン水使用箇所とを連絡する枝管と、で構成され、
前記本管の横断面積を、前記分岐点の上流側よりも下流側が減少するよう形成すると共に、前記横断面積の減少分を、当該分岐点に連絡された前記枝管に分流されるオゾン水の流量に対応させることによって、
前記本管を流れるオゾン水の流速を、最も上流側に設けられた分岐点の上流側に流れるオゾン水の流速よりも低下することを防止して前記オゾン水使用箇所にオゾン水を供給することを特徴とするオゾン水供給方法。
An ozone water supply method for supplying ozone water generated by an ozone water generating means to an ozone water use location where ozone water is used by piping,
The piping is connected to the ozone water generating means, and also branches the ozone water flowing inside, and the branch point corresponding to the number of the ozone water use points is located at different positions in the axial direction from the upstream side to the downstream side. It is composed of a plurality of main pipes, and a branch pipe that connects the branch point and the ozone water use location,
The cross-sectional area of the main pipe is formed so that the downstream side of the branch point is lower than the upstream side of the branch point, and the decrease in the cross-sectional area is divided into ozone water that is diverted to the branch pipe connected to the branch point. By adapting to the flow rate,
Preventing the flow rate of ozone water flowing through the main pipe from dropping below the flow rate of ozone water flowing upstream of the branch point provided on the most upstream side and supplying ozone water to the location where the ozone water is used A method for supplying ozone water.
前記オゾン水使用箇所へのオゾン水の流れを迂回させる迂回用配管を前記オゾン水使用箇所の数に対応させて設けると共に、前記オゾン水使用箇所又は前記迂回用配管にオゾン水を流す切換手段を設け、
選択された前記オゾン水使用箇所に対応する前記切換手段により前記迂回用配管へオゾン水を流し、選択された前記オゾン水使用箇所に対応する分岐点よりも下流側の本管を流れるオゾン水の流速の低下を防止してオゾン水を供給する、請求項に記載のオゾン水供給方法。
A detour pipe for detouring the flow of ozone water to the ozone water use location is provided corresponding to the number of the ozone water use locations, and a switching means for flowing ozone water to the ozone water use location or the detour piping. Provided,
Ozone water is caused to flow through the bypass pipe by the switching means corresponding to the selected location where the ozone water is used, and flows through the main pipe downstream from the branch point corresponding to the selected location where the ozone water is used. The ozone water supply method according to claim 5 , wherein ozone water is supplied while preventing a decrease in flow rate.
前記オゾン水使用箇所の直前における前記枝管内を流れるオゾン水の流速を、少なくとも30m/分となるように制御してオゾン水を供給する、請求項5又は6に記載のオゾン水供給方法。 The ozone water supply method according to claim 5 or 6 , wherein the ozone water is supplied by controlling a flow rate of the ozone water flowing in the branch pipe immediately before the use location of the ozone water to be at least 30 m / min. オゾン水のpH値を6以下としてオゾン水を供給する、請求項5〜7のいずれか1項に記載のオゾン水供給方法。
The ozone water supply method according to any one of claims 5 to 7 , wherein the ozone water is supplied at a pH value of 6 or less.
JP2011151832A 2011-07-08 2011-07-08 Ozone water supply apparatus and ozone water supply method Expired - Fee Related JP5874223B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011151832A JP5874223B2 (en) 2011-07-08 2011-07-08 Ozone water supply apparatus and ozone water supply method
CN201280033875.0A CN103687820B (en) 2011-07-08 2012-07-05 Ozone water supply apparatus and method of ozone water supply
PCT/JP2012/067205 WO2013008721A1 (en) 2011-07-08 2012-07-05 Device for supplying ozone water and method for supplying ozone water
KR1020137030369A KR101974667B1 (en) 2011-07-08 2012-07-05 Device for supplying ozone water and method for supplying ozone water
TW101124427A TWI538877B (en) 2011-07-08 2012-07-06 Ozone water supply device and ozone water supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011151832A JP5874223B2 (en) 2011-07-08 2011-07-08 Ozone water supply apparatus and ozone water supply method

Publications (2)

Publication Number Publication Date
JP2013017932A JP2013017932A (en) 2013-01-31
JP5874223B2 true JP5874223B2 (en) 2016-03-02

Family

ID=47506012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011151832A Expired - Fee Related JP5874223B2 (en) 2011-07-08 2011-07-08 Ozone water supply apparatus and ozone water supply method

Country Status (5)

Country Link
JP (1) JP5874223B2 (en)
KR (1) KR101974667B1 (en)
CN (1) CN103687820B (en)
TW (1) TWI538877B (en)
WO (1) WO2013008721A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107720941A (en) * 2017-12-11 2018-02-23 重庆丰望环保科技有限公司 A kind of sewage disposal system with sterilizing function
JP7452050B2 (en) * 2020-02-04 2024-03-19 株式会社大林組 piping system
CN115702116B (en) * 2020-06-08 2024-09-13 三菱电机株式会社 Ozone water production device, water treatment device, and ozone water production method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614587A (en) * 1984-06-15 1986-01-10 Toshiba Corp Demineralized water supply system and its method
JPS6369588A (en) * 1986-09-09 1988-03-29 Mitsubishi Electric Corp System for supplying pure water to semiconductor washing vessel
JP2606910B2 (en) * 1988-11-21 1997-05-07 神鋼パンテツク株式会社 Ultrapure water production and supply equipment
JPH0625424B2 (en) * 1989-03-09 1994-04-06 須賀工業株式会社 Method of determining return pipe diameter in forced circulation hot water supply piping equipment
JP2689662B2 (en) * 1989-12-19 1997-12-10 トヨタ自動車株式会社 Paint circulation device
JP2652301B2 (en) * 1992-05-28 1997-09-10 株式会社荏原製作所 Cleaning water production equipment
JPH1147754A (en) * 1997-07-31 1999-02-23 Nec Corp Method and apparatus for sterilizing piping
JPH11138182A (en) * 1997-11-10 1999-05-25 Kurita Water Ind Ltd Ozonized ultrapure water feeder
JP2000037695A (en) 1998-07-24 2000-02-08 Kurita Water Ind Ltd Apparatus for supplying ozone water
JP5037748B2 (en) 1998-12-15 2012-10-03 栗田工業株式会社 Ozone water concentration adjustment method and ozone water supply system
JP4508311B2 (en) 1999-05-26 2010-07-21 栗田工業株式会社 Adjustment method of ozone concentration
JP4538702B2 (en) 2000-07-05 2010-09-08 栗田工業株式会社 Ozone dissolved water supply device
JP4221551B2 (en) * 2002-01-25 2009-02-12 株式会社ササクラ Ozone water supply device
JP4513122B2 (en) 2004-03-31 2010-07-28 栗田工業株式会社 Ozone water supply method and ozone water supply device
JP4942067B2 (en) * 2004-10-08 2012-05-30 オルガノ株式会社 Viable bacteria measurement method
KR100889190B1 (en) * 2005-01-24 2009-03-17 누테크 오우쓰리 인코포레이티드 Ozone injection method and system
JP4843339B2 (en) * 2006-03-10 2011-12-21 株式会社ササクラ Ozone water supply device
JP4950915B2 (en) * 2008-02-20 2012-06-13 パナソニック株式会社 Ozone water production equipment

Also Published As

Publication number Publication date
TWI538877B (en) 2016-06-21
TW201318963A (en) 2013-05-16
CN103687820B (en) 2015-08-05
KR101974667B1 (en) 2019-05-02
KR20140032403A (en) 2014-03-14
CN103687820A (en) 2014-03-26
WO2013008721A1 (en) 2013-01-17
JP2013017932A (en) 2013-01-31

Similar Documents

Publication Publication Date Title
JP5292923B2 (en) Microorganism detection method, microorganism detection apparatus, and slurry supply apparatus using the same
KR102660335B1 (en) Method for producing heated ozonated water, heated ozonated water and semiconductor wafer cleaning liquid
WO2009113682A1 (en) Gas-dissolved water supply system
CN102755970B (en) On-line SPM generating system and control method thereof
TWI363382B (en) System and method for supplying functional water
JP5874223B2 (en) Ozone water supply apparatus and ozone water supply method
JP2004188246A (en) System for manufacturing ozonized water
JP2007075328A (en) Sterilizing method and sterilizer for ultrapure water system
JP2014217830A (en) Ultrapure water production system and ultrapure water production and supply system
JP3381250B2 (en) Gas dissolving cleaning water flow pipe
TW201431797A (en) Method for manufacturing ozone-gas-dissolved water and cleaning method for electronic materials
JP4927415B2 (en) Exhaust gas wastewater treatment equipment
JP2011082495A (en) Liquid processing apparatus for substrate, method for generating processing liquid, and computer readable recording medium recording program for generating processing liquid therein
JP2014117628A (en) Circulation type method and apparatus for supplying ozone water
US6786976B1 (en) Method and system for cleaning semiconductor elements
JP5717241B2 (en) Processing apparatus and processing method
JP2010158672A (en) Bubble generation method, bubble generation apparatus, and ozone water producing method
JP2004261768A (en) Ultrapure water manufacturing system and its operation method
TWI272254B (en) Method for forwarding ozonated water
JP6575288B2 (en) Ozone-containing wastewater treatment method and treatment equipment
JP4683977B2 (en) Hydrogen peroxide injection control method and apparatus in accelerated oxidation water treatment method
JP2003210966A (en) Ozone water feeding device
JP5286940B2 (en) Slurry feeder
JP2005213498A (en) Cleaning fluid and cleaning method
JP2005319369A (en) Ammonia decomposition/removal apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160104

R150 Certificate of patent or registration of utility model

Ref document number: 5874223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees