JP4661009B2 - Ultrapure water production system - Google Patents

Ultrapure water production system Download PDF

Info

Publication number
JP4661009B2
JP4661009B2 JP2001267538A JP2001267538A JP4661009B2 JP 4661009 B2 JP4661009 B2 JP 4661009B2 JP 2001267538 A JP2001267538 A JP 2001267538A JP 2001267538 A JP2001267538 A JP 2001267538A JP 4661009 B2 JP4661009 B2 JP 4661009B2
Authority
JP
Japan
Prior art keywords
ultrapure water
membrane separation
water production
water
production system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001267538A
Other languages
Japanese (ja)
Other versions
JP2003071444A (en
Inventor
敬人 本村
勝信 北見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001267538A priority Critical patent/JP4661009B2/en
Publication of JP2003071444A publication Critical patent/JP2003071444A/en
Application granted granted Critical
Publication of JP4661009B2 publication Critical patent/JP4661009B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は超純水製造装置で製造した超純水をユースポイントに送水する超純水製造システムに関する。
【0002】
【従来の技術】
半導体製造等の分野における洗浄工程では、洗浄水として超純水が用いられている。この超純水としては、洗浄トラブルの原因となる微粒子、有機物や無機物を含まないことが要求され、例えば抵抗率:18.2MΩ・cm以上、微粒子:1個/mL以下、生菌:1個/L以下、TOC(Total Organic Carbon):1μg/L以下、シリカ:1μg/L以下、金属類:1ng/L以下、イオン類:10ng/L以下であることが要求水質となっている。
【0003】
超純水の使用場所(ユースポイント)は、超純水製造装置と配管(流路)で接続され、このユースポイントで使用されなかった残余の超純水は別の流路を介して前記超純水製造装置に戻されることにより循環系が形成され、全体として超純水製造システムが構成されている。
【0004】
図2は、従来の超純水製造システムを示す系統図である。この超純水製造システムは、紫外線(UV)酸化装置4、イオン交換樹脂塔5及び限外濾過(UF)膜分離装置6を備える超純水製造装置で製造された超純水が、配管16を介してユースポイント7へ送られて該ユースポイント7でその一部が使用され、未使用の超純水が配管17を経て原水槽1に戻され、超純水製造装置で再び処理される循環系をなしている。
【0005】
即ち、配管11から導入された一次純水及びユースポイント7から配管17を経て戻された未使用の超純水は原水槽1に収容される。ここで一次純水は、例えば、工水、井水、市水等の原水を凝集沈殿等の前処理後、逆浸透膜分離処理、アニオン性及びカチオン性のイオン交換樹脂による処理を順に行い、更に逆浸透膜処理することにより得られる。原水槽1内の水は、ポンプ2により配管12を経て熱交換器3で温度調整された後、配管13よりUV酸化装置4に導入され有機物が除去される。UV酸化装置4の処理水は、配管14よりイオン交換樹脂塔5に導入されて脱塩処理された後、配管15よりUF膜分離装置6に導入され微粒子が除去される。このようにして得られた超純水は、配管16よりユースポイント7に送給され、余剰の超純水が配管17より原水槽1に戻される。
【0006】
ユースポイント7は超純水の使用場所を示し、対象物(例えば半導体)を洗浄するための洗浄装置の他、適宜配管やノズル類等を含んでもよい。なお、ユースポイント7で使用された超純水は、適宜排水として回収される。
【0007】
超純水製造システムにおいて、このように絶えず超純水の循環を行っているのは、超純水製造システムのポンプや熱交換器、配管等を構成する材料からの溶出成分を除去して系内を高純度に保つことを目的としている。なお、一般に超純水製造システムのポンプや熱交換器、配管等の構成材料としてはSUS材が適用されている。
【0008】
超純水製造システムでは、ユースポイント7に供給される超純水中の生菌数を上記要求水質レベルとするために、定期的に系内の殺菌が行われる。従来、超純水製造システムの殺菌剤としては過酸化水素水が用いられ、一般的には次のような手順で殺菌処理が行われている。
(1) 超純水製造システムの運転を停止した後、殺菌剤(過酸化水素水)を配管18より原水槽1に添加してポンプ2により超純水製造システム系内全体に循環させる。即ち、原水槽1、配管12及びポンプ2、熱交換器3、配管13、UV酸化装置4、配管14、イオン交換樹脂塔5のバイパス配管14A、配管15、UF膜分離装置6、配管16、ユースポイント7、配管17、原水槽1の順で循環させる(循環殺菌洗浄)。なお、殺菌剤の添加方法としては、原水槽1のマンホールより投入する方法、エジェクター又は薬液ポンプを用いて添加する方法がある。
(2) ポンプ2を停止して、所定時間系内に殺菌剤を保持する(浸漬殺菌洗浄)。
(3) 系内の水を配管19より排出し、原水槽1を水洗し、更にポンプ2を起動して殺菌剤が検出されなくなるまで超純水製造システム系内を超純水で洗浄する(押し出し洗浄)。
【0009】
上記(1)(3)の操作の後、超純水製造システムの運転を再開する。
【0010】
【発明が解決しようとする課題】
半導体の集積度が増々高められている現在、その洗浄に用いられる超純水についても益々高純度であることが要求されており、このため、超純水製造システムにおいては、殺菌処理後の運転再開時において、運転再開直後から高純度で安定な水質を維持し得ることが望まれている。
【0011】
しかしながら、本発明者らが殺菌処理後の超純水の水質を調査した結果、殺菌処理後は超純水中の金属濃度が上昇し、運転再開後も長期にわたり金属濃度の高い状態が継続することが判明した。即ち、殺菌処理後、超純水製造システムの運転を再開した際には、製造される超純水中にFe,Cr,Ni等の金属が0.1〜1ng/L程度検出され、特に、Feは運転再開後一週間を経過しても超純水中に検出された。
【0012】
本発明は上記従来の問題点を解決し、系内の殺菌処理後、超純水製造システムの運転を再開した際の超純水中の金属濃度が著しく低く、運転再開直後から高純度で安定した水質の超純水を得ることができる超純水製造システムを提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明の超純水製造システムは、一次純水の貯水用の原水槽と、該原水槽内の水が導入されて超純水を製造する、少なくとも膜分離手段を有する超純水製造装置と、該超純水製造装置により製造された超純水をユースポイントへ送水する送水手段と、該ユースポイントを通過した未使用の超純水を前記原水槽へ戻す返送手段とを有する超純水製造システムにおいて、前記膜分離手段がUF膜分離装置であり、該膜分離手段の1次側に殺菌剤を供給すると共に、該返送手段から殺菌剤を含む水を排出させて、該膜分離手段及び前記送水手段を殺菌する手段を備えたことを特徴とする。
【0014】
本発明者らは、従来の超純水製造システムにおいて、殺菌処理後の運転再開時に超純水中の金属濃度が上昇し、金属濃度の高い状態が継続する原因を調べた結果、この原因は、循環殺菌洗浄中に超純水製造システムのポンプや熱交換器、配管等の構成材料から溶出する金属や、停止中の予備ポンプ等に滞留していた金属が過酸化水素等の殺菌剤により酸化されて微粒子化し、これが超純水製造装置の最後段に設置されている分離膜手段で捕捉されて分離膜を汚染し、その後、押し出し洗浄で系内の過酸化水素が排出された後に、超純水中に再溶解することによることを知見した。
【0015】
ところで、超純水製造システムにおける殺菌処理の目的は、主に超純水製造装置の膜分離手段からユースポイントに至る流路における菌の増殖を防止することにある。即ち、超純水製造システムの超純水製造装置において、通常最後段に設けられているUF膜分離装置等の膜分離手段では、水中の菌体を確実に除去することができ、一方で、超純水製造装置には一次純水中に含まれる菌体が常に流入していることを考慮した場合、原水槽から超純水製造装置の膜分離手段までの経路についての殺菌はさほど重要ではなく、膜分離手段以降のユースポイントに至る流路について殺菌を行うことができれば良い。
【0016】
本発明の超純水製造システムでは、超純水製造装置の膜分離手段の1次側に殺菌剤を供給すると共に、ユースポイントから未使用の超純水を原水槽に戻す返送手段から殺菌剤を含む水を排出させて、膜分離手段と膜分離手段からユースポイントへ超純水を送水する送水手段を殺菌する手段を有し、殺菌処理に当っては、殺菌剤を膜分離手段の入口から導入して、当該膜分離手段以降の送水手段及び返送配管の上流側のみを殺菌し、従来の超純水製造システムのように、膜分離手段の前段の配管や熱交換器、ポンプ等に殺菌剤を循環させない。
【0017】
このため、この膜分離手段の前段における殺菌処理中の金属の溶出が防止され、この溶出した金属が膜分離手段を汚染し、その後超純水製造システムの運転再開時に再溶解することによる超純水中の金属濃度の上昇の問題は解決される。
【0018】
本発明においては、膜分離手段に殺菌剤を供給する手段として、殺菌剤を蓄える殺菌剤貯槽と、該殺菌剤貯槽内の殺菌剤を前記膜分離手段の1次側に導く殺菌剤導入手段と、前記返送手段から排出された殺菌剤を含む水を該殺菌剤貯槽へ戻す殺菌剤返送手段とを有することが好ましく、これにより、殺菌剤貯槽から殺菌剤を膜分離手段の入口側に導入し、膜分離手段以降の超純水製造装置、ユースポイントへの超純水の送水手段、未使用の超純水の返送配管及び殺菌剤貯槽に循環させて、効率的な殺菌処理を行うことができる。
【0019】
また、この場合において、殺菌剤導入手段は、前記殺菌剤貯槽内の殺菌剤を送液するためのポンプを備えており、該ポンプの接液部が非金属材料よりなることが好ましく、これにより、殺菌処理中にポンプから金属が溶出することを防止して、運転再開時の超純水の金属濃度をより一層低く抑えることができる。
【0020】
【発明の実施の形態】
以下に図面を参照して本発明の超純水製造システムの実施の形態を詳細に説明する。
【0021】
図1は本発明の超純水製造システムの実施の形態を示す系統図である。図1において、図2に示す部材と同一機能を奏する部材には同一符号を付してある。
【0022】
この超純水製造システムでは、殺菌処理時に、殺菌剤貯槽20内の殺菌剤含有水をポンプ21によってUF膜分離装置6の入口側に導入すると共に、返送配管17から殺菌剤を含む水を配管23より殺菌剤貯槽20に導入するように構成している。
【0023】
この実施の形態では、配管22の吐出側先端は、配管15のUF膜分離装置6の入口近傍に設けられた殺菌剤導入口に接続されている。また、配管23の流入側先端は、配管17に接続されている。
【0024】
配管17のうち配管23の接続部よりも下流側に開閉バルブVが設けられると共に、配管23に開閉バルブVが設けられている。超純水製造運転時には、バルブVを開、バルブVを閉とし、また殺菌処理時には、バルブVを閉、バルブVを開とする。なお、配管23のバルブVよりも殺菌剤貯槽20側には押し出し洗浄排水の排出用の配管24が分岐しており、該配管24に開閉バルブVが設けられている。このバルブVは押し出し洗浄排水の排水時にのみ開とされる。
【0025】
図1の超純水製造システムのその他の構成は図2と同一である。この超純水製造システムの超純水製造運転は、図2に示す従来の超純水製造システムと同様に実施される。
【0026】
殺菌処理に当っては、上記の通りバルブVを閉、バルブVを開とし、原水槽1への一次純水の流入を停止すると共にポンプ2を停止させる。そして、ポンプ21を起動させて殺菌剤貯槽20内の殺菌剤含有水を配管22、UF膜分離装置6、配管16、ユースポイント7、配管17、配管23を経て殺菌剤貯槽20に戻す循環殺菌洗浄を行う。この循環殺菌洗浄を所定時間行った後は、ポンプ21を停止して所定時間保持する浸漬殺菌洗浄を行う。
【0027】
その後、ポンプ21を停止し、バルブVを開とすると共に、ポンプ2を起動して押し出し洗浄を行う。押し出し洗浄排水は配管24から排出される。押し出し洗浄は、配管24から排出される押し出し洗浄排水中に殺菌剤が検出されなくなるまで行う。
【0028】
押し出し洗浄後は、バルブVを開、バルブV,Vを閉に戻し、通常の超純水製造運転を再開する。
【0029】
図1の超純水製造システムでは、殺菌処理時において、UF膜分離装置6には、殺菌剤貯槽20、ポンプ21、配管22、UF膜分離装置6、配管16、ユースポイント7及び配管17を循環する殺菌剤含有水が通水され、この殺菌剤はポンプ2、熱交換器3や超純水製造装置の上流側の配管を通ることはないため、これらの配管や機器からの金属の溶出に起因するUF膜分離装置6の膜汚染は防止される。このため、殺菌処理後の超純水製造運転の再開直後から、高純度の超純水を安定に製造することができる。
【0030】
この殺菌処理時のUF膜分離装置6の金属汚染を防止する観点から、UF膜分離装置6の入口側に設けられる前記殺菌剤導入口(配管22の接続部)は、配管15上のUF膜分離装置6の入口近傍であることが好ましい。また、超純水製造装置には、膜分離手段への原水導入圧力を確保するために、膜分離手段の前段にブースターポンプを設けたものがあるが、この場合には、ブースターポンプの吐出口と膜分離手段の入口との間に殺菌剤導入口を設けることが好ましい。
【0031】
同様に、UF膜分離装置6の金属汚染を防止する観点から、殺菌剤の循環系路の接液面は非金属材料で構成されることが好ましく、特に、殺菌剤ポンプ21については、接液面が四フッ化樹脂、高密度ポリエチレン、ポリブテン、塩化ビニル、PVDF(ポリフッ化ビニリデン)、ポリプロピレン等の非金属材料で構成されていることが好ましい。また、殺菌剤の導入配管22、返送配管23についても、接液面がこれらの非金属材料よりなるものを用いても良い。
【0032】
本発明において、殺菌剤としては一般に過酸化水素水を用いることができ、循環殺菌洗浄時において、0.1〜1重量%濃度程度の過酸化水素水を上記殺菌剤循環系路に循環させることが好ましい。
【0033】
なお、図1の超純水製造システムは本発明の実施の形態の一例を示すものであって、本発明はその要旨を超えない限り何ら図示のものに限定されるものではない。
【0034】
例えば、殺菌剤貯槽20、殺菌剤ポンプ21、配管22,23等の殺菌剤を循環させるための手段は必ずしも必要とされず、UF膜分離装置6の入口側の殺菌剤導入口から導入した殺菌剤をUF膜分離装置6、配管16、ユースポイント7及び配管17に通水した後、配管17の途中に設けた排出口から排出し、一過性で殺菌洗浄しても良く、この場合であっても殺菌処理時のUF膜分離装置6の分離膜の金属汚染を防止して、殺菌処理後超純水製造システムの運転再開直後から、高純度の超純水を安定に製造することができる。
【0035】
また、超純水製造装置の構成としても何ら図示のものに限定されるものではなく、膜分離手段としては、UF膜分離装置の他、精密濾過膜分離装置や逆浸透膜分離装置或いはこれらを組み合わせて用いても良い。いずれの場合においても膜分離手段の入口側に殺菌剤導入口を設けるが、一般的には、超純水製造装置の最後段に設けられる微粒子除去用の膜分離手段の入口側に殺菌剤導入口を設けることが好ましい。
【0036】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
【0037】
実施例1
図1に示す本発明の超純水製造システムにおいて、殺菌処理後の超純水中の金属濃度を調べる実験を行った。
【0038】
なお、殺菌剤としては過酸化水素を用い、循環中の系内の過酸化水素濃度が1重量%となる濃度で用いた。
【0039】
原水槽1への一次純水の導入及びポンプ2の作動を停止した後、バルブV閉、バルブV開とし、殺菌剤貯槽20の殺菌剤含有水をポンプ21により配管22を経てUF膜分離装置6の入口側に導入し、UF膜分離装置6、配管16、ユースポイント7、配管17、配管23及び殺菌剤貯槽20の循環系に30分間、8L/分で循環させた後、ポンプ21を停止して120分間浸漬した。なお、ポンプ21としては、接液部がポリプロピレンで構成されているものを用いた。
【0040】
その後、ポンプ21を停止し、バルブVを開とし、一次純水の導入を再開すると共にポンプPを作動させて、20L/分で通水することにより、系内の殺菌剤を押し出し洗浄し、70分の押し出し洗浄後、洗浄排水中に過酸化水素が検出されなくなった時点で超純水製造システムの運転を再開した。運転再開後、得られた超純水中の金属濃度の経時変化を調べ、結果を表1に示した。
【0041】
比較例1
図2に示す従来の超純水製造システムにおいて、殺菌処理後の超純水中の金属濃度を調べる実験を行った。
【0042】
なお、殺菌剤としては過酸化水素を用い、循環中の系内の過酸化水素濃度が1重量%となる濃度で用いた。
【0043】
原水槽1への一次純水の導入及びポンプ2の作動を停止した後、原水槽1に殺菌剤を添加し、再びポンプ2を作動させて、超純水製造システムの系内全体に殺菌剤を30分間、8L/分で循環させた後、ポンプ2を停止して120分間浸漬した。
【0044】
その後、一次純水の導入を再開し、20L/分で通水することにより、系内の殺菌剤を押し出し洗浄し、120分の押し出し洗浄後、洗浄排水中に過酸化水素が検出されなくなった時点で超純水製造システムの運転を再開した。運転再開後、得られた超純水中の金属濃度の経時変化を調べ、結果を表1に示した。
【0045】
【表1】

Figure 0004661009
【0046】
表1より明らかなように、従来の超純水製造システムでは、殺菌処理後の運転再開後にFe,Cr,Niが検出され、特にFeは一週間後においても0.1ng/L検出され、殺菌処理による純度低下の問題がある。これに対して、本発明の超純水製造システムによれば、殺菌処理後の運転再開直後から金属は検出されず、超純水の水質を高純度に安定化させることができることがわかる。
【0047】
なお、図1に示す如く、殺菌剤貯槽と殺菌剤ポンプを用いて殺菌剤の循環系を形成し、殺菌剤を循環させる代りに、UF膜分離装置6の入口から殺菌剤を導入し、返送配管17から殺菌剤を排出することにより、殺菌剤を一過式に通水し、その後浸漬殺菌及び押し出し洗浄したこと以外は実施例1と同様にして殺菌処理を行ったところ、実施例1と同様に、運転再開後、得られた超純水中には金属は検出されなかった。
【0048】
【発明の効果】
以上詳述した通り、本発明の超純水製造システムによれば、系内の殺菌処理後、超純水製造システムの運転を再開した際の超純水中の金属濃度が著しく低く、運転再開直後から高純度で安定した水質の超純水を得ることができる。
【0049】
このため、本発明によれば、今後益々高められる傾向にある半導体洗浄用超純水の水質要求に十分に対応することが可能となる。
【図面の簡単な説明】
【図1】 本発明の超純水製造システムの実施の形態を示す系統図である。
【図2】 従来の超純水製造システムを示す系統図である。
【符号の説明】
1 原水槽
2 ポンプ
3 熱交換器
4 UV酸化装置
5 イオン交換樹脂塔
6 UF膜分離装置
7 ユースポイント
20 殺菌剤貯槽
21 ポンプ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrapure water production system for sending ultrapure water produced by an ultrapure water production apparatus to a use point.
[0002]
[Prior art]
In a cleaning process in the field of semiconductor manufacturing or the like, ultrapure water is used as cleaning water. This ultrapure water is required not to contain fine particles, organic matter, or inorganic substances that cause cleaning trouble. For example, resistivity: 18.2 MΩ · cm or more, fine particles: 1 piece / mL or less, viable bacteria: 1 piece / L or less, TOC (Total Organic Carbon): 1 μg / L or less, Silica: 1 μg / L or less, Metals: 1 ng / L or less, Ions: 10 ng / L or less are required water quality.
[0003]
The use location (use point) of ultrapure water is connected to the ultrapure water production equipment by piping (flow path), and the remaining ultra pure water not used at this use point passes through the other flow path. By returning to the pure water production apparatus, a circulation system is formed, and an ultrapure water production system is configured as a whole.
[0004]
FIG. 2 is a system diagram showing a conventional ultrapure water production system. In this ultrapure water production system, an ultrapure water produced by an ultrapure water production apparatus including an ultraviolet (UV) oxidation device 4, an ion exchange resin tower 5 and an ultrafiltration (UF) membrane separation device 6 is connected to a pipe 16. To the use point 7 and a part of the use point 7 is used, and unused ultrapure water is returned to the raw water tank 1 through the pipe 17 and processed again by the ultrapure water production apparatus. It has a circulatory system.
[0005]
That is, primary pure water introduced from the pipe 11 and unused ultrapure water returned from the use point 7 via the pipe 17 are accommodated in the raw water tank 1. Here, the primary pure water, for example, after pre-treatment such as coagulation sedimentation of raw water such as industrial water, well water, city water, reverse osmosis membrane separation treatment, treatment with anionic and cationic ion exchange resin in order, Further, it can be obtained by a reverse osmosis membrane treatment. The water in the raw water tank 1 is adjusted in temperature by the heat exchanger 3 through the pipe 12 by the pump 2, and then introduced into the UV oxidation apparatus 4 through the pipe 13 to remove organic substances. The treated water of the UV oxidizer 4 is introduced into the ion exchange resin tower 5 through the pipe 14 and desalted, and then introduced into the UF membrane separator 6 through the pipe 15 to remove the fine particles. The ultrapure water obtained in this way is supplied to the use point 7 through the pipe 16, and surplus ultrapure water is returned to the raw water tank 1 through the pipe 17.
[0006]
The use point 7 indicates a place where ultrapure water is used, and may include pipes, nozzles, and the like as appropriate in addition to a cleaning device for cleaning an object (for example, a semiconductor). Note that the ultrapure water used at the use point 7 is appropriately collected as drainage.
[0007]
In the ultrapure water production system, the ultrapure water is constantly circulated in this way by removing the eluted components from the materials constituting the pump, heat exchanger, piping, etc. of the ultrapure water production system. The purpose is to keep the interior highly pure. In general, a SUS material is applied as a constituent material of a pump, a heat exchanger, piping, or the like of an ultrapure water production system.
[0008]
In the ultrapure water production system, in order to make the number of viable bacteria in the ultrapure water supplied to the use point 7 the above required water quality level, the system is periodically sterilized. Conventionally, hydrogen peroxide is used as a sterilizing agent for an ultrapure water production system, and sterilization is generally performed in the following procedure.
(1) After the operation of the ultrapure water production system is stopped, a bactericidal agent (hydrogen peroxide solution) is added to the raw water tank 1 through the pipe 18 and is circulated by the pump 2 throughout the ultrapure water production system. That is, raw water tank 1, pipe 12 and pump 2, heat exchanger 3, pipe 13, UV oxidizer 4, pipe 14, bypass pipe 14A of ion exchange resin tower 5, pipe 15, UF membrane separator 6, pipe 16, Circulate in order of use point 7, pipe 17, and raw water tank 1 (circulation sterilization washing). In addition, as a method for adding the bactericide, there are a method of adding from a manhole of the raw water tank 1 and a method of adding using an ejector or a chemical pump.
(2) The pump 2 is stopped and the disinfectant is retained in the system for a predetermined time (immersion sterilization cleaning).
(3) The water in the system is discharged from the pipe 19, the raw water tank 1 is washed with water, and the pump 2 is activated to wash the inside of the ultrapure water production system with ultrapure water until no disinfectant is detected ( Extrusion cleaning).
[0009]
After the operations (1) to (3) above, the operation of the ultrapure water production system is resumed.
[0010]
[Problems to be solved by the invention]
Currently, the degree of integration of semiconductors has been increasing, and ultrapure water used for cleaning is also required to be increasingly pure. Therefore, in ultrapure water production systems, operation after sterilization is required. At the time of resumption, it is desired that high purity and stable water quality can be maintained immediately after resumption of operation.
[0011]
However, as a result of the investigation of the quality of ultrapure water after sterilization by the present inventors, the metal concentration in ultrapure water increases after sterilization, and the state of high metal concentration continues for a long time after restarting operation. It has been found. That is, when the operation of the ultrapure water production system is resumed after the sterilization treatment, metals such as Fe, Cr, Ni, etc. are detected in the produced ultrapure water, about 0.1 to 1 ng / L. Fe was detected in ultrapure water even after one week had elapsed since the resumption of operation.
[0012]
The present invention solves the above-mentioned conventional problems, the metal concentration in ultrapure water when the operation of the ultrapure water production system is resumed after sterilization in the system is remarkably low, and it is stable with high purity immediately after resuming operation. It is an object of the present invention to provide an ultrapure water production system capable of obtaining ultrapure water having a water quality.
[0013]
[Means for Solving the Problems]
An ultrapure water production system of the present invention includes a raw water tank for storing primary pure water, and an ultrapure water production apparatus having at least a membrane separation means for producing ultrapure water by introducing water in the raw water tank. Ultrapure water having water supply means for supplying ultrapure water produced by the ultrapure water production apparatus to a use point and return means for returning unused ultrapure water that has passed through the use point to the raw water tank in the production system, the membrane separation means is a UF membrane separation device supplies the disinfectant on the primary side of the membrane separation unit, thereby discharging the water containing the disinfectant from said returning means, membrane separation means And means for sterilizing the water supply means.
[0014]
In the conventional ultrapure water production system, the present inventors investigated the cause of the continued increase in metal concentration in ultrapure water when the operation was resumed after sterilization, and this cause is as follows. , Metals that elute from components such as ultrapure water production system pumps, heat exchangers, piping, etc. during circulating sterilization washing, or metal that has accumulated in the standby pumps, etc., are stopped by a disinfectant such as hydrogen peroxide. After being oxidized and turned into fine particles, this is captured by the separation membrane means installed at the last stage of the ultrapure water production apparatus and contaminates the separation membrane, and after hydrogen peroxide in the system is discharged by extrusion cleaning, It was found that it was due to re-dissolution in ultrapure water.
[0015]
By the way, the purpose of the sterilization treatment in the ultrapure water production system is mainly to prevent the growth of bacteria in the flow path from the membrane separation means of the ultrapure water production apparatus to the use point. That is, in the ultrapure water production system of the ultrapure water production system, the membrane separation means such as the UF membrane separation apparatus usually provided at the last stage can reliably remove the bacterial cells in the water, Considering that the cells contained in the primary pure water always flow into the ultrapure water production device, sterilization of the path from the raw water tank to the membrane separation means of the ultrapure water production device is not so important. However, it is only necessary to sterilize the flow path to the use point after the membrane separation means.
[0016]
In the ultrapure water production system of the present invention, the bactericide is supplied to the primary side of the membrane separation means of the ultrapure water production apparatus, and the bactericides are returned from the return means for returning unused ultrapure water from the use point to the raw water tank. And a means for sterilizing the water separation means for discharging ultrapure water from the membrane separation means to the point of use from the membrane separation means. Sterilize only the upstream side of the water supply means and the return pipe after the membrane separation means, and to the piping, heat exchanger, pump, etc. before the membrane separation means as in the conventional ultrapure water production system Do not circulate germicide.
[0017]
For this reason, the elution of the metal during the sterilization process in the previous stage of the membrane separation means is prevented, and the eluted metal contaminates the membrane separation means and then re-dissolves when the operation of the ultrapure water production system is restarted. The problem of increased metal concentration in water is solved.
[0018]
In the present invention, as means for supplying the sterilizing agent to the membrane separation means, a sterilizing agent storage tank for storing the sterilizing agent, and a sterilizing agent introducing means for guiding the sterilizing agent in the sterilizing agent storage tank to the primary side of the membrane separation means; Preferably, it has a sterilizing agent returning means for returning the water containing the sterilizing agent discharged from the returning means to the sterilizing agent storage tank, whereby the sterilizing agent is introduced from the sterilizing agent storage tank to the inlet side of the membrane separation means. It can be circulated in the ultrapure water production equipment after the membrane separation means, the ultrapure water supply means to the use point, the return pipe of unused ultrapure water and the sterilizer storage tank for efficient sterilization treatment. it can.
[0019]
Further, in this case, the sterilizing agent introduction means includes a pump for feeding the sterilizing agent in the sterilizing agent storage tank, and the wetted part of the pump is preferably made of a non-metallic material. Further, it is possible to prevent the metal from being eluted from the pump during the sterilization treatment, and to further suppress the metal concentration of the ultrapure water when the operation is resumed.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the ultrapure water production system of the present invention will be described below in detail with reference to the drawings.
[0021]
FIG. 1 is a system diagram showing an embodiment of the ultrapure water production system of the present invention. In FIG. 1, members having the same functions as those shown in FIG.
[0022]
In this ultrapure water production system, at the time of sterilization, the sterilant-containing water in the sterilant storage tank 20 is introduced to the inlet side of the UF membrane separation device 6 by the pump 21 and water containing the sterilant is piped from the return pipe 17. 23 is configured to be introduced into the bactericide storage tank 20.
[0023]
In this embodiment, the discharge-side tip of the pipe 22 is connected to a bactericide inlet provided near the inlet of the UF membrane separation device 6 of the pipe 15. In addition, the inflow side tip of the pipe 23 is connected to the pipe 17.
[0024]
An opening / closing valve V 1 is provided on the downstream side of the connection portion of the piping 23 in the piping 17, and an opening / closing valve V 2 is provided on the piping 23. When ultrapure water production operation, the valve V 1 opened and valves V 2 is closed, also at the time of sterilization, the valve V 1 is closed, and the valve V 2 opens. Note that the disinfectant tank 20 side of the valve V 2 of the pipe 23 is branched piping 24 for discharging the extruding detergent drain-off valve V 3 is provided in the pipe 24. The valve V 3 is opened only when the drainage of the extruded detergent drain.
[0025]
Other configurations of the ultrapure water production system in FIG. 1 are the same as those in FIG. The ultrapure water production operation of this ultrapure water production system is performed in the same manner as the conventional ultrapure water production system shown in FIG.
[0026]
In the sterilization process, the valve V 1 is closed and the valve V 2 is opened as described above, and the inflow of primary pure water into the raw water tank 1 is stopped and the pump 2 is stopped. Then, the pump 21 is activated to return the sterilizing agent-containing water in the sterilizing agent storage tank 20 to the sterilizing agent storage tank 20 via the piping 22, the UF membrane separator 6, the piping 16, the use point 7, the piping 17, and the piping 23. Wash. After the circulation sterilization cleaning is performed for a predetermined time, immersion sterilization cleaning is performed in which the pump 21 is stopped and held for a predetermined time.
[0027]
Thereafter, the pump 21 is stopped, while the valve V 3 is opened, performs extrusion washed Start pump 2. The extruded cleaning waste water is discharged from the pipe 24. The extrusion cleaning is performed until no bactericidal agent is detected in the extrusion cleaning wastewater discharged from the pipe 24.
[0028]
After the extrusion cleaning, the valve V 1 is opened, the valves V 2 and V 3 are returned to the closed state, and normal ultrapure water production operation is resumed.
[0029]
In the ultrapure water production system of FIG. 1, at the time of sterilization treatment, the UF membrane separation device 6 includes a bactericide storage tank 20, a pump 21, a pipe 22, a UF membrane separation device 6, a pipe 16, a use point 7 and a pipe 17. Circulating disinfectant-containing water is passed, and this disinfectant does not pass through the pump 2, the heat exchanger 3 or the upstream pipe of the ultrapure water production apparatus, so the metal elution from these pipes and equipment Membrane contamination of the UF membrane separation device 6 due to this is prevented. For this reason, it is possible to stably produce high-purity ultrapure water immediately after restarting the ultrapure water production operation after the sterilization treatment.
[0030]
From the viewpoint of preventing metal contamination of the UF membrane separation device 6 during the sterilization treatment, the sterilizing agent inlet (connecting portion of the pipe 22) provided on the inlet side of the UF membrane separation device 6 is a UF membrane on the pipe 15. The vicinity of the inlet of the separation device 6 is preferable. In addition, some ultrapure water production apparatuses are provided with a booster pump in front of the membrane separation means in order to secure the raw water introduction pressure to the membrane separation means. In this case, the booster pump discharge port Preferably, a bactericidal agent inlet is provided between the inlet of the membrane separation means.
[0031]
Similarly, from the viewpoint of preventing metal contamination of the UF membrane separation device 6, it is preferable that the liquid contact surface of the circulation path of the bactericide is composed of a non-metallic material. The surface is preferably made of a non-metallic material such as tetrafluoride resin, high-density polyethylene, polybutene, vinyl chloride, PVDF (polyvinylidene fluoride), or polypropylene. Also, the disinfectant introduction pipe 22 and the return pipe 23 may be made of a non-metallic material having a liquid contact surface.
[0032]
In the present invention, a hydrogen peroxide solution can generally be used as the sterilizing agent, and at the time of circulating sterilization cleaning, the hydrogen peroxide solution having a concentration of about 0.1 to 1% by weight is circulated through the sterilizing agent circulation system. Is preferred.
[0033]
The ultrapure water production system of FIG. 1 shows an example of an embodiment of the present invention, and the present invention is not limited to the illustrated one as long as it does not exceed the gist thereof.
[0034]
For example, means for circulating the sterilizing agent such as the sterilizing agent storage tank 20, the sterilizing agent pump 21, and the pipes 22 and 23 are not necessarily required, and sterilization introduced from the sterilizing agent inlet on the inlet side of the UF membrane separation device 6. After passing the agent through the UF membrane separation device 6, the pipe 16, the use point 7 and the pipe 17, it may be discharged from a discharge port provided in the middle of the pipe 17, and may be sterilized and washed temporarily. Even if there is, it is possible to prevent the metal contamination of the separation membrane of the UF membrane separation device 6 during the sterilization treatment, and to stably produce the high purity ultrapure water immediately after the operation of the ultrapure water production system after the sterilization treatment is resumed. it can.
[0035]
In addition, the configuration of the ultrapure water production apparatus is not limited to the one shown in the figure, and the membrane separation means includes a UF membrane separation apparatus, a microfiltration membrane separation apparatus, a reverse osmosis membrane separation apparatus, or these. You may use it in combination. In either case, a bactericidal agent introduction port is provided on the inlet side of the membrane separation means. Generally, a bactericidal agent is introduced on the inlet side of the membrane separation means for removing fine particles provided at the last stage of the ultrapure water production apparatus. It is preferable to provide a mouth.
[0036]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0037]
Example 1
In the ultrapure water production system of the present invention shown in FIG. 1, an experiment was conducted to examine the metal concentration in ultrapure water after sterilization treatment.
[0038]
Note that hydrogen peroxide was used as the sterilizing agent, and the concentration of hydrogen peroxide in the circulating system was 1% by weight.
[0039]
After stopping the operation of introducing the primary pure water and a pump 2 into the raw water tank 1, valve V 1 is closed, the valve V 2 is opened, UF membrane via a pipe 22 by the pump 21 the disinfectant-containing water disinfectant tank 20 After being introduced into the inlet side of the separator 6 and circulating through the circulation system of the UF membrane separator 6, pipe 16, use point 7, pipe 17, pipe 23 and bactericide storage tank 20 at 8 L / min, the pump 21 was stopped and immersed for 120 minutes. In addition, as the pump 21, what used the liquid contact part with the polypropylene was used.
[0040]
Thereafter, the pump 21 is stopped, the valve V 3 is opened, and the pump P 2 is actuated with resuming the introduction of a primary pure water, by passing water at 20L / min, washed extrusion sterilant in the system Then, after 70 minutes of extrusion cleaning, the operation of the ultrapure water production system was resumed when hydrogen peroxide was no longer detected in the cleaning waste water. After restarting the operation, the time-dependent change in the metal concentration in the obtained ultrapure water was examined, and the results are shown in Table 1.
[0041]
Comparative Example 1
In the conventional ultrapure water production system shown in FIG. 2, an experiment was conducted to examine the metal concentration in the ultrapure water after sterilization.
[0042]
Note that hydrogen peroxide was used as the sterilizing agent, and the concentration of hydrogen peroxide in the circulating system was 1% by weight.
[0043]
After the introduction of primary pure water into the raw water tank 1 and the operation of the pump 2 are stopped, the sterilizing agent is added to the raw water tank 1, and the pump 2 is operated again, so that the entire inside of the ultrapure water production system is sterilized. Was circulated at 8 L / min for 30 minutes, and then the pump 2 was stopped and immersed for 120 minutes.
[0044]
Thereafter, the introduction of primary pure water was resumed, and water was passed at 20 L / min to extrude and clean the disinfectant in the system. After 120 minutes of extrusion cleaning, hydrogen peroxide was no longer detected in the cleaning waste water. At that time, the operation of the ultrapure water production system was resumed. After restarting the operation, the time-dependent change in the metal concentration in the obtained ultrapure water was examined, and the results are shown in Table 1.
[0045]
[Table 1]
Figure 0004661009
[0046]
As is clear from Table 1, in the conventional ultrapure water production system, Fe, Cr, Ni is detected after restarting the operation after the sterilization treatment, and in particular, Fe is detected at a rate of 0.1 ng / L even after one week. There is a problem of purity reduction due to processing. On the other hand, according to the ultrapure water production system of the present invention, it can be seen that the metal is not detected immediately after the resumption of operation after the sterilization treatment, and the quality of the ultrapure water can be stabilized with high purity.
[0047]
As shown in FIG. 1, a sterilizing agent circulation tank is formed using a sterilizing agent storage tank and a sterilizing agent pump. Instead of circulating the sterilizing agent, the sterilizing agent is introduced from the inlet of the UF membrane separation device 6 and returned. By discharging the bactericide from the pipe 17 and passing the bactericide in a transient manner, and then performing sterilization treatment in the same manner as in Example 1 except that immersion sterilization and extrusion cleaning were performed. Similarly, no metal was detected in the obtained ultrapure water after restarting operation.
[0048]
【The invention's effect】
As described above in detail, according to the ultrapure water production system of the present invention, after the sterilization treatment in the system, the metal concentration in the ultrapure water when the operation of the ultrapure water production system is resumed is remarkably low, and the operation is resumed. Immediately after that, high purity and stable ultrapure water can be obtained.
[0049]
For this reason, according to the present invention, it is possible to sufficiently meet the water quality requirements for ultra-pure water for semiconductor cleaning, which tends to be increased in the future.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of an ultrapure water production system of the present invention.
FIG. 2 is a system diagram showing a conventional ultrapure water production system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Raw water tank 2 Pump 3 Heat exchanger 4 UV oxidation apparatus 5 Ion exchange resin tower 6 UF membrane separator 7 Use point 20 Bactericidal agent storage tank 21 Pump

Claims (3)

一次純水の貯水用の原水槽と、
該原水槽内の水が導入されて超純水を製造する、少なくとも膜分離手段を有する超純水製造装置と、
該超純水製造装置により製造された超純水をユースポイントへ送水する送水手段と、
該ユースポイントを通過した未使用の超純水を前記原水槽へ戻す返送手段とを有する超純水製造システムにおいて、
前記膜分離手段がUF膜分離装置であり、該膜分離手段の1次側に殺菌剤を供給すると共に、該返送手段から殺菌剤を含む水を排出させて、該膜分離手段及び前記送水手段を殺菌する手段を備えたことを特徴とする超純水製造システム。
A raw water tank for storing primary pure water;
An ultrapure water production apparatus having at least a membrane separation means for producing ultrapure water by introducing water in the raw water tank;
Water supply means for supplying ultrapure water produced by the ultrapure water production apparatus to a use point;
In the ultrapure water production system having return means for returning unused ultrapure water that has passed through the use point to the raw water tank,
The membrane separation means is a UF membrane separation device supplies the disinfectant on the primary side of the membrane separation unit, thereby discharging the water containing the disinfectant from said returning means, membrane separation means and said water supply means An ultrapure water production system comprising means for sterilizing water.
請求項1において、前記膜分離手段に殺菌剤を供給する手段として、
殺菌剤を蓄える殺菌剤貯槽と、
該殺菌剤貯槽内の殺菌剤を前記膜分離手段の1次側に導く殺菌剤導入手段と、
前記返送手段から排出された殺菌剤を含む水を該殺菌剤貯槽へ戻す殺菌剤返送手段と
を有することを特徴とする超純水製造システム。
In claim 1, as means for supplying a bactericide to the membrane separation means,
A bactericide storage tank for storing bactericides;
A bactericidal agent introduction means for guiding the bactericidal agent in the bactericidal agent storage tank to the primary side of the membrane separation means;
An ultrapure water production system comprising: a bactericide return means for returning water containing the bactericide discharged from the return means to the bactericide storage tank.
請求項2において、前記殺菌剤導入手段は、
前記殺菌剤貯槽内の殺菌剤を送液するためのポンプを備えており、
該ポンプの接液部が非金属材料よりなることを特徴とする超純水製造システム。
In Claim 2, the disinfectant introducing means is
A pump for feeding the bactericidal agent in the bactericide storage tank;
An ultrapure water production system, wherein a liquid contact portion of the pump is made of a non-metallic material.
JP2001267538A 2001-09-04 2001-09-04 Ultrapure water production system Expired - Fee Related JP4661009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001267538A JP4661009B2 (en) 2001-09-04 2001-09-04 Ultrapure water production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001267538A JP4661009B2 (en) 2001-09-04 2001-09-04 Ultrapure water production system

Publications (2)

Publication Number Publication Date
JP2003071444A JP2003071444A (en) 2003-03-11
JP4661009B2 true JP4661009B2 (en) 2011-03-30

Family

ID=19093655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001267538A Expired - Fee Related JP4661009B2 (en) 2001-09-04 2001-09-04 Ultrapure water production system

Country Status (1)

Country Link
JP (1) JP4661009B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4228732B2 (en) * 2003-03-14 2009-02-25 栗田工業株式会社 Ultrapure water production system
TWI245163B (en) * 2003-08-29 2005-12-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP5105036B2 (en) * 2005-04-12 2012-12-19 株式会社ウェルシィ Dual water distribution system
JP5573605B2 (en) * 2010-11-04 2014-08-20 住友金属鉱山株式会社 Ultrapure water production system and cleaning method thereof, and ultrapure water production method using the same
JP7171386B2 (en) * 2018-11-22 2022-11-15 野村マイクロ・サイエンス株式会社 Method for starting up ultrapure water production device and ultrapure water production device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106890A (en) * 1985-11-01 1987-05-18 Hitachi Ltd Apparatus for washing pure water making apparatus
JPS62266194A (en) * 1986-05-13 1987-11-18 Japan Organo Co Ltd Treatment of terminal reverse osmosis membrane apparatus
JPS63141694A (en) * 1986-12-02 1988-06-14 Japan Organo Co Ltd Production of ultra-pure water
JPS63258700A (en) * 1987-04-15 1988-10-26 Toray Ind Inc Ultrapure water making system
JPS63287506A (en) * 1987-05-19 1988-11-24 Japan Organo Co Ltd Device for protecting filter membrane module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106890A (en) * 1985-11-01 1987-05-18 Hitachi Ltd Apparatus for washing pure water making apparatus
JPS62266194A (en) * 1986-05-13 1987-11-18 Japan Organo Co Ltd Treatment of terminal reverse osmosis membrane apparatus
JPS63141694A (en) * 1986-12-02 1988-06-14 Japan Organo Co Ltd Production of ultra-pure water
JPS63258700A (en) * 1987-04-15 1988-10-26 Toray Ind Inc Ultrapure water making system
JPS63287506A (en) * 1987-05-19 1988-11-24 Japan Organo Co Ltd Device for protecting filter membrane module

Also Published As

Publication number Publication date
JP2003071444A (en) 2003-03-11

Similar Documents

Publication Publication Date Title
JP4228732B2 (en) Ultrapure water production system
US4784771A (en) Method and apparatus for purifying fluids
JP4472050B2 (en) Fresh water generator and fresh water generation method
US10266441B2 (en) Water treatment apparatus and sterilizing and cleansing method thereof
EP0572035B1 (en) Cleaning water production system
US9370802B2 (en) Cleaning and sterilizing method for ultrapure water manufacturing system
JP6225487B2 (en) Ultrapure water production system and ultrapure water production supply system
JPH0630764B2 (en) Ultrapure water line sterilization method
JP4661009B2 (en) Ultrapure water production system
JP5321450B2 (en) Water treatment equipment water supply pipe cleaning method
JP2827877B2 (en) Membrane separation device and cleaning method thereof
JP2007130587A (en) Membrane filtration apparatus and method for washing membrane
JPH084728B2 (en) Membrane module cleaning method
JP4576760B2 (en) Circulating cooling water treatment method
JP3896788B2 (en) Cleaning and sterilization method for ultrapure water production system
JP3998997B2 (en) Disinfection method of ultrapure water supply pipe
JPH07195073A (en) Method for washing ultra-pure water producing apparatus
JP2003145148A (en) Ultrapure water supply apparatus and ultrapure water supply method
KR20180115692A (en) Cleaning method of ultrapure water production system
JP3281238B2 (en) Ultrapure water supply device and sterilization method for its piping
JPH10296060A (en) Prevention method for contamination of separation membrane
KR20100076299A (en) Sterilized device for ionizer and thereof method
JP4361984B2 (en) Water purification system and method for cleaning water purification system
JP3226862U (en) Sterilizer
WO2022157926A1 (en) Cleaning device for filtration membrane, water treatment device, and cleaning method for filtration membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

R150 Certificate of patent or registration of utility model

Ref document number: 4661009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees