JP5105036B2 - Dual water distribution system - Google Patents

Dual water distribution system Download PDF

Info

Publication number
JP5105036B2
JP5105036B2 JP2005141793A JP2005141793A JP5105036B2 JP 5105036 B2 JP5105036 B2 JP 5105036B2 JP 2005141793 A JP2005141793 A JP 2005141793A JP 2005141793 A JP2005141793 A JP 2005141793A JP 5105036 B2 JP5105036 B2 JP 5105036B2
Authority
JP
Japan
Prior art keywords
water
membrane
pressure
permeate
distribution system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005141793A
Other languages
Japanese (ja)
Other versions
JP2006289329A (en
Inventor
勝 上原
教雄 野村
孝悦 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Aqua Solutions Co Ltd
Original Assignee
Wellthy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wellthy Corp filed Critical Wellthy Corp
Priority to JP2005141793A priority Critical patent/JP5105036B2/en
Priority to KR1020050093967A priority patent/KR100687768B1/en
Publication of JP2006289329A publication Critical patent/JP2006289329A/en
Application granted granted Critical
Publication of JP5105036B2 publication Critical patent/JP5105036B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/16Flow or flux control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/10Specific supply elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/34Molecular weight or degree of polymerisation

Description

本発明は、地下水、工業用水道水、水道水よりなる原水を部分膜濾過装置によって精密濾過あるいは限外濾過するに際し、濾過の中枢機能である濾過膜表面の清浄維持が必須条件となるが、特別な洗浄装置を使用する事無く膜面を自動的且つ効率的に洗浄しつつ恒久的に濾過が保障されるシステムに関する。 In the present invention, when the raw water consisting of groundwater, industrial tap water, tap water is subjected to microfiltration or ultrafiltration using a partial membrane filtration device, it is essential to maintain the filtration membrane surface as a central function of filtration. The present invention relates to a system that guarantees permanent filtration while automatically and efficiently cleaning a membrane surface without using a special cleaning device.

近年、使用時点近傍での用水浄化として、主として膜フィルターが使用される。使用実態の進化に伴い、小型でコンパクトなものは蛇口直結或いはアンダーシンクの形態が主流となっている。
しかし、それらに使用される膜フィルターはいずれもフィルターが目詰まりした場合にフィルターカートリッジを取り替える使い捨てタイプである。一方、中大規模に仕分けされる浄水では、膜フィルターの目詰まり具合を濾過流量或いは濾過差圧を感知し逆洗操作を手動或いは自動で行なっている。
この手法によれば、逆圧加圧ポンプ、空気バブリング装置、逆洗水排出とすすぎ工程等が必要となり、結果として装置の煩雑化或いはエネルギー損失等必ずしも実用的ではない。
これらを回避する手法として、水濾過装置の構成を部分濾過即ちクロスフロー濾過機構を組み込む方式が採用される場合もあり、循環ポンプ、循環タンクの設営が必要となる上、フラッシング、濃縮水の排出等煩雑な工程を伴いエネルギーロス、水回収率低下等の欠点が指摘されている。
In recent years, membrane filters are mainly used as water purification near the point of use. Along with the evolution of actual usage, small and compact ones are mainly in the form of faucet direct connection or under sink.
However, all of the membrane filters used for them are disposable types in which the filter cartridge is replaced when the filter is clogged. On the other hand, in the purified water classified into medium and large scale, the backwashing operation is performed manually or automatically by sensing the filtration flow rate or the filtration differential pressure for the degree of clogging of the membrane filter.
According to this method, a back pressure pressurizing pump, an air bubbling device, a backwash water discharge and a rinsing step are required, and as a result, the device becomes complicated and energy loss is not always practical.
In order to avoid these problems, a system that incorporates a partial filtration, that is, a cross-flow filtration mechanism, may be adopted as the structure of the water filtration device, which requires the installation of a circulation pump and a circulation tank, as well as flushing and discharge of concentrated water. Such complicated processes have been pointed out as disadvantages such as energy loss and reduction in water recovery rate.

更に、膜濾過工程を建前としながらも効率的に給水するシステムとして、用水給水システムに逆浸透膜フィルターを用いて水を濾過するに際し、未処理水、循環水、濾過水のそれぞれを給水管を通して使用場所に直接送る方法(特許文献1参照)が提案されている。
しかしながら、この提案の方式では目詰まりを惹起し易い上、逆浸透膜の洗浄をコントロールする方法が未解決で実用的ではない。
一方、濾過水と未処理水を同時に使用する際に、果たして高圧を要する逆浸透膜の濾過機構が安定に作動できるのか否か等技術的に検討を要する。
Furthermore, as a system that efficiently supplies water while using a membrane filtration process, when water is filtered using a reverse osmosis membrane filter in the water supply system, each of untreated water, circulating water, and filtered water is passed through a water supply pipe. A method of sending directly to the place of use (see Patent Document 1) has been proposed.
However, in this proposed method, clogging is likely to occur, and a method for controlling the cleaning of the reverse osmosis membrane is unsolved and impractical.
On the other hand, when filtered water and untreated water are used at the same time, it is necessary to study technically, such as whether or not the filtration mechanism of the reverse osmosis membrane that requires high pressure can operate stably.

又、逆浸透膜フィルターで井戸水、地下水を処理し、処理水を上水用とし、濃縮水を灌漑用として使用する方法(特許文献2参照)が提案されている。この方法では、それぞれの水を一旦タンクに貯留して作動する方式となるが、一次側の圧力保持の方法が不明であり且つ逆浸透膜濾過機構の実効性自体にも疑問があり、又直接使用で無い点でタンク等余剰設備を必要とする点で実用的でない。
以上に説明したように現状では、いずれの方法に於いても使用中に濾過膜表面を自動的に洗浄し、ほぼ恒久的ないしは長期間にわたって濾過膜の交換なしに膜濾過装置を実用的に使用する事は出来ない。
Further, a method has been proposed in which well water and groundwater are treated with a reverse osmosis membrane filter, the treated water is used for clean water, and the concentrated water is used for irrigation (see Patent Document 2). In this method, each water is once stored in a tank and operated, but the method of maintaining the pressure on the primary side is unknown, and the effectiveness of the reverse osmosis membrane filtration mechanism itself is questionable, and directly It is not practical in that it requires extra equipment such as a tank because it is not used.
As described above, at present, the filtration membrane surface is automatically cleaned during use in any method, and the membrane filtration device is practically used almost permanently or without replacement of the filtration membrane over a long period of time. I can't do it.

特開2000−319944JP 2000-319944 A 特開平5−7873JP-A-5-7873

本発明は以上の様な状況に鑑みて、通常の水処理に使用されている濾過膜を採用し特別な逆洗工程並びに装置を必要とせず、且つ膜使用効率100%で用水処理できる方法を提案することにある。 In view of the situation as described above, the present invention adopts a filtration membrane that is used for normal water treatment, does not require a special backwashing step and apparatus, and can perform water treatment with membrane use efficiency of 100%. It is to propose.

本発明者等は、このような観点から上記目的を達成するために鋭意研究した結果、部分膜濾過(クロスフロー濾過とも云う)の膜面通過水(循環水使用とせず)と透過水を交互に使用することによって驚くべきことに特別な逆洗工程及び装置が不要でかつ、使用効率100%で用水処理できる方法を見出し本発明に到達した。
即ち、従来膜濾過方式によって浄水処理を行なう場合には、濾過水を一旦濾過水槽に貯留し、使用点への蛇口に接続する一方、循環水として膜濾過系内にも循環させていた。
更に、一定の時点を決め濾過水槽からの透過水を逆通させて逆通水洗浄或いは循環水側を高い膜面流速でフラッシング洗浄した後排水する方法が一般的に採用されてきた。
As a result of diligent research in order to achieve the above-mentioned object from such a viewpoint, the present inventors have alternated between membrane-passing water (not using circulating water) and permeating water in partial membrane filtration (also referred to as cross-flow filtration). Surprisingly, the present inventors have found a method that does not require a special backwashing process and apparatus and can perform water treatment with a use efficiency of 100%.
That is, when water purification treatment is performed by the conventional membrane filtration method, the filtered water is once stored in the filtered water tank and connected to the tap to the point of use, and is also circulated in the membrane filtration system as circulating water.
Furthermore, a method has generally been adopted in which a predetermined point in time is determined and the permeated water from the filtered water tank is reversely passed to perform reverse water washing or flushing and washing the circulating water side at a high membrane surface flow rate.

従来の膜濾過方式では、上記の方法が定説的な手法で有るが、本発明者らはここで使用される循環水について鋭意検討した結果、普段の使用態様に於いてそのまま蛇口に直結した系外流出としてランニングすると、膜濾過系内で一定時間循環水としたケースに比べ濾過膜表面の汚染度が低い事が分った。
この事は、濾過膜面を通過する際に膜面を洗浄する効果を奏しているもので、膜透過水と相俟って交互に使用することにより膜面洗浄の機会が多くなる効果を示している点に気付いた。この結果より推考して、特別な逆通水或いは逆圧通水洗浄及び/又は高流束循環水によるフラッシング洗浄よりも、濾過膜表面を正常に保ち長期間に亘って安定した浄水効果を得ることが出来る方向を見出した。
このヒントに基づき、鋭意検討を加えこの交互使用に一定の条件を設定することにより、この用水処理方法を確実に実行出来る事を見出し本発明に至った。
In the conventional membrane filtration method, the above method is an established method, but as a result of intensive studies on the circulating water used here, the present system is a system directly connected to a faucet as it is in a usual usage mode. When running as an outflow, it was found that the degree of contamination on the surface of the filtration membrane was lower than in the case of circulating water for a certain time in the membrane filtration system.
This has the effect of cleaning the membrane surface when passing through the membrane surface, and shows the effect of increasing the opportunity for membrane surface cleaning when used alternately with membrane permeated water. I noticed that. Inferring from this result, the filtration membrane surface is kept normal and a stable water purification effect is obtained over a long period of time, rather than special reverse water flow or reverse pressure water flow cleaning and / or flushing cleaning with high flux circulating water. I found a direction that I can do.
Based on this hint, the inventors have intensively studied and set certain conditions for this alternate use, and found that this water treatment method can be surely executed, and have reached the present invention.

本発明の要旨とするところは、部分膜濾過装置の流入側一次水を供給するに際し、膜面通過水を系外流路とする管路を設け、透過側二次水系管路と相俟って夫々に制御可能な少なくとも1ケの水栓を配置する事を特徴とする二元給配水システムを基本とする。ここに於いて、制御とは自動制御或いは手動を含め開閉出来る水栓を指す。
又、透過水側二次水系管路に、透過側二次水出力圧と流入側一次水受入圧にて派生する差圧に基づき開閉制御する如く設定した開閉バルブを設け、透過側二次水系管路の水圧測定点と前記開閉バルブとの間に設けられた、透過水側管路水圧測定用分岐管路に、チェックタイマーにより作動する放出バルブを配置する事により、透過水の通水を制御する事が出来る。
上記開閉バルブの開閉制御に際し、前記差圧により作動した前記開閉バルブによる、透過側二次水の通水停止を、前記チェックタイマーにより前記放出バルブを開いた際の、前記部分膜濾過装置の分離膜を透過した濾過水が、前記透過水側管路水圧測定用分岐管路から、前記放出バルブを介して放出されることで生じる差圧監視を介し、前記開閉バルブを開くことにより、解除する如く設定するものである。
The gist of the present invention is that when supplying the inflow-side primary water of the partial membrane filtration device, a pipe line having the membrane surface passing water as an out-of-system flow path is provided, and combined with the permeation-side secondary water system pipe line. It is based on a dual supply and distribution system characterized by arranging at least one faucet that can be controlled by each. Here, control refers to a faucet that can be opened and closed including automatic control or manual operation.
Also, the permeate side secondary water system pipe line is provided with an open / close valve set to open and close based on the differential pressure derived from the permeate side secondary water output pressure and the inflow side primary water receiving pressure, and the permeate side secondary water system Permeated water can be passed by disposing a discharge valve operated by a check timer in the branch line for measuring the water pressure on the permeated water line between the water pressure measuring point of the pipe and the open / close valve. Can be controlled.
In the opening / closing control of the opening / closing valve, when the opening / closing valve operated by the differential pressure stops the passage of secondary water on the permeate side, the partial membrane filtration device is separated when the discharge valve is opened by the check timer. The filtered water that has permeated through the membrane is released by opening the open / close valve via differential pressure monitoring that occurs when the permeated water side pipe water pressure measurement branch pipe is discharged through the discharge valve. It is set as follows.

一方、透過側二次水系管路に水道水の受水槽を設け、この受水槽に水位センサーを設け、流入が予め設定した水位以下の場合、該受水槽に上水道などからの飲料水給水を行う事が出来る。
以上に示した差圧に基づきバルブ開閉及び/又はタイマー作動時に作動表示を行う事も出来、作動表示に警報を含む作動を表示することも出来る。
一方、透過側二次水出力圧と流入側一次水受入圧原水入り口の圧力にて派生する差圧に基づき定めた検出幅にて作動する昇圧ポンプを擁し、膜濾過の開始及び停止を管路内の圧力差に連動して作動せしめる如く設定する事も出来る。
On the other hand, a tap water receiving tank is provided in the permeate side secondary water pipe, and a water level sensor is provided in the receiving tank, and when the inflow is below a preset water level, drinking water is supplied from the water supply to the water receiving tank. I can do it.
Based on the differential pressure shown above, the operation can be displayed when the valve is opened and closed and / or the timer is operated, and the operation including an alarm can be displayed on the operation display.
On the other hand, it has a booster pump that operates with a detection width determined based on the differential pressure derived from the permeate side secondary water output pressure and the inflow side primary water receiving pressure at the raw water inlet pressure, and starts and stops membrane filtration. It can also be set to operate in conjunction with the pressure difference inside.

濾過膜としては、分画分子量5万以上50万以下の限外濾過膜フィルターを採用する事、又濾過膜として阻止孔径0.2μm以下の精密濾過膜フィルターを採用する事が出来る。
本発明に云う濾過膜とは、通常の水道水圧即ち200から500kPa程度で、常温において充分に水が透過する精密濾過膜、限外濾過膜等が好ましい。
即ち、ブースターポンプの補助を受けるケースを含め、1MPa以下の差圧下、常温で流束50L/m/hr以上、好ましくは差圧100kPa下で流束が20L/m/hr以上の濾過膜を使用する。この仕様範囲外では、通常の生活用浄水を1以上の蛇口から使用するとすれば頻繁に濾過膜の閉塞が発生する。
濾過膜の形状として、特に分画分子量が小さい限外濾過膜では、非対称膜でスキン層即ち分離・分画膜部が薄く或いは細かくクレープしたのもが好ましいが、これは本発明を限定するものではない。
As the filtration membrane, an ultrafiltration membrane filter having a molecular weight cut off of 50,000 or more and 500,000 or less can be adopted, and a microfiltration membrane filter having a blocking pore diameter of 0.2 μm or less can be adopted as the filtration membrane .
The filtration membrane referred to in the present invention is preferably a microfiltration membrane, an ultrafiltration membrane, or the like that has a normal tap water pressure, that is, about 200 to 500 kPa , and allows sufficient water permeation at room temperature.
That is, including a case receiving the assistance of a booster pump, filtration with a flux of 50 L / m 2 / hr or more at normal temperature under a differential pressure of 1 MPa or less, preferably 20 L / m 2 / hr or more under a differential pressure of 100 kPa. Use a membrane. Outside this specification range, if normal water for daily use is used from one or more faucets, filtration membranes are frequently clogged.
As the shape of the filtration membrane, particularly in the case of an ultrafiltration membrane having a small fractional molecular weight, it is preferable that the skin layer, that is, the separation / fractionation membrane part is thin or finely creped with an asymmetric membrane, but this limits the present invention. is not.

一方、膜面通過水の雑用水としての使用で膜面洗浄することを考慮すると、膜表面は平滑で、膜表面の細孔は細かい方が望ましい。
膜フィルターモジュールの形式としては、中空糸膜モジュール、スパイラルモジュール、管状フィルターモジュール等如何なるものであっても良い。又、分離膜を構成する素材は無機材料、金属、合金、金属酸化物とその焼結体(セラミックス)、ガラス、炭素質、高分子有機材料であるセルローズ、再生セルローズ、セルローズ誘導体、セルロース有機酸エステル、酢酸セルロース、セルロースエステル、ポリエチレン・ポリプロピレン等のポリオレフィン、ポリ塩化ビニル、ポリフッ化ビニリデン、ポリテトラフロロエチレン、ポリビニールアルコール、エチレンビニルアルコール共重合体、ポリアクリロニトリル、ポリアクリル酸とその誘導体、ポリエーテル、ポリフェニルエーテル、ポリエステル、ポリカーボネート、ポリウレタン、ポリアミド及びその誘導体、ポリイミド等が挙げられる。
On the other hand, considering that the membrane surface is washed by using the membrane surface passing water as miscellaneous water, it is desirable that the membrane surface is smooth and the pores on the membrane surface are finer.
The form of the membrane filter module may be any type such as a hollow fiber membrane module, a spiral module, and a tubular filter module. In addition, the materials constituting the separation membrane are inorganic materials, metals, alloys, metal oxides and their sintered bodies (ceramics), glass, carbonaceous, polymeric organic materials such as cellulose, regenerated cellulose, cellulose derivatives, and cellulose organic acids. Esters, cellulose acetate, cellulose esters, polyolefins such as polyethylene and polypropylene, polyvinyl chloride, polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl alcohol, ethylene vinyl alcohol copolymer, polyacrylonitrile, polyacrylic acid and its derivatives, poly Examples include ether, polyphenyl ether, polyester, polycarbonate, polyurethane, polyamide and derivatives thereof, and polyimide.

但し、これらは主な例示で如何なるものであっても良いが、水中に微量に含まれる有機物による膜面汚染を考慮すると疎水性よりも親水性であった方が好ましい。しかしながら、疎水性材料であってもγ線処理、親水基グラフ等により親水化処理したものも支障なく使用可能である。中空糸膜の製造法も乾式法、湿式法、乾湿式法、溶融法等如何なる方法も可能であるが、非対称膜の製造を念頭に配慮すると湿式法が好ましい。
本発明に云う差圧スイッチとは、例えば二つの異なった圧力を受けるブルドン管と一個のマイクロスイッチを併用して組み立てられ予め設定した差圧値になった時電気回路を開閉させるものである。
However, these may be any examples as main examples, but in view of contamination of the film surface by an organic substance contained in a trace amount in water, it is more preferable to be hydrophilic than hydrophobic. However, even a hydrophobic material that has been subjected to a hydrophilic treatment by γ-ray treatment, a hydrophilic group graph, or the like can be used without any problem. The hollow fiber membrane can be produced by any method such as a dry method, a wet method, a dry-wet method, a melting method, etc. However, the wet method is preferable in consideration of the production of the asymmetric membrane.
The differential pressure switch according to the present invention is, for example, an assembly that uses a Bourdon tube that receives two different pressures and a single microswitch to open and close an electric circuit when a differential pressure value is set in advance.

本発明は上水道の水道水圧、工業用水道水の水道水圧、或いは地下水・伏流水・表流水等を原水とする場合は圧入ポンプを用いて原水を圧入することを基本としているが、水道水を原水とする際に水圧が不十分の場合又は二段のポンプを用いて膜分離を制御する場合はブースターポンプを用いる。
本発明の装置に流入する一次水は、上記のように上水道水、工業用水道水、地下水、伏流水、表流水などが用いられるが、膜面通過水を使用する雑用水が飲料水基準に適合することが必要である場合は、原水は少なくとも飲料水として認められる基準を満たすものでなければならない。
The present invention is based on the fact that tap water is injected using a press-in pump when tap water pressure of tap water, tap water pressure of industrial tap water, or ground water, underground water, surface water, etc. is used as raw water. A booster pump is used when water pressure is insufficient when using raw water or when membrane separation is controlled using a two-stage pump.
The primary water flowing into the apparatus of the present invention is, as described above, tap water, industrial tap water, ground water, underground water, surface water, etc., but miscellaneous water using membrane surface water is based on drinking water standards. If it is necessary to comply, the raw water must meet at least the standards recognized as drinking water.

本発明に云う圧入ポンプ、ブースターポンプはメカニカルポンプ、渦巻きポンプ、往復動ポンプ等比較的低粘度の液体に使用するものが用いられる。
本発明に云う水位センサーは、例えば、液面の上昇・下降をフロートが検知してスイッチ作動を行ういわゆるフロートスイッチを指す。即ち,この場合受水槽の一定の下限液面検出位置を定め,本器をセットしておき液面の下降によりフロートが下降し,アームの末端にあるマグネットが上水道の給水管の開閉バルブ接点を開とするものである。本フロートスイッチはステム内部にリードスイッチが封入されており、フロート内のマグネット磁力により、スイッチが動作する。
As the press-fitting pump and booster pump according to the present invention, those used for a relatively low-viscosity liquid such as a mechanical pump, a vortex pump, and a reciprocating pump are used.
The water level sensor referred to in the present invention refers to, for example, a so-called float switch in which a float detects a rise / fall of a liquid level and performs a switch operation. That is, in this case, a fixed lower limit liquid level detection position of the water receiving tank is determined, the instrument is set, the float is lowered by the lowering of the liquid level, and the magnet at the end of the arm connects the open / close valve contact of the water supply water supply pipe. Open. In this float switch, a reed switch is enclosed in the stem, and the switch is operated by a magnetic force in the float.

これらの水位センサーは、受水槽内に取り付けるが横型でも縦型でも良い。但し、食品衛生法に適合したものを用いる必要がある。
本発明に云う開閉バルブは、差圧スイッチからの信号により開閉するもの、タイマーで開閉するものの2種がその目的により使い分けられている。そしてそれらは必要により制御器を介して作動する。
上記の何れの方法或いはシステムは装置に組み立てる事が可能である。
本発明の流入側一次水として対象と出来る原水としては、地下水、伏流水、表流水、工業用水道水、水道水などが挙げられる。
These water level sensors are installed in the water receiving tank, but may be horizontal or vertical. However, it is necessary to use one that complies with the Food Sanitation Law.
There are two types of open / close valves according to the present invention, one that opens and closes by a signal from a differential pressure switch and one that opens and closes by a timer. And they are activated via a controller if necessary.
Any of the above methods or systems can be assembled into an apparatus.
Examples of raw water that can be used as the inflow side primary water of the present invention include groundwater, underground water, surface water, industrial tap water, and tap water.

本発明は、流入側一次水(原水)を部分膜濾過装置によって、精密濾過或いは限外濾過して使用するに際し、特別な洗浄装置を使用する事無く濾過膜面を自動的に、且つ効率的に洗浄して恒久的に使用する部分膜濾過装置であって、普段の運転のみにて自動的に濾過膜面を常に洗浄するシステムを提案するものである。
即ち、従来の部分膜濾過方式によって浄水処理を行なう場合には、濾過水を一旦濾過水槽に貯留し、使用点への蛇口に接続する一方、循環水として膜濾過系内にも循環させていた。更に、一定の時点を決め濾過水槽からの濾過水を逆通させて逆通水洗浄或いは循環水側を高い膜面流速でフラッシング洗浄した後排水する方法が一般的に採用されてきた。
本発明の方法によれば、これらのケアーを一切気にすることなく普段の使用状態にて常時濾過膜を清浄に保持するものである。
In the present invention, when the primary water (raw water) on the inflow side is used after being subjected to microfiltration or ultrafiltration using a partial membrane filtration device, the filtration membrane surface is automatically and efficiently used without using a special cleaning device. The present invention proposes a partial membrane filtration device that can be cleaned and used permanently and always automatically cleans the membrane surface only during normal operation.
That is, when water purification treatment is performed by the conventional partial membrane filtration method, the filtered water is once stored in the filtered water tank and connected to the tap to the point of use, and is also circulated in the membrane filtration system as circulating water. . Furthermore, a method has generally been adopted in which a predetermined point in time is determined and the filtered water from the filtered water tank is reversely passed to perform reverse water washing or flushing and washing the circulating water side at a high membrane surface flow rate.
According to the method of the present invention, the filtration membrane is always kept clean in a normal use state without worrying about these cares.

以下、図1〜図6を用いて、本発明の実施の態様と構成並びにそれらの連携状況を具体的に説明する。
図1は本発明の基本思想を示すフローチャートである。ポンプで加圧された流入側一次水(原水)が部分膜濾過装置に導入され、膜面通過水と膜透過水が得られる模式図である。即ち、ポンプで加圧された流入側一次水(以下原水と略す場合もある)(8)が部分膜濾過装置(13)に導入される。導入された原水は濾過膜(1)の表面を通って膜面通過水側管路(4)に移動し使用点の1ケ以上の水栓(6)に圧入される。一方、分離膜(1)を透過した濾過水、透過水は透過水側管路(3)を通って使用点の水栓(7)に満たされる。
この状態で水栓(7)を開くと膜透過水即ち浄化水が飲用、調理用他の生活用上水として供給される。他方水栓(6)を開くと膜ろ過されない原水がそのまま供給されこれは散水用、トイレ水などの雑用水として使用される。この状態を本発明では「二元給配水」と称する。一人の人間が一日に必要とする水は上記の上水と雑用水からなり、その比率はおよそ1対10乃至1対30の間にあるといわれている。
Hereinafter, the embodiment and configuration of the present invention and the state of their cooperation will be specifically described with reference to FIGS.
FIG. 1 is a flowchart showing the basic idea of the present invention. It is a schematic diagram in which inflow side primary water (raw water) pressurized by a pump is introduced into a partial membrane filtration device to obtain membrane surface passing water and membrane permeating water. That is, inflow side primary water pressurized by a pump (hereinafter also abbreviated as raw water) (8) is introduced into the partial membrane filtration device (13). The introduced raw water moves through the surface of the filtration membrane (1) to the membrane surface passing water side conduit (4) and is pressed into one or more faucets (6) at the point of use. On the other hand, the filtered water and permeated water that have permeated through the separation membrane (1) are filled in the faucet (7) at the point of use through the permeated water side conduit (3).
When the faucet (7) is opened in this state, membrane permeated water, that is, purified water, is supplied as drinking water and other domestic water for cooking. On the other hand, when the faucet (6) is opened, raw water that is not membrane-filtered is supplied as it is and used as water for miscellaneous purposes such as watering and toilet water. This state is referred to as “two-way water distribution” in the present invention. The water that one person needs in one day consists of the above-mentioned clean water and miscellaneous water, and the ratio is said to be between about 1:10 to 1:30.

従って、水栓(6)と(7)を交互に使用すれば水栓(6)使用時に濾過膜表面が膜面通過水で払拭洗浄され、水栓(7)開放時、即ち膜濾過時に膜表面に滞留する付着汚れ・堆積汚れは普段的に除去される。
意外にもこの機序で安定した二元給配水状態が確保され、特別な膜洗浄工程を必要とせず部分膜濾過装置による浄水処理が安定して長時間持続することを本発明者らは確認した。本発明では、このシステムをさらに安定したものにする為の工夫を提案することにある。
即ち、水栓(7)を開け放して透過水側の浄水を連続して使用し、水栓(6)を殆ど使用しない状態があった場合の濾過膜保護の手段を提供することにある。
Accordingly, if the faucets (6) and (7) are used alternately, the surface of the filtration membrane is wiped and washed with water passing through the membrane when the faucet (6) is used, and the membrane is opened when the faucet (7) is opened, that is, when the membrane is filtered. Adhering dirt and accumulated dirt staying on the surface are usually removed.
Surprisingly, the present inventors have confirmed that a stable dual supply / distribution state is ensured by this mechanism, and that the water purification treatment by the partial membrane filtration device is stable and lasts for a long time without requiring a special membrane washing process. did. The present invention proposes a device for making this system more stable.
That is, it is intended to provide means for protecting the filtration membrane when the faucet (7) is opened and purified water on the permeate side is continuously used and the faucet (6) is hardly used.

図2は、膜透過水側の管路と流入水側管路の夫々に水圧測定点を設け、その差圧に基づき透過水側管路(3)の開閉バルブ(12)を閉作動させ分離膜の過剰汚染を防止する。一方、透過水側管路(3)から分岐する、透過水側管路水圧測定用分岐管路(11)に、チェックタイマーにより作動する放出バルブ(10)を設け、一定時間ごとに差圧をチェックし、差圧が予め設定した差圧以下になっていれば、差圧スイッチ(9)を介して開閉バルブ(12)を開に解除するシステムの説明模式図である。
即ち、透過水側の管路(3)の水圧測定点(a)と流入水側管路の水圧測定点(b)間の差圧スイッチ(9)、この差圧スイッチ(9)の信号に直結して開閉する、二次水側バルブとしての透過水側管路の開閉バルブ(12)、(a)点と開閉バルブ(12)の間に設けられタイマーで作動する放出バルブ(10)を有する透過水側管路水圧測定用分岐管路(11)を設け、濾過膜の急激な閉塞による事故に備えた上記二元給水装置である。
In FIG. 2, water pressure measurement points are provided in each of the membrane permeate water side pipe and the inflow water side pipe, and the open / close valve (12) of the permeate water side pipe (3) is closed and separated based on the differential pressure. Prevent overcontamination of the membrane. On the other hand, a discharge valve (10) operated by a check timer is provided in the permeated water side pipe water pressure measurement branch pipe (11) branched from the permeated water side pipe (3), and the differential pressure is set at regular intervals. It is an explanatory schematic diagram of a system for checking and opening the on-off valve (12) through the differential pressure switch (9) when the differential pressure is equal to or lower than a preset differential pressure.
That is, the differential pressure switch (9) between the water pressure measurement point (a) of the permeate water side pipe (3) and the water pressure measurement point (b) of the inflow water side pipe, and the signal of this differential pressure switch (9) Open / close valve (12) of the permeate side pipe as a secondary water side valve that opens and closes directly, and a discharge valve (10) that is provided between point (a) and the open / close valve (12) and that operates with a timer. This is a dual water supply device provided with a permeated water side pipe water pressure measurement branch pipe (11) to prepare for an accident caused by a sudden blockage of a filtration membrane.

このシステムで(a)(b)間の差圧が予め設定した値を超えた場合、開閉バルブ(12)が閉じ、それ以後は膜濾過が停止する。この後、水栓(6)の雑用水が使用されると、濾過面が洗浄されていく。そして、チェックタイマーにより作動する放出バルブ(10)を開いた際に、濾過面の洗浄が相当に進んでいて、分離膜(1)を濾過水が透過し、その透過水が透過水側管路水圧測定用分岐管路(11)から、放出バルブ(10)を介して放出されることで生じる、(a)(b)間の差圧が予め設定した値を超えない状態へと回復していた場合、差圧スイッチ(9)からの信号により開閉バルブ(12)が開き、再び水栓(7)から透過水を得ることができる。
図3は、部分膜濾過装置の膜面通過水の系外給水と、膜透過水を水道水の受水槽接続したシステムを示した模式図である。
即ち、部分膜濾過装置の膜面通過水出口側に給水栓(6)を有する管路を直結させ、更に膜透過水出口側を水道水の受水槽(14)に管路接続してなる二元給水装置を示している。
本システムにおいても差圧スイッチ(9)、開閉バルブ(12)及び放出バルブ(10)を有する透過水側管路水圧測定用分岐管路(11)を設置し、濾過膜の急激な閉塞による事故に備えておくことが好ましい。
In this system, when the differential pressure between (a) and (b) exceeds a preset value, the on-off valve (12) is closed, and thereafter the membrane filtration is stopped. Thereafter, when the miscellaneous water of the faucet (6) is used, the filtration surface is washed. Then, when the discharge valve (10) operated by the check timer is opened, the filtration surface is sufficiently cleaned, the filtrate passes through the separation membrane (1), and the permeate passes through the permeate side pipe. The pressure difference between (a) and (b) caused by being discharged from the branch line (11) for water pressure measurement via the discharge valve (10) has recovered to a state where it does not exceed a preset value. In this case, the open / close valve (12) is opened by a signal from the differential pressure switch (9), and the permeated water can be obtained again from the water tap (7).
FIG. 3 is a schematic diagram showing a system in which the water passing through the membrane surface of the partial membrane filtration device and the permeated water are connected to a tap water receiving tank.
That is, a pipe line having a water tap (6) is directly connected to the membrane surface passing water outlet side of the partial membrane filtration device, and the membrane permeated water outlet side is further connected to a tap water receiving tank (14). The original water supply device is shown.
Also in this system, a permeated water side pipe water pressure measurement branch pipe (11) having a differential pressure switch (9), an on-off valve (12) and a discharge valve (10) is installed, and an accident due to a sudden blockage of the filtration membrane. It is preferable to prepare for.

図4は、部分膜濾過装置の膜面通過水の系外給水と、膜透過水(単に透過水と記す場合もある)を水道水の受水槽に接続し、濾過水の供給が追いつかなくなり受水槽の水位が下がると、水位センサーにより作動するバルブにて上水を給水するシステムの模式図である。
即ち、部分膜濾過装置の膜面通過水出口側に給水栓(6)を有する管路を直結させ、透過水出口側を水道水の受水槽(14)に管路接続してなる二元給配水システムにおいて、濾過水出口近傍(a)と原水入り口(b)間に差圧スイッチ(9)を配置する。該差圧スイッチ(9)の信号により開閉するバルブ(12)を濾過水出口の圧力検出点(a)より下流の管路に設けてなる水処理システムにおいて、受水槽(14)に、上水道給水管(15)の開閉バルブ(20)に信号を送る水位センサー(16)を設け、バルブ(12)が閉じ部分膜濾過装置からの流入が停止したり、受水槽(14)への水処理システム(5)からの供給が追いつかなくなり受水槽(14)の水位が予め設定した水位以下になった場合、該受水槽(14)に上水道給水管(15)のバルブ(20)が開き上水道から受水槽(14)に給水される二元給水装置を示している。
Fig. 4 shows that the water supply from the system passing through the membrane surface of the partial membrane filtration device and the membrane permeated water (sometimes simply referred to as permeated water) are connected to a tap water receiving tank, and the filtered water supply cannot catch up. When the water level of a water tank falls, it is a schematic diagram of the system which supplies water with the valve | bulb act | operated by a water level sensor.
That is, a dual supply system in which a pipe line having a water tap (6) is directly connected to the membrane surface passing water outlet side of the partial membrane filtration apparatus and the permeate outlet side is connected to a tap water receiving tank (14). In the water distribution system, a differential pressure switch (9) is disposed between the filtered water outlet vicinity (a) and the raw water inlet (b). In a water treatment system in which a valve (12) that opens and closes in response to a signal from the differential pressure switch (9) is provided in a pipe line downstream from the pressure detection point (a) at the filtered water outlet, water supply water is supplied to a water receiving tank (14). A water level sensor (16) for sending a signal to the open / close valve (20) of the pipe (15) is provided, and the valve (12) is closed to stop the inflow from the partial membrane filtration device, or the water treatment system to the water receiving tank (14). When supply from (5) cannot catch up and the water level in the water receiving tank (14) falls below the preset water level, the valve (20) of the water supply pipe (15) is opened in the water receiving tank (14) and received from the water supply. The dual water supply apparatus with which water is supplied to the water tank (14) is shown.

尚、受水槽(14)が満水になった場合は、当然に上水道給水管及び水処理システムからの給水を別の制御システムにより停止する如く設定したが、自明の手法であるので説明を省略する。
図5は、透過水側の管路と流入水側管路の夫々に水圧測定点を設け、その差圧に基づき透過水のバルブを停止し、且つ信号灯(17)を点滅させる模式図を示す。
即ち、部分膜濾過装置(13)の膜面通過水(5)の出口及び、透過水(2)の出口をそれぞれ水栓(7)(6)を有する管路(3)(4)に直結させてなる二元給水システムにおいて、透過水(2)の出口近傍(a)と流入水入り口近傍(b)間の差圧スイッチ(9)の信号により点滅する信号灯(17)を水栓(7)の近傍に設置し、濾過膜の閉塞時に警告を発するようになし、この時点で水栓(7)を閉じて使用を停止する。
その後、水栓(6)の雑用水即ち膜面通過水のみを使用し続け膜面が洗浄され、水栓(7)を開いても差圧スイッチ(9)からの信号で信号灯(17)が点灯しないことを確認して水栓(7)の透過水を使用する。信号灯(17)は異常を知らせるブザーであっても良い。
It should be noted that when the water receiving tank (14) is full, the water supply from the water supply pipe and the water treatment system is set to be stopped by another control system. .
FIG. 5 is a schematic diagram in which water pressure measurement points are provided in each of the permeate water side pipe and the inflow water side pipe, the permeate water valve is stopped based on the differential pressure, and the signal lamp (17) blinks. .
That is, the outlet of the membrane surface passing water (5) and the outlet of the permeated water (2) of the partial membrane filtration device (13) are directly connected to the pipes (3) and (4) having the faucets (7) and (6), respectively. In the two-way water supply system, the signal lamp (17) blinking by the signal of the differential pressure switch (9) between the vicinity (a) of the permeated water (2) and the vicinity of the inflow water inlet (b) is provided with a faucet (7 ), And a warning is issued when the filter membrane is blocked. At this point, the faucet (7) is closed to stop use.
Thereafter, only the miscellaneous water of the faucet (6), that is, the water passing through the membrane surface, is continuously washed, and even if the faucet (7) is opened, the signal lamp (17) is activated by the signal from the differential pressure switch (9). Make sure that it does not light up, and use the permeated water from the faucet (7). The signal lamp (17) may be a buzzer for notifying abnormality.

図6は、透過水側の管路と流入水側管路の夫々に水圧測定点を設け、その差圧に基づき作動するブースターポンプを流入水側管路に設けた模式図を示す。即ち、透過水側二次水出口近傍(a)と流入水側一次水入口(b)の圧力からなる差圧スイッチ(9)を配置し、該差圧スイッチ(9)の信号により作動するブースターポンプ(18)を、一定水圧を有する上水道水管(19)、或いは工業用水道水管からなる流入水入り口の圧力検出点(b)近傍部の管路に設ける。
通常は、該ブースターポンプ(18)による膜濾過を行なうが、(a)(b)間の差圧が一定値以上になった場合にはブースターポンプ(18)を停止し、上水道水圧または工業用水道水圧で水栓(6)からの膜面通過水の供給のみを行うものである。
以下、実施例により更に本発明を説明する。
FIG. 6 is a schematic diagram in which a water pressure measurement point is provided in each of the permeate water side pipe and the inflow water side pipe, and a booster pump that operates based on the differential pressure is provided in the inflow water side pipe. That is, a differential pressure switch (9) comprising pressures in the vicinity of the permeate water side secondary water outlet (a) and the inflow water side primary water inlet (b) is arranged, and the booster is operated by a signal of the differential pressure switch (9). The pump (18) is provided in a pipe line in the vicinity of the pressure detection point (b) at the inlet of the water supply water pipe (19) having a constant water pressure or an industrial tap water pipe.
Usually, the membrane filtration is performed by the booster pump (18). When the differential pressure between (a) and (b) becomes a certain value or more, the booster pump (18) is stopped and the water pressure of the water supply or industrial Only the water passing through the membrane from the faucet (6) is supplied with tap water pressure.
Hereinafter, the present invention will be further described with reference to examples.

工業用水道水を原水とし、ブースターポンプにより昇圧して水処理装置(クロスフロー型限外濾過膜分離装置)に導入する如くした浄水装置を設置した。ここで使用した限外濾過膜フィルターは、素材がポリフッ化ビニリデンよりなる分画分子量80,000、阻止孔径換算0.005μmの内圧型中空糸膜で構成された膜面積50mの円筒型モジュールである。
この浄水装置の透過水側出口を管路で延長し、3つの浄化水用水栓(蛇口)管路に直結した。一方、膜面通過水出口(本例では一方通行とし、循環していない)も管路で延長し6つの雑用水用水栓(蛇口)管路に直結した。
A water purifier was installed that used industrial tap water as raw water and was introduced into a water treatment device (cross-flow ultrafiltration membrane separation device) after being boosted by a booster pump. The ultrafiltration membrane filter used here is a cylindrical module having a membrane area of 50 m 2 composed of an internal pressure type hollow fiber membrane having a molecular weight cut off of 80,000 and a blocking pore diameter of 0.005 μm made of polyvinylidene fluoride. is there.
The permeated water side outlet of this water purifier was extended by a pipe line and directly connected to three water taps (faucet) pipes for purified water. On the other hand, the membrane surface passing water outlet (one-way in this example, not circulating) was also extended by pipes and directly connected to six water taps (faucets) for miscellaneous water.

透過水出口近傍に水圧測定点(a)と原水流入口近傍に水圧測定点(b)を設け、(a)(b)間に差圧スイッチを取り付けた。更に、透過水側管路にこの差圧スイッチの信号に直結して開閉する透過水側管路開閉バルブ、(a)点と開閉バルブの間に設けられ手動又は6時間ごとにタイマーで作動し、10秒間だけ浄化水を放出する放出バルブを有する透過水側管路水圧測定用分岐管路を設けた。
このシステムでは(a)(b)間の差圧が300kPaを超えた場合、透過水側管路開閉バルブが閉じるように設定した。
A water pressure measurement point (a) was provided near the permeate outlet and a water pressure measurement point (b) was provided near the raw water inlet, and a differential pressure switch was attached between (a) and (b). Furthermore, a permeated water side pipe opening / closing valve that opens and closes directly connected to the signal of the differential pressure switch on the permeated water side pipe line, is provided between the point (a) and the open / close valve, and is operated manually or every 6 hours with a timer. A permeated water side pipe water pressure measuring branch pipe having a discharge valve for discharging purified water for 10 seconds was provided.
In this system, when the pressure difference between (a) and (b) exceeded 300 kPa , the permeated water side pipe opening / closing valve was set to close.

以上の条件で設定した水処理装置に濁度9(mg/l)、pH6.9、硬度CaCO98(mg/l)蒸発残留物210(mg/l)、塩素イオンCl35(mg/l)、鉄Fe0.3(mg/l)、COD4.2(mg/l)、色度(度)13、水圧100kPaの工業用水道水を圧入し、浄化水蛇口3ケを全開し、膜面通過水出口の雑用水蛇口1ケを開放して原水を初期圧力250kPaで処理を開始した。
次いで、雑用水側蛇口を閉じ浄化水蛇口からの放水量が1時間4.0mになるように原水入り口側の定流量弁を調整した。この状態で連続通水したところ、34時間後に透過水側管路開閉バルブが自動的に閉じ水処理装置は運転を停止した。
続いて、雑用水側の蛇口3つを全開し、1時間に10mの連続放水を行ったところ、6時間後に透過水側管路開閉バルブが自動的に開き、浄化水蛇口から放水可能になった。
この試験運転を経て、更に本システムを引き続き浄化水と雑用水の交互使用の形態で、1年間以上の連続通水を行なったところ、安定した浄化水及び雑用水が得られた。又、得られた浄化水は定期的な水質試験にて水道水質基準50項目を全て満足した。
In the water treatment apparatus set under the above conditions, turbidity 9 (mg / l), pH 6.9, hardness CaCO 3 98 (mg / l) evaporation residue 210 (mg / l), chloride ion Cl35 (mg / l) , Iron Fe0.3 (mg / l), COD4.2 (mg / l), Chromaticity (degree) 13, Industrial tap water with a water pressure of 100 kPa is injected, 3 purified water taps are fully opened, membrane surface One miscellaneous water faucet at the outlet of the passing water was opened and the raw water was treated at an initial pressure of 250 kPa .
Next, the constant flow valve on the raw water inlet side was adjusted so that the faucet side faucet was closed and the amount of water discharged from the purified water faucet was 4.0 m 3 for 1 hour. When water continuously passed in this state, the permeated water side pipe opening / closing valve was automatically closed after 34 hours and the operation of the water treatment apparatus was stopped.
Subsequently, the three faucets on the miscellaneous water side were fully opened and 10 m 3 of continuous water was discharged per hour. After 6 hours, the permeated water side pipe opening / closing valve was automatically opened and water could be discharged from the purified water faucet. became.
After this test operation, when this system was further continuously used for one year or more in the form of alternate use of purified water and miscellaneous water, stable purified water and miscellaneous water were obtained. In addition, the purified water obtained satisfied all 50 water quality standards in periodic water quality tests.

阻止孔径0.1μmの親水化ポリエチレン製外圧型中空糸精密濾過膜モジュール(膜面積20m)10本を、外形1000mmで原水側下部に原水入り口とその180度反対側上部に夫々原水出口及び濾過水出口を設けた部分膜濾過装置を設置した。
この処理装置の原水出口側に雑用水用給水栓(蛇口)を有する管路に直結し、濾過水(透過水)出口側に水道水の受水槽管路を接続した。一方、水道水の受水槽には当然に水道水給水管が接続され、この受水槽の中に上水道給水管の開閉バルブ制御用信号を送る水位センサーを設けた。
Ten external pressure hollow fiber microfiltration membrane modules (membrane area 20 m 2 ) made of hydrophilic polyethylene with a blocking hole diameter of 0.1 μm, having an outer diameter of 1000 mm, a raw water inlet at the lower part of the raw water side, and a raw water outlet and a filtration at the upper part on the opposite side of 180 ° respectively. A partial membrane filtration device provided with a water outlet was installed.
This processing apparatus was directly connected to a pipe having a water tap (faucet) for miscellaneous water on the raw water outlet side, and a tap water receiving tank pipe was connected to the filtrate (permeate) outlet side. On the other hand, a tap water supply pipe is naturally connected to the tap water receiving tank, and a water level sensor for sending a signal for controlling the open / close valve of the water supply pipe is provided in the receiving tank.

又、濾過水出口近傍の水圧測定点(a)と原水入り口近傍の水圧測定点(b)の間に、差圧スイッチを配置し、該差圧スイッチの信号により開閉するバルブをろ過水出口の圧力検出点(a)より下流に濾過水管路を設けた。かくて水処理装置の濾過水出口から受水槽への給水管路において上記バルブが閉じ、部分膜濾過装置から受水槽への流入が停止した場合、或いは受水槽への水処理装置からの通水量に変化が起こった場合に備えて予め設定した水位以下になった場合、該受水槽に上水道給水管のバルブを開き上水道から受水槽に給水する如く設営した水処理システムを完成した。 Also, a differential pressure switch is arranged between the water pressure measurement point (a) near the filtrate outlet and the water pressure measurement point (b) near the raw water inlet, and a valve that opens and closes according to the signal of the differential pressure switch is connected to the filtrate outlet. A filtered water pipe was provided downstream from the pressure detection point (a). Thus, when the valve is closed in the water supply line from the filtrate outlet of the water treatment device to the water receiving tank and the flow from the partial membrane filtration device to the water receiving tank is stopped, or the amount of water flow from the water treatment device to the water receiving tank When the water level falls below a preset water level in preparation for a change in water, a water treatment system was completed so that the water supply water supply pipe valve was opened in the water receiving tank and water was supplied from the water supply to the water receiving tank.

この部分膜濾過装置に濁度9(mg/l)、pH6.9、硬度CaCO98(mg/l)、蒸発残留物210(mg/l)、塩素イオンCl35(mg/l)、鉄Fe0.3(mg/l)、COD0.11(mg/1)、色度(度)2、電気伝導率(mS/m)15の地下水を原水送水圧100kPaで時間当たり膜透過水量5m/時になるように調整して処理し膜濾過水を受水槽に送り、雑用用途には、随時必要に応じて原水出口側の雑用水蛇口を使用することにして日常的に使用した。受水槽に供給される膜透過水(膜濾過水)の水質は安定して水道水質基準を満たしていた。 In this partial membrane filtration device, turbidity 9 (mg / l), pH 6.9, hardness CaCO 3 98 (mg / l), evaporation residue 210 (mg / l), chloride ion Cl35 (mg / l), iron Fe0 .3 (mg / l), COD 0.11 (mg / 1), chromaticity (degree) 2 and electrical conductivity (mS / m) 15 groundwater at a raw water feed pressure of 100 kPa and a membrane permeate flow rate of 5 m 3 / The membrane filtered water was sent to the water receiving tank after being adjusted to the time, and it was used on a daily basis by using a choke water faucet on the raw water outlet side as needed for chores. The water quality of the membrane permeated water (membrane filtered water) supplied to the water receiving tank stably satisfied the tap water quality standard.

尚、受水槽(14)が満水となった場合には、上水道給水管及び水処理システムからの給水は別途用意した制御システムにより停止させる如く設営した。この詳細については通常の手段を使用するので省略する。
この水処理システムで日量2,000mの生活用水(飲用水、雑用水併せて)を必要とする事業所の給水を1年以上行っているが、殆ど水道水の使用を必要とせず(保安用に時々上水道水の供給を行なう程度)安定して運転が続いている。
When the water receiving tank (14) was full, the water supply from the water supply pipe and the water treatment system was set up to be stopped by a separately prepared control system. The details are omitted because normal means are used.
The water treatment system on a daily amount of 2,000m 3 of domestic water but the water supply of office that requires a (drinking water, service water together) are performed more than one year, without the need for most use of tap water ( The operation is stable.

以上の通り、各種の水源を用いて部分膜濾過方式を用いて水道水質基準に合致した浄水を給水する一方、膜濾過処理されなかった循環水で膜面を洗浄して膜濾過を安定化させる本発明によれば、合理的に分別した用水の使用が可能になり、本発明の効用は工業的に著大であるものと確信する。 As described above, while supplying purified water that meets tap water quality standards using a partial membrane filtration method using various water sources, the membrane surface is washed with circulating water that has not been subjected to membrane filtration treatment to stabilize membrane filtration. According to the present invention, it is possible to use rationally separated water, and it is convinced that the utility of the present invention is industrially significant.

図1は、本発明の基本思想を示すフローチャートである。ポンプで加圧された通水が部分膜濾過装置に導入され、膜面通過水と透過水が得られる模式図である。FIG. 1 is a flowchart showing the basic idea of the present invention. It is the schematic diagram by which the water flow pressurized with the pump is introduce | transduced into a partial membrane filtration apparatus, and membrane surface passing water and permeated water are obtained. 図2は透過水側の管路と流入水側管路の夫々に水圧測定点を設け、その差圧に基づき透過水側管路のバルブ作動し、透過水側管路の分岐管路に設けたチェックタイマーにより差圧スイッチを介して解除するシステムの説明模式図である。Fig. 2 provides water pressure measurement points on the permeate side pipe and the influent side pipe, and operates the permeate side pipe on the basis of the differential pressure. It is explanatory drawing schematic diagram of the system canceled using a check timer via a differential pressure switch. 図3は、部分膜濾過装置の膜面通過水の系外給水と、透過水を水道水の受水槽接続した給水システムを示した模式図である。FIG. 3 is a schematic diagram showing a water supply system in which water passing through the membrane surface of the partial membrane filtration device and permeate water are connected to a tap water receiving tank. 図4は、部分膜濾過装置の膜面通過水の系外給水と、透過水を水道水の受水槽に接続し、濾過水の供給が追いつかなくなり受水槽の水位が下がると、水位センサーにより作動するバルブにて上水を給水するシステムの模式図である。Fig. 4 shows the operation of the water level sensor when the supply of filtered water from the membrane surface of the partial membrane filtration device and the permeated water are connected to the tap water receiving tank, and the supply of filtered water cannot catch up and the water level in the receiving tank drops. It is a schematic diagram of the system which supplies water with the valve which performs. 図5は、透過水側の管路と流入水側管路の夫々に水圧測定点を設け、その差圧に基づき透過水のバルブを停止し、且つ信号灯を点滅させる模式図を示す。FIG. 5 is a schematic diagram in which water pressure measurement points are provided in each of the permeate water side pipe and the inflow water side pipe, the permeate water valve is stopped based on the differential pressure, and the signal lamp blinks. 図6は、透過水側の管路と流入水側管路の夫々に水圧測定点を設け、その差圧に基づき作動するブースターポンプを流入水側管路に設けた模式図を示す。FIG. 6 is a schematic diagram in which a water pressure measurement point is provided in each of the permeate water side pipe and the inflow water side pipe, and a booster pump that operates based on the differential pressure is provided in the inflow water side pipe.

1 分離膜
2 分離膜モジュールの膜透過水(透過水とも言う)側
3 分離膜モジュールの透過水管路
4 膜面通過水側管路
5 分離膜モジュールの膜面通過水側
6 膜面通過水側管路に直結した蛇口(水栓)
7 透過水管路に直結した蛇口(水栓)
8 水圧を有する流入水入り口
9 差圧スイッチ
10 タイマーで作動する系外排出用透過水側管路圧力測定用バルブ
11 排出用透過水側管路圧力測定用管路
12 透過水側管路開閉元バルブ
13 部分膜濾過装置
14 水道受水槽
15 上水道管
16 水位センサー
17 信号灯
18 ブースターポンプ
19 上水道水
20 上水道管開閉バルブ
21 定流量弁
a 透過水側管路圧力測定部
b 膜面通過水側管路圧力測定部
DESCRIPTION OF SYMBOLS 1 Separation membrane 2 Membrane permeate (also referred to as permeate) side of separation membrane module 3 Permeate conduit of separation membrane module 4 Membrane surface passing water side conduit 5 Membrane surface passage water side 6 of separation membrane module Membrane surface passage water side Faucet (water tap) directly connected to the pipeline
7 Faucet (water tap) directly connected to the permeate pipe
8 Inflow water inlet having water pressure 9 Differential pressure switch 10 Permeated water side pipe pressure measuring valve for discharge outside system operated by timer 11 Permeated water side pipe pressure measuring pipe for discharge 12 Permeated water side pipe opening / closing source Valve 13 Partial membrane filtration device 14 Water supply tank 15 Water supply pipe 16 Water level sensor 17 Signal lamp 18 Booster pump 19 Water supply water 20 Water supply pipe open / close valve 21 Constant flow valve a Permeate water side pipe pressure measurement part b Membrane surface passing water side pipe Pressure measurement unit

Claims (8)

部分膜濾過装置の流入側一次水を供給するに際し、膜面通過水を系外流路とする管路を設け、透過側二次水系管路と相俟って夫々に制御可能な少なくとも1ケの水栓を配置し、透過水側二次水系管路に、透過側二次水出力圧と流入側一次水受入圧にて派生する差圧に基づき開閉制御する如く設定した開閉バルブを設け、透過側二次水系管路の水圧測定点と前記開閉バルブとの間に設けられた、透過水側管路水圧測定用分岐管路に、チェックタイマーにより作動する放出バルブを配置し、
前記開閉バルブの開閉制御に際し、前記差圧により作動した前記開閉バルブによる、透過側二次水の通水停止を、
前記チェックタイマーにより前記放出バルブを開いた際の、前記部分膜濾過装置の分離膜を透過した濾過水が、前記透過水側管路水圧測定用分岐管路から、前記放出バルブを介して放出されることで生じる差圧監視を介し、前記開閉バルブを開くことにより、
解除する如く設定する事を特徴とする二元給配水システム。
When supplying the inflow side primary water of the partial membrane filtration device, a pipe line that uses the water passing through the membrane surface as an out-of-system flow path is provided, and in combination with the permeate side secondary water line, at least one controllable unit is provided. A faucet is installed, and a permeate-side secondary water system pipe line is provided with an open / close valve set to open and close based on the differential pressure derived from the permeate-side secondary water output pressure and the inflow-side primary water receiving pressure. A discharge valve operated by a check timer is arranged in the branch line for measuring the permeated water side pipe water pressure, which is provided between the water pressure measuring point of the side secondary water system pipe line and the on-off valve,
In the opening / closing control of the opening / closing valve, the passage stop of the secondary water of the permeation side by the opening / closing valve operated by the differential pressure,
When the discharge valve is opened by the check timer, filtered water that has permeated through the separation membrane of the partial membrane filtration device is discharged from the permeate-side pipe water pressure measurement branch pipe through the discharge valve. By opening the on-off valve through the differential pressure monitoring that occurs by
Two-way water distribution system characterized by setting to be canceled.
前記差圧に基づきバルブ開閉及び/又はタイマー作動時に作動表示を行う事を特徴とする請求項1記載の二元給配水システム。 2. The dual supply and distribution system according to claim 1, wherein an operation display is performed based on the differential pressure when the valve is opened and / or closed and a timer is activated. 前記作動表示に、警報を含む作動を表示することを特徴とする請求項2記載の二元給配水システム。 The dual supply and distribution system according to claim 2, wherein an operation including an alarm is displayed on the operation display. 前記透過側二次水系管路に、水道水の受水槽を設けたことを特徴とする請求項1ないし3のいずれか1項記載の二元給配水システム。 4. The dual supply and distribution system according to claim 1, wherein a tap water receiving tank is provided in the permeate-side secondary water pipeline. 5. 前記受水槽に水位センサーを設け、流入が予め設定した水位以下の場合、前記受水槽に上水道などからの飲料水給水を行う事を特徴とする請求項4記載の二元給配水システム。 5. The dual supply and distribution system according to claim 4, wherein a water level sensor is provided in the water receiving tank, and drinking water is supplied to the water receiving tank from a water supply or the like when the inflow is below a preset water level. 透過側二次水出力圧と流入側一次水受入圧原水入り口の圧力にて派生する差圧に基づき定めた検出幅にて作動するブースターポンプを擁し、膜ろ過の開始及び停止を管路内の圧力差に連動して作動せしめる如く設定する事を特徴とする請求項1ないし5のいずれか1項記載の二元給配水システム。 It has a booster pump that operates with a detection width determined based on the differential pressure derived from the pressure on the permeate side secondary water output pressure and the inflow side primary water receiving pressure at the raw water inlet, and starts and stops membrane filtration in the pipeline. The dual supply and distribution system according to any one of claims 1 to 5, wherein the dual supply and distribution system is set to operate in conjunction with a pressure difference. 濾過膜として分画分子量5万以上50万以下の限外濾過膜フィルターを使用する事を特徴とする請求項1なし6のいずれか1項記載の二元給配水システム。 The dual supply and distribution system according to any one of claims 1 to 6, wherein an ultrafiltration membrane filter having a fractional molecular weight of 50,000 to 500,000 is used as the filtration membrane . 濾過膜として阻止孔径0.2μm以下の精密濾過膜フィルターを使用する事を特徴とする請求項1ないし6のいずれか1項記載の二元給配水システム。 The dual water supply and distribution system according to any one of claims 1 to 6, wherein a microfiltration membrane filter having a blocking pore diameter of 0.2 µm or less is used as the filtration membrane.
JP2005141793A 2005-04-12 2005-04-12 Dual water distribution system Expired - Fee Related JP5105036B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005141793A JP5105036B2 (en) 2005-04-12 2005-04-12 Dual water distribution system
KR1020050093967A KR100687768B1 (en) 2005-04-12 2005-10-06 Water feed and distribution system and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005141793A JP5105036B2 (en) 2005-04-12 2005-04-12 Dual water distribution system

Publications (2)

Publication Number Publication Date
JP2006289329A JP2006289329A (en) 2006-10-26
JP5105036B2 true JP5105036B2 (en) 2012-12-19

Family

ID=37410504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005141793A Expired - Fee Related JP5105036B2 (en) 2005-04-12 2005-04-12 Dual water distribution system

Country Status (2)

Country Link
JP (1) JP5105036B2 (en)
KR (1) KR100687768B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5339702B2 (en) * 2007-09-19 2013-11-13 株式会社日立製作所 Two-way water supply system using membrane
CN105214501A (en) * 2014-05-29 2016-01-06 北京朗新明环保科技有限公司 Turbine Inner eycle surpasses/microfiltration systems
CN104803449A (en) * 2015-04-17 2015-07-29 北京坎普尔环保技术有限公司 Immersed gravity membrane filtering device and membrane filtering method
CN108956409B (en) * 2017-05-19 2021-01-29 中国地质科学院水文地质环境地质研究所 Micro-pressure permeameter and test method
CN116715322B (en) * 2023-08-11 2023-10-20 深圳市鹏翔汇星水处理技术有限公司 Water outlet control device of ultrafilter and ultrafilter

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213490A (en) * 1983-05-17 1984-12-03 Daicel Chem Ind Ltd Sterile water supplying device
JPH0671120A (en) * 1992-08-27 1994-03-15 Akai Electric Co Ltd Method for detecting blinding of filter
JPH06277455A (en) * 1993-03-29 1994-10-04 Mitsubishi Heavy Ind Ltd Operation of ultrafiltration membrane module
JPH0716567A (en) * 1993-07-01 1995-01-20 Daicel Chem Ind Ltd Ultrafiltration type drinking water device
JPH1128464A (en) * 1997-07-14 1999-02-02 Kurita Water Ind Ltd Water treatment device having membrane separator
KR19990055347A (en) * 1997-12-27 1999-07-15 이구택 Overpressure control device of ultrafiltration membrane
JP2000334276A (en) * 1999-05-25 2000-12-05 Mitsubishi Rayon Co Ltd Operation of filtration device
JP4661009B2 (en) * 2001-09-04 2011-03-30 栗田工業株式会社 Ultrapure water production system
JP2003080246A (en) * 2001-09-10 2003-03-18 Toray Ind Inc Apparatus and method for treating water
JP4341003B2 (en) * 2002-05-24 2009-10-07 株式会社ウェルシィ Water quality control method for supplied purified water
KR100503783B1 (en) 2004-12-08 2005-07-27 (주)멤브레인워터 Two-way alternate backwashing method and equipment of hollow-fiber membrane module, and drinking water treatment equipment using the same

Also Published As

Publication number Publication date
KR100687768B1 (en) 2007-03-02
JP2006289329A (en) 2006-10-26
KR20060108198A (en) 2006-10-17

Similar Documents

Publication Publication Date Title
US6814861B2 (en) Ultrafiltration and microfiltration module and system
EP0966319B1 (en) Portable reverse osmosis unit for producing drinking water
JP6441808B2 (en) Desalination apparatus and desalination method
WO2010093026A1 (en) Filtering device and method of manufacturing same
JP2009233591A (en) Water purifier
US9550152B2 (en) Point of use filtration system with backwash
JP5105036B2 (en) Dual water distribution system
EP4154960A1 (en) Hybrid filter assembly
JP2018069169A (en) Portable water purifying treatment device capable of connecting with ro membrane unit
KR19990018165A (en) Reverse osmosis circulating filtration water purification system
CN215756742U (en) Reverse osmosis water purification machine
JP2009233566A (en) Water purifier
JPH0824844A (en) Water purifier
JP2007160266A (en) Membrane filter apparatus
Van Houtte et al. Intermunicipal Water Company of Veurne-Ambacht (IWVA), Doornpanne 1, B-8670 Koksijde
JP2006175391A (en) Membrane filtering device
JP2011104567A (en) Water purification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100930

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120912

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

R150 Certificate of patent or registration of utility model

Ref document number: 5105036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees