JPH06277455A - Operation of ultrafiltration membrane module - Google Patents

Operation of ultrafiltration membrane module

Info

Publication number
JPH06277455A
JPH06277455A JP7006693A JP7006693A JPH06277455A JP H06277455 A JPH06277455 A JP H06277455A JP 7006693 A JP7006693 A JP 7006693A JP 7006693 A JP7006693 A JP 7006693A JP H06277455 A JPH06277455 A JP H06277455A
Authority
JP
Japan
Prior art keywords
ultrafiltration
soln
pressure
membrane module
permeate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7006693A
Other languages
Japanese (ja)
Inventor
Kazuya Okabe
一哉 岡部
Koki Kinoshita
弘毅 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7006693A priority Critical patent/JPH06277455A/en
Publication of JPH06277455A publication Critical patent/JPH06277455A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To extend the operation life of an ultrafiltration membrane module by disposing a pressure control valve on the side of an ultrafiltration transmitted soln. and setting the pressure on the side of the transmitted soln. so as to make the same higher than that on the side of a conc. soln. at the beginning of operation. CONSTITUTION:A treated waste soln. 1 is supplied to an ultrafiltration circulating tank 2 to be supplied to an ultrafiltration module 4 as an ultrafiltration supply soln. by an ultrafiltration circulating pump 3 and the particulate impurities in the waste soln. 1 are removed. At this time, the flow rate of the ultrafiltration transmitted soln. 7 is detected by a flowmeter 15 and a pressure control valve 14 is controlled so that the flow rate of the transmitted soln. 7 becomes a predetermined flow rate. At the beginning of operation, the pressure control valve 15 is controlled to make the pressure on the side of the transmitted soln. 7 higher than that on the side of a conc. soln. 6. Whereupon, the ultrafiltration conc. soln. 6 is returned to the ultrafiltration circulating tank 2 and the ultrafiltration transmitted soln. 7 is received in a reverse osmosis tank 8 and becomes a reverse osmosis supply soln. 11 by a reverse osmosis high pressure pump 9 to be supplied to a reverse osmosis membrane module 10. By this method, the accumulation of scale on the surface of a membrane is reduced and backwashing is applied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はPWR原子力プラント等
の廃液処理設備として用いられる廃液ほう酸処理装置も
しくは洗浄排水処理装置で使用する限外ろ過膜モジュー
ルの運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating an ultrafiltration membrane module used in a waste liquid boric acid treatment device or a cleaning waste water treatment device used as a waste liquid treatment facility of a PWR nuclear power plant or the like.

【0002】[0002]

【従来の技術】従来技術として廃液ほう酸処理装置を例
にあげ、これを図3によって説明する。図3において、
処理廃液1は限外ろ過循環タンク2に供給され、限外ろ
過循環ポンプ3により限外ろ過供給液5として限外ろ過
膜モジュール4に供給され、廃液中の粒子状不純物を取
り除いた後、限外ろ過透過液7となって逆浸透タンク8
に送られ、一方、限外ろ過濃縮液6は前記限外ろ過循環
タンク2へ返送される。この限外ろ過透過液7を逆浸透
高圧ポンプ9により逆浸透供給液11として逆浸透膜モ
ジュール10に送り、SiO2 等の不純物を取り除いた
逆浸透透過液13が回収ほう酸として再使用される。な
お、図中、12は逆浸透濃縮液である。
2. Description of the Related Art As a prior art, a waste liquid boric acid processing apparatus will be taken as an example and described with reference to FIG. In FIG.
The treatment waste liquid 1 is supplied to the ultrafiltration circulation tank 2, supplied to the ultrafiltration membrane module 4 as the ultrafiltration supply liquid 5 by the ultrafiltration circulation pump 3, and after removing particulate impurities in the waste liquid, Outer filtration permeate 7 becomes reverse osmosis tank 8
On the other hand, the ultrafiltration concentrate 6 is returned to the ultrafiltration circulation tank 2. This ultrafiltration permeate 7 is sent to the reverse osmosis membrane module 10 as the reverse osmosis feed liquid 11 by the reverse osmosis high pressure pump 9, and the reverse osmosis permeate 13 from which impurities such as SiO 2 have been removed is reused as recovered boric acid. In the figure, 12 is a reverse osmosis concentrate.

【0003】[0003]

【発明が解決しようとする課題】従来、限外ろ過膜モジ
ュールの運転は限外ろ過膜モジュール供給液側と透過液
側との圧力差を約2kg/cm2 G と一定にして行われてき
た。図4に限外ろ過透過流束の時間変化を示すが、初期
約300リットル/m2 ・ h得られていた透過流束が約
500時間後には必要流束である約70リットル/m2
・ hを下まわるまで急激に低下しており、限外ろ過膜は
約500時間で交換を余儀なくされていた。この透過流
束の低下は膜面にスケールが堆積することにより起こっ
ているもので、膜面のスケーリングは限外ろ過膜モジュ
ールの供給液側と透過液側との圧力差が大きいことによ
り起因している。従って、この圧力差を小さくする必要
がある。
Conventionally, the operation of the ultrafiltration membrane module has been performed with the pressure difference between the supply side and the permeate side of the ultrafiltration membrane module being kept constant at about 2 kg / cm 2 G. . Fig. 4 shows the time variation of the permeation flux of ultrafiltration. The permeation flux that was initially about 300 liters / m 2 · h was about 500 liters / m 2 which was the required flux after about 500 hours.
-It dropped sharply until it fell below h, and the ultrafiltration membrane had to be replaced in about 500 hours. This decrease in permeation flux is caused by the accumulation of scale on the membrane surface, and scaling of the membrane surface is caused by the large pressure difference between the feed liquid side and the permeate side of the ultrafiltration membrane module. ing. Therefore, it is necessary to reduce this pressure difference.

【0004】本発明は上記技術水準に鑑み、限外ろ過膜
モジュールの運転寿命を延ばすことが可能な限外ろ過膜
モジュールの運転方法を提供しようとするものである。
In view of the above-mentioned state of the art, the present invention is to provide an operating method of an ultrafiltration membrane module which can extend the operating life of the ultrafiltration membrane module.

【0005】[0005]

【課題を解決するための手段】本発明は限外ろ過膜モジ
ュールの透過液側に背圧をかけて供給液側と透過液側の
圧力差を小さくすることにより膜面へのスケーリングを
低減し、長期にわたり安定した透過流束を得る限外ろ過
膜モジュールの運転方法において、透過液側に流量計及
び圧力制御弁を設け、運転初期には該圧力制御弁を制御
して透過液側の圧力を濃縮液側の圧力よりも高く設定す
ることにより、ろ過運転中においても膜モジュールの一
部で逆洗作用を生起させ、ろ過運転中流量計により透過
流の流量を監視しながら透過液流量がほゞ一定となるよ
うに圧力制御弁を徐々に開くことを特徴とする限外ろ過
膜モジュールの運転方法である。
The present invention reduces the scaling to the membrane surface by applying a back pressure to the permeate side of the ultrafiltration membrane module to reduce the pressure difference between the feed and permeate sides. In a method of operating an ultrafiltration membrane module that obtains a stable permeation flux for a long period of time, a flow meter and a pressure control valve are provided on the permeate side, and the pressure control valve is controlled at the initial stage of operation to control the pressure on the permeate side. Is set higher than the pressure on the concentrate side, a backwash action occurs in a part of the membrane module even during filtration operation, and the permeate flow rate is monitored while monitoring the permeate flow rate with a flow meter during filtration operation. This is a method of operating an ultrafiltration membrane module, which is characterized by gradually opening a pressure control valve so that the pressure control valve becomes almost constant.

【0006】[0006]

【作用】限外ろ過透過液側に圧力制御弁を設置すること
により、透過液側に背圧をかけ、供給液側との差圧を小
さくし、膜面へのスケールの堆積を減らす。また、透過
液側の圧力を濃縮液側よりも若干高くしておくことによ
り、膜の一部に透過液の濃縮側への逆洗を施し、スケー
リングの防止を図る。ただし、膜面にスケールが付着し
てくると透過液流量が落ちてくるので、透過液側に設け
た圧力制御弁を徐々に開いていくことにより、透過液側
の圧力も落ちることになる。従って逆洗の効果は運転終
了(膜寿命)までは続くものではない。
[Function] By installing a pressure control valve on the ultrafiltration permeate side, a back pressure is applied to the permeate side to reduce the differential pressure between the permeate side and the feed liquid side and reduce the accumulation of scale on the membrane surface. Further, by making the pressure on the permeate side slightly higher than that on the concentrate side, a part of the membrane is backwashed to the concentrate side to prevent scaling. However, since the permeate flow rate decreases when scale adheres to the membrane surface, the pressure on the permeate side also drops by gradually opening the pressure control valve provided on the permeate side. Therefore, the effect of backwashing does not continue until the end of operation (membrane life).

【0007】[0007]

【実施例】本発明の一実施例を図1によって説明する。
処理廃液1は限外ろ過循環タンク2に供給され、限外ろ
過循環ポンプ3により限外ろ過供給液5となって限外ろ
過モジュール4に供給され、廃液中の粒子状不純物を除
去する。この時、限外ろ過透過液7流量を流量計15に
より検知し、所定流量となるように圧力制御弁14をコ
ントロールする。限外ろ過濃縮液6は前記限外ろ過循環
タンク2に返送され、限外ろ過透過液7は逆浸透タンク
8に受けられ、逆浸透高圧ポンプ9により逆浸透供給液
11となって逆浸透膜モジュール10に供給され、Si
2 等の不純物を取り除いた逆浸透透過液13が回収ほ
う酸として再使用される。なお、12は逆浸透濃縮液で
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG.
The treatment waste liquid 1 is supplied to the ultrafiltration circulation tank 2, becomes the ultrafiltration supply liquid 5 by the ultrafiltration circulation pump 3, and is supplied to the ultrafiltration module 4 to remove particulate impurities in the waste liquid. At this time, the flow rate of the ultrafiltration permeate 7 is detected by the flow meter 15, and the pressure control valve 14 is controlled so that the flow rate becomes a predetermined value. The ultrafiltration concentrate 6 is returned to the ultrafiltration circulation tank 2, the ultrafiltration permeate 7 is received by the reverse osmosis tank 8, and the reverse osmosis high pressure pump 9 becomes the reverse osmosis feed liquid 11 to form the reverse osmosis membrane. Supplied to module 10, Si
The reverse osmosis permeate 13 from which impurities such as O 2 have been removed is reused as recovered boric acid. In addition, 12 is a reverse osmosis concentrate.

【0008】図2に限外ろ過膜モジュール4の透過流束
を約75リットル/m2 ・hとなるように制御した時の
圧力の時間変化を示す。最初、透過液側圧力を濃縮液側
圧力よりも若干高く設定しておき、膜の一部透過液の濃
縮液側への逆洗を施す。膜の有効圧力差を図中のΔPで
定義すると、ΔPは運転初期0.4kg/cm2 G と従来の
運転圧力約2kg/cm2 G よりも1/5低い圧力差で運転
可能となっている。膜のスケーリングが進むと、透過液
流量が低下するので圧力制御弁14が開いて、透過液流
量を確保する。従って透過液側の圧力は徐々に低下し、
併せて有効差圧ΔPが大きくなる。1600時間後に透
過液側と濃縮液側の圧力が同じになっており、透過液の
濃縮液側への逆洗の効果がこれ以降なくなるが、240
0時間後においても透過流束の低下は見られず、従来の
限外ろ過膜の運転寿命約500時間よりも約5倍以上延
びている。
FIG. 2 shows the time variation of the pressure when the permeation flux of the ultrafiltration membrane module 4 is controlled to be about 75 liter / m 2 · h. Initially, the pressure on the permeate side is set to be slightly higher than the pressure on the concentrate side, and a partial permeate of the membrane is backwashed to the concentrate side. If the effective pressure difference of the membrane is defined by ΔP in the figure, ΔP can be operated at a pressure difference of 0.4 kg / cm 2 G at the initial stage of operation and 1/5 lower than the conventional operating pressure of about 2 kg / cm 2 G. There is. As the membrane scaling proceeds, the permeate flow rate decreases and the pressure control valve 14 opens to ensure the permeate flow rate. Therefore, the pressure on the permeate side gradually decreases,
At the same time, the effective differential pressure ΔP increases. After 1600 hours, the pressures on the permeate side and the concentrate side were the same, and the effect of backwashing the permeate on the concentrate side disappeared thereafter.
No decrease in permeation flux was observed even after 0 hour, which is about 5 times longer than the operating life of the conventional ultrafiltration membrane of about 500 hours.

【0009】なお、図2のデータは廃液として水道水に
酸化鉄(7ppm )、界面活性剤(5ppm )、油(1ppm
)を混合させた模擬廃水を使用し、限外ろ過膜として
は膜材質:ポリアクリロニトリル、分画分子量:130
0C.M.W のものを使用した場合の例である。
The data in FIG. 2 shows that iron oxide (7 ppm), surfactant (5 ppm), oil (1 ppm) were added to tap water as waste liquid.
) Is used as the simulated waste water, and the ultrafiltration membrane is made of a membrane material: polyacrylonitrile, molecular weight cutoff: 130
This is an example of using 0C.MW.

【0010】[0010]

【発明の効果】限外ろ過膜モジュールの供給液側と透過
液側の圧力差を小さくすること、及びその時の透過液側
の圧力は濃縮液側の圧力よりも高く設定する運転方法を
採用する本発明方法により、限外ろ過膜モジュールの運
転寿命を延ばすことが可能となる。
The pressure difference between the supply side and the permeate side of the ultrafiltration membrane module is reduced, and the operating method is set so that the pressure on the permeate side at that time is set higher than the pressure on the concentrate side. The method of the present invention makes it possible to extend the operating life of the ultrafiltration membrane module.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の限外ろ過膜運転方法の説明
図。
FIG. 1 is an explanatory diagram of an ultrafiltration membrane operating method according to an embodiment of the present invention.

【図2】本発明の一実施例の限外ろ過膜モジュールの透
過流束及び圧力の時間変化を示す図表。
FIG. 2 is a chart showing changes with time of permeation flux and pressure of the ultrafiltration membrane module of one embodiment of the present invention.

【図3】従来の一態様の限外ろ過膜運転方法の説明図。FIG. 3 is an explanatory view of a conventional ultrafiltration membrane operation method.

【図4】従来の一態様の限外ろ過膜モジュールの透過流
束の時間変化を示す図表。
FIG. 4 is a chart showing a change over time in permeation flux of an ultrafiltration membrane module according to a conventional aspect.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 限外ろ過膜モジュールの透過液側に背圧
をかけて供給液側と透過液側の圧力差を小さくすること
により膜面へのスケーリングを低減し、長期にわたり安
定した透過流束を得る限外ろ過膜モジュールの運転方法
において、透過液側に流量計及び圧力制御弁を設け、運
転初期には該圧力制御弁を制御して透過液側の圧力を濃
縮液側の圧力よりも高く設定することにより、ろ過運転
中においても膜モジュールの一部で逆洗作用を生起さ
せ、ろ過運転中流量計により透過流の流量を監視しなが
ら透過液流量がほゞ一定となるように圧力制御弁を徐々
に開くことを特徴とする限外ろ過膜モジュールの運転方
法。
1. A back pressure is applied to the permeate side of the ultrafiltration membrane module to reduce the pressure difference between the feed liquid side and the permeate side, thereby reducing the scaling to the membrane surface and achieving stable permeation flow over a long period of time. In the method of operating the ultrafiltration membrane module for obtaining a bundle, a flow meter and a pressure control valve are provided on the permeate side, and the pressure control valve is controlled at the initial stage of operation so that the pressure on the permeate side is higher than the pressure on the concentrate side. By setting a high value, the backwashing action will occur in a part of the membrane module even during the filtration operation, and the permeate flow rate will be almost constant while monitoring the flow rate of the permeate flow during the filtration operation. A method of operating an ultrafiltration membrane module, characterized by gradually opening a pressure control valve.
JP7006693A 1993-03-29 1993-03-29 Operation of ultrafiltration membrane module Withdrawn JPH06277455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7006693A JPH06277455A (en) 1993-03-29 1993-03-29 Operation of ultrafiltration membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7006693A JPH06277455A (en) 1993-03-29 1993-03-29 Operation of ultrafiltration membrane module

Publications (1)

Publication Number Publication Date
JPH06277455A true JPH06277455A (en) 1994-10-04

Family

ID=13420797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7006693A Withdrawn JPH06277455A (en) 1993-03-29 1993-03-29 Operation of ultrafiltration membrane module

Country Status (1)

Country Link
JP (1) JPH06277455A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147788A (en) * 2003-11-13 2005-06-09 Inst Nuclear Energy Research Rocaec Boric acid purification and reutilization system, and method, using reverse osmosis separation method
KR100687768B1 (en) * 2005-04-12 2007-03-02 가부시키가이샤 웰시 Water feed and distribution system and apparatus thereof
WO2010103679A1 (en) * 2009-03-11 2010-09-16 三菱重工業株式会社 Water desalination equipment and cleaning method for water desalination equipment
JP2014504879A (en) * 2011-01-27 2014-02-27 ジーイーエー メカニカル エクイップメント ゲーエムベーハー Method for treating low-concentration distillation waste liquor and apparatus for producing protein-containing products
WO2015083773A1 (en) * 2013-12-05 2015-06-11 三菱重工業株式会社 Membrane separation device, circulated water utilization system
CN106448788A (en) * 2016-12-02 2017-02-22 北京科泰兴达高新技术有限公司 Deep purifying system of water quality polluted by radioactive substances
US9611161B2 (en) 2013-12-05 2017-04-04 Mitsubishi Hitachi Power Systems, Ltd. Circulating water utilization system
US9783963B2 (en) 2013-12-05 2017-10-10 Mitsubishi Hitachi Power Systems, Ltd. Safety device for circulating water utilization system and circulating-water utilization system
KR101870598B1 (en) * 2017-05-18 2018-06-22 미츠비시 쥬코 칸쿄 카가쿠 엔지니어링 가부시키가이샤 Biological treatment apparatus, biological treatment method, and program
US10315930B2 (en) 2013-12-05 2019-06-11 Mitsubishi Hitachi Power Systems, Ltd. Method and system for remotely monitoring a group of circulating-water utilization systems
US10997673B2 (en) 2013-12-05 2021-05-04 Wota Group Llc Charging device of circulating water utilization system and circulating-water utilization system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147788A (en) * 2003-11-13 2005-06-09 Inst Nuclear Energy Research Rocaec Boric acid purification and reutilization system, and method, using reverse osmosis separation method
KR100687768B1 (en) * 2005-04-12 2007-03-02 가부시키가이샤 웰시 Water feed and distribution system and apparatus thereof
WO2010103679A1 (en) * 2009-03-11 2010-09-16 三菱重工業株式会社 Water desalination equipment and cleaning method for water desalination equipment
JP2010207748A (en) * 2009-03-11 2010-09-24 Mitsubishi Heavy Ind Ltd Desalination apparatus and method of washing the same
US9714267B2 (en) 2011-01-27 2017-07-25 Gea Mechanical Equipment Gmbh Method for processing thin stillage and apparatus for producing a protein containing product
JP2014504879A (en) * 2011-01-27 2014-02-27 ジーイーエー メカニカル エクイップメント ゲーエムベーハー Method for treating low-concentration distillation waste liquor and apparatus for producing protein-containing products
US9783963B2 (en) 2013-12-05 2017-10-10 Mitsubishi Hitachi Power Systems, Ltd. Safety device for circulating water utilization system and circulating-water utilization system
US9611161B2 (en) 2013-12-05 2017-04-04 Mitsubishi Hitachi Power Systems, Ltd. Circulating water utilization system
WO2015083773A1 (en) * 2013-12-05 2015-06-11 三菱重工業株式会社 Membrane separation device, circulated water utilization system
US10315930B2 (en) 2013-12-05 2019-06-11 Mitsubishi Hitachi Power Systems, Ltd. Method and system for remotely monitoring a group of circulating-water utilization systems
US10997673B2 (en) 2013-12-05 2021-05-04 Wota Group Llc Charging device of circulating water utilization system and circulating-water utilization system
CN106448788A (en) * 2016-12-02 2017-02-22 北京科泰兴达高新技术有限公司 Deep purifying system of water quality polluted by radioactive substances
KR101870598B1 (en) * 2017-05-18 2018-06-22 미츠비시 쥬코 칸쿄 카가쿠 엔지니어링 가부시키가이샤 Biological treatment apparatus, biological treatment method, and program

Similar Documents

Publication Publication Date Title
US6436281B2 (en) Apparatus for treating wastewater from a chemical-mechanical polishing process used in chip fabrication
JPH06277455A (en) Operation of ultrafiltration membrane module
WO1994019093A1 (en) Water purification system and method
Gupta et al. Liquid radwaste processing with crossflow microfiltration and spiral wound reverse osmosis
JPH07275671A (en) Operation of external pressure type hollow yarn ultrafiltration membrane module
JP3944973B2 (en) Reverse osmosis membrane treatment method
JP3826829B2 (en) Water treatment method using membrane filtration
JPH1199389A (en) Treatment of water containing organic component and manganese
JP3906855B2 (en) Method and apparatus for treating wastewater containing organic matter and oxidizing agent
JP3267468B2 (en) Operating method of reverse osmosis membrane device
JP4180019B2 (en) Reverse osmosis membrane cleaning method and wastewater recovery method using this method
JP3534155B2 (en) Pure water production equipment
JPH1119485A (en) Method for controlling operation in water treatment using membrane
JPH07962A (en) Production of pure water
JP3826497B2 (en) Pure water production method
KR20170057491A (en) Desalination system using controlled forward osmosis and reverse osmosis
JP3430598B2 (en) Membrane separation device
JPH07204476A (en) Water purifying apparatus and operation thereof
JP3899545B2 (en) Supply water supply device to condenser
JP2006043655A (en) Water treating apparatus and operation method therefor
JPH06134490A (en) Production equipment of make-up water for power station
CN220703339U (en) Reclaimed water recycling equipment
JPH0576870A (en) Separation of suspension
JPH0929252A (en) Method for processing by reverse osmosis membrane
JP2003300070A (en) Treatment method of metal-based cmp waste water

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000530