JPH07962A - Production of pure water - Google Patents

Production of pure water

Info

Publication number
JPH07962A
JPH07962A JP17240293A JP17240293A JPH07962A JP H07962 A JPH07962 A JP H07962A JP 17240293 A JP17240293 A JP 17240293A JP 17240293 A JP17240293 A JP 17240293A JP H07962 A JPH07962 A JP H07962A
Authority
JP
Japan
Prior art keywords
water
reverse osmosis
osmosis device
pure water
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17240293A
Other languages
Japanese (ja)
Inventor
Yasuyuki Yagi
木 康 之 八
Kazuhiko Takino
野 和 彦 滝
Yasunari Uchitomi
富 康 成 内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP17240293A priority Critical patent/JPH07962A/en
Publication of JPH07962A publication Critical patent/JPH07962A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Water Treatments (AREA)

Abstract

PURPOSE:To provide a method for effectively removing gaseous CO2 passed through a membrane in a pure water producing system mainly using a reverse osmosis device. CONSTITUTION:Carbonate components in liquid to be treated and to be passed through a reverse osmosis device 8 are all made in the form of gaseous CO2 and passed through the reverse osmosis device 8, and gaseous CO2 existing in permeated water is removed from the water by liquid-gas separation action of a membrane deaeration device 9 located in the poststage. Ions increased by injecting a pH controlling chemical are removed by a reverse osmosis device 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は純水製造システムに係
り,特に逆浸透装置と溶存酸素除去装置を有する純水の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pure water production system, and more particularly to a method for producing pure water having a reverse osmosis device and a dissolved oxygen removing device.

【0002】[0002]

【従来の技術】一般に純水製造は井戸水または水道水を
凝集沈殿や砂ろ過装置にかけさらに,活性炭吸着などを
行い,あらかじめ水中に含まれている夾雑物を前処理し
た後,イオン交換樹脂を中心とした純水製造システムで
製造される。即ち,この純水製造システムで水中の陽イ
オンを陽イオン交換樹脂装置で,水中の炭酸イオンを脱
炭酸装置で,また水中の陰イオンを陰イオン交換樹脂装
置で除去するシステムが主流である。また,近年は半導
体製造技術の進歩に伴って,その洗浄用水と半導用いら
れる純水並びに超純水の不純物濃度よりも低減される方
向であり,純水製造システム内に逆浸透装置や溶存酸素
を除去する装置が付加されることが多くなってきてい
る。
2. Description of the Related Art Generally, in the production of pure water, well water or tap water is subjected to coagulation sedimentation or a sand filter, and activated carbon is adsorbed to pretreat impurities contained in water. It is manufactured by the pure water manufacturing system. That is, in this pure water production system, a system in which cations in water are removed by a cation exchange resin device, carbonate ions in water by a decarboxylation device, and anions in water by an anion exchange resin device is the mainstream. In recent years, with the progress of semiconductor manufacturing technology, the concentration of impurities in the cleaning water and pure water used in semiconductors and ultrapure water has been decreasing. Devices for removing oxygen are often added.

【0003】しかしながら,先の陽イオン交換樹脂装置
や陰イオン交換樹脂装置さらに両イオン交換樹脂を混合
した混床式イオン交換樹脂装置は薬剤を用いて定期的に
樹脂の再生操作を行う必要があり,かつ再生に使用した
薬剤の排水処理をも行う必要があるため小,中規模の純
水製造装置においては前記の再生型イオン交換樹脂装置
を使用しない純水製造システムが適用される場合が多
い。
However, in the above-mentioned cation exchange resin device, anion exchange resin device, and mixed bed type ion exchange resin device in which both ion exchange resins are mixed, it is necessary to periodically regenerate the resin by using a chemical agent. In addition, since it is necessary to also perform wastewater treatment of the chemicals used for regeneration, the pure water production system that does not use the regenerated ion exchange resin device is often applied to small to medium-sized pure water production equipment. .

【0004】このような再生型イオン交換樹脂装置を使
用しない純水製造システムにおいては,例えば,図1
(A)に示すように前処理装置からの流出液を逆浸透装
置に通水し,その後非再生型イオン交換樹脂装置に通水
することで純水を製造する方法や図1(B)に示すよう
に2段の逆浸透装置にかけた後に非再生型イオン交換樹
脂装置に通水する方法が採用されている。
In a pure water production system that does not use such a regenerative ion exchange resin device, for example, as shown in FIG.
As shown in (A), the effluent from the pretreatment device is passed through a reverse osmosis device and then through a non-regenerative ion exchange resin device to produce pure water. As shown, a method of passing water through a non-regeneration type ion exchange resin device after applying it to a two-stage reverse osmosis device is adopted.

【0005】しかしながら,このようなシステム構成に
おいては水中に溶解している炭酸ガスが逆浸透装置内の
分離膜を通過し,重炭酸イオンとして後段の非再生型イ
オン交換樹脂の負荷となり,非再生型イオン交換樹脂の
使用期間が大幅に短くなるという欠点がある。また,水
中の炭酸ガスを逆浸透装置で除去するため,例えば図1
(C)に示すような2段逆浸透装置の中間に苛性ソーダ
などのアルカリ剤を注入して炭酸ガスを重炭酸イオンと
して逆浸透装置で分離除去する方法も有効ではあるが,
アルカリ剤の注入によって金属水酸化物が形成された逆
浸透膜上に金属スケールが生じ,膜の閉塞を招く危険性
がある。
However, in such a system configuration, the carbon dioxide gas dissolved in water passes through the separation membrane in the reverse osmosis device, and becomes a load of the non-regenerated ion exchange resin in the subsequent stage as bicarbonate ions to cause non-regeneration. There is a drawback that the period of use of the ion-exchange resin is significantly shortened. Also, in order to remove carbon dioxide gas in water with a reverse osmosis device, for example, as shown in FIG.
A method of injecting an alkaline agent such as caustic soda into the middle of the two-stage reverse osmosis device as shown in (C) and separating and removing carbon dioxide gas as bicarbonate ions by the reverse osmosis device is also effective,
There is a risk that metal scale will be generated on the reverse osmosis membrane where the metal hydroxide was formed by the injection of the alkaline agent, resulting in clogging of the membrane.

【0006】以上のように,逆浸透装置を駆使した純水
製造システムにおいては膜を通過した炭酸ガスが後段の
非再生型イオン交換樹脂装置でキャッチされ樹脂の寿命
を低下させることから,この炭酸成分の効率的な除去方
法が必要である。
As described above, in a pure water production system that makes full use of the reverse osmosis device, carbon dioxide gas that has passed through the membrane is caught by the non-regeneration type ion exchange resin device in the subsequent stage and the life of the resin is shortened. There is a need for an efficient method of removing components.

【0007】[0007]

【発明が解決しようとする課題】この発明は前記のよう
な逆浸透装置を中心とする純水製造システムにおいて,
膜を通過した炭酸ガスの効率的な除去方法を提供するこ
とにある。
SUMMARY OF THE INVENTION The present invention relates to a pure water production system centered on the above reverse osmosis device,
It is to provide an efficient method of removing carbon dioxide gas that has passed through a membrane.

【0008】[0008]

【課題を解決するための手段】この発明は水中における
炭酸成分の形態がpH5以下の酸性領域において,その
殆どが炭酸ガスとして存在することを利用するもので,
このpH調整用薬剤として塩酸などの鉱酸を使用する。
本発明は逆浸透装置に通水する被処理液中の炭酸成分を
全て炭酸ガス状とし,逆浸透装置を故意に通過させ,後
段に位置する膜脱気装置の液/ガス分離作用で透過水中
に存在する炭酸ガスを水中から除去するものであり,p
H調整用薬剤の注入により増加するイオン(例えば,H
C〓の場合はC〓イオン)は該逆浸透装置で除去するこ
とがポイントである。
The present invention utilizes the fact that the form of carbonic acid component in water is present as carbon dioxide gas in the acidic region of pH 5 or less.
A mineral acid such as hydrochloric acid is used as the pH adjusting agent.
In the present invention, all the carbonic acid components in the liquid to be treated passing through the reverse osmosis device are made into carbon dioxide gas, and are intentionally passed through the reverse osmosis device, and the permeated water is separated by the liquid / gas separation action of the membrane degassing device located at the subsequent stage. The carbon dioxide gas existing in
Ions (for example, H
In the case of C〓, the point is to remove C〓 ions by the reverse osmosis device.

【0009】[0009]

【実 施 例】次に図面を用いて本発明を具体的に説明
する。図2は本発明方法の一実施例を示す純水製造シス
テムの構成図である。主な装置構成は井戸水または水道
水を凝集沈殿や砂ろ過及び活性炭処理する前処理システ
ム1と該前処理システムから流出する被処理水のpHを
調整するpH調整装置6及びpHを検出し,所定のpH
に保持するpH調整用薬剤の注入装置7,所定のpHに
調整された被処理水中の不純物イオンを除去する1段目
の逆浸透装置8,さらに1段目の逆浸透装置からの流出
水中に含まれる炭酸成分及び溶存酸素を除去する膜脱気
装置9,微量濃度のイオン成分を除去する2段目の逆浸
透装置10,さらに陽イオン交換樹脂と陰イオン交換樹
脂を混合した混床式のイオン交換樹脂装置11からなっ
ている。
EXAMPLES Next, the present invention will be specifically described with reference to the drawings. FIG. 2 is a block diagram of a pure water production system showing an embodiment of the method of the present invention. The main equipment configuration is a pretreatment system 1 for coagulating sedimentation, sand filtration, and activated carbon treatment of well water or tap water, and a pH adjusting device 6 for adjusting the pH of the water to be treated flowing out of the pretreatment system, and a predetermined pH, PH of
Injecting device 7 for pH-adjusting chemicals held at 1, first-stage reverse osmosis device 8 for removing impurity ions in the water to be treated that has been adjusted to a predetermined pH, and further into effluent water from the first-stage reverse osmosis device Membrane degassing device 9 for removing contained carbonic acid components and dissolved oxygen, second-stage reverse osmosis device 10 for removing trace amounts of ionic components, and a mixed bed type in which cation exchange resin and anion exchange resin are mixed. It is composed of an ion exchange resin device 11.

【0010】前処理システム1から流出する被処理水中
には井戸水または水道水など供給する原水の性状にもよ
るが,20〜100ppmの炭酸成分が含まれている。この炭酸
成分は水中に炭酸ガスとして存在するものと重炭酸イオ
ンとして存在するものの2種類があり,通常の水中には
30〜60%の炭酸ガスが含まれている。水中の炭酸成分は
pH5の状態では,その殆どが炭酸ガスとして存在す
る。即ち,本発明においてはpH調整槽6によって,被
処理水中の炭酸成分をガス状とする作用をもつ。ここ
で,pH調整用薬剤として塩酸を用いた場合は水中に存
在している重炭酸イオンが炭酸に変化する反応が起こ
る。逆浸透膜はガス状の成分をそのまま通過させる性質
であることから,1段目の逆浸透装置では炭酸ガスを除
去することができずに透過水中に残留している。水中に
含まれる炭酸ガスはこのように被処理水中にリークする
が,pH調整用薬剤の添加によって増加した陰イオン成
分は1段目の逆浸透装置で,その殆どが除去される。
The water to be treated flowing out of the pretreatment system 1 contains 20 to 100 ppm of carbonic acid component, depending on the properties of the raw water supplied such as well water or tap water. There are two types of carbonic acid components, one that exists as carbon dioxide gas in water and one that exists as bicarbonate ions.
Contains 30-60% carbon dioxide. Most of carbonic acid in water exists as carbon dioxide at pH 5. That is, in the present invention, the pH adjusting tank 6 has a function of making the carbonic acid component in the water to be treated into a gas state. Here, when hydrochloric acid is used as a pH adjusting agent, a reaction in which bicarbonate ions existing in water are changed to carbonic acid occurs. Since the reverse osmosis membrane has a property of passing a gaseous component as it is, carbon dioxide gas cannot be removed by the first-stage reverse osmosis device and remains in the permeated water. The carbon dioxide gas contained in the water leaks into the water to be treated in this manner, but most of the anion component increased by the addition of the pH adjusting agent is removed by the first-stage reverse osmosis device.

【0011】膜脱気装置9はガス分離膜によって被処理
水と真空排気部とに分離されており,被処理水中に含ま
れている炭酸ガスは真空排気部へとガス分離膜を介して
移動する。この作用によって,被処理水中の炭酸ガスは
水中より除去される。膜脱気装置9から流出した被処理
水は,さらに2段目の逆浸透装置へと送られるが,ここ
で1段目の逆浸透装置の逆浸透装置で除去されずに残留
した不純物イオン成分が除去される。
The membrane deaerator 9 is separated into water to be treated and a vacuum exhaust unit by a gas separation membrane, and carbon dioxide gas contained in the water to be treated moves to the vacuum exhaust unit through the gas separation membrane. To do. By this action, carbon dioxide gas in the water to be treated is removed from the water. The water to be treated flowing out from the membrane degassing device 9 is further sent to the second-stage reverse osmosis device, where the impurity ion components remaining without being removed by the first-stage reverse osmosis device. Are removed.

【0012】従って,本発明によれば逆浸透装置の前段
に塩酸などの鉱酸を添加し,被処理水中のpHを酸性領
域とすることで水中の炭酸成分をガス状とし,逆浸透装
置の後段(前記は2段逆浸透装置の中間)に設けた膜脱
気装置にかけることで炭酸成分を除去し,このpH調整
に用いた塩酸由来の不純物イオンは1段目及び2段目の
逆浸透装置で除去することで高純度の純水が製造可能と
なる。
Therefore, according to the present invention, a mineral acid such as hydrochloric acid is added before the reverse osmosis device to bring the pH of the water to be treated into an acidic region so that the carbonic acid component in the water becomes gaseous and the reverse osmosis device By removing the carbonic acid component by applying it to the membrane deaerator installed at the latter stage (the above is the middle of the second stage reverse osmosis device), the impurity ion derived from hydrochloric acid used for this pH adjustment is the reverse of the first and second stages. High-purity pure water can be produced by removing it with a permeation device.

【0013】図2は本発明を実施した場合の一実施例を
示している。井戸水を原水として凝集沈殿や砂ろ過及び
活性炭処理を行った被処理水に対して塩酸を注入し,p
Hを6.0とした後,中間に膜脱気装置を負荷した2段の
逆浸透装置に通水した。図3はこれら一連の処理装置に
かけた後の被処理水の比抵抗値を連続測定した結果であ
る。なお,表1に凝集沈殿などの前処理を行った後の被
処理水の水質を示した。さらに,本発明方法が従来法と
どの程度性能が異なるかを比較するため,pH調整を行
わずに2段の逆浸透装置のみに通水した結果を同じく図
3に付記した。
FIG. 2 shows an embodiment of the present invention. Hydrochloric acid was injected into the treated water that had been subjected to coagulation sedimentation, sand filtration, and activated carbon treatment using well water as raw water, and p
After setting H to 6.0, water was passed through a two-stage reverse osmosis device with a membrane degassing device loaded in the middle. FIG. 3 shows the results of continuous measurement of the specific resistance value of the water to be treated after being subjected to these series of treatment devices. In addition, Table 1 shows the water quality of the water to be treated after pretreatment such as coagulation sedimentation. Further, in order to compare the performance of the method of the present invention with that of the conventional method, the results of passing water only through the two-stage reverse osmosis device without pH adjustment are also shown in FIG.

【0014】図3に示した結果から明らかなように,従
来の2段逆浸透装置から流出する処理水の比抵抗値が
0.3〜0.5MΩcmであるのに対して,本発明方法の膜脱気
装置を2段逆浸透装置の中間に付加した場合は2〜3M
Ωcmと非常に良好な比抵抗値を得た。またこの処理水中
に残存している炭酸成分及び溶存酸素量を測定した結
果,従来法の場合は炭酸:1500ppb ,溶存酸素:2800pp
b が残存しているのに対して,本発明方法では炭酸は定
量限界値の50ppb 以下,溶存酸素は10ppb 以下と炭酸成
分及び溶存酸素ともに良好な結果であった。
As is clear from the results shown in FIG. 3, the specific resistance value of the treated water flowing out from the conventional two-stage reverse osmosis device is
0.3 to 0.5 MΩcm, while 2 to 3 M when the membrane degassing apparatus of the method of the present invention is added in the middle of the two-stage reverse osmosis apparatus
A very good specific resistance value of Ωcm was obtained. In addition, the results of measuring the carbonic acid component and the amount of dissolved oxygen remaining in this treated water showed that carbon dioxide was 1500 ppb and dissolved oxygen was 2800 pp in the case of the conventional method.
In contrast to the remaining b, in the method of the present invention, carbonic acid was less than 50 ppb and the dissolved oxygen was less than 10 ppb, which were good results for both the carbonic acid component and the dissolved oxygen.

【0015】さらに図4は従来法と本発明方法で得られ
る処理水を同一容量のイオン交換樹脂装置に通水して,
イオン交換樹脂のブレイク時間を比較した結果である
が,先に述べたように,被処理水中の比抵抗値の違いが
イオン交換樹脂のブレイク時間に大きく影響し,本発明
方法を採用することで少なくとも4倍程度のイオン交換
樹脂の寿命を延長できることが分かった。
Furthermore, FIG. 4 shows that treated water obtained by the conventional method and the method of the present invention are passed through an ion exchange resin device of the same volume,
It is a result of comparing the break times of the ion exchange resins. As described above, the difference in the specific resistance value of the water to be treated has a great influence on the break times of the ion exchange resins. It was found that the life of the ion exchange resin can be extended by at least 4 times.

【0016】[0016]

【発明の効果】以上のように,本発明方法を採用するこ
とで水中に含まれている炭酸成分を効率よく除去するこ
とが可能となり,通常の大型規模で用いられている陽イ
オン交換樹脂と脱炭酸装置及び陰イオン交換樹脂からな
る方式と同様な純度の純水が逆浸透装置を駆使したシス
テムで製造できることが分かった。また以上,本発明方
法による純水製造システムは2段逆浸透法について評価
したが,本発明は単段の逆浸透装置に対しても有効であ
ることはいうまでもない。この場合は処理水の比抵抗値
は1MΩcm程度と多少不十分ではあるものの用途によっ
ては洗浄水として使用することも可能である。
INDUSTRIAL APPLICABILITY As described above, by adopting the method of the present invention, it becomes possible to efficiently remove carbonic acid components contained in water, and it is possible to use a cation exchange resin that is usually used on a large scale. It was found that pure water having the same purity as that of the decarboxylation device and the anion exchange resin can be produced by the system using the reverse osmosis device. Although the pure water production system according to the method of the present invention has been evaluated by the two-stage reverse osmosis method as described above, it goes without saying that the present invention is also effective for a single-stage reverse osmosis apparatus. In this case, the specific resistance of the treated water is about 1 MΩcm, which is somewhat insufficient, but it can be used as washing water depending on the application.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の純水製造システムの概略構成図。FIG. 1 is a schematic configuration diagram of a conventional pure water production system.

【図2】本発明方法の一実施例を示す概略構成図。FIG. 2 is a schematic configuration diagram showing an embodiment of the method of the present invention.

【図3】本発明方法と従来法との製造比較図。FIG. 3 is a manufacturing comparison diagram of the method of the present invention and the conventional method.

【図4】本発明方法と従来法との処理水を用いてのイオ
ン交換樹脂による性能比較図。
FIG. 4 is a performance comparison diagram of the method of the present invention and a conventional method using ion-exchange resin using treated water.

【符号の説明】[Explanation of symbols]

1 前処理システム 2 1段目の逆浸透装置 3 2段目の逆浸透装置 4 混床式イオン交換樹脂装置 5 アルカリ注入装置 6 pH調整装置 7 pH調整薬剤注入装置 8 本発明法の1段目の逆浸透装置 9 膜脱気装置 10 本発明法の2段目の逆浸透装置 11 非再生のイオン交換樹脂装置 1 Pretreatment system 2 1st-stage reverse osmosis device 3 2nd-stage reverse osmosis device 4 Mixed bed type ion exchange resin device 5 Alkali injection device 6 pH adjustment device 7 pH adjustment chemical injection device 8 First step of the method of the present invention Reverse osmosis device 9 Membrane degassing device 10 Second stage reverse osmosis device of the method of the present invention 11 Non-regenerated ion exchange resin device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 井戸水又は水道水を逆浸透装置を含む純
水製造システムに通水し,純水を製造するシステムにお
いて,該逆浸透装置の事前にpH調整槽を設け,原水原
水のpHを4〜6に調整した後,該逆浸透装置に通水
し,さらに該逆浸透装置から流出する処理水をガス透過
膜で液層部と気層部が区分されている,いわゆる膜脱気
装置に通水することで該逆浸透装置の処理水中に含まれ
ている溶存炭酸と溶存酸素とを同時に除去することを特
徴とする純水の製造方法。
1. In a system for producing pure water by passing well water or tap water through a pure water production system including a reverse osmosis device, a pH adjusting tank is provided in advance of the reverse osmosis device to adjust the pH of raw water raw water. A so-called membrane deaerator in which the liquid layer portion and the gas layer portion are separated by a gas permeable membrane for the treated water flowing through the reverse osmosis device after being adjusted to 4 to 6 and further flowing out from the reverse osmosis device. A method for producing pure water, characterized in that the dissolved carbonic acid and the dissolved oxygen contained in the treated water of the reverse osmosis device are removed at the same time by passing water through the water.
【請求項2】 純水製造システム内の逆浸透装置が単段
または2段構成であり,単段または第1段目の逆浸透装
置の後段に膜脱気装置として中空糸状のガス透過膜また
はスパイラル状のガス透過膜が内蔵されていることを特
徴とする特許請求範囲第1項に記載の純水の製造方法。
2. The reverse osmosis device in the pure water production system has a single-stage or two-stage configuration, and a hollow fiber-shaped gas permeable membrane or a membrane degassing device is provided at the subsequent stage of the single-stage or first-stage reverse osmosis device. The method for producing pure water according to claim 1, wherein a spiral gas-permeable film is incorporated.
【請求項3】 pH調整に使用する薬剤が塩酸,硫酸,
硝酸などの鉱酸であり,該逆浸透装置に流入する前に,
これら薬品によって所定のpHに調整する手段を付加し
たことを特徴とする特許請求範囲第1項に記載の純水の
製造方法。
3. The agent used for pH adjustment is hydrochloric acid, sulfuric acid,
A mineral acid such as nitric acid, before flowing into the reverse osmosis device,
The method for producing pure water according to claim 1, characterized in that means for adjusting the pH to a predetermined value by using these chemicals is added.
JP17240293A 1993-06-18 1993-06-18 Production of pure water Pending JPH07962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17240293A JPH07962A (en) 1993-06-18 1993-06-18 Production of pure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17240293A JPH07962A (en) 1993-06-18 1993-06-18 Production of pure water

Publications (1)

Publication Number Publication Date
JPH07962A true JPH07962A (en) 1995-01-06

Family

ID=15941289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17240293A Pending JPH07962A (en) 1993-06-18 1993-06-18 Production of pure water

Country Status (1)

Country Link
JP (1) JPH07962A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0844907A1 (en) * 1995-08-07 1998-06-03 Zenon Environmental Inc. Producing high purity water using reverse osmosis
WO1998039085A1 (en) * 1997-03-03 1998-09-11 Zenon Environmental, Inc. High resistivity water production
EP0899239A1 (en) * 1997-08-28 1999-03-03 Hager + Elsässer GmbH Method and apparatus for treating water by reverse osmosis or nanofiltration
JP2002001069A (en) * 2000-06-21 2002-01-08 Kurita Water Ind Ltd Method for producing pure water
JP2007268352A (en) * 2006-03-30 2007-10-18 Matsushita Electric Ind Co Ltd Water treatment method and water treatment apparatus
JP2008080255A (en) * 2006-09-28 2008-04-10 Nippon Rensui Co Ltd Pure water making apparatus
US11174922B2 (en) 2019-02-26 2021-11-16 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions
US11215268B2 (en) 2018-11-06 2022-01-04 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0844907A1 (en) * 1995-08-07 1998-06-03 Zenon Environmental Inc. Producing high purity water using reverse osmosis
EP0844907A4 (en) * 1995-08-07 1998-09-02 Zenon Environmental Inc Producing high purity water using reverse osmosis
WO1998039085A1 (en) * 1997-03-03 1998-09-11 Zenon Environmental, Inc. High resistivity water production
EP0899239A1 (en) * 1997-08-28 1999-03-03 Hager + Elsässer GmbH Method and apparatus for treating water by reverse osmosis or nanofiltration
JP2002001069A (en) * 2000-06-21 2002-01-08 Kurita Water Ind Ltd Method for producing pure water
JP2007268352A (en) * 2006-03-30 2007-10-18 Matsushita Electric Ind Co Ltd Water treatment method and water treatment apparatus
JP2008080255A (en) * 2006-09-28 2008-04-10 Nippon Rensui Co Ltd Pure water making apparatus
US11215268B2 (en) 2018-11-06 2022-01-04 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same
US11174922B2 (en) 2019-02-26 2021-11-16 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions

Similar Documents

Publication Publication Date Title
US6267891B1 (en) High purity water production using ion exchange
JPH1085743A (en) Method and apparatus for treating water containing boron
JPH07962A (en) Production of pure water
JPS62110795A (en) Device for producing high-purity water
JP2013193004A (en) Pure water production method
JPH11267645A (en) Production of pure water
JPH10314735A (en) Pure water preparation process
JPH0747371A (en) Treatment of fluoride-containing water
JPH1080684A (en) Device and method for treating boron-containing water
JP4208270B2 (en) Pure water production method
JP2950621B2 (en) Ultrapure water production method
JP2891790B2 (en) Regeneration method of anion exchange resin
JP3536294B2 (en) Pure water production method
JP6968682B2 (en) Manufacturing method of permeated water, water treatment device and operation method of the water treatment device
JP3951200B2 (en) Pure water production equipment
JPS586297A (en) Treatment of raw water of high content of silica
JP3534155B2 (en) Pure water production equipment
JPH0380991A (en) Method and apparatus for treating supplied water to boiler
CN112759031A (en) Ultrapure water treatment process and system
RU2225369C1 (en) Natural water treatment process
JP3826497B2 (en) Pure water production method
JP2006122908A (en) Pure water producing method
JP3992996B2 (en) Wastewater treatment method and apparatus
KR100689693B1 (en) Manufacturing method of ultrapure water
JPH04100589A (en) System and apparatus for water treatment