JP3899545B2 - Supply water supply device to condenser - Google Patents

Supply water supply device to condenser Download PDF

Info

Publication number
JP3899545B2
JP3899545B2 JP04893996A JP4893996A JP3899545B2 JP 3899545 B2 JP3899545 B2 JP 3899545B2 JP 04893996 A JP04893996 A JP 04893996A JP 4893996 A JP4893996 A JP 4893996A JP 3899545 B2 JP3899545 B2 JP 3899545B2
Authority
JP
Japan
Prior art keywords
water
condenser
membrane filtration
makeup
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04893996A
Other languages
Japanese (ja)
Other versions
JPH09239362A (en
Inventor
好輝 三角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP04893996A priority Critical patent/JP3899545B2/en
Publication of JPH09239362A publication Critical patent/JPH09239362A/en
Application granted granted Critical
Publication of JP3899545B2 publication Critical patent/JP3899545B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は復水器への補給水供給装置に係り、特に復水器への微生物や微細粒子、鉄クラッドの流入を防止して、復水系の水質の安定化及び運転効率の向上を図る復水器への補給水供給装置に関する。
【0002】
【従来の技術】
火力発電所や原子力発電所等においては、純水を加熱して蒸気を発生させ、これによりタービンを駆動し、発電機を運転している。通常の場合、復水器〜ボイラ〜復水器の循環系外へ蒸気を供給しているため、この循環系に対し系外から純水を補給する。
【0003】
図2は、従来の補給水浄化系統及び復水循環系統を示す系統図であり、タービン1から戻された復水器2内の復水は、循環系内で復水中に混入した鉄クラッド(酸化鉄粒子の混合物)が中空糸膜フィルター3で除去された後、混床型イオン交換装置4でイオン交換処理される。そして、低圧加熱器5、脱気器6、高圧加熱器7及びボイラ8を経て発生した蒸気がタービン1に供給され、復水が復水器2に循環される。
【0004】
復水器2に補給される補給水(純水)は、工水又は市水等の原水が、原水槽9を経て前処理装置10及び純水装置11で処理され、純水タンク12及び補給水タンク13を経て供給される。前処理装置10は、一般に、原水が工水の場合は凝集・加圧浮上濾過装置であり、原水が市水の場合は濾過装置である。また、純水装置11は、4床5塔式イオン交換装置、或いは、4床5塔式イオン交換装置と混床式イオン交換装置とで構成される。
【0005】
なお、復水循環系においては、発電量の変動により復水循環量が変動して、復水器2の下部水槽が上昇する場合があるため、復水器2内の復水を補給水タンク13に返送する配管が設けられている。
【0006】
このような従来の補給水浄化系統及び復水循環系統においては、復水循環系に下記▲1▼〜▲4▼の汚染物質が流入するため、復水循環系の中空糸膜フィルター3の差圧が上昇し易く、逆洗頻度が高い。なお、この差圧上昇は、通水流束を高く設定した場合ほど起こり易い。
【0007】
▲1▼ 前処理装置で除去できなかった原水由来の微細粒子
▲2▼ 純水装置やタンク内で発生した微生物
▲3▼ 大気中からタンク内に混入した微細粒子(純水タンクや補給水タンクは完全な密閉構造ではないため、微細粒子が混入する可能性がある。)
▲4▼ 復水循環系内で発生し、余剰水中に混入して補給水タンクに流入した鉄クラッド
特開平6−134490号公報には、補給水浄化系統の純水装置に膜濾過装置を設けることが提案されており、このように膜濾過装置を設けたものであれば、上記▲1▼の原水由来の汚染物質の復水循環系統への流入を防止することができる。
【0008】
【発明が解決しようとする課題】
しかしながら、純水装置に膜濾過装置を適用したものでは、原水由来の汚染物質の除去は可能であるが、前記▲4▼のように復水循環系内で発生し、余剰水中に混入して補給水タンクに流入し、再度復水循環系内に持ち込まれる鉄クラッドや、▲3▼のようにタンクにおいて混入する微細粒子及び▲2▼のように純水装置の後段で発生する微生物を除去することはできない。このため、復水循環系の中空糸膜フィルターの差圧上昇を十分に抑制することができない。
【0009】
本発明は上記従来の問題点を解決し、補給水浄化系統から復水循環系統への汚染物質の流入を大幅に低減して復水循環系の中空糸膜フィルターの差圧上昇を抑え、これにより中空糸膜フィルターの逆洗頻度の低減及び運転効率の向上を図る復水器への補給水供給装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の復水器への補給水供給装置は、原水を浄化手段にて浄化した補給水を復水器に供給する復水器への補給水供給装置において、該浄化手段からの水をタンクを経て直接膜濾過装置に通し、該膜濾過装置の透過水を直接復水器に供給する補給水供給装置であって、前記復水器の余剰水が前記タンクに返送されることを特徴とする。
【0011】
本発明の復水器への補給水供給装置では、膜濾過装置において、原水由来の微細粒子及び浄化系内で発生する微生物や混入する微細粒子はもとより、復水循環系から余剰水中に混入して補給水中に流入する鉄クラッドを除去し、得られた透過水を直接復水器に供給するため、これらの汚染物質が復水循環系に流入するのを確実に防止することができる。
【0012】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。
【0013】
図1は本発明の復水器への補給水供給装置の一実施例を示す系統図である。図1において、図2に示す部材と同一機能を奏する部材には同一符号を付してある。
【0014】
図1に示す本発明の復水器への補給水供給装置は、補給水タンク13からの補給水を膜濾過装置14に通水し、透過水を復水器2に供給する点が、図2の従来装置とは異なり、その他は同様の構成とされている。
【0015】
本発明において、膜濾過装置としてはクロスフロー型や全量型濾過装置を用いることができる。なお、全量濾過にて通水した場合、濾過する膜の目の細かさにも左右されるものの、差圧上昇速度は速く、短期で逆洗処理ないし膜の交換をせざるを得なくなる。また、仮りに逆洗操作をしても完全に差圧が回復しないことが多い。一方、クロスフロー濾過方式では濃縮水を排出することにより、微細粒子や微生物、鉄クラッド等の汚染物質を系外へ排出して復水循環系への流入を確実に防止することができるので好ましい。
【0016】
この膜濾過装置14の濃縮水は、原水槽9に返送して水回収率を高め、一方で濃縮水中の微細粒子等は前処理装置10の濾過装置や純水装置11のイオン交換装置等で捕捉し、これを汚泥引き抜き又は逆洗等で系外へ排出するようにするのが好ましい。濃縮水はまた発電所設備内の冷却水等として利用しても良い。
【0017】
本発明で用いる膜濾過装置の膜としては、MF(精密濾過)膜、UF(限外濾過)膜又はRO(逆浸透)膜が好ましく、エネルギー効率の面からはRO膜以外のMF膜又はUF膜、特にスパイラル型UF膜が好適である。
【0018】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
【0019】
実施例1
工水を凝集濾過処理した後、4床5塔式イオン交換装置及び混床式イオン交換装置で処理し、純水タンク及び補給水タンクを経て復水器に供給する実機の補給水供給装置において、この補給水に下記模擬鉄クラッドを3μg−Fe/Lとなるように連続注入し、スパイラル型UF膜濾過装置(日東電工社製「NTU−3150」膜サイズ:4インチ)に4m3 /m2 /日で通水し、この透過水を直接に復水器に供給し、この復水器内の水を中空糸膜フィルター(住友ベークライト社製「FPM−8000」孔径:0.03μm以下)に流束0.3m3 /m2 −膜/hrとなるように通水した。なお、水温は20〜25℃に調整した。また、中空糸膜フィルターの逆洗は、原則として差圧が0.3kg/cm2 上昇した時点で行うこととした。
【0020】
模擬鉄クラッド
四三酸化鉄(Fe34 ):三二酸化鉄(Fe23 ):水酸化第二鉄(FeO(OH))=7:2:1(重量比)の混合物
膜濾過条件
膜有効圧力:1.0kg/cm2
ベッセル(膜充填圧力容器)の濃縮水出口流量:600L/hr
中空糸膜フィルターの差圧(30℃補正値)の経時変化を図3に示す。また、試験期間(約2ケ月)中の逆洗回数及び試験終了時の差圧の初期値に対する上昇幅を表1に示す。
【0021】
比較例1
実施例1において、UF膜濾過装置を用いず、補給水に模擬鉄クラッドを注入した水を直接中空糸膜フィルターに供給したこと以外は同様に行った。中空糸膜フィルターの差圧の経時変化を図3に示す。また、逆洗回数及び差圧の上昇幅を表1に示す。
【0022】
【表1】

Figure 0003899545
【0023】
図3及び表1より、本発明によれば、復水循環系の中空糸膜フィルターの差圧の上昇を抑えることができ、逆洗頻度を低減することができることがわかる。
【0024】
【発明の効果】
以上詳述した通り、本発明の復水器への補給水供給装置は、補給水浄化系統から復水循環系統への汚染物質の流入を大幅に低減することができるものであり、次の効果を奏する。
【0025】
▲1▼ 復水循環系の復水浄化用中空糸膜フィルターの逆洗頻度を低減することができる。
▲2▼ 中空糸膜フィルターの浄化時間(逆洗と逆洗の間隔)が延長され、運転効率が向上する。
▲3▼ 逆洗後の中空糸膜の差圧回復効率も向上し、薬品洗浄頻度を低減することができる。
▲4▼ 中空糸膜フィルターの連続運転により復水循環系の復水水質が安定する。
【図面の簡単な説明】
【図1】本発明の復水器への補給水供給装置の一実施例を示す系統図である。
【図2】従来の補給水浄化系統及び復水循環系統を示す系統図である。
【図3】実施例1及び比較例1の結果を示すグラフである。
【符号の説明】
1 タービン
2 復水器
3 中空糸膜フィルター
4 混床型イオン交換装置
5 低圧加熱器
6 脱気器
7 高圧加熱器
8 ボイラ
9 原水槽
10 前処理装置
11 純水装置
12 純水タンク
13 補給水タンク
14 膜濾過装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a makeup water supply device to a condenser, and in particular, to prevent inflow of microorganisms, fine particles, and iron clad into the condenser, thereby stabilizing the water quality of the condenser system and improving the operation efficiency. The present invention relates to a makeup water supply device to a water vessel.
[0002]
[Prior art]
In thermal power plants, nuclear power plants and the like, pure water is heated to generate steam, thereby driving a turbine and operating a generator. Usually, since steam is supplied outside the circulation system of the condenser, the boiler, and the condenser, pure water is replenished to the circulation system from outside the system.
[0003]
FIG. 2 is a system diagram showing a conventional makeup water purification system and a condensate circulation system. Condensate in the condenser 2 returned from the turbine 1 is iron clad (oxidation) mixed in the condensate in the circulation system. After the iron particle mixture) is removed by the hollow fiber membrane filter 3, the mixture is ion-exchanged by the mixed-bed ion exchange device 4. Then, steam generated through the low-pressure heater 5, the deaerator 6, the high-pressure heater 7 and the boiler 8 is supplied to the turbine 1, and the condensate is circulated to the condenser 2.
[0004]
Supply water (pure water) to be supplied to the condenser 2 is treated with raw water such as industrial water or city water by the pretreatment device 10 and the pure water device 11 through the raw water tank 9, and the pure water tank 12 and supply water. It is supplied via a water tank 13. The pretreatment device 10 is generally a flocculation / pressurization flotation filtration device when the raw water is industrial water, and a filtration device when the raw water is city water. Moreover, the pure water apparatus 11 is comprised with a 4 bed 5 tower type ion exchange apparatus or a 4 bed 5 tower type ion exchange apparatus and a mixed bed type ion exchange apparatus.
[0005]
In the condensate circulation system, the condensate circulation amount may fluctuate due to fluctuations in the amount of power generation, and the lower water tank of the condenser 2 may rise, so the condensate in the condenser 2 is transferred to the makeup water tank 13. A return pipe is provided.
[0006]
In such conventional make-up water purification system and condensate circulation system, the following (1) to (4) pollutants flow into the condensate circulation system, so that the differential pressure of the hollow fiber membrane filter 3 in the condensate circulation system increases. Easy to do and high frequency of backwashing. Note that this increase in differential pressure is more likely to occur when the water flow rate is set higher.
[0007]
(1) Fine particles derived from raw water that could not be removed by the pretreatment device (2) Microorganisms generated in the pure water device or tank (3) Fine particles mixed in the tank from the atmosphere (pure water tank or makeup water tank) Is not a completely sealed structure, so fine particles may be mixed in.)
(4) Iron clad generated in the condensate circulation system, mixed in surplus water and flowing into the make-up water tank is disclosed in JP-A-6-134490, in which a membrane filtration device is provided in the pure water device of the make-up water purification system. If the membrane filtration device is provided in this way, it is possible to prevent the pollutant derived from the raw water (1) from flowing into the condensate circulation system.
[0008]
[Problems to be solved by the invention]
However, when a membrane filtration device is applied to a pure water device, it is possible to remove contaminants derived from raw water. However, as described in (4) above, it is generated in the condensate circulation system and mixed with surplus water for replenishment. Remove iron clad flowing into the water tank and brought back into the condensate circulation system, fine particles mixed in the tank as in (3), and microorganisms generated in the latter stage of the deionized water device as in (2). I can't. For this reason, the differential pressure | voltage rise of the hollow fiber membrane filter of a condensate circulation system cannot fully be suppressed.
[0009]
The present invention solves the above-mentioned conventional problems, significantly reduces the inflow of contaminants from the makeup water purification system to the condensate circulation system, and suppresses an increase in the differential pressure of the hollow fiber membrane filter in the condensate circulation system, thereby An object of the present invention is to provide a makeup water supply device for a condenser that reduces the frequency of backwashing of the membrane filter and improves the operation efficiency.
[0010]
[Means for Solving the Problems]
In condensate water replenishment water supply device to the instrument, makeup water supply device to the condenser and supplies the clarified makeup water to the condenser at the purifier raw water of the present invention, the tank water from the purifying means through direct membrane filtering device through a feature that a makeup water supply device for supplying permeate to direct condenser membrane filtration device, excess water in the condenser is returned to the tank To do.
[0011]
In the makeup water supply device to the condenser of the present invention, in the membrane filtration device, not only the fine particles derived from the raw water and the microorganisms generated in the purification system and the mixed fine particles are mixed into the surplus water from the condensate circulation system. Since the iron clad flowing into the makeup water is removed and the obtained permeate is directly supplied to the condenser, it is possible to reliably prevent these contaminants from flowing into the condensate circulation system.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0013]
FIG. 1 is a system diagram showing an embodiment of an apparatus for supplying makeup water to a condenser according to the present invention. In FIG. 1, members having the same functions as those shown in FIG.
[0014]
The supply water supply device to the condenser of the present invention shown in FIG. 1 is that the makeup water from the makeup water tank 13 is passed through the membrane filtration device 14 and the permeated water is supplied to the condenser 2. Unlike the conventional apparatus of No. 2, the other configurations are the same.
[0015]
In the present invention, as the membrane filtration device, a crossflow type or a full-volume type filtration device can be used. In addition, when the water is passed through the entire amount, although the speed of the differential pressure is high, the rate of increase in the differential pressure is high, and the backwash treatment or the membrane must be replaced in a short time. In many cases, even if a backwash operation is performed, the differential pressure is not completely recovered. On the other hand, the cross flow filtration method is preferable because the concentrated water is discharged, so that contaminants such as fine particles, microorganisms, and iron clad can be discharged out of the system and reliably prevented from flowing into the condensate circulation system.
[0016]
The concentrated water of the membrane filtration device 14 is returned to the raw water tank 9 to increase the water recovery rate, while fine particles and the like in the concentrated water are removed by the filtration device of the pretreatment device 10 or the ion exchange device of the pure water device 11. It is preferable to capture and discharge it out of the system by sludge extraction or backwashing. The concentrated water may also be used as cooling water in the power plant equipment.
[0017]
As the membrane of the membrane filtration device used in the present invention, an MF (microfiltration) membrane, a UF (ultrafiltration) membrane or an RO (reverse osmosis) membrane is preferable. From the viewpoint of energy efficiency, an MF membrane other than the RO membrane or UF A membrane, particularly a spiral UF membrane, is preferred.
[0018]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0019]
Example 1
In the supply water supply device of the actual machine, which is treated with a 4-bed 5-tower ion exchange device and a mixed bed ion exchange device after being subjected to coagulation filtration treatment, and supplied to the condenser through the pure water tank and the make-up water tank Then, the following simulated iron clad is continuously injected into this make-up water so as to be 3 μg-Fe / L, and 4 m 3 / m is applied to a spiral type UF membrane filtration device (“NTU-3150” membrane size: 4 inches manufactured by Nitto Denko Corporation). 2 / day, and the permeate is directly supplied to the condenser. The water in the condenser is a hollow fiber membrane filter (“FPM-8000” manufactured by Sumitomo Bakelite Co., Ltd., pore size: 0.03 μm or less). The water was passed through such that the flux was 0.3 m 3 / m 2 -membrane / hr. The water temperature was adjusted to 20-25 ° C. In addition, the back washing of the hollow fiber membrane filter was performed in principle when the differential pressure increased by 0.3 kg / cm 2 .
[0020]
Simulated iron clad <br/> triiron tetroxide (Fe 3 O 4): ferric oxide (Fe 2 O 3): Ferric hydroxide (FeO (OH)) = 7 : 2: 1 (weight ratio) blend
Membrane filtration conditions Membrane effective pressure: 1.0 kg / cm < 2 >
Concentrated water outlet flow rate of vessel (membrane-filled pressure vessel): 600 L / hr
FIG. 3 shows changes with time in the differential pressure (corrected value at 30 ° C.) of the hollow fiber membrane filter. Table 1 shows the number of backwashes during the test period (about 2 months) and the range of increase in the differential pressure at the end of the test relative to the initial value.
[0021]
Comparative Example 1
In Example 1, the same procedure was performed except that the UF membrane filtration device was not used and water in which simulated iron clad was injected into makeup water was directly supplied to the hollow fiber membrane filter. FIG. 3 shows changes with time in the differential pressure of the hollow fiber membrane filter. Table 1 shows the number of backwashes and the range of increase in the differential pressure.
[0022]
[Table 1]
Figure 0003899545
[0023]
3 and Table 1, it can be seen that according to the present invention, an increase in the differential pressure of the condensate circulation hollow fiber membrane filter can be suppressed, and the backwash frequency can be reduced.
[0024]
【The invention's effect】
As described above in detail, the makeup water supply device to the condenser of the present invention can greatly reduce the inflow of contaminants from the makeup water purification system to the condensate circulation system, and has the following effects. Play.
[0025]
(1) The frequency of backwashing of the condensate purification hollow fiber membrane filter in the condensate circulation system can be reduced.
(2) The purification time (interval between backwashing) of the hollow fiber membrane filter is extended, and the operation efficiency is improved.
(3) The differential pressure recovery efficiency of the hollow fiber membrane after backwashing can be improved and the frequency of chemical washing can be reduced.
(4) Condensate quality in the condensate circulation system is stabilized by continuous operation of the hollow fiber membrane filter.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of a makeup water supply apparatus for a condenser according to the present invention.
FIG. 2 is a system diagram showing a conventional makeup water purification system and a condensate circulation system.
FIG. 3 is a graph showing the results of Example 1 and Comparative Example 1.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Turbine 2 Condenser 3 Hollow fiber membrane filter 4 Mixed bed type ion exchange device 5 Low pressure heater 6 Deaerator 7 High pressure heater 8 Boiler 9 Raw water tank 10 Pretreatment device 11 Pure water device 12 Pure water tank 13 Makeup water Tank 14 Membrane filtration device

Claims (4)

原水を浄化手段にて浄化した補給水を復水器に供給する復水器への補給水供給装置において、該浄化手段からの水をタンクを経て直接膜濾過装置に通し、該膜濾過装置の透過水を直接復水器に供給する補給水供給装置であって、前記復水器の余剰水が前記タンクに返送されることを特徴とする復水器への補給水供給装置 In a supply water supply device to a condenser for supplying makeup water purified by purification means to a condenser, water from the purification means is passed directly through a tank to a membrane filtration device, and the membrane filtration device A supply water supply device for supplying permeate directly to a condenser , wherein surplus water from the condenser is returned to the tank . 請求項1において、前記膜濾過装置がクロスフロー型膜濾過装置であることを特徴とする復水器への補給水供給装置。Oite to claim 1, wherein the membrane filtration apparatus makeup water supply device to the condenser, which is a cross-flow membrane filtration device. 請求項において、前記膜濾過装置の濃縮水は、前記原水と共に前記浄化手段で浄化されることを特徴とする復水器への補給水供給装置。 3. The makeup water supply apparatus for a condenser according to claim 2 , wherein the concentrated water of the membrane filtration device is purified by the purification means together with the raw water. 請求項1ないしのいずれか1項において、前記膜濾過装置において、原水由来の微細粒子、浄化系内で発生する微生物及び混入する微細粒子、復水循環系から余剰水中に混入して補給水中に流入する鉄クラッドを除去することを特徴とする復水器への補給水供給装置。In any one of claims 1 to 3, in the membrane filtration apparatus, the fine particles from the raw water, the microorganisms and contaminating fine particles generated in the clean-up system, the condensate circulation system supply water mixed in excess water An apparatus for supplying makeup water to a condenser, wherein the inflowing iron clad is removed.
JP04893996A 1996-03-06 1996-03-06 Supply water supply device to condenser Expired - Fee Related JP3899545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04893996A JP3899545B2 (en) 1996-03-06 1996-03-06 Supply water supply device to condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04893996A JP3899545B2 (en) 1996-03-06 1996-03-06 Supply water supply device to condenser

Publications (2)

Publication Number Publication Date
JPH09239362A JPH09239362A (en) 1997-09-16
JP3899545B2 true JP3899545B2 (en) 2007-03-28

Family

ID=12817250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04893996A Expired - Fee Related JP3899545B2 (en) 1996-03-06 1996-03-06 Supply water supply device to condenser

Country Status (1)

Country Link
JP (1) JP3899545B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5088996B2 (en) * 2001-09-27 2012-12-05 中国電力株式会社 Reversible cogeneration system
JP2013169530A (en) * 2012-02-22 2013-09-02 Mitsubishi Heavy Ind Ltd Water treatment system for power plant and water treatment method
JP6447663B2 (en) * 2017-05-12 2019-01-09 栗田工業株式会社 Boiler water treatment apparatus and treatment method

Also Published As

Publication number Publication date
JPH09239362A (en) 1997-09-16

Similar Documents

Publication Publication Date Title
CN106746057B (en) Boiler feedwater treatment method and device with high water yield
JP3899545B2 (en) Supply water supply device to condenser
JPH0252088A (en) Apparatus for making desalted water
JPS63100996A (en) Method for desalting brine
CN110204109A (en) A kind of the Application of Circulating Waste Water in Thermal Power Plants advanced treatment system and method for municipal administration water resource of reclaimed water
JPS60190298A (en) Preparation of ultra-pure water
JP2945549B2 (en) Power plant make-up water production equipment
CN110935323B (en) Desulfurization wastewater recycling process based on composite membrane system
JPH09253638A (en) Ultrapure water making apparatus
JPH09294974A (en) Water treatment apparatus
JP2703034B2 (en) Ultrapure water equipment using a heating deaerator
JPH0957261A (en) Two-stage type reverse osmosis membrane treatment
Mavrov et al. Desalination of surface water to industrial water with lower impact on the environment. Part 1: New technological concept
JP3645007B2 (en) Ultrapure water production equipment
JP2922059B2 (en) Operating method of hollow fiber membrane filter
JPH03275190A (en) Producing equipment for ultrapure water
JP3115750B2 (en) Pure water production method
Inoue et al. Advanced treatment of secondary sewage effluent by membrane process
KR100345725B1 (en) A Method for Purifying Wastewater Using Reverse Osmosis and Nanofiltration System
CN214243957U (en) Waste water recovery device
JP2960258B2 (en) Ultrapure water production equipment
JP2005319375A (en) Membrane treatment method and membrane treatment apparatus
JP4518695B2 (en) Condensate treatment system and operation method thereof
JPH0785797B2 (en) Condensate filter
JPH074592B2 (en) Ultrapure water production method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees